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The goals of this tutorial

Show some fundamental problems that
motivate the use of sampling in databases
Explain the difficulties behind these problems
Show some tools that are used to do sampling in
this context
Explain how these tools can be used to provide
(partial) solutions to these problems
Convince the audience that there are interesting
open problems in the area, and also that
sampling tools could be very useful 🙂
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Motivation: Three
related problems

3



Problem 1: query
optimization

The task is to compute R[A,B] ⋈ S[B,C] ⋈ T [C,D]
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Query optimization

Now the task is to compute σ (B=4 R[A,B] ⋈ S[B,C] ⋈
T [C,D])
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Cardinality estimation

⋈

S

T

R ⋈

σB=6

⋈

R S

T⋈

σB=6

12

To compare query plans we need estimations of the
cardinalities of the intermediate results

Such estimations should be computed (very)
efficiently



Problem 2: approximate query
processing [HHW97,HH99]

The task is to compute the aggregate query COUNT(
R[A,B] ⋈ S[B,C] ⋈ T [C,D])

Not a good strategy to solve this task by first computing 
  R[A,B] ⋈ S[B,C] ⋈ T [C,D]

We can approximate the answer by doing a cardinality
estimation
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Can we also approximate 
 and ?

SUM (D R[A,B] ⋈ S[B,C] ⋈
T [C,D]) AVG (A R[A,B] ⋈ S[B,C] ⋈ T [C,D])

What kind of guarantees can be offered about the results
of these approximations?

How can such guarantees be obtained?

Problem 2: approximate query
processing [HHW97,HH99]
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Problem 3: query
exploration

The answer to a query can be very large

It can be more informative to:

Return the number of answers
Enumerate the answers with polynomial (constant)
delay
Generate an answer uniformly at random
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Problem 3: query
exploration

Returning the number of answers to a query can be
solved again by using cardinality estimation
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Problem 3: query
exploration

Cardinality estimation can also help to generate at
random an answer to a query

Can we sample with uniform distribution?
Can sampling be used for cardinality estimation?

Returning the number of answers to a query can be
solved again by using cardinality estimation

17



What do these problems
have in common?

Sampling plays a central role in the development
of solutions for these problems
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The complexity of
counting and

uniform generation
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Hardness of counting

The problem of counting the number of answers to
a join query is #P-complete

20

This can be easily shown by reducing from the
problem of counting the number of 3-colorings of a
graph



Hardness of counting

The problem of counting the number of answers to
a join query is #P-complete
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Hardness of counting
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Hardness of uniform
generation

There is no randomized polynomial-time algorithm  for
uniform generation of the answers to a join query (unless
NP = RP)

If such an algorithm exists, then there exists an FPRAS for
the problem of counting the number of answers to a join
query (by Jerrum-Valiant-Vazirani)

Then there exists a BPP algorithm problem of verifying
whether a join query has a non-empty set of answers
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There is no randomized polynomial-time algorithm  for
uniform generation of the answers to a join query (unless
NP = RP)

But the problem of verifying whether a join query has a
non-empty set of answers is NP-complete

Then there exists a BPP algorithm problem of verifying
whether a join query has a non-empty set of answers

Hardness of uniform
generation
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How can we get better
complexity?

Consider acyclic queries

Or a class of queries with a bounded degree of
acyclicity, such as bounded treewidth or
bounded hypertree width
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R[A,B] ⋈ S[B,C] ⋈ T [C,A]

R[A,B]

S[B,C]

T [C,A]

Counting in the acyclic case
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R[A,B] ⋈ S[A,C] ⋈ T [A,D] ⋈ U [C,E,F ]

R[A,B]

S[A,C] T [A,D]

U [C,E,F ]

Counting in the acyclic case
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Does this work with other
operators?

The previous approach for acyclic queries can be
extended to consider the selection operator σ

But it does not work if the projection operator  is
included

π
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Hardness of counting with
projection [PS13]
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The problem of counting the
number of perfect matchings in a

bipartite graph is #P-complete

Hardness of counting with
projection [PS13]
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Does this rule out efficient
uniform generation?

No, the argument for join queries does not apply here

The problem of verifying whether an acyclic
conjunctive query has a non-empty set of answers
can be solved in polynomial time
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For practical applications

We need to consider both acyclic and cyclic
queries
We need to include all relational algebra
operators
We need to consider aggregation 
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Part I: join, selection
and aggregation
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A bit of notation

: domain of attribute dom(A) A

Given a tuple  and an attribute ,  is the value of 
 in the attribute 

r A r[A]

r A

:  and  have the same values in their common
attributes
r ∼ s r s

R⋉ S = {r ∈ R ∣ ∃s ∈ S : r ∼ s}

If  is the set of attributes of , then X R R⋉ S = π (R ⋈X S)
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Uniform generation
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Sampling with uniform
distribution [093,CMN99]

We would like to generate uniformly at random a tuple in 
R[A,B] ⋈ S[B,C]

Ideally, the probability of choosing a tuple 
should be

t ∈ R ⋈ S

∣R ⋈ S∣
1
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To produce a sample do the following: 

1. Generate uniformly at random  r ∈ R
2. Generate uniformly at random  s ∈ S
3. If , then return r ∼ s (r, s)

Sampling with uniform
distribution: first attempt
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Tuples in the join are generated uniformly. If :r ∼ s

Pr((r, s) is generated) =
∣R∣∣S∣
1

The probability that a tuple is generated is

∣R∣∣S∣
∣R ⋈ S∣

If , then this probability can be very small∣R ⋈ S∣ ≪ ∣R∣∣S∣

Sampling with uniform
distribution: first attempt
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Sampling with uniform
distribution: second

attempt

To produce a sample do the following:

1. Generate uniformly at random r ∈ R
2. Generate uniformly at random s ∈ σ (S)B=r[B]

3. Return (r, s)
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Sampling with uniform
distribution: second

attempt

But in this cases the tuples in the join are not generated
uniformly.

Assuming :r ∼ s

= Pr(r is generated)Pr(s is generated ∣ r is generated)

Pr((r, s) is generated)

=
∣R∣
1
∣S ⋉ {r}∣

1
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How do we solve this problem?
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Sampling with uniform
distribution: third attempt [093]

To produce a sample do the following:

1. Generate uniformly at random r ∈ R
2. Reject with probability

1 −
M (S)B

∣S ⋉ {r}∣

3. Generate uniformly at random s ∈ σ (S)B=r[B]

4. Return (r, s)

Let M (S) =B ∣σ (S)∣
v∈dom(B)
max B=v
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The tuples in the join are generated uniformly.

Assuming :r ∼ s

= Pr(r is generated)Pr(s is generated ∣ r is generated)

Pr((r, s) is generated)

= =
∣R∣
1

M (S)B

∣S ⋉ {r}∣
∣S ⋉ {r}∣

1
∣R∣M (S)B

1

Upper bound
for ∣R ⋈ S∣

Sampling with uniform
distribution: third attempt [093]
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A general framework for
sampling [ZCLHY18]

Consider the join query R [A ,A ] ⋈1 1 2 R [A ,A ] ⋈2 2 3 ⋯⋈

R [A ,A ]n n n+1

Given , definet ∈ Ri

w(t) = ∣{t} ⋈ R ⋈i+1 ⋯⋈ R ∣n

Besides, let
w(R) = w(t)

t∈R

∑
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For each , we have that t ∈ Ri w(t) =  w(R ⋉i+1 {t})

w(t) = ∣{t} ⋈ R ⋈i+1 r ⋈i+1  ⋯ ⋈ R ∣n

= ∣{t} ⋈
t ∈R′

i+1

∑ {t } ⋈′ R ⋯⋈i+2 R ∣n

= ∣{t} ⋈
t ∈R : t∼t′

i+1
′

∑ {t } ⋈′ R ⋯⋈i+2 R ∣n

= ∣{t } ⋈
t ∈R : t∼t′

i+1
′

∑ ′ R ⋯⋈i+2 R ∣n

= w(t ) =
t ∈R ⋉{t}′

i+1

∑ ′ w(R ⋉i+1 {t})

A general framework for
sampling [ZCLHY18]
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Assume given an approximation  of  that satisfies the
following properties

W w

1. W (t) ≥ w(t)

2.  for each W (t) = w(t) = 1 t ∈ Rn

3.  for each W (t) ≥W (R ⋉i+1 {t}) t ∈ Ri

We do not have access to the values  when sampling,
but instead we have some approximations of them

w(t)

A general framework for
sampling [ZCLHY18]
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To produce a sample, do the following:

Reject with probability 1 −
W (r )i−1

W (R ⋉{r })i i−1

Generate  with probability r ∈i R ⋉i {r }i−1 W (R ⋉{r })i i−1

W (r )i

2.1.

2.2.

3. Return (r , r ,… , r )1 2 n

1. Generate  with probability r ∈1 R1 W (R )1
W (r )1

2. For  to :i = 2 n

A general framework for
sampling [ZCLHY18]
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The tuples in the join are generated uniformly

= Pr(r  is generated)Pr(r  is generated ∣1 2 r  is generated)1

Pr((r , r ) is generated)1 2

A general framework for
sampling [ZCLHY18]
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The tuples in the join are generated uniformly

= Pr(r  is generated)Pr(r  is generated ∣1 2 r  is generated)1

Pr((r , r ) is generated)1 2

= ⋅
W (R )1

W (r )1 ⋅
W (r )1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r )2
W (R )1

W (r )2

A general framework for
sampling [ZCLHY18]
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The tuples in the join are generated uniformly

= Pr(r  is generated)Pr(r  is generated ∣1 2 r  is generated)1

Pr((r , r ) is generated)1 2

= ⋅
W (R )1

W (r )1 ⋅
W (r )1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r )2
W (R )1

W (r )2

1. Generate  with probability r ∈1 R1 W (R )1
W (r )1

A general framework for
sampling [ZCLHY18]
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The tuples in the join are generated uniformly

= Pr(r  is generated)Pr(r  is generated ∣1 2 r  is generated)1

Pr((r , r ) is generated)1 2

= ⋅
W (R )1

W (r )1 ⋅
W (r )1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r )2
W (R )1

W (r )2

Reject with probability 1 −
W (r )i−1

W (R ⋉{r })i i−12.1.

A general framework for
sampling [ZCLHY18]
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The tuples in the join are generated uniformly

= Pr(r  is generated)Pr(r  is generated ∣1 2 r  is generated)1

Pr((r , r ) is generated)1 2

= ⋅
W (R )1

W (r )1 ⋅
W (r )1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r )2
W (R )1

W (r )2

Generate  with probability r ∈i R ⋉i {r }i−1 W (R ⋉{r }i i−1

W (r )i2.2.

A general framework for
sampling [ZCLHY18]
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The tuples in the join are generated uniformly

= Pr(r  is generated)Pr(r  is generated ∣1 2 r  is generated)1

Pr((r , r ) is generated)1 2

= ⋅
W (R )1

W (r )1 ⋅
W (r )1

W (R ⋉ {r })2 1 =
W (R ⋉ {r })2 1

W (r )2
W (R )1

W (r )2

A general framework for
sampling [ZCLHY18]
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The tuples in the join are generated uniformly

Pr((r , r ,… , r ) is generated) =1 2 n =
W (R )1

W (r )n
W (R )1

1

A general framework for
sampling [ZCLHY18]
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The tuples in the join are generated uniformly

Pr((r , r ,… , r ) is generated) =1 2 n =
W (R )1

W (r )n
W (R )1

1

A general framework for
sampling [ZCLHY18]

79



A generalization of the idea
of [093]

Assume that:

 for each 

 for each 

W (r ) =1 M (R )A2 2 r ∈1 R1

W (r ) =2 1 r ∈2 R2
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Then:

W (R ) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r ) is generated)1 2 = ⋅
W (R )1

W (r )1 ⋅
W (r )1

W (R ⋉ {r })2 1

W (R ⋉ {r })2 1

W (r )2

W (R ) =1 W (t) =
t∈R1

∑ M (R ) =
t∈R1

∑ A2 2 ∣R ∣M (R )1 A2 2

Therefore:

A generalization of the idea
of [093]
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Then:

W (R ) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r ) is generated)1 2 = ⋅
W (R )1

M (R )A2 2 ⋅
M (R )A2 2

W (R ⋉ {r })2 1

W (R ⋉ {r })2 1

W (r )2

W (R ) =1 W (t) =
t∈R1

∑ M (R ) =
t∈R1

∑ A2 2 ∣R ∣M (R )1 A2 2

Therefore:

A generalization of the idea
of [093]
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Then:

W (R ) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r ) is generated)1 2 = ⋅
∣R ∣M (R )1 A2 2

M (R )A2 2 ⋅
M (R )A2 2

W (R ⋉ {r })2 1

W (R ⋉ {r }2 1

W (r )2

W (R ) =1 W (t) =
t∈R1

∑ M (R ) =
t∈R1

∑ A2 2 ∣R ∣M (R )1 A2 2

Therefore:

A generalization of the idea
of [093]
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Then:

W (R ) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r ) is generated)1 2 = ⋅
∣R ∣M (R )1 A2 2

M (R )A2 2 ⋅
M (R )A2 2

∣R ⋉ {r }∣2 1

∣R ⋉ {r }∣2 1

W (r )2

W (R ) =1 W (t) =
t∈R1

∑ M (R ) =
t∈R1

∑ A2 2 ∣R ∣M (R )1 A2 2

Therefore:

A generalization of the idea
of [093]
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Then:

W (R ) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r ) is generated)1 2 = ⋅
∣R ∣M (R )1 A2 2

M (R )A2 2 ⋅
M (R )A2 2

∣R ⋉ {r }∣2 1

∣R ⋉ {r }∣2 1

1

W (R ) =1 W (t) =
t∈R1

∑ M (R ) =
t∈R1

∑ A2 2 ∣R ∣M (R )1 A2 2

Therefore:

A generalization of the idea
of [093]
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Then:

W (R ) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r ) is generated)1 2 = ⋅
∣R ∣1

1
⋅

M (R )A2 2

∣R ⋉ {r }∣2 1

∣R ⋉ {r }∣2 1

1

W (R ) =1 W (t) =
t∈R1

∑ M (R ) =
t∈R1

∑ A2 2 ∣R ∣M (R )1 A2 2

Therefore:

A generalization of the idea
of [093]
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Then:

W (R ) =2 W (t) =
t∈R2

∑ 1 =
t∈R2

∑ ∣R ∣2

Pr((r , r ) is generated)1 2 = ⋅
∣R ∣1

1
⋅

M (R )A2 2

∣R ⋉ {r }∣2 1

∣R ⋉ {r }∣2 1

1

W (R ) =1 W (t) =
t∈R1

∑ M (R ) =
t∈R1

∑ A2 2 ∣R ∣M (R )1 A2 2

Therefore:

=
∣R ∣M (R1 A2

1

A generalization of the idea
of [093]
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We can use better bounds

Define  as:

 for every 
with 

 for every 

W

W (t) = AGM(R ⋈i+1 ⋯⋈ R )n t ∈ Ri

1 ≤ i < n

W (t) = 1 t ∈ Rn

 satisfies the three propertiesW
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Sampling in the acyclic
case

Consider an acyclic join query R ⋈1 R ⋈2 ⋯⋈ Rn

Fix a join tree for this query

 indicates that  is an ancestor of  in this
tree
R ≺i Rj Ri Rj
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Sampling in the acyclic
case

Given , definet ∈ Ri

w(t) = {t} ⋈ ( ⋈ R )j
R :j R ≺i Rj

Besides, if  is a child of :Rj Ri

w(t,R ) =j {t} ⋈ R ⋈j ( ⋈ R )k
R :k R ≺j Rk
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Sampling in the acyclic
case

Assume given an approximation  of  that satisfies the
following properties

W w

1. W (t) ≥ w(t)

2.  if  and  is a child of W (t,R ) ≥j w(t,R )j t ∈ Ri Rj Ri

3.  if  and  is a leafW (t) = w(t) = 1 t ∈ Ri Ri

4.  if  and
the children of  are 
W (t) ≥W (t,R ) ⋅k1 W (t,R ) ⋅k2 … ⋅W (t,R )kℓ t ∈ Ri

Ri R ,R ,… ,Rk1 k2 kℓ

5.  if  and  is a child of W (t,R ) ≥j W (R ⋉j {t}) t ∈ Ri Rj Ri
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Sampling in the acyclic
case

R1
W (R )1

W (r )1

1 −
W (r )1

W (r ,R )W (r ,R )1 2 1 3

1 −
W (r ,R )1 2

W (R ⋉ {r })2 1 1 −
W (r ,R )1 3

W (R ⋉ {r })3 1

W (R ⋉ {r })2 1

W (r )2
W (R ⋉ {r })3 1

W (r )3

Sample with probability:

Reject with probability:

R3R2

Sample with probability:

Reject with probability:
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Accept with probability:

Sampling in the acyclic
case

R1
W (R )1

W (r )1

W (r )1

W (r ,R )W (r ,R )1 2 1 3

W (r ,R )1 2

W (R ⋉ {r })2 1

W (r ,R )1 3

W (R ⋉ {r })3 1

W (R ⋉ {r })2 1

W (r )2
W (R ⋉ {r })3 1

W (r )3

Sample with probability:

R2R3

Sample with probability:

Accept with probability:
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Sampling in the acyclic
case

Pr((r , r , r ) is generated) =1 2 3

=
W (R )1

W (r )W (r )2 3

=
W (R )1

W (r )1
W (r )1

W (r ,R )W (r ,R )1 2 1 3

W (r ,R )1 2

W (R ⋉ {r })2 1

W (r ,R )1 3

W (R ⋉ {r })3 1

W (R ⋉ {r })2 1

W (r )2
W (R ⋉ {r })3 1

W (r )3⋅ ⋅⋅ ⋅ ⋅

=
W (R )1

1
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Consider the join query Q = R ⋈1 R ⋈2 ⋯⋈ Rn

Split  into join queries  and  such that 

Assume that  is the set of attributes
that queries  and  have in common

Q Qacyclic Qrest

Q = Q ⋈acyclic Qrest

{A ,… ,A }1 k

Qacyclic Qrest

Sampling in the cyclic case
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Sampling in the cyclic case

To produce a sample do the following:

1. Use the sample algorithm for the acyclic case to generate a
tuple t ∈ Qacyclic

2. Reject with probability

1 −
Mrest

∣Q ⋉ {t}∣rest

3. Generate uniformly at random t ∈′ Qrest

4. Return (t, t )′

Let
M =rest ∣{t ∈

(v ,…,v )∈dom(A )×⋯×dom(A )1 k 1 k

max Q ∣rest ∀i ∈ {1,… , k} : t[A ] =i v }∣i
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Sampling in the cyclic case

The tuples in the join are generated uniformly

Pr((t, t ) is generated)′

= ⋅
W (R )1

1
⋅

Mrest

∣Q ⋉ {t}∣rest =
∣Q ⋉ {t}∣rest

1
W (R )M1 rest

1

= Pr(t is generated)Pr(t  is generated ∣′ t is generated)
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Estimation of
cardinality and

aggregates
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Properties of estimators

Bias of an estimator  relative to  is defined as θ̂ θ

Bias( , θ) =θ̂ E[ ] −θ̂ θ

 is unbiased if θ̂ Bias( , θ) =θ̂ 0

 is consistent if 

For every : 

θ̂n θ̂n ⟶
p

θ

ε > 0 lim Pr(∣ −n→∞ θ̂n θ∣ > ε) = 0Pr(∣ −
n→∞
lim θ̂n θ∣ > ε) = 0

We would like  to be computable in polynomial time in θ̂n n
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Confidence intervals

We would like to provide the following guarantee:
Pr (θ ∈ [f( ), g( )]) ≥θ̂ θ̂ 1 − δ

Which is usually translated into the following:
Pr (θ ∈ [ −θ̂n ε(n), +θ̂n ε(n)]) ≥ 1 − δ
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Confidence intervals

Two fundamental tools to construct confidence intervals:

The confidence interval depends on the convergence
rate, so it would be an approximation if we consider a
fixed value n
A way to deal with this is to use the Berry–Esseen
theorem, which gives a precise bound on the
difference with the standard normal distribution

1. Central Limit Theorem
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Confidence intervals

Two fundamental tools to construct confidence intervals:

The bounds produced are not approximations, but
they are looser

2. Concentration inequalities: Chebyshev, Hoeffding, ...

In both cases it is convenient to have a small variance
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Confidence intervals

Chebyshev inequality:

Pr(∣X − E[X]∣ ≥ ε) ≤
ε2

Var[ ]θ̂

Assuming  is an unbiased estimator of , we can rewrite
Chebyshev inequality as:

θ̂ θ

Pr (θ ∈ ( −θ̂ ε, +θ̂ ε)) ≥ 1 −
ε2

Var[ ]θ̂
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We would like to construct an estimator for the
answer to this query

Consider the following SQL query  over the
schema :

Q

R[A,B]

SUM (D R[A,B] ⋈ S[B,C] ⋈ T [C,D])

Warming up [LWYZ16]
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r1

r3

r2

s1

s2

t1

t2

t3

t4

r [B] =1 s [B]2

R[A,B] S[B,C] T [C,D]

s3

Warming up [LWYZ16]
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r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

s3

Warming up [LWYZ16]
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r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

s3

Warming up [LWYZ16]
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r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

s3

Warming up [LWYZ16]
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r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

Pr((r , s , t ) is generated) =1 2 4 18
1

v(r , s , t ) =1 2 4 t [D]4

s3

109

Warming up [LWYZ16]



r1

r3

r2

s1

s2

t1

t2

t3

t4

R[A,B] S[B,C] T [C,D]

s3

Pr((r , s ) is generated) =1 1 6
1

v(r , s ) =1 1 0
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Warming up [LWYZ16]



How do we estimate ?SUM (D R[A,B] ⋈ S[B,C] ⋈ T [C,D])

Given a path , define γ X(γ) = v(γ)

We can use  as an estimator

But this is a biased estimator, as it does not consider
that different paths can have different probabilities 

X

How can we transform  into an unbiased estimator?X

Warming up [LWYZ16]
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Horvitz–Thompson idea:

Y (γ) =
Pr(γ is generated)

v(γ)

Warming up [LWYZ16]
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Horvitz–Thompson idea:

Y (γ) =
Pr(γ is generated)

v(γ)

 is unbiased:Y

E[Y ] = Pr(γ is generated) ⋅
γ

∑ Y (γ)

=   Pr(γ is generated) ⋅
γ

∑
Pr(γ is generated)

v(γ)

=   v(γ)
γ

∑

Warming up [LWYZ16]
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The Horvitz–Thompson
estimator [HT52,T12]

Suppose that we have a list of values ,
and we need to estimate:

(v ,… , v )1 N

τ = v
i=1

∑
N

i

To do this estimation, we construct a sample of size 
 of elements from n {1,… ,N}

With or without replacement
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: number of times element  appears
in the sample
Xi i ∈ {1,… ,N}

If we sample without replacement, then  can
be 0 or 1

Xi

Let π =i E[X ]i

The Horvitz–Thompson
estimator [HT52,T12]
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The Horvitz–Thompson (HT) estimator of :τ

Y =
i=1

∑
N

πi

X vi i =
i∈sample

∑
πi

X vi i

inverse weighting

The Horvitz–Thompson
estimator [HT52,T12]

116



HT is unbiased:

E[Y ] = E[ ] =
i=1

∑
N

πi

X vi i =
i=1

∑
N

πi

E[X ]vi i =
i=1

∑
N

πi

π vi i
τ

The Horvitz–Thompson (HT) estimator of :τ

Y =
i=1

∑
N

πi

X vi i =
i∈sample

∑
πi

X vi i

The Horvitz–Thompson
estimator [HT52,T12]
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An example of HT

We sample uniformly with replacemenet: p =
N
1

We can think of  as

where  is 1 if  is the -th element sampled, and 0
otherwise

Xi

X =i Z ,
k=1

∑
n

i,k

Zi,k i k

 since each  and
these random variables are mutually independent
X ∼i Binomial(n, p) Z ∼i,k Bernoulli(p)
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π =i E[X ] =i np

An example of HT
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HT estimator in this case:

Y = =
i=1

∑
N

πi

X vi i

i=1

∑
N

np

X vi i = X v
n

N

i∈sample

∑ i i

π =i E[X ] =i np

An example of HT
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What is the variance of HT?

Let π =i,j E[X X ]i j

 is not necessarily equal to 

 and  are not independent random
variables since 

E[X X ]i j E[X ]E[X ]i j

Xi Xj

X +1 ⋯+X =N n
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What is the variance of HT?

σ (Y )2 = E[Y ] −2 E[Y ]2 = E[( ) ]−
i=1

∑
N

πi

X vi i
2

τ 2

= E[ v v ]−
i=1

∑
N

j=1

∑
N

π πi j

X Xi j
i j ( v )

i=1

∑
N

i

2

= v v −
i=1

∑
N

j=1

∑
N

π πi j

E[X X ]i j
i j v v

i=1

∑
N

j=1

∑
N

i j

= ( −
i=1

∑
N

j=1

∑
N

π πi j

πi,j 1)v vi j
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But an estimation of  is

usually needed in practice

σ (Y )2

We have that
σ (Y ) =2 v

(i,j)∈{1,…,N}×{1,…,N}

∑ i,j

How do we estimate ?σ (Y )2 We use HT again!

Define  andX =i,j X Xi j

v =i,j ( −
π πi j

πi,j 1)v vi j
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The HT estimator of  is

 

 
given that 

σ (Y )2

(Y ) =σ̂2 ,
(i,j)∈{1,…,N}×{1,…,N}

∑
πi,j

X vi,j i,j

E[X ] =i,j E[X X ] =i j πi,j

But an estimation of  is

usually needed in practice

σ (Y )2
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Replacing the values of , we obtain:vi,j

(Y ) =σ̂2 ( −
i=1

∑
N

j=1

∑
N

πi,j

X Xi j

π πi j

πi,j 1)v vi j =   ( −
i,j∈ sample

∑
πi,j

X Xi j

π πi j

πi,j 1)v vi j

But an estimation of  is

usually needed in practice

σ (Y )2
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Horvitz–Thompson
estimators

The idea behind the HT estimator can be used to
define unbiased estimators in many different
escenarios

In this sense, we can talk about a family of HT
estimators
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Estimation in
databases
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The result  of this query is , so we
need an estimator for this amount

Q(R) r[B]∑r∈R

Let's put what we learned
into practice [CGHJ12]

Consider the following SQL query  over the
schema :

Q

R[A,B]

SUM (B R[A,B])
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Simple random sampling
with replacement (SRSWR)

To produce the sample repeat  times the following
steps:

n

1. Generate uniformly at random  r ∈ R
2. Add  to the sample r
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The HT estimator of :Q(R)

Y = =
r∈R

∑
πr

X ⋅ r[B]r
X ⋅

n

∣R∣

r∈sample

∑ r r[B]

Simple random sampling
with replacement (SRSWR)

: number of times tuple  appears in the sampleXr r

π =r E[X ] =r ∣R∣
n
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The variance for SRSWR

For , let  be a random variable such that
for each possible value  of attribute :

i ∈ {1,… ,n} Wi

v B

Pr(W =i v) =
∣R∣

∣{r ∈ R ∣ r[B] = v}∣

We have that:

Y = X ⋅
n

∣R∣

r∈sample

∑ r r[B] = W
n

∣R∣

i=1

∑
n

i
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The variance for SRSWR

E[W ] =i v ⋅
v

∑ Pr(W =i v) = v ⋅
∣R∣
1

v

∑ ∣{r ∈ R ∣ r[B] = v}∣  =
∣R∣
Q(R)
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Random variables  are mutually independent:Wi

σ (Y ) =2 σ ( W ) =2

n

∣R∣

i=1

∑
N

i σ (W )
n2
∣R∣2

i=1

∑
N

2
i

The variance for SRSWR

E[W ] =i v ⋅
v

∑ Pr(W =i v) = v ⋅
∣R∣
1

v

∑ ∣{r ∈ R ∣ r[B] = v}∣  =
∣R∣
Q(R)
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We have that:

σ (W ) =2
i E[(W −i E[W ]) ] =i

2 (r[B] −
r∈R

∑
∣R∣
1 ) =

∣R∣
Q(R) 2

σ (R)2

The variance for SRSWR

E[W ] =i v ⋅
v

∑ Pr(W =i v) = v ⋅
∣R∣
1

v

∑ ∣{r ∈ R ∣ r[B] = v}∣  =
∣R∣
Q(R)

We conclude that:

σ (Y ) =2 σ (W ) =
n2
∣R∣2

i=1

∑
n

2
i σ (R) = 

n2
∣R∣2

i=1

∑
n

2

n

∣R∣ σ (R)2 2

= 
n

∣R∣ σ (R)2 2
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Simple random sampling
without replacement

(SRSWoR)

To produce the sample repeat  times the following
steps:

n

1. Generate uniformly at random  r ∈ R
2. Add  to the sample and remove it from r R
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, where  is the following probabilityX ∼r Bernoulli(p) p

Assume that  is the -th element sampled, so that:sk k

p = Pr(X =r 1) = Pr( s =
i=1

⋁
n

i r)

Simple random sampling
without replacement

(SRSWoR)

: number of times tuple  appears in the sample,
which can be 0 or 1
Xr r
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Pr( s =
i=1

⋁
n

i r)= Pr( [s =
i=1

⋁
n

i r ∧ s =
j=1

⋀
i−1

j  r])

= Pr(s =
i=1

∑
n

i r ∧ s =
j=1

⋀
i−1

j  r)

= ⋅
i=1

∑
n

(
i−1
∣R∣)

(
i−1
∣R∣−1)

∣R∣ − (i− 1)
1

= ⋅
i=1

∑
n

∣R∣
∣R∣ − (i− 1)

∣R∣ − (i− 1)
1

=
∣R∣
n

Simple random sampling
without replacement

(SRSWoR)
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π =r E[X ] =r ∣R∣
n

This is a similar estimator to the one for the case with
replacement. But what is the variance of ?Y

The HT estimator of :Q(R)

Y = =
r∈R

∑
πr

X ⋅ r[B]r
X ⋅

n

∣R∣

r∈sample

∑ r r[B] = r[B]
n

∣R∣

r∈sample

∑

Simple random sampling
without replacement

(SRSWoR)
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The variance for SRSWoR

The variance is lower than for the case of SRSWR:
 

σ (Y ) =2

n

∣R∣(∣R∣ − n)σ (R)2
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Now consider the following SQL query  over the
schema :

Q

R[A,B],S[B,C]

SUM (R[A,B] ⋈C S[B,C])

A second group of estimators
[VMZC15,HYPM19]
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To produce the sample do the following for each 
: (r, s) ∈ R× S

1. Generate uniformly at random  x ∈ [0, 1]
2. If , then add  to the sample x ≤ p (r, s)

Bernoulli sampling: first
alternative
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But how is  defined? It cannot always be vr,s s[C]

 if , and  otherwisev =r,s s[C] r ∼ s v =(r,s) 0

Bernoulli sampling: first
alternative

: number of times  appears in the sample

, so that 

Xr,s (r, s) ∈ R× S

X ∼r,s Bernoulli(p) π =r,s E[X ] =r,s p

HT estimator of :Q(R,S)

Y = =
(r,s)∈R×S

∑
πr,s

X ⋅ vr,s r,s
v

p

1

r∈sample

∑ r,s
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The random variables  are mutually
independent, so  is easy to compute

Xr,s

σ (Y )2

Bernoulli sampling: first
alternative

But we have a problem: the loop considers all the
tuples, so we could just compute the exact answer
to the query 

How do we solve this problem?
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Independent Bernoulli
sampling

a      b1 1

a      b2 2

⋮
a      bN N

R BA

b      c1
′

1

b      c2
′

2

⋮
b      cM
′

M

S CB

pR pS

sampleR sampleS

sample = sample ⋈R sampleS
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To produce the sample do the following: 

1. For each , generate uniformly at random 
, and add  to  if 
r ∈ R

x ∈ [0, 1] r sampleR x ≤ pR

2. For each , generate uniformly at random 
, and add  to  if 
s ∈ S

x ∈ [0, 1] s sampleS x ≤ pS

3. Let sample = sample ⋈R sampleS

Independent Bernoulli
sampling
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 and  are defined as before

, so that 

Xr,s vr,s

X ∼r,s Bernoulli(p p )R S π =r,s E[X ] =r,s p pR S

HT estimator of :Q(R,S)

Y = =
(r,s)∈R×S

∑
πr,s

X ⋅ vr,s r,s
v

p pR S

1

r∈sample

∑ r,s

Independent Bernoulli
sampling
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Random variables  are not mutually independentXr,s

If , then s = s′ Pr(X =r,s′ 1 ∣ X =r,s 1) = p =S  Pr(X =r,s′

1)

The variance of
independent Bernoulli

sampling
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The variance of
independent Bernoulli

sampling

We have that:
 

Var[Y ] = ( −
(r,s)∈R×S

∑
p pR S

1
1)v  +r,s

2

( −
r∈R

∑
s ,s ∈S : s =s1 2 1 2

∑
pR

1
1)v v  +r,s1 r,s2

( −
r ,r ∈R : r =r1 2 1 2

∑
s∈S

∑
pS

1
1)v vr ,s1 r ,s2
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The variance of
independent Bernoulli

sampling

And we also have a simple HT estimator of the variance:
 

[Y ] =Var^ ( −
(r,s)∈R×S

∑
p pR S

X Xr s

p pR S

1
1)v  +r,s

2

( −
r∈R

∑
s ,s ∈S : s =s1 2 1 2

∑
p pR S

X Xr s

pR

1
1)v v  +r,s1 r,s2

( −
r ,r ∈R : r =r1 2 1 2

∑
s∈S

∑
p pR S

X Xr s

pS

1
1)v vr ,s1 r ,s2
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The variance of
independent Bernoulli

sampling

And we also have a simple HT estimator of the variance:
 

[Y ] =Var^ ( −
r∈sampleR

∑
s∈sampleS

∑
p pR S

X Xr s

p pR S

1
1)v  +r,s

2

( −
r∈sampleR

∑
s ,s ∈r∈sample : s =s1 2 S 1 2

∑
p pR S

X Xr s

pR

1
1)v v  +r,s1 r,s2

( −
r ,r ∈r∈sample : r =r1 2 R 1 2

∑
s∈r∈sampleS

∑
p pR S

X Xr s

pS

1
1)v vr ,s1 r ,s2
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If we add a column   to  with value 1 in each tuple,
then estimating   corresponds to the problem of
estimating the answer to the following SQL query:  

aux S

∣R ⋈ S∣

Join size estimation

Consider the schema R[A,B],S[B,C]

We can reuse the techniques presented in the previous
slides to estimate ∣R ⋈ S∣

SUM (R[A,B] ⋈aux S[B,C, aux])
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Universe sampling [VMZC15]

a      b1 1

a      b2 2

⋮
a      bN N

R BA

b      c1
′

1

b      c2
′

2

⋮
b      cM
′

M

S CB

pR pS

sampleR sampleS

sample = sample ⋈R sampleS
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a      b1 1

a      b2 2

⋮
a      bN N

R BA

b      c1
′

1

b      c2
′

2

⋮
b      cM
′

M

S CB

sampleR sampleS

sample = sample ⋈R sampleS

p

153

Universe sampling [VMZC15]



To produce the sample do the following: 

1. For each , if , then add  to 
 
r ∈ R h(r[B]) ≤ p r

sampleR
2. For each , if , then add  to s ∈ S h(s[B]) ≤ p s

sampleS
3. Let sample = sample ⋈R sampleS

Assume given a (perfect) hash function 
 

h :
dom(B) → [0, 1]

Universe sampling [VMZC15]
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: number of times  appears in the sample

, so that 

Xr,s (r, s)

X ∼r,s Bernoulli(p) π =r,s E[X ] =r,s p

HT estimator of :

 

 
where  if , and  otherwise

Q(R,S)

Y = =
r∈R

∑
s∈S

∑
πr,s

X ⋅ vr,s r,s
v

p

1

r∈sampleR

∑
s∈sampleS

∑ r,s

v =r,s 1 r ∼ s v =r,s 0

Universe sampling [VMZC15]
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Random variables  are not mutually independent

If  and , then 

Xr,s

s = s′ s[B] = s [B]′ Pr(X =r,s′ 1 ∣ X =r,s 1) = 1

The variance of universe
sampling
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But the variance of  can be computed considered the
following representation of this random variable

Y

The variance of universe
sampling

For , letv ∈ dom(B)

N (v) =R ∣{r ∈ R ∣ r[B] = v}∣

N (v) =S ∣{s ∈ S ∣ s[B] = v}∣
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The variance of universe
sampling

: random variable such that  if  is included as
the value of attribute  for some tuple in the sample,
and 0 otherwise

Xv X =v 1 v

B

X ∼v Bernoulli(p)

Then we can represent  as the following HT estimator:

 

Y

Y = =
v∈dom(B)

∑
E[X ]v

X N (v)N (v)v R S
X N (v)N (v)

p

1

v∈dom(B)

∑ v R S
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The variance of universe
sampling

Random variables  are mutually independent:

 

Xv

Var[Y ] = Var[ X N (v)N (v)]
p

1

v∈dom(B)

∑ v R S

= Var[X ]N (v)N (v)
p2
1

v∈dom(B)

∑ v R
2

S
2

= p(1 −
p2
1

v∈dom(B)

∑ p)N (v)N (v)R
2

S
2

= ( −
p

1
1) N (v)N (v)

v∈dom(B)

∑ R
2

S
2
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What about other
operators?

The previous techniques can be easily extended to
consider the selection operator

We leave this as an exercise for the reader

But the inclusion of projection is more challenging
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Part II: Adding
projection
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What is left?What is left?

We now consider the operators join, selection and
projection

We consider conjunctive queries

Our goal is to show how to do efficient cardinality
estimation for acyclic conjunctive queries
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R[A,B]

S[A,C] T [A,D]

U [C,E,F ]1

1
1

2
64     6

5     7

R BA

4     1
5     2
4     3

S CA

163

2
1

0

4     1
4     2
4     3
5     4
5     5

T DA

1
1

1

1
1

1     3     6
1     4     7
2     5     8

U EC F

R[A,B] ⋈ S[A,C] ⋈ T [A,D] ⋈ U [C,E,F ]



R[A,B]

S[A,C] T [A,D]

U [C,E,F ]1

1
1

2
64     6

5     7

R BA
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4     1
5     2
4     3

S CA

2
1

0

4     1
4     2
4     3
5     4
5     5

T DA

1
1

1

1
1

1     3     6
1     4     7
2     5     8

U EC F

Q(x, y, z,u, v,w) = R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)



R[A,B]

S[A,C] T [A,D]

U [C,E,F ]1

1
1

2
64     6

5     7

R BA
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4     1
5     2
4     3

S CA

2
1

0

4     1
4     2
4     3
5     4
5     5

T DA

1
1

1

1
1

1     3     6
1     4     7
2     5     8

U EC F

Q(x, y, z,u, v,w) = R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)



R(x, y)

S(x, z) T (x,u)

U(z, v,w)1

1
1

2
64     6

5     7

R yx
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4     1
5     2
4     3

S zx

2
1

0

4     1
4     2
4     3
5     4
5     5

T ux

1
1

1

1
1

1     3     6
1     4     7
2     5     8

U vz w

Q(x, y, z,u, v,w) = R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)



R(x, y)

S(x, z) T (x,u)

U(z, v,w)1

1
1

4     1
5     2
4     3

S zx

4     6
4     7
5     8

Q′ wx
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2
1

0

4     1
4     2
4     3
5     4
5     5

T ux

1
1

1

1
1

1     3     6
1     4     7
2     5     8

U vz w

2
64     6

5     7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]



1     3     6
1     4     7
2     5     8

U vz w

R(x, y)

S(x, z) T (x,u)

U(z, v,w)

4     1
5     2
4     3

S zx
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4     6
4     7
5     8

Q′ wx

4     1
4     2
4     3
5     4
5     5

T ux

4     6
5     7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]



R(x, y)

S(x, z) T (x,u)

U(z, v,w)

4     ⋆
5     ⋆
4     ⋆
4

S zx

4     6
4     7
5     8

Q′ wx
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4     ⋆
4     ⋆
4     ⋆
5     ⋆
5     ⋆
5

T ux

U vz w

4     ⋆
5     ⋆
5

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

⋆     ⋆     6
⋆     ⋆     7
⋆     ⋆     8

8



The main ingredient in the
solution: Tree automata 

This is the right representation for the problem of
counting the number of answers to an acyclic

conjunctive query
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Tree automata 

a

b a

b a

p (p, a, qr)

q(q, b,λ)

171

r (r, a, qr)



Tree automata 

a

b a

172

p (p, a, qr)

q(q, b,λ) r (r, a, qr)

Tree automata: (Q, Σ,Δ, I)

 is the set of statesQ = {p, q, r}

 is the alphabetΣ = {a, b}

 is the set of initial statesI = {p}

 is the transition relationΔ = {(p, a, qr), (q, b,λ), (r, a, qr)}



Tree automata 

a

b a

b a
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b a



Tree automata 

a

b a

b a

174

b a

e (e, a, eo)

e(e, b,λ) o (o, a, oo)

o(o, b, eo) o (o, a,λ)

e(e, b,λ) o (o, a,λ)



Tree automata 

a

b a

b a

b a

175

e (e, a, eo)

e(e, b,λ) o (o, a, oo)



Tree automata 

a

b a

b a

176

b a

e (e, a, eo)

e(e, b,λ) o (o, a, ee)

e(e, b, ee) e (e, a,λ)



1     3     6
1     4     7
2     5     8

U vz w

4     1
5     2
4     3

S zx

4     6
4     7
5     8

Q′ wx

177

4     1
4     2
4     3
5     4
5     5

T ux

4     6
5     7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, ⋆)

R(5, ⋆)

U(⋆, ⋆, 6)

U(⋆, ⋆, 7)

U(⋆, ⋆, 8)

S(4, ⋆)

S(5, ⋆)

T (4, ⋆)

T (5, ⋆)Alphabet:

R(4, 6)

R(5, 7)

U(1, 3, 6)

U(1, 4, 7)

U(2, 5, 8)

S(4, 1)

S(5, 2)

S(4, 3)

⋯States:



1     3     6
1     4     7
2     5     8

U vz w

4     1
5     2
4     3

S zx

4     6
4     7
5     8

Q′ wx
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4     1
4     2
4     3
5     4
5     5

T ux

4     6
5     7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]



1     3     6
1     4     7
2     5     8

U vz w

4     1
5     2
4     3

S zx
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4     6
4     7
5     8

Q′ wx

4     1
4     2
4     3
5     4
5     5

T ux

4     6
5     7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, 6)

S(4, 1) T (4, 3)

U(1, 3, 6)



1     3     6
1     4     7
2     5     8

U vz w

4     1
5     2
4     3

S zx

4     6
4     7
5     8

Q′ wx
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4     1
4     2
4     3
5     4
5     5

T ux

4     6
5     7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, ⋆)

S(4, ⋆) T (4, ⋆)

U(⋆, ⋆, 6)

R(4, 6)

S(4, 1) T (4, 3)

U(1, 3, 6)



1     3     6
1     4     7
2     5     8

U vz w

4     1
5     2
4     3

S zx
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4     6
4     7
5     8

Q′ wx

4     1
4     2
4     3
5     4
5     5

T ux

4     6
5     7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, ⋆)

S(4, ⋆) T (4, ⋆)

U(⋆, ⋆, 6)

R(4, 6)

S(4, 1) T (4, 3)

(R(4, 6),  R(4, ⋆),  S(4, 1)T (4, 3))

(T (4, 3),  T (4, ⋆),  λ)S(4, 1),  S(4, ⋆),  U(1, 3, 6))



1     3     6
1     4     7
2     5     8

U vz w

4     1
5     2
4     3

S zx
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4     6
4     7
5     8

Q′ wx

4     1
4     2
4     3
5     4
5     5

T ux

4     6
5     7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

R(4, ⋆)

S(4, ⋆) T (4, ⋆)

U(⋆, ⋆, 6)

R(4, 6)

S(4, 1) T (4, 3)

U(1, 3, 6)

(R(4, 6),  R(4, ⋆),  S(4, 1)T (4, 3))

(T (4, 3),  T (4, ⋆),  λ)

(U(1, 3, 6),  T (⋆, ⋆, 6),  λ)

S(4, 1),  S(4, ⋆),  U(1, 3, 6))



1     3     6
1     4     7
2     5     8

U vz w

4     1
5     2
4     3

S zx

4     6
4     7
5     8

Q′ wx
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4     1
4     2
4     3
5     4
5     5

T ux

4     6
5     7

R yx

Q (x,w) =′ ∃y∃z∃u∃v [R(x, y) ∧ S(x, z) ∧ T (x,u) ∧ U(z, v,w)]

The problem to solve: count the number of trees
with 4 nodes accepted by the tree automaton



The problem #TA

Input:

Output:

A tree automaton (TA)  over the alphabet 
 and a number  (given in unary)

T

{0, 1} n

Number of trees  such that  and
the number of nodes of  is 

t t ∈ L(T )
t n

What is the complexity of this problem?
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A detour: graph
databases
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Graph databases

Paul

Jack

John

Nora

Leah

Zara
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friend friend

friend

friend

knows

friend
friend

knows
friend

:G



Jack

Paul John

Nora

Leah

Zara
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friend friend

friend

friend

knows

friend
friend

knows
friend

A query: (friend + knows)∗

Zara

Nora

John

Jack

friend

friend

friend

Zara

Leah

John

Paul

friend

friend

knows



Two fundamental problems

COUNT: count the number of paths  in  such
that  conforms to regular expression  and the
length of  is 
GEN: generate uniformly at random a path  in 

 such that  conforms to  and the length of 
is 

p G

p r

p n

p

G p r p

n
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COUNT is a difficult
problem

COUNT is #P-complete

The decision version of the problem can be solved
in polynomial time, so this problem could admit an
FPRAS 
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The connection with #TA

Input:

Output:

A non-deterministic finite automaton (NFA)
 over the alphabet  and a number 

(given in unary)
A {0, 1} n

Number of words  such that 
and the length of  is 

w w ∈ L(A)
w n

The problem #NFA:
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The connection with #TA

COUNT and #NFA are polynomially equivalent
under parsimonious reductions

This implies that if an FPRAS exists for one of
them, then it exists for the other

#TA is #P-complete

The construction of an FPRAS for #NFA seems to
be a natural step to construct an FPRAS for #TA
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Existence of an FPRAS for
#NFA

How do we obtain such an approximation
algorithm?

We use the techniques learned in the previous
part of the tutorial!
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An FPRAS for #NFA

Assume that , so that the
output of #NFA is 

L (A) =n {w ∈ L(A) ∣ ∣w∣ = n}

∣L (A)∣n

Input:

Output:

An NFA  over the alphabet  and a
number  (given in unary)

A {0, 1}

n

Number of words  such that  and the
length of  is 

w w ∈ L(A)

w n
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An FPRAS for #NFA

The input of the approximation algorithm: ,  and A n ε ∈

(0, 1)

The task is to compute a number  that is a -
approximation of :

N (1 ± ε)

∣L (A)∣n

Pr((1 − ε)∣L (A)∣ ≤n N ≤ (1 + ε)∣L (A)∣) ≥n 4
3

Moreover, number  has to be computed in time 
, where  is the number of states of 

N

poly(m,n, )
ε
1 m A
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An FPRAS for #NFA

If we think of the approximation algorithm as an
estimator  for , then we need to construct the
following confidence interval:

N̂ ∣L (A)∣n

Pr(∣L (A)∣ ∈n [ , ]) ≥
1 + ε

N̂

1 − ε

N̂

4
3
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Constructing an FPRAS for
#NFA [ACJR21a]

Assume that 

 is a finite set of states
 is the transition relation

 is the set of initial states
 is the set of final states

A = (Q, {0, 1},Δ, I,F )

Q

∆ ⊆ Q× {0, 1} ×Q

I ⊆ Q

F ⊆ Q
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First component: unroll
automaton A

Construct  from :

for each state , include copies  in 

for each transition  and ,
include transition  in 

Aunroll A

q ∈ Q q , q ,… , q0 1 n

Aunroll

(p, a, q) ∈ Δ i ∈ {0, 1, ...,n− 1}

(p , a, q )i i+1 Aunroll

Besides, eliminate from  unnecessary states: each
state  is reachable from an initial state  ( )

Aunroll

qi p0 p ∈ I

197



Second component: a
sketch to be used in the

estimation
Define  as the set of strings  such that there is a
path from an initial state  to  labeled with 

Notice that 

L(q )i w

p0 qi w

∣w∣ = i

Besides, define for every :X ⊆ Q

L(X ) =i L(q )
q∈X

⋃ i

Then the task is to compute an estimation of ∣L(F )∣n
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Second component: a
sketch to be used in the

estimation
From now assume that , and letm = ∣Q∣

κ = ⌈ ⌉
ε

nm

We maintain for each state  :

: a -approximation of 
: a multiset of uniform samples from  of size 

qi

N(q )i (1 ± κ )−2 i ∣L(q )∣i

S(q )i L(q )i

2κ7
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Second component: a
sketch to be used in the

estimation

Data structure to be inductively computed:
Sketch[i] = {N(q ),S(q ) ∣j j 0 ≤ j ≤ i and q ∈ Q}
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The algorithm template

1. Construct  from Aunroll A

2. For each state , set  andq ∈ I N(q ) =0 ∣L(q )∣ =0 1

S(q ) =0 L(q ) =0 {λ}

3. For each  and state :i ∈ {0,… ,n− 1} q ∈ Q

Compute  given N(q )i+1 Sketch[i]

Sample polynomially many uniform elements from
 using  and , and let 

be the multiset of uniform samples obtained
L(q )i+1 N(q )i+1 Sketch[i] S(q )i+1

Return an estimation of  given ∣L(F )∣n Sketch[n]

3.1.

3.2.

4.
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Computing an estimation 
 of N(F )n ∣L(F )∣n

We use notation  for an estimation N(X )i ∣L(X )∣i

Such an estimation is not only needed in the last step of
the algorithm, but also in the inductive construction of 

:Sketch[i]

Compute  given N(q )i+1 Sketch[i]

Sample polynomially many uniform elements from
 using  and , and let 

be the multiset of uniform samples obtained
L(q )i+1 N(q )i+1 Sketch[i] S(q )i+1

3.1.

3.2.

For each  and state :i ∈ {0,… ,n− 1} q ∈ Q3.
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Computing an estimation 
 of N(X )i ∣L(X )∣i

Recall that
L(X ) =i L(p )

p∈X

⋃ i

Notice that  is not true in generalL(X ) =i ∣L(p )∣∑p∈X
i

But the following holds, given a linear order  on :< Q

∣L(X )∣ =i L(p )∖
p∈X

∑ i L(q )
q∈X : q<p

⋃ i
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= ∣L(p )∣
p∈X

∑ i

∣L(p )∣i
L(p )∖ L(q )i ⋃q∈X : q<p

i

Computing an estimation 
 of N(X )i ∣L(X )∣i

We have that:
∣L(X )∣ =i L(p )∖

p∈X

∑ i L(q )
q∈X : q<p

⋃ i

= ∣L(p )∣
p∈X

∑ i

∣L(p )∣i
L(p )∖ L(q )i ⋃q∈X : q<p

i

So we will use the following approximation:
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Computing an estimation 
 of N(X )i ∣L(X )∣i

We have that:
∣L(X )∣ =i L(p )∖

p∈X

∑ i L(q )
q∈X : q<p

⋃ i

= ∣L(p )∣
p∈X

∑ i

∣L(p )∣i
L(p )∖ L(q )i ⋃q∈X : q<p

i

So we will use the following approximation:

= ∣L(p )∣
p∈X

∑ i

∣L(p )∣i
L(p )∖ L(q )i ⋃q∈X : q<p

i
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Computing an estimation 
 of N(X )i ∣L(X )∣i

We have that:
∣L(X )∣ =i L(p )∖

p∈X

∑ i L(q )
q∈X : q<p

⋃ i

So we will use the following approximation:

= N(p )
p∈X

∑ i

∣L(p )∣i
L(p )∖ L(q )i ⋃q∈X : q<p

i

= ∣L(p )∣
p∈X

∑ i

∣L(p )∣i
L(p )∖ L(q )i ⋃q∈X : q<p

i
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Computing an estimation 
 of N(X )i ∣L(X )∣i

We have that:
∣L(X )∣ =i L(p )∖

p∈X

∑ i L(q )
q∈X : q<p

⋃ i

So we will use the following approximation:

= N(p )
p∈X

∑ i

∣S(p )∣i
S(p )∖ L(q )i ⋃q∈X : q<p

i

N(X )i

= ∣L(p )∣
p∈X

∑ i

∣L(p )∣i
L(p )∖ L(q )i ⋃q∈X : q<p

i
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Computing an estimation 
 of N(X )i ∣L(X )∣i

 can be computed in polynomial time in the size of 

 is constructed by checking for
each  whether  is not in  for every 

 with 

N(X )i

Sketch[i]

S(p )∖i L(q )⋃q∈X : q<p
i

w ∈ S(p )i w L(q )i q ∈

X q < p

What guarantees that  is a good estimation of 
?

N(X )i

∣L(X )∣i
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An invariant to be
mantained

 holds if for every  and :

 

E(i) p ∈ Q X ⊆ Q

−
L(p )i

L(p )∖ L(q )i ⋃q∈X
i

<
S(p )i

S(p )∖ L(q )i ⋃q∈X
i

κ3
1
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The use of the main
property

Compute  given N(q )i+1 Sketch[i]

Sample polynomially many uniform elements from
 using  and , and let 

be the multiset of uniform samples obtained
L(q )i+1 N(q )i+1 Sketch[i] S(q )i+1

3.1.

3.2.

For each  and state :i ∈ {0,… ,n− 1} q ∈ Q3.

Lemma: If  holds and  is a -
approximation of  for every  , then  is a 

-approximation of  for every 

E(i) N(p )i (1 ± κ)i

∣L(p )∣i p ∈ Q N(X )i

(1 ± κ )−2 i+1 ∣L(X )∣i X ⊆ Q
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The use of the main
property

 holds and  is a -approximation of 
 for every 

E(0) N(p )0 (1 ± κ )−2 0

∣L(p )∣0 p ∈ Q

Recall that  and  for every N(p ) =0 ∣L(p )∣0 S(p ) =0 L(p )0

p ∈ Q

Then  is a -approximation of  for
every 

N(X )0 (1 ± κ )−2 ∣L(X )∣0

X ⊆ Q

We want to use the values  to estimate the
values 

N(X )0

N(p )1
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The use of the main
property

For , define:p ∈ Q

Y   = {q ∣0 (q , 0, p ) is a transition in A }0 1
unroll

Z  = {q ∣0 (q , 1, p ) is a transition in A }0 1
unroll

Then 

So that 

L(p ) =1 L(Y ) ⋅ {0}  ⊎  L(Z) ⋅ {1}

∣L(p )∣ =1 ∣L(Y )∣ + ∣L(Z)∣

212



The use of the main
property

For , define:p ∈ Q

Y   = {q ∣0 (q , 0, p ) is a transition in A }0 1
unroll

Z  = {q ∣0 (q , 1, p ) is a transition in A }0 1
unroll

Then given that  is a -approximation of  
 and  is a -approximation of :

 is a -approximation of         

N(Y ) (1 ± κ )−2

∣L(Y )∣ N(Z) (1 ± κ )−2 ∣L(Z)∣

N(Y ) +N(Z) (1 ± κ )−2

N(p ) =1 ∣L(Y )∣ + ∣L(Z)∣
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Main property: a summary

 holds and  is a -approximation of  for
every 

E(0) N(p )0 (1 ± κ )−2 0 ∣L(p )∣0

p ∈ Q

 is a -approximation of  for every N(X )0 (1 ± κ )−2 1 ∣L(X )∣0 X ⊆ Q

 is a -approximation of 
 for every 

N(p ) =1 N(R (p )) +0
1 N(R (p ))1

1 (1 ± κ )−2 1

L(p )1 p ∈ Q

where R (p ) =b
1 {q ∣0 (q , b, p ) is a transition in A }0 1

unroll

⇓

⇓
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Main property: a summary

 holds and  is a -approximation of  for
every 

E(1) N(p )1 (1 ± κ )−2 1 ∣L(p1)∣

p ∈ Q

215



Main property: a summary

 holds and  is a -approximation of  for
every 

E(1) N(p )1 (1 ± κ )−2 1 ∣L(p1)∣

p ∈ Q

 is a -approximation of  for every N(X )1 (1 ± κ )−2 2 ∣L(X )∣1 X ⊆ Q

 is a -approximation of 
 for every 

N(p ) =2 N(R (p )) +0
2 N(R (p ))1

2 (1 ± κ )−2 2

L(p )2 p ∈ Q

⇓

⇓

where R (p ) =b
2 {q ∣1 (q , b, p ) is a transition in A }1 2

unroll
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The final result

Proposition: If  holds for every ,
then  is a -approximation of 

E(i) i ∈ {0, 1, ...,n}
N(F )n (1 ± ε) ∣L(F )∣n

How can we maintain property ?E(i)
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Sampling from a state

We need to construct the multiset  of uniform
samples

S(q )i+1

Recall that:

 contains  words from S(q )i+1 2κ7 L(q )i+1

 is computed assuming that  and 
 have already been

constructed

S(q )i+1 N(q )i+1

Sketch[i] = {N(q ),S(q ) ∣j j 0 ≤ j ≤ i}
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To recall

1. Construct  from 
2. For each state , set  and

3. For each  and state :

Aunroll A

q ∈ I N(q ) =0 ∣L(q )∣ =0 1

S(q ) =0 L(q ) =0 {λ}

i ∈ {0,… ,n− 1} q ∈ Q

Compute  given N(q )i+1 Sketch[i]

Sample polynomially many uniform elements from
 using  and , and let 

be the multiset of uniform samples obtained
L(q )i+1 N(q )i+1 Sketch[i] S(q )i+1

Return an estimation of  given ∣L(F )∣n Sketch[n]

3.1.

3.2.

4.
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Sampling from qi+1

To generate a sample in , we construct a
sequence of words  such that

L(q )i+1

w ,w ,… ,w ,wi+1 i 1 0

w =i+1 λ

 with w =j b wj j+1 b ∈j {0, 1}
w ∈0 L(q )i+1

To choose , construct for :w =i bwi+1 b = 0, 1

P =b {p ∣i (p , b, q ) is a transition in A }i i+1
unroll
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Sampling from qi+1

 and  are sets of states at layer P0 P1 i
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Sampling from qi+1

We choose  with probability:b ∈ {0, 1}

N(P ) +N(P )0 1

N(P )b

We compute  and  as follows:

 

N(P )0 N(P )1

N(X ) =i N(p )
p∈X

∑ i

∣S(p )∣i
S(p )∖ L(q )i ⋃q∈X : q<p

i

 and  are sets of states at layer P0 P1 i
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We could have started from
a set of states

Previous procedure works for every set of states :

 
In particular, we applied the procedure for 

P i+1

P =b {p ∣i ∃r ∈i+1 P :i+1 (p , b, r ) is a transition in A }i i+1
unroll

P =i+1 {q }i+1
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The sampling algorithm

1. prob = φ0

2. P =i+1 {q }i+1

3. for    to    doj = i+ 1 1

P =j,0 {p ∣j−1 ∃r ∈j P :j (p , 0, p ) is a transition in A }j−1 j
unroll

P =j,1 {p ∣j−1 ∃r ∈j P :j (p , 1, p ) is a transition in A }j−1 j
unroll

Generate  with probability b ∈ R ∈i {0, 1}
N(P )+N(P )b,0 b,1

N(P )j,b

3.1.

3.2.
3.3.

P =j−1 Pj,b

w =j−1 bwj3.4.
3.5.

prob = prop ⋅

N(P )j,b

N(P )+N(P )j,0 j,1

3.6.
reject with probability 1 − prob4.

return w05.
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As before ...

Pr(the output of the procedure is x)

Let  be a word in x = x ⋯x1 i+1 L(q )i+1

= Pr(w =0 x ∧ the procedure does not reject)

= Pr(the procedure does not reject ∣ w =0 x) Pr(w =0 x)

= ( ) ⋅
j=1

∏
i+1

N(P )φ+N(P )j,0 j,1

N(P )j,xj
−1

φ ⋅0 ( )
j=1

∏
i+1

N(P ) +N(P )j,0 j,1

N(P )j,xj

=  φ0

225



The value of the initial
probability φ0

Lemma: Assume that  holds for each . If 
, then

 in each step in the loop

 for every 

E(j) j < i+ 1

φ =0 N(q )i+1
e−5

prob ≤ 1

Pr(procedure rejects) ≤ 1 − e−9

Pr(w =0 x) =
N(q )i+1
e−5 x ∈ L(q )i+1
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Bounding the probability of
breaking the main

assumption

Recall that  holds if for every  and :

 

E(i) q ∈ Q P ⊆ Q

−
L(q )i

L(q )∖ L(p )i ⋃p∈P
i

<
S(q )i

S(q )∖ L(p )i ⋃p∈P
i

κ3
1
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Bounding the probability of
breaking the main

assumption

By using Hoeffding’s inequality, it is possible to
obtain that:

Pr(E(0) ∧⋯∧ E(n)) ≤ 1 − e−κ
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The complete algorithm:
final comments [ACJR21a]

Putting all together, we obtain that the probability
that the algorithm returns a wrong estimate is at
most 4

1

The algorithm runs in time poly(m,n, )
ε
1
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Back to conjunctive queries

Theorem [ACJR21b]: #TA admits an FPRAS

Theorem [ACJR21b]: The problem of counting the
number of answers to an acyclic conjunctive query
admits an FPRAS

The same holds for each class of conjunctive
queries with bounded hypertree width

The ideas used for the case of NFA can be extended
to the case of TA
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Research questions
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Understand for which relational algebra operators
and aggregates it is posible to develop sampling
techniques with (strong) guarantees

Development of a general theory for estimation in
query optimization [HYPM19]

Which estimator should be used given a budget? 
What is an appropriate notion of budget? What
are optimal estimators?

Develop (very) efficient algorithms to compute
these estimators

Understand the complexity of computing such
estimators (fine-grained complexity)
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Understand for which relational algebra operators
and aggregates it is not posible to develop sampling
techniques with (strong) guarantees

What can of guarantees can be provided in these
cases?

Could sample techniques be used for some
fundamental tasks for K-relations? For first-order logic
with semiring semantics?

Does #CFG admits an FPRAS?
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Thanks!
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