A data management
approach to
explainable Al

Marcelo Arenas
PUC & IMFD Chile and RelationalAl

Joint work with Daniel Baez, Pablo Barceld, Diego Bustamante, José Thomas
Caraball, Jorge Pérez, and Bernardo Subercaseaux



Motivation

e A growing interest in developing methods to
explain predictions made by machine learning
models

e This has led to the development of several
notions of explanation, which have been studied
independently

e Explainability admits no silver bullet; different
contexts require different notions



Motivation

e Explainability may require combining different
notions; it is better to think of it as an interactive
process

e |nstead of struggling with the increasing number
of such notions, one can developed a query
language for explainability task

e This gives control to the end-user to tailor
explainability queries to their particular needs



A call for an
explainability query language

e Declarative: should allow users to articulate
what explanation they need without providing
the computational method to achieve it

e Simple syntax and semantics: should be built
with simple syntax and semantics, leveraging
well-known database query languages

e Specific query capability for explainability: an
explanation notion should be represented by a
fixed query



A call for an
explainability query language

e Expressiveness: must be able to represent
common explanation concepts

e Exploratory operators: should allow the user to
explore an explanation concept

e Combination of explanations: should support
the combination of different explanation
approaches



A call for an
explainability query language

o Efficient data complexity: Although polynomial
data complexity is the gold standard, P™' data

complexity is also desirable as it allows the use
of SAT solvers

e Verification versus computation: should also
be feasible to compute explanations efficiently



Our goal is to develop such an
explainability query language

Basic ingredients: classification models are
represented as labeled graphs, and first-
order logic is used as query language



An explainability query
language

We focus in this talk on a simple but widely used
model

e Decision trees are widely used, in particular
because they are considered readily
interpretable models

e The main ingredients of our logical approach are
already present in this case



A classification model:
M :{0,1}* — {0,1}

e The dimension of M isn,and eachi € {1,...,n}
is called a feature

e e c {0,1}" is aninstance

e M accepts e if M(e) =1, otherwise M rejects e



A decision tree 7 of
dimension n

e Each internal node is labeled with a
feature i € {1,...,n}, and has two
outgoing edges labeled 0 and 1

e Each leafis labeled true or false

® No two nodes on a path from the \
root to a leaf have the same label true false true

f 1 t
ase rue true false
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A decision tree 7 of
dimension n

® Everyinstance e defines a unique
path ny, e, no,...,er_1,n; from the
root to a leaf

® T(e)=1ifthe label ny is true

false true

true false

11



A decision tree 7 of
dimension n

® Everyinstance e defines a unique
path ny, e, no,...,er_1,n; from the

root to a leaf
® 7T (e)=1if the label n; is true

T (e;) = 1 for instance e; = (1,0,1,1)

false true

true false
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Explaining the output of a
model

e What are interesting notions of explanation?

e What notions have been studied? What notions
are used in practice?

e Can these notions be expressed as queries over
decision trees?
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Notions of explanation:
sufficient reason

T(e)=1fore=(1,1,1,1)

The value of feature 3 is not needed to
obtain this result

e {1,2,4} is a sufficient reason true true false \

f 1 t
ase rue true false
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Notions of explanation:
Mminimal sufficient reason

T(e)=1fore=(1,1,1,1)

The value of features 1 and 3 are not
needed to obtain this result

® {2,4}is a minimal sufficient true true false \
reason

f 1 t
ase rue true false
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Notions of explanation:
determinant feature set

If the values of features {1, 3,4} are
fixed, then the output of the model
is fixed

The output of the model depends true false true \
only on these features

f 1
ase true true false
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Notions of explanation:
determinant feature set

If the values of features {1, 3,4} are

fixed, then the output of the model
is fixed

If e[l] = e[3] = e[4] =

false true

true false
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Notions of explanation:
determinant feature set

If the values of features {1, 3,4} are

fixed, then the output of the model
is fixed

If e[1] = e[3] =1 and e[4
T (e )—O

false true

true false
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MNIST: determinant feature set




MNIST: minimal determinant
feature set




How do we express the
previous explainability queries?

e |s there a common framework for them?
e |s there a natural framework based on labeled
graphs?
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Binary decision
diagrams (BDDs)

e OBDDs
® FBDDs
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A first attempt: FOIL

First-order logic defined on a suitable vocabulary to
describe classification models

Key notion: partial instance e € {0,1, | }" of dimensiéon n

e; is subsumed by e, if e, e; are partial instances such
that for everyi € {1,...,n}, if e;]i] # L, then e;[i] = e]i]

(1,1,0,1) C (1,0,0,1) C (1,0,0,1)
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A first attempt: FOIL

First-order logic defined on a suitable vocabulary to
describe classification models: {Pos, C}

A model M of dimensidn n is represented as a
structure A -

e The domain of 24, is {0,1, L }"

e Pos(e) holds if e is an instance such that M(e) =1

e e; C ey holds if e, ey are partial instances such that e;
is subsumed by e,
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The semantics of FOIL

Given a FOIL formula ®(zq, xs, ..., ), a classification
model M of dimensidn n, and instances ey, ey, ..., e

M = P(eq,ey,...,€;)
—

Apm = P(er,es,...,€)

(in the usual sense)
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Some examples

AllPos(z) = Yy ((z C y A Full(y)) — Pos(y))

AliNeg(z) = Yy ((z € y A Full(y)) — —Pos(y))



Notions of explanation:
sufficient reason

T(e)=1fore=(1,1,1,1),and e; = (1,1, 1,1
is a sufficient reason for this

T’:SReel
‘

SR(z,y) = Full(x )/\wa/\ \
(POS( )—> AHPOS true true false

(—Pos(x) — AllNeg 1

f 1 t
ase rue true false
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Notions of explanation:
Mminimal sufficient reason

T(e) =1fore=(1,1,1,1),and e; = (1,1, 1,1)
is @ minimal sufficient reason for this

false true

true false
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Notions of explanation:
Mminimal sufficient reason

T(e)=1fore=(1,1,1,1),and es = (1,1, 1,1)
is @ minimal sufficient reason for this

7T = MinimalSR/(e, e2) 1
e &

MinimalSR(z,y) = SR(z,y)

Vz ((SR( 2) N\ z Cy) — true true false \ false

f 1
ase true true false
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Notions of explanation:
determinant feature set

If the values of features {1, 3,4} are
fixed, then the output of the model is

fixed

= (1,1,1,1) is a determinant
feature set

e \alue 1 is not relevant in this
false true

true false

instance
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Notions of explanation:
determinant feature set

SUF(z,y): holds if and only if the sets of undefined features in z
and y are the same

e Ife=(1,1,1,1)and e; = (0, 1,0,1), then SUF(e, e;) holds

e fe=(1,1,1,1)andex = (1, 1,1, 1), then SUF(e, e2) does
not hold

e fe=(1,1,1,1)ande; = (1,1, 1,1), then SUF(e, e3) does not
hold

SUF(x,y) can be expressed in FOIL using only the
predicate C
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Notions of explanation:
determinant feature set

= (1, 1,1,1) is a determinant

e
feature set
T = DFS(e e

DFS(z) = Vy (SUF(z,y) —
AllPos(y) vV AllNeg(y

false true

true false
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Notions of explanation: minimal
determinant feature set

MinimalDFS(z) = DFS(x) A X
vy (DFS(y) Ay Cz) >y =)
O

false true

true false
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Expressiveness and
complexity of FOIL

e What notions of explanation can be expressed in
FOIL?

e What notions of explanation cannot be
expressed in FOIL?

e What is the complexity of the evaluation
problem for FOIL?

34



The evaluation problem for
FOIL

We consider the data complexity of the problem, so
fix a FOIL formula ®(z1,...,xx)

Eval(®):
e Input: decision tree 7 of dimension n and partial
instances ey, ..., e; of dimension n

e Qutput:yesif 7 = ®(eq,...,e;), and no
otherwise
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The evaluation problem for
FOIL

T E ®(eq,...,e,) ifandonyif Ar = ®(eq,...,e;)

But 2(+ could be of exponential size in the size of T

e (- should not be materialized to check whether

T = @(er,. .., ep)
e 2+ is used only to define the semantics of FOIL
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Bad news ...

Theorem:

1. For every FOIL formula @, there exists k > 0 such

that Eval(®) is in X}
2. For every k > 0, there exists a FOIL formula ®
such that Eval(®) is X7 -hard
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More bad news ...

T(e)=1fore=(1,1,1,1)

{2,4} is a minimum sufficient reason for e
over T

® There is no sufficient reason for e over
T with a smaller number of features

= (L,1,1,1)is a minimum sufficient

reason for e over T
false true

true false
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More bad news ...

Theorem:

There is no FOIL formula MinimumSR(z, y) such
that, for every decision tree 7, instance e; and
partial instance es:

T E MinimumSR (e, e5)
—
e, IS a minimum sufficient reason for e; over T
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How do we overcome these
limitations?

e We use first-order logic over a larger vocabulary

e We depart from the model-agnostic approach of
FOIL and use the notion of guarded
guantification for decision trees
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The logic DT-FOIL

DT-FOIL is defined by considering two layers

1. Atomic formulas
2. Guarded formulas
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The first layer

C can be considered as a syntactic predicate, it does not
refer to the models

We need another predicate like that. Given partial
instances ey, e, of dimension n:

e = €
if and only if
{ie{l,...n}|ei] =L} > |{ie{l,...n} | e]i] = L}
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Why do we need another
syntactic predicate?

MinimumSR(z,y) = SR(z,y) A
Vz ((SR(z,2) Az = y) =y = 2)

How many more predicates do we need to include?
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Atomic formulas

All the syntactic predicates needed in our formalism can
be expressed as first-order queries over {C, <}

Theorem: if ® is a first-order formula defined over
{C, <}, then Eval(®) can be solved in polynomial time

Atomic formulas of DT-FOIL: the set of first-order
formulas defined over {C, <}
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The second layer

O
)
)
Q
Z



The second layer

true

false
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PosLeaf(e):

The second layer

false true

true false
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The second layer

PosLeaf(e):
(0,0,0, 1) w_

(0,1,0,0) .

'
true

false
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The definition of DT-FOIL

1. Each atomic formula is a DT-FOIL formula

2. Boolean combinations of DT-FOIL formulas are
DT-FOIL formulas

3. If @ is a DT-FOIL formula, then so are
Jz (Node(x) A ®) Vx (Node(x) — ®)
Jz (PosLeaf(x) A ®) Va (PosLeaf(z) — @)
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An example of a DT-FOIL
formula

SR(z,y) = Fulllz) Ay Cz A

DT-FOIL formulas
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An example of a DT-FOIL
formula

Cons(z,y) =3dz(z C z ANy C 2)
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An example of a DT-FOIL
formula

Cons(z,y) =3dz(z C z ANy C 2)

Pos(x) = Full(x) A Jy (PosLeaf(y) A Cons(z,y))
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An example of a DT-FOIL
formula

Cons(z,y) =3dz(z C z ANy C 2)

Pos(z) = Full(x) A Jy (PosLeaf(y)\ Cons(z,y))

guarded
quantification
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An example of a DT-FOIL
formula

Cons(z,y) =3dz(z C z ANy C 2)

Pos(x) = Full(x) A Jy (PosLeaf(y) A Cons(z,y))

Leaf(xz) = Node(x) (xCy—x=1y))

guarded
guantification
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An example of a DT-FOIL
formula

Cons(z,y) =3dz(z C z ANy C 2)
Pos(xz) = Full(z) A Jy (PosLeaf(y) A Cons(z, y))
Leaf(x) = Node(x) A Vy (Node(y) = (x Cy >z =1v))

AllPos(z) = Vy (Node(y) —
(Leaf(y) A Cons(z,y)) — PosLeaf(y))
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An example of a DT-FOIL
formula

Cons(z,y) =3dz(z C z ANy C 2)
Pos(xz) = Full(z) A Jy (PosLeaf(y) A Cons(z, y))

Leaf(x) = Node(x) A Vy (Node(y) = (x Cy >z =1v))

AllPos(x)
Leaf(y) A Cons(z,y)) — PosLeaf(y))

guarded
quantification
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Is DT-FOIL enough?

e Every formula in DT-FOIL can be evaluated in

polynomial time
e SR and DFS can be expressed in DT-FOIL

e But it lacks a mechanism to express optimality
conditions
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Two possible solutions

Q-DT-FOIL: extends DT-FOIL with non-guarded
quantification, but without alternation of these
quantifiers

OPT-DT-FOIL: extends DT-FOIL with a minimal
operator
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Two possible solutions

All the notions of explanation discussed in this talk
can be expressed in Q-DT-FOIL and OPT-DT-FOIL

® SR(z,y), MinimalSR(z, y), MinimumSR(z, y), DFS(x),
MinimalDFS(x)

The evaluation problem for these logics can be
solved with a polynomial number of calls to a SAT
solver
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Implementation based on
SAT solvers

Any SAT solver can be used

Given the complexity of the evaluation problem for
Q-DT-FOIL and OPT-DT-FOIL, we use:

e YalSAT: to find a truth assignment that satisfies
a propositional formula

e Kissat: to prove that a propositional formula is
not satisfiable
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Minimal sufficient reason
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Minimum sufficient reason
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Minimal determinant feature set
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Concluding remarks

DT-FOIL is a model-specific explainability query language

e How can the definition of DT-FOIL be extended to
OBDDs and FBDDs?
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Concluding remarks

FOIL is a model-agnostic interpretability query language

e The evaluation problem for some fragments of FOIL
can be solved in polynomial time for decision trees
and OBDDs

e What is an appropriate fragment of FOIL to be
evaluated using SAT solvers?

e What is an appropriate explainability query language
for FBDDs that is based on FOIL?
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Concluding remarks

How can probabilities be incorporated into this
framework?

e A probability distribution on the possible values of
features, and a probabilistic classifier

Probabilistic circuits seem to be the right model for this

e A natural and robust generalization of Boolean
circuits, with many well-understood properties
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Thanks!



