A data management approach to explainable Al

Marcelo Arenas
PUC & IMFD Chile and RelationalAI

Joint work with Daniel Báez, Pablo Barceló, Diego Bustamante, José Thomas Caraball, Jorge Pérez, and Bernardo Subercaseaux

Motivation

- A growing interest in developing methods to explain predictions made by machine learning models
- This has led to the development of several notions of explanation, which have been studied independently
- Explainability admits no silver bullet; different contexts require different notions

Motivation

- Explainability may require combining different notions; it is better to think of it as an interactive process
- Instead of struggling with the increasing number of such notions, one can developed a query language for explainability task
- This gives control to the end-user to tailor explainability queries to their particular needs

A call for an explainability query language

- Declarative: should allow users to articulate what explanation they need without providing the computational method to achieve it
- **Simple syntax and semantics:** should be built with simple syntax and semantics, leveraging well-known database query languages
- Specific query capability for explainability: an explanation notion should be represented by a fixed query

A call for an explainability query language

- **Expressiveness:** must be able to represent common explanation concepts
- **Exploratory operators:** should allow the user to explore an explanation concept
- **Combination of explanations:** should support the combination of different explanation approaches

A call for an explainability query language

- Efficient data complexity: Although polynomial data complexity is the gold standard, $P^{\rm NP}$ data complexity is also desirable as it allows the use of SAT solvers
- Verification versus computation: should also be feasible to compute explanations efficiently

Our goal is to develop such an explainability query language

Basic ingredients: classification models are represented as **labeled graphs**, and **first-order logic** is used as query language

An explainability query language

We focus in this talk on a simple but widely used model

- Decision trees are widely used, in particular because they are considered *readily* interpretable models
- The main ingredients of our logical approach are already present in this case

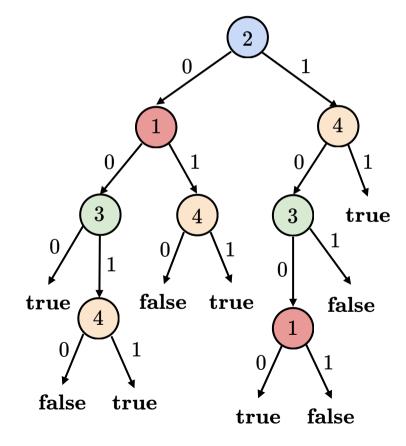
A classification model:

$$\mathcal{M}:\{0,1\}^n
ightarrow \{0,1\}$$

- The dimension of \mathcal{M} is n, and each $i \in \{1, \ldots, n\}$ is called a feature
- $\mathbf{e} \in \{0,1\}^n$ is an instance
- \mathcal{M} accepts \mathbf{e} if $\mathcal{M}(\mathbf{e})=1$, otherwise \mathcal{M} rejects \mathbf{e}

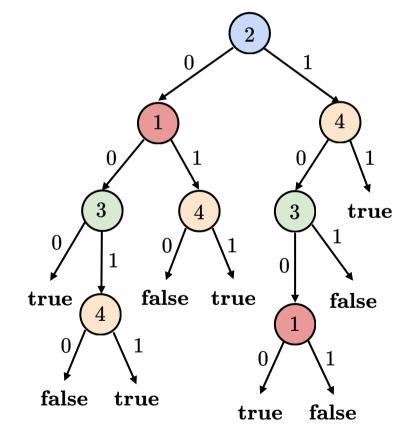
A decision tree \mathcal{T} of dimension n

- Each internal node is labeled with a feature $i \in \{1, \dots, n\}$, and has two outgoing edges labeled 0 and 1
- Each leaf is labeled **true** or **false**
- No two nodes on a path from the root to a leaf have the same label



A decision tree \mathcal{T} of dimension n

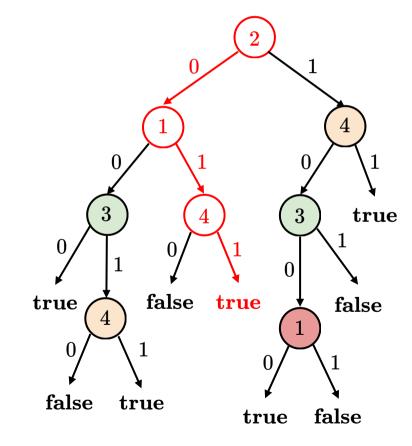
- Every instance ${f e}$ defines a unique path $n_1, e_1, n_2, \ldots, e_{k-1}, n_k$ from the root to a leaf
- $\mathcal{T}(\mathbf{e}) = 1$ if the label n_k is **true**



A decision tree \mathcal{T} of dimension n

- Every instance ${f e}$ defines a unique path $n_1, e_1, n_2, \ldots, e_{k-1}, n_k$ from the root to a leaf
- $\mathcal{T}(\mathbf{e}) = 1$ if the label n_k is **true**

 $\mathcal{T}(\mathbf{e_1}) = 1$ for instance $\mathbf{e_1} = (1,0,1,1)$



Explaining the output of a model

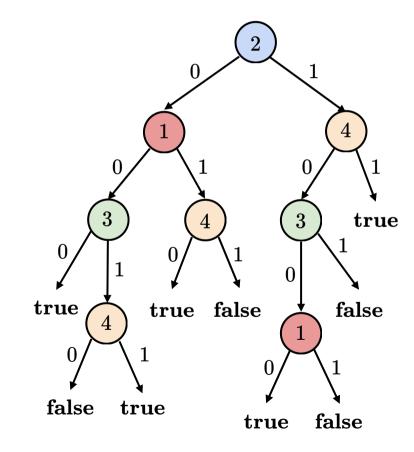
- What are interesting notions of explanation?
- What notions have been studied? What notions are used in practice?
- Can these notions be expressed as queries over decision trees?

Notions of explanation: sufficient reason

$$\mathcal{T}(\mathbf{e}) = 1$$
 for $\mathbf{e} = (1,1,1,1)$

The value of feature 3 is not needed to obtain this result

• $\{1, 2, 4\}$ is a sufficient reason

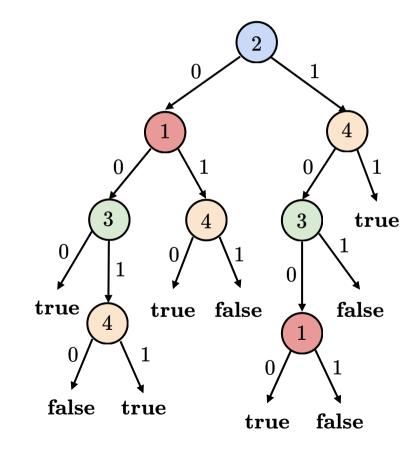


Notions of explanation: minimal sufficient reason

$$\mathcal{T}(\mathbf{e}) = 1$$
 for $\mathbf{e} = (1,1,1,1)$

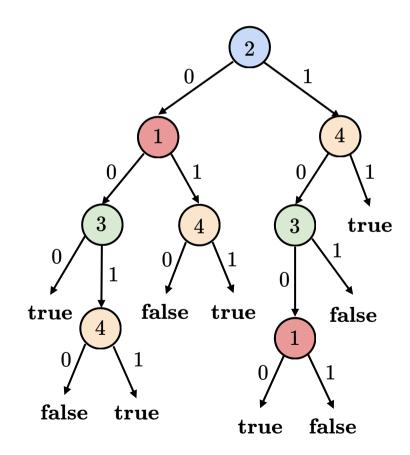
The value of features 1 and 3 are not needed to obtain this result

• {2,4} is a minimal sufficient reason



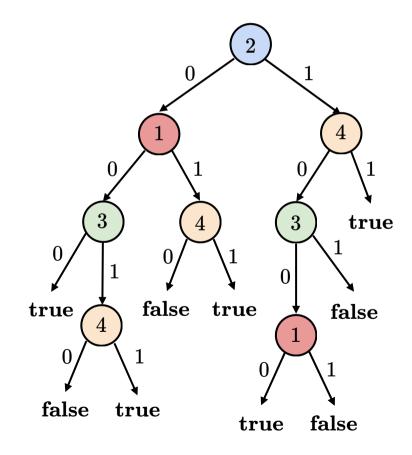
If the values of features $\{1, 3, 4\}$ are fixed, then the output of the model is fixed

The output of the model depends only on these features



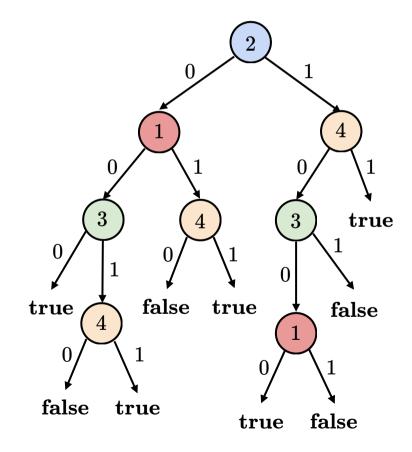
If the values of features $\{1, 3, 4\}$ are fixed, then the output of the model is fixed

If
$$\mathbf{e}[1] = \mathbf{e}[3] = \mathbf{e}[4] = 0$$
: $\mathcal{T}(\mathbf{e}) = 1$

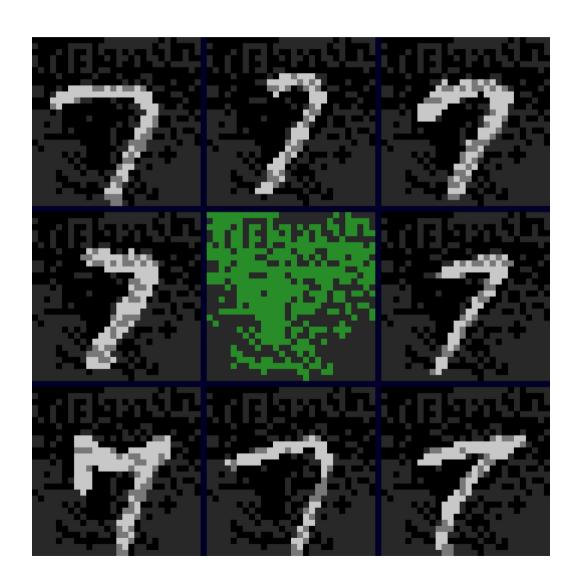


If the values of features $\{1, 3, 4\}$ are fixed, then the output of the model is fixed

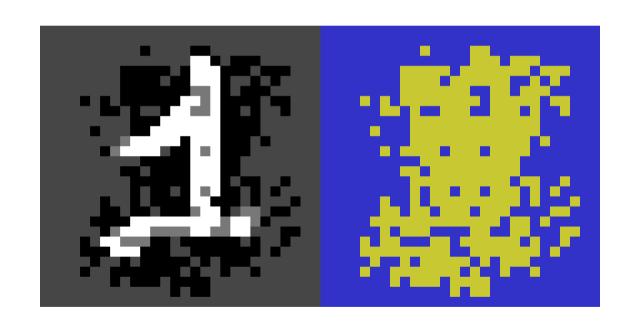
If
$$\mathbf{e}[1] = \mathbf{e}[3] = 1$$
 and $\mathbf{e}[4] = 0$: $\mathcal{T}(\mathbf{e}) = 0$



MNIST: determinant feature set

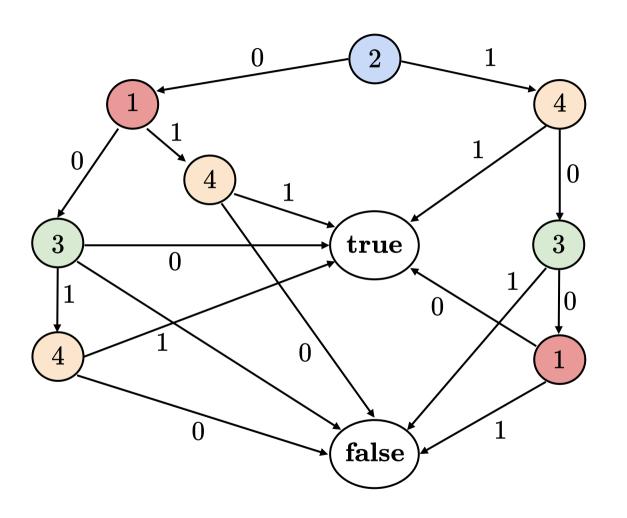


MNIST: minimal determinant feature set



How do we express the previous explainability queries?

- Is there a common framework for them?
- Is there a *natural* framework based on labeled graphs?



Binary decision diagrams (BDDs)

- OBDDs
- FBDDs

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to describe classification models

Key notion: partial instance $e \in \{0, 1, \bot\}^n$ of dimensión n

 \mathbf{e}_1 is subsumed by \mathbf{e}_2 if $\mathbf{e}_1, \mathbf{e}_2$ are partial instances such that for every $i \in \{1, \dots, n\}$, if $\mathbf{e}_1[i] \neq \bot$, then $\mathbf{e}_1[i] = \mathbf{e}_2[i]$

$$(1, \perp, 0, \perp) \subseteq (1, 0, 0, \perp) \subseteq (1, 0, 0, 1)$$

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to describe classification models: $\{Pos, \subseteq\}$

A model \mathcal{M} of dimensión n is represented as a structure $\mathfrak{A}_{\mathcal{M}}$:

- The domain of $\mathfrak{A}_{\mathcal{M}}$ is $\{0,1,\perp\}^n$
- Pos(e) holds if e is an instance such that $\mathcal{M}(e) = 1$
- $e_1 \subseteq e_2$ holds if e_1, e_2 are partial instances such that e_1 is subsumed by e_2

The semantics of FOIL

Given a **FOIL** formula $\Phi(x_1, x_2, ..., x_k)$, a classification model \mathcal{M} of dimensión n, and instances \mathbf{e}_1 , \mathbf{e}_2 , ..., \mathbf{e}_k

$$\mathcal{M} \models \Phi(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k) \ \iff \ \mathfrak{A}_{\mathcal{M}} \models \Phi(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k) \ ext{(in the usual sense)}$$

Some examples

$$\mathrm{Full}(x) \ = \ orall y \, (x \subseteq y
ightarrow x = y)$$

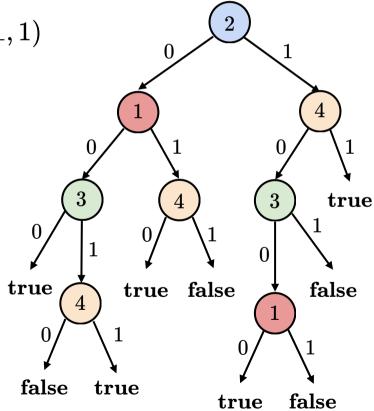
$$ext{AllPos}(x) \ = \ orall y \ ig((x \subseteq y \wedge ext{Full}(y))
ightarrow ext{Pos}(y) ig)$$

$$\operatorname{AllNeg}(x) \ = \ orall y \ ig((x \subseteq y \wedge \operatorname{Full}(y)) o
eg \operatorname{Pos}(y)ig)$$

Notions of explanation: sufficient reason

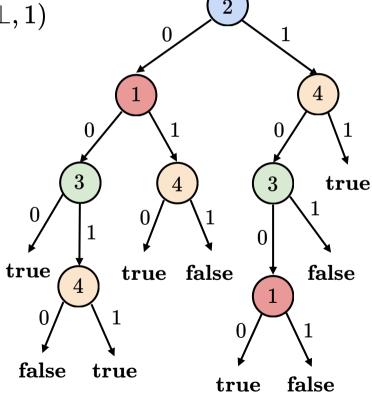
 $\mathcal{T}(\mathbf{e})=1$ for $\mathbf{e}=(1,1,1,1)$, and $\mathbf{e}_1=(1,1,\perp,1)$ is a sufficient reason for this

$$\mathcal{T} \models \mathrm{SR}(\mathbf{e}, \mathbf{e}_1)$$



Notions of explanation: minimal sufficient reason

 $\mathcal{T}(\mathbf{e}) = 1$ for $\mathbf{e} = (1, 1, 1, 1)$, and $\mathbf{e}_2 = (\bot, 1, \bot, 1)$ is a minimal sufficient reason for this

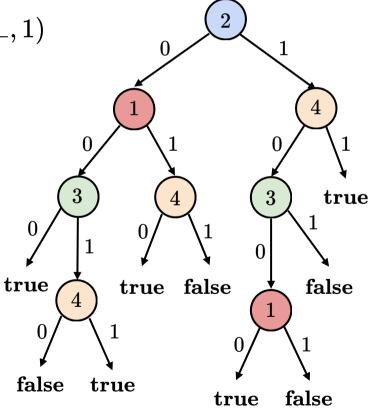


Notions of explanation: minimal sufficient reason

 $\mathcal{T}(\mathbf{e}) = 1$ for $\mathbf{e} = (1, 1, 1, 1)$, and $\mathbf{e}_2 = (\bot, 1, \bot, 1)$ is a minimal sufficient reason for this

 $\mathcal{T} \models \operatorname{MinimalSR}(\mathbf{e}, \mathbf{e}_2)$

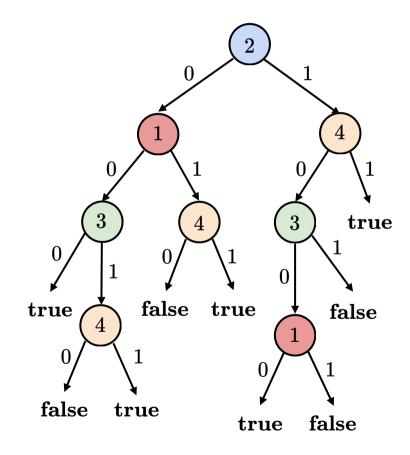
 $egin{array}{ll} ext{MinimalSR}(x,y) &= ext{SR}(x,y) \wedge \ & orall z \left((ext{SR}(x,z) \wedge z \subseteq y)
ightarrow z = y
ight) \end{array}$



If the values of features $\{1,3,4\}$ are fixed, then the output of the model is fixed

 $\mathbf{e}=(1,\perp,1,1)$ is a determinant feature set

Value 1 is not relevant in this instance



 $\mathrm{SUF}(x,y)$: holds if and only if the sets of undefined features in x and y are the same

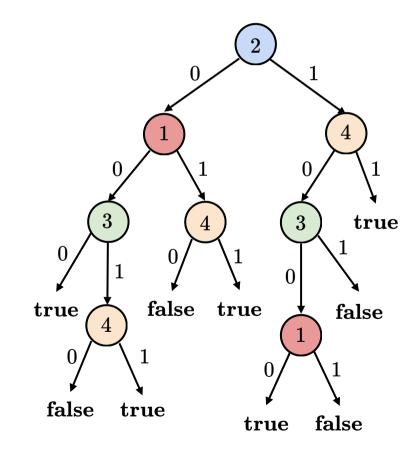
- If $\mathbf{e}=(1,\perp,1,1)$ and $\mathbf{e}_1=(0,\perp,0,1)$, then $\mathrm{SUF}(\mathbf{e},\mathbf{e}_1)$ holds
- If $\mathbf{e}=(1,\perp,1,1)$ and $\mathbf{e}_2=(1,\perp,1,\perp)$, then $\mathrm{SUF}(\mathbf{e},\mathbf{e}_2)$ does not hold
- If $\mathbf{e}=(1,\perp,1,1)$ and $\mathbf{e}_3=(1,1,\perp,1)$, then $\mathrm{SUF}(\mathbf{e},\mathbf{e}_3)$ does not hold

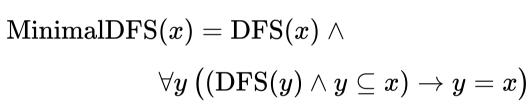
 $\mathrm{SUF}(x,y)$ can be expressed in FOIL using only the predicate \subseteq

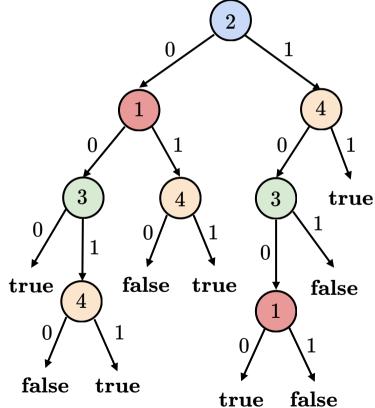
 $\mathbf{e} = (1, \perp, 1, 1)$ is a determinant feature set

$$\mathcal{T} \models \mathrm{DFS}(\mathbf{e})$$

$$egin{aligned} ext{DFS}(x) &= orall y \left(ext{SUF}(x,y)
ightarrow \ & ext{AllPos}(y) ee ext{AllNeg}(y)
ight) \end{aligned}$$







Expressiveness and complexity of FOIL

- What notions of explanation can be expressed in FOIL?
- What notions of explanation cannot be expressed in FOIL?
- What is the complexity of the evaluation problem for FOIL?

The evaluation problem for FOIL

We consider the data complexity of the problem, so fix a **FOIL** formula $\Phi(x_1, \ldots, x_k)$

Eval (Φ) :

- **Input:** decision tree \mathcal{T} of dimension n and partial instances $\mathbf{e}_1, \dots, \mathbf{e}_k$ of dimension n
- **Output:** yes if $\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$, and no otherwise

The evaluation problem for FOIL

$$\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$$
 if and ony if $\mathfrak{A}_{\mathcal{T}} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$

But $\mathfrak{A}_{\mathcal{T}}$ could be of exponential size in the size of \mathcal{T}

- $\mathfrak{A}_{\mathcal{T}}$ should not be materialized to check whether $\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$
- $\mathfrak{A}_{\mathcal{T}}$ is used only to define the semantics of **FOIL**

Bad news ...

Theorem:

- 1. For every **FOIL** formula Φ , there exists $k \geq 0$ such that $\operatorname{Eval}(\Phi)$ is in $\Sigma_k^{\operatorname{P}}$
- 2. For every $k \geq 0$, there exists a **FOIL** formula Φ such that $\operatorname{Eval}(\Phi)$ is Σ_k^P -hard

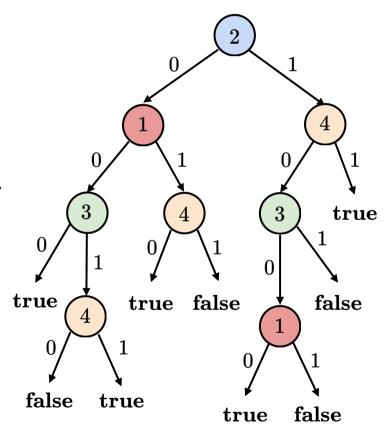
More bad news ...

$$\mathcal{T}(\mathbf{e}) = 1$$
 for $\mathbf{e} = (1, 1, 1, 1)$

 $\{2,4\}$ is a minimum sufficient reason for ${f e}$ over ${\cal T}$

• There is no sufficient reason for e over \mathcal{T} with a smaller number of features

 $\mathbf{e}_2 = (\bot, 1, \bot, 1)$ is a minimum sufficient reason for \mathbf{e} over \mathcal{T}



More bad news ...

Theorem:

There is no **FOIL** formula $\operatorname{MinimumSR}(x, y)$ such that, for every decision tree \mathcal{T} , instance \mathbf{e}_1 and partial instance \mathbf{e}_2 :

$$\mathcal{T} \models \operatorname{MinimumSR}(\mathbf{e}_1, \mathbf{e}_2)$$
 \iff

 \mathbf{e}_2 is a minimum sufficient reason for \mathbf{e}_1 over \mathcal{T}

How do we overcome these limitations?

- We use first-order logic over a larger vocabulary
- We depart from the model-agnostic approach of FOIL and use the notion of guarded quantification for decision trees

The logic DT-FOIL

DT-FOIL is defined by considering two layers

- 1. Atomic formulas
- 2. Guarded formulas

The first layer

⊆ can be considered as a *syntactic* predicate, it does not refer to the models

We need another predicate like that. Given partial instances e_1 , e_2 of dimension n:

$$\mathbf{e}_1 \preceq \mathbf{e}_2$$

if and only if

$$|\{i \in \{1, \dots n\} \mid \mathbf{e}_1[i] = \bot\}| \ge |\{i \in \{1, \dots n\} \mid \mathbf{e}_2[i] = \bot\}|$$

Why do we need another syntactic predicate?

$$egin{aligned} ext{MinimumSR}(x,y) &= ext{SR}(x,y) \land \ &orall z \left((ext{SR}(x,z) \land z \preceq y)
ightarrow y = z
ight) \end{aligned}$$

How many more predicates do we need to include?

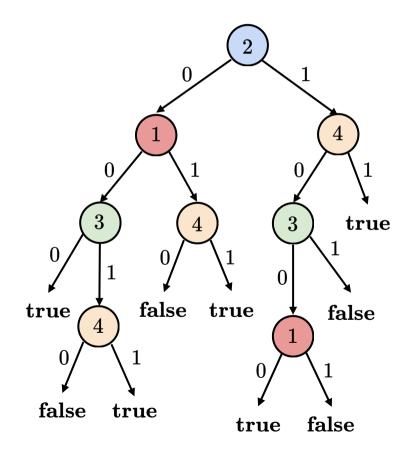
Atomic formulas

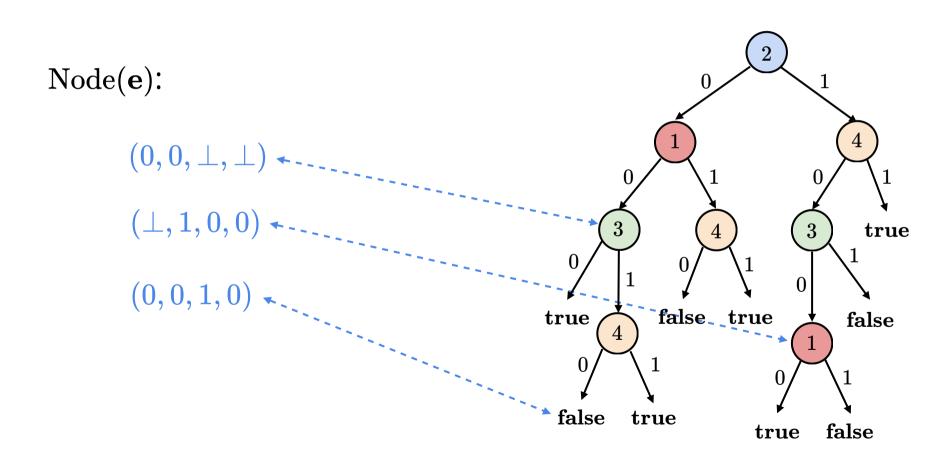
All the syntactic predicates needed in our formalism can be expressed as first-order queries over $\{\subseteq, \preceq\}$

Theorem: if Φ is a first-order formula defined over $\{\subseteq, \preceq\}$, then $\mathrm{Eval}(\Phi)$ can be solved in polynomial time

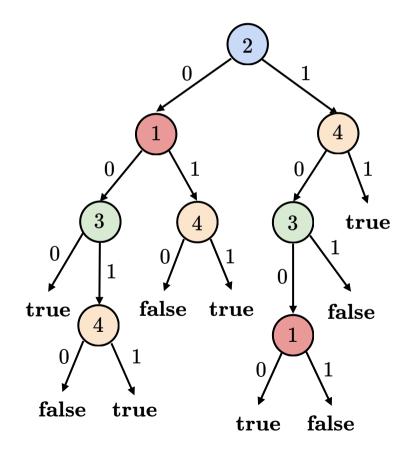
Atomic formulas of DT-FOIL: the set of first-order formulas defined over $\{\subseteq, \preceq\}$

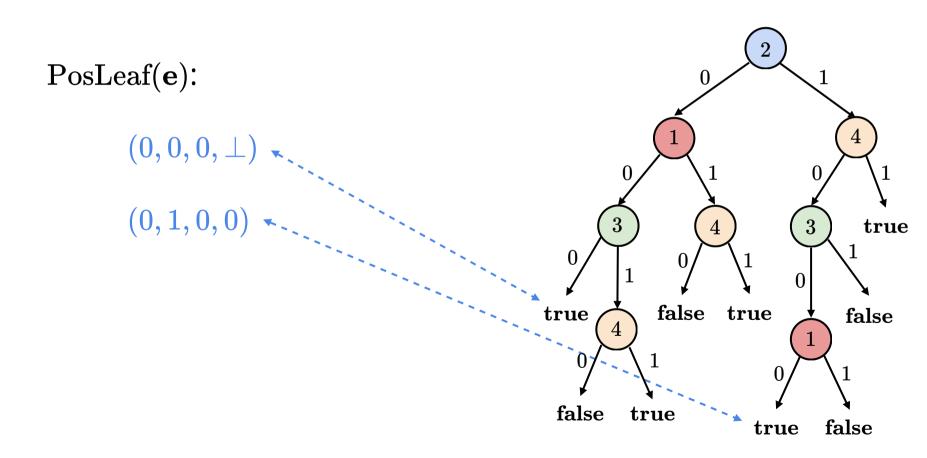
Node(e):





PosLeaf(e):





The definition of DT-FOIL

- 1. Each atomic formula is a DT-FOIL formula
- 2. Boolean combinations of DT-FOIL formulas are DT-FOIL formulas
- 3. If Φ is a DT-FOIL formula, then so are

$$\mathrm{SR}(x,y) = \mathrm{Full}(x) \land y \subseteq x \land$$
 $\mathrm{Pos}(x) \to \mathrm{AllPos}(y) \land$
 $(\neg \mathrm{Pos}(x) \to \mathrm{AllNeg}(y))$

DT-FOIL formulas

$$\mathrm{Cons}(x,y) = \exists z \, (x \subseteq z \land y \subseteq z)$$

$$\mathrm{Cons}(x,y) = \exists z \, (x \subseteq z \land y \subseteq z)$$

$$\operatorname{Pos}(x) = \operatorname{Full}(x) \wedge \exists y \left(\operatorname{PosLeaf}(y) \wedge \operatorname{Cons}(x,y) \right)$$

$$\mathrm{Cons}(x,y) = \exists z \, (x \subseteq z \land y \subseteq z)$$
 $\mathrm{Pos}(x) = \mathrm{Full}(x) \land \exists y \, (\mathrm{PosLeaf}(y) \land \mathrm{Cons}(x,y))$
 $\mathrm{Leaf}(x) = \mathrm{Node}(x) \, (\forall y \, (\mathrm{Node}(y) \longrightarrow (x \subseteq y \rightarrow x = y)))$
 $\mathrm{guarded}$
 $\mathrm{quantification}$

$$egin{aligned} &\operatorname{Cons}(x,y) = \exists z \, (x \subseteq z \wedge y \subseteq z) \ &\operatorname{Pos}(x) = \operatorname{Full}(x) \wedge \exists y \, (\operatorname{PosLeaf}(y) \wedge \operatorname{Cons}(x,y)) \ &\operatorname{Leaf}(x) = \operatorname{Node}(x) \wedge orall y \, (\operatorname{Node}(y)
ightarrow (x \subseteq y
ightarrow x = y)) \ &\operatorname{AllPos}(x) = orall y \, (\operatorname{Node}(y)
ightarrow (\operatorname{Leaf}(y) \wedge \operatorname{Cons}(x,y))
ightarrow \operatorname{PosLeaf}(y)) \end{aligned}$$

$$\operatorname{Cons}(x,y) = \exists z \ (x \subseteq z \land y \subseteq z)$$
 $\operatorname{Pos}(x) = \operatorname{Full}(x) \land \exists y \ (\operatorname{PosLeaf}(y) \land \operatorname{Cons}(x,y))$
 $\operatorname{Leaf}(x) = \operatorname{Node}(x) \land \forall y \ (\operatorname{Node}(y) \to (x \subseteq y \to x = y))$
 $\operatorname{AllPos}(x) = \forall y \ (\operatorname{Node}(y) \to (\operatorname{Leaf}(y) \land \operatorname{Cons}(x,y)) \to \operatorname{PosLeaf}(y))$
 $\operatorname{guarded}$
 $\operatorname{quantification}$

Is DT-FOIL enough?

- Every formula in DT-FOIL can be evaluated in polynomial time
- SR and DFS can be expressed in DT-FOIL
- But it lacks a mechanism to express optimality conditions

Two possible solutions

Q-DT-FOIL: extends DT-FOIL with non-guarded quantification, but without alternation of these quantifiers

OPT-DT-FOIL: extends DT-FOIL with a minimal operator

Two possible solutions

All the notions of explanation discussed in this talk can be expressed in **Q-DT-FOIL** and **OPT-DT-FOIL**

• SR(x, y), MinimalSR(x, y), MinimumSR(x, y), DFS(x), MinimalDFS(x)

The evaluation problem for these logics can be solved with a polynomial number of calls to a SAT solver

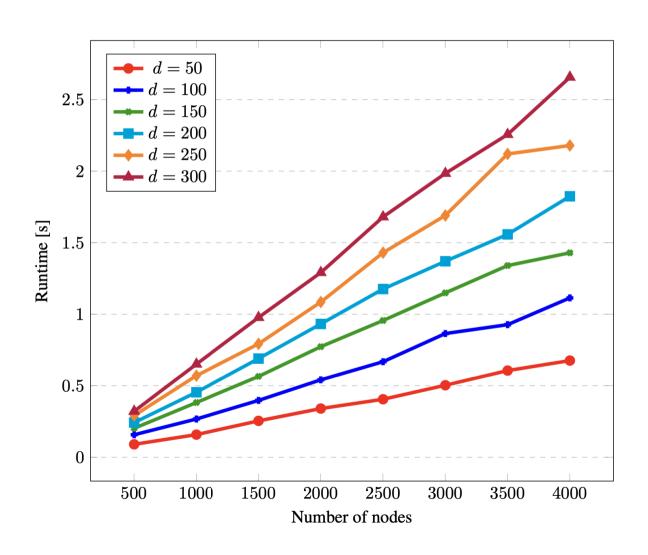
Implementation based on SAT solvers

Any SAT solver can be used

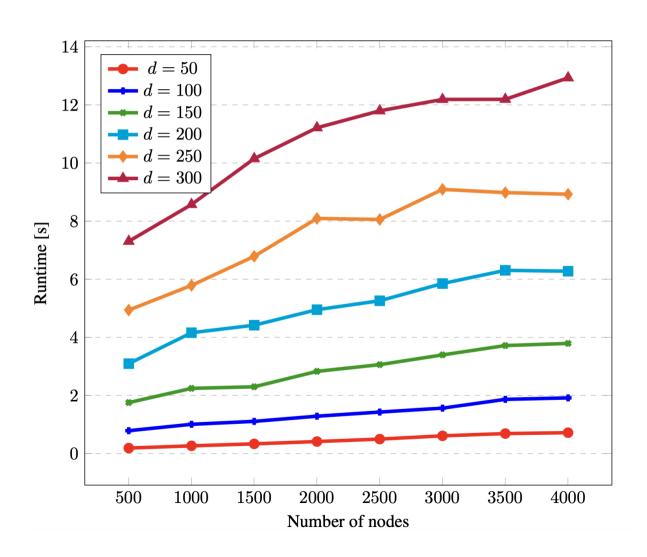
Given the complexity of the evaluation problem for **Q-DT-FOIL** and **OPT-DT-FOIL**, we use:

- YalSAT: to find a truth assignment that satisfies a propositional formula
- **Kissat:** to prove that a propositional formula is not satisfiable

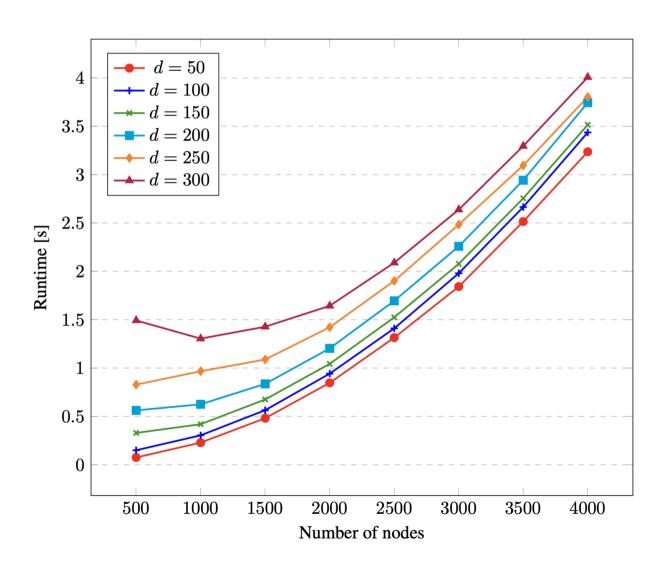
Minimal sufficient reason



Minimum sufficient reason



Minimal determinant feature set



Concluding remarks

DT-FOIL is a model-specific explainability query language

 How can the definition of **DT-FOIL** be extended to OBDDs and FBDDs?

Concluding remarks

FOIL is a model-agnostic interpretability query language

- The evaluation problem for some fragments of FOIL can be solved in polynomial time for decision trees and OBDDs
- What is an appropriate fragment of FOIL to be evaluated using SAT solvers?
- What is an appropriate explainability query language for FBDDs that is based on FOIL?

Concluding remarks

How can probabilities be incorporated into this framework?

 A probability distribution on the possible values of features, and a probabilistic classifier

Probabilistic circuits seem to be the right model for this

 A natural and robust generalization of Boolean circuits, with many well-understood properties

Thanks!