RDF and SPARQL: Database Foundations

Marcelo Arenas, Claudio Gutierrez, Jorge Perez

Department of Computer Science
Pontificia Universidad Católica de Chile
Universidad de Chile
Center for Web Research http://www.cwr.cl/

Outline

- Part I: The RDF data model
- Part II: Querying RDF Data
- Querying: The simple and the ideal
- Querying: Semantics and Complexity
- Part III: Querying Data with SPARQL
- Decisions taken
- Decisions to be taken
- Conclusions

RDF in a nutshell

- RDF is the W3C proposal framework for representing information in the Web.
- Abstract syntax based on directed labeled graph.
- Schema definition language (RDFS): Define new vocabulary (typing, inheritance of classes and properties).
- Extensible URI-based vocabulary.
- Support use of XML schema datatypes.
- Formal semantics.

RDF formal model

$$
\begin{aligned}
U & =\text { set of Uris } \\
B & =\text { set of Blank nodes } \\
L & =\text { set of Literals }
\end{aligned}
$$

RDF formal model

$$
\begin{aligned}
U & =\text { set of Uris } \\
B & =\text { set of Blank nodes } \\
L & =\text { set of Literals }
\end{aligned}
$$

$$
(s, p, o) \in(U \cup B) \times U \times(U \cup B \cup L) \text { is called an RDF triple }
$$

RDF formal model

$$
\begin{aligned}
U & =\text { set of Uris } \\
B & =\text { set of Blank nodes } \\
L & =\text { set of Literals }
\end{aligned}
$$

$(s, p, o) \in(U \cup B) \times U \times(U \cup B \cup L)$ is called an RDF triple
A set of RDF triples is called an RDF graph

RDFS: An example

RDFS: An example

RDF model

Some difficulties:

- Existential variables as datavalues
- Built-in vocabulary with fixed semantics (RDFS)
- Graph model where nodes may also be edge labels

RDF data processing can take advantage of database techniques:
 - Query processing
 - Storing
 - Indexing

RDF model

Some difficulties:

- Existential variables as datavalues
- Built-in vocabulary with fixed semantics (RDFS)
- Graph model where nodes may also be edge labels

RDF data processing can take advantage of database techniques:

- Query processing
- Storing
- Indexing

Entailment of RDF graphs

Entailment of RDF graphs:

Entailment of RDF graphs

Entailment of RDF graphs:

- Can be defined in terms of classical notions such model, interpretation, etc

Entailment of RDF graphs

Entailment of RDF graphs:

- Can be defined in terms of classical notions such model, interpretation, etc
- As for the case of first order logic

Entailment of RDF graphs

Entailment of RDF graphs:

- Can be defined in terms of classical notions such model, interpretation, etc
- As for the case of first order logic
- Has a graph characterization via homomorphisms.

Homomorphism

A function $h: U \cup B \cup L \rightarrow U \cup B \cup L$ is a homomorphism h from G_{1} to G_{2} if:

- $h(c)=c$ for every $c \in U \cup L$;
- for every $(a, b, c) \in G_{1},(h(a), h(b), h(c)) \in G_{2}$

Notation: $G_{1} \rightarrow G_{2}$
Example: $h=\{B \mapsto b\}$

Entailment

Theorem (CM77)
$G_{1} \models G_{2}$ if and only if there is a homomorphism $G_{2} \rightarrow G_{1}$.

Entailment

Theorem (CM77)
$G_{1} \models G_{2}$ if and only if there is a homomorphism $G_{2} \rightarrow G_{1}$.

Entailment

Theorem (CM77)
$G_{1} \models G_{2}$ if and only if there is a homomorphism $G_{2} \rightarrow G_{1}$.

Entailment

Theorem (CM77)
$G_{1} \models G_{2}$ if and only if there is a homomorphism $G_{2} \rightarrow G_{1}$.

Complexity
Entailment for RDF is NP-complete

Graphs with RDFS vocabulary

Previous characterization of entailment is not enough to deal with RDFS vocabulary:

Graphs with RDFS vocabulary

Previous characterization of entailment is not enough to deal with RDFS vocabulary: (Ronaldinho, rdf : type, person)

Graphs with RDFS vocabulary

Built-in predicates have pre-defined semantics:

Graphs with RDFS vocabulary

Built-in predicates have pre-defined semantics:
rdf:sc: transitive

Graphs with RDFS vocabulary

Built-in predicates have pre-defined semantics:

rdf:sc: transitive
rdf:sp: transitive

Graphs with RDFS vocabulary

Built-in predicates have pre-defined semantics:
rdf:sc: transitive
rdf:sp: transitive
More complicated interactions: $\frac{(p, \text { rdf:dom, } c) \quad(a, p, b)}{(a, \text { rdf:type, } c)}$

Graphs with RDFS vocabulary

Built-in predicates have pre-defined semantics:
rdf:sc: transitive
rdf:sp: transitive
More complicated interactions: $\frac{(p, r d f: \text { dom }, c)(a, p, b)}{(a, \text { rdf:type }, c)}$

RDFS-entailment can be characterized by a set of rules

- An Existential rule
- Subproperty rules
- Subclass rules
- Typing rules
- Implicit typing

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:
Existential rule

Subproperty rules :

Subclass rules

Typing rules

Implicit typing

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:
Existential rule : $\frac{G_{1}}{G_{2}}$ if $G_{2} \rightarrow G_{1}$

Subproperty rules :

Subclass rules

Typing rules

Implicit typing

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:
Existential rule : $\frac{G_{1}}{G_{2}}$ if $G_{2} \rightarrow G_{1}$
Subproperty rules : $\frac{(p, \text { rdf:sp }, q)(a, p, b)}{(a, q, b)}$

Subclass rules

Typing rules

Implicit typing

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:
Existential rule : $\frac{G_{1}}{G_{2}}$ if $G_{2} \rightarrow G_{1}$
Subproperty rules : $\frac{(p, \text { rdf:sp, } q)(a, p, b)}{(a, q, b)}$
Subclass rules : $\frac{(a, r d f: s c, b)(b, r d f: s c, c)}{(a, r d f: s c, c)}$

Typing rules

Implicit typing

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:
Existential rule : $\frac{G_{1}}{G_{2}}$ if $G_{2} \rightarrow G_{1}$
Subproperty rules : $\frac{(p, \text { rdf:sp, } q)(a, p, b)}{(a, q, b)}$
Subclass rules

$$
\frac{(a, r d f: s c, b) \quad(b, r d f: s c, c)}{(a, r d f: s c, c)}
$$

Typing rules $: \frac{(p, r d f: d o m, c)(a, p, b)}{(a, r d f: t y p e, c)}$

Implicit typing

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:
Existential rule : $\frac{G_{1}}{G_{2}}$ if $G_{2} \rightarrow G_{1}$
Subproperty rules : $\frac{(p, \text { rdf:sp, } q)(a, p, b)}{(a, q, b)}$
Subclass rules

$$
\frac{(a, \mathrm{rdf}: \mathrm{sc}, b) \quad(b, \mathrm{rdf}: \mathrm{sc}, c)}{(a, \mathrm{rdf}: \mathrm{sc}, c)}
$$

Typing rules

$$
\frac{(p, \text { rdf:dom, } c) \quad(a, p, b)}{(a, \text { rdf:type }, c)}
$$

Implicit typing

$$
\frac{(q, \text { rdf:dom, } a)(p, \text { rdf:sp, } q) \quad(b, p, c)}{(b, \text { rdf:type }, a)}
$$

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:
Existential rule :

Subproperty rules : $\frac{(p, \text { rdf:sp, } q)(a, p, b)}{(a, q, b)}$

Subclass rules

Typing rules $: \frac{(p, r d f: d o m, c)(a, p, b)}{(a, r d f: t y p e, c)}$
Implicit typing $: \frac{(q, r d f: d o m, a)(p, r d f: s p, q)(b, p, c)}{(b, r d f: t y p e, a)}$

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:
Existential rule :

Subproperty rules : $\frac{(p, \text { rdf:sp, } q)(a, p, b)}{(a, q, b)}$

Subclass rules

Typing rules $: \frac{(p, r d f: d o m, c)(a, p, b)}{(a, r d f: t y p e, c)}$
Implicit typing $: \frac{(B, r d f: d o m, a)(p, r d f: s p, B) \quad(b, p, c)}{(b, r d f: t y p e, a)}$

RDFS Entailment

Theorem (H04,GHM04,MPG07)
$G_{1} \models G_{2}$ iff there is a proof of G_{2} from G_{1} using the system of 14 inference rules.

Complexity

RDFS-entailment is NP-complete.

Proof idea

Membership in NP: If $G_{1} \models G_{2}$, then there exists a polynomial-size proof of this fact.

Closure of an RDF Graph

Notation:

$$
\begin{array}{ll}
\operatorname{ground}(G): & \text { Graph obtained by replacing every blank } B \\
& \text { in } G \text { by a constant } c_{B} . \\
\text { ground }^{-1}(G): & G r a p h \text { obtained by replacing every constant } \\
& c_{B} \text { in } G \text { by } B .
\end{array}
$$

Closure of an RDF graph G (denoted by closure (G)):

Closure of an RDF Graph

Notation:

$$
\begin{array}{ll}
\operatorname{ground}(G): & \text { Graph obtained by replacing every blank } B \\
& \text { in } G \text { by a constant } c_{B} . \\
\text { ground }^{-1}(G): & G r a p h \text { obtained by replacing every constant } \\
& c_{B} \text { in } G \text { by } B .
\end{array}
$$

Closure of an RDF graph G (denoted by closure (G)):

$$
G \cup\{t \in(U \cup B) \times U \times(U \cup B \cup L)
$$

there exists a ground tuple t^{\prime} such that

$$
\left.\operatorname{ground}(G) \models t^{\prime} \text { and } t=\operatorname{ground}^{-1}\left(t^{\prime}\right)\right\}
$$

Closure of an RDF Graph: Example

Closure of an RDF Graph: Example

Closure of an RDF graph: complexity

Proposition (H04,GHM04,MPG07)
 $G_{1} \models G_{2}$ iff $G_{2} \rightarrow \operatorname{closure}\left(G_{1}\right)$

Complexity
The closure of G can be computed in time $O\left(|G|^{4} \cdot \log |G|\right)$.

Closure of an RDF graph: complexity

Proposition (H04,GHM04,MPG07)
 $G_{1} \models G_{2}$ iff $G_{2} \rightarrow \operatorname{closure}\left(G_{1}\right)$

Complexity
The closure of G can be computed in time $O\left(|G|^{4} \cdot \log |G|\right)$.

Can the closure be used in practice?

Closure of an RDF graph: complexity

Proposition (H04,GHM04,MPG07)
 $G_{1} \models G_{2}$ iff $G_{2} \rightarrow \operatorname{closure}\left(G_{1}\right)$

Complexity
The closure of G can be computed in time $O\left(|G|^{4} \cdot \log |G|\right)$.

Can the closure be used in practice?

- Can we use an alternative materialization?

Closure of an RDF graph: complexity

Proposition (H04,GHM04,MPG07)
 $G_{1} \models G_{2}$ iff $G_{2} \rightarrow \operatorname{closure}\left(G_{1}\right)$

Complexity

The closure of G can be computed in time $O\left(|G|^{4} \cdot \log |G|\right)$.

Can the closure be used in practice?

- Can we use an alternative materialization?
- Can we materialize a small part of the closure?

Core of an RDF Graph

An RDF Graph G is a core if there is no homomorphism from G to a proper subgraph of it.

Theorem (HN92,FKP03,GHM04)

- Each RDF graph G has a unique core (denoted by core(G)).
- Deciding if G is a core is coNP-complete.
- Deciding if $G=\operatorname{core}\left(G^{\prime}\right)$ is DP-complete.

Core and RDFS

For RDF graphs with RDFS vocabulary, the core of G may contain redundant information:

Core and RDFS

For RDF graphs with RDFS vocabulary, the core of G may contain redundant information:

Core and RDFS

For RDF graphs with RDFS vocabulary, the core of G may contain redundant information:

A normal form for RDF graphs

To reduce the size of the materialization, we can combine both core and closure.

A normal form for RDF graphs

To reduce the size of the materialization, we can combine both core and closure.

- $\operatorname{nf}(G)=\operatorname{core}(\operatorname{closure}(G))$

A normal form for RDF graphs

To reduce the size of the materialization, we can combine both core and closure.

- $\operatorname{nf}(G)=\operatorname{core}(\operatorname{closure}(G))$

Theorem (GHM04)

- G_{1} is equivalent to G_{2} iff $n f\left(G_{1}\right) \cong n f\left(G_{2}\right)$.
- $G_{1} \models G_{2}$ iff $G_{2} \rightarrow n f\left(G_{1}\right)$

A normal form for RDF graphs

To reduce the size of the materialization, we can combine both core and closure.

- $\operatorname{nf}(G)=\operatorname{core}(\operatorname{closure}(G))$

Theorem (GHM04)

- G_{1} is equivalent to G_{2} iff $n f\left(G_{1}\right) \cong n f\left(G_{2}\right)$.
- $G_{1} \models G_{2}$ iff $G_{2} \rightarrow n f\left(G_{1}\right)$

Complexity

The problem of deciding if $G_{1}=n f\left(G_{2}\right)$ is DP-complete.

Querying RDF data: Desiderata

Let D be a database, Q a query, and $Q(D)$ the answer.

- Outputs should belong to the same family of objects as inputs
- If $D \equiv D^{\prime}$, then $Q(D)=Q\left(D^{\prime}\right)$ (Weaker) If $D \equiv D^{\prime}$, then $Q(D) \cong Q\left(D^{\prime}\right)$
- $Q(D)$ should have no (or minimal) redundancies
- The framework should be extensible to RDFS (Should the framework be extensible to OWL?)
- Incorporate to the framework the notion of entailment

Querying RDF data: Desiderata

Outputs should belong to the same family of objects as inputs

- Allows compositionality of queries
- Allows defining views
- Allows rewriting

In RDF, the natural objects of input/output are RDF graphs.

Querying RDF data: Desiderata

If $D \equiv D^{\prime}$, then $Q(D)=Q\left(D^{\prime}\right)$
(Weaker) If $D \equiv D^{\prime}$, then $Q(D) \cong Q\left(D^{\prime}\right)$

- Outputs are syntactic or semantic objects?
- Need a notion of "equivalent" databases (\equiv) (In RDF, there is a standard notion of logical equivalence)
- One could just ask logical equivalence in the output
- In RDF there is an intermediate notion: graph isomorphism

Querying RDF data: Desiderata

$Q(D)$ should have no (or minimal) redundancies

- Desirable to avoid inconsistencies
- Desirable to improve processing time and space
- Standard requirement for exchange information

Querying RDF data: Desiderata

The framework should be extensible to RDFS
(Should the framework be extensible to OWL?)

- A basic requirement of the Semantic Web Architecture
- Extension to OWL are not trivial because of the known mismatch
- Not necessarily related to the type of semantics given (logical framework, graph matching, etc.)

Querying RDF data: Desiderata

Incorporate to the framework the notion of entailment

- RDF graphs are not purely syntactic objects
- Would like to incorporate KB framework
- Beware of the complexity issues! RDF navigates on the Web
- Find the good compromise

Querying RDF data: Definitions

A conjunctive query Q is a pair of RDF graphs H, B where some resources have been replaced by variables \bar{X}, \bar{Y} in V.

$$
Q: \quad H(\bar{X}) \leftarrow B(\bar{X}, \bar{Y})
$$

Issues:

- Free variables in B (projection)
- Treatment of blank nodes in B
- Treatment of blank nodes in H

Querying RDF data: Definitions (cont.)

A valuation is a function $v: V \rightarrow U \cup B \cup L$
A matching of a graph B in the database D is a valuation v such that $v(B) \subseteq D$.

A pre-answer to Q over D is the set

$$
\operatorname{preans}(Q, D)=\{v(H): v \text { is a matching of } B \text { in } D\}
$$

A single answer is an element of preans (Q, D)

Querying RDF data: Two semantics

Union: answer $Q(D)$ is the union of all single answers

$$
\operatorname{ans}_{U}(Q, D)=\bigcup \operatorname{preans}(Q, D)
$$

Merge: answer $Q(D)$ is the merge of all single answers

$$
\operatorname{ans}_{M}(Q, D)=\biguplus \operatorname{preans}(Q, D)
$$

Proposition

1. For both semantics, if $D \models D^{\prime}$ then ans $(Q, D) \models \operatorname{ans}\left(Q, D^{\prime}\right)$
2. For all $D, \operatorname{ans} U(Q, D) \models \operatorname{ans}_{M}(Q, D)$
3. With merge semantics, we cannot represent the identity query

Querying RDF data: refined semantics

Problem

Two non-isomorphic datasets D, D^{\prime} give different answers to the same query.

A slightly refined semantics:

1. Normalize D before querying
2. Then query as usual over $n f(D)$

Good News: if $D \equiv D^{\prime}$ then $Q(D) \cong Q\left(D^{\prime}\right)$
Bad News: computing $\operatorname{nf}(D)$ is hard

Querying RDF data: refined semantics (cont.)

The news as formal results:

Theorem (MPG07)

Do not need to compute the normal form.

Theorem (FG06)

If a query language has the following two properties:

1. for all Q, if $D \equiv D^{\prime}$ then $Q(D)=Q\left(D^{\prime}\right)$,
2. can represent the identity query,
then the complexity of evaluation (in data complexity) is as hard as the evaluation of \equiv.

Querying RDF data: Containment

A query Q^{\prime} contains a query Q, denoted $Q \sqsubseteq Q^{\prime}$ iff ans $\left(Q^{\prime}, D\right)$ comprises all the information of ans (Q, D). In classical DB: ans $(Q, D) \subseteq \operatorname{ans}\left(Q^{\prime}, D\right)$
In our setting we have two versions:

- $\operatorname{ans}(Q, D) \subseteq \operatorname{ans}\left(Q^{\prime}, D\right) \quad\left(Q \sqsubseteq_{p} Q^{\prime}\right)$
- preans $(Q, D) \subseteq \operatorname{preans}\left(Q^{\prime}, D\right)\left(\right.$ modulo iso) $\left(Q \sqsubseteq_{m} Q^{\prime}\right)$

For ground RDF both notions coincide.

Querying RDF data: Complexity

Query complexity version: The evaluation problem is NP-complete
Data complexity version: The evaluation problem is polynomial

Querying with SPARQL

- SPARQL is the W3C candidate recommendation query language for RDF.
- SPARQL is a graph-matching query language.
- A SPARQL query consists of three parts:
- Pattern matching: optional, union, nesting, filtering.
- Solution modifiers: projection, distinct, order, limit, offset.
- Output part: construction of new triples,

Recall the formalization from Unit-2

Syntax:

- Triple patterns: RDF triple + variables (no bnodes)
- Operators between triple patterns: AND, UNION, OPT.
- Filtering of solutions: FILTER.
- A full parenthesized algebra.

Recall the formalization from Unit-2

Semantics:

- Based on mappings, partial functions from variables to terms.
- A mapping μ is a solution of triple pattern t in G iff
- $\mu(t) \in G$
- $\operatorname{dom}(\mu)=\operatorname{var}(t)$.
- $[[t]]_{G}$ is the evaluation of t in G, the set of solutions.

Example

G	t		$[[t]]_{G}$	
(R_{1}, name, john)	(?X, name, ?Y)		? X	?Y
(R_{1}, email, J@ed.ex)		μ_{1} :	R_{1}	john
(R_{2}, name, paul)		μ_{2} :	R_{2}	paul

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared variables.

Example

μ_{1}	? X	?Y	?Z	?V
	R_{1}	john		
$\begin{aligned} & \mu_{2}: \\ & \mu_{3}: \end{aligned}$	R_{1}		J@edu.ex P@edu.ex	R_{2}

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared variables.

Example

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared variables.

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
$\mu_{2}:$	R_{1}	john		
$\mu_{3}:$	R_{1}		J@edu.ex P@edu.ex	R_{2}
$\mu_{1} \cup \mu_{2}:$		R_{1}	john	J@edu.ex

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared variables.

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
$\mu_{2}:$	R_{1}	john		
$\mu_{3}:$	R_{1}		J@edu.ex P@edu.ex	R_{2}
$\mu_{1} \cup \mu_{2}:$				
	R_{1}	john	J@edu.ex	

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared variables.

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
$\mu_{2}:$	R_{1}	john		
$\mu_{3}:$			J@edu.ex P@edu.ex	R_{2}
$\mu_{1} \cup \mu_{2}:$				
$\mu_{1} \cup \mu_{3}:$		R_{1}	john	J@edu.ex
R_{1}	john	P@edu.ex	R_{2}	

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared variables.

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
$\mu_{2}:$	R_{1}	john		
$\mu_{3}:$	R_{1}		J@edu.ex P@edu.ex	R_{2}
$\mu_{1} \cup \mu_{2}:$		R_{1}	john	J@edu.ex
$\mu_{1} \cup \mu_{3}:$	R_{1}	john	P@edu.ex	R_{2}

- μ_{2} and μ_{3} are not compatible

Sets of mappings and operations

Let M_{1} and M_{2} be sets of mappings:

Definition

Sets of mappings and operations

Let M_{1} and M_{2} be sets of mappings:

Definition

Join: $M_{1} \bowtie M_{2}$

- extending mappings in M_{1} with compatible mappings in M_{2}

Sets of mappings and operations

Let M_{1} and M_{2} be sets of mappings:

Definition

Join: $M_{1} \bowtie M_{2}$

- extending mappings in M_{1} with compatible mappings in M_{2} Difference: $M_{1} \backslash M_{2}$
- mappings in M_{1} that cannot be extended with mappings in M_{2}

Sets of mappings and operations

Let M_{1} and M_{2} be sets of mappings:

Definition

Join: $M_{1} \bowtie M_{2}$

- extending mappings in M_{1} with compatible mappings in M_{2}

$$
\text { Difference: } M_{1} \backslash M_{2}
$$

- mappings in M_{1} that cannot be extended with mappings in M_{2}

Union: $M_{1} \cup M_{2}$

- mappings in M_{1} plus mappings in M_{2} (set theoretical union)

Sets of mappings and operations

Let M_{1} and M_{2} be sets of mappings:

Definition

$$
\text { Join: } M_{1} \bowtie M_{2}
$$

- extending mappings in M_{1} with compatible mappings in M_{2}

$$
\text { Difference: } M_{1} \backslash M_{2}
$$

- mappings in M_{1} that cannot be extended with mappings in M_{2}

Union: $M_{1} \cup M_{2}$

- mappings in M_{1} plus mappings in M_{2} (set theoretical union)

Definition

Left Outer Join: $M_{1} \boxplus M_{2}=\left(M_{1} \bowtie M_{2}\right) \cup\left(M_{1} \backslash M_{2}\right)$

Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

- $\left[\left[\left(P_{1} \text { AND } P_{2}\right)\right]\right]_{G}=\left[\left[P_{1}\right]\right]_{G} \bowtie\left[\left[P_{2}\right]\right]_{G}$
- $\left[\left[\left(P_{1} \text { UNION } P_{2}\right)\right]\right]_{G}=\left[\left[P_{1}\right]\right]_{G} \cup\left[\left[P_{2}\right]\right]_{G}$
- $\left[\left[\left(P_{1} \text { OPT } P_{2}\right)\right]\right]_{G}=\left[\left[P_{1}\right]\right]_{G} \boxtimes\left[\left[\left[P_{2}\right]\right]_{G}\right.$
- $\left[[(P \text { FILTER } R)]_{G}=\left\{\mu \in[[P]]_{G} \mid \mu\right.\right.$ satisfies $\left.R\right\}$

Differences with Relational Algebra / SQL

- Not a fixed output schema
- mappings instead of tables
- schema is implicit in the domain of mappings
- Too many NULLs
- mappings with disjoint domains can be joined
- mappings with distinct domains in output solutions
- SPARQL-to-SQL translations experience these issues
- need of IS NULL/IS NOT NULL in join/outerjoin conditions
- need of COALESCE in constructing output schema

SPARQL complexity: the evaluation problem

Input:

A mapping μ, a graph pattern P, and an RDF graph G.

Question:

Is the mapping in the evaluation of the pattern against the graph?

$$
\mu \in[[P]]_{G} ?
$$

Evaluation of AND-FILTER patterns is polynomial.

Theorem (PAG06)
For patterns using only AND and FILTER operators, the evaluation problem is polynomial:

$$
O(|P| \times|G|)
$$

Evaluation of AND-FILTER patterns is polynomial.

Theorem (PAG06)

For patterns using only AND and FILTER operators, the evaluation problem is polynomial:

$$
O(|P| \times|G|) .
$$

Proof idea

- Check that the mapping makes every triple to match.
- Then check that the mapping satisfies the FILTERs.

Evaluation including UNION is NP-complete.

Theorem (PAG06)
For patterns using AND, FILTER and UNION operators, the evaluation problem is NP-complete.

Evaluation including UNION is NP-complete.

Theorem (PAG06)
For patterns using AND, FILTER and UNION operators, the evaluation problem is NP-complete.

Proof idea

- Reduction from 3SAT.
- A pattern encodes the propositional formula.

Evaluation including UNION is NP-complete.

Theorem (PAG06)

For patterns using AND, FILTER and UNION operators, the evaluation problem is NP-complete.

Proof idea

- Reduction from 3SAT.
- A pattern encodes the propositional formula.
- \neg bound is used to encode negation.

Evaluation including OPT is PSPACE-complete.

Theorem (PAG06)
For patterns using AND, FILTER and OPT operators, the evaluation problem is PSPACE-complete.

Evaluation including OPT is PSPACE-complete.

Theorem (PAG06)

For patterns using AND, FILTER and OPT operators, the evaluation problem is PSPACE-complete.

Proof idea

- Reduction from QBF
- A pattern encodes a quantified propositional formula:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \cdots \psi
$$

- nested OPTs are used to encode quantifier alternation. (This time, we do not need \neg bound.)

Evaluation including OPT is PSPACE-complete.

Theorem (PAG06)

For patterns using AND, FILTER and OPT operators, the evaluation problem is PSPACE-complete.

Proof idea

- Reduction from QBF
- A pattern encodes a quantified propositional formula:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \cdots \psi
$$

- nested OPTs are used to encode quantifier alternation.
(This time, we do not need \neg bound.)

PSPACE-hardness: A closer look

Assume $\varphi=\forall x_{1} \exists y_{1} \psi$, where $\psi=\left(x_{1} \vee \neg y_{1}\right) \wedge\left(\neg x_{1} \vee y_{1}\right)$.
We generate G, P_{φ} and μ_{0} such that μ_{0} belongs to the answer of P_{φ} over G iff φ is valid:

$$
\begin{aligned}
G & : \\
P_{\psi} & : \\
P_{\varphi} & : \\
\mu_{0} & :
\end{aligned}
$$

PSPACE-hardness: A closer look

Assume $\varphi=\forall x_{1} \exists y_{1} \psi$, where $\psi=\left(x_{1} \vee \neg y_{1}\right) \wedge\left(\neg x_{1} \vee y_{1}\right)$.
We generate G, P_{φ} and μ_{0} such that μ_{0} belongs to the answer of P_{φ} over G iff φ is valid:

```
\(G: \quad\{(a, \mathrm{tv}, 0),(a, \mathrm{tv}, 1),(a\), false, 0\(),(a\), true, 1\()\}\)
\(P_{\psi}:\)
\(P_{\varphi}:\)
\(\mu_{0} \quad:\)
```


PSPACE-hardness: A closer look

Assume $\varphi=\forall x_{1} \exists y_{1} \psi$, where $\psi=\left(x_{1} \vee \neg y_{1}\right) \wedge\left(\neg x_{1} \vee y_{1}\right)$.
We generate G, P_{φ} and μ_{0} such that μ_{0} belongs to the answer of P_{φ} over G iff φ is valid:

```
\(G: \quad\{(a, \mathrm{tv}, 0),(a, \mathrm{tv}, 1),(a\), false, 0\(),(a\), true, 1\()\}\)
\(P_{\psi}:\left(\left(a, \mathrm{tv}, ? X_{1}\right)\right.\) AND \(\left.\left(a, \mathrm{tv}, ? Y_{1}\right)\right)\) FILTER
    \(\left(\left(? X_{1}=1 \vee ? Y_{1}=0\right) \wedge\left(? X_{1}=0 \vee ? Y_{1}=1\right)\right)\)
\(P_{\varphi}:\)
\(\mu_{0} \quad:\)
```


PSPACE-hardness: A closer look

Assume $\varphi=\forall x_{1} \exists y_{1} \psi$, where $\psi=\left(x_{1} \vee \neg y_{1}\right) \wedge\left(\neg x_{1} \vee y_{1}\right)$.
We generate G, P_{φ} and μ_{0} such that μ_{0} belongs to the answer of P_{φ} over G iff φ is valid:
$G:\{(a, \operatorname{tv}, 0),(a, \mathrm{tv}, 1),(a$, false, 0$),(a$, true, 1$)\}$
$P_{\psi}:\left(\left(a, \mathrm{tv}, ? X_{1}\right)\right.$ AND $\left.\left(a, \mathrm{tv}, ? Y_{1}\right)\right)$ FILTER

$$
\left(\left(? X_{1}=1 \vee ? Y_{1}=0\right) \wedge\left(? X_{1}=0 \vee ? Y_{1}=1\right)\right)
$$

$P_{\varphi}:\left(a\right.$, true,$\left.? B_{0}\right)$ OPT $\left(P_{1}\right.$ OPT $\left(Q_{1}\right.$ AND $\left.\left.P_{\psi}\right)\right)$
$\mu_{0} \quad:$

PSPACE-hardness: A closer look

Assume $\varphi=\forall x_{1} \exists y_{1} \psi$, where $\psi=\left(x_{1} \vee \neg y_{1}\right) \wedge\left(\neg x_{1} \vee y_{1}\right)$.
We generate G, P_{φ} and μ_{0} such that μ_{0} belongs to the answer of P_{φ} over G iff φ is valid:
$G:\{(a, \operatorname{tv}, 0),(a, \mathrm{tv}, 1),(a$, false, 0$),(a$, true, 1$)\}$
$P_{\psi}:\left(\left(a, t v, ? X_{1}\right)\right.$ AND $\left.\left(a, \mathrm{tv}, ? Y_{1}\right)\right)$ FILTER

$$
\left(\left(? X_{1}=1 \vee ? Y_{1}=0\right) \wedge\left(? X_{1}=0 \vee ? Y_{1}=1\right)\right)
$$

$P_{\varphi}:\left(a\right.$, true,$\left.? B_{0}\right)$ OPT $\left(P_{1}\right.$ OPT $\left(Q_{1}\right.$ AND $\left.\left.P_{\psi}\right)\right)$
$\mu_{0} \quad: \quad\left\{? B_{0} \mapsto 1\right\}$

PSPACE-hardness: A closer look

$$
\begin{aligned}
& P_{\varphi}:\left(a, \text { true }, ? B_{0}\right) \text { OPT }\left(P_{1} \text { OPT }\left(Q_{1} \text { AND } P_{\psi}\right)\right) \\
& P_{1}:\left(a, \mathrm{tv}, ? X_{1}\right) \\
& Q_{1}:\left(a, \mathrm{tv}, ? X_{1}\right) \text { AND }\left(a, \mathrm{tv}, ? Y_{1}\right) \text { AND }\left(a, \text { false, ? } B_{0}\right)
\end{aligned}
$$

PSPACE-hardness: A closer look

$$
\begin{aligned}
& P_{\varphi}:\left(a, \text { true }, ? B_{0}\right) \text { OPT }\left(P_{1} \text { OPT }\left(Q_{1} \text { AND } P_{\psi}\right)\right) \\
& P_{1}:\left(a, \mathrm{tv}, ? X_{1}\right) \\
& Q_{1}:\left(a, \mathrm{tv}, ? X_{1}\right) \text { AND }\left(a, \mathrm{tv}, ? Y_{1}\right) \text { AND }\left(a, \text { false, ? } B_{0}\right)
\end{aligned}
$$

$? B_{0} \mapsto 1$

PSPACE-hardness: A closer look

$$
\begin{aligned}
& P_{\varphi}:\left(a, \text { true }, ? B_{0}\right) \text { OPT }\left(P_{1} \text { OPT }\left(Q_{1} \text { AND } P_{\psi}\right)\right) \\
& P_{1}:\left(a, \text { tv }, ? X_{1}\right) \\
& Q_{1}:\left(a, \mathrm{tv}, ? X_{1}\right) \text { AND }\left(a, \mathrm{tv}, ? Y_{1}\right) \text { AND }\left(a, \text { false, ? } B_{0}\right)
\end{aligned}
$$

PSPACE-hardness: A closer look

$$
\begin{aligned}
& P_{\varphi}:\left(a, \text { true }, ? B_{0}\right) \text { OPT }\left(P_{1} \text { OPT }\left(Q_{1} \text { AND } P_{\psi}\right)\right) \\
& P_{1}:\left(a, t v, ? X_{1}\right) \\
& \left.Q_{1}:\left(a, \mathrm{tv}, ? X_{1}\right) \text { AND }\left(a, \mathrm{tv}, ? Y_{1}\right) \text { AND (} a, \text { false, ? } B_{0}\right)
\end{aligned}
$$

PSPACE-hardness: A closer look

$$
\begin{aligned}
& P_{\varphi}:\left(a, \text { true }, ? B_{0}\right) \text { OPT }\left(P_{1} \text { OPT }\left(Q_{1} \text { AND } P_{\psi}\right)\right) \\
& P_{1}:\left(a, t v, ? X_{1}\right) \\
& \left.Q_{1}:\left(a, \mathrm{tv}, ? X_{1}\right) \text { AND }\left(a, \mathrm{tv}, ? Y_{1}\right) \text { AND (} a, \text { false, ? } B_{0}\right)
\end{aligned}
$$

PSPACE-hardness: A closer look

$$
\begin{aligned}
P_{\varphi} & :\left(a, \text { true }, ? B_{0}\right) \text { OPT }\left(P_{1} \text { OPT }\left(Q_{1} \text { AND } P_{\psi}\right)\right) \\
P_{1} & :\left(a, \mathrm{tv}, ? X_{1}\right) \\
Q_{1} & :\left(a, \mathrm{tv}, ? X_{1}\right) \text { AND }\left(a, \mathrm{tv}, ? Y_{1}\right) \text { AND }\left(a, \text { false, ? } B_{0}\right)
\end{aligned}
$$

Data-complexity is polynomial

Theorem (PAG06)

When patterns are consider to be fixed (data complexity), the evaluation problem is in LOGSPACE.

Data-complexity is polynomial

Theorem (PAG06)

When patterns are consider to be fixed (data complexity), the evaluation problem is in LOGSPACE.

Proof idea
From data-complexity of first-order logic.

SPARQL reordering/optimization: a simple normal from

- AND and UNION are commutative and associative.
- AND, OPT, and FILTER distribute over UNION.

Theorem (UNION Normal Form)

Every graph pattern is equivalent to one of the form

$$
P_{1} \text { UNION } P_{2} \text { UNION } \ldots \text { UNION } P_{n}
$$

where each P_{i} is UNION-free.
We concentrate in UNION-free patterns.

Well-designed patterns

Definition

A graph pattern is well-designed iff for every OPT in the pattern

$$
(\cdots \cdots \cdots \cdots) \quad(\quad A \text { OPT } B) \quad \cdots \cdots \cdots \cdots)
$$

if a variable occurs inside B and anywhere outside the OPT, then the variable must also occur inside A.

Well-designed patterns

Definition

A graph pattern is well-designed iff for every OPT in the pattern

$$
\left(\cdots \cdots \cdots \cdots \cdot\left(\begin{array}{llll}
A & \text { OPT } & B \\
\uparrow
\end{array}\right) \cdots \cdots \cdots \cdots\right)
$$

if a variable occurs inside B and anywhere outside the OPT, then the variable must also occur inside A.

Well-designed patterns

Definition

A graph pattern is well-designed iff for every OPT in the pattern

if a variable occurs inside B and anywhere outside the OPT, then
the variable must also occur inside A.

Well-designed patterns

Definition

A graph pattern is well-designed iff for every OPT in the pattern

if a variable occurs inside B and anywhere outside the OPT, then the variable must also occur inside A.

Well-designed patterns

Definition

A graph pattern is well-designed iff for every OPT in the pattern

if a variable occurs inside B and anywhere outside the OPT, then the variable must also occur inside A.

> Example
> $(((? Y$, name, paul) OPT $(? X$, email, ?Z) $)$ AND $(? X$, name, john $))$

Well-designed patterns

Definition

A graph pattern is well-designed iff for every OPT in the pattern

if a variable occurs inside B and anywhere outside the OPT, then the variable must also occur inside A.

Example
$(((? Y$, name, paul $)$ OPT $\underset{\uparrow}{(? X, \text { email, ? Z })})$ AND $(? X$, name, john $))$

Well-designed patterns

Definition

A graph pattern is well-designed iff for every OPT in the pattern

if a variable occurs inside B and anywhere outside the OPT, then the variable must also occur inside A.

Example
 (((?Y, name, paul) OPT (?X, email, ?Z)) AND (?X, name, john))

Well-designed patterns

Definition

A graph pattern is well-designed iff for every OPT in the pattern

if a variable occurs inside B and anywhere outside the OPT, then the variable must also occur inside A.

Example
 (((?Y, name, paul) OPT (?X, email, ?Z)) AND (?X, name, john))

Well-designed patterns and PSPACE-hardness

In the PSPACE-hardness reduction we use this formula:

$$
\begin{aligned}
& P_{\varphi}:\left(a, \text { true }, ? B_{0}\right) \text { OPT }\left(P_{1} \text { OPT }\left(Q_{1} \text { AND } P_{\psi}\right)\right) \\
& P_{1}:\left(a, \text { tv }, ? X_{1}\right) \\
& Q_{1}:\left(a, \text { tv }, ? X_{1}\right) \text { AND }\left(a, \text { tv, ? } Y_{1}\right) \text { AND }\left(a, \text { false, ? } B_{0}\right)
\end{aligned}
$$

Well-designed patterns and PSPACE-hardness

In the PSPACE-hardness reduction we use this formula:

$$
\begin{aligned}
& P_{\varphi}:\left(a, \text { true }, ? B_{0}\right) \text { OPT }\left(P_{1} \text { OPT }\left(Q_{1} \text { AND } P_{\psi}\right)\right) \\
& P_{1}:\left(a, \text { tv }, ? X_{1}\right) \\
& Q_{1}:\left(a, \text { tv }, ? X_{1}\right) \text { AND }\left(a, \text { tv, ? } Y_{1}\right) \text { AND }\left(a, \text { false, ? } B_{0}\right)
\end{aligned}
$$

It is not well-designed: B_{0}

Well-designed patterns: reordering/optimization

For well-designed patterns

- P_{1} AND $\left(P_{2}\right.$ OPT $\left.P_{3}\right) \equiv\left(P_{1}\right.$ AND $\left.P_{2}\right)$ OPT P_{3}
- $\left(P_{1}\right.$ OPT $\left.P_{2}\right)$ OPT $P_{3} \equiv\left(P_{1}\right.$ OPT $\left.P_{3}\right)$ OPT P_{2}

Theorem (OPT Normal Form)
 Fvery well-designed pattern is equivalent to one of the form

where each t_{i} is a triple pattern, and each O_{j} is a pattern of the same form

Well-designed patterns: reordering/optimization

For well-designed patterns

- P_{1} AND $\left(P_{2}\right.$ OPT $\left.P_{3}\right) \equiv\left(P_{1}\right.$ AND $\left.P_{2}\right)$ OPT P_{3}
- $\left(P_{1}\right.$ OPT $\left.P_{2}\right)$ OPT $P_{3} \equiv\left(P_{1}\right.$ OPT $\left.P_{3}\right)$ OPT P_{2}

Theorem (OPT Normal Form)

Every well-designed pattern is equivalent to one of the form

$$
\left.\left.\left(\cdots\left(t_{1} \text { AND } \cdots \text { AND } t_{k}\right) \text { OPT } O_{1}\right) \cdots\right) \text { OPT } O_{n}\right)
$$

where each t_{i} is a triple pattern, and each O_{j} is a pattern of the same form.

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS:

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS: Formal semantics,

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS: Formal semantics, entailment of RDFS graphs,

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS: Formal semantics, entailment of RDFS graphs, normal forms for RDFS graphs (closure and core).

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS: Formal semantics, entailment of RDFS graphs, normal forms for RDFS graphs (closure and core).
- SPARQL:

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS: Formal semantics, entailment of RDFS graphs, normal forms for RDFS graphs (closure and core).
- SPARQL: Formal semantics,

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS: Formal semantics, entailment of RDFS graphs, normal forms for RDFS graphs (closure and core).
- SPARQL: Formal semantics, complexity of query evaluation,

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS: Formal semantics, entailment of RDFS graphs, normal forms for RDFS graphs (closure and core).
- SPARQL: Formal semantics, complexity of query evaluation, query optimization.

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS: Formal semantics, entailment of RDFS graphs, normal forms for RDFS graphs (closure and core).
- SPARQL: Formal semantics, complexity of query evaluation, query optimization.
- Updating

Final remarks

- RDFS can be considered a new data model.
- It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
- RDFS: Formal semantics, entailment of RDFS graphs, normal forms for RDFS graphs (closure and core).
- SPARQL: Formal semantics, complexity of query evaluation, query optimization.
- Updating
- ...

References

- A. Chandra, P. Merlin, Optimal Implementation of Conjunctive Queries in Relational Databases. In STOC 1977.
- R. Fagin, P. Kolaitis, L. Popa, Data Exchange: Getting to the Core. In PODS 2003.
- C. Gutierrez, C. Hurtado, A. O. Mendelzon, Foundations of Semantic Web Databases. In PODS 2004.
- P. Hayes, RDF Semantics. W3C Recommendation 2004.
- P. Hell, J. Nesetril, The Core of a Graph. Discrete Mathematics 1992.
- S. Muñoz, J. Pérez, C. Gutierrez, Minimal Deductive Systems for RDF. In ESWC 2007.
- J. Pérez, M. Arenas, C. Gutierrez, Semantics and Complexity of SPARQL. In ISWC 2006.

