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RDF in a nutshell

◮ RDF is the W3C proposal framework for representing
information in the Web.

◮ Abstract syntax based on directed labeled graph.

◮ Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties).

◮ Extensible URI-based vocabulary.

◮ Support use of XML schema datatypes.

◮ Formal semantics.
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RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals
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U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph
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RDFS: An example

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Spainlives in

Ronaldinho
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RDF model

Some difficulties:

◮ Existential variables as datavalues

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

RDF data processing can take advantage of database techniques:

◮ Query processing

◮ Storing

◮ Indexing
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Entailment of RDF graphs

Entailment of RDF graphs:
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Entailment of RDF graphs

Entailment of RDF graphs:

◮ Can be defined in terms of classical notions such model,
interpretation, etc

◮ As for the case of first order logic

◮ Has a graph characterization via homomorphisms.
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Homomorphism

A function h : U ∪ B ∪ L→ U ∪ B ∪ L is a homomorphism h from
G1 to G2 if:

◮ h(c) = c for every c ∈ U ∪ L;

◮ for every (a, b, c) ∈ G1, (h(a), h(b), h(c)) ∈ G2

Notation: G1 → G2

Example: h = {B 7→ b}

a

b

B
p

p

a

b

p
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Entailment

Theorem (CM77)

G1 |= G2 if and only if there is a homomorphism G2 → G1.
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Entailment

Theorem (CM77)

G1 |= G2 if and only if there is a homomorphism G2 → G1.

a

b

p

a

b

B
p

p6|=

p

Complexity

Entailment for RDF is NP-complete

M. Arenas, C. Gutierrez, J. Perez – RDF and SPARQL: DB Foundations 9 / 52



Graphs with RDFS vocabulary

Previous characterization of entailment is not enough to deal with
RDFS vocabulary:
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Graphs with RDFS vocabulary

Built-in predicates have pre-defined semantics:

rdf:sc: transitive

rdf:sp: transitive

More complicated interactions:
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

RDFS-entailment can be characterized by a set of rules

◮ An Existential rule

◮ Subproperty rules

◮ Subclass rules

◮ Typing rules

◮ Implicit typing
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Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:

Existential rule :

Subproperty rules :

Subclass rules :

Typing rules :

Implicit typing :
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RDFS Entailment

Theorem (H04,GHM04,MPG07)

G1 |= G2 iff there is a proof of G2 from G1 using the system of 14
inference rules.

Complexity

RDFS-entailment is NP-complete.

Proof idea

Membership in NP: If G1 |= G2, then there exists a polynomial-size
proof of this fact.

M. Arenas, C. Gutierrez, J. Perez – RDF and SPARQL: DB Foundations 13 / 52



Closure of an RDF Graph

Notation:

ground(G ) : Graph obtained by replacing every blank B
in G by a constant cB .

ground−1(G ) : Graph obtained by replacing every constant
cB in G by B .

Closure of an RDF graph G (denoted by closure(G )):
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Closure of an RDF Graph

Notation:

ground(G ) : Graph obtained by replacing every blank B
in G by a constant cB .

ground−1(G ) : Graph obtained by replacing every constant
cB in G by B .

Closure of an RDF graph G (denoted by closure(G )):

G ∪ {t ∈ (U ∪ B)× U × (U ∪ B ∪ L) |

there exists a ground tuple t ′ such that

ground(G ) |= t ′ and t = ground−1(t ′)}
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Closure of an RDF Graph: Example

rdf : sc

rdf : sc

a

c

rdf : sc

rdf : sc

b

a

c

b rdf : sc
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Closure of an RDF graph: complexity

Proposition (H04,GHM04,MPG07)

G1 |= G2 iff G2 → closure(G1)

Complexity

The closure of G can be computed in time O(|G |4 · log |G |).
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Closure of an RDF graph: complexity

Proposition (H04,GHM04,MPG07)

G1 |= G2 iff G2 → closure(G1)

Complexity

The closure of G can be computed in time O(|G |4 · log |G |).

Can the closure be used in practice?

◮ Can we use an alternative materialization?

◮ Can we materialize a small part of the closure?
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Core of an RDF Graph

An RDF Graph G is a core if there is no homomorphism from G to
a proper subgraph of it.

Theorem (HN92,FKP03,GHM04)

◮ Each RDF graph G has a unique core (denoted by core(G )).

◮ Deciding if G is a core is coNP-complete.

◮ Deciding if G = core(G ′) is DP-complete.
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Core and RDFS

For RDF graphs with RDFS vocabulary, the core of G may contain
redundant information:

d

rdf : sc

c

b

a

rdf : sc

rdf : sc

B

rdf : sc

rdf : sc

d

rdf : sc

c

b

a

rdf : sc

rdf : sc

rdf : sc
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A normal form for RDF graphs

To reduce the size of the materialization, we can combine both
core and closure.
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A normal form for RDF graphs

To reduce the size of the materialization, we can combine both
core and closure.

◮ nf(G ) = core(closure(G ))

Theorem (GHM04)

◮ G1 is equivalent to G2 iff nf(G1) ∼= nf(G2).

◮ G1 |= G2 iff G2 → nf(G1)
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A normal form for RDF graphs

To reduce the size of the materialization, we can combine both
core and closure.

◮ nf(G ) = core(closure(G ))

Theorem (GHM04)

◮ G1 is equivalent to G2 iff nf(G1) ∼= nf(G2).

◮ G1 |= G2 iff G2 → nf(G1)

Complexity

The problem of deciding if G1 = nf(G2) is DP-complete.
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Querying RDF data: Desiderata

Let D be a database, Q a query, and Q(D) the answer.

◮ Outputs should belong to the same family of objects as inputs

◮ If D ≡ D ′, then Q(D) = Q(D ′)
(Weaker) If D ≡ D ′, then Q(D) ∼= Q(D ′)

◮ Q(D) should have no (or minimal) redundancies

◮ The framework should be extensible to RDFS
(Should the framework be extensible to OWL?)

◮ Incorporate to the framework the notion of entailment
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Querying RDF data: Desiderata

Outputs should belong to the same family of objects as inputs

◮ Allows compositionality of queries

◮ Allows defining views

◮ Allows rewriting

In RDF, the natural objects of input/output are RDF graphs.
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Querying RDF data: Desiderata

If D ≡ D ′, then Q(D) = Q(D ′)
(Weaker) If D ≡ D ′, then Q(D) ∼= Q(D ′)

◮ Outputs are syntactic or semantic objects?

◮ Need a notion of “equivalent” databases (≡)
(In RDF, there is a standard notion of logical equivalence)

◮ One could just ask logical equivalence in the output

◮ In RDF there is an intermediate notion: graph isomorphism
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Querying RDF data: Desiderata

Q(D) should have no (or minimal) redundancies

◮ Desirable to avoid inconsistencies

◮ Desirable to improve processing time and space

◮ Standard requirement for exchange information
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Querying RDF data: Desiderata

The framework should be extensible to RDFS
(Should the framework be extensible to OWL?)

◮ A basic requirement of the Semantic Web Architecture

◮ Extension to OWL are not trivial because of the known
mismatch

◮ Not necessarily related to the type of semantics given (logical
framework, graph matching, etc.)
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Querying RDF data: Desiderata

Incorporate to the framework the notion of entailment

◮ RDF graphs are not purely syntactic objects

◮ Would like to incorporate KB framework

◮ Beware of the complexity issues! RDF navigates on the Web

◮ Find the good compromise
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Querying RDF data: Definitions

A conjunctive query Q is a pair of RDF graphs H,B where some
resources have been replaced by variables X̄ , Ȳ in V .

Q : H(X̄ )← B(X̄ , Ȳ )

Issues:

◮ Free variables in B (projection)

◮ Treatment of blank nodes in B

◮ Treatment of blank nodes in H
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Querying RDF data: Definitions (cont.)

A valuation is a function v : V → U ∪ B ∪ L

A matching of a graph B in the database D is a valuation v such
that v(B) ⊆ D.

A pre-answer to Q over D is the set

preans(Q,D) = {v(H) : v is a matching of B in D }

A single answer is an element of preans(Q,D)
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Querying RDF data: Two semantics

Union: answer Q(D) is the union of all single answers

ansU(Q,D) =
⋃

preans(Q,D)

Merge: answer Q(D) is the merge of all single answers

ansM(Q,D) =
⊎

preans(Q,D)

Proposition

1. For both semantics, if D |= D ′ then ans(Q,D) |= ans(Q,D ′)

2. For all D, ansU(Q,D) |= ansM(Q,D)

3. With merge semantics, we cannot represent the identity query
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Querying RDF data: refined semantics

Problem

Two non-isomorphic datasets D,D ′ give different answers to the
same query.

A slightly refined semantics:

1. Normalize D before querying

2. Then query as usual over nf (D)

Good News: if D ≡ D ′ then Q(D) ∼= Q(D ′)
Bad News: computing nf (D) is hard
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Querying RDF data: refined semantics (cont.)

The news as formal results:

Theorem (MPG07)

Do not need to compute the normal form.

Theorem (FG06)

If a query language has the following two properties:

1. for all Q, if D ≡ D ′ then Q(D) = Q(D ′),

2. can represent the identity query,

then the complexity of evaluation (in data complexity) is as hard
as the evaluation of ≡.
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Querying RDF data: Containment

A query Q ′ contains a query Q, denoted Q ⊑ Q ′ iff ans(Q ′,D)
comprises all the information of ans(Q,D).

In classical DB: ans(Q,D) ⊆ ans(Q ′,D)

In our setting we have two versions:

◮ ans(Q,D) ⊆ ans(Q ′,D) (Q ⊑p Q ′)

◮ preans(Q,D) ⊆ preans(Q ′,D) (modulo iso) (Q ⊑m Q ′)

For ground RDF both notions coincide.
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Querying RDF data: Complexity

Query complexity version: The evaluation problem is NP-complete

Data complexity version: The evaluation problem is polynomial
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Querying with SPARQL

◮ SPARQL is the W3C candidate recommendation query
language for RDF.

◮ SPARQL is a graph-matching query language.

◮ A SPARQL query consists of three parts:
◮ Pattern matching: optional, union, nesting, filtering.
◮ Solution modifiers: projection, distinct, order, limit, offset.
◮ Output part: construction of new triples, . . ..
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Recall the formalization from Unit-2

Syntax:

◮ Triple patterns: RDF triple + variables (no bnodes)

◮ Operators between triple patterns: AND, UNION, OPT.

◮ Filtering of solutions: FILTER.

◮ A full parenthesized algebra.
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Recall the formalization from Unit-2

Semantics:

◮ Based on mappings, partial functions from variables to terms.

◮ A mapping µ is a solution of triple pattern t in G iff
◮ µ(t) ∈ G
◮ dom(µ) = var(t).

◮ [[t]]G is the evaluation of t in G , the set of solutions.

Example

G t [[t]]G

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y )
?X ?Y

µ1: R1 john
µ2: R2 paul
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Compatible mappings

Definition

Two mappings are compatible if they agree in their shared
variables.

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2
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Compatible mappings

Definition

Two mappings are compatible if they agree in their shared
variables.

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

◮ µ2 and µ3 are not compatible

M. Arenas, C. Gutierrez, J. Perez – RDF and SPARQL: DB Foundations 36 / 52



Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition
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Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 M2

◮ extending mappings in M1 with compatible mappings in M2
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Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 M2

◮ extending mappings in M1 with compatible mappings in M2

Difference: M1 r M2

◮ mappings in M1 that cannot be extended with mappings in M2
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Definition

Join: M1 M2

◮ extending mappings in M1 with compatible mappings in M2

Difference: M1 r M2

◮ mappings in M1 that cannot be extended with mappings in M2

Union: M1 ∪M2

◮ mappings in M1 plus mappings in M2 (set theoretical union)
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Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 M2

◮ extending mappings in M1 with compatible mappings in M2

Difference: M1 r M2

◮ mappings in M1 that cannot be extended with mappings in M2

Union: M1 ∪M2

◮ mappings in M1 plus mappings in M2 (set theoretical union)

Definition

Left Outer Join: M1 M2 = (M1 M2) ∪ (M1 r M2)
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Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

◮ [[(P1 AND P2)]]G = [[P1]]G [[P2]]G

◮ [[(P1 UNION P2)]]G = [[P1]]G ∪ [[P2]]G

◮ [[(P1 OPT P2)]]G = [[P1]]G [[P2]]G

◮ [[(P FILTER R)]]G = {µ ∈ [[P ]]G | µ satisfies R}
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Differences with Relational Algebra / SQL

◮ Not a fixed output schema
◮ mappings instead of tables
◮ schema is implicit in the domain of mappings

◮ Too many NULLs
◮ mappings with disjoint domains can be joined
◮ mappings with distinct domains in output solutions

◮ SPARQL-to-SQL translations experience these issues
◮ need of IS NULL/IS NOT NULL in join/outerjoin conditions
◮ need of COALESCE in constructing output schema
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SPARQL complexity: the evaluation problem

Input:

A mapping µ, a graph pattern P , and an RDF graph G .

Question:

Is the mapping in the evaluation of the pattern against the graph?

µ ∈ [[P ]]G?
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Evaluation of AND-FILTER patterns is polynomial.

Theorem (PAG06)

For patterns using only AND and FILTER operators, the evaluation
problem is polynomial:

O(|P | × |G |).
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Evaluation of AND-FILTER patterns is polynomial.

Theorem (PAG06)

For patterns using only AND and FILTER operators, the evaluation
problem is polynomial:

O(|P | × |G |).

Proof idea
◮ Check that the mapping makes every triple to match.

◮ Then check that the mapping satisfies the FILTERs.
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Evaluation including UNION is NP-complete.

Theorem (PAG06)

For patterns using AND, FILTER and UNION operators, the
evaluation problem is NP-complete.
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Evaluation including UNION is NP-complete.

Theorem (PAG06)

For patterns using AND, FILTER and UNION operators, the
evaluation problem is NP-complete.

Proof idea
◮ Reduction from 3SAT.

◮ A pattern encodes the propositional formula.

◮ ¬ bound is used to encode negation.
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Evaluation including OPT is PSPACE-complete.

Theorem (PAG06)

For patterns using AND, FILTER and OPT operators, the
evaluation problem is PSPACE-complete.
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Evaluation including OPT is PSPACE-complete.

Theorem (PAG06)

For patterns using AND, FILTER and OPT operators, the
evaluation problem is PSPACE-complete.

Proof idea
◮ Reduction from QBF

◮ A pattern encodes a quantified propositional formula:

∀x1∃y1∀x2∃y2 · · ·ψ.

◮ nested OPTs are used to encode quantifier alternation.

(This time, we do not need ¬ bound.)
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PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G :

Pψ :

Pϕ :

µ0 :
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PSPACE-hardness: A closer look

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)
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Data–complexity is polynomial

Theorem (PAG06)

When patterns are consider to be fixed (data complexity), the
evaluation problem is in LOGSPACE.
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Data–complexity is polynomial

Theorem (PAG06)

When patterns are consider to be fixed (data complexity), the
evaluation problem is in LOGSPACE.

Proof idea

From data–complexity of first–order logic.
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SPARQL reordering/optimization: a simple normal from

◮ AND and UNION are commutative and associative.

◮ AND, OPT, and FILTER distribute over UNION.

Theorem (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.

We concentrate in UNION-free patterns.
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Well–designed patterns

Definition

A graph pattern is well–designed iff for every OPT in the pattern

( · · · · · · · · · · · · ( A OPT B ) · · · · · · · · · · · · )

if a variable occurs inside B and anywhere outside the OPT, then
the variable must also occur inside A.
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the variable must also occur inside A.
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)
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)
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Well–designed patterns and PSPACE-hardness

In the PSPACE-hardness reduction we use this formula:

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

M. Arenas, C. Gutierrez, J. Perez – RDF and SPARQL: DB Foundations 49 / 52



Well–designed patterns and PSPACE-hardness

In the PSPACE-hardness reduction we use this formula:

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

It is not well-designed: B0
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Well–designed patterns: reordering/optimization

For well-designed patterns

◮ P1 AND (P2 OPT P3) ≡ (P1 AND P2) OPT P3

◮ (P1 OPT P2) OPT P3 ≡ (P1 OPT P3) OPT P2

Theorem (OPT Normal Form)

Every well–designed pattern is equivalent to one of the form

( · · · ( t1 AND · · · AND tk ) OPT O1 ) · · · ) OPT On )

where each ti is a triple pattern, and each Oj is a pattern of the
same form.
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Final remarks

◮ RDFS can be considered a new data model.
◮ It is the W3C’s recommendation for describing Web metadata.

◮ RDFS can definitely benefit from database technology.
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Final remarks

◮ RDFS can be considered a new data model.
◮ It is the W3C’s recommendation for describing Web metadata.

◮ RDFS can definitely benefit from database technology.
◮ RDFS: Formal semantics, entailment of RDFS graphs, normal

forms for RDFS graphs (closure and core).
◮ SPARQL: Formal semantics, complexity of query evaluation,
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