Marcelo Arenas

PUC & IMFD Chile

EDBT/ICDT 2022 Joint Conference

Motivation: query answering

» Three fundamental associated problems: enumeration, uniform
generation and counting of solutions

Motivation: query answering

» Three fundamental associated problems: enumeration, uniform
generation and counting of solutions

> Study these three problems together

Motivation: query answering

» Three fundamental associated problems: enumeration, uniform
generation and counting of solutions

> Study these three problems together
> In line with [JVV86]

Motivation: query answering

» Three fundamental associated problems: enumeration, uniform
generation and counting of solutions

> Study these three problems together
> In line with [JVV86]

> Define classes (of queries) that have good properties in terms of
these three problems

Motivation: counting

» The construction of these classes required the solution to a
fundamental counting problem for non-deterministic finite automata

Motivation: counting

» The construction of these classes required the solution to a
fundamental counting problem for non-deterministic finite automata

» The motivating scenario comes from graph databases: counting
paths conforming to a regular expression

In this talk

» Present the techniques used to solve the aforementioned counting
problem

In this talk

» Present the techniques used to solve the aforementioned counting
problem

> Show how these techniques can be generalized to tree automata

In this talk

» Present the techniques used to solve the aforementioned counting
problem

> Show how these techniques can be generalized to tree automata

» The motivating scenario comes from relational databases:
counting the number of answers to an acyclic conjunctive query

Definition of the setting

Our first motivating scenario: graph databases

knows

A query over G: (friend + knows)”

knows

knows friendI friend

A query over G: (friend + knows)”

knows

friend

friend friend
|«——> |«——>

friend friend friendI

knows friendI friend friend

friend

®&+®

O+

A query over G: (friend + knows)”

knows

friend knows

friend friend

®&+®
©+®

knows friendI friend friend

friend

O~
O+

Two fundamental problems

» COUNT: count the number of paths p in G such that p conforms
to regular expression r and the length of p is n

Two fundamental problems

» COUNT: count the number of paths p in G such that p conforms
to regular expression r and the length of p is n

» GEN: generate uniformly at random a path p in G such that p
conforms to r and the length of p is n

Is COUNT a difficult problem?

Not surprisingly the answer is yes

We would like to give a precise characterization of the complexity of this
problem

Counting complexity classes

10

Counting complexity classes

» #P : Count the number of witnesses for a problem in NP

10

Counting complexity classes

» #P : Count the number of witnesses for a problem in NP

» SpanP : Count the number of distinct outputs of an NP-transducer

> Example: given as input a graph G, count the number of subgraphs
G’ of G such that G’ is 3-colorable

10

Counting complexity classes

» #P : Count the number of witnesses for a problem in NP

» SpanP : Count the number of distinct outputs of an NP-transducer

> Example: given as input a graph G, count the number of subgraphs
G’ of G such that G’ is 3-colorable
> #P C SpanP

10

Counting complexity classes

» #P : Count the number of witnesses for a problem in NP

» SpanP : Count the number of distinct outputs of an NP-transducer

> Example: given as input a graph G, count the number of subgraphs
G’ of G such that G’ is 3-colorable
> #P C SpanP

» SpanL : Count the number of distinct outputs of an NL-transducer

10

Counting complexity classes

» #P : Count the number of witnesses for a problem in NP

» SpanP : Count the number of distinct outputs of an NP-transducer

> Example: given as input a graph G, count the number of subgraphs
G’ of G such that G’ is 3-colorable
> #P C SpanP

» SpanL : Count the number of distinct outputs of an NL-transducer

> #NFA: given as input an NFA A and a length n, count the number
of words of length n accepted by A

10

#NFA is a hard problem [AJ93]

» SpanlL is contained in #P

» SpanlL is a hard class: if every function in SpanL can be computed
in polynomial time, then P = NP

» #NFA is SpanlL-complete under parsimonious reductions

11

COUNT is SpanlL-complete

Parsimonious reduction from #NFA to COUNT

12

COUNT is SpanlL-complete

Parsimonious reduction from #NFA to COUNT

> Interestingly, the regular expressions used in the reduction are not
far from the ones used in practice [BMT20]

12

COUNT is SpanlL-complete

Parsimonious reduction from #NFA to COUNT

> Interestingly, the regular expressions used in the reduction are not
far from the ones used in practice [BMT20]

COUNT and #NFA are equivalent problems

» In particular, in terms of the existence of efficient approximation
algorithms

12

Existence of an efficient approximation algorithm
for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm

13

Existence of an efficient approximation algorithm
for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized
approximation scheme (FPRAS) for COUNT

13

Existence of an efficient approximation algorithm
for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized
approximation scheme (FPRAS) for COUNT

This is equivalent to constructing an FPRAS for #NFA

13

Existence of an efficient approximation algorithm
for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized
approximation scheme (FPRAS) for COUNT

This is equivalent to constructing an FPRAS for #NFA

» Best known approximation algorithm for #NFA worked in
quasi-polynomial time [KSM95]

13

What about uniform generation of paths?

If we have an FPRAS for COUNT, then it can be obtained an efficient
approximation algorithm for GEN

14

What about uniform generation of paths?

If we have an FPRAS for COUNT, then it can be obtained an efficient
approximation algorithm for GEN

> A fully polynomial-time almost-uniform generator [JVV86]

14

Questions?

15

The main ideas behind the
solution

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The definition of #NFA:

Input : An NFA A over the alphabet {0,1} and a length n (given in unary)
Output : Number of words w such that w € £(A) and |w|=n

17

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The definition of #NFA:

Input : An NFA A over the alphabet {0,1} and a length n (given in unary)
Output : Number of words w such that w € £(A) and |w|=n

Assume that £,(A) = {w € L(A) | |w| = n}, so that the output of #NFA
is |Ln(A)]

17

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and € € (0,1)

18

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ¢ € (0,1)

The task is to compute a number N that is a (1 & ¢)-approximation of |£,(A)|:

18

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ¢ € (0,1)

The task is to compute a number N that is a (1 & ¢)-approximation of |£,(A)|:

(L=9)La(A)] < N < (L+¢)|La(A)]

18

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ¢ € (0,1)

The task is to compute a number N that is a (1 & ¢)-approximation of |£,(A)|:

Pr ((175)\£,,(A)\ <N < (1+5)\£,,(A)\> > %

18

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ¢ € (0,1)

The task is to compute a number N that is a (1 & ¢)-approximation of |£,(A)|:

Pr ((175)\£,,(A)\ <N < (1+5)\£H(A)\> > %

Moreover, number N has to be computed in time poly(m, n, l) where m is the
number of states of A

18

Constructing an FPRAS for #NFA

Assume that A = (Q,{0,1}, A, [, F)

| 4

>
>
>

Q is a finite set of states
A C Qx{0,1} x Q is the transition relation
| C Q is a set of initial states

F C Q is a set of final states

10

First component: unroll automaton A

Construct Aynron from A:
> for each state g € Q, include copies q°, ¢*, ..., ¢" in Aunronl

» for each transition (p,a,q) € A and i € {0,1,...,n— 1}, include
transition (p', a,q' 1) in Aunron

Besides, eliminate from Ay, Unnecessary states: each state g’ is
reachable from an initial state p° (p € /)

20

Second component: a sketch to be used in the estimation

Define £(q') as the set of strings w such that there is a path from an
initial state p° to ¢’ labeled with w

> Notice that |w| =i

Besides, define for every X C Q:

cx) = L)

qgeX

21

Second component: a sketch to be used in the estimation

Define £(q') as the set of strings w such that there is a path from an
initial state p° to ¢’ labeled with w

> Notice that |w| =i
Besides, define for every X C Q:
c(xy =)

qgeX

Then the task is to compute an estimation of |£(F")]

21

Second component: a sketch to be used in the estimation

Let v = (TW where m = | Q|

29

Second component: a sketch to be used in the estimation

Let v = (nm

1, where m = |Q)|

We maintain for each state g':
> N(g'): a (14 x2)-approximation of |£(q')]

> S(g'): a multiset of uniform samples from £(q') of size 2’

Data structure to be inductively computed:

sketch[i] = {N(¢),S(¢/)|0<j<iand g€ Q}

29

The algorithm template

1. Construct A nron from A

2. For each state g € /, set N(q°) = |£(¢°)| =1 and
S(¢°) = £(e°) = {\)

3. Foreach i=0,...,n—1 and state g € Q:
(a) Compute N(g'*1) given sketch][i]

(b) Sample polynomially many uniform elements from L(g™"1)
using N(g'**) and sketch[i], and let S(¢'™) be the multiset of
uniform samples obtained

4. Return an estimation of |L(F")| given sketch[n]

27

Computing an estimation N(F") of |[L(F")]

We use notation N(X') for an estimation |£(X")]

24

Computing an estimation N(F") of |[L(F")]

We use notation N(X') for an estimation |£(X")]

Such an estimation is not only needed in the last step of the algorithm, but
also in the inductive construction of sketchl/]:

24

Computing an estimation N(F") of |[L(F")]

We use notation N(X') for an estimation |£(X")]

Such an estimation is not only needed in the last step of the algorithm, but
also in the inductive construction of sketchl/]:

3. Foreachi=0,...,n—1 and state g € Q:
(a) Compute N(q'*1) given sketchli]
(b) Sample polynomially many uniform elements from £(q'*!)

using N(g'*1) and sketch[i], and let S(g'™!) be the multiset of
uniform samples obtained

24

Computing an estimation N(X') of |£(

Recall that £(X') =] L(p
peX

X'

25

Computing an estimation N(X') of |£(X")]

Recall that £(X') =] L(p
peX
Notice that [£(X')| = Z |L(p

peX

is not true in general

25

Computing an estimation N(X') of |£(X")]

Recall that £(X') =] L(p
peX
Notice that [£(X')| = Z |L£(p")| is not true in general
peX

But the following holds, given a linear order < on Q:

St~ | £(d)]

peX qgeX g<p

25

Computing an estimation N(X') of |£(X")]

We have that:

cxH = Sleee) s U Ld)

peX geX g<p

26

Computing an estimation N(X') of |£(X")]

We have that:

1£(X")]

Sy~ | £d)

peX geX g<p

i |‘c(p,) ~ quX:q<p £(ql)|
g{ 1£(p")])

26

Computing an estimation N(X') of |£(X")]

We have that:

1£(X")]

Sy~ | £d)

peX geX g<p

i |£(p,) ~ quX:q<p £(ql)|
g{ 1£(p")])

So we will use the following approximation:

D,

peX

26

Computing an estimation N(X') of |£(X")]

We have that:

1£(X")]

Sy~ | £d)

peX geX g<p

i |£(p,) ~ quX:q<p £(ql)|
g{ 1£(p")])

So we will use the following approximation:

> N(p')

peX

26

Computing an estimation N(X') of |£(X")]

We have that:

1£(X")]

Sy~ | £d)

peX geX g<p

i |‘C(p,) ~ quX:q<p £(ql)|
g{ 1£(p")])

So we will use the following approximation:

i {S(pl) ~ quX:q<p ‘C(q’)’
g{l\/(p) S

26

Computing an estimation N(X') of |£(X")]

We have that:

1£(X")]

Sy~ | £d)

peX geX g<p

i |‘C(p,) ~ quX:q<p £(ql)|
g{ 1£(p")])

So we will use the following approximation:

, 1S(p") ~ oen L(q
N(XT) = ZN(p’){ & L|J5"(E:)|"<” @)
peX

26

Computing an estimation N(X') of |£(X")]

N(X') can be computed in polynomial time in the size of sketchl[i]

> S(p') ~ Ugex:q<p L(q") is constructed by checking for each
w € S(p') whether w is not in £(q') for every g € X with ¢ < p

27

Computing an estimation N(X') of |£(X")]

N(X') can be computed in polynomial time in the size of sketchl[i]

> S(p') ~ Ugex:q<p L(q") is constructed by checking for each
w € S(p') whether w is not in £(q') for every g € X with ¢ < p

What guarantees that N(X') is a good estimation of |£(X')|?

27

The main property to maintain

E(7) holds if for every p € Q and X C Q:

[£(P) ~ Ugex £(a)] [5(P') ~ Ugex £(9)]

1£(p")] N S(p)]

28

The use of the main property

3. Foreachi=0,...,n—1 and state g € Q:
(a) Compute N(g'*1) given sketch][i]
(b) Sample polynomially many uniform elements from £(q'*1)

using N(g'*1) and sketch[i], and let S(g'!) be the multiset of
uniform samples obtained

20

The use of the main property

3. Foreach i=0,...,n—1 and state g € Q:
(a) Compute N(g'*1) given sketch][i]
(b) Sample polynomially many uniform elements from £(q'*1)

using N(g'*1) and sketch[i], and let S(g'!) be the multiset of
uniform samples obtained

Proposition

If £(i) holds and N(p') isa(l+ A_Z)i—a_pproximation of |£(p")| for
every p € Q, then N(X') is a (1 & x~2)™-approximation of |L(X")| for
every X C @

20

The use of the main property

£(0) holds and N(p°) is a (1 & x~2)°-approximation of |£(p°)] for
every p € Q

> Recall that N(p°) = |£(p%)| and S(p°) = L(p°) for every p € Q

20

The use of the main property

£(0) holds and N(p°) is a (1 & x~2)°-approximation of |£(p°)] for
every p € Q

> Recall that N(p°) = |£(p%)| and S(p°) = L(p°) for every p € Q

Then N(X9) is a (1 £ x~2)-approximation of |£(X?)| for every X C Q

20

The use of the main property

£(0) holds and N(p°) is a (1 & x~2)°-approximation of |£(p°)] for
every p € Q

> Recall that N(p°) = |£(p%)| and S(p°) = L(p°) for every p € Q

Then N(X9) is a (1 £ x~2)-approximation of |£(X?)| for every X C Q

> We want to use the values N(X°) to estimate the values N(p!)

20

The use of the main property

For p € @, define:

Y = {qo | (qO,O,pl) is a transition in Aunron}
Z = {q0 | (qo, 1,p1) is a transition in Aynron}

21

The use of the main property
For p € @, define:

Y = {qo | (qO,O,pl) is a transition in Aunron}
Z = {q°|(q°%1,p") is a transition in A,n.on}

Then L(pt) = L(Y)-{0} W £(Z)- {1}

21

The use of the main property
For p € @, define:

Y = {qo | (qO,O,pl) is a transition in Aunron}
Z = {q0 | (qo, l,pl) is a transition in Aynron}

Then L(pt) = L(Y)-{0} w £(Z)- {1}
> So that |£(p")] = |£(Y)| + [£(2)|

21

The use of the main property

For p € @, define:

Y = {q°](q%0,p") is a transition in Aupon}
7 - {qO | (qo’ 1,p1) is a transition in Aynron}

Then L(pt) = L(Y)-{0} w £(Z)- {1}
> So that |£(p")] = |£(Y)| + [£(2)|

Hence, given that N(Y) is a (1 & x~2)-approximation of |£(Y)| and
N(Z) is a (1 & x~2)-approximation of |£(Z)]:

N(Y) + N(Z) is a (1 & x~2)-approximation of N(p')

21

The use of the main property: a summary

£(0) holds and N(p°) is a (1 + x~2)%-approximation of |£(p°)| for
every p € @

9

The use of the main property: a summary

£(0) holds and N(p°) is a (1 + x~2)%-approximation of |£(p°)| for
every p € @

4

N(X°) is a (1 + k=2)'-approximation of |£(X?)| for every X C Q

9

The use of the main property: a summary

£(0) holds and N(p°) is a (1 + x~2)%-approximation of |£(p°)| for
every p € @

4

N(X°) is a (1 + k=2)'-approximation of |£(X?)| for every X C Q

4

N(p*) = N(Ro(p)) + N(Ri(p")) is a (1 4 x~2) -approximation of N(p')
for every p € Q

where R,(p') = {q° | (q°, b, p!) is a transition in A,pon}

9

The use of the main property: a summary

N(pt) is a (1 4 k—2) -approximation of |£(p!)| for
every p € Q

23

The use of the main property: a summary

£(1) holds and N(p') is a (1 + x~2)*-approximation of |£(p!)| for
every p € Q

23

The use of the main property: a summary

£(1) holds and N(p') is a (1 + x~2)*-approximation of |£(p!)| for
every p € Q

4

N(X') is a (1 + k=2)?-approximation of |L(X?)| for every X C Q

23

The use of the main property: a summary

£(1) holds and N(p') is a (1 + x~2)*-approximation of |£(p!)| for
every p € Q

4

N(X') is a (1 + k=2)?-approximation of |L(X?)| for every X C Q

Y

N(p?) = N(Ro(p?)) + N(R1(p?)) is a (1 + k=2)?-approximation of N(p?)
for every p € Q

where Ry(p?) = {q* | (¢*, b, p) is a transition in A,pon}

23

The final result

Proposition

If (i) holds for every i € {0,1, ..

(1 £ €)-approximation of |L(F")|

.,n}, then N(F") is a

34

Questions?

235K

How can we maintain
property E(i)?

26

Sampling from a state

We need to construct the multiset S(g'™) of uniform samples

Recall that:

> S(g™*1) contains 27 words from £(g'*1)

> S(g'*t1) is computed assuming that N(g'*!) and
sketch[i] = {N(¢), S(¢’) | 0 <j < i} have already been
constructed

7

To recall

3. Foreach i=0,...,n—1 and state g € Q:
(a) Compute N(g'*1) given sketch][i]

(b) Sample polynomially many uniform elements from L(g™"1)
using N(q'*1) and sketchl[i], and let S(g'™!) be the multiset of
uniform samples obtained

28

Sampling from ¢'**

To generate a sample in L',(q"H), we construct a sequence witl wi,

wl, w0 such that
> witl =\
> w/ = bw/tl with b; € {0,1}
> w0 e L£(git)

i

20

Sampling from g'*!

i

To generate a sample in L',(q"H), we construct a sequence witl wi,

wl, w0 such that
> witl =\
> w/ = bw/tl with b; € {0,1}
> w0 e L£(git)

To choose w' = bw't!, construct for b = 0, 1:

P, = {p'|(p',b,q"") is a transition in Aupon}

20

Sampling from q'

Py and P; are sets of states at layer i

We can compute N(Py) and N(Py) as follows:

S(P) N Ugex: qep £(a)]

NX) = 3 N(p)

peX

|S(p")]

20

Sampling from q'

Py and P; are sets of states at layer i

We can compute N(Py) and N(Py) as follows:

S(P) N Ugex: qep £(a)]

NX) = 3 N(p)

st [5(7)]
We choose b € {0,1} with probability:

N(Pp)
N(Po) + N(Py)

20

We could have started from a set of states

The previous procedure works for every set of states P+
P, = {p"|3rtt e P (p' b, rt)is a transition in Auon}

In particular, we applied the procedure for P+ = {g'+1}

41

We could have started from a set of states

The previous procedure works for every set of states P+
P, = {p"|3rtt e P (p' b, rt)is a transition in Auon}

In particular, we applied the procedure for P+ = {g'+1}

The following recursive procedure summarizes the previous idea:
sample(i +1, {qi+1 }7 /\5 ‘150)

It uses sets of states P'*1 = {q*1}, P/, ..., P1, P? and an initial
probability ¢q

41

The sampling algorithm

Sample(j, P/, w/,)
1. If j = 0, then with probability ¢ return w®, otherwise return fail
2. Compute P;, = {p/=1 | 3 € P/ : (p/~1, b,F) is a transition
in Aynron} for b=10,1

N(Pj»)
N(Pjo) + N(Pj1)

3. Choose b € {0,1} with probability p, =
4. Set Pi—1 = Pj.p and wi—t = pwd

o i—1 -1 ¢
5. Return Sample(j — 1, P/~ w/ 7Pb)

49

The key observation

Let x = x; - - - x;41 be a word in £(g™*1)

43

The key observation

Let x = x; - - - x;41 be a word in £(g™*1)

We have that:

Pr(the output of Sample is x)
= Pr(w® = x A the last call to Sample does not fail)

= Pr(the last call to Sample does not fail | w® = x) - Pr(w®

:)()

((HN ,o)+17v)(11)>_1)(HN P

= %o

)

43

The value of the initial probability g

Proposition
Assume that E(j) holds for each j < i+ 1. If w is the output of
Sample(i + 1, {g' "1}, \, N(%il)) then

> ¢ € (0,1) in every recursive call to Sample
» Pr(w=fail) <1-e°
o5

> PI’(W:X):W

for every x € L(q't1)

a4

The value of the initial probability g

Proposition

Assume that E(j) holds for each j < i+ 1. If w is the output of

Sample(i + 1, {g"™*}, A Lil)) then

? N(q

> ¢ € (0,1) in every recursive call to Sample

» Pr(w=fail) <1-e°
.

> Pr(W:x):W

for every x € L(q't1)

Hence, conditioned on not failing, Sample(i + 1, {g'"1}, \,

returns a uniform sample from £(g'*1)

r\l))

a4

Bounding the probability of breaking the main assumption

Recall that £(i) holds if for every g € Q and X C Q:

1£(q") ~ Upex £(p)] B 15(a") ~ Upex £(p7)| o1
1£(q")] 1S(q")| K

45

Bounding the probability of breaking the main assumption

Recall that £(i) holds if for every g € Q and X C Q:

1£(a") ~ Upex £(p7)| B 15(a") ~ Upex £(p7)| o1
1£(q")] 1S(q")| K

By using Hoeffding's inequality, it is possible to conclude that:

Pr(j/n\og(j)> > 1-e"

45

The complete algorithm: final comments

Putting all together, we obtain that the probability that the algorithm
returns a wrong estimate is at most %

The algorithm runs in time poly(m, n, 1)

46

The extension of the approach
to tree automata

47

Tree automata

48

Tree automata

48

Tree automata

48

Tree automata

48

Tree automata

48

Tree automata

48

The problem #TA

Input : A tree automaton (TA) T over the alphabet {0,1} and
a number n (given in unary)
Output : Number of trees t such that t € £(T) and the number

of nodes of t is n

40

Constructing an FPRAS for #TA

50

Constructing an FPRAS for #TA

50

Constructing an FPRAS for #TA

50

Constructing an FPRAS for #TA

50

Constructing an FPRAS for #TA

50

Constructing an FPRAS for #TA

50

Reducing to a counting problem for succinct NFA

O,

51

Reducing to a counting problem for succinct NFA

51

Reducing to a counting problem for succinct NFA

/O\

©

51

Reducing to a counting problem for succinct NFA

SN
& ©

®

51

Reducing to a counting problem for succinct NFA

SN
& 0O

®

51

Reducing to a counting problem for succinct NFA

SN
& ©

®

51

Succinct NFA S = (Q, X, A, I, F)

52

Succinct NFA S = (Q, X, A, I, F)

> Q, ! and F as before

52

Succinct NFA S = (Q, X, A, I, F)

> Q, ! and F as before

> ¥ is an alphabet

52

Succinct NFA S = (Q, X, A, I, F)

> Q, | and F as before
> ¥ is an alphabet

P 3 is assumed to be succinctly encoded via some representation

52

Succinct NFA S = (Q, X, A, I, F)

> Q, | and F as before
> ¥ is an alphabet
P Y is assumed to be succinctly encoded via some representation

> A C Q x 2% x Q is the transition relation

52

Succinct NFA S = (Q, X, A, I, F)

> Q, | and F as before
> ¥ is an alphabet

P Y is assumed to be succinctly encoded via some representation
> A C Q x 2% x Q is the transition relation

> If (p, A, q) € A, then A is also assumed to be succinctly encoded
via some representation

52

Succinct NFA S = (Q, X, A, I, F)

> Q, | and F as before
> ¥ is an alphabet

P Y is assumed to be succinctly encoded via some representation
> A C Q x 2% x Q is the transition relation

> If (p, A, q) € A, then A is also assumed to be succinctly encoded
via some representation

wi -+ - w, € L(S) if there exists a sequence of states qoqi . .. gn such that
qo €1, g, € F and

52

Succinct NFA S = (Q, X, A, I, F)

> Q, | and F as before
> ¥ is an alphabet

P Y is assumed to be succinctly encoded via some representation
> A C Q x 2% x Q is the transition relation

> If (p, A, q) € A, then A is also assumed to be succinctly encoded
via some representation

wi -+ - w, € L(S) if there exists a sequence of states qoqi . .. gn such that
qgo € 1, gn € F and for every w;, there exists A such that w; € A and
(ql'*lt A-, ql) €A

52

Succinct NFA S = (Q, X, A, I, F)

> Q, | and F as before
> ¥ is an alphabet

P Y is assumed to be succinctly encoded via some representation
> A C Q x 2% x Q is the transition relation

> If (p, A, q) € A, then A is also assumed to be succinctly encoded
via some representation

wi -+ - w, € L(S) if there exists a sequence of states qoqi . .. gn such that
qgo € 1, gn € F and for every w;, there exists A such that w; € A and
(ql'*l’, A-, ql) €A

» The length of wi---w, is n

52

The main result about #Succinct-NFA

The definition of #Succinct-NFA:

Input : A succinct NFA S and a length n (given in unary)
Output : Number of words w such that w € £(S) and |w| = n

53

The main result about #Succinct-NFA

The definition of #Succinct-NFA:

Input : A succinct NFA S and a length n (given in unary)
Output : Number of words w such that w € £(S) and |w| = n
Theorem

#Succinct-NFA admits an FPRAS when restricted to the class of succinct NFA

S=(Q,X,A, I, F) such that for every (p, A, q) € A, there exists an oracle
which can:

(1) test membership in A,
(2) produce an estimate of the size of |A|, and

(3) generate almost-uniform samples from A.

53

The main result about #TA

#TA admits an FPRAS

54

The main corollaries about query answering

Let #ACQ:

Input : A database D and an acyclic conjunctive query Q
Output : |Q(D)|

5K

The main corollaries about query answering

Let #ACQ:

Input : A database D and an acyclic conjunctive query Q
Output : |Q(D)|

Corollary
#ACQ admits an FPRAS

5K

The main corollaries about query answering

Given k > 1, let #k-HW:

Input . A database D and a conjunctive query Q such that
the hypertree width of Q is at most k
Output : |Q(D)|

56

The main corollaries about query answering

Given k > 1, let #k-HW:

Input . A database D and a conjunctive query Q such that
the hypertree width of Q is at most k
Output : |Q(D)|

Corollary
#k-HW admits an FPRAS

56

Some final remarks

57

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

» Make algorithms practical

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

» Make algorithms practical

» Implementation of FPRAS for #NFA works well with smaller bounds

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

» Make algorithms practical
» Implementation of FPRAS for #NFA works well with smaller bounds

» Can the results be extended for semantic acyclicity?

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:
» Make algorithms practical
» Implementation of FPRAS for #NFA works well with smaller bounds
» Can the results be extended for semantic acyclicity?

» Can the results be extended to context free grammars?

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:
» Make algorithms practical
» Implementation of FPRAS for #NFA works well with smaller bounds
» Can the results be extended for semantic acyclicity?
» Can the results be extended to context free grammars?

» Only quasi-polynomial time approximation are known for this
problem [GJKSMO97]

58

Questions?

50

Bibliography

[AJ93]

[ACJR21a]

[ACJR21b]

[BMT20]

C. Alvarez, B. Jenner: A Very Hard log-Space Counting
Class. Theor. Comput. Sci. 107(1): 3-30, 1993

M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros:
#NFA Admits an FPRAS: Efficient Enumeration, Count-
ing, and Uniform Generation for Logspace Classes. J. ACM
68(6): 48:1-48:40, 2021

M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros:
When is approximate counting for conjunctive queries
tractable? STOC 2021: 1015-1027

A. Bonifati, W. Martens, T. Timm: An analytical study of
large SPARQL query logs. VLDB J. 29(2-3): 655-679, 2020

60

Bibliography

[GJKSMO7]

[JVV86]

[KSM95]

V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, S. R. Ma-
haney: A Quasi-Polynomial-Time Algorithm for Sampling
Words from a Context-Free Language. Inf. Comput.
134(1): 59-74. 1997

M. Jerrum, L. G. Valiant, V. V. Vazirani: Random Gener-
ation of Combinatorial Structures from a Uniform Distribu-
tion. Theor. Comput. Sci. 43: 169-188, 1986

S. Kannan, Z. Sweedyk, S. R. Mahaney: Counting and Ran-
dom Generation of Strings in Regular Languages. SODA
1995: 551-557

61

Appendix

62

COUNT is SpanL-complete (under parsimonious
reductions)

Consider the following NFA A:

Assume we need to return the number of words of length 4 accepted by A

63

Reduction from #NFA to COUNT

64

Reduction from #NFA to COUNT

0
1
1
0
6‘TO‘TO‘TOCO‘U—OTO‘TO
1
1 0

O 0—0—50+0

0

64

Reduction from #NFA to COUNT

g; is an initial state : s/u

0
1
1
0
6‘TO‘TO‘TOCO‘U—OTO‘TO
1
1 0

O 0—0—50+0

0

64

Reduction from #NFA to COUNT

g; is an initial state : s/u

0
1
1
0
6‘TO‘TO‘TOCO‘U—OTO‘TO
1
1 0

O 0—0—50+0

0

64

Reduction from #NFA to COUNT

gi is an initial state : s/u’
(gi,a,q;) is a transition : v /a/u

0
1
1 0
0
6‘70‘,1—0‘”—030‘“—0‘?0‘”—0
1
1 0

O 0—0—50+0

64

Reduction from #NFA to COUNT

gi is an initial state : s/u’
(gi,a,q;) is a transition : v /a/u

0
1
1 0
0
6‘70‘,1—0‘”—030‘“—0‘?0‘”—0
1
1 0

O 0—0—50+0

64

Reduction from #NFA to COUNT

g; is an initial state : s/u’
(gi,a,q;) is a transition : v /a/u

0
O—+O0——0—0—00—0O0—0O—
1
1 0
0
6‘70‘,1—0‘”—030‘”—0‘?0‘”—0
1
1 0

O 0—0—50+0

64

Reduction from #NFA to COUNT

g; is an initial state : s/u’
(gi,a,q;) is a transition : v /a/u

0
O—+O0——0—0—00—0O0—0O—
1
1 0
0
6‘70‘,1—0‘”—030‘”—0‘?0‘”—0
1
1 0

O 0—0—50+0

64

Reduction from #NFA to COUNT

g; is an initial state : s/u’
(gi,a,q;) is a transition : v /a/u

0
1
1 0
0
B‘U—O‘U—O‘U—OCO‘U—O‘U—O‘TO
1
1 0

O 00500

64

Reduction from #NFA to COUNT

g; is an initial state : s/u’
(gi,a,q;) is a transition : v /a/u
gi is a final state : W37/t

0
1
1 0
0
B‘U—O‘U—O‘U—OCO‘U—O‘U—O‘TO
1
1 0

O 00500

64

Reduction from #NFA to COUNT

g; is an initial state : s/u’
(gi,a,q;) is a transition : v /a/u
gi is a final state : W37/t

0
1
1 0
0
B‘U—O‘U—O‘U—OCO‘U—O‘U—O‘TO
1
1 0

O 00500

64

Reduction from #NFA to COUNT

Define r = (s/u+ u/u/1/u/u/ 4+ u/0/u/u/u+0/u+ ...+ u/t)"

65

Reduction from #NFA to COUNT

Define r = (s/u+ u/u/1/u/u/ 4+ u/0/u/u/u+0/u+ ...+ u/t)"

Number of words of length 4 accepted by A

Number of paths p in G such that p conforms to r and
the length of pis 21 = (5 x 3+ 4 +2)

65

Bounding the probability of breaking the main assumption

Recall that £(i) holds if for every g € Q@ and X C Q:

1£(a") ~ Upex £ [5(4) ~ Upex £(P)) 1
1£(q")] 1S(q")] K3

We know that £(0) holds.

66

Bounding the probability of breaking the main assumption

Recall that £(i) holds if for every g € Q@ and X C Q:

1£(a") ~ Upex £ 1S(d) ~ Upexﬁ(p)! 1
1£(q")] |S(q")] K

We know that £(0) holds. We need to compute a lower bound for:

*(A0)

66

Bounding the probability of breaking £(/)

i—1
Assume that /\ E(j) holds
j=0

Let g € Q and S(g') be a multiset of 2x” samples from £(q') computed

by calling Sample(i, {g'}, A, %)

» Each element of S(q') is obtained by repeatedly calling Sample
until the output is different from fail

Assume that S(q') = {wy, ..., w;} with t = 27

67

Bounding the probability of breaking £(/)

Let X C @, and Y; be a Bernoulli random variable for i € {1,... t}:

Yi=1 ifandonlyif w; e <£(qi) ~ U L(p")>

peX

68

Bounding the probability of breaking £(/)

Let X C @, and Y; be a Bernoulli random variable for i € {1,... t}:

Yi=1 ifandonlyif w; e <£(qi) ~ U L(p")>

peX

We have that:

1£(0") ~ Upex £(P)]

Evil = ()]
SV = 15(6) Upex £(6')
£ = IS(q)]

68

By using Hoeffding's inequality

15() ~ Upex £0)]
5(q)|

1£(4") ~ Uyex £()]
12(q)

d

1
> =

}\(ts<j))

690

By using Hoeffding's inequality

15(") ~ U,pex £(p)]
P (‘ 5(q)| -
a(q")\u,,exc(pn‘ o1
(@) =

690

By using Hoeffding's inequality

15(") ~ U,pex £(p)]
P (‘ 5(q)| -
a(q")\u,,exc(pn‘ o1
(@) =

690

By using Hoeffding's inequality

15(") ~ U,pex £(p)]
P (‘ 5(q)| -
a(q")\u,,exc(pn‘ o1
(@) =

690

By using Hoeffding's inequality

15(") ~ U,pex £(p)]
P (‘ 5(a) -
1£(q') ~ Upex £()] 1A N
e | 2w /\05(’)) -

690

By taking the union bound

15(6) ~ Upex £(P))]

Pr(30 @3x < o =gy

1£(q") ~ Uex £(p)l'
1£(q")

o) =

70

By taking the union bound

ee(a e qax ¢ 0L Voo 001

T Ts@)l -
LURVELCITINE j/\os(j)) <
|z:(q") |£L(Jpe)xﬁ(f’)| = ;/_\:5(1)) <

70

By taking the union bound

' 15(6) ~ Upex £(P))]

Pr(aqe QIXCQ

TSl
LURVELCITINE j/\os(j)) <
EEn(
£(4) TEL(J;ie)Tﬁ(p’)I > 1 ;/_\:5(1)) <

4 —2K

m2M2eM < k2"2e™H < 2e

70

The conclusion

Rewriting the previous result:

Pr<5(i)

We conclude that:

i—1
/\50)) > 1—e 2
j=0

71

The complete algorithm

Input: NFA A=(Q,{0,1},A, I, F) with m=|Q
unary and error ¢ € (0,1)

, length n given in

79

The complete algorithm

Input: NFA A=(Q,{0,1},A, I, F) with m=|Q
unary and error ¢ € (0,1)

1. If £,(A) =0, then return 0

, length n given in

79

The complete algorithm

Input: NFA A=(Q,{0,1},A, I, F) with m=|Q
unary and error ¢ € (0,1)

1. If £,(A) =0, then return 0

2. Construct Aynro and set k5 = [22]

, length n given in

79

The complete algorithm

Input: NFA A= (Q,{0,1}, A, I, F) with m = |Q]|, length n given in
unary and error ¢ € (0,1)

1. If £,(A) =0, then return 0
2. Construct Ayprop and set k= []

3. Remove each state g’ from Ao that is not reachable from an
initial state in /°

79

The complete algorithm

Input: NFA A= (Q,{0,1}, A, I, F) with m = |Q]|, length n given in
unary and error ¢ € (0,1)

1. If £,(A) =0, then return 0
2. Construct Ayprop and set k= []

3. Remove each state g’ from Ao that is not reachable from an
initial state in /°

4. For each q° € 19, set N(g°) =1 and S(q°) = {)\}

79

The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:

73

The complete algorithm

5. For each layer i = 1,...,n and state g’ in Ao

5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1

73

The complete algorithm

5. For each layer i = 1,...,n and state g’ in Ao

5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1

5.2 Set N(q') = N(Ro) + N(R;)

73

The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:
5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1
5.2 Set N(q') = N(Ro) + N(R;)
5.3 Set S(q') = 0. Then while |S(q")| < 2x7:

73

The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:
5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1
5.2 Set N(q') = N(Ro) + N(R;)
5.3 Set S(q') = 0. Then while |S(q")| < 2x7:

5.3.1 Run Sample(i,{g'}, \, ,\7(—;)) until it returns w # fail, and at

most c(x) € ©(log(x)) times

73

The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:
5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1
5.2 Set N(q') = N(Ro) + N(R;)
5.3 Set S(q') = 0. Then while |S(q")| < 2x7:

5.3.1 Run Sample(i,{g'}, \, ,\7(—;)) until it returns w # fail, and at

most c(x) € ©(log(x)) times

5.3.2 If w = fail, then return 0 (failure event)

73

The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:
5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1
5.2 Set N(q') = N(Ro) + N(R;)
5.3 Set S(q') = 0. Then while |S(q")| < 2x7:

5.3.1 Run Sample(i,{g'}, \, ,\7(—;)) until it returns w # fail, and at

most c(x) € ©(log(x)) times
5.3.2 If w = fail, then return 0 (failure event)
5.3.3 Set S(q') = S(¢') U {w} (recall that S(q') allows duplicates)

73

The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:
5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1
5.2 Set N(q') = N(Ro) + N(R;)
5.3 Set S(q') = 0. Then while |S(q")| < 2x7:

5.3.1 Run Sample(i,{g'}, \, ,\7(—;)) until it returns w # fail, and at

most c(x) € ©(log(x)) times
5.3.2 If w = fail, then return 0 (failure event)
5.3.3 Set S(q') = S(¢') U {w} (recall that S(q') allows duplicates)

6. Return N(F™) as an estimation of |£,(A)|

73

The complete algorithm: final comments

The probability that the algorithm returns a wrong estimate is at most %

> Considering c(x) = [%W

The algorithm runs in time poly(m, n, 1)

74

