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The Problem of Data Exchange

• Given: Asource schemaS, a target schemaT and a

specificationΣ of the relationship between these schemas.

• Data exchange:Problem of finding an instance ofT , given an

instance ofS.

- Target instance should reflect the source data as accurately as possible,

given the constraints imposed byΣ andT .

- It should be efficiently computable.

- It should allow one to evaluate queries on the target in a waythat is

semantically consistentwith the source data.
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Query over the target:Q

Answer toQ in the target instance shouldrepresentthe answer toQ

in the space of possible translations of the source instance.
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Data Exchange in Relational Databases

• Data exchange has been extensively studied in the relational

world.

- It has also been implemented: Clio.

• Relational data exchange settings:

- Source and target schemas: Relational schemas.

- Relationship between source and target schemas:Source-to-target

dependencies.

• Semantics of data exchange has been precisely defined.

- Algorithms formaterializing target instancesand foranswering queries

over the targethave been developed.
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Data exchange settings

Data Exchange Setting:(S,T,Σst)

S: Source schema.

T: Target schema.

Σst: Set of source-to-target dependencies.

- Source-to-target dependency: FO sentence of the form

∀x̄ (ϕS(x̄) → ∃ȳ ψT(x̄, ȳ)).

- ϕS(x̄): FO formula overS.

- ψT(x̄, ȳ): conjunction of FO atomic formulas overT.
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Data exchange settings: Example

S = 〈Employee(·)〉

T = 〈Dept(·, ·)〉

Σst = {∀x (Employee(x) → ∃yDept(x, y))}.
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Data exchange problem

Given a source instanceI, find a target instanceJ such that(I, J)

satisfiesΣst.

- J is called asolutionfor I.

Example: Possible solutions forI = {Employee(peter)}:

- J1 = {Dept(peter , 1)}.

- J2 = {Dept(peter , 1),Dept(peter , 2)}.

- J3 = {Dept(peter , 1),Dept(john, 1)}.

- J4 = {Dept(peter , X)}.

- J5 = {Dept(peter , X),Dept(peter , Y )}.
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Query answering

Q: Query over the target schema.

- What does it mean to answerQ?

certain(Q, I) =
⋂

J is a solution forI

Q(J)

Example:

- certain(∃yDept(x, y), I) = {peter}.

- certain(Dept(x, y), I) = ∅.
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Query rewriting

How can we computecertain(Q, I)?

- Näıve algorithm does not work: infinitely many solutions.

Approach proposed in [FKMP03]:Query Rewriting

Look for some specificF : inst(S) → inst(T), and find condi-

tions under whichcertain(Q, I) = Q′(F(I)) for every source

instanceI.

What is a good alternative forF?
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Canonical solution

Input: (S,T,Σst) and a source instanceI

Output: Canonical solutionJ for I

Algorithm:

for every∀x̄ (ϕS(x̄) → ∃ȳ ψT(x̄, ȳ)) ∈ Σst do

for everyā such thatI satisfiesϕS(ā) do

create a fresh tuple of null valuesY

insertψT(ā, Y ) into J
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Canonical solution: Example

Σst = {∀x (Employee(x) → ∃yDept(x, y))} and
I = {Employee(peter), Employee(john)}.

- Fora = peter do

Create a fresh null valueX

InsertDept(peter , X) into J

- Fora = john do

Create a fresh null valueY

InsertDept(john, Y ) into J

Canonical solution:

{Dept(peter , X), Dept(john, Y )}
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Query rewriting over the canonical solution

Fcan(I): canonical solution forI.

- Can be computed in polynomial time (data complexity).

Theorem [FKMP03]: For every data exchange setting and union

of conjunctive queriesQ, there existsQ′ such that for every source

instanceI, certain(Q, I) = Q′(Fcan(I)).

- C(x): holds wheneverx is a constant.

- Q′(x1, . . . , xm) = C(x1) ∧ · · · ∧ C(xm) ∧Q(x1, . . . , xm).
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Query Rewriting over the Canonical Universal Solution

• Example:Σst = {∀xEmployee(x) → ∃yDept(x, y)},

I = {Employee(peter), Employee(john)} and

J = {Dept(peter , X), Dept(john, Y )}

Query : Q(x, y) = ∃yDept(x, y)

certain(Q, I) = {peter , john}

Rewriting : Q′(x, y) = C(x) ∧ ∃yDept(x, y)

Q′(J) = {peter , john}
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Query rewriting over the canonical solution

Can the theorem be extended to other classes of queries?

Theorem [FKMP03]: There exists a data exchange setting and a conjunctive

queryQ with one inequality such thatQ is not FO-rewritableoverFcan.

- For every FO queryQ′, there exists an instanceI such that

certain(Q, I) 6= Q′(Fcan(I)).

We would like to study the query rewriting problem.

- We need some tools: How can we prove that a query is not FO-rewritable?

- This resembles the problem of proving inexpressibility results in relational

databases.
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Query rewriting: Some facts

The problem of deciding whether an FO formula is FO-rewritable

overFcan is undecidable.

There exists other classes of queries that are FO-rewritable over the

canonical solution.
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Proving Inexpressibility Results in Relational Databases

- Given: Relation schemaS(·, ·)

- Well known result: transitive closure ofS is not expressible in

relational algebra (FO).

- How do we prove this?
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Locality of Queries: Notation

I: source instance.

Gaifman graphG(I) of I:

- dom(I) is the set of nodes ofG(I).

- There exists an edge betweena andb iff a andb belong to the same tuple of

a relation inI.

Example:I(R) = {(1, 2, 3)} andI(T ) = {(1, 4), (4, 5)}.

2

3

4

5

1

G(I):
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Locality of Queries: Notation

dI(a, b): distance betweena andb in G(I).

dI(ā, b): minimum value ofdI(a, b), wherea is in ā.

NI

d (ā): restriction ofI to the elements at distance at mostd from ā.

- Example:dom(NI

2 (5)) = {1, 4, 5},NI

2 (5)(R) = ∅ and

NI

2 (5)(T ) = {(1, 4), (4, 5)}.

NI

d (ā) ∼= NI

d (b̄): members of̄a andb̄ are treated as distinguished elements.

- ā = (a1, . . . , am) andb̄ = (b1, . . . , bm).

- There is an isomorphismf : NI

d (ā) → NI

d (b̄) such thatf(ai) = bi

(1 ≤ i ≤ m).
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Locality of Queries: Gaifman Theorem

Theorem [G81]For every FO queryQ, there existsd ≥ 0 such that for

every instanceI and tuples̄a, b̄ in I,

N I

d (ā) ∼= N I

d (b̄) =⇒ ā ∈ Q(I) iff b̄ ∈ Q(I).

This theorem can be used to prove inexpressibility results.

- If a query is not “local”, then it is not FO-expressible.
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Proving Inexpressibility: Example

Assume the transitive closure ofS(·, ·) is expressible in FO.

Then there isd ≥ 0 such that:

(a, b) is in the transitive closure ofS

N I

d
(ab) ∼= N I

d
(cd) =⇒ iff

(c, d) is in the transitive closure ofS
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Proving Inexpressibility: Example

I:
ba

N I

d
(ab):

a b

N I

d
(ba):

b a

Contradiction:by Gaifman’s Theorem,(a, b) and(b, a) are in the

transitive closure ofS.
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Locality in data exchange: Definition

Given: (S,T,Σst) and queryQ overT.

Definition: Q is locally source-dependentif there isd ≥ 0 such that for

every instanceI of S and tuples̄a, b̄ in I,

ā ∈ certain(Q, I)

N I

d
(ā) ∼= N I

d
(b̄) =⇒ iff

b̄ ∈ certain(Q, I)
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Locality in data exchange: Main theorem

Theorem: If Q is FO-rewritable over the canonical solution, then

Q is locally source-dependent.

This theorem can be used to prove inexpressibility results.

- If a query is not locally source-dependent, then it is not FO-rewritable.
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Example: Proving inexpressibility

Data exchange setting:

S = 〈G(·, ·), R(·), S(·)〉

T = 〈G′(·, ·), R′(·), S′(·)〉

Σst = ∀x∀y (G(x, y) → G′(x, y)),

∀x (R(x) → R′(x)),

∀x (S(x) → S′(x)).

Query:

Q(x) = R′(x) ∨ S′(x) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z))
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Example: Proving inexpressibility

Assume thatQ is FO-rewritable over the canonical solution.

Then there existsd ≥ 0 such that

N I

d (a) ∼= N I

d (b) =⇒ a ∈ certain(Q, I) iff b ∈ certain(Q, I).

Contradiction: Find a source instanceI such that

N I

d (a) ∼= N I

d (b), a ∈ certain(Q, I) and b 6∈ certain(Q, I).
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Example: Defining instance I

. .
 .

. .
 .

. .
 .

. .
 .

b2d

bd+1

S(b) b1a1

adad+1

a2d

bd
R(c)

I:

S(a)
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Example: a ∈ certain(Q, I)

If J does not satisfyS′(a) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z)):

. .
 .

. .
 . .   .   .   .

R′(a1)

R′(ad)
R′(c)

R′(a)R′(a2d)

R′(ad+1)

J :

Then:J satisfiesR′(a).
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Example: b 6∈ certain(Q, I)

. .
 .

. .
 .

. .
 .

. .
 .

b2d

bd+1

S′(b) b1

R′(ad)R′(ad+1) bd
R′(c)

J :

R′(a), S′(a)
R′(a2d) R′(a1)

J does not satisfyR′(b) ∨ S′(b) ∧ ∃y∃z(R′(y) ∧G′(y, z) ∧ ¬R′(z)).
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Example: Getting a contradiction

. .
 .

. .
 .

. .
 .

. .
 .

bd+1

S(b) b1

bd

b2d

N I

d
(b):

S(a)a2d a1

adad+1

N I

d
(a):

Conclusion:Q is not FO-rewritable over the canonical solution.
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What is new?

Locality in data exchange: Isomorphic neighborhoods in thesourceand

queries over thetarget.

- We cannot directly apply Gaifman’s Theorem.

We need to introduce notions of locality for transformations.
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Locality of transformations under isomorphism
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Locality of transformations under isomorphism

Locality of a transformation under isomorphism: For everyd ≥ 0 there

existsr ≥ 0 such that, for every instanceI of S and tuples̄a, b̄ in I,

N I

r (ā) ∼= N I

r (b̄) =⇒ N
Fcan(I)
d

(ā) ∼= N
Fcan(I)
d

(b̄).

There exist classes of settings where this notion of locality holds.

- LAV setting: each dependency inΣst is of the formS(x̄) → ∃ȳ ψT(x̄, ȳ).

But in general ...
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Locality of transformations under isomorphism

Σst:

∀x∀y (E(x, y) → R(x, y))

∀x∀y∀z (C(x) ∧ E(y, z) → R(y, x) ∧R(z, x))

AssumeFcan is local under isomorphism for this setting.

Then there existsr ≥ 0 such that, for every instanceI of S anda, b in I,

N
I

r (a) ∼= N
I

r (b) =⇒ N
Fcan(I)
2 (a) ∼= N

Fcan(I)
2 (b).
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Locality of transformations under isomorphism

Source:

.  .  .

.  .  .

C(d)

a a1 a2 ar−1 ar+1

b b1 b2 br−1 br

ar

Canonical:

.  .  .

.  .  .

d

a a1 a2 ar−1 ar+1

b b1 b2 br−1 br

ar
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Locality of transformations under isomorphism

d
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∼
=

a

b

a

b

source

d

r

r

canonical solution
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Locality of transformations: Notation

Quantifier rank:Depth of quantifier nesting, denotedqr(φ).

Example:qr

“

∃x ((∀y P (x, y)) ∧ (∃u∀v U(x, u, v))
”

= 3.

Notion of equivalence:I1 ≡k I2 if I1 andI2 agree on all formulas of quantifier

rankk.
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Locality of transformations under logical equivalence
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b

a
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Locality of transformations under logical equivalence

Locality of a transformation under logical equivalence: For every

d, k ≥ 0 there existsr, ` ≥ 0 such that, for every instanceI of S and

tuplesā, b̄ in I,

N I

r (ā) ≡` N
I

r (b̄) =⇒ N
Fcan(I)
d

(ā) ≡k N
Fcan(I)
d

(b̄).

Theorem: Fcan satisfies this notion for every data exchange setting.

Corollary: If Q is FO-rewritable over the canonical solution, thenQ is

locally source-dependent.
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What about other transformations?

Core of canonical solutionJ : SubstructureJ? of J such that there is a

homomorphism fromJ to J? and there is no homomorphism fromJ to a

proper substructure ofJ?.

- Homomorphismh : J → J ′: mapping from dom(J) to dom(J ′) such that

h(c) = c for all constantc, andt̄ ∈ J(R) impliesh(t̄) ∈ J ′(R).

Core is the smallest solution that ishomomorphically equivalent to the

canonical solution.

- It can be computed in polynomial time (data complexity) [FKP03].
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Example: Core

Setting:S = 〈Employee(·, ·)〉, T = 〈Dept(·, ·)〉 and

Σst = {∀x∀y Employee(x, y) → ∃zDept(x, z)}.

Source instance:

I = {Employee(peter , 2213477 ),Employee(peter , 2213479 )}.

Solutions:

- {Dept(peter , 1)}.

- . . .

- Canonical solution:{Dept(peter , X),Dept(peter , Y )}.

- Core:{Dept(peter , Z)}.
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Query rewriting over the core

Fcore(I): core of the canonical solution forI.

Theorem [FKMP03]: For every data exchange setting and union

conjunctive queriesQ, there existsQ′ such that for every source

instanceI, certain(Q, I) = Q′(Fcore(I)).

- Certain answers can be computed more efficiently by using the core.

Rewritability over the core: Can we use locality?
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Canonical solution versus core: First attempt

Proposition: There exists a data exchange settingA = (S,T,Σst) such

that for every data exchange settingB = (S,T,Γst), there exists instance

I of S such that:

FA
core(I) 6∼= FB

can(I).

We need a different approach ...
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Expressiveness: Canonical solution versus core

Theorem: If Q is FO-rewritable over the core, thenQ is also

FO-rewritable over the canonical solution.

- There is a PTIME algorithm that, given a rewriting ofQ over the core, finds

a rewriting ofQ over the canonical solution.

Corollary: If Q is FO-rewritable over the core, thenQ is locally

source-dependent.
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Expressiveness: Canonical solution versus core

Theorem: There exists an FO query that is FO-rewritable over the

canonical solution but not over the core.

Expressiveness point of view:Canonical solution is better than the

core.

- Canonical solution contains more information than the core.
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What about other semantics?

Usual certain answers semantics sometimes exhibit counterintuitive

behavior.

Good solutions: Universal solutions.

- Homomorphically equivalent to the canonical solution.

May be more meaningful to consider semantics based on universal

solutions:

u-certain(Q, I) =
⋂

J is a universal solution forI

Q(J).
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Query rewriting under the universal solutions semantics

Given queryQ, we want to findQ′ such that

u-certain(Q, I) = Q′(F(I)) for every source instanceI.

Theorem [FKP03]: For every data exchange setting and existential

queryQ, there existsQ′ such that for every source instanceI,

u-certain(Q, I) = Q′(Fcore(I)).
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Query rewriting under the universal solutions semantics

Definition: Q is locally source-dependent under the universal solution

semantics if there isd ≥ 0 such that:

ā ∈ u-certain(Q, I)

N I

d
(ā) ∼= N I

d
(b̄) =⇒ iff

b̄ ∈ u-certain(Q, I)

Theorem: All the previous results hold for the universal solution

semantics.

- If Q is FO-rewritable over the canonical solution (core) under the universal

solutions semantics, thenQ is locally source-dependent under the universal

solutions semantics.
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Conclusions

• Locality notions have been very useful for studying the expressive

power of query languages.

• Common data exchange transformations map similar neighborhoods

into similar neighborhoods.

• This property can be used to formulate locality notions for data

exchange transformations and query languages.

• Locality notions can be used for studying the expressive power of

transformations and query languages in data exchange.
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