
 A data management
approach to

explainable AI
Marcelo Arenas

PUC & IMFD Chile and RelationalAI

Joint work with Daniel Báez, Pablo Barceló, Diego Bustamante, José Thomas
Caraball, Jorge Pérez, and Bernardo Subercaseaux

1

A growing interest in developing methods to
explain predictions made by machine learning
models
This has led to the development of several
notions of explanation, which have been studied
independently
Explainability admits no silver bullet; different
contexts require different notions

Motivation

2

Explainability may require combining different
notions; it is better to think of it as an interactive
process
Instead of struggling with the increasing number
of such notions, one can developed a query
language for explainability task
This gives control to the end-user to tailor
explainability queries to their particular needs

Motivation

3

A call for an
explainability query language

Declarative: should allow users to articulate
what explanation they need without providing
the computational method to achieve it
Simple syntax and semantics: should be built
with simple syntax and semantics, leveraging
well-known database query languages
Specific query capability for explainability: an
explanation notion should be represented by a
fixed query

4

A call for an
explainability query language

Expressiveness: must be able to represent
common explanation concepts
Exploratory operators: should allow the user to
explore an explanation concept
Combination of explanations: should support
the combination of different explanation
approaches

5

A call for an
explainability query language

Efficient data complexity: Although polynomial
data complexity is the gold standard, data
complexity is also desirable as it allows the use
of SAT solvers

PNP

Verification versus computation: should also
be feasible to compute explanations efficiently

6

Our goal is to develop such an
explainability query language

Basic ingredients: classification models are
represented as labeled graphs, and first-

order logic is used as query language

7

We focus in this talk on a simple but widely used
model

Decision trees are widely used, in particular
because they are considered readily
interpretable models
The main ingredients of our logical approach are
already present in this case

An explainability query
language

8

A classification model:

M : {0, 1} →n {0, 1}

The dimension of is , and each
is called a feature

M n i ∈ {1,… ,n}

 is an instancee ∈ {0, 1}n

 accepts if , otherwise rejects M e M(e) = 1 M e

9

A decision tree of
dimension

T

n

true false

true

false

10

0

0

1

1

0 1

10

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1
Each internal node is labeled with a
feature , and has two
outgoing edges labeled and

i ∈ {1,… ,n}

0 1

Each leaf is labeled or true false
No two nodes on a path from the
root to a leaf have the same label

A decision tree of
dimension

T

n

Every instance defines a unique
path from the
root to a leaf

e
n , e ,n ,… , e ,n1 1 2 k−1 k

 if the label is T (e) = 1 nk true

true false

true

false

10

0

0

1

1

0

11

1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

A decision tree of
dimension

T

n

 for instance T (e) =1 1 e =1 (1, 0, 1, 1)

true false

true

false

10

0

0

1

1

0

12

1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Every instance defines a unique
path from the
root to a leaf

 if the label is

e
n , e ,n ,… , e ,n1 1 2 k−1 k

T (e) = 1 nk true

Explaining the output of a
model

What are interesting notions of explanation?
What notions have been studied? What notions
are used in practice?
Can these notions be expressed as queries over
decision trees?

13

 for T (e) = 1 e = (1, 1, 1, 1)

true false

true

false

10

0

0

1

1

0 1

14

2

1

3

4

10

10

falsetrue

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
sufficient reason

The value of feature is not needed to
obtain this result

3

 is a sufficient reason{1, 2, 4}

 for T (e) = 1 e = (1, 1, 1, 1)

true false

true

false

10

0

0

1

1

0 1

15

2

1

3

4

10

10

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
minimal sufficient reason

The value of features and are not
needed to obtain this result

1 3

 is a minimal sufficient
reason
{2, 4} falsetrue

If the values of features are
fixed, then the output of the model
is fixed

{1, 3, 4}

true false

true

false

10

0

0

1

1

0 1

16

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

The output of the model depends
only on these features

Notions of explanation:
determinant feature set:

true false

true

false

10

0

0

1

1

0 1
2

17

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
determinant feature set:

If the values of features are
fixed, then the output of the model
is fixed

{1, 3, 4}

If :e[1] = e[3] = e[4] = 0

T (e) = 1

true false

true

false

10

0

0

1

1

0 1
2

18

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1
If the values of features are
fixed, then the output of the model
is fixed

{1, 3, 4}

If and : e[1] = e[3] = 1 e[4] = 0

T (e) = 0

Notions of explanation:
determinant feature set:

MNIST: determinant feature set:

19

MNIST: minimal determinant
feature set:

20

How do we express the
previous explainability queries?

Is there a common framework for them?
Is there a natural framework based on labeled
graphs?

21

false

4

1
0

00
1

1

1

22

3

1
0

1

0

0 12

0

1

4

0
1

4 1

true

Binary decision
diagrams (BDDs)

OBDDs
FBDDs

3

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to
describe classification models

Key notion: partial instance of dimensión e ∈ {0, 1,⊥}n n

 is subsumed by if are partial instances such
that for every , if , then
e1 e2 e , e1 2

i ∈ {1,… ,n} e [i] =1  ⊥ e [i] =1 e [i]2

(1,⊥, 0,⊥) ⊆ (1, 0, 0,⊥) ⊆ (1, 0, 0, 1)

23

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to
describe classification models: {Pos, ⊆}

A model of dimensión is represented as a
structure :

M n

AM

The domain of is AM {0, 1,⊥}n

 holds if is an instance such that Pos(e) e M(e) = 1
 holds if are partial instances such that

is subsumed by
e ⊆1 e2 e , e1 2 e1

e2

24

The semantics of FOIL

Given a FOIL formula , a classification
model of dimensión , and instances , , …,

Φ(x ,x ,… ,x)1 2 k

M n e1 e2 ek

(in the usual sense)

M ⊨ Φ(e , e ,… , e)1 2 k

⟺

A ⊨M Φ(e , e ,… , e)1 2 k

25

Some examples

 Full(x) = ∀y (x ⊆ y → x = y)

AllPos(x) = ∀y ((x ⊆ y ∧ Full(y)) → Pos(y))

AllNeg(x) = ∀y ((x ⊆ y ∧ Full(y)) → ¬Pos(y))

26

 for , and
is a sufficient reason for this
T (e) = 1 e = (1, 1, 1, 1) e =1 (1, 1,⊥, 1)

true false

true

false

10

0

0

1

1

0 1

27

2

1

3

4

10

10

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
sufficient reason

SR(x, y) = Full(x) ∧ y ⊆ x ∧

(Pos(x) → AllPos(y)) ∧

(¬Pos(x) → AllNeg(y))

T ⊨ SR(e, e)1

falsetrue

 for , and
is a minimal sufficient reason for this
T (e) = 1 e = (1, 1, 1, 1) e =2 (⊥, 1,⊥, 1)

true false

true

false

10

0

0

1

1

0 1

28

2

1

3

4

10

10

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
minimal sufficient reason

falsetrue

 for , and
is a minimal sufficient reason for this
T (e) = 1 e = (1, 1, 1, 1) e =2 (⊥, 1,⊥, 1)

true false

true

false

10

0

0

1

1

0 1

29

2

1

3

4

10

10

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
minimal sufficient reason

MinimalSR(x, y) = SR(x, y) ∧

∀z ((SR(x, z) ∧ z ⊆ y) → z = y)

T ⊨ MinimalSR(e, e)2

falsetrue

true false

true

false

10

0

0

1

1

0 1
2

30

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

If the values of features are
fixed, then the output of the model is
fixed

{1, 3, 4}

Notions of explanation:
determinant feature set:

 is a determinant
feature set
e = (1,⊥, 1, 1)

Value is not relevant in this
instance

1

Notions of explanation:
determinant feature set:

: holds if and only if the sets of undefined features in
and are the same
SUF(x, y) x

y

If and , then holdse = (1,⊥, 1, 1) e =1 (0,⊥, 0, 1) SUF(e, e)1
If and , then does
not hold
e = (1,⊥, 1, 1) e =2 (1,⊥, 1,⊥) SUF(e, e)2

If and , then does not
hold
e = (1,⊥, 1, 1) e =3 (1, 1,⊥, 1) SUF(e, e)3

 can be expressed in FOIL using only the
predicate
SUF(x, y)

⊆

31

true false

true

false

10

0

0

1

1

0 1
2

32

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
determinant feature set:

 is a determinant
feature set
e = (1,⊥, 1, 1)

T ⊨ DFS(e)

DFS(x) = ∀y (SUF(x, y) →

AllPos(y) ∨ AllNeg(y))

true false

true

false

10

0

0

1

1

0 1
2

33

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation: minimal
determinant feature set:

MinimalDFS(x) = DFS(x) ∧

∀y ((DFS(y) ∧ y ⊆ x) → y = x)

Expressiveness and
complexity of FOIL

What notions of explanation can be expressed in
FOIL?
What notions of explanation cannot be
expressed in FOIL?
What is the complexity of the evaluation
problem for FOIL?

34

The evaluation problem for
FOIL

We consider the data complexity of the problem, so
fix a FOIL formula Φ(x ,… ,x)1 k

:Eval(Φ)

Input: decision tree of dimension and partial
instances of dimension

T n

e ,… , e1 k n

Output: yes if , and no
otherwise

T ⊨ Φ(e ,… , e)1 k

35

The evaluation problem for
FOIL

 if and ony if T ⊨ Φ(e ,… , e)1 k A ⊨T Φ(e ,… , e)1 k

But could be of exponential size in the size of AT T

 should not be materialized to check whether AT

T ⊨ Φ(e ,… , e)1 k

 is used only to define the semantics of FOIL AT

36

Bad news ...

Theorem:

1. For every FOIL formula , there exists such
that is in

Φ k ≥ 0
Eval(Φ) Σk

P

2. For every , there exists a FOIL formula
such that is -hard

k ≥ 0 Φ
Eval(Φ) Σk

P

37

 is a minimum sufficient
reason for over
e =2 (⊥, 1,⊥, 1)

e T

true false

true

false

10

0

0

1

1

0 1

38

2

1

3

4

10

10

4

truefalse

0 1

true

0
1

3

4

1

More bad news ...

 for T (e) = 1 e = (1, 1, 1, 1)

 is a minimum sufficient reason for
over
{2, 4} e

T

There is no sufficient reason for over
 with a smaller number of features

e
T

falsetrue

More bad news ...

Theorem:
There is no FOIL formula such
that, for every decision tree , instance and
partial instance :

 is a minimum sufficient reason for over

MinimumSR(x, y)
T e1

e2
T ⊨ MinimumSR(e , e)1 2

⟺

e2 e1 T

39

How do we overcome these
limitations?

We use first-order logic over a larger vocabulary
We depart from the model-agnostic approach of
FOIL and use the notion of guarded
quantification for decision trees

40

DT-FOIL is defined by considering two layers

1. Atomic formulas
2. Guarded formulas

The logic DT-FOIL

41

The first layer

 can be considered as a syntactic predicate, it does not
refer to the models
⊆

We need another predicate like that. Given partial
instances of dimension :

if and only if

|

e , e1 2 n

e ⪯1 e2

{i ∈ {1,…n} ∣ e [i] =1 ⊥}∣ ≥ ∣{i ∈ {1,…n} ∣ e [i] =2 ⊥}∣

42

Why do we need another
syntactic predicate?

MinimumSR(x, y) = SR(x, y) ∧

∀z ((SR(x, z) ∧ z ⪯ y) → y = z)

How many more predicates do we need to include?

43

Atomic formulas

All the syntactic predicates needed in our formalism can
be expressed as first-order queries over {⊆, ⪯}

Theorem: if is a first-order formula defined over
, then can be solved in polynomial time

Φ
{⊆, ⪯} Eval(Φ)

Atomic formulas of DT-FOIL: the set of first-order
formulas defined over {⊆, ⪯}

44

true false

true

false

10

0

0

1

1

0 1
2

45

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

The second layer

:Node(e)

The second layer

:Node(e)

(0, 0,⊥,⊥)

(⊥, 1, 0, 0)

(0, 0, 1, 0)

true false

true

false

10

0

0

46

1

1

0 1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

The second layer

:PosLeaf(e)

true false

true

false

10

0

0

1

1

0

47

1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

The second layer

:PosLeaf(e)

(0, 1, 0, 0)

true false

true

false

10

0

0

1

1

0

48

1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1(0, 0, 0,⊥)

The definition of DT-FOIL

1. Each atomic formula is a DT-FOIL formula
2. Boolean combinations of DT-FOIL formulas are

DT-FOIL formulas
3. If is a DT-FOIL formula, then so areΦ

∃x (Node(x) ∧ Φ) ∀x (Node(x) → Φ)

∃x (PosLeaf(x) ∧ Φ) ∀x (PosLeaf(x) → Φ)

49

SR(x, y) = Full(x) ∧ y ⊆ x ∧

(Pos(x) → AllPos(y)) ∧

(¬Pos(x) → AllNeg(y))

An example of a DT-FOIL
formula

DT-FOIL formulas

50

An example of a DT-FOIL
formula

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

51

An example of a DT-FOIL
formula

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))

52

An example of a DT-FOIL
formula

guarded
quantification

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))

53

An example of a DT-FOIL
formula

guarded
quantification

Leaf(x) = Node(x) ∧ ∀y (Node(y) → (x ⊆ y → x = y))

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))

54

An example of a DT-FOIL
formula

Leaf(x) = Node(x) ∧ ∀y (Node(y) → (x ⊆ y → x = y))

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))

AllPos(x) = ∀y (Node(y) →

(Leaf(y) ∧ Cons(x, y)) → PosLeaf(y))

55

An example of a DT-FOIL
formula

Leaf(x) = Node(x) ∧ ∀y (Node(y) → (x ⊆ y → x = y))

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))

AllPos(x) = ∀y (Node(y) →

(Leaf(y) ∧ Cons(x, y)) → PosLeaf(y))
guarded

quantification
56

Is DT-FOIL enough?

Every formula in DT-FOIL can be evaluated in
polynomial time

 and can be expressed in DT-FOILSR DFS

But it lacks a mechanism to express optimality
conditions

57

Two possible solutions

OPT-DT-FOIL: extends DT-FOIL with a minimal
operator

Q-DT-FOIL: extends DT-FOIL with non-guarded
quantification, but without alternation of these
quantifiers

58

The evaluation problem for these logics can be
solved with a polynomial number of calls to a SAT
solver

All the notions of explanation discussed in this talk
can be expressed in Q-DT-FOIL and OPT-DT-FOIL

, , , , SR(x, y) MinimalSR(x, y) MinimumSR(x, y) DFS(x)

MinimalDFS(x)

Two possible solutions

59

Implementation based on
SAT solvers

Given the complexity of the evaluation problem for
Q-DT-FOIL and OPT-DT-FOIL, we use:

YalSAT: to find a truth assignment that satisfies
a propositional formula
Kissat: to prove that a propositional formula is
not satisfiable

Any SAT solver can be used

60

Minimal sufficient reason

61

Minimum sufficient reason

62

Minimal determinant feature set

63

Concluding remarks

DT-FOIL is a model-specific explainability query language

How can the definition of DT-FOIL be extended to
OBDDs and FBDDs?

64

Concluding remarks

FOIL is a model-agnostic interpretability query language

The evaluation problem for some fragments of FOIL
can be solved in polynomial time for decision trees
and OBDDs
What is an appropriate fragment of FOIL to be
evaluated using SAT solvers?
What is an appropriate explainability query language
for FBDDs that is based on FOIL?

65

Concluding remarks

How can probabilities be incorporated into this
framework?

A probability distribution on the possible values of
features, and a probabilistic classifier

Probabilistic circuits seem to be the right model for this

A natural and robust generalization of Boolean
circuits, with many well-understood properties

66

Thanks!

67

