
Navigation in SPARQL 1.1

Marcelo Arenas

PUC Chile & U. of Oxford

Oxford, November 2012

Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific goals:

◮ Build a description language with standard semantics
◮ Make semantics machine-processable and understandable

◮ Incorporate logical infrastructure to reason about resources

◮ W3C proposals: Resource Description Framework (RDF) and
SPARQL

RDF in a nutshell

RDF is the framework proposed by the W3C to represent
information in the Web:

◮ URI vocabulary
◮ A URI is an atomic piece of data, and it identifies an abstract

resource

◮ Syntax based on directed labeled graphs
◮ URIs are used as node labels and edge labels

◮ Schema definition language (RDFS): Define new vocabulary
◮ Typing, inheritance of classes and properties, . . .

An example of an RDF graph: DBLP

inPods:FaginLN01 :Moni Naor

:Amnon Lotem

:Ronald Fagin

inPods:2001

"Optimal Aggregation ..."

dc:creator
dc:creator

dc:
cre

ato
r

dct:PartOf

dc:title
swrc:series

conf:pods

<http://purl.org/dc/terms/>

: <http://dblp.l3s.de/d2r/resource/authors/>

conf: <http://dblp.l3s.de/d2r/resource/conferences/>

inPods: <http://dblp.l3s.de/d2r/resource/publications/conf/pods/>

swrc: <http://swrc.ontoware.org/ontology#>

dc:

dct:

<http://purl.org/dc/elements/1.1/>

An example of a URI

http://dblp.l3s.de/d2r/resource/conferences/pods

Querying RDF

Why is this an interesting problem? Why is it challenging?

◮ RDF graphs can be interconnected
◮ URIs should be dereferenceable

◮ Semantics of RDF is open world
◮ RDF graphs are inherently incomplete
◮ The possibility of adding optional information if present is an

important feature

◮ Vocabulary with predefined semantics

◮ Navigational capabilities are needed

Querying RDF: SPARQL

◮ SPARQL is the W3C recommendation query language for
RDF (January 2008).

◮ SPARQL is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language

◮ SPARQL is a graph-matching query language.

◮ A SPARQL query consists of three parts:

◮ Pattern matching: optional, union, filtering, . . .
◮ Solution modifiers: projection, distinct, order, limit, offset, . . .
◮ Output part: construction of new triples,

SPARQL in a nutshell

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:PartOf ?Conf .

?Conf swrc:series conf:pods .

}

A SPARQL query consists of a:

SPARQL in a nutshell

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:PartOf ?Conf .

?Conf swrc:series conf:pods .

}

A SPARQL query consists of a:

Body: Pattern matching expression

SPARQL in a nutshell

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:PartOf ?Conf .

?Conf swrc:series conf:pods .

}

A SPARQL query consists of a:

Body: Pattern matching expression

Head: Processing of the variables

What are the challenges in implementing SPARQL?

SPARQL has to take into account the distinctive features of RDF:

◮ Should be able to extract information from interconnected
RDF graphs

◮ Should be consistent with the open-world semantics of RDF
◮ Should offer the possibility of adding optional information if

present

◮ Should be able to properly interpret RDF graphs with a
vocabulary with predefined semantics

◮ Should offer some functionalities for navigating in an RDF
graph

What are the challenges in implementing SPARQL?

SPARQL has to take into account the distinctive features of RDF:

◮ Should be able to extract information from interconnected
RDF graphs

◮ Should be consistent with the open-world semantics of RDF
◮ Should offer the possibility of adding optional information if

present

◮ Should be able to properly interpret RDF graphs with a
vocabulary with predefined semantics

◮ Should offer some functionalities for navigating in an RDF
graph

Outline

◮ RDF and SPARQL

◮ Navigation in SPARQL 1.1: Property paths
◮ Syntax and semantics

◮ Our contributions:
◮ Experimental evaluation
◮ Study of the complexity of evaluating property paths

◮ Final remarks

Outline

◮ RDF and SPARQL

◮ Navigation in SPARQL 1.1: Property paths
◮ Syntax and semantics

◮ Our contributions:
◮ Experimental evaluation
◮ Study of the complexity of evaluating property paths

◮ Final remarks

RDF formal model

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

RDF formal model

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

(s, p, o) ∈ (U ∪ B)×U× (U ∪ B ∪ L) is called an RDF triple

RDF formal model

Subject Object
Predicate

LB

U

U UB

U : set of URIs

B : set of blank nodes

L : set of literals

(s, p, o) ∈ (U ∪ B)×U× (U ∪ B ∪ L) is called an RDF triple

A finite set of RDF triples is called an RDF graph

RDF formal model

Proviso

In this talk, we do not consider blank nodes

◮ (s, p, o) ∈ U×U× (U ∪ L) is called an RDF triple

SPARQL: An algebraic syntax

◮ Graph pattern:

?X name ?Y (?X , name, ?Y)

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

{ P1 FILTER (R) } (P1 FILTER R)

◮ SPARQL query:

SELECT ?X ?Y ... { P } (SELECT {?X , ?Y , . . .} P)

Filter expressions (value constraints)

Filter expression: (P FILTER R)

◮ P is a graph pattern

◮ R is a built-in condition

We consider in R :

◮ equality = among variables and elements from U and L

◮ unary predicate bound(·)

◮ boolean combinations (∧, ∨, ¬)

Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L)

The evaluation of a SPARQL query results in a set of mappings

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

◮ µ2 and µ3 are not compatible

Sets of mappings and operations

Let M1 and M2 be sets of mappings.

Definition

Join: extends mappings in M1 with compatible mappings in M2

◮ M1 1 M2 = {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2 and µ1, µ2 are
compatible}

Difference: selects mappings in M1 that cannot be extended with
mappings in M2

◮ M1 rM2 = {µ1 ∈ M1 | there is no mapping in M2 compatible
with µ1}

Sets of mappings and operations

Definition

Union: includes mappings in M1 and in M2

◮ M1 ∪M2 = {µ | µ ∈ M1 or µ ∈ M2}

Left Outer Join: extends mappings in M1 with compatible
mappings in M2 if possible

◮ M1 M2 = (M1 1 M2) ∪ (M1 rM2)

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

J(P1 AND P2)KG = JP1KG 1 JP2KG

J(P1 UNION P2)KG = JP1KG ∪ JP2KG

J(P1 OPT P2)KG = JP1KG JP2KG

J(SELECT W P)KG = {µ|W | µ ∈ JPKG}

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

J(P1 AND P2)KG = JP1KG 1 JP2KG

J(P1 UNION P2)KG = JP1KG ∪ JP2KG

J(P1 OPT P2)KG = JP1KG JP2KG

J(SELECT W P)KG = {µ|W | µ ∈ JPKG}

dom(µ|W) = dom(µ) ∩W and

µ|W (?X) = µ(?X) for every ?X ∈ dom(µ|W)

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y)

◮ R is bound(?X) and ?X ∈ dom(µ)

◮ . . .

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y)

◮ R is bound(?X) and ?X ∈ dom(µ)

◮ . . .

Definition

J(P FILTER R)KG = {µ ∈ JPKG | µ |= R}

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
?X ?E
R1 J@ed.ex

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex

?X ?E
R1 J@ed.ex

◮ from the join

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E

R2 paul

?X ?E
R1 J@ed.ex

◮ from the difference

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the union

Outline

◮ RDF and SPARQL

◮ Navigation in SPARQL 1.1: Property paths
◮ Syntax and semantics

◮ Our contributions:
◮ Experimental evaluation
◮ Study of the complexity of evaluating property paths

◮ Final remarks

SPARQL 1.0 provides limited navigational capabilities

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

SPARQL 1.0 provides limited navigational capabilities

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

(SELECT ?X ((?X , friendOf, ?Y) AND (?Y , name, George)))

SPARQL 1.0 provides limited navigational capabilities

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

(SELECT ?X ((?X , friendOf, ?Y) AND (?Y , name, George)))

SPARQL 1.0 provides limited navigational capabilities

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

(SELECT ?X ((?X , friendOf, ?Y) AND (?Y , name, George)))

A possible solution: Regular expressions in graph databases

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

A possible solution: Regular expressions in graph databases

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

(SELECT ?X ((?X , (friendOf)∗, ?Y) AND (?Y , name, George)))

Syntax and semantics of property paths

Syntax: Property paths are regular expressions (/, |, *)

Semantics: Repeated values are needed in some use cases

Syntax and semantics of property paths

Syntax: Property paths are regular expressions (/, |, *)

Semantics: Repeated values are needed in some use cases

◮ SPARQL uses a bag semantics: Duplicates are not eliminated

Syntax and semantics of property paths

Syntax: Property paths are regular expressions (/, |, *)

Semantics: Repeated values are needed in some use cases

◮ SPARQL uses a bag semantics: Duplicates are not eliminated

◮ Use case for property paths: Retrieving the elements of a linked list

b1

b2

rdf:rest

b3

rdf:rest

rdf:nil

rdf:rest

4.5
rdf:first

3.9
rdf:first

4.5
rdf:first

s
grades

Property paths are designed to count

a

b
p

c
p

d

p

p

(a, p∗, ?X)

Property paths are designed to count

a

b
p

c
p

d

p

p

(a, p∗, ?X)
?X
a

b

c

d

d

Definition of the semantics of property paths

(?X , (path1/path2), ?Y) is replaced by:

(SELECT {?X , ?Y } ((?X , path1, ?Z) AND (?Z , path2, ?Y)))

Definition of the semantics of property paths

(?X , (path1/path2), ?Y) is replaced by:

(SELECT {?X , ?Y } ((?X , path1, ?Z) AND (?Z , path2, ?Y)))

(?X , (path1|path2), ?Y) is replaced by:

((?X , path1, ?Y) UNION (?X , path2, ?Y))

Definition of the semantics of property paths

(?X , (path1/path2), ?Y) is replaced by:

(SELECT {?X , ?Y } ((?X , path1, ?Z) AND (?Z , path2, ?Y)))

(?X , (path1|path2), ?Y) is replaced by:

((?X , path1, ?Y) UNION (?X , path2, ?Y))

But how do we evaluate *?

◮ How do we deal with cycles?

Definition of the semantics of *

Evaluation of path∗

“the algorithm extends the multiset of results by one application of path.

If a node has been visited for path, it is not a candidate for another step.

A node can be visited multiple times if different paths visit it.”

W3C Working Draft (January 5, 2012)

Definition of the semantics of *

Evaluation of path∗

“the algorithm extends the multiset of results by one application of path.

If a node has been visited for path, it is not a candidate for another step.

A node can be visited multiple times if different paths visit it.”

W3C Working Draft (January 5, 2012)

◮ SPARQL 1.1 specification provides a special (recursive)
procedure to handle cycles and make the count

The procedure in a nutshell

RDF Graph G : a d
p

b

p

c
p

p

Evaluation of (?X , p∗, ?Y):

The procedure in a nutshell

RDF Graph G : a d
p

b

p

c
p

p

Evaluation of (?X , p∗, ?Y):

a b
p

c
p

a d
p

The procedure in a nutshell

RDF Graph G : a d
p

b

p

c
p

p

Evaluation of (?X , p∗, ?Y):

a b
p

c
p

a d
p

a b
p

c
p

a
p

d
p

The procedure in a nutshell

RDF Graph G : a d
p

b

p

c
p

p

Evaluation of (?X , (p∗)∗, ?Y):

The procedure in a nutshell

RDF Graph G : a d
p

b

p

c
p

p

Evaluation of (?X , (p∗)∗, ?Y):

The procedure in a nutshell

RDF Graph G : a d
p

b

p

c
p

p

Evaluation of (?X , (p∗)∗, ?Y):

Evaluation of p∗:

The procedure in a nutshell

RDF Graph G : a d
p

b

p

c
p

p

Evaluation of (?X , (p∗)∗, ?Y):

Evaluation of p∗:
a b

p
c

p

c a
p

d
p

The procedure in a nutshell

RDF Graph G : a d
p

b

p

c
p

p

Evaluation of (?X , (p∗)∗, ?Y): a c
p∗

d
p∗

Evaluation of p∗:
a b

p
c

p

c a
p

d
p

Is this a good semantics?

Linked list example:

b1

b2

rdf:rest

b3

rdf:rest

rdf:nil

rdf:rest

4.5
rdf:first

3.9
rdf:first

4.5
rdf:first

s
grades

(s, grades/rdf:rest∗/rdf:first, ?X)

Outline

◮ RDF and SPARQL

◮ Navigation in SPARQL 1.1: Property paths
◮ Syntax and semantics

◮ Our contributions:
◮ Experimental evaluation
◮ Study of the complexity of evaluating property paths

◮ Final remarks

Our contributions in [ACP12]

◮ Experimental evaluation of the main implementations of SPARQL
1.1 including property paths

◮ Complete study of the complexity of path evaluation

◮ Identification of the main sources of complexity (counting!)

◮ Proposal of a semantics that can be efficiently evaluated

Our contributions in [ACP12]

◮ Experimental evaluation of the main implementations of SPARQL
1.1 including property paths

◮ Complete study of the complexity of path evaluation

◮ Identification of the main sources of complexity (counting!)

◮ Proposal of a semantics that can be efficiently evaluated

Impact on W3C standard:

◮ Normative semantics of SPARQL 1.1 property paths was changed to
overcome the issues raised in [KM12] and in our study.

Some experimental results with synthetic data

Data:
◮ cliques (complete graphs) of different size
◮ from 2 nodes (87 bytes) to 13 nodes (970 bytes)

p
a0

a1

a3

p

p

p

p

p

a2

RDF clique with 4 nodes (127 bytes)

Some experimental results with synthetic data

1

10

100

1000

2 4 6 8 10 12 14 16

ARQ

+ + + + + + +
+

+

+

+
+

RDFQ

× × × ×
×

×

×

×

×

×
KGram

∗ ∗ ∗ ∗ ∗
∗
∗

∗

∗

∗
Sesame

2 2 2 2

2

2

2

2

2

(a0, p
∗, a1)

Some experimental results with real data

Data:

◮ Social Network data given by foaf:knows links

◮ Crawled from Axel Polleres’ foaf document (3 steps)

◮ Different documents, deleting some nodes

foaf:knows

axel:me

ivan:me

bizer:chris

richard:cygri

...

· · ·

andreas:ah

· · ·

· · ·

Some experimental results with real data

(axel:me, foaf:knows∗, ?X)

Some experimental results with real data

(axel:me, foaf:knows∗, ?X)

Input ARQ RDFQ Kgram Sesame
9.2KB 5.13 75.70 313.37 –
10.9KB 8.20 325.83 – –
11.4KB 65.87 – – –
13.2KB 292.43 – – –
14.8KB – – – –
17.2KB – – – –
20.5KB – – – –
25.8KB – – – –

(time in seconds, timeout = 1hr)

Counting the number of solutions

Data: Clique of size n

(a0, p∗, a1)

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

(a0, p∗, a1)

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

(a0, p∗, a1) (a0, (p∗)∗, a1)

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

(a0, p∗, a1) (a0, (p∗)∗, a1)

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

n # Sol
2 1
3 6
4 305
5 418,576
6 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

(a0, p∗, a1) (a0, (p∗)∗, a1) (a0, ((p∗)∗)∗, a1)

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

n # Sol
2 1
3 6
4 305
5 418,576
6 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions

Data: Clique of size n

(a0, p∗, a1) (a0, (p∗)∗, a1) (a0, ((p∗)∗)∗, a1)

n # Sol.
9 13,700
10 109,601
11 986,410
12 9,864,101
13 –

n # Sol
2 1
3 6
4 305
5 418,576
6 –

n # Sol.
2 1
3 42
4 –

every solution is a copy of the empty mapping (| | in ARQ)

Counting the number of solutions (cont.)

Data: foaf links crawled from the Web

(axel:me, foaf:knows∗, ?X)

Counting the number of solutions (cont.)

Data: foaf links crawled from the Web

(axel:me, foaf:knows∗, ?X)

File # URIs # Sol. Output Size
9.2KB 38 29,817 2MB
10.9KB 43 122,631 8.4MB
11.4KB 47 1,739,331 120MB
13.2KB 52 8,511,943 587MB
14.8KB 54 – –

Counting the number of solutions (cont.)

Data: foaf links crawled from the Web

(axel:me, foaf:knows∗, ?X)

File # URIs # Sol. Output Size
9.2KB 38 29,817 2MB
10.9KB 43 122,631 8.4MB
11.4KB 47 1,739,331 120MB
13.2KB 52 8,511,943 587MB
14.8KB 54 – –

What is going on?

Outline

◮ RDF and SPARQL

◮ Navigation in SPARQL 1.1: Property paths
◮ Syntax and semantics

◮ Our contributions:
◮ Experimental evaluation
◮ Study of the complexity of evaluating property paths

◮ Final remarks

Counting problem for property paths

CountW3C

Input: RDF graph G

Property path triple (a, path, b)

Output: Count the number of solutions of (a, path, b) over G
(according to the semantics proposed by the W3C)

A double-exponential lower bound for counting

◮ Let πs be a property path of the form

(· · · ((p∗)∗)∗ · · ·)∗

with s nested stars

◮ Let Kn be a clique with n nodes

◮ Let CountClique(s, n) be the number of solutions of (a0, πs , a1)
over Kn

A double-exponential lower bound for counting

◮ Let πs be a property path of the form

(· · · ((p∗)∗)∗ · · ·)∗

with s nested stars

◮ Let Kn be a clique with n nodes

◮ Let CountClique(s, n) be the number of solutions of (a0, πs , a1)
over Kn

Lemma (ACP12)

CountClique(s , n) ≥ (n − 2)!(n−1)s−1

A double-exponential lower bound for counting

◮ Let πs be a property path of the form

(· · · ((p∗)∗)∗ · · ·)∗

with s nested stars

◮ Let Kn be a clique with n nodes

◮ Let CountClique(s, n) be the number of solutions of (a0, πs , a1)
over Kn

Lemma (ACP12)

CountClique(s , n) ≥ (n − 2)!(n−1)s−1

In fact, there is a recursive formula for calculating CountClique(s , n)

We can now explain our experimental results

CountClique(s, n) allows us to fill in the blanks

(a0, (p
∗)∗, a1)

n # Sol.
2 1
3 6
4 305
5 418,576
6 –
7 –
8 –

We can now explain our experimental results

CountClique(s, n) allows us to fill in the blanks

(a0, (p
∗)∗, a1)

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576 X

6 –
7 –
8 –

We can now explain our experimental results

CountClique(s, n) allows us to fill in the blanks

(a0, (p
∗)∗, a1)

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576 X

6 – ← 28× 109

7 – ← 144× 1015

8 – ← 79× 1024

We can now explain our experimental results

CountClique(s, n) allows us to fill in the blanks

(a0, (p
∗)∗, a1)

n # Sol.
2 1 X

3 6 X

4 305 X

5 418,576 X

6 – ← 28× 109

7 – ← 144× 1015

8 – ← 79× 1024

79 Yottabytes for the answer over a file of 379 bytes

◮ 1 Yottabyte > the estimated capacity of all digital storage in the
world

What about data complexity?

Common assumption in Databases: Queries are much smaller than
data sources

Data complexity

◮ Measure the complexity considering the query fixed

◮ Data complexity of SPARQL is polynomial

What about data complexity?

Common assumption in Databases: Queries are much smaller than
data sources

Data complexity

◮ Measure the complexity considering the query fixed

◮ Data complexity of SPARQL is polynomial

In our setting:

CountW3C(path)

Input: RDF graph G and a, b ∈ U

Output: Count the number of solutions of (a, path, b) over G

A bit on complexity classes . . .

We measure the complexity by using counting-complexity classes

NP #P

Sat: is a propositional CountSat: how many assignments
formula satisfiable? satisfy a propositional formula?

A bit on complexity classes . . .

We measure the complexity by using counting-complexity classes

NP #P

Sat: is a propositional CountSat: how many assignments
formula satisfiable? satisfy a propositional formula?

Definition

A function f (·) is in #P if there exists a polynomial-time
non-deterministic TM M such that:

f (x) = number of accepting computations of M with input x

A bit on complexity classes . . .

We measure the complexity by using counting-complexity classes

NP #P

Sat: is a propositional CountSat: how many assignments
formula satisfiable? satisfy a propositional formula?

Definition

A function f (·) is in #P if there exists a polynomial-time
non-deterministic TM M such that:

f (x) = number of accepting computations of M with input x

◮ CountSat is #P-complete

Data complexity of property paths is intractable

Theorem (ACP12)

◮ For every property path π: CountW3C(π) is in #P

◮ CountW3C(a∗) is #P-hard, where a ∈ U

An alternative semantics: Simple paths

A simple path is a path without repeated vertices

◮ Cycles are not allowed

An alternative to the W3C semantics: Count only the simple paths
satisfying a property path expression

An alternative semantics: Simple paths

A simple path is a path without repeated vertices

◮ Cycles are not allowed

An alternative to the W3C semantics: Count only the simple paths
satisfying a property path expression

Theorem (LM12,ACP12)

◮ CountSimplePath is #P-complete

◮ In fact, CountSimplePath(a∗) is #P-hard, where a ∈ U

A more fundamental result

In an acyclic RDF graph G , the previous two notions of paths
coincide with the usual notion of path.

◮ A reasonable notion of path should satisfy this condition

A fundamental problem to study:

CountPath

Input: Acyclic RDF graph G

Property path triple (a, path, b)

Output: Count the number of (usual) paths from a to b

in G that conform to path

A bit more on complexity classes ...

Definition

◮ A function f (·) is in #L if there exists a logarithmic-space
non-deterministic TM M such that:

f (x) = number of accepting computations of M with input x

A bit more on complexity classes ...

Definition

◮ A function f (·) is in #L if there exists a logarithmic-space
non-deterministic TM M such that:

f (x) = number of accepting computations of M with input x

◮ A function f (·) is in spanL if there exists a logarithmic-space
non-deterministic TM M with output tape such that:

f (x) = number of distinct valid outputs of M with input x

A bit more on complexity classes ...

Definition

◮ A function f (·) is in #L if there exists a logarithmic-space
non-deterministic TM M such that:

f (x) = number of accepting computations of M with input x

◮ A function f (·) is in spanL if there exists a logarithmic-space
non-deterministic TM M with output tape such that:

f (x) = number of distinct valid outputs of M with input x

A bit of intuition: spanP is defined as spanL but considering a
polynomial-time non-deterministic TM with output tape.

◮ #P: Given a graph G , return the number of Hamiltonian cycles of G

◮ spanP: Given a graph G and an integer k , return the number of
Hamiltonian subgraphs of G of size k

Complexity results for the usual paths

Known results:

◮ #L ⊆ FP

◮ spanL ⊆ #P, and spanL ⊆ FP iff P = NP

Complexity results for the usual paths

Known results:

◮ #L ⊆ FP

◮ spanL ⊆ #P, and spanL ⊆ FP iff P = NP

Theorem (ACP12)

◮ CountPath is spanL-complete

◮ CountPath(π) is in #L for every property path π. Moreover,
there exists a property path π0 such that CountPath(π0) is
#L-hard

Outline

◮ RDF and SPARQL

◮ Navigation in SPARQL 1.1: Property paths
◮ Syntax and semantics

◮ Our contributions:
◮ Experimental evaluation
◮ Study of the complexity of evaluating property paths

◮ Final remarks

Final remarks

Semantics of SPARQL 1.1 property paths was changed (W3C Working
Draft, July 24, 2012) to overcome the issues raised in [LM12,APC12]

◮ Existential semantics (no counting) when evaluating *

◮ / and | are defined as before

Final remarks

Semantics of SPARQL 1.1 property paths was changed (W3C Working
Draft, July 24, 2012) to overcome the issues raised in [LM12,APC12]

◮ Existential semantics (no counting) when evaluating *

◮ / and | are defined as before

Are we done?

Final remarks

Semantics of SPARQL 1.1 property paths was changed (W3C Working
Draft, July 24, 2012) to overcome the issues raised in [LM12,APC12]

◮ Existential semantics (no counting) when evaluating *

◮ / and | are defined as before

Are we done?

◮ Some questions have to be answered:

◮ Is this a reasonable semantics? (a/b/c) counts, but (a/b/c)∗

does not
◮ Is the language expressive enough?

◮ Some functionalities have to be included:

◮ Queries should be able to return paths

Thank you!

Bibliography

[ACP12] M, Arenas, S, Conca, J. Pérez: Counting beyond a Yottabyte,
or how SPARQL 1.1 property paths will prevent adoption of the
standard. WWW 2012: 629–638

[LM12] K. Losemann, W. Martens: The complexity of evaluating path ex-
pressions in SPARQL. PODS 2012: 101–112

Backup slides

An existential semantics to the rescue!

Possible solution

Do not count

Just check whether there exists a path
satisfying the property path expression

Years of experiences (theory and practice) in:

◮ Graph Databases

◮ XML

◮ SPARQL 1.0 (Psparql, Gleen)

Existential semantics: decision problems

Input: RDF graph G and property path triple (a, path, b)

ExistsPath

Question: Is there a path from a to b in G satisfying path?

ExistsW3C

Question: Is the number of solutions of (a, path, b) over G
greater than 0 (according to the W3C semantics)?

Evaluating existential paths is tractable

Theorem (well-known result)

ExistsPath can be solved in O(|G | · |path|)

Evaluating existential paths is tractable

Theorem (well-known result)

ExistsPath can be solved in O(|G | · |path|)

Theorem (ACP12)

ExistsPath and ExistsW3C are equivalent

Corollary

ExistsW3C can be solved in O(|G | · |path|)

A pure existential semantics can handle the use cases

Linked list example:

b1

b2

rdf:rest

b3

rdf:rest

rdf:nil

rdf:rest

4.5
rdf:first

3.9
rdf:first

4.5
rdf:first

s
grades

(SELECT ?X ((s, grades, ?Y) AND

(?Y , rdf:rest∗, ?Z) AND (?Z , rdf:first, ?X)))

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

Expressiveness: There is still some work to do

List the pairs a, b of cities such that there is a way to travel from a to b.

sp

CalaisParis Dover London

SeeFranceTGV NatExpress

train service ferry service bus service

sp sp sp

transportation service

sp sp

Expressiveness: There is still some work to do (cont.)

In the previous example, it would be great to be able to list some
paths from a to b.

◮ This feature is needed in many use cases

This feature is present in some graph/RDF query languages, but it
has not been standardized.

◮ Paths can be returned as strings in Cypher (Neo4j)

◮ Virtuoso provides some options in the transitivity extension
that allow to store paths in the output table

