Efficient Counting in Boolean Circuits via Tree Automata

Marcelo Arenas
PUC & IMFD Chile and RelationalAI

Propositional logic: #DNF

Problem of counting the number of assignments that satisfy a propositional formula in DNF

#DNF is #P-complete

#DNF admits a fully polynomial-time randomized approximation scheme (FPRAS)

Propositional logic: #DNF

There exists an algorithm $\mathcal B$ such that for every propositional formula φ and $\varepsilon \in (0,1)$:

$$\Pr\left((1-\varepsilon)\#\mathrm{DNF}(\varphi) \leq \mathcal{B}(\varphi,\varepsilon) \leq (1+\varepsilon)\#\mathrm{DNF}(\varphi)\right) \geq \frac{3}{4}$$

The number of steps to compute $\mathcal{B}(\varphi, \varepsilon)$ is bounded by $poly(|\varphi|, \frac{1}{\varepsilon})$

Propositional logic: #DNF

The existence of an FPRAS implies the existence of a randomized polynomial-time algorithm for (almost) uniform generation of solutions [JVV86]

Hence, we only focus on the problem of counting

Automata: #NFA

Problem of counting the number of strings of length n accepted by an NFA A

• #NFA is #P-complete since #DNF \leq_{par}^p #NFA

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

 $q \hspace{1cm} r \hspace{1cm} s$

p

u

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

#DNF \leq_{par}^p #NFA

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

$\#\mathsf{DNF} \leq^p_{\mathrm{par}} \#\mathsf{NFA}$

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

#DNF \leq_{par}^p #NFA

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

#DNF \leq_{par}^p #NFA

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge r \wedge s) \vee (q \wedge t \wedge \neg u)$$

Approximating #NFA

Theorem [ACJR21a]: #NFA admits an FPRAS

From the previous reduction it is possible to obtain that #DNF admits an FPRAS

But this is a well-known result, can we obtain more?

Circuits: decomposable NNF (DNNF)

DNF and **DNNF**

Can #DNNF be efficiently approximated by using #NFA?

#DNNF is #P-complete. An FPRAS for #DNNF can be obtained by proving that #DNNF \leq_{par}^p #NFA

Or by considering another form of approximating preserving reduction

But it is not clear how to prove that #DNNF \leq_{par}^{p} #NFA

Notice that DNNF is exponentially more succinct than DNF

The goal of this talk

To show how automata can be used to prove that #DNNF admits an FPRAS for a natural and widely used fragment of DNNF

We focus on **structured DNNF**, and we consider the more powerful model of **tree automata**

#SDNNF

Problem of counting the number of satisfying assignments of a SDNNF circuit

#SDNNF is **#P-complete**

• #DNF \leq_{par}^p #SDNNF

Our goal here: to show that #SDNNF admits an FPRAS

The main ingredient in the solution: Tree automata

This is the right representation for the problem of counting the number of assignments satisfying a structured DNNF circuit

Tree automata (TA)

Tree automata (TA)

Top-down tree automata: (Q, Σ, Δ, I)

- $Q = \{p, q, r\}$ is the set of states
- $\Sigma = \{a, b\}$ is the alphabet
- $I = \{p\}$ is the set of initial states
- $\Delta = \{(p,a,qr), (q,b,\lambda), (r,a,qr)\}$ is the transition relation

We would like to check whether a tree labeled with $\{a,b\}$ has an even number of nodes with label a

Tree automata: (Q, Σ, Δ, I)

- $\bullet \ \ Q = \{e, o\}$
- $\Sigma = \{a, b\}$
- $I = \{e\}$
- $\Delta = \{(e, a, eo), (e, a, oe), (e, b, ee), (e, b, oo), \ldots, \}$

We would like to check whether a tree labeled with $\{a,b\}$ has an even number of nodes with label a

Tree automata: (Q, Σ, Δ, I)

- $\bullet \ \ Q = \{e,o\}$
- $\Sigma = \{a, b\}$
- $I = \{e\}$
- $\Delta = \{(e, a, eo), (e, a, oe), (e, b, ee), (e, b, oo), \dots, (e, b, \lambda), (o, a, \lambda)\}$

The problem #TA

Input:

A tree automaton T and a number n (given in unary)

Output:

Number of trees t such that t is accepted by T and the number of nodes of t is n

Theorem [ACJR21b]: #TA admits an FPRAS

Tree automata: (Q, Σ, Δ, I)

ullet $\Sigma = \{1, 2, 3, 4, 5, p, \overline{p}, \ldots, u, \overline{u}\}$

Tree automata: (Q, Σ, Δ, I)

Tree automata: (Q, Σ, Δ, I)

- $\bullet \ \ I = \{ \wedge : 2, \, q, \, \wedge : 3 \}$
- $egin{aligned} ullet & Q = \{ \wedge: 2, \, \wedge: 3, \, \wedge: 4, \, \wedge: 5, \ & p, \, \overline{p}, \dots, u, \, \overline{u}, \, op \} \end{aligned}$

 $(q, \overline{q}, \lambda)$ is **not** in the transition relation

Before the open problems ...

A corollary of the existence of an FPRAS for #NFA

Counting complexity classes

 #P: Count the number of witnesses for a problem in NP

- SpanP: Count the number of distinct outputs of an NP-transducer
 - Example: given as input a graph G, count the number of subgraphs G' of G such that G' is 3colorable

Counting complexity classes

- **SpanL**: Count the number of distinct outputs of an NL-transducer
 - SpanL is contained in #P, and it is a hard class: if every function in SpanL can be computed in polynomial time, then P = NP
- #NFA is SpanL-complete under parsimonious reductions
 - Every function in SpanL admits an FPRAS

OBDD

nOBDD

nOBDD

#nOBDD: count the number of satisfying assignments of an nOBDD

Other interesting problems are in SpanL

Two-terminal network reliability problem on directed acyclic graphs

SpanL gives an alternative approach to prove the existence of an FPRAS for a specific problem

Open problems

- Is #SDNNF in SpanL?
- Can these approaches based on automata be made practical?
- Is #TA complete for a natural (and interesting) counting complexity class?
- Does #DNNF admit an FPRAS?
- Does #CFG admit an FPRAS?

Thanks!

Bibliography

- [ACJR21a] M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros. #NFA

 Admits an FPRAS: Efficient Enumeration, Counting, and Uniform

 Generation for Logspace Classes. J. ACM 68(6): 48:1-48:40, 2021
- [ACJR21b] M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros. *When is approximate counting for conjunctive queries tractable?* STOC 2021: 1015-1027
 - [JVV86] M. Jerrum, L. G. Valiant, V. V. Vazirani. Random Generation of Combinatorial Structures from a Uniform Distribution.
 Theor. Comput. Sci. 43:169-188, 1986