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Data Exchange Setting

• Data Exchange Setting: (S,T,Σst)

S: Source schema.

T: Target schema.

Σst: Set of source-to-target dependencies.

- Source-to-target dependency: FO sentence of the form

∀x̄ (ϕS(x̄)→ ∃ȳ ψT(x̄, ȳ)).

- ϕS(x̄): FO formula over S.

- ψT(x̄, ȳ): conjunction of FO atomic formulas over T.
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Example: Data Exchange Setting

• S = 〈Employee(·)〉

• T = 〈Dept(·, ·)〉

• Σst = {∀xEmployee(x)→ ∃yDept(x, y)}.
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LAV & GAV

• LAV setting: each dependency in Σst is of the form

S(x̄)→ ∃ȳ ψT(x̄, ȳ)

where S is a relation symbol in S.

• GAV setting: each dependency in Σst is of the form

ϕS(x̄)→ T (x̄)

where T is a relation symbol in T.
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Data Exchange Problem

• Given a source instance I, find a target instance J such

that (I, J) satisfies Σst.

- J is called a solution for I.

• Previous example: Possible solutions for
I = {Employee(peter)}:

- J1 = {Dept(peter , 1)}.

- J2 = {Dept(peter , 1),Dept(peter , 2)}.

- J3 = {Dept(peter , 1),Dept(john, 1)}.

- J4 = {Dept(peter , n1)}.

- J5 = {Dept(peter , n1),Dept(peter , n2)}.
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Query Answering

• Q is a query over target schema.

What does it mean to answer Q?

certain(Q, I) =
⋂

J is a solution for I

Q(J)

• Previous example:

- certain(∃yDept(x, y), I) = {peter}.

- certain(Dept(x, y), I) = ∅.

- certain(∃x∃y1∃y2 Dept(x, y1) ∧Dept(x, y2) ∧ y1 6= y2, I) = false.
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Query Rewriting

• How can we compute certain(Q, I)?

- Näıve algorithm does not work: infinitely many solutions.

• Approach proposed in [FKMP03]: Query Rewriting

Look for some specific F : inst(S) → inst(T), and find

conditions under which certain(Q, I) = Q′(F(I)) for ev-

ery source instance I.

• What is a good alternative for F?
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Outline

• Universal solutions.

- Canonical universal solution.

• Query rewriting over the canonical universal solution.

• Locality in data exchange.

- Proving inexpressibility results.

• Expressibility: canonical universal solution versus core.

• Query rewriting under the universal solutions semantics.

• Final comments.
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Universal Solutions

• Notation:

Const: infinite set of constants.

Var: infinite set of null values, disjoint from Const.

Const(J): constants in J .

Var(J): null values in J .

Homomorphism h : J → J ′: mapping from adom(J) to

adom(J ′) such that h(c) = c for all c ∈ Const(J), and t̄ ∈ J(R)

implies h(t̄) ∈ J ′(R).

• A universal solution for I is a solution J such that for

every solution J ′ for I, there exists a homomorphism

h : J → J ′.
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Universal Solutions

• Possible solutions for I = {Employee(peter)}:

- J1 = {Dept(peter , 1)}.

- J4 = {Dept(peter , n1)}.

- J5 = {Dept(peter , n1),Dept(peter , n2)}.

• J1 is not a universal solution for I.

• J4 is a universal solution for I:

- From J4 to J1: h(peter) = peter and h(n1) = 1.

- From J4 to J5: h(peter) = peter and h(n1) = n1.

- . . .

• J5 is also a universal solution for I.
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Universal Solutions

• A universal solution is more general than an arbitrary

solution: it can be homomorphically mapped into that

solution.

• All universal solutions are homomorphically equivalent.

• Universal solutions always exist [FKMP03].

• We are interested in a special kind of universal solution:

canonical universal solution.
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Canonical Universal Solution

Input: (S,T,Σst) and a source instance I

Output: canonical universal solution J for I

Algorithm:

for every ∀x̄ (ϕS(x̄)→ ∃y ψT(x̄, ȳ)) ∈ Σst do

for every ā such that I satisfies ϕS(ā) do

create a fresh tuple of null values b̄

insert ψT(ā, b̄) into J
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Canonical Universal Solution

• Example: Σst = {∀xEmployee(x)→ ∃yDept(x, y)} and

I = {Employee(peter), Employee(john)}.

- For a = peter do

Create a fresh null value n1

Insert Dept(peter , n1) into J

- For a = john do

Create a fresh null value n2

Insert Dept(john, n2) into J

Canonical universal solution:

{Dept(peter , n1), Dept(john, n2)}
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Query Rewriting over the Canonical Universal Solution

• Funiv(I): canonical universal solution of I.

- Can be computed in polynomial time.

• Theorem [FKMP03] For every data exchange setting and

conjunctive query Q, there exists Q′ such that for every

source instance I, certain(Q, I) = Q′(Funiv(I)).

- C(x): holds whenever x ∈ Const.

- Q′(x1, . . . , xm) = C(x1) ∧ · · · ∧ C(xm) ∧Q(x1, . . . , xm).
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Query Rewriting over the Canonical Universal Solution

• Example: Σst = {∀xEmployee(x)→ ∃yDept(x, y)},

I = {Employee(peter), Employee(john)} and

J = {Dept(peter , n1), Dept(john, n2)}

Query : Q(x, y) = ∃yDept(x, y)

certain(Q, I) = {peter , john}

Rewriting : Q′(x, y) = C(x) ∧ ∃yDept(x, y)

Q′(J) = {peter , john}
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Query Rewriting over the Canonical Universal Solution

• Can the theorem be extended to other classes of queries?

Theorem [FKMP03] There exists a data exchange setting

and a conjunctive query Q with one inequality such that

Q is not FO-rewritable over Funiv.

- For every FO query Q′, there exists an instance I such that

certain(Q, I) 6= Q′(Funiv(I)).

• How can we prove this theorem?

- How can we prove inexpressibility results in data exchange?

- Can we find “simple” proofs?

• This resembles the problem of proving inexpressibility

results in relational databases.
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Proving Inexpressibility Results: Idea

• Find a nontrivial property P that every FO-rewritable

query over Funiv satisfies.

- P should be as close as possible to the class of FO-rewritable

queries.

- In our scenario: locality.

• If Q does not satisfy P, then Q is not FO-rewritable.
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Locality in Data Exchange: Notation

I is an instance of source schema S.

• Gaifman graph G(I) of an instance I:

- adom(I) is the set of nodes of G(I).

- There exists an edge between a and b iff a and b belong to the

same tuple of a relation in I.

• Example: I(R) = {(1, 2, 3)} and I(T ) = {(1, 4), (4, 5)}.

2

3

4

5

1

G(I):
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Locality in Data Exchange: Notation

• dI(a, b): distance between a and b in G(I).

- Previous example: dI(1, 2) = 1 and dI(2, 4) = 2.

• dI(ā, b): minimum value of dI(a, b), where a is in ā.

• N I
d (ā): restriction of I to the elements at distance at

most d from ā.

- Example: adom(N I
2 (5)) = {1, 4, 5}, N

I
2 (5)(R) = ∅ and

NI
2 (5)(T ) = {(1, 4), (4, 5)}.

• N I
d (ā)

∼= N I
d (b̄): members of ā and b̄ are treated as

distinguished elements.

- ā = (a1, . . . , am) and b̄ = (b1, . . . , bm).

- There is an isomorphism f : N I
d (ā)→ N I

d (b̄) such that

f(ai) = bi (1 ≤ i ≤ m).
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Locality in Data Exchange: Definition

Data exchange setting (S,T,Σst), Q is m-ary query over T.

Definition Q is locally source-dependent if there is d ≥ 0

such that for every instance I of S and m-tuples ā, b̄ in I,

ā ∈ certain(Q, I)

N I
d (ā)

∼= N I
d (b̄) =⇒ iff

b̄ ∈ certain(Q, I)
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Locality in Data Exchange: Main Theorem

Theorem If Q is FO-rewritable over the canonical universal

solution, then Q is locally source-dependent.

This theorem can be used to prove inexpressibility results.

- If a query is not locally source-dependent, then it is not

FO-rewritable.

20



Example

Data exchange setting:

S = 〈G(·, ·), R(·), S(·)〉

T = 〈G′(·, ·), R′(·), S′(·)〉

Σst = ∀x∀y G(x, y)→ G′(x, y),

∀xR(x)→ R′(x),

∀xS(x)→ S′(x).

Query:

Q(x) = R′(x) ∨ S′(x) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z))
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Example: Proving Inexpressibility

• Assume that Q is FO-rewritable over the canonical

universal solution.

Then there exists d ≥ 0 such that

N I
d (a)

∼= N I
d (b) =⇒ a ∈ certain(Q, I) iff b ∈ certain(Q, I).

• Contradiction: find a source instance I such that

N I
d (a)

∼= N I
d (b), a ∈ certain(Q, I) and b 6∈ certain(Q, I).
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Example: Defining Instance I

. .
 .

. .
 .

. .
 .

. .
 .

b2d

bd+1

S(b) b1a1

adad+1

a2d

bd
R(c)

I:

S(a)
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Example: a ∈ certain(Q, I)

J does not satisfy S ′(a) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z)):

. .
 .

. .
 . .   .   .   .

R′(a1)

R′(ad)
R′(c)

R′(a)R′(a2d)

R′(ad+1)

J :

Then: J satisfies R′(a).
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Example: b 6∈ certain(Q, I)

. .
 .

. .
 .

. .
 .

. .
 .

b2d

bd+1

S′(b) b1

R′(ad)R′(ad+1) bd
R′(c)

J :

R′(a), S′(a)
R′(a2d) R′(a1)

J does not satisfy R′(b) ∨ S′(b)∧∃y∃z(R′(y)∧G′(y, z)∧¬R′(z)).
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Example: Getting a Contradiction

. .
 .

. .
 .

. .
 .

. .
 .

bd+1

S(b) b1

bd

b2d

N I
d (b):

S(a)a2d a1

adad+1

N I
d (a):

Conclusion: Q is not FO-rewritable over the canonical

universal solution.
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What about other Transformations?

• Universal solutions need not be isomorphic.

- Decision to choose one is somewhat arbitrary.

• Core of a universal solution J : subinstance J∗ of J such

that there is a homomorphism from J to J∗, but there is

no homomorphism from J to a proper subinstance of J∗.

• Every universal solution has the same core.

• Core is itself a universal solution.

- It is the smallest universal solution.

• Core can be computed in polynomial time [FKP03].
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Example: Core

• Setting: S = 〈Employee(·)〉, T = 〈Dept(·, ·)〉 and

Σst = {∀xEmployee(x)→ ∃yDept(x, y)}.

• Source instance: I = {Employee(peter)}.

Universal solutions:

- {Dept(peter , n1)}.

- {Dept(peter , n1),Dept(peter , n2)}.

- . . .

• Core: {Dept(peter , n1)}.
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Query Rewriting over the Core

• Fcore(I): core of the canonical universal solution for I.

• Theorem [FKMP03] For every data exchange setting and

conjunctive query Q, there exists Q′ such that for every

source instance I, certain(Q, I) = Q′(Fcore(I)).

- Certain answers for conjunctive queries can be computed more

efficiently by using the core.

• Rewritability over the core: Can we use locality?
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Expressibility: Canonical Universal Solution versus Core

Theorem If Q is FO-rewritable over the core, then Q is also

FO-rewritable over the canonical universal solution.

- There is a cubic-time algorithm that, given a rewriting of Q over the

core, finds a rewriting of Q over the canonical universal solution.

Corollary If Q is FO-rewritable over the core, then Q is

locally source-dependent.

Theorem There exists an FO query that is FO-rewritable

over the canonical universal solution, but not FO-rewritable

over the core.
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What about other Semantics?

• Usual certain answers semantics sometimes exhibit

counterintuitive behavior.

- For every Boolean query Q, either certain(Q, I) = false for all

instances I, or certain(¬Q, I) = false for all instances I.

• May be more meaningful to consider semantics based on

universal solutions:

u-certain(Q, I) =
⋂

J is a universal solution for I

Q(J).
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Query Rewriting under the Universal Solutions Semantics

• Given query Q, we want to find Q′ such that

u-certain(Q, I) = Q′(F(I)) for every source instance I.

• Theorem [FKP03] For every data exchange setting and

existential query Q, there exists Q′ such that for every

source instance I, u-certain(Q, I) = Q′(Fcore(I)).
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Query Rewriting under the Universal Solutions Semantics

• Definition Q is locally source-dependent under the

universal solution semantics if there is d ≥ 0 such that:

ā ∈ u-certain(Q, I)

N I
d (ā)

∼= N I
d (b̄) =⇒ iff

b̄ ∈ u-certain(Q, I)

• Theorem All the previous results hold for the universal

solution semantics.

- If Q is FO-rewritable over the canonical universal solution

(core) under the universal solutions semantics, then Q is locally

source-dependent under the universal solutions semantics.
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Final Comments

• Previous results can be extended to data exchange

settings where the underlying language for both

source-to-target dependencies and queries correspond to

SQL select-from-where-groupby-having statements.

• Previous results cannot be extended to data exchange

settings containing target dependencies.

- Except for GAV+egd.
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Locally Consistent Transformations

• To solve the query rewriting problem we need to

understand how neighborhoods are transformed when

computing target instances.

• Theorem In a LAV setting, for every m, d ≥ 0 there

exists d′ ≥ 0 such that, for every instance I of S and

m-tuples ā, b̄ in I,

N I
d′(ā)

∼= N I
d′(b̄) =⇒ N

Funiv(I)
d (ā) ∼= N

Funiv(I)
d (b̄).
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Locally Consistent Transformations

• Corollary In a LAV setting, every query that is

FO-rewritable over the canonical universal solution is

locally source-dependent.

• This result does not hold for GAV settings.

- To prove the general theorem we study a notion of locality

based on FO-logical equivalence.
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