
Counting the Solutions to a Query

Marcelo Arenas

PUC & IMFD Chile

EDBT/ICDT 2022 Joint Conference

1

Motivation: query answering

I Three fundamental associated problems: enumeration, uniform
generation and counting of solutions

I Study these three problems together

I In line with [JVV86]

I Define classes (of queries) that have good properties in terms of
these three problems

2

Motivation: query answering

I Three fundamental associated problems: enumeration, uniform
generation and counting of solutions

I Study these three problems together

I In line with [JVV86]

I Define classes (of queries) that have good properties in terms of
these three problems

2

Motivation: query answering

I Three fundamental associated problems: enumeration, uniform
generation and counting of solutions

I Study these three problems together

I In line with [JVV86]

I Define classes (of queries) that have good properties in terms of
these three problems

2

Motivation: query answering

I Three fundamental associated problems: enumeration, uniform
generation and counting of solutions

I Study these three problems together

I In line with [JVV86]

I Define classes (of queries) that have good properties in terms of
these three problems

2

Motivation: counting

I The construction of these classes required the solution to a
fundamental counting problem for non-deterministic finite automata

I The motivating scenario comes from graph databases: counting
paths conforming to a regular expression

3

Motivation: counting

I The construction of these classes required the solution to a
fundamental counting problem for non-deterministic finite automata

I The motivating scenario comes from graph databases: counting
paths conforming to a regular expression

3

In this talk

I Present the techniques used to solve the aforementioned counting
problem

I Show how these techniques can be generalized to tree automata

I The motivating scenario comes from relational databases:
counting the number of answers to an acyclic conjunctive query

4

In this talk

I Present the techniques used to solve the aforementioned counting
problem

I Show how these techniques can be generalized to tree automata

I The motivating scenario comes from relational databases:
counting the number of answers to an acyclic conjunctive query

4

In this talk

I Present the techniques used to solve the aforementioned counting
problem

I Show how these techniques can be generalized to tree automata

I The motivating scenario comes from relational databases:
counting the number of answers to an acyclic conjunctive query

4

Definition of the setting

5

Our first motivating scenario: graph databases

Leah Nora

Zara

friend friend

JackPaul

friend

friend

knows

John

friend friend

friend

knows

G :

6

A query over G : (friend + knows)∗

Leah Nora

Zara

friend friend

JackPaul

friend

friend

knows

John

friend friend

friend

knows

Nora

John

friend

Zara

friend

Jack

friend

Leah

John

friend

Zara

friend

Paul

knows

7

A query over G : (friend + knows)∗

Leah Nora

Zara

friend friend

JackPaul

friend

friend

knows

John

friend friend

friend

knows

Nora

John

friend

Zara

friend

Jack

friend

Leah

John

friend

Zara

friend

Paul

knows

7

A query over G : (friend + knows)∗

Leah Nora

Zara

friend friend

JackPaul

friend

friend

knows

John

friend friend

friend

knows

Nora

John

friend

Zara

friend

Jack

friend

Leah

John

friend

Zara

friend

Paul

knows

7

Two fundamental problems

I COUNT: count the number of paths p in G such that p conforms
to regular expression r and the length of p is n

I GEN: generate uniformly at random a path p in G such that p
conforms to r and the length of p is n

8

Two fundamental problems

I COUNT: count the number of paths p in G such that p conforms
to regular expression r and the length of p is n

I GEN: generate uniformly at random a path p in G such that p
conforms to r and the length of p is n

8

Is COUNT a difficult problem?

Not surprisingly the answer is yes

We would like to give a precise characterization of the complexity of this
problem

9

Counting complexity classes

I #P : Count the number of witnesses for a problem in NP

I SpanP : Count the number of distinct outputs of an NP-transducer

I Example: given as input a graph G , count the number of subgraphs
G ′ of G such that G ′ is 3-colorable

I #P ⊆ SpanP

I SpanL : Count the number of distinct outputs of an NL-transducer

I #NFA: given as input an NFA A and a length n, count the number
of words of length n accepted by A

10

Counting complexity classes

I #P : Count the number of witnesses for a problem in NP

I SpanP : Count the number of distinct outputs of an NP-transducer

I Example: given as input a graph G , count the number of subgraphs
G ′ of G such that G ′ is 3-colorable

I #P ⊆ SpanP

I SpanL : Count the number of distinct outputs of an NL-transducer

I #NFA: given as input an NFA A and a length n, count the number
of words of length n accepted by A

10

Counting complexity classes

I #P : Count the number of witnesses for a problem in NP

I SpanP : Count the number of distinct outputs of an NP-transducer

I Example: given as input a graph G , count the number of subgraphs
G ′ of G such that G ′ is 3-colorable

I #P ⊆ SpanP

I SpanL : Count the number of distinct outputs of an NL-transducer

I #NFA: given as input an NFA A and a length n, count the number
of words of length n accepted by A

10

Counting complexity classes

I #P : Count the number of witnesses for a problem in NP

I SpanP : Count the number of distinct outputs of an NP-transducer

I Example: given as input a graph G , count the number of subgraphs
G ′ of G such that G ′ is 3-colorable

I #P ⊆ SpanP

I SpanL : Count the number of distinct outputs of an NL-transducer

I #NFA: given as input an NFA A and a length n, count the number
of words of length n accepted by A

10

Counting complexity classes

I #P : Count the number of witnesses for a problem in NP

I SpanP : Count the number of distinct outputs of an NP-transducer

I Example: given as input a graph G , count the number of subgraphs
G ′ of G such that G ′ is 3-colorable

I #P ⊆ SpanP

I SpanL : Count the number of distinct outputs of an NL-transducer

I #NFA: given as input an NFA A and a length n, count the number
of words of length n accepted by A

10

Counting complexity classes

I #P : Count the number of witnesses for a problem in NP

I SpanP : Count the number of distinct outputs of an NP-transducer

I Example: given as input a graph G , count the number of subgraphs
G ′ of G such that G ′ is 3-colorable

I #P ⊆ SpanP

I SpanL : Count the number of distinct outputs of an NL-transducer

I #NFA: given as input an NFA A and a length n, count the number
of words of length n accepted by A

10

#NFA is a hard problem [AJ93]

I SpanL is contained in #P

I SpanL is a hard class: if every function in SpanL can be computed
in polynomial time, then P = NP

I #NFA is SpanL-complete under parsimonious reductions

11

COUNT is SpanL-complete

Parsimonious reduction from #NFA to COUNT

I Interestingly, the regular expressions used in the reduction are not
far from the ones used in practice [BMT20]

COUNT and #NFA are equivalent problems

I In particular, in terms of the existence of efficient approximation
algorithms

12

COUNT is SpanL-complete

Parsimonious reduction from #NFA to COUNT

I Interestingly, the regular expressions used in the reduction are not
far from the ones used in practice [BMT20]

COUNT and #NFA are equivalent problems

I In particular, in terms of the existence of efficient approximation
algorithms

12

COUNT is SpanL-complete

Parsimonious reduction from #NFA to COUNT

I Interestingly, the regular expressions used in the reduction are not
far from the ones used in practice [BMT20]

COUNT and #NFA are equivalent problems

I In particular, in terms of the existence of efficient approximation
algorithms

12

Existence of an efficient approximation algorithm
for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized
approximation scheme (FPRAS) for COUNT

This is equivalent to constructing an FPRAS for #NFA

I Best known approximation algorithm for #NFA worked in
quasi-polynomial time [KSM95]

13

Existence of an efficient approximation algorithm
for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized
approximation scheme (FPRAS) for COUNT

This is equivalent to constructing an FPRAS for #NFA

I Best known approximation algorithm for #NFA worked in
quasi-polynomial time [KSM95]

13

Existence of an efficient approximation algorithm
for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized
approximation scheme (FPRAS) for COUNT

This is equivalent to constructing an FPRAS for #NFA

I Best known approximation algorithm for #NFA worked in
quasi-polynomial time [KSM95]

13

Existence of an efficient approximation algorithm
for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized
approximation scheme (FPRAS) for COUNT

This is equivalent to constructing an FPRAS for #NFA

I Best known approximation algorithm for #NFA worked in
quasi-polynomial time [KSM95]

13

What about uniform generation of paths?

If we have an FPRAS for COUNT, then it can be obtained an efficient
approximation algorithm for GEN

I A fully polynomial-time almost-uniform generator [JVV86]

14

What about uniform generation of paths?

If we have an FPRAS for COUNT, then it can be obtained an efficient
approximation algorithm for GEN

I A fully polynomial-time almost-uniform generator [JVV86]

14

Questions?

15

The main ideas behind the
solution

16

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The definition of #NFA:

Input : An NFA A over the alphabet {0, 1} and a length n (given in unary)
Output : Number of words w such that w ∈ L(A) and |w | = n

Assume that Ln(A) = {w ∈ L(A) | |w | = n}, so that the output of #NFA
is |Ln(A)|

17

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The definition of #NFA:

Input : An NFA A over the alphabet {0, 1} and a length n (given in unary)
Output : Number of words w such that w ∈ L(A) and |w | = n

Assume that Ln(A) = {w ∈ L(A) | |w | = n}, so that the output of #NFA
is |Ln(A)|

17

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ε ∈ (0, 1)

The task is to compute a number N that is a (1± ε)-approximation of |Ln(A)|:

Pr

(
(1− ε)|Ln(A)| ≤ N ≤ (1 + ε)|Ln(A)|

)
≥ 3

4

Moreover, number N has to be computed in time poly(m, n, 1
ε

), where m is the

number of states of A

18

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ε ∈ (0, 1)

The task is to compute a number N that is a (1± ε)-approximation of |Ln(A)|:

Pr

(
(1− ε)|Ln(A)| ≤ N ≤ (1 + ε)|Ln(A)|

)
≥ 3

4

Moreover, number N has to be computed in time poly(m, n, 1
ε

), where m is the

number of states of A

18

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ε ∈ (0, 1)

The task is to compute a number N that is a (1± ε)-approximation of |Ln(A)|:

Pr

(

(1− ε)|Ln(A)| ≤ N ≤ (1 + ε)|Ln(A)|

)
≥ 3

4

Moreover, number N has to be computed in time poly(m, n, 1
ε

), where m is the

number of states of A

18

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ε ∈ (0, 1)

The task is to compute a number N that is a (1± ε)-approximation of |Ln(A)|:

Pr

(
(1− ε)|Ln(A)| ≤ N ≤ (1 + ε)|Ln(A)|

)
≥ 3

4

Moreover, number N has to be computed in time poly(m, n, 1
ε

), where m is the

number of states of A

18

Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ε ∈ (0, 1)

The task is to compute a number N that is a (1± ε)-approximation of |Ln(A)|:

Pr

(
(1− ε)|Ln(A)| ≤ N ≤ (1 + ε)|Ln(A)|

)
≥ 3

4

Moreover, number N has to be computed in time poly(m, n, 1
ε

), where m is the

number of states of A

18

Constructing an FPRAS for #NFA

Assume that A = (Q, {0, 1},∆, I ,F)

I Q is a finite set of states

I ∆ ⊆ Q × {0, 1} × Q is the transition relation

I I ⊆ Q is a set of initial states

I F ⊆ Q is a set of final states

19

First component: unroll automaton A

Construct Aunroll from A:

I for each state q ∈ Q, include copies q0, q1, . . ., qn in Aunroll

I for each transition (p, a, q) ∈ ∆ and i ∈ {0, 1, . . . , n − 1}, include
transition (pi , a, qi+1) in Aunroll

Besides, eliminate from Aunroll unnecessary states: each state qi is
reachable from an initial state p0 (p ∈ I)

20

Second component: a sketch to be used in the estimation

Define L(qi) as the set of strings w such that there is a path from an
initial state p0 to qi labeled with w

I Notice that |w | = i

Besides, define for every X ⊆ Q:

L(X i) =
⋃
q∈X

L(qi)

Then the task is to compute an estimation of |L(F n)|

21

Second component: a sketch to be used in the estimation

Define L(qi) as the set of strings w such that there is a path from an
initial state p0 to qi labeled with w

I Notice that |w | = i

Besides, define for every X ⊆ Q:

L(X i) =
⋃
q∈X

L(qi)

Then the task is to compute an estimation of |L(F n)|

21

Second component: a sketch to be used in the estimation

Let κ = dnm
ε
e, where m = |Q|

We maintain for each state qi :

I N(qi): a (1± κ−2)i -approximation of |L(qi)|
I S(qi): a multiset of uniform samples from L(qi) of size 2κ7

Data structure to be inductively computed:

sketch[i] = {N(qj),S(qj) | 0 ≤ j ≤ i and q ∈ Q}

22

Second component: a sketch to be used in the estimation

Let κ = dnm
ε
e, where m = |Q|

We maintain for each state qi :

I N(qi): a (1± κ−2)i -approximation of |L(qi)|
I S(qi): a multiset of uniform samples from L(qi) of size 2κ7

Data structure to be inductively computed:

sketch[i] = {N(qj),S(qj) | 0 ≤ j ≤ i and q ∈ Q}

22

The algorithm template

1. Construct Aunroll from A

2. For each state q ∈ I , set N(q0) = |L(q0)| = 1 and
S(q0) = L(q0) = {λ}

3. For each i = 0, . . . , n − 1 and state q ∈ Q:

(a) Compute N(qi+1) given sketch[i]

(b) Sample polynomially many uniform elements from L(qi+1)
using N(qi+1) and sketch[i], and let S(qi+1) be the multiset of
uniform samples obtained

4. Return an estimation of |L(F n)| given sketch[n]

23

Computing an estimation N(F n) of |L(F n)|

We use notation N(X i) for an estimation |L(X i)|

Such an estimation is not only needed in the last step of the algorithm, but
also in the inductive construction of sketch[i]:

...

3. For each i = 0, . . . , n − 1 and state q ∈ Q:

(a) Compute N(qi+1) given sketch[i]

(b) Sample polynomially many uniform elements from L(qi+1)
using N(qi+1) and sketch[i], and let S(qi+1) be the multiset of
uniform samples obtained

...

24

Computing an estimation N(F n) of |L(F n)|

We use notation N(X i) for an estimation |L(X i)|

Such an estimation is not only needed in the last step of the algorithm, but
also in the inductive construction of sketch[i]:

...

3. For each i = 0, . . . , n − 1 and state q ∈ Q:

(a) Compute N(qi+1) given sketch[i]

(b) Sample polynomially many uniform elements from L(qi+1)
using N(qi+1) and sketch[i], and let S(qi+1) be the multiset of
uniform samples obtained

...

24

Computing an estimation N(F n) of |L(F n)|

We use notation N(X i) for an estimation |L(X i)|

Such an estimation is not only needed in the last step of the algorithm, but
also in the inductive construction of sketch[i]:

...

3. For each i = 0, . . . , n − 1 and state q ∈ Q:

(a) Compute N(qi+1) given sketch[i]

(b) Sample polynomially many uniform elements from L(qi+1)
using N(qi+1) and sketch[i], and let S(qi+1) be the multiset of
uniform samples obtained

...

24

Computing an estimation N(X i) of |L(X i)|

Recall that L(X i) =
⋃
p∈X

L(pi)

Notice that |L(X i)| =
∑
p∈X

|L(pi)| is not true in general

But the following holds, given a linear order < on Q:

|L(X i)| =
∑
p∈X

∣∣L(pi) r
⋃

q∈X : q<p

L(qi)
∣∣

25

Computing an estimation N(X i) of |L(X i)|

Recall that L(X i) =
⋃
p∈X

L(pi)

Notice that |L(X i)| =
∑
p∈X

|L(pi)| is not true in general

But the following holds, given a linear order < on Q:

|L(X i)| =
∑
p∈X

∣∣L(pi) r
⋃

q∈X : q<p

L(qi)
∣∣

25

Computing an estimation N(X i) of |L(X i)|

Recall that L(X i) =
⋃
p∈X

L(pi)

Notice that |L(X i)| =
∑
p∈X

|L(pi)| is not true in general

But the following holds, given a linear order < on Q:

|L(X i)| =
∑
p∈X

∣∣L(pi) r
⋃

q∈X : q<p

L(qi)
∣∣

25

Computing an estimation N(X i) of |L(X i)|

We have that:

|L(X i)| =
∑
p∈X

∣∣L(pi) r
⋃

q∈X : q<p

L(qi)
∣∣

=
∑
p∈X

∣∣L(pi)
∣∣ ∣∣L(pi) r

⋃
q∈X : q<p L(qi)

∣∣∣∣L(pi)
∣∣

So we will use the following approximation:

N(X i) =

∑
p∈X

N(pi)

∣∣S(pi) r
⋃

q∈X : q<p L(qi)
∣∣∣∣S(pi)

∣∣

26

Computing an estimation N(X i) of |L(X i)|

We have that:

|L(X i)| =
∑
p∈X

∣∣L(pi) r
⋃

q∈X : q<p

L(qi)
∣∣

=
∑
p∈X

∣∣L(pi)
∣∣ ∣∣L(pi) r

⋃
q∈X : q<p L(qi)

∣∣∣∣L(pi)
∣∣

So we will use the following approximation:

N(X i) =

∑
p∈X

N(pi)

∣∣S(pi) r
⋃

q∈X : q<p L(qi)
∣∣∣∣S(pi)

∣∣

26

Computing an estimation N(X i) of |L(X i)|

We have that:

|L(X i)| =
∑
p∈X

∣∣L(pi) r
⋃

q∈X : q<p

L(qi)
∣∣

=
∑
p∈X

∣∣L(pi)
∣∣ ∣∣L(pi) r

⋃
q∈X : q<p L(qi)

∣∣∣∣L(pi)
∣∣

So we will use the following approximation:

N(X i) =

∑
p∈X

N(pi)

∣∣S(pi) r
⋃

q∈X : q<p L(qi)
∣∣∣∣S(pi)

∣∣

26

Computing an estimation N(X i) of |L(X i)|

We have that:

|L(X i)| =
∑
p∈X

∣∣L(pi) r
⋃

q∈X : q<p

L(qi)
∣∣

=
∑
p∈X

∣∣L(pi)
∣∣ ∣∣L(pi) r

⋃
q∈X : q<p L(qi)

∣∣∣∣L(pi)
∣∣

So we will use the following approximation:

N(X i) =

∑
p∈X

N(pi)

∣∣S(pi) r
⋃

q∈X : q<p L(qi)
∣∣∣∣S(pi)

∣∣

26

Computing an estimation N(X i) of |L(X i)|

We have that:

|L(X i)| =
∑
p∈X

∣∣L(pi) r
⋃

q∈X : q<p

L(qi)
∣∣

=
∑
p∈X

∣∣L(pi)
∣∣ ∣∣L(pi) r

⋃
q∈X : q<p L(qi)

∣∣∣∣L(pi)
∣∣

So we will use the following approximation:

N(X i) =

∑
p∈X

N(pi)

∣∣S(pi) r
⋃

q∈X : q<p L(qi)
∣∣∣∣S(pi)

∣∣

26

Computing an estimation N(X i) of |L(X i)|

We have that:

|L(X i)| =
∑
p∈X

∣∣L(pi) r
⋃

q∈X : q<p

L(qi)
∣∣

=
∑
p∈X

∣∣L(pi)
∣∣ ∣∣L(pi) r

⋃
q∈X : q<p L(qi)

∣∣∣∣L(pi)
∣∣

So we will use the following approximation:

N(X i) =
∑
p∈X

N(pi)

∣∣S(pi) r
⋃

q∈X : q<p L(qi)
∣∣∣∣S(pi)

∣∣

26

Computing an estimation N(X i) of |L(X i)|

N(X i) can be computed in polynomial time in the size of sketch[i]

I S(pi) r
⋃

q∈X : q<p L(qi) is constructed by checking for each

w ∈ S(pi) whether w is not in L(qi) for every q ∈ X with q < p

What guarantees that N(X i) is a good estimation of |L(X i)|?

27

Computing an estimation N(X i) of |L(X i)|

N(X i) can be computed in polynomial time in the size of sketch[i]

I S(pi) r
⋃

q∈X : q<p L(qi) is constructed by checking for each

w ∈ S(pi) whether w is not in L(qi) for every q ∈ X with q < p

What guarantees that N(X i) is a good estimation of |L(X i)|?

27

The main property to maintain

E(i) holds if for every p ∈ Q and X ⊆ Q:

∣∣∣∣
∣∣L(pi) r

⋃
q∈X L(qi)

∣∣∣∣L(pi)
∣∣ −

∣∣S(pi) r
⋃

q∈X L(qi)
∣∣∣∣S(pi)

∣∣
∣∣∣∣ <

1

κ3

28

The use of the main property

...

3. For each i = 0, . . . , n − 1 and state q ∈ Q:

(a) Compute N(qi+1) given sketch[i]

(b) Sample polynomially many uniform elements from L(qi+1)
using N(qi+1) and sketch[i], and let S(qi+1) be the multiset of
uniform samples obtained

...

Proposition

If E(i) holds and N(pi) is a (1± κ−2)i -approximation of |L(pi)| for
every p ∈ Q, then N(X i) is a (1± κ−2)i+1-approximation of |L(X i)| for
every X ⊆ Q

29

The use of the main property

...

3. For each i = 0, . . . , n − 1 and state q ∈ Q:

(a) Compute N(qi+1) given sketch[i]

(b) Sample polynomially many uniform elements from L(qi+1)
using N(qi+1) and sketch[i], and let S(qi+1) be the multiset of
uniform samples obtained

...

Proposition

If E(i) holds and N(pi) is a (1± κ−2)i -approximation of |L(pi)| for
every p ∈ Q, then N(X i) is a (1± κ−2)i+1-approximation of |L(X i)| for
every X ⊆ Q

29

The use of the main property

E(0) holds and N(p0) is a (1± κ−2)0-approximation of |L(p0)| for
every p ∈ Q

I Recall that N(p0) = |L(p0)| and S(p0) = L(p0) for every p ∈ Q

Then N(X 0) is a (1± κ−2)-approximation of |L(X 0)| for every X ⊆ Q

I We want to use the values N(X 0) to estimate the values N(p1)

30

The use of the main property

E(0) holds and N(p0) is a (1± κ−2)0-approximation of |L(p0)| for
every p ∈ Q

I Recall that N(p0) = |L(p0)| and S(p0) = L(p0) for every p ∈ Q

Then N(X 0) is a (1± κ−2)-approximation of |L(X 0)| for every X ⊆ Q

I We want to use the values N(X 0) to estimate the values N(p1)

30

The use of the main property

E(0) holds and N(p0) is a (1± κ−2)0-approximation of |L(p0)| for
every p ∈ Q

I Recall that N(p0) = |L(p0)| and S(p0) = L(p0) for every p ∈ Q

Then N(X 0) is a (1± κ−2)-approximation of |L(X 0)| for every X ⊆ Q

I We want to use the values N(X 0) to estimate the values N(p1)

30

The use of the main property

For p ∈ Q, define:

Y = {q0 | (q0, 0, p1) is a transition in Aunroll}
Z = {q0 | (q0, 1, p1) is a transition in Aunroll}

Then L(p1) = L(Y) · {0}] L(Z) · {1}

I So that |L(p1)| = |L(Y)|+ |L(Z)|

Hence, given that N(Y) is a (1± κ−2)-approximation of |L(Y)| and
N(Z) is a (1± κ−2)-approximation of |L(Z)|:

N(Y) + N(Z) is a (1± κ−2)-approximation of N(p1)

31

The use of the main property

For p ∈ Q, define:

Y = {q0 | (q0, 0, p1) is a transition in Aunroll}
Z = {q0 | (q0, 1, p1) is a transition in Aunroll}

Then L(p1) = L(Y) · {0}] L(Z) · {1}

I So that |L(p1)| = |L(Y)|+ |L(Z)|

Hence, given that N(Y) is a (1± κ−2)-approximation of |L(Y)| and
N(Z) is a (1± κ−2)-approximation of |L(Z)|:

N(Y) + N(Z) is a (1± κ−2)-approximation of N(p1)

31

The use of the main property

For p ∈ Q, define:

Y = {q0 | (q0, 0, p1) is a transition in Aunroll}
Z = {q0 | (q0, 1, p1) is a transition in Aunroll}

Then L(p1) = L(Y) · {0}] L(Z) · {1}
I So that |L(p1)| = |L(Y)|+ |L(Z)|

Hence, given that N(Y) is a (1± κ−2)-approximation of |L(Y)| and
N(Z) is a (1± κ−2)-approximation of |L(Z)|:

N(Y) + N(Z) is a (1± κ−2)-approximation of N(p1)

31

The use of the main property

For p ∈ Q, define:

Y = {q0 | (q0, 0, p1) is a transition in Aunroll}
Z = {q0 | (q0, 1, p1) is a transition in Aunroll}

Then L(p1) = L(Y) · {0}] L(Z) · {1}
I So that |L(p1)| = |L(Y)|+ |L(Z)|

Hence, given that N(Y) is a (1± κ−2)-approximation of |L(Y)| and
N(Z) is a (1± κ−2)-approximation of |L(Z)|:

N(Y) + N(Z) is a (1± κ−2)-approximation of N(p1)

31

The use of the main property: a summary

E(0) holds and N(p0) is a (1± κ−2)0-approximation of |L(p0)| for
every p ∈ Q

⇓

N(X 0) is a (1± κ−2)1-approximation of |L(X 0)| for every X ⊆ Q

⇓

N(p1) = N(R0(p1)) + N(R1(p1)) is a (1± κ−2)1-approximation of N(p1)
for every p ∈ Q

where Rb(p1) = {q0 | (q0, b, p1) is a transition in Aunroll}

32

The use of the main property: a summary

E(0) holds and N(p0) is a (1± κ−2)0-approximation of |L(p0)| for
every p ∈ Q

⇓

N(X 0) is a (1± κ−2)1-approximation of |L(X 0)| for every X ⊆ Q

⇓

N(p1) = N(R0(p1)) + N(R1(p1)) is a (1± κ−2)1-approximation of N(p1)
for every p ∈ Q

where Rb(p1) = {q0 | (q0, b, p1) is a transition in Aunroll}

32

The use of the main property: a summary

E(0) holds and N(p0) is a (1± κ−2)0-approximation of |L(p0)| for
every p ∈ Q

⇓

N(X 0) is a (1± κ−2)1-approximation of |L(X 0)| for every X ⊆ Q

⇓

N(p1) = N(R0(p1)) + N(R1(p1)) is a (1± κ−2)1-approximation of N(p1)
for every p ∈ Q

where Rb(p1) = {q0 | (q0, b, p1) is a transition in Aunroll}

32

The use of the main property: a summary

E(1) holds and

N(p1) is a (1± κ−2)1-approximation of |L(p1)| for
every p ∈ Q

⇓

N(X 1) is a (1± κ−2)2-approximation of |L(X 1)| for every X ⊆ Q

⇓

N(p2) = N(R0(p2)) + N(R1(p2)) is a (1± κ−2)2-approximation of N(p2)
for every p ∈ Q

where Rb(p2) = {q1 | (q1, b, p2) is a transition in Aunroll}

33

The use of the main property: a summary

E(1) holds and N(p1) is a (1± κ−2)1-approximation of |L(p1)| for
every p ∈ Q

⇓

N(X 1) is a (1± κ−2)2-approximation of |L(X 1)| for every X ⊆ Q

⇓

N(p2) = N(R0(p2)) + N(R1(p2)) is a (1± κ−2)2-approximation of N(p2)
for every p ∈ Q

where Rb(p2) = {q1 | (q1, b, p2) is a transition in Aunroll}

33

The use of the main property: a summary

E(1) holds and N(p1) is a (1± κ−2)1-approximation of |L(p1)| for
every p ∈ Q

⇓

N(X 1) is a (1± κ−2)2-approximation of |L(X 1)| for every X ⊆ Q

⇓

N(p2) = N(R0(p2)) + N(R1(p2)) is a (1± κ−2)2-approximation of N(p2)
for every p ∈ Q

where Rb(p2) = {q1 | (q1, b, p2) is a transition in Aunroll}

33

The use of the main property: a summary

E(1) holds and N(p1) is a (1± κ−2)1-approximation of |L(p1)| for
every p ∈ Q

⇓

N(X 1) is a (1± κ−2)2-approximation of |L(X 1)| for every X ⊆ Q

⇓

N(p2) = N(R0(p2)) + N(R1(p2)) is a (1± κ−2)2-approximation of N(p2)
for every p ∈ Q

where Rb(p2) = {q1 | (q1, b, p2) is a transition in Aunroll}

33

The final result

Proposition

If E(i) holds for every i ∈ {0, 1, . . . , n}, then N(F n) is a
(1± ε)-approximation of |L(F n)|

34

Questions?

35

How can we maintain
property E(i)?

36

Sampling from a state

We need to construct the multiset S(qi+1) of uniform samples

Recall that:

I S(qi+1) contains 2κ7 words from L(qi+1)

I S(qi+1) is computed assuming that N(qi+1) and
sketch[i] = {N(qj),S(qj) | 0 ≤ j ≤ i} have already been
constructed

37

To recall

1. Construct Aunroll from A

2. For each state q ∈ I , set N(q0) = |L(q0)| = 1 and
S(q0) = L(q0) = {λ}

3. For each i = 0, . . . , n − 1 and state q ∈ Q:

(a) Compute N(qi+1) given sketch[i]

(b) Sample polynomially many uniform elements from L(qi+1)
using N(qi+1) and sketch[i], and let S(qi+1) be the multiset of
uniform samples obtained

4. Return an estimation of |L(F n)| given sketch[n]

38

Sampling from qi+1

To generate a sample in L(qi+1), we construct a sequence w i+1, w i , . . .,
w1, w0 such that

I w i+1 = λ

I w j = bjw
j+1 with bj ∈ {0, 1}

I w0 ∈ L(qi+1)

To choose w i = bw i+1, construct for b = 0, 1:

Pb = {pi | (pi , b, qi+1) is a transition in Aunroll}

39

Sampling from qi+1

To generate a sample in L(qi+1), we construct a sequence w i+1, w i , . . .,
w1, w0 such that

I w i+1 = λ

I w j = bjw
j+1 with bj ∈ {0, 1}

I w0 ∈ L(qi+1)

To choose w i = bw i+1, construct for b = 0, 1:

Pb = {pi | (pi , b, qi+1) is a transition in Aunroll}

39

Sampling from qi

P0 and P1 are sets of states at layer i

We can compute N(P0) and N(P1) as follows:

N(X i) =
∑
p∈X

N(pi)

∣∣S(pi) r
⋃

q∈X : q<p L(qi)
∣∣∣∣S(pi)

∣∣

We choose b ∈ {0, 1} with probability:

N(Pb)

N(P0) + N(P1)

40

Sampling from qi

P0 and P1 are sets of states at layer i

We can compute N(P0) and N(P1) as follows:

N(X i) =
∑
p∈X

N(pi)

∣∣S(pi) r
⋃

q∈X : q<p L(qi)
∣∣∣∣S(pi)

∣∣

We choose b ∈ {0, 1} with probability:

N(Pb)

N(P0) + N(P1)

40

We could have started from a set of states

The previous procedure works for every set of states P i+1:

Pb = {pi | ∃r i+1 ∈ P i+1 : (pi , b, r i+1) is a transition in Aunroll}

In particular, we applied the procedure for P i+1 = {qi+1}

The following recursive procedure summarizes the previous idea:

Sample(i + 1, {qi+1}, λ, ϕ0)

It uses sets of states P i+1 = {qi+1}, P i , . . ., P1, P0 and an initial
probability ϕ0

41

We could have started from a set of states

The previous procedure works for every set of states P i+1:

Pb = {pi | ∃r i+1 ∈ P i+1 : (pi , b, r i+1) is a transition in Aunroll}

In particular, we applied the procedure for P i+1 = {qi+1}

The following recursive procedure summarizes the previous idea:

Sample(i + 1, {qi+1}, λ, ϕ0)

It uses sets of states P i+1 = {qi+1}, P i , . . ., P1, P0 and an initial
probability ϕ0

41

The sampling algorithm

Sample(j ,P j ,w j , ϕ)

1. If j = 0, then with probability ϕ return w0, otherwise return fail

2. Compute Pj,b = {pj−1 | ∃r j ∈ P j : (pj−1, b, r j) is a transition
in Aunroll} for b = 0, 1

3. Choose b ∈ {0, 1} with probability pb =
N(Pj,b)

N(Pj,0) + N(Pj,1)

4. Set P j−1 = Pj,b and w j−1 = bw j

5. Return Sample(j − 1,P j−1,w j−1, ϕpb)

42

The key observation

Let x = x1 · · · xi+1 be a word in L(qi+1)

We have that:

Pr(the output of Sample is x)

= Pr(w0 = x ∧ the last call to Sample does not fail)

= Pr(the last call to Sample does not fail | w0 = x) · Pr(w0 = x)

=

((i+1∏
j=1

N(Pj,xj)

N(Pj,0) + N(Pj,1)

)−1

· ϕ0

)
·
(i+1∏

j=1

N(Pj,xj)

N(Pj,0) + N(Pj,1)

)
= ϕ0

43

The key observation

Let x = x1 · · · xi+1 be a word in L(qi+1)

We have that:

Pr(the output of Sample is x)

= Pr(w0 = x ∧ the last call to Sample does not fail)

= Pr(the last call to Sample does not fail | w0 = x) · Pr(w0 = x)

=

((i+1∏
j=1

N(Pj,xj)

N(Pj,0) + N(Pj,1)

)−1

· ϕ0

)
·
(i+1∏

j=1

N(Pj,xj)

N(Pj,0) + N(Pj,1)

)
= ϕ0

43

The value of the initial probability ϕ0

Proposition

Assume that E(j) holds for each j < i + 1. If w is the output of

Sample(i + 1, {qi+1}, λ, e−5

N(qi+1)), then

I ϕ ∈ (0, 1) in every recursive call to Sample

I Pr(w = fail) ≤ 1− e−9

I Pr(w = x) =
e−5

N(qi+1)
for every x ∈ L(qi+1)

Hence, conditioned on not failing, Sample(i + 1, {qi+1}, λ, e−5

N(qi+1))

returns a uniform sample from L(qi+1)

44

The value of the initial probability ϕ0

Proposition

Assume that E(j) holds for each j < i + 1. If w is the output of

Sample(i + 1, {qi+1}, λ, e−5

N(qi+1)), then

I ϕ ∈ (0, 1) in every recursive call to Sample

I Pr(w = fail) ≤ 1− e−9

I Pr(w = x) =
e−5

N(qi+1)
for every x ∈ L(qi+1)

Hence, conditioned on not failing, Sample(i + 1, {qi+1}, λ, e−5

N(qi+1))

returns a uniform sample from L(qi+1)

44

Bounding the probability of breaking the main assumption

Recall that E(i) holds if for every q ∈ Q and X ⊆ Q:

∣∣∣∣
∣∣L(qi) r

⋃
p∈X L(pi)

∣∣∣∣L(qi)
∣∣ −

∣∣S(qi) r
⋃

p∈X L(pi)
∣∣∣∣S(qi)

∣∣
∣∣∣∣ <

1

κ3

By using Hoeffding’s inequality, it is possible to conclude that:

Pr

(n∧
j=0

E(j)

)
≥ 1− e−κ

45

Bounding the probability of breaking the main assumption

Recall that E(i) holds if for every q ∈ Q and X ⊆ Q:

∣∣∣∣
∣∣L(qi) r

⋃
p∈X L(pi)

∣∣∣∣L(qi)
∣∣ −

∣∣S(qi) r
⋃

p∈X L(pi)
∣∣∣∣S(qi)

∣∣
∣∣∣∣ <

1

κ3

By using Hoeffding’s inequality, it is possible to conclude that:

Pr

(n∧
j=0

E(j)

)
≥ 1− e−κ

45

The complete algorithm: final comments

Putting all together, we obtain that the probability that the algorithm
returns a wrong estimate is at most 1

4

The algorithm runs in time poly(m, n, 1
ε)

46

The extension of the approach
to tree automata

47

Tree automata

0

1 0

01

01

48

Tree automata

0 p

1 0

01

01

48

Tree automata

0 p (p, 0, q p)

1 0

01

01

48

Tree automata

0 p (p, 0, q p)

1q 0 p

01

01

48

Tree automata

0 p (p, 0, q p)

1q(q, 1, λ) 0 p

01

01

48

Tree automata

0 p (p, 0, q p)

1q(q, 1, λ) 0 p (p, 0, q r)

01

01

48

The problem #TA

Input : A tree automaton (TA) T over the alphabet {0, 1} and
a number n (given in unary)

Output : Number of trees t such that t ∈ L(T) and the number
of nodes of t is n

49

Constructing an FPRAS for #TA

0

1 0

01

01

50

Constructing an FPRAS for #TA

0 p7

1 0

01

01

50

Constructing an FPRAS for #TA

0 p7 (p7, 0, q1 p5)

1 0

01

01

50

Constructing an FPRAS for #TA

0 p7 (p7, 0, q1 p5)

1q1 0

01

01

50

Constructing an FPRAS for #TA

0 p7 (p7, 0, q1 p5)

1q1 0 p5

01

01

50

Constructing an FPRAS for #TA

0 p7 (p7, 0, q1 p5)

1q1 0 p5 (p5, 0, q3 r1)

01

01

50

Reducing to a counting problem for succinct NFA

15

6 8

43

11

51

Reducing to a counting problem for succinct NFA

6 8

43

11

51

Reducing to a counting problem for succinct NFA

6

43

11

51

Reducing to a counting problem for succinct NFA

6

4

11

51

Reducing to a counting problem for succinct NFA

6

4

1

51

Reducing to a counting problem for succinct NFA

6

4

1

51

Succinct NFA S = (Q,Σ,∆, I ,F)

I Q, I and F as before

I Σ is an alphabet

I Σ is assumed to be succinctly encoded via some representation

I ∆ ⊆ Q × 2Σ × Q is the transition relation

I If (p,A, q) ∈ ∆, then A is also assumed to be succinctly encoded

via some representation

w1 · · ·wn ∈ L(S) if there exists a sequence of states q0q1 . . . qn such that
q0 ∈ I , qn ∈ F and for every wi , there exists A such that wi ∈ A and
(qi−1,A, qi) ∈ ∆

I The length of w1 · · ·wn is n

52

Succinct NFA S = (Q,Σ,∆, I ,F)

I Q, I and F as before

I Σ is an alphabet

I Σ is assumed to be succinctly encoded via some representation

I ∆ ⊆ Q × 2Σ × Q is the transition relation

I If (p,A, q) ∈ ∆, then A is also assumed to be succinctly encoded

via some representation

w1 · · ·wn ∈ L(S) if there exists a sequence of states q0q1 . . . qn such that
q0 ∈ I , qn ∈ F and for every wi , there exists A such that wi ∈ A and
(qi−1,A, qi) ∈ ∆

I The length of w1 · · ·wn is n

52

Succinct NFA S = (Q,Σ,∆, I ,F)

I Q, I and F as before

I Σ is an alphabet

I Σ is assumed to be succinctly encoded via some representation

I ∆ ⊆ Q × 2Σ × Q is the transition relation

I If (p,A, q) ∈ ∆, then A is also assumed to be succinctly encoded

via some representation

w1 · · ·wn ∈ L(S) if there exists a sequence of states q0q1 . . . qn such that
q0 ∈ I , qn ∈ F and for every wi , there exists A such that wi ∈ A and
(qi−1,A, qi) ∈ ∆

I The length of w1 · · ·wn is n

52

Succinct NFA S = (Q,Σ,∆, I ,F)

I Q, I and F as before

I Σ is an alphabet

I Σ is assumed to be succinctly encoded via some representation

I ∆ ⊆ Q × 2Σ × Q is the transition relation

I If (p,A, q) ∈ ∆, then A is also assumed to be succinctly encoded

via some representation

w1 · · ·wn ∈ L(S) if there exists a sequence of states q0q1 . . . qn such that
q0 ∈ I , qn ∈ F and for every wi , there exists A such that wi ∈ A and
(qi−1,A, qi) ∈ ∆

I The length of w1 · · ·wn is n

52

Succinct NFA S = (Q,Σ,∆, I ,F)

I Q, I and F as before

I Σ is an alphabet

I Σ is assumed to be succinctly encoded via some representation

I ∆ ⊆ Q × 2Σ × Q is the transition relation

I If (p,A, q) ∈ ∆, then A is also assumed to be succinctly encoded

via some representation

w1 · · ·wn ∈ L(S) if there exists a sequence of states q0q1 . . . qn such that
q0 ∈ I , qn ∈ F and for every wi , there exists A such that wi ∈ A and
(qi−1,A, qi) ∈ ∆

I The length of w1 · · ·wn is n

52

Succinct NFA S = (Q,Σ,∆, I ,F)

I Q, I and F as before

I Σ is an alphabet

I Σ is assumed to be succinctly encoded via some representation

I ∆ ⊆ Q × 2Σ × Q is the transition relation

I If (p,A, q) ∈ ∆, then A is also assumed to be succinctly encoded

via some representation

w1 · · ·wn ∈ L(S) if there exists a sequence of states q0q1 . . . qn such that
q0 ∈ I , qn ∈ F and for every wi , there exists A such that wi ∈ A and
(qi−1,A, qi) ∈ ∆

I The length of w1 · · ·wn is n

52

Succinct NFA S = (Q,Σ,∆, I ,F)

I Q, I and F as before

I Σ is an alphabet

I Σ is assumed to be succinctly encoded via some representation

I ∆ ⊆ Q × 2Σ × Q is the transition relation

I If (p,A, q) ∈ ∆, then A is also assumed to be succinctly encoded

via some representation

w1 · · ·wn ∈ L(S) if there exists a sequence of states q0q1 . . . qn such that
q0 ∈ I , qn ∈ F and

for every wi , there exists A such that wi ∈ A and
(qi−1,A, qi) ∈ ∆

I The length of w1 · · ·wn is n

52

Succinct NFA S = (Q,Σ,∆, I ,F)

I Q, I and F as before

I Σ is an alphabet

I Σ is assumed to be succinctly encoded via some representation

I ∆ ⊆ Q × 2Σ × Q is the transition relation

I If (p,A, q) ∈ ∆, then A is also assumed to be succinctly encoded

via some representation

w1 · · ·wn ∈ L(S) if there exists a sequence of states q0q1 . . . qn such that
q0 ∈ I , qn ∈ F and for every wi , there exists A such that wi ∈ A and
(qi−1,A, qi) ∈ ∆

I The length of w1 · · ·wn is n

52

Succinct NFA S = (Q,Σ,∆, I ,F)

I Q, I and F as before

I Σ is an alphabet

I Σ is assumed to be succinctly encoded via some representation

I ∆ ⊆ Q × 2Σ × Q is the transition relation

I If (p,A, q) ∈ ∆, then A is also assumed to be succinctly encoded

via some representation

w1 · · ·wn ∈ L(S) if there exists a sequence of states q0q1 . . . qn such that
q0 ∈ I , qn ∈ F and for every wi , there exists A such that wi ∈ A and
(qi−1,A, qi) ∈ ∆

I The length of w1 · · ·wn is n

52

The main result about #Succinct-NFA

The definition of #Succinct-NFA:

Input : A succinct NFA S and a length n (given in unary)
Output : Number of words w such that w ∈ L(S) and |w | = n

Theorem
#Succinct-NFA admits an FPRAS when restricted to the class of succinct NFA
S = (Q,Σ,∆, I ,F) such that for every (p,A, q) ∈ ∆, there exists an oracle
which can:

(1) test membership in A,

(2) produce an estimate of the size of |A|, and
(3) generate almost-uniform samples from A.

53

The main result about #Succinct-NFA

The definition of #Succinct-NFA:

Input : A succinct NFA S and a length n (given in unary)
Output : Number of words w such that w ∈ L(S) and |w | = n

Theorem
#Succinct-NFA admits an FPRAS when restricted to the class of succinct NFA
S = (Q,Σ,∆, I ,F) such that for every (p,A, q) ∈ ∆, there exists an oracle
which can:

(1) test membership in A,

(2) produce an estimate of the size of |A|, and
(3) generate almost-uniform samples from A.

53

The main result about #TA

Theorem
#TA admits an FPRAS

54

The main corollaries about query answering

Let #ACQ:

Input : A database D and an acyclic conjunctive query Q
Output : |Q(D)|

Corollary

#ACQ admits an FPRAS

55

The main corollaries about query answering

Let #ACQ:

Input : A database D and an acyclic conjunctive query Q
Output : |Q(D)|

Corollary

#ACQ admits an FPRAS

55

The main corollaries about query answering

Given k ≥ 1, let #k-HW:

Input : A database D and a conjunctive query Q such that
the hypertree width of Q is at most k

Output : |Q(D)|

Corollary

#k-HW admits an FPRAS

56

The main corollaries about query answering

Given k ≥ 1, let #k-HW:

Input : A database D and a conjunctive query Q such that
the hypertree width of Q is at most k

Output : |Q(D)|

Corollary

#k-HW admits an FPRAS

56

Some final remarks

57

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

I Make algorithms practical

I Implementation of FPRAS for #NFA works well with smaller bounds

I Can the results be extended for semantic acyclicity?

I Can the results be extended to context free grammars?

I Only quasi-polynomial time approximation are known for this

problem [GJKSM97]

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

I Make algorithms practical

I Implementation of FPRAS for #NFA works well with smaller bounds

I Can the results be extended for semantic acyclicity?

I Can the results be extended to context free grammars?

I Only quasi-polynomial time approximation are known for this

problem [GJKSM97]

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

I Make algorithms practical

I Implementation of FPRAS for #NFA works well with smaller bounds

I Can the results be extended for semantic acyclicity?

I Can the results be extended to context free grammars?

I Only quasi-polynomial time approximation are known for this

problem [GJKSM97]

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

I Make algorithms practical

I Implementation of FPRAS for #NFA works well with smaller bounds

I Can the results be extended for semantic acyclicity?

I Can the results be extended to context free grammars?

I Only quasi-polynomial time approximation are known for this

problem [GJKSM97]

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

I Make algorithms practical

I Implementation of FPRAS for #NFA works well with smaller bounds

I Can the results be extended for semantic acyclicity?

I Can the results be extended to context free grammars?

I Only quasi-polynomial time approximation are known for this

problem [GJKSM97]

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

I Make algorithms practical

I Implementation of FPRAS for #NFA works well with smaller bounds

I Can the results be extended for semantic acyclicity?

I Can the results be extended to context free grammars?

I Only quasi-polynomial time approximation are known for this

problem [GJKSM97]

58

The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:

I Make algorithms practical

I Implementation of FPRAS for #NFA works well with smaller bounds

I Can the results be extended for semantic acyclicity?

I Can the results be extended to context free grammars?

I Only quasi-polynomial time approximation are known for this

problem [GJKSM97]

58

Questions?

59

Bibliography

[AJ93] C. Àlvarez, B. Jenner: A Very Hard log-Space Counting
Class. Theor. Comput. Sci. 107(1): 3-30, 1993

[ACJR21a] M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros:
#NFA Admits an FPRAS: Efficient Enumeration, Count-
ing, and Uniform Generation for Logspace Classes. J. ACM
68(6): 48:1-48:40, 2021

[ACJR21b] M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros:
When is approximate counting for conjunctive queries
tractable? STOC 2021: 1015-1027

[BMT20] A. Bonifati, W. Martens, T. Timm: An analytical study of
large SPARQL query logs. VLDB J. 29(2-3): 655-679, 2020

60

Bibliography

[GJKSM97] V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, S. R. Ma-
haney: A Quasi-Polynomial-Time Algorithm for Sampling
Words from a Context-Free Language. Inf. Comput.
134(1): 59-74. 1997

[JVV86] M. Jerrum, L. G. Valiant, V. V. Vazirani: Random Gener-
ation of Combinatorial Structures from a Uniform Distribu-
tion. Theor. Comput. Sci. 43: 169-188, 1986

[KSM95] S. Kannan, Z. Sweedyk, S. R. Mahaney: Counting and Ran-
dom Generation of Strings in Regular Languages. SODA
1995: 551-557

61

Appendix

62

COUNT is SpanL-complete (under parsimonious
reductions)

Consider the following NFA A:

q1 q2
0, 1

q3

0, 1 0 0

Assume we need to return the number of words of length 4 accepted by A

63

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

q1 q2
0, 1

q3

0, 1 0 0

qi is an initial state : s/ui

(qi , a, qj) is a transition : u3−i/a/uj

qi is a final state : u3−i/t

s u u u
0

1

u u u

01

uuu

0

1
uuu

1 0

u u u t

64

Reduction from #NFA to COUNT

Define r = (s/u + u/u/1/u/u/+ u/0/u/u/u + 0/u + . . .+ u/t)∗

Number of words of length 4 accepted by A
=

Number of paths p in G such that p conforms to r and
the length of p is 21 = (5× 3 + 4 + 2)

65

Reduction from #NFA to COUNT

Define r = (s/u + u/u/1/u/u/+ u/0/u/u/u + 0/u + . . .+ u/t)∗

Number of words of length 4 accepted by A
=

Number of paths p in G such that p conforms to r and
the length of p is 21 = (5× 3 + 4 + 2)

65

Bounding the probability of breaking the main assumption

Recall that E(i) holds if for every q ∈ Q and X ⊆ Q:

∣∣∣∣
∣∣L(qi) r

⋃
p∈X L(pi)

∣∣∣∣L(qi)
∣∣ −

∣∣S(qi) r
⋃

p∈X L(pi)
∣∣∣∣S(qi)

∣∣
∣∣∣∣ <

1

κ3

We know that E(0) holds.

We need to compute a lower bound for:

Pr

(n∧
j=0

E(j)

)

66

Bounding the probability of breaking the main assumption

Recall that E(i) holds if for every q ∈ Q and X ⊆ Q:

∣∣∣∣
∣∣L(qi) r

⋃
p∈X L(pi)

∣∣∣∣L(qi)
∣∣ −

∣∣S(qi) r
⋃

p∈X L(pi)
∣∣∣∣S(qi)

∣∣
∣∣∣∣ <

1

κ3

We know that E(0) holds. We need to compute a lower bound for:

Pr

(n∧
j=0

E(j)

)

66

Bounding the probability of breaking E(i)

Assume that
i−1∧
j=0

E(j) holds

Let q ∈ Q and S(qi) be a multiset of 2κ7 samples from L(qi) computed

by calling Sample(i , {qi}, λ, e−5

N(qi))

I Each element of S(qi) is obtained by repeatedly calling Sample
until the output is different from fail

Assume that S(qi) = {w1, . . . ,wt} with t = 2κ7

67

Bounding the probability of breaking E(i)

Let X ⊆ Q, and Yi be a Bernoulli random variable for i ∈ {1, . . . , t}:

Yi = 1 if and only if wi ∈
(
L(qi) r

⋃
p∈X

L(pi)

)

We have that:

E[Yi] =
|L(qi) r

⋃
p∈X L(pi)|

|L(qi)|
t∑

j=1

Yi = |S(qi) r
⋃

p∈X L(pi)|

t = |S(qi)|

68

Bounding the probability of breaking E(i)

Let X ⊆ Q, and Yi be a Bernoulli random variable for i ∈ {1, . . . , t}:

Yi = 1 if and only if wi ∈
(
L(qi) r

⋃
p∈X

L(pi)

)

We have that:

E[Yi] =
|L(qi) r

⋃
p∈X L(pi)|

|L(qi)|
t∑

j=1

Yi = |S(qi) r
⋃

p∈X L(pi)|

t = |S(qi)|

68

By using Hoeffding’s inequality

Pr

(∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)

=

Pr

(∣∣∣∣1t
t∑

j=1

Yi − E
[

1

t

t∑
j=1

Yi

]∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤ 2e

−2

(
1

κ3

)2

t

= 2e
−2

(
1

κ6

)
2κ7

= 2e−4κ

69

By using Hoeffding’s inequality

Pr

(∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
=

Pr

(∣∣∣∣1t
t∑

j=1

Yi − E
[

1

t

t∑
j=1

Yi

]∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)

≤ 2e
−2

(
1

κ3

)2

t

= 2e
−2

(
1

κ6

)
2κ7

= 2e−4κ

69

By using Hoeffding’s inequality

Pr

(∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
=

Pr

(∣∣∣∣1t
t∑

j=1

Yi − E
[

1

t

t∑
j=1

Yi

]∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤ 2e

−2

(
1

κ3

)2

t

= 2e
−2

(
1

κ6

)
2κ7

= 2e−4κ

69

By using Hoeffding’s inequality

Pr

(∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
=

Pr

(∣∣∣∣1t
t∑

j=1

Yi − E
[

1

t

t∑
j=1

Yi

]∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤ 2e

−2

(
1

κ3

)2

t

= 2e
−2

(
1

κ6

)
2κ7

= 2e−4κ

69

By using Hoeffding’s inequality

Pr

(∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
=

Pr

(∣∣∣∣1t
t∑

j=1

Yi − E
[

1

t

t∑
j=1

Yi

]∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤ 2e

−2

(
1

κ3

)2

t

= 2e
−2

(
1

κ6

)
2κ7

= 2e−4κ

69

By taking the union bound

Pr

(
∃q ∈ Q ∃X ⊆ Q

∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤

∑
q∈Q

∑
X⊆Q

Pr

(∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤

m2m2e−4κ ≤ κ2κ2e−4κ ≤ 2e−2κ

70

By taking the union bound

Pr

(
∃q ∈ Q ∃X ⊆ Q

∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤

∑
q∈Q

∑
X⊆Q

Pr

(∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤

m2m2e−4κ ≤ κ2κ2e−4κ ≤ 2e−2κ

70

By taking the union bound

Pr

(
∃q ∈ Q ∃X ⊆ Q

∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤

∑
q∈Q

∑
X⊆Q

Pr

(∣∣∣∣ |S(qi) r
⋃

p∈X L(pi)|
|S(qi)| −

|L(qi) r
⋃

p∈X L(pi)|
|L(qi)|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣ i−1∧
j=0

E(j)

)
≤

m2m2e−4κ ≤ κ2κ2e−4κ ≤ 2e−2κ

70

The conclusion

Rewriting the previous result:

Pr

(
E(i)

∣∣∣∣ i−1∧
j=0

E(j)

)
≥ 1− e−2κ

We conclude that:

Pr

(n∧
j=0

E(j)

)
≥ 1− e−κ

71

The complete algorithm

Input: NFA A = (Q, {0, 1},∆, I ,F) with m = |Q|, length n given in
unary and error ε ∈ (0, 1)

1. If Ln(A) = ∅, then return 0

2. Construct Aunroll and set κ = d nmε e

3. Remove each state qi from Aunroll that is not reachable from an
initial state in I 0

4. For each q0 ∈ I 0, set N(q0) = 1 and S(q0) = {λ}

72

The complete algorithm

Input: NFA A = (Q, {0, 1},∆, I ,F) with m = |Q|, length n given in
unary and error ε ∈ (0, 1)

1. If Ln(A) = ∅, then return 0

2. Construct Aunroll and set κ = d nmε e

3. Remove each state qi from Aunroll that is not reachable from an
initial state in I 0

4. For each q0 ∈ I 0, set N(q0) = 1 and S(q0) = {λ}

72

The complete algorithm

Input: NFA A = (Q, {0, 1},∆, I ,F) with m = |Q|, length n given in
unary and error ε ∈ (0, 1)

1. If Ln(A) = ∅, then return 0

2. Construct Aunroll and set κ = d nmε e

3. Remove each state qi from Aunroll that is not reachable from an
initial state in I 0

4. For each q0 ∈ I 0, set N(q0) = 1 and S(q0) = {λ}

72

The complete algorithm

Input: NFA A = (Q, {0, 1},∆, I ,F) with m = |Q|, length n given in
unary and error ε ∈ (0, 1)

1. If Ln(A) = ∅, then return 0

2. Construct Aunroll and set κ = d nmε e

3. Remove each state qi from Aunroll that is not reachable from an
initial state in I 0

4. For each q0 ∈ I 0, set N(q0) = 1 and S(q0) = {λ}

72

The complete algorithm

Input: NFA A = (Q, {0, 1},∆, I ,F) with m = |Q|, length n given in
unary and error ε ∈ (0, 1)

1. If Ln(A) = ∅, then return 0

2. Construct Aunroll and set κ = d nmε e

3. Remove each state qi from Aunroll that is not reachable from an
initial state in I 0

4. For each q0 ∈ I 0, set N(q0) = 1 and S(q0) = {λ}

72

The complete algorithm

5. For each layer i = 1, . . . , n and state qi in Aunroll:

5.1 Set Rb = {pi−1 | (pi−1, b, qi) is a transition in Aunroll}
for b = 0, 1

5.2 Set N(qi) = N(R0) + N(R1)

5.3 Set S(qi) = ∅. Then while |S(qi)| < 2κ7:

5.3.1 Run Sample(i , {qi}, λ, e−5

N(qi)
) until it returns w 6= fail, and at

most c(κ) ∈ Θ(log(κ)) times

5.3.2 If w = fail, then return 0 (failure event)

5.3.3 Set S(qi) = S(qi) ∪ {w} (recall that S(qi) allows duplicates)

6. Return N(F n) as an estimation of |Ln(A)|

73

The complete algorithm

5. For each layer i = 1, . . . , n and state qi in Aunroll:

5.1 Set Rb = {pi−1 | (pi−1, b, qi) is a transition in Aunroll}
for b = 0, 1

5.2 Set N(qi) = N(R0) + N(R1)

5.3 Set S(qi) = ∅. Then while |S(qi)| < 2κ7:

5.3.1 Run Sample(i , {qi}, λ, e−5

N(qi)
) until it returns w 6= fail, and at

most c(κ) ∈ Θ(log(κ)) times

5.3.2 If w = fail, then return 0 (failure event)

5.3.3 Set S(qi) = S(qi) ∪ {w} (recall that S(qi) allows duplicates)

6. Return N(F n) as an estimation of |Ln(A)|

73

The complete algorithm

5. For each layer i = 1, . . . , n and state qi in Aunroll:

5.1 Set Rb = {pi−1 | (pi−1, b, qi) is a transition in Aunroll}
for b = 0, 1

5.2 Set N(qi) = N(R0) + N(R1)

5.3 Set S(qi) = ∅. Then while |S(qi)| < 2κ7:

5.3.1 Run Sample(i , {qi}, λ, e−5

N(qi)
) until it returns w 6= fail, and at

most c(κ) ∈ Θ(log(κ)) times

5.3.2 If w = fail, then return 0 (failure event)

5.3.3 Set S(qi) = S(qi) ∪ {w} (recall that S(qi) allows duplicates)

6. Return N(F n) as an estimation of |Ln(A)|

73

The complete algorithm

5. For each layer i = 1, . . . , n and state qi in Aunroll:

5.1 Set Rb = {pi−1 | (pi−1, b, qi) is a transition in Aunroll}
for b = 0, 1

5.2 Set N(qi) = N(R0) + N(R1)

5.3 Set S(qi) = ∅. Then while |S(qi)| < 2κ7:

5.3.1 Run Sample(i , {qi}, λ, e−5

N(qi)
) until it returns w 6= fail, and at

most c(κ) ∈ Θ(log(κ)) times

5.3.2 If w = fail, then return 0 (failure event)

5.3.3 Set S(qi) = S(qi) ∪ {w} (recall that S(qi) allows duplicates)

6. Return N(F n) as an estimation of |Ln(A)|

73

The complete algorithm

5. For each layer i = 1, . . . , n and state qi in Aunroll:

5.1 Set Rb = {pi−1 | (pi−1, b, qi) is a transition in Aunroll}
for b = 0, 1

5.2 Set N(qi) = N(R0) + N(R1)

5.3 Set S(qi) = ∅. Then while |S(qi)| < 2κ7:

5.3.1 Run Sample(i , {qi}, λ, e−5

N(qi)
) until it returns w 6= fail, and at

most c(κ) ∈ Θ(log(κ)) times

5.3.2 If w = fail, then return 0 (failure event)

5.3.3 Set S(qi) = S(qi) ∪ {w} (recall that S(qi) allows duplicates)

6. Return N(F n) as an estimation of |Ln(A)|

73

The complete algorithm

5. For each layer i = 1, . . . , n and state qi in Aunroll:

5.1 Set Rb = {pi−1 | (pi−1, b, qi) is a transition in Aunroll}
for b = 0, 1

5.2 Set N(qi) = N(R0) + N(R1)

5.3 Set S(qi) = ∅. Then while |S(qi)| < 2κ7:

5.3.1 Run Sample(i , {qi}, λ, e−5

N(qi)
) until it returns w 6= fail, and at

most c(κ) ∈ Θ(log(κ)) times

5.3.2 If w = fail, then return 0 (failure event)

5.3.3 Set S(qi) = S(qi) ∪ {w} (recall that S(qi) allows duplicates)

6. Return N(F n) as an estimation of |Ln(A)|

73

The complete algorithm

5. For each layer i = 1, . . . , n and state qi in Aunroll:

5.1 Set Rb = {pi−1 | (pi−1, b, qi) is a transition in Aunroll}
for b = 0, 1

5.2 Set N(qi) = N(R0) + N(R1)

5.3 Set S(qi) = ∅. Then while |S(qi)| < 2κ7:

5.3.1 Run Sample(i , {qi}, λ, e−5

N(qi)
) until it returns w 6= fail, and at

most c(κ) ∈ Θ(log(κ)) times

5.3.2 If w = fail, then return 0 (failure event)

5.3.3 Set S(qi) = S(qi) ∪ {w} (recall that S(qi) allows duplicates)

6. Return N(F n) as an estimation of |Ln(A)|

73

The complete algorithm

5. For each layer i = 1, . . . , n and state qi in Aunroll:

5.1 Set Rb = {pi−1 | (pi−1, b, qi) is a transition in Aunroll}
for b = 0, 1

5.2 Set N(qi) = N(R0) + N(R1)

5.3 Set S(qi) = ∅. Then while |S(qi)| < 2κ7:

5.3.1 Run Sample(i , {qi}, λ, e−5

N(qi)
) until it returns w 6= fail, and at

most c(κ) ∈ Θ(log(κ)) times

5.3.2 If w = fail, then return 0 (failure event)

5.3.3 Set S(qi) = S(qi) ∪ {w} (recall that S(qi) allows duplicates)

6. Return N(F n) as an estimation of |Ln(A)|

73

The complete algorithm: final comments

The probability that the algorithm returns a wrong estimate is at most 1
4

I Considering c(κ) = d 2+log(4)+8 log(κ)
log(1−e−9)−1 e

The algorithm runs in time poly(m, n, 1
ε)

74

