
XML Data Exchange: Consistency and Query
Answering

Marcelo Arenas Leonid Libkin
U. of Toronto U. of Toronto

The Problem of Data Exchange

• Given: A source schema S, a target schema T and a

specification Σ of the relationship between these schemas.

• Data exchange: Problem of finding an instance of T , given an

instance of S.

- Target instance should reflect the source data as accurately as possible,

given the constraints imposed by Σ and T .

- It should be efficiently computable.

- It should allow one to evaluate queries on the target in a way that is

semantically consistent with the source data.

1

Data Exchange

Source Target
database

Target schema

Σ

Source schema

?database
−→

2

Data Exchange

Source
database

Target
database

Target schema

Σ

Source schema

−→
?

2

Data Exchange

Source
database

Target
database

Target schema

Σ

Source schema

−→
?

2

Data Exchange

Source
database

Target
database

Target schema

Σ

Source schema

−→
?

2

Data Exchange

Source
database

Target
database

Target schema

Σ

Source schema

−→
?

Query over the target: Q

Answer to Q in the target instance should represent the answer to Q

in the space of possible translations of the source instance.

2

Data Exchange in Relational Databases

• Data exchange has been extensively studied in the relational

world.

- It has also been implemented: Clio.

• Relational data exchange settings:

- Source and target schemas: Relational schemas.

- Relationship between source and target schemas: Source-to-target

dependencies.

• Semantics of data exchange has been precisely defined.

- Algorithms for materializing target instances and for answering queries

over the target have been developed.

3

Outline

• XML data exchange settings.

- XML source-to-target dependencies.

• Consistency of XML data exchange settings.

• Query answering in XML data exchange.

• Final remarks.

4

Outline

• XML data exchange settings.

- XML source-to-target dependencies.

• Consistency of XML data exchange settings.

• Query answering in XML data exchange.

• Final remarks.

5

XML Documents

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

6

XML Documents

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

db → book+

DTD : book → author+

author → ε

6

XML Documents

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

db → book+

DTD : book → author+ book → @title

author → ε author → @name , @aff

6

XML Data Exchange Settings

• Source and target schemas are given by DTDs.

• To specify the relationship between the source and the target

schemas we use source-to-target dependencies.

To define these dependencies, we use tree patterns ...

7

Tree Patterns: Example

db

book

author

@name
“Hungerford”

. . .book

@title

x
author

@name

y

8

Tree Patterns: Example

db

book

@title
“Algebra”

author

@name @aff
“Hungerford” “U. Washington”

. . .book

@title

x
author

@name

y

8

Tree Patterns: Example

db

book

“Real Analysis”
author

@name @aff
“Royden” “Stanford”

@title

. . .book

@title

x
author

@name

y

8

Tree Patterns: Example

db

book

“Real Analysis”
author

@name @aff
“Royden” “Stanford”

@title

. . .book

@title

x
author

@name

y

Collect tuples (x, y): (Algebra, Hungerford), (Real Analysis, Royden)

8

Tree Patterns

• Tree patterns: XPath-like language.

- Example: book(@title = x)[author(@name = y)]

• Language also includes wildcard (matching more than one

symbol) and descendant operator //.

9

XML Source-to-target Dependencies

• Source-to-target dependency (STD):

ψT(x̄, z̄) :– ϕS(x̄, ȳ),

where ϕS(x̄, ȳ) and ψT(x̄, z̄) are tree-pattern formulas over

the source and target DTDs, resp.

• Example:

:–

writer

@name

y
work

@title

x z
@year

book

@title

x
author

@name

y

10

XML Data Exchange Settings

XML Data Exchange Setting: (DS,DT,ΣST)

DS: Source DTD.

DT: Target DTD.

ΣST: Set of XML source-to-target dependencies.

Each constraint in ΣST is of the form ψT(x̄, z̄) :– ϕS(x̄, ȳ).

- ϕS(x̄, ȳ): Tree-pattern formula over DS.

- ψT(x̄, z̄): Tree-pattern formula over DT.

11

XML Data Exchange Problem

• Given a source tree T , find a target tree T ′ such that (T, T ′)

satisfies ΣST.

- (T, T ′) satisfies ψT(x̄, z̄) :– ϕS(x̄, ȳ) if whenever T satisfies ϕS(ā, b̄),

there is a tuple c̄ such that T ′ satisfies ψT(ā, c̄).

- T ′ is called a solution for T .

12

Example: Finding Solutions

Source db → book+

DTD: book → author+ book → @title

author → ε author → @name , @aff

Target bib → writer+

DTD: writer → work+ writer → @name

work → ε work → @title , @year

ΣST:

book

@name work @title author

x

@title @year @name

x z

y

writer

:–

y

13

Example: Finding Solutions

Let T be our original tree:

db

book book

@title
“Algebra”

@title
“Real Analysis”

author author

@name @aff @name @aff
“Hungerford” “U. Washington” “Royden” “Stanford”

14

Example: Finding Solutions

A solution for T :

bib

@year
“⊥2”

writer writer

@name

@title

work work

@title

@name

@year

“Hungerford”

“Algebra”

“Royden”

“Real Analysis”“⊥1”

15

Outline

• XML data exchange settings.

- XML source-to-target dependencies.

• Consistency of XML data exchange settings.

• Query answering in XML data exchange.

• Final remarks.

16

Consistency of XML Data Exchange Settings

• An XML data exchange setting (DS,DT,ΣST) can be

inconsistent:

There are no T conforming to DS and T ′ conforming to DT

such that (T, T ′) satisfies ΣST.

• What is the complexity of checking whether a setting is

consistent?

17

Bad News: General Case

Theorem Checking if an XML data exchange setting is consistent

is EXPTIME-complete.

Results on containment of XPath expressions as well as universality

of tree automata imply that EXPTIME-hardness is unavoidable.

18

Good News: Consistency for Commonly used DTDs

A large number of DTDs that occur in practice have rules of the form:

` → ˆ̀
1, . . . , ˆ̀m,

where all the `i’s are distinct, and ˆ̀ is one of the following: `, or `∗, or

`+, or `?

Subsume non-relational data exchange handled by Clio.

Theorem For non-recursive DTDs that only have these rules, consistency

can be checked in time O
(

(‖DS‖ + ‖DT‖) · ‖ΣST‖
2
)

.

19

Outline

• XML data exchange settings.

- XML source-to-target dependencies.

• Consistency of XML data exchange settings.

• Query answering in XML data exchange.

• Final remarks.

20

Query Answering in XML Data Exchange

• Decision to make: What is our query language?

• We start by considering a query language that produces tuples

of values.

21

Conjunctive Tree Queries

• Query language CTQ// is defined by

Q := ϕ | Q ∧Q | ∃xQ,

where ϕ ranges over tree-pattern formulas.

• By disallowing descendant // we obtain restriction CTQ.

22

Example: Conjunctive Tree Query

List all pairs of authors that have written articles with the same title.

Q(x, y) :=

∧@name

x
work

@title

z

writer

@name

y
work

@title

z

writer

∃z ()

23

Certain Answers Semantics

• Given: A source tree T and a conjunctive tree query Q over the

target.

• Answer to Q should represent the answer to this query in the

space of solutions for T .

• Certain answers semantics:

certain(Q,T) =
⋂

T ′ is a solution for T

Q(T ′).

24

Computing Certain Answers

We study the following problem.

Given data exchange setting (DS,DT,ΣST) and query Q:

PROBLEM: CERTAIN-ANSWERS(Q).

INPUT: Tree T conforming to DS and tuple ā.

QUESTION: Is ā ∈ certain(Q,T)?

25

Computing Certain Answers: General Picture

Theorem For every XML data exchange setting and CTQ//-query

Q, CERTAIN-ANSWERS(Q) is in coNP.

Remark: In terms of the size of the document (data complexity).

Theorem There exist an XML data exchange setting and a

CTQ//-query Q such that CERTAIN-ANSWERS(Q) is coNP-hard.

We want to find tractable cases ...

26

Computing Certain Answers: Finding Tractable Cases

Theorem Suppose one of the following is allowed in tree patterns over

the target in STDs:

• descendant operator //, or

• wildcard , or

• patterns that do not start at the root.

Then one can find source and target DTDs and a CTQ-query Q such that

CERTAIN-ANSWERS(Q) is coNP-complete.

Remark: Even if all the rules in the DTDs are of the form:

` → (`1 | · · · | `n)∗

where all the `i’s are distinct.

27

Computing Certain Answers: Finding Tractable Cases

• To find tractable cases, we have to concentrate on

fully-specified STDs:

We impose restrictions on tree patterns over target DTDs:

- no descendant relation //; and

- no wildcard ; and

- all patterns start at the root.

No restrictions imposed on tree patterns over source DTDs.

• Subsume non-relational data exchange handled by Clio.

From now on, all STDs are fully-specified.

28

Computing Certain Answers: Towards a Classification

Given a class C of regular expressions and a class Q of queries:

C is tractable for Q if for every data exchange setting in which target

DTDs only use regular expressions from C and every Q-query Q,

CERTAIN-ANSWERS(Q) is in PTIME.

C is coNP-complete for Q if there is a data exchange setting in which

target DTDs only use regular expressions from C and a Q-query Q such

that CERTAIN-ANSWERS(Q) is coNP-complete.

Remark (Ladner): If PTIME 6= NP, there are problems in coNP which are

neither tractable nor coNP-complete.

29

Computing Certain Answers: Towards a Classification

• Our classification is based on classes of regular expressions

used in target DTDs.

• We only impose one restriction to these classes: They must

contain the simplest type of regular expressions.

• Such classes will be called admissible.

30

Computing Certain Answers: Dichotomy

Theorem

1) Every admissible class C of regular expressions is either tractable or

coNP-complete for CTQ//.

2) For every tractable class: Given a source tree T , one can compute in

PTIME a solution T ? for T such that

certain(Q, T) = remove null tuples(Q(T ?)).

3) It is decidable whether the regular expressions used in a target DTD

belong to a tractable class.

31

A Tractable Class: Univocal Regular Expressions

• CU : class of univocal regular expressions.

- Examples: (A|B)∗, A,B+, C∗, D?, (A∗|B∗), (C,D)∗.

- Non-univocal: A, (B|C).

• Univocal regular expressions: Given a source tree T , one can

compute in PTIME a solution T ? for T such that

certain(Q,T) = remove null tuples(Q(T ?)).

• Theorem CU is tractable for CTQ//.

32

Non-tractable Classes

Is there any other tractable class of regular expressions?

Theorem CU is maximal: If C is an admissible class of regular

expressions such that C 6⊆ CU , then C is coNP-complete for CTQ-queries.

Dichotomy follows from this theorem and tractability of CU .

Theorem It is decidable whether a regular expression is univocal.

33

Outline

• XML data exchange settings.

- XML source-to-target dependencies.

• Consistency of XML data exchange settings.

• Query answering in XML data exchange.

• Final remarks.

34

Final Remarks

• Dichotomy also holds for unions of conjunctive queries.

• Future work:

- We would like to consider XML query languages that produce XML

trees.

How do we define certain answers?

- The notion of reasonable solutions needs to be investigated further.

35

Tractable Case: Univocal Regular Expressions

• T ? is a canonical solution for T :

certain(Q,T) = remove null tuples(Q(T ?)).

• We compute T ? in two steps:

- We use STDs to compute a canonical pre-solution cps(T) from T .

- Then we use target DTD to compute T ? from cps(T).

36

Example: XML Data Exchange Setting

• Source DTD:

r → A∗, B∗

A → ε A → @`

B → ε B → @`

• Target DTD:

r → (C,D)∗

C → ε C → @m

D → E

E → ε E → @n

• ΣST:

r[C(@m = x)] :– A(@` = x),

r[C(@m = x)] :– B(@` = x).

37

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@m @`

C

@m

r

“1”

C

r

A

x x

38

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C

r

A

x x
@m

38

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C

r

A

x x
@m

38

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C

r

A

x x
@m

38

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

38

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

38

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

38

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

38

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

38

Example: Computing Canonical Pre-solution

r

A B

@` @`
“1” “2”

r

A B

@` @`
“1” “2”

:–

@m @`

C

@m

r

“2”

C

r

x

B

x

:–

@`

C

@m

r

“1”

C A

x x
@m

r

38

Example: Computing Canonical Pre-solution

Canonical pre-solution:

C

@m
“1”

C

@m
“2”

r

Not yet a solution: It does not conform to the target DTD.

39

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

r → (C,D)∗

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

r → (C,D)∗

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

r → (C,D)∗

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

D → E

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

40

Example: Computing Canonical Solution

C

@m
“1”

DC

r

D

EE

@n@n
“⊥1” “⊥2”

@m
“2”

E → @n

40

