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A growing interest in developing methods to
explain predictions made by machine learning
models
This has led to the development of several
notions of explanation, which have been studied
independently
Explainability admits no silver bullet; different
contexts require different notions

Motivation
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Explainability may require combining different
notions; it is better to think of it as an interactive
process
Instead of struggling with the increasing number
of such notions, one can developed a query
language for explainability task
This gives control to the end-user to tailor
explainability queries to their particular needs

Motivation
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A call for an
explainability query language

Declarative: should allow users to articulate
what explanation they need without providing
the computational method to achieve it
Simple syntax and semantics: should be built
with simple syntax and semantics, leveraging
well-known database query languages
Specific query capability for explainability: an
explanation notion should be represented by a
fixed query
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A call for an
explainability query language

Expressiveness: must be able to represent
common explanation concepts
Exploratory operators: should allow the user to
explore an explanation concept
Combination of explanations: should support
the combination of different explanation
approaches

5



A call for an
explainability query language

Efficient data complexity: Although polynomial
data complexity is the gold standard,  data
complexity is also desirable as it allows the use
of SAT solvers

PNP

Verification versus computation: should also
be feasible to compute explanations efficiently
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Our goal is to develop such an
explainability query language

Basic ingredients: classification models are
represented as labeled graphs, and first-

order logic is used as query language
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We focus in this talk on a simple but widely used
model

Decision trees are widely used, in particular
because they are considered readily 
interpretable models
The main ingredients of our logical approach are
already present in this case

An explainability query
language
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A classification model:

M : {0, 1} →n {0, 1}

The dimension of  is , and each 
is called a feature

M n i ∈ {1,… ,n}

 is an instancee ∈ {0, 1}n

 accepts  if , otherwise  rejects M e M(e) = 1 M e
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A decision tree  of
dimension 

T

n
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Each internal node is labeled with a
feature , and has two
outgoing edges labeled  and 

i ∈ {1,… ,n}

0 1

Each leaf is labeled  or true false
No two nodes on a path from the
root to a leaf have the same label



A decision tree  of
dimension 

T

n

Every instance  defines a unique
path  from the
root to a leaf

e
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A decision tree  of
dimension 

T

n

 for instance T (e ) =1 1 e =1 (1, 0, 1, 1)
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Every instance  defines a unique
path  from the
root to a leaf

 if the label  is 

e
n , e ,n ,… , e ,n1 1 2 k−1 k

T (e) = 1 nk true



Explaining the output of a
model

What are interesting notions of explanation?
What notions have been studied? What notions
are used in practice?
Can these notions be expressed as queries over
decision trees?
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 for T (e) = 1 e = (1, 1, 1, 1)
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Notions of explanation:
sufficient reason

The value of feature  is not needed to
obtain this result
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 is a sufficient reason{1, 2, 4}



 for T (e) = 1 e = (1, 1, 1, 1)
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Notions of explanation:
minimal sufficient reason

The value of features  and  are not
needed to obtain this result

1 3

 is a minimal sufficient       
reason
{2, 4} falsetrue



If the values of features  are
fixed, then the output of the model       
is fixed

{1, 3, 4}
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The output of the model depends     
only on these features

Notions of explanation:
determinant feature set:  
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Notions of explanation:
determinant feature set:  

If the values of features  are
fixed, then the output of the model       
is fixed

{1, 3, 4}

If :e[1] = e[3] = e[4] = 0

T (e) = 1
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If the values of features  are
fixed, then the output of the model       
is fixed

{1, 3, 4}

If  and :   e[1] = e[3] = 1 e[4] = 0

T (e) = 0

Notions of explanation:
determinant feature set:  



MNIST: determinant feature set: 
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MNIST: minimal determinant
feature set: 
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How do we express the
previous explainability queries?

Is there a common framework for them?
Is there a natural framework based on labeled
graphs?
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Binary decision
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OBDDs
FBDDs
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A first attempt: FOIL

First-order logic defined on a suitable vocabulary to
describe classification models

Key notion: partial instance  of dimensión e ∈ {0, 1,⊥}n n

 is subsumed by  if  are partial instances such
that for every , if  , then 
e1 e2 e , e1 2

i ∈ {1,… ,n} e [i] =1  ⊥ e [i] =1 e [i]2

(1,⊥, 0,⊥)  ⊆  (1, 0, 0,⊥)  ⊆  (1, 0, 0, 1)
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A first attempt: FOIL

First-order logic defined on a suitable vocabulary to
describe classification models: {Pos, ⊆}

A model  of dimensión  is represented as a   
structure :

M n

AM

The domain of  is AM {0, 1,⊥}n

 holds if  is an instance such that Pos(e) e M(e) = 1
 holds if  are partial instances such that 

is subsumed by 
e ⊆1 e2 e , e1 2 e1

e2
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The semantics of FOIL

Given a FOIL formula , a classification
model  of dimensión , and instances , , …, 

Φ(x ,x ,… ,x )1 2 k

M n e1 e2 ek

(in the usual sense)

M ⊨ Φ(e , e ,… , e )1 2 k

⟺

A ⊨M Φ(e , e ,… , e )1 2 k
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Some examples

 Full(x)  =  ∀y (x ⊆ y → x = y)

AllPos(x)  =  ∀y ((x ⊆ y ∧ Full(y)) → Pos(y))

AllNeg(x)  =  ∀y ((x ⊆ y ∧ Full(y)) → ¬Pos(y))
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 for , and 
is a sufficient reason for this
T (e) = 1 e = (1, 1, 1, 1) e =1 (1, 1,⊥, 1)
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Notions of explanation:
sufficient reason

SR(x, y)  =  Full(x) ∧ y ⊆ x ∧

(Pos(x) → AllPos(y)) ∧

(¬Pos(x) → AllNeg(y))

T ⊨ SR(e, e )1

falsetrue



 for , and 
is a minimal sufficient reason for this
T (e) = 1 e = (1, 1, 1, 1) e =2 (⊥, 1,⊥, 1)
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Notions of explanation:
minimal sufficient reason

falsetrue



 for , and 
is a minimal sufficient reason for this
T (e) = 1 e = (1, 1, 1, 1) e =2 (⊥, 1,⊥, 1)
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Notions of explanation:
minimal sufficient reason

MinimalSR(x, y)  =  SR(x, y) ∧

∀z ((SR(x, z) ∧ z ⊆ y) → z = y)

T ⊨ MinimalSR(e, e )2

falsetrue
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If the values of features  are
fixed, then the output of the model is
fixed

{1, 3, 4}

Notions of explanation:
determinant feature set:  

 is a determinant
feature set
e = (1,⊥, 1, 1)

Value  is not relevant in this
instance
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Notions of explanation:
determinant feature set:  

: holds if and only if the sets of undefined features in 
and  are the same  
SUF(x, y) x

y

If  and , then  holdse = (1,⊥, 1, 1) e =1 (0,⊥, 0, 1) SUF(e, e )1
If  and , then  does
not hold
e = (1,⊥, 1, 1) e =2 (1,⊥, 1,⊥) SUF(e, e )2

If  and , then  does not
hold
e = (1,⊥, 1, 1) e =3 (1, 1,⊥, 1) SUF(e, e )3

 can be expressed in FOIL using only the
predicate 
SUF(x, y)

⊆

31



true false

true

false

10

0

0

1

1

0 1
2

32

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
determinant feature set:  

 is a determinant
feature set
e = (1,⊥, 1, 1)

T ⊨ DFS(e)

DFS(x)  = ∀y (SUF(x, y) →

AllPos(y) ∨ AllNeg(y))
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Notions of explanation: minimal
determinant feature set:  

MinimalDFS(x) = DFS(x) ∧

∀y ((DFS(y) ∧ y ⊆ x) → y = x)



Expressiveness and
complexity of FOIL

What notions of explanation can be expressed in
FOIL? 
What notions of explanation cannot be
expressed in FOIL?
What is the complexity of the evaluation
problem for FOIL?
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The evaluation problem for
FOIL

We consider the data complexity of the problem, so
fix a FOIL formula Φ(x ,… ,x )1 k

:Eval(Φ)

Input: decision tree  of dimension  and partial
instances  of dimension 

T n

e ,… , e1 k n

Output: yes if , and no
otherwise

T ⊨ Φ(e ,… , e )1 k
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The evaluation problem for
FOIL

   if and ony if   T ⊨ Φ(e ,… , e )1 k A ⊨T Φ(e ,… , e )1 k

But  could be of exponential size in the size of AT T

 should not be materialized to check whether AT

T ⊨ Φ(e ,… , e )1 k

 is used only to define the semantics of FOIL AT
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Bad news ...

Theorem:

1. For every FOIL formula , there exists  such
that  is in 

Φ k ≥ 0
Eval(Φ) Σk

P

2. For every , there exists a FOIL formula 
such that  is -hard

k ≥ 0 Φ
Eval(Φ) Σk

P
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 is a minimum sufficient
reason for  over 
e =2 (⊥, 1,⊥, 1)
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More bad news ...

 for T (e) = 1 e = (1, 1, 1, 1)

 is a minimum sufficient reason for 
over 
{2, 4} e

T

There is no sufficient reason for  over 
 with a smaller number of features

e
T

falsetrue



More bad news ...

Theorem:
There is no FOIL formula  such
that, for every decision tree , instance  and
partial instance :

 is a minimum sufficient reason for  over 

MinimumSR(x, y)
T e1

e2
T ⊨ MinimumSR(e , e )1 2

⟺

e2 e1 T
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How do we overcome these
limitations?

We use first-order logic over a larger vocabulary 
We depart from the model-agnostic approach of
FOIL and use the notion of guarded
quantification for decision trees
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DT-FOIL is defined by considering two layers

1. Atomic formulas
2. Guarded formulas

The logic DT-FOIL

41



The first layer

 can be considered as a syntactic predicate, it does not
refer to the models
⊆

We need another predicate like that. Given partial
instances  of dimension :

 
if and only if

|

e , e1 2 n

e ⪯1 e2

{i ∈ {1,…n} ∣ e [i] =1 ⊥}∣ ≥ ∣{i ∈ {1,…n} ∣ e [i] =2 ⊥}∣
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Why do we need another
syntactic predicate?

MinimumSR(x, y)  =  SR(x, y) ∧

∀z ((SR(x, z) ∧ z ⪯ y) → y = z)

How many more predicates do we need to include?
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Atomic formulas

All the syntactic predicates needed in our formalism can
be expressed as first-order queries over {⊆, ⪯}

Theorem: if  is a first-order formula defined over         
, then  can be solved in polynomial time

Φ
{⊆, ⪯} Eval(Φ)

Atomic formulas of DT-FOIL: the set of first-order
formulas defined over {⊆, ⪯}
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The second layer

:Node(e)



The second layer

:Node(e)

(0, 0,⊥,⊥)

(⊥, 1, 0, 0)

(0, 0, 1, 0)
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The second layer

:PosLeaf(e)
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The second layer

:PosLeaf(e)

(0, 1, 0, 0)
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The definition of DT-FOIL

1. Each atomic formula is a DT-FOIL formula
2. Boolean combinations of DT-FOIL formulas are

DT-FOIL formulas
3. If  is a DT-FOIL formula, then so areΦ

∃x (Node(x) ∧ Φ) ∀x (Node(x) → Φ)

∃x (PosLeaf(x) ∧ Φ) ∀x (PosLeaf(x) → Φ)
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SR(x, y)  =  Full(x) ∧ y ⊆ x ∧

(Pos(x) → AllPos(y)) ∧

(¬Pos(x) → AllNeg(y))

An example of a DT-FOIL
formula

DT-FOIL formulas
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An example of a DT-FOIL
formula

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)
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An example of a DT-FOIL
formula

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))
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An example of a DT-FOIL
formula

guarded
quantification

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))
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An example of a DT-FOIL
formula

guarded
quantification

Leaf(x) = Node(x) ∧ ∀y (Node(y) → (x ⊆ y → x = y))

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))
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An example of a DT-FOIL
formula

Leaf(x) = Node(x) ∧ ∀y (Node(y) → (x ⊆ y → x = y))

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))

AllPos(x) = ∀y (Node(y) →

(Leaf(y) ∧ Cons(x, y)) → PosLeaf(y))
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An example of a DT-FOIL
formula

Leaf(x) = Node(x) ∧ ∀y (Node(y) → (x ⊆ y → x = y))

Cons(x, y) = ∃z (x ⊆ z ∧ y ⊆ z)

Pos(x) = Full(x) ∧ ∃y (PosLeaf(y) ∧ Cons(x, y))

AllPos(x) = ∀y (Node(y) →

(Leaf(y) ∧ Cons(x, y)) → PosLeaf(y))
guarded

quantification
56



Is DT-FOIL enough?

Every formula in DT-FOIL can be evaluated in
polynomial time

 and  can be expressed in DT-FOILSR DFS

But it lacks a mechanism to express optimality
conditions
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Two possible solutions

OPT-DT-FOIL: extends DT-FOIL with a minimal
operator

Q-DT-FOIL: extends DT-FOIL with non-guarded
quantification, but without alternation of these
quantifiers
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The evaluation problem for these logics can be
solved with a polynomial number of calls to a SAT
solver

All the notions of explanation discussed in this talk
can be expressed in Q-DT-FOIL and OPT-DT-FOIL

, , , , SR(x, y) MinimalSR(x, y) MinimumSR(x, y) DFS(x)

MinimalDFS(x)

Two possible solutions
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Implementation based on
SAT solvers

Given the complexity of the evaluation problem for
Q-DT-FOIL and OPT-DT-FOIL, we use:

YalSAT: to find a truth assignment that satisfies
a propositional formula
Kissat: to prove that a propositional formula is
not satisfiable

Any SAT solver can be used
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Minimal sufficient reason
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Minimum sufficient reason
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Minimal determinant feature set
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Concluding remarks

DT-FOIL is a model-specific explainability query language

How can the definition of DT-FOIL be extended to
OBDDs and FBDDs?
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Concluding remarks

FOIL is a model-agnostic interpretability query language

The evaluation problem for some fragments of FOIL
can be solved in polynomial time for decision trees
and OBDDs
What is an appropriate fragment of FOIL to be
evaluated using SAT solvers?
What is an appropriate explainability query language
for FBDDs that is based on FOIL?
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Concluding remarks

How can probabilities be incorporated into this
framework?

A probability distribution on the possible values of
features, and a probabilistic classifier  

Probabilistic circuits seem to be the right model for this

A natural and robust generalization of Boolean
circuits, with many well-understood properties
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Thanks!
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