Counting the Solutions to a Query

Marcelo Arenas

PUC & IMFD Chile

EDBT/ICDT 2022 Joint Conference

 \leftarrow \oplus \rightarrow

 \triangleright Three fundamental associated problems: enumeration, uniform generation and counting of solutions

 \triangleright Three fundamental associated problems: enumeration, uniform generation and counting of solutions

 \blacktriangleright Study these three problems together

 \triangleright Three fundamental associated problems: enumeration, uniform generation and counting of solutions

 \blacktriangleright Study these three problems together

 \blacktriangleright In line with [JVV86]

 \triangleright Three fundamental associated problems: enumeration, uniform generation and counting of solutions

 \triangleright Study these three problems together

 \blacktriangleright In line with [JVV86]

 \triangleright Define classes (of queries) that have good properties in terms of these three problems

Motivation: counting

 \triangleright The construction of these classes required the solution to a fundamental counting problem for non-deterministic finite automata

Motivation: counting

 \triangleright The construction of these classes required the solution to a fundamental counting problem for non-deterministic finite automata

 \triangleright The motivating scenario comes from graph databases: counting paths conforming to a regular expression

In this talk

 \triangleright Present the techniques used to solve the aforementioned counting problem

In this talk

 \triangleright Present the techniques used to solve the aforementioned counting problem

 \triangleright Show how these techniques can be generalized to tree automata

In this talk

 \triangleright Present the techniques used to solve the aforementioned counting problem

- \triangleright Show how these techniques can be generalized to tree automata
	- \blacktriangleright The motivating scenario comes from relational databases: counting the number of answers to an acyclic conjunctive query

Definition of the setting

Our first motivating scenario: graph databases

4日→ 一面 A query over G: $(friend + knows)^*$

A query over G: $(friend + knows)^*$

◆ 伊 * 三重

A query over G: (friend + knows)*

◆ 伊 > 三重

Two fundamental problems

 \triangleright COUNT: count the number of paths p in G such that p conforms to regular expression r and the length of p is n

Two fundamental problems

- \triangleright COUNT: count the number of paths p in G such that p conforms to regular expression r and the length of p is n
- \triangleright GEN: generate uniformly at random a path p in G such that p conforms to r and the length of p is n

Is COUNT a difficult problem?

Not surprisingly the answer is yes

We would like to give a precise characterization of the complexity of this problem

 \leftarrow \leftarrow \leftarrow [10](#page-189-0)

 \blacktriangleright #P : Count the number of witnesses for a problem in NP

 \blacktriangleright #P : Count the number of witnesses for a problem in NP

 \triangleright SpanP : Count the number of distinct outputs of an NP-transducer

Example: given as input a graph G , count the number of subgraphs G' of G such that G' is 3-colorable

 \blacktriangleright #P : Count the number of witnesses for a problem in NP

 \triangleright SpanP : Count the number of distinct outputs of an NP-transducer

- Example: given as input a graph G , count the number of subgraphs G' of G such that G' is 3-colorable
- **►** #P ⊆ SpanP

 \blacktriangleright #P : Count the number of witnesses for a problem in NP

 \triangleright SpanP : Count the number of distinct outputs of an NP-transducer

- Example: given as input a graph G , count the number of subgraphs G' of G such that G' is 3-colorable
- ► #P \subseteq SpanP

 \triangleright SpanL : Count the number of distinct outputs of an NL-transducer

 \blacktriangleright #P : Count the number of witnesses for a problem in NP

 \triangleright SpanP : Count the number of distinct outputs of an NP-transducer

- Example: given as input a graph G , count the number of subgraphs G' of G such that G' is 3-colorable
- \blacktriangleright #P \subseteq SpanP

 \triangleright SpanL : Count the number of distinct outputs of an NL-transducer

 \blacktriangleright #NFA: given as input an NFA A and a length n, count the number of words of length n accepted by A

$#NFA$ is a hard problem [AJ93]

 \triangleright SpanL is contained in #P

▶ SpanL is a hard class: if every function in SpanL can be computed in polynomial time, then $P = NP$

 \triangleright #NFA is SpanL-complete under parsimonious reductions

COUNT is SpanL-complete

Parsimonious reduction from #NFA to COUNT

COUNT is SpanL-complete

Parsimonious reduction from #NFA to COUNT

Interestingly, the regular expressions used in the reduction are not far from the ones used in practice [BMT20]

COUNT is SpanL-complete

Parsimonious reduction from #NFA to COUNT

Interestingly, the regular expressions used in the reduction are not far from the ones used in practice [BMT20]

COUNT and #NFA are equivalent problems

 \blacktriangleright In particular, in terms of the existence of efficient approximation algorithms

SpanL-hardness of COUNT does not preclude the existence of such an efficient approximation algorithm

SpanL-hardness of COUNT does not preclude the existence of such an efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized approximation scheme (FPRAS) for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized approximation scheme (FPRAS) for COUNT

This is equivalent to constructing an FPRAS for $#NFA$

SpanL-hardness of COUNT does not preclude the existence of such an efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized approximation scheme (FPRAS) for COUNT

This is equivalent to constructing an FPRAS for $\#NFA$

 \triangleright Best known approximation algorithm for $\#NFA$ worked in quasi-polynomial time [KSM95]

What about uniform generation of paths?

If we have an FPRAS for COUNT, then it can be obtained an efficient approximation algorithm for GEN

What about uniform generation of paths?

If we have an FPRAS for COUNT, then it can be obtained an efficient approximation algorithm for GEN

▶ A fully polynomial-time almost-uniform generator [JVV86]

Questions?

The main ideas behind the solution
The definition of #NFA:

Input : An NFA A over the alphabet $\{0, 1\}$ and a length n (given in unary) Output : Number of words w such that $w \in \mathcal{L}(A)$ and $|w| = n$

The definition of #NFA:

Input : An NFA A over the alphabet $\{0,1\}$ and a length n (given in unary) Output : Number of words w such that $w \in \mathcal{L}(A)$ and $|w| = n$

Assume that $\mathcal{L}_n(A) = \{ w \in \mathcal{L}(A) \mid |w| = n \}$, so that the output of #NFA is $|\mathcal{L}_n(A)|$

[17](#page-189-0)

The input of the approximation algorithm: A, n and $\varepsilon \in (0,1)$

The input of the approximation algorithm: A, n and $\varepsilon \in (0,1)$

The task is to compute a number N that is a $(1 \pm \varepsilon)$ -approximation of $|\mathcal{L}_n(A)|$:

The input of the approximation algorithm: A, n and $\varepsilon \in (0,1)$

The task is to compute a number N that is a $(1 \pm \varepsilon)$ -approximation of $|\mathcal{L}_n(A)|$:

 $(1 - \varepsilon)|\mathcal{L}_n(A)| \leq N \leq (1 + \varepsilon)|\mathcal{L}_n(A)|$

The input of the approximation algorithm: A, n and $\varepsilon \in (0,1)$

The task is to compute a number N that is a $(1 \pm \varepsilon)$ -approximation of $|\mathcal{L}_n(A)|$:

$$
\Pr\left((1-\varepsilon)|\mathcal{L}_n(A)|\ \leq\ N\ \leq\ (1+\varepsilon)|\mathcal{L}_n(A)|\right)\quad\geq\quad \frac{3}{4}
$$

The input of the approximation algorithm: A, n and $\varepsilon \in (0,1)$

The task is to compute a number N that is a $(1 \pm \varepsilon)$ -approximation of $|\mathcal{L}_n(A)|$:

$$
\Pr\left((1-\varepsilon)|\mathcal{L}_n(A)|\ \leq\ N\ \leq\ (1+\varepsilon)|\mathcal{L}_n(A)|\right)\quad\geq\quad \frac{3}{4}
$$

Moreover, number N has to be computed in time $\mathsf{poly}(m,n,\frac{1}{\varepsilon})$, where m is the number of states of A

Constructing an FPRAS for $\#NFA$

Assume that $A = (Q, \{0, 1\}, \Delta, I, F)$

- \triangleright Q is a finite set of states
- $\triangleright \Delta \subseteq Q \times \{0,1\} \times Q$ is the transition relation
- \blacktriangleright $I \subseteq Q$ is a set of initial states
- \blacktriangleright \vdash \vdash \subseteq Q is a set of final states

First component: unroll automaton A

Construct A_{unroll} from A:

▶ for each state $q \in Q$, include copies q^0 , q^1 , ..., q^n in A_{unroll}

► for each transition $(p, a, q) \in \Delta$ and $i \in \{0, 1, ..., n-1\}$, include transition (ρ^i,a,q^{i+1}) in A_{unroll}

Besides, eliminate from A_{unroll} unnecessary states: each state q^i is reachable from an initial state p^0 $(p \in I)$

Define $\mathcal{L}(q^i)$ as the set of strings w such that there is a path from an initial state ρ^0 to q^i labeled with w

$$
\triangleright
$$
 Notice that $|w| = i$

Besides, define for every $X \subseteq Q$:

$$
\mathcal{L}(X^i) \;\; = \;\; \bigcup_{q \in X} \mathcal{L}(q^i)
$$

$$
\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}
$$

Define $\mathcal{L}(q^i)$ as the set of strings w such that there is a path from an initial state ρ^0 to q^i labeled with w

$$
\triangleright
$$
 Notice that $|w| = i$

Besides, define for every $X \subseteq Q$:

$$
\mathcal{L}(X^i) \;\; = \;\; \bigcup_{q \in X} \mathcal{L}(q^i)
$$

Then the task is to compute an estimation of $|\mathcal{L}(F^n)|$

$$
\begin{array}{cc}\n\leftarrow & \mathbb{P} \\
\downarrow & \mathbb{P} \\
\downarrow & \mathbb{P}\n\end{array}
$$

Let
$$
\kappa = \lceil \frac{nm}{\varepsilon} \rceil
$$
, where $m = |Q|$

$$
\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B} \oplus \mathcal{B}
$$

Let $\kappa = \lceil \frac{nm}{2} \rceil$ $\left| \frac{m}{\varepsilon} \right|$, where $m = |Q|$

We maintain for each state q^i :

- $\triangleright N(q^i)$: a $(1 \pm \kappa^{-2})^i$ -approximation of $|\mathcal{L}(q^i)|$
- S(qⁱ): a multiset of uniform samples from $\mathcal{L}(q^i)$ of size $2\kappa^7$

Data structure to be inductively computed:

 $\mathsf{sketch}[i] \;\; = \;\; \{ \mathsf{N}(q^{j}), S(q^{j}) \mid 0 \leq j \leq i \;\mathsf{and}\; q \in Q \}$

[22](#page-189-0)

The algorithm template

1. Construct A_{unroll} from A

 $2.$ For each state $q\in I$, set $\mathcal{N}(q^0)=|\mathcal{L}(q^0)|=1$ and $S(q^0) = \mathcal{L}(q^0) = {\lambda}$

3. For each
$$
i = 0, \ldots, n-1
$$
 and state $q \in Q$:

- (a) Compute $N(q^{i+1})$ given sketch[i]
- (b) Sample polynomially many uniform elements from $\mathcal{L}(q^{i+1})$ using $N(q^{i+1})$ and sketch[i], and let $S(q^{i+1})$ be the multiset of uniform samples obtained
- 4. Return an estimation of $|\mathcal{L}(F^n)|$ given sketch[n]

We use notation $\mathcal{N}(X^i)$ for an estimation $|\mathcal{L}(X^i)|$

We use notation $\mathcal{N}(X^i)$ for an estimation $|\mathcal{L}(X^i)|$

Such an estimation is not only needed in the last step of the algorithm, but also in the inductive construction of sketch $[i]$:

We use notation $\mathcal{N}(X^i)$ for an estimation $|\mathcal{L}(X^i)|$

Such an estimation is not only needed in the last step of the algorithm, but also in the inductive construction of sketch[i]:

3. For each $i = 0, \ldots, n - 1$ and state $q \in Q$:

...

...

- (a) Compute $N(q^{i+1})$ given sketch[i]
- (b) Sample polynomially many uniform elements from $\mathcal{L}(q^{i+1})$ using $N(q^{i+1})$ and sketch[i], and let $S(q^{i+1})$ be the multiset of uniform samples obtained

Recall that
$$
\mathcal{L}(X^i) = \bigcup_{p \in X} \mathcal{L}(p^i)
$$

$$
\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B} \oplus \mathcal{B}
$$

Recall that
$$
\mathcal{L}(X^i) = \bigcup_{p \in X} \mathcal{L}(p^i)
$$

Notice that
$$
|\mathcal{L}(X^i)| = \sum_{p \in X} |\mathcal{L}(p^i)|
$$
 is not true in general

$$
\mathbf{A} \oplus \mathbf{B} \mathbf{B} = \mathbf{B} \oplus \mathbf{B}
$$

Recall that
$$
\mathcal{L}(X^i) = \bigcup_{p \in X} \mathcal{L}(p^i)
$$

Notice that
$$
|\mathcal{L}(X^i)| = \sum_{p \in X} |\mathcal{L}(p^i)|
$$
 is not true in general

But the following holds, given a linear order $<$ on Q :

$$
|\mathcal{L}(X^i)| = \sum_{p \in X} |\mathcal{L}(p^i) \setminus \bigcup_{q \in X \,:\, q < p} \mathcal{L}(q^i)|
$$

← 伊 → [25](#page-189-0)

We have that:

$$
|\mathcal{L}(X^i)| \quad = \quad \sum_{p \in X} \left| \mathcal{L}(p^i) \right| \bigcup_{q \in X \, : \, q < p} \mathcal{L}(q^i) \right|
$$

We have that:

$$
|\mathcal{L}(X^{i})| = \sum_{p \in X} |\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|
$$

=
$$
\sum_{p \in X} |\mathcal{L}(p^{i})| \frac{|\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|}{|\mathcal{L}(p^{i})|}
$$

We have that:

$$
|\mathcal{L}(X^{i})| = \sum_{p \in X} |\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|
$$

=
$$
\sum_{p \in X} |\mathcal{L}(p^{i})| \frac{|\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|}{|\mathcal{L}(p^{i})|}
$$

So we will use the following approximation:

$$
\sum_{p\in X}
$$

We have that:

$$
|\mathcal{L}(X^{i})| = \sum_{p \in X} |\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|
$$

=
$$
\sum_{p \in X} |\mathcal{L}(p^{i})| \frac{|\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|}{|\mathcal{L}(p^{i})|}
$$

So we will use the following approximation:

$$
\sum_{p\in X} N(p^i)
$$

We have that:

$$
|\mathcal{L}(X^{i})| = \sum_{p \in X} |\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|
$$

=
$$
\sum_{p \in X} |\mathcal{L}(p^{i})| \frac{|\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|}{|\mathcal{L}(p^{i})|}
$$

So we will use the following approximation:

$$
\sum_{p\in X} N(p^i) \frac{|S(p^i) \setminus \bigcup_{q\in X\,:\, q
$$

We have that:

$$
|\mathcal{L}(X^{i})| = \sum_{p \in X} |\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|
$$

=
$$
\sum_{p \in X} |\mathcal{L}(p^{i})| \frac{|\mathcal{L}(p^{i}) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^{i})|}{|\mathcal{L}(p^{i})|}
$$

So we will use the following approximation:

$$
N(Xi) = \sum_{p \in X} N(pi) \frac{|S(pi) \setminus \bigcup_{q \in X \,:\, q < p} \mathcal{L}(qi)|}{|S(pi)|}
$$

 $N(Xⁱ)$ can be computed in polynomial time in the size of sketch[i]

▶ $S(p^i) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^i)$ is constructed by checking for each $w\in{\mathcal S}(p^i)$ whether w is not in ${\mathcal L}(q^i)$ for every $q\in{\mathcal X}$ with $q< p$

 $N(Xⁱ)$ can be computed in polynomial time in the size of sketch[i]

▶ $S(p^i) \setminus \bigcup_{q \in X \colon q < p} \mathcal{L}(q^i)$ is constructed by checking for each $w\in{\mathcal S}(p^i)$ whether w is not in ${\mathcal L}(q^i)$ for every $q\in{\mathcal X}$ with $q< p$

What guarantees that $\mathcal{N}(X^i)$ is a good estimation of $|\mathcal{L}(X^i)|?$

The main property to maintain

 $\mathcal{E}(i)$ holds if for every $p \in Q$ and $X \subseteq Q$:

I I I I

$$
\frac{\left|\mathcal{L}(p^i) \setminus \bigcup_{q \in X} \mathcal{L}(q^i)\right|}{\left|\mathcal{L}(p^i)\right|} - \frac{\left|S(p^i) \setminus \bigcup_{q \in X} \mathcal{L}(q^i)\right|}{\left|S(p^i)\right|} \Big| < \frac{1}{\kappa^3}
$$

 \leftarrow \leftarrow \rightarrow

[28](#page-189-0)

...

...

- 3. For each $i = 0, \ldots, n 1$ and state $q \in Q$:
	- (a) Compute $N(q^{i+1})$ given sketch[i]
	- (b) Sample polynomially many uniform elements from $\mathcal{L}(q^{i+1})$ using $N(q^{i+1})$ and sketch[i], and let $S(q^{i+1})$ be the multiset of uniform samples obtained

- 3. For each $i = 0, \ldots, n 1$ and state $q \in Q$:
	- (a) Compute $N(q^{i+1})$ given sketch[i]
	- (b) Sample polynomially many uniform elements from $\mathcal{L}(q^{i+1})$ using $N(q^{i+1})$ and sketch[i], and let $S(q^{i+1})$ be the multiset of uniform samples obtained

Proposition

...

...

If $\mathcal{E}(i)$ holds and $N(p^i)$ is a $(1 \pm \kappa^{-2})^i$ -approximation of $|\mathcal{L}(p^i)|$ for every $p\in Q$, then $\mathsf{N}(X^i)$ is a $(1\pm \kappa^{-2})^{i+1}$ -approximation of $|\mathcal{L}(X^i)|$ for every $X \subseteq Q$

 $\mathcal{E}(0)$ holds and $\mathcal{N}(\rho^0)$ is a $(1\pm \kappa^{-2})^0$ -approximation of $|\mathcal{L}(\rho^0)|$ for every $p \in Q$

▶ Recall that $N(\rho^0) = |\mathcal{L}(\rho^0)|$ and $S(\rho^0) = \mathcal{L}(\rho^0)$ for every $\rho \in Q$

 $\mathcal{E}(0)$ holds and $\mathcal{N}(\rho^0)$ is a $(1\pm \kappa^{-2})^0$ -approximation of $|\mathcal{L}(\rho^0)|$ for every $p \in Q$

▶ Recall that $N(\rho^0) = |\mathcal{L}(\rho^0)|$ and $S(\rho^0) = \mathcal{L}(\rho^0)$ for every $\rho \in Q$

Then $\mathcal{N}(X^0)$ is a $(1\pm \kappa^{-2})$ -approximation of $|\mathcal{L}(X^0)|$ for every $X\subseteq Q$

 $\mathcal{E}(0)$ holds and $\mathcal{N}(\rho^0)$ is a $(1\pm \kappa^{-2})^0$ -approximation of $|\mathcal{L}(\rho^0)|$ for every $p \in Q$

▶ Recall that $N(\rho^0) = |\mathcal{L}(\rho^0)|$ and $S(\rho^0) = \mathcal{L}(\rho^0)$ for every $\rho \in Q$

Then $\mathcal{N}(X^0)$ is a $(1\pm \kappa^{-2})$ -approximation of $|\mathcal{L}(X^0)|$ for every $X\subseteq Q$

 \blacktriangleright We want to use the values $N(X^0)$ to estimate the values $N(p^1)$

For $p \in Q$, define:

 $Y = \{q^0 \mid (q^0, 0, p^1)$ is a transition in $A_{unroll}\}$ $Z = \{q^0 \mid (q^0,1,p^1)$ is a transition in $A_{unroll}\}$

For $p \in Q$, define:

$$
Y = \{q^0 \mid (q^0, 0, p^1) \text{ is a transition in } A_{unroll}\}
$$

$$
Z = \{q^0 \mid (q^0, 1, p^1) \text{ is a transition in } A_{unroll}\}
$$

Then $\mathcal{L}(p^1) = \mathcal{L}(Y) \cdot \{0\} \uplus \mathcal{L}(Z) \cdot \{1\}$

$$
\begin{array}{c}\n\leftarrow & \mathbb{P} \\
\hline\n\end{array}
$$
The use of the main property

For $p \in Q$, define:

 $Y = \{q^0 \mid (q^0, 0, p^1)$ is a transition in $A_{unroll}\}$ $Z \;\; = \;\; \{ q^0 \; | \; (q^0,1,p^1)$ is a transition in $A_{unroll} \}$

Then $\mathcal{L}(p^1) = \mathcal{L}(Y) \cdot \{0\} \uplus \mathcal{L}(Z) \cdot \{1\}$

So that $|\mathcal{L}(p^1)| = |\mathcal{L}(Y)| + |\mathcal{L}(Z)|$

The use of the main property

For $p \in Q$, define:

 $Y = \{q^0 \mid (q^0, 0, p^1)$ is a transition in $A_{unroll}\}$ $Z \;\; = \;\; \{ q^0 \; | \; (q^0,1,p^1)$ is a transition in $A_{unroll} \}$

Then $\mathcal{L}(p^1) = \mathcal{L}(Y) \cdot \{0\} \uplus \mathcal{L}(Z) \cdot \{1\}$

So that $|\mathcal{L}(p^1)| = |\mathcal{L}(Y)| + |\mathcal{L}(Z)|$

Hence, given that $N(Y)$ is a $(1\pm \kappa^{-2})$ -approximation of $|\mathcal{L}(Y)|$ and $N(Z)$ is a $(1 \pm \kappa^{-2})$ -approximation of $|\mathcal{L}(Z)|$:

 $N(Y) + N(Z)$ is a $(1 \pm \kappa^{-2})$ -approximation of $N(p¹)$

 $\mathcal{E}(0)$ holds and $\mathcal{N}(\rho^0)$ is a $(1\pm \kappa^{-2})^0$ -approximation of $|\mathcal{L}(\rho^0)|$ for every $p \in Q$

 $\mathcal{E}(0)$ holds and $\mathcal{N}(\rho^0)$ is a $(1\pm \kappa^{-2})^0$ -approximation of $|\mathcal{L}(\rho^0)|$ for every $p \in Q$ ⇓

 $\mathcal{N}(X^0)$ is a $(1\pm \kappa^{-2})^1$ -approximation of $|\mathcal{L}(X^0)|$ for every $X\subseteq Q$

 $\mathcal{E}(0)$ holds and $\mathcal{N}(\rho^0)$ is a $(1\pm \kappa^{-2})^0$ -approximation of $|\mathcal{L}(\rho^0)|$ for every $p \in Q$

⇓

 $\mathcal{N}(X^0)$ is a $(1\pm \kappa^{-2})^1$ -approximation of $|\mathcal{L}(X^0)|$ for every $X\subseteq Q$ ⇓

 $\mathcal{N}(\rho^1)=\mathcal{N}(R_0(\rho^1))+\mathcal{N}(R_1(\rho^1))$ is a $(1\pm \kappa^{-2})^1$ -approximation of $\mathcal{N}(\rho^1)$ for every $p \in Q$

where $R_b(p^1)=\{q^0\mid (q^0,b,p^1)$ is a transition in $A_{unroll}\}$

$$
N(p^1)
$$
 is a $(1 \pm \kappa^{-2})^1$ -approximation of $|\mathcal{L}(p^1)|$ for
every $p \in Q$

 \leftarrow \oplus \rightarrow

 $\mathcal{E}(1)$ holds and $\mathcal{N}(\rho^1)$ is a $(1\pm \kappa^{-2})^1$ -approximation of $|\mathcal{L}(\rho^1)|$ for every $p \in Q$

 $\mathcal{E}(1)$ holds and $\mathcal{N}(\rho^1)$ is a $(1\pm \kappa^{-2})^1$ -approximation of $|\mathcal{L}(\rho^1)|$ for every $p \in Q$ ⇓

 $\mathcal{N}(X^1)$ is a $(1\pm \kappa^{-2})^2$ -approximation of $|\mathcal{L}(X^1)|$ for every $X\subseteq Q$

 $\mathcal{E}(1)$ holds and $\mathcal{N}(\rho^1)$ is a $(1\pm \kappa^{-2})^1$ -approximation of $|\mathcal{L}(\rho^1)|$ for every $p \in Q$

⇓

 $\mathcal{N}(X^1)$ is a $(1\pm \kappa^{-2})^2$ -approximation of $|\mathcal{L}(X^1)|$ for every $X\subseteq Q$ ⇓

 $\mathcal{N}(\rho^2)=\mathcal{N}(R_0(\rho^2))+\mathcal{N}(R_1(\rho^2))$ is a $(1\pm \kappa^{-2})^2$ -approximation of $\mathcal{N}(\rho^2)$ for every $p \in Q$

where $R_b(p^2)=\{q^1\mid (q^1,b,p^2)$ is a transition in $A_{unroll}\}$

The final result

Proposition

If $\mathcal{E}(i)$ holds for every $i \in \{0, 1, \ldots, n\}$, then $N(F^n)$ is a $(1 \pm \varepsilon)$ -approximation of $|\mathcal{L}(F^n)|$

4 伊

Questions?

How can we maintain property $\mathcal{E}(i)$?

We need to construct the multiset $S(q^{i+1})$ of uniform samples

Recall that:

- \triangleright $S(q^{i+1})$ contains $2\kappa^7$ words from $\mathcal{L}(q^{i+1})$
- \triangleright $S(q^{i+1})$ is computed assuming that $N(q^{i+1})$ and sketch $[i] = \{ N(q^j), S(q^j) \ | \ 0 \leq j \leq i \}$ have already been constructed

To recall

1. Construct A_{unroll} from A

- **2.** For each state $q \in I$, set $\mathcal{N}(q^0) = |\mathcal{L}(q^0)| = 1$ and $S(q^0) = \mathcal{L}(q^0) = {\lambda}$
- 3. For each $i = 0, \ldots, n 1$ and state $q \in Q$:
	- (a) Compute $N(q^{i+1})$ given sketch[i]
	- (b) Sample polynomially many uniform elements from $\mathcal{L}(q^{i+1})$ using $N(q^{i+1})$ and sketch[i], and let $S(q^{i+1})$ be the multiset of uniform samples obtained
- **4.** Return an estimation of $|\mathcal{L}(F^n)|$ given sketch[n]

Sampling from q^{i+1}

To generate a sample in $\mathcal{L}(q^{i+1})$, we construct a sequence w^{i+1} , w^{i} , $\dots,$ w^1 , w^0 such that

$$
\begin{aligned}\n&\blacktriangleright \; w^{i+1} = \lambda \\
&\blacktriangleright \; w^j = b_j w^{j+1} \text{ with } b_j \in \{0, 1\} \\
&\blacktriangleright \; w^0 \in \mathcal{L}(q^{i+1})\n\end{aligned}
$$

$$
\mathcal{A} \oplus \mathcal{B} \quad \mathcal{B}
$$

Sampling from q^{i+1}

To generate a sample in $\mathcal{L}(q^{i+1})$, we construct a sequence w^{i+1} , w^{i} , $\dots,$ w^1 , w^0 such that

$$
\begin{aligned}\n&\blacktriangleright \; w^{i+1} = \lambda \\
&\blacktriangleright \; w^j = b_j w^{j+1} \text{ with } b_j \in \{0, 1\} \\
&\blacktriangleright \; w^0 \in \mathcal{L}(q^{i+1})\n\end{aligned}
$$

To choose $w^{i} = bw^{i+1}$, construct for $b = 0, 1$:

 P_b = $\{p^i \mid (p^i, b, q^{i+1})$ is a transition in $A_{unroll}\}$

4 伊) [39](#page-189-0)

Sampling from q^i

 P_0 and P_1 are sets of states at layer i

We can compute $N(P_0)$ and $N(P_1)$ as follows:

$$
N(X^{i}) = \sum_{p \in X} N(p^{i}) \frac{|S(p^{i}) \setminus \bigcup_{q \in X \,:\, q < p} \mathcal{L}(q^{i})|}{|S(p^{i})|}
$$

$$
\langle \langle \mathbf{B} \rangle \rangle = \mathbf{B}
$$

Sampling from q^i

 P_0 and P_1 are sets of states at layer i

We can compute $N(P_0)$ and $N(P_1)$ as follows:

$$
N(Xi) = \sum_{p \in X} N(pi) \frac{|S(pi) \setminus \bigcup_{q \in X \,:\, q < p} \mathcal{L}(qi)|}{|S(pi)|}
$$

We choose $b \in \{0, 1\}$ with probability:

$$
\frac{N(P_b)}{N(P_0)+N(P_1)}
$$

We could have started from a set of states

The previous procedure works for every set of states P^{i+1} :

$$
P_b = \{p^i \mid \exists r^{i+1} \in P^{i+1} : (p^i, b, r^{i+1}) \text{ is a transition in } A_{unroll}\}
$$

In particular, we applied the procedure for $P^{i+1} = \{q^{i+1}\}$

We could have started from a set of states

The previous procedure works for every set of states P^{i+1} :

 $P_b = \{p^i \mid \exists r^{i+1} \in P^{i+1} : (p^i, b, r^{i+1}) \text{ is a transition in } A_{unroll}\}\$

In particular, we applied the procedure for $P^{i+1} = \{q^{i+1}\}$

The following recursive procedure summarizes the previous idea:

 $\textsf{Sample}(i+1, \{q^{i+1}\}, \lambda, \varphi_0)$

It uses sets of states $P^{i+1} = \{q^{i+1}\}, P^i, \ldots, P^1, P^0$ and an initial probability φ_0

The sampling algorithm

 $\mathsf{Sample}(j, P^j, w^j, \varphi)$

- 1. If $j = 0$, then with probability φ return w^0 , otherwise return fail
- 2. Compute $P_{j,b}=\{p^{j-1}\mid \exists r^j\in P^j:(p^{j-1},b,r^j)$ is a transition in A_{unroll} for $b = 0, 1$

3. Choose $b \in \{0,1\}$ with probability $p_b = \frac{N(P_{j,b})}{N(P_{j,b})}$ $N(P_{j,0}) + N(P_{j,1})$

4. Set
$$
P^{j-1} = P_{j,b}
$$
 and $w^{j-1} = bw^j$

5. Return Sample $(j-1, P^{j-1}, w^{j-1}, \frac{\varphi}{p_b})$

The key observation

Let $x = x_1 \cdots x_{i+1}$ be a word in $\mathcal{L}(q^{i+1})$

The key observation

Let
$$
x = x_1 \cdots x_{i+1}
$$
 be a word in $\mathcal{L}(q^{i+1})$

We have that:

Pr(the output of **Sample** is x)

=
$$
\text{Pr}(w^0 = x \land \text{ the last call to Sample does not fail})
$$

\n= $\text{Pr}(\text{the last call to Sample does not fail} \mid w^0 = x) \cdot \text{Pr}(w^0 = x)$
\n= $\left(\left(\prod_{j=1}^{i+1} \frac{N(P_{j,x_j})}{N(P_{j,0}) + N(P_{j,1})} \right)^{-1} \cdot \varphi_0 \right) \cdot \left(\prod_{j=1}^{i+1} \frac{N(P_{j,x_j})}{N(P_{j,0}) + N(P_{j,1})} \right)$
\n= φ_0

◆ 伊 * 三重

The value of the initial probability φ_0

Proposition

Assume that $\mathcal{E}(j)$ holds for each $j < i + 1$. If w is the output of Sample $(i+1,\{q^{i+1}\},\lambda,\frac{e^{-5}}{N(\sigma^{i+1})})$ $\frac{e}{N(q^{i+1})}$), then

 $\triangleright \varphi \in (0,1)$ in every recursive call to Sample

$$
\Pr(w = \text{fail}) \le 1 - e^{-9}
$$
\n
$$
\Pr(w = x) = \frac{e^{-5}}{N(q^{i+1})} \text{ for every } x \in \mathcal{L}(q^{i+1})
$$

$$
\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}
$$

The value of the initial probability φ_0

Proposition

Assume that $\mathcal{E}(j)$ holds for each $j < i + 1$. If w is the output of Sample $(i+1,\{q^{i+1}\},\lambda,\frac{e^{-5}}{N(\sigma^{i+1})})$ $\frac{e}{N(q^{i+1})}$), then

 $\triangleright \varphi \in (0,1)$ in every recursive call to Sample

$$
\Pr(w = \text{fail}) \le 1 - e^{-9}
$$
\n
$$
\Pr(w = x) = \frac{e^{-5}}{N(q^{i+1})} \text{ for every } x \in \mathcal{L}(q^{i+1})
$$

Hence, conditioned on not failing, $\textsf{Sample}(i+1, \{q^{i+1}\}, \lambda, \frac{e^{-5}}{N(\alpha^{i+1})})$ $\frac{e}{N(q^{i+1})}$) returns a uniform sample from $\mathcal{L}(q^{i+1})$

Bounding the probability of breaking the main assumption

Recall that $\mathcal{E}(i)$ holds if for every $q \in Q$ and $X \subseteq Q$:

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

$$
\frac{\left|\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)\right|}{\left|\mathcal{L}(q^i)\right|} - \frac{\left|S(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)\right|}{\left|S(q^i)\right|} \Big| < \frac{1}{\kappa^3}
$$

Bounding the probability of breaking the main assumption

Recall that $\mathcal{E}(i)$ holds if for every $q \in Q$ and $X \subseteq Q$:

$$
\left|\,\,\displaystyle \frac{\big|\mathcal{L}(q^i)\smallsetminus \bigcup_{p\in X}\mathcal{L}(p^i)\big|}{\big|\mathcal{L}(q^i)\big|}\,\,-\,\,\displaystyle \frac{\big|\mathcal{S}(q^i)\smallsetminus \bigcup_{p\in X}\mathcal{L}(p^i)\big|}{\big|\mathcal{S}(q^i)\big|}\,\,\,\right| \quad < \quad \displaystyle\frac{1}{\kappa^3}
$$

By using Hoeffding's inequality, it is possible to conclude that:

$$
\mathsf{Pr}\bigg(\bigwedge_{j=0}^n\mathcal{E}(j)\bigg)\ \ \geq\ \ 1-e^{-\kappa}
$$

The complete algorithm: final comments

Putting all together, we obtain that the probability that the algorithm returns a wrong estimate is at most $\frac{1}{4}$

The algorithm runs in time poly $(m, n, \frac{1}{\varepsilon})$

The extension of the approach to tree automata

 $\left\{ \Theta \right\}$ =

 $\left\{ \Theta \right\}$ =

 \leftarrow \oplus \rightarrow 一面

 \leftarrow \oplus \rightarrow 一店

 \leftarrow \oplus \rightarrow 一番

 \leftarrow \oplus \rightarrow 一番

The problem $\#\mathsf{T} A$

- Input : A tree automaton (TA) T over the alphabet $\{0, 1\}$ and a number n (given in unary)
- Output : Number of trees t such that $t \in \mathcal{L}(T)$ and the number of nodes of t is n

4 伊

4 伊

[51](#page-189-0)

4点

4点

 \blacktriangleright Q, I and F as before

 \blacktriangleright Q, I and F as before

 \blacktriangleright Σ is an alphabet

 \triangleright Q, I and F as before

 \blacktriangleright Σ is an alphabet

 \blacktriangleright Σ is assumed to be succinctly encoded via some representation

 \triangleright Q, I and F as before

 \blacktriangleright Σ is an alphabet

 \blacktriangleright Σ is assumed to be succinctly encoded via some representation

 $\blacktriangleright \Delta \subseteq Q \times 2^{\Sigma} \times Q$ is the transition relation

 \triangleright Q, I and F as before

 \blacktriangleright Σ is an alphabet

 \triangleright Σ is assumed to be succinctly encoded via some representation

 $\blacktriangleright \Delta \subseteq Q \times 2^{\Sigma} \times Q$ is the transition relation

If $(p, A, q) \in \Delta$, then A is also assumed to be succinctly encoded via some representation

 \triangleright Q, I and F as before

 \blacktriangleright Σ is an alphabet

 \triangleright Σ is assumed to be succinctly encoded via some representation

 $\blacktriangleright \Delta \subseteq Q \times 2^{\Sigma} \times Q$ is the transition relation

If $(p, A, q) \in \Delta$, then A is also assumed to be succinctly encoded via some representation

 $w_1 \cdots w_n \in \mathcal{L}(S)$ if there exists a sequence of states $q_0q_1 \ldots q_n$ such that $q_0 \in I$, $q_n \in F$ and

 \triangleright Q, I and F as before

 \blacktriangleright Σ is an alphabet

 \triangleright Σ is assumed to be succinctly encoded via some representation

 $\blacktriangleright \Delta \subseteq Q \times 2^{\Sigma} \times Q$ is the transition relation

If $(p, A, q) \in \Delta$, then A is also assumed to be succinctly encoded via some representation

 $w_1 \cdots w_n \in \mathcal{L}(S)$ if there exists a sequence of states $q_0q_1 \ldots q_n$ such that $q_0 \in I$, $q_n \in F$ and for every w_i, there exists A such that $w_i \in A$ and $(q_{i-1}, A, q_i) \in \Delta$

[52](#page-189-0)

 \triangleright Q, I and F as before

 \blacktriangleright Σ is an alphabet

 \triangleright Σ is assumed to be succinctly encoded via some representation

 $\blacktriangleright \Delta \subseteq Q \times 2^{\Sigma} \times Q$ is the transition relation

If $(p, A, q) \in \Delta$, then A is also assumed to be succinctly encoded via some representation

 $w_1 \cdots w_n \in \mathcal{L}(S)$ if there exists a sequence of states $q_0q_1 \ldots q_n$ such that $q_0 \in I$, $q_n \in F$ and for every w_i , there exists A such that $w_i \in A$ and $(q_{i-1}, A, q_i) \in \Delta$

 \blacktriangleright The length of $w_1 \cdots w_n$ is n

The main result about $#S$ uccinct-NFA

The definition of #Succinct-NFA:

The main result about $#S$ uccinct-NFA

The definition of #Succinct-NFA:

Theorem

#Succinct-NFA admits an FPRAS when restricted to the class of succinct NFA $S = (Q, \Sigma, \Delta, I, F)$ such that for every $(p, A, q) \in \Delta$, there exists an oracle which can:

- (1) test membership in A,
- (2) produce an estimate of the size of $|A|$, and
- (3) generate almost-uniform samples from A.

The main result about $\#\mathsf{T} A$

Theorem

#TA admits an FPRAS

4 但 >

Let $#ACQ$:

Input : A database D and an acyclic conjunctive query Q Output : $|Q(D)|$

Let $#ACQ$:

Input : A database D and an acyclic conjunctive query Q Output : $|Q(D)|$

Corollary #ACQ admits an FPRAS

4 伊

Given $k > 1$, let $\#k$ -HW:

Input : A database D and a conjunctive query Q such that the hypertree width of Q is at most k Output : $|Q(D)|$

Given $k > 1$, let $\#k$ -HW:

Input : A database D and a conjunctive query Q such that the hypertree width of Q is at most k Output : $|Q(D)|$

Corollary #k-HW admits an FPRAS

[56](#page-189-0)

Some final remarks

→ 伊 → 三重 [57](#page-189-0)

Future work:

Future work:

 \blacktriangleright Make algorithms practical

Future work:

 \blacktriangleright Make algorithms practical

Implementation of FPRAS for $\#NFA$ works well with smaller bounds

← 伊 》 三重 [58](#page-189-0)

Future work:

 \blacktriangleright Make algorithms practical

Implementation of FPRAS for $#NFA$ works well with smaller bounds

 \triangleright Can the results be extended for semantic acyclicity?

4 伊) [58](#page-189-0)

Future work:

 \blacktriangleright Make algorithms practical

Implementation of FPRAS for $\#NFA$ works well with smaller bounds

- \triangleright Can the results be extended for semantic acyclicity?
- \triangleright Can the results be extended to context free grammars?

Future work:

 \blacktriangleright Make algorithms practical

Implementation of FPRAS for $\#NFA$ works well with smaller bounds

- \triangleright Can the results be extended for semantic acyclicity?
- \triangleright Can the results be extended to context free grammars?
	- Only quasi-polynomial time approximation are known for this problem [GJKSM97]
Questions?

Bibliography

- [AJ93] C. Alvarez, B. Jenner: A Very Hard log-Space Counting Class. Theor. Comput. Sci. 107(1): 3-30, 1993
- [ACJR21a] M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros: #NFA Admits an FPRAS: Efficient Enumeration, Counting, and Uniform Generation for Logspace Classes. J. ACM 68(6): 48:1-48:40, 2021
- [ACJR21b] M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros: When is approximate counting for conjunctive queries tractable? STOC 2021: 1015-1027
	- [BMT20] A. Bonifati, W. Martens, T. Timm: An analytical study of large SPARQL query logs. VLDB J. 29(2-3): 655-679, 2020

Bibliography

- [GJKSM97] V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, S. R. Mahaney: A Quasi-Polynomial-Time Algorithm for Sampling Words from a Context-Free Language. Inf. Comput. 134(1): 59-74. 1997
	- [JVV86] M. Jerrum, L. G. Valiant, V. V. Vazirani: Random Generation of Combinatorial Structures from a Uniform Distribution. Theor. Comput. Sci. 43: 169-188, 1986
	- [KSM95] S. Kannan, Z. Sweedyk, S. R. Mahaney: Counting and Random Generation of Strings in Regular Languages. SODA 1995: 551-557

Appendix

COUNT is SpanL-complete (under parsimonious reductions)

Consider the following NFA A:

Assume we need to return the number of words of length 4 accepted by A

 q_i is an initial state : s/u^i

 q_i is an initial state : s/u^i

 q_i is an initial state : s/u^i (q_i, a, q_j) is a transition $u^{3-i}/a/u^j$

 q_i is an initial state : s/u^i (q_i, a, q_j) is a transition $u^{3-i}/a/u^j$

 q_i is an initial state : s/u^i (q_i, a, q_j) is a transition $u^{3-i}/a/u^j$

 q_i is an initial state : s/u^i (q_i, a, q_j) is a transition $u^{3-i}/a/u^j$

 q_i is an initial state : s/u^i (q_i, a, q_j) is a transition $u^{3-i}/a/u^j$ q_i is a final state : u^{3-i}/t

 q_i is an initial state : s/u^i (q_i, a, q_j) is a transition $u^{3-i}/a/u^j$ q_i is a final state : u^{3-i}/t

Define $r = (s/u + u/u/1/u/u) + u/0/u/u/u + 0/u + ... + u/t)^*$

Define $r = (s/u + u/u/1/u/u) + u/0/u/u/u + 0/u + ... + u/t)^*$

Number of words of length 4 accepted by A = Number of paths p in G such that p conforms to r and the length of p is $21 = (5 \times 3 + 4 + 2)$

Bounding the probability of breaking the main assumption

Recall that $\mathcal{E}(i)$ holds if for every $q \in Q$ and $X \subseteq Q$:

$$
\left|\,\,\displaystyle\frac{\big|\mathcal{L}(q^i)\smallsetminus\bigcup_{p\in X}\mathcal{L}(p^i)\big|}{\big|\mathcal{L}(q^i)\big|}\,\,-\,\,\displaystyle\frac{\big|\mathcal{S}(q^i)\smallsetminus\bigcup_{p\in X}\mathcal{L}(p^i)\big|}{\big|\mathcal{S}(q^i)\big|}\,\,\,\right| \quad < \quad \displaystyle\frac{1}{\kappa^3}
$$

We know that $\mathcal{E}(0)$ holds.

Bounding the probability of breaking the main assumption

Recall that $\mathcal{E}(i)$ holds if for every $q \in Q$ and $X \subseteq Q$:

$$
\left|\,\,\displaystyle\frac{\big|\mathcal{L}(q^i)\smallsetminus\bigcup_{p\in X}\mathcal{L}(p^i)\big|}{\big|\mathcal{L}(q^i)\big|}\,\,-\,\,\displaystyle\frac{\big|\mathcal{S}(q^i)\smallsetminus\bigcup_{p\in X}\mathcal{L}(p^i)\big|}{\big|\mathcal{S}(q^i)\big|}\,\,\,\right| \quad < \quad \displaystyle\frac{1}{\kappa^3}
$$

We know that $\mathcal{E}(0)$ holds. We need to compute a lower bound for:

$$
\mathsf{Pr}\bigg(\bigwedge_{j=0}^n\mathcal{E}(j)\bigg)
$$

Bounding the probability of breaking $\mathcal{E}(i)$

Assume that
$$
\bigwedge_{j=0}^{i-1} \mathcal{E}(j)
$$
 holds

Let $q \in Q$ and $S(q^i)$ be a multiset of $2\kappa^7$ samples from $\mathcal{L}(q^i)$ computed by calling **Sample** $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(\sigma^i)})$ $\frac{e}{N(q^i)}$)

Each element of $S(q^i)$ is obtained by repeatedly calling **Sample** until the output is different from fail

Assume that $S(q^i)=\{w_1,\ldots,w_t\}$ with $t=2\kappa^7$

Bounding the probability of breaking $\mathcal{E}(i)$

Let $X \subseteq Q$, and Y_i be a Bernoulli random variable for $i \in \{1, \ldots, t\}$:

$$
Y_i = 1 \quad \text{if and only if} \quad w_i \in \left(\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i) \right)
$$

Bounding the probability of breaking $\mathcal{E}(i)$

Let $X \subseteq Q$, and Y_i be a Bernoulli random variable for $i \in \{1, ..., t\}$:

$$
Y_i = 1 \quad \text{if and only if} \quad w_i \in \left(\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i) \right)
$$

We have that:

$$
\mathbb{E}[Y_i] = \frac{|\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|\mathcal{L}(q^i)|}
$$

$$
\sum_{j=1}^t Y_i = |S(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|
$$

$$
t = |S(q^i)|
$$

4 但 > [68](#page-189-0)

$$
\Pr\left(\left|\frac{|S(q^{i}) \setminus \bigcup_{p \in X} \mathcal{L}(p^{i})|}{|S(q^{i})|} - \frac{|\mathcal{L}(q^{i}) \setminus \bigcup_{p \in X} \mathcal{L}(p^{i})|}{|\mathcal{L}(q^{i})|}\right| \geq \frac{1}{\kappa^{3}} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right)
$$

$$
\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{B}
$$

$$
\Pr\left(\left|\frac{|S(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|S(q^i)|} - \frac{|\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|\mathcal{L}(q^i)|}\right| \geq \frac{1}{\kappa^3} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) =
$$

$$
\Pr\bigg(\bigg|\frac{1}{t}\sum_{j=1}^t Y_j - \mathbb{E}\bigg[\frac{1}{t}\sum_{j=1}^t Y_j\bigg]\bigg| \geq \frac{1}{\kappa^3} \bigg|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\bigg)
$$

$$
\begin{array}{cc}\n\stackrel{\bullet}{\bullet} & \stackrel{\bullet}{\bullet} & \stackrel{\bullet}{\bullet} \\
\stackrel{\bullet}{\bullet} & & \stackrel{\bullet}{\bullet} & \\
\stackrel{\bullet}{\bullet} & & \stackrel{\bullet}{\bullet} & \\
\end{array}
$$

$$
\Pr\Biggl(\bigg|\frac{|S(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|S(q^i)|} - \frac{|\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|\mathcal{L}(q^i)|}\bigg| \geq \frac{1}{\kappa^3} \left| \bigwedge_{j=0}^{i-1} \mathcal{E}(j) \right) = \Pr\Biggl(\bigg|\frac{1}{t} \sum_{j=1}^t Y_j - \mathbb{E}\bigg[\frac{1}{t} \sum_{j=1}^t Y_j\bigg] \bigg| \geq \frac{1}{\kappa^3} \left| \bigwedge_{j=0}^{i-1} \mathcal{E}(j) \right) \leq 2e^{-2\left(\frac{1}{\kappa^3}\right)^2 t}
$$

 $\overline{6}$

$$
\Pr\Biggl(\left|\frac{|S(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|S(q^i)|} - \frac{|\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|\mathcal{L}(q^i)|}\right| \geq \frac{1}{\kappa^3} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) =
$$
\n
$$
\Pr\Biggl(\left|\frac{1}{t}\sum_{j=1}^t Y_j - \mathbb{E}\Biggl[\frac{1}{t}\sum_{j=1}^t Y_j\Biggr]\right| \geq \frac{1}{\kappa^3} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \leq 2e^{-2\left(\frac{1}{\kappa^3}\right)^2 t}
$$
\n
$$
= 2e^{-2\left(\frac{1}{\kappa^6}\right)2\kappa^7}
$$

 \leftarrow \oplus \rightarrow

$$
Pr\left(\left|\frac{|S(q^{j}) \setminus \bigcup_{p \in X} \mathcal{L}(p^{j})|}{|S(q^{j})|}\right| - \frac{|\mathcal{L}(q^{j}) \setminus \bigcup_{p \in X} \mathcal{L}(p^{j})|}{|\mathcal{L}(q^{j})|}\right| \geq \frac{1}{\kappa^{3}} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) =
$$
\n
$$
Pr\left(\left|\frac{1}{t}\sum_{j=1}^{t} Y_{j} - \mathbb{E}\left[\frac{1}{t}\sum_{j=1}^{t} Y_{j}\right]\right| \geq \frac{1}{\kappa^{3}} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right| \leq 2e^{-2\left(\frac{1}{\kappa^{3}}\right)^{2}t}
$$
\n
$$
= 2e^{-2\left(\frac{1}{\kappa^{6}}\right)2\kappa^{7}}
$$
\n
$$
= 2e^{-4\kappa}
$$

 \leftarrow \oplus

By taking the union bound

$$
\Pr\left(\exists q \in Q \exists X \subseteq Q \left|\frac{|S(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|S(q^i)|}\right| - \frac{|\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|\mathcal{L}(q^i)|}\right| \geq \frac{1}{\kappa^3} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \leq
$$

◆ 伊 メー ミー [70](#page-189-0)

By taking the union bound

$$
\Pr\left(\exists q \in Q \exists X \subseteq Q \left|\frac{|S(q^{i}) \setminus \bigcup_{p \in X} \mathcal{L}(p^{i})|}{|S(q^{i})|} - \frac{|\mathcal{L}(q^{i}) \setminus \bigcup_{p \in X} \mathcal{L}(p^{i})|}{|\mathcal{L}(q^{i})|}\right| \geq \frac{1}{\kappa^{3}} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \leq \sum_{q \in Q} \sum_{X \subseteq Q} \Pr\left(\left|\frac{|S(q^{i}) \setminus \bigcup_{p \in X} \mathcal{L}(p^{i})|}{|S(q^{i})|} - \frac{|\mathcal{L}(q^{i}) \setminus \bigcup_{p \in X} \mathcal{L}(p^{i})|}{|\mathcal{L}(q^{i})|}\right| \geq \frac{1}{\kappa^{3}} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \leq
$$

 $\overline{3}$ $\overline{3}$ $\overline{2}$ $\overline{$

By taking the union bound

$$
\Pr\left(\exists q \in Q \exists X \subseteq Q \left|\frac{|S(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|S(q^i)|} - \frac{|\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|\mathcal{L}(q^i)|}\right| \geq \frac{1}{\kappa^3} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \leq \sum_{q \in Q} \sum_{X \subseteq Q} \Pr\left(\left|\frac{|S(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|S(q^i)|} - \frac{|\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|\mathcal{L}(q^i)|}\right| \geq \frac{1}{\kappa^3} \left|\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \leq \frac{1}{m2^m 2e^{-4\kappa}} \leq \kappa 2^{\kappa} 2e^{-4\kappa} \leq 2e^{-2\kappa}
$$

 $\iff \Xi$

The conclusion

Rewriting the previous result:

$$
\Pr\bigg(\mathcal{E}(i) \mid \bigwedge_{j=0}^{i-1} \mathcal{E}(j)\bigg) \geq 1 - e^{-2\kappa}
$$

We conclude that:

$$
\Pr\bigg(\bigwedge_{j=0}^n\mathcal{E}(j)\bigg)\quad\geq\quad 1-e^{-\kappa}
$$

◆ 伊 * 三重 [71](#page-189-0)

Input: NFA $A = (Q, \{0, 1\}, \Delta, I, F)$ with $m = |Q|$, length *n* given in unary and error $\varepsilon \in (0,1)$

Input: NFA $A = (Q, \{0, 1\}, \Delta, I, F)$ with $m = |Q|$, length *n* given in unary and error $\varepsilon \in (0,1)$

1. If $\mathcal{L}_n(A) = \emptyset$, then return 0

Input: NFA $A = (Q, \{0, 1\}, \Delta, I, F)$ with $m = |Q|$, length *n* given in unary and error $\varepsilon \in (0,1)$

- 1. If $\mathcal{L}_n(A) = \emptyset$, then return 0
- 2. Construct A_{unroll} and set $\kappa = \lceil \frac{nm}{\varepsilon} \rceil$

Input: NFA $A = (Q, \{0, 1\}, \Delta, I, F)$ with $m = |Q|$, length *n* given in unary and error $\varepsilon \in (0,1)$

- 1. If $\mathcal{L}_n(A) = \emptyset$, then return 0
- 2. Construct A_{unroll} and set $\kappa = \lceil \frac{nm}{\varepsilon} \rceil$
- 3. Remove each state q^i from A_{unroll} that is not reachable from an initial state in I^0
Input: NFA $A = (Q, \{0, 1\}, \Delta, I, F)$ with $m = |Q|$, length *n* given in unary and error $\varepsilon \in (0,1)$

- 1. If $\mathcal{L}_n(A) = \emptyset$, then return 0
- 2. Construct A_{unroll} and set $\kappa = \lceil \frac{nm}{\varepsilon} \rceil$
- 3. Remove each state q^i from A_{unroll} that is not reachable from an initial state in I^0
- 4. For each $q^0 \in I^0$, set $N(q^0)=1$ and $S(q^0)=\{\lambda\}$

5.1 Set
$$
R_b = \{p^{i-1} \mid (p^{i-1}, b, q^i) \text{ is a transition in } A_{unroll}\}
$$

for $b = 0, 1$

- 5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1},b,q^i)$ is a transition in $A_{unroll}\}$ for $b = 0, 1$
- 5.2 Set $N(q^{i}) = N(R_0) + N(R_1)$

- 5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1},b,q^i)$ is a transition in $A_{unroll}\}$ for $b = 0, 1$
- 5.2 Set $N(q^{i}) = N(R_0) + N(R_1)$
- 5.3 Set $S(q^i)=\emptyset$. Then while $|S(q^i)| < 2\kappa^7$:

- 5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1},b,q^i)$ is a transition in $A_{unroll}\}$ for $b = 0, 1$
- 5.2 Set $N(q^{i}) = N(R_0) + N(R_1)$
- 5.3 Set $S(q^i)=\emptyset$. Then while $|S(q^i)| < 2\kappa^7$:
	- 5.3.1 $\,$ Run $\,$ Sample $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})\,$ until it returns $w \neq 1$ fail, and at most $c(\kappa) \in \Theta(\log(\kappa))$ times

5. For each layer $i=1,\ldots,n$ and state q^i in A_{unroll} :

- 5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1},b,q^i)$ is a transition in $A_{unroll}\}$ for $b = 0, 1$
- 5.2 Set $N(q^{i}) = N(R_0) + N(R_1)$
- 5.3 Set $S(q^i)=\emptyset$. Then while $|S(q^i)| < 2\kappa^7$:
	- 5.3.1 $\,$ Run $\,$ Sample $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})\,$ until it returns $w \neq 1$ fail, and at most $c(\kappa) \in \Theta(\log(\kappa))$ times

5.3.2 If $w = \text{fail}$, then return 0 (failure event)

5. For each layer $i=1,\ldots,n$ and state q^i in A_{unroll} :

- 5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1},b,q^i)$ is a transition in $A_{unroll}\}$ for $b = 0, 1$
- 5.2 Set $N(q^{i}) = N(R_0) + N(R_1)$
- 5.3 Set $S(q^i)=\emptyset$. Then while $|S(q^i)| < 2\kappa^7$:
	- 5.3.1 $\,$ Run $\,$ Sample $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})\,$ until it returns $w \neq 1$ fail, and at most $c(\kappa) \in \Theta(\log(\kappa))$ times

5.3.2 If $w = \text{fail}$, then return 0 (failure event)

5.3.3 Set $S(q^i)=S(q^i)\cup \{w\}$ (recall that $S(q^i)$ allows duplicates)

[73](#page-189-0)

5. For each layer $i=1,\ldots,n$ and state q^i in A_{unroll} :

- 5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1},b,q^i)$ is a transition in $A_{unroll}\}$ for $b = 0, 1$
- 5.2 Set $N(q^{i}) = N(R_0) + N(R_1)$
- 5.3 Set $S(q^i)=\emptyset$. Then while $|S(q^i)| < 2\kappa^7$:
	- 5.3.1 $\,$ Run $\,$ Sample $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})\,$ until it returns $w \neq 1$ fail, and at most $c(\kappa) \in \Theta(\log(\kappa))$ times

5.3.2 If $w = \text{fail}$, then return 0 (failure event)

5.3.3 Set $S(q^i)=S(q^i)\cup \{w\}$ (recall that $S(q^i)$ allows duplicates)

6. Return $N(F^n)$ as an estimation of $|\mathcal{L}_n(A)|$

The complete algorithm: final comments

The probability that the algorithm returns a wrong estimate is at most $\frac{1}{4}$

$$
\bullet \quad \text{Considering } c(\kappa) = \lceil \frac{2 + \log(4) + 8 \log(\kappa)}{\log(1 - e^{-9})^{-1}} \rceil
$$

The algorithm runs in time poly $(m, n, \frac{1}{\varepsilon})$