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Propositional logic: #DNF

Problem of counting the number of assignments
that satisfy a propositional formula in DNF

e #DNF is #P-complete

#DNF admits a fully polynomial-time randomized
approximation scheme (FPRAS)



Propositional logic: #DNF

There exists an algorithm B such that for every propositional
formula ¢ and € € (0,1):
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Pr (1~ )#DNF(y) < Blp,e) < (1 + ) #DNF(y) ) >

The number of steps to compute B(yp, ¢) is bounded by
poly(l¢l, ¢)



Propositional logic: #DNF

The existence of an FPRAS implies the existence of a
randomized polynomial-time algorithm for (almost)
uniform generation of solutions [JVV86]

Hence, we only focus on the problem of counting



Automata: #NFA

Problem of counting the number of strings of
length n accepted by an NFA A

® #NFA is #P-complete since #DNF <?__#NFA
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H#DNF <P H#NFA
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Approximating #NFA

Theorem [ACJR21a]: #NFA admits an FPRAS

From the previous reduction it is possible to obtain
that #DNF admits an FPRAS

But this is a well-known result, can we obtain more?
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Circuits: decomposable
NNF (DNNF)




DNF and DNNF
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Can #DNNF be efficiently
approximated by using #NFA?

#DNNF is #P-complete. An FPRAS for #DNNF can be
obtained by proving that #DNNF <2__ #NFA

par

® Or by considering another form of approximating
preserving reduction

But it is not clear how to prove that #DNNF <2__ #NFA

—par

® Notice that DNNF is exponentially more succinct than DNF
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The goal of this talk

To show how automata can be used to prove that #DNNF

admits an FPRAS for a natural and widely used fragment
of DNNF

We focus on structured DNNF, and we consider the
more powerful model of tree automata

20



SDNNF: structured DNNF
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H#SDNNF

Problem of counting the
number of satisfying
assignments of a SDNNF circuit

#SDNNF is #P-complete
o #DNF <P #SDNNF

—par

Our goal here: to show that
#SDNNF admits an FPRAS
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The main ingredient in the
solution: Tree automata

This is the right representation for the problem of
counting the number of assignments satisfying a
structured DNNF circuit
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Tree automata (TA)

(a) p (pra,qr)
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Tree automata (TA)

(a) p (pa,qr)

(25,2 ¢ (b) (a) r (r,a,qr)

Top-down tree automata: (Q, %, A, I)

Q = {p,q,r} is the set of states

Y. = {a,b} is the alphabet

I = {p} is the set of initial states

A = {(p,a,qr),(q,b,\), (r,a,qr)} is the transition relation
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Tree automata: parity

We would like to check whether a tree labeled with {a, b} has an
even number of nodes with label a

Tree automata: (Q, %, A, I)

¢ Q:{B,O}
® ¥ ={a,b}
o 1={e)

* A ={(e,a,eo0), (e, a,o0e), (e, b, ee),(e,b,00),...,
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Tree automata: parity

We would like to check whether a tree labeled with {a, b} has an
even number of nodes with label a

Tree automata: (Q, %, A, I)

¢ Q:{evo}
¢ E:{CL?b}
¢ 1={e)

A ={(e,a,e0),(e,a,0e),(e,b,ee), (e, b,00),..., (e b N),(0,a,A)}
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Tree automata: parity




Tree automata: parity

@ e (e,a,eo)

(e,b,\) e o (o,a,00) J
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Tree automata: parity

@ e (e,a,eo)

(e,b,A) e o (o,a,00)




Tree automata: parity
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The problem #TA

A tree automaton T and a number n (given

Input: In unary)

Number of trees ¢ such that t is accepted

Output: by T and the number of nodes of tisn

Theorem [ACJR21b]: #TA admits an FPRAS
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HSDNNF <P HTA

—par

Tree automata: (Q, %, A, I)

e ¥={1,2,3,4,5,p,p,...,u,u}
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HSDNNF <P HTA
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Tree automata: (Q, %, A, I)
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(g,q, ) is not in the transition relation
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H#SDNNF <2

—par

(1)A:2 (A:2,1,A:2,T)
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HSDNNF <? HTA

—par
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HSDNNF <P HTA

—par
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H#SDNNF <2
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Before the open problems ...

A corollary of the existence of an FPRAS for #NFA
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Counting complexity classes

e #P: Count the number of witnesses for a
problem in NP

e SpanP: Count the number of distinct outputs of
an NP-transducer

e Example: given as input a graph G, count the
number of subgraphs G' of G such that G' is 3-
colorable
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Counting complexity classes

e SpanL: Count the number of distinct outputs of
an NL-transducer

® SpanlL is contained in #P, and it is a hard class: if
every function in SpanL can be computed in
polynomial time, then P = NP

e #NFA is SpanL-complete under parsimonious
reductions

® Every function in SpanL admits an FPRAS
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input

work

output

#DNF is in SpanL

(PAgNA-T)V (pATAS)V (@NEA )
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input

work

output

#DNF is in SpanL

(pAgA—T)V (-pAT AsS)V (gAtA—u)
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input

work
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#DNF is in SpanL
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#nOBBD is in SpanL

OBDD x
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#nOBBD is in SpanL

nOBDD



#nOBBD is in SpanL

nOBDD T .
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L . 0 1
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Other interesting problems are in SpanL

e Two-terminal network reliability problem on directed
acyclic graphs

SpanL gives an alternative approach to prove the
existence of an FPRAS for a specific problem
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Open problems

Is #SDNNF in SpanL?

Can these approaches based on automata be made
practical?

Is #TA complete for a natural (and interesting)
counting complexity class?

Does #DNNF admit an FPRAS?

Does #CFG admit an FPRAS?
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Thanks!
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