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Motivation: query answering

» Three fundamental associated problems: enumeration, uniform
generation and counting of solutions

> Study these three problems together
> In line with [JVV86]

> Define classes (of queries) that have good properties in terms of
these three problems
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In this talk

» Present the techniques used to solve the aforementioned counting
problem

> Show how these techniques can be generalized to tree automata

» The motivating scenario comes from relational databases:
counting the number of answers to an acyclic conjunctive query



Definition of the setting



Our first motivating scenario: graph databases
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Two fundamental problems

» COUNT: count the number of paths p in G such that p conforms
to regular expression r and the length of p is n

» GEN: generate uniformly at random a path p in G such that p
conforms to r and the length of p is n



Is COUNT a difficult problem?

Not surprisingly the answer is yes

We would like to give a precise characterization of the complexity of this
problem
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Counting complexity classes

» #P : Count the number of witnesses for a problem in NP

» SpanP : Count the number of distinct outputs of an NP-transducer

> Example: given as input a graph G, count the number of subgraphs
G’ of G such that G’ is 3-colorable
> #P C SpanP

» SpanL : Count the number of distinct outputs of an NL-transducer

> #NFA: given as input an NFA A and a length n, count the number
of words of length n accepted by A
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#NFA is a hard problem [AJ93]

» SpanlL is contained in #P

» SpanlL is a hard class: if every function in SpanL can be computed
in polynomial time, then P = NP

» #NFA is SpanlL-complete under parsimonious reductions
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COUNT is SpanlL-complete

Parsimonious reduction from #NFA to COUNT
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> Interestingly, the regular expressions used in the reduction are not
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COUNT is SpanlL-complete

Parsimonious reduction from #NFA to COUNT

> Interestingly, the regular expressions used in the reduction are not
far from the ones used in practice [BMT20]

COUNT and #NFA are equivalent problems

» In particular, in terms of the existence of efficient approximation
algorithms
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SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm
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Existence of an efficient approximation algorithm
for COUNT

SpanL-hardness of COUNT does not preclude the existence of such an
efficient approximation algorithm

Our goal is to construct a fully polynomial-time randomized
approximation scheme (FPRAS) for COUNT

This is equivalent to constructing an FPRAS for #NFA

» Best known approximation algorithm for #NFA worked in
quasi-polynomial time [KSM95]
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What about uniform generation of paths?

If we have an FPRAS for COUNT, then it can be obtained an efficient
approximation algorithm for GEN
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What about uniform generation of paths?

If we have an FPRAS for COUNT, then it can be obtained an efficient
approximation algorithm for GEN

> A fully polynomial-time almost-uniform generator [JVV86]
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Questions?
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The main ideas behind the
solution



Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The definition of #NFA:

Input : An NFA A over the alphabet {0,1} and a length n (given in unary)
Output : Number of words w such that w € £(A) and |w|=n
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Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The definition of #NFA:

Input : An NFA A over the alphabet {0,1} and a length n (given in unary)
Output : Number of words w such that w € £(A) and |w|=n

Assume that £,(A) = {w € L(A) | |w| = n}, so that the output of #NFA
is |Ln(A)]

17



Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and € € (0,1)
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Our goal is to construct a fully polynomial-time
randomized approximation scheme (FPRAS) for #NFA

The input of the approximation algorithm: A, n and ¢ € (0,1)

The task is to compute a number N that is a (1 & ¢)-approximation of |£,(A)|:

Pr ((175)\£,,(A)\ <N < (1+5)\£H(A)\> > %

Moreover, number N has to be computed in time poly(m, n, l) where m is the
number of states of A

18



Constructing an FPRAS for #NFA

Assume that A = (Q,{0,1}, A, [, F)

| 4

>
>
>

Q is a finite set of states
A C Qx{0,1} x Q is the transition relation
| C Q is a set of initial states

F C Q is a set of final states

10



First component: unroll automaton A

Construct Aynron from A:
> for each state g € Q, include copies q°, ¢*, ..., ¢" in Aunronl

» for each transition (p,a,q) € A and i € {0,1,...,n— 1}, include
transition (p', a,q' 1) in Aunron

Besides, eliminate from Ay, Unnecessary states: each state g’ is
reachable from an initial state p° (p € /)

20



Second component: a sketch to be used in the estimation

Define £(q') as the set of strings w such that there is a path from an
initial state p° to ¢’ labeled with w

> Notice that |w| =i

Besides, define for every X C Q:

cx) = L)

qgeX
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Second component: a sketch to be used in the estimation

Define £(q') as the set of strings w such that there is a path from an
initial state p° to ¢’ labeled with w

> Notice that |w| =i
Besides, define for every X C Q:
c(xy = )

qgeX

Then the task is to compute an estimation of |£(F")]

21



Second component: a sketch to be used in the estimation

Let v = (TW where m = | Q|
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Second component: a sketch to be used in the estimation

Let v = (nm

1, where m = |Q)|

We maintain for each state g':
> N(g'): a (14 x2)-approximation of |£(q')]

> S(g'): a multiset of uniform samples from £(q') of size 2’

Data structure to be inductively computed:

sketch[i] = {N(¢),S(¢/)|0<j<iand g€ Q}

29



The algorithm template

1. Construct A nron from A

2. For each state g € /, set N(q°) = |£(¢°)| =1 and
S(¢°) = £(e°) = {\)

3. Foreach i=0,...,n—1 and state g € Q:
(a) Compute N(g'*1) given sketch][i]

(b) Sample polynomially many uniform elements from L(g™"1)
using N(g'**) and sketch[i], and let S(¢'™) be the multiset of
uniform samples obtained

4. Return an estimation of |L(F")| given sketch[n]

27



Computing an estimation N(F") of |[L(F")]

We use notation N(X') for an estimation |£(X")]
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24



Computing an estimation N(F") of |[L(F")]

We use notation N(X') for an estimation |£(X")]

Such an estimation is not only needed in the last step of the algorithm, but
also in the inductive construction of sketchl/]:

3. Foreachi=0,...,n—1 and state g € Q:
(a) Compute N(q'*1) given sketchli]
(b) Sample polynomially many uniform elements from £(q'*!)

using N(g'*1) and sketch[i], and let S(g'™!) be the multiset of
uniform samples obtained

24



Computing an estimation N(X') of |£(

Recall that £(X') = ] L(p
peX

X'
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Computing an estimation N(X') of |£(X")]

Recall that £(X') = ] L(p
peX
Notice that [£(X')| = Z |L£(p")| is not true in general
peX

But the following holds, given a linear order < on Q:

St~ | £(d)]

peX qgeX  g<p
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Computing an estimation N(X') of |£(X")]

We have that:

cxH = Sleee) s U Ld)

peX geX  g<p
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We have that:

1£(X")]

Sy~ | £d)

peX geX  g<p

i |£(p,) ~ quX:q<p £(ql)|
g{ 1£(p")] )

So we will use the following approximation:

> N(p')

peX
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Computing an estimation N(X') of |£(X")]

We have that:

1£(X")]

Sy~ | £d)

peX geX  g<p

i |‘C(p,) ~ quX:q<p £(ql)|
g{ 1£(p")] )

So we will use the following approximation:

i {S(pl) ~ quX:q<p ‘C(q’)’
g{l\/(p) S
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Computing an estimation N(X') of |£(X")]

We have that:

1£(X")]

Sy~ | £d)

peX geX  g<p

i |‘C(p,) ~ quX:q<p £(ql)|
g{ 1£(p")] )

So we will use the following approximation:

, 1S(p") ~ oen L(q
N(XT) = ZN(p’){ & L|J5"(E:)|"<” @)
peX
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Computing an estimation N(X') of |£(X")]

N(X') can be computed in polynomial time in the size of sketchl[i]

> S(p') ~ Ugex:q<p L(q") is constructed by checking for each
w € S(p') whether w is not in £(q') for every g € X with ¢ < p
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Computing an estimation N(X') of |£(X")]

N(X') can be computed in polynomial time in the size of sketchl[i]

> S(p') ~ Ugex:q<p L(q") is constructed by checking for each
w € S(p') whether w is not in £(q') for every g € X with ¢ < p

What guarantees that N(X') is a good estimation of |£(X')|?

27



The main property to maintain

E(7) holds if for every p € Q and X C Q:

[£(P) ~ Ugex £(a)] [5(P') ~ Ugex £(9)]

1£(p")] N S(p)]

28



The use of the main property

3. Foreachi=0,...,n—1 and state g € Q:
(a) Compute N(g'*1) given sketch][i]
(b) Sample polynomially many uniform elements from £(q'*1)

using N(g'*1) and sketch[i], and let S(g'!) be the multiset of
uniform samples obtained
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The use of the main property

3. Foreach i=0,...,n—1 and state g € Q:
(a) Compute N(g'*1) given sketch][i]
(b) Sample polynomially many uniform elements from £(q'*1)

using N(g'*1) and sketch[i], and let S(g'!) be the multiset of
uniform samples obtained

Proposition

If £(i) holds and N(p') isa(l+ A_Z)i—a_pproximation of |£(p")| for
every p € Q, then N(X') is a (1 & x~2)™-approximation of |L(X")| for
every X C @
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£(0) holds and N(p°) is a (1 & x~2)°-approximation of |£(p°)] for
every p € Q

> Recall that N(p°) = |£(p%)| and S(p°) = L(p°) for every p € Q
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The use of the main property

£(0) holds and N(p°) is a (1 & x~2)°-approximation of |£(p°)] for
every p € Q

> Recall that N(p°) = |£(p%)| and S(p°) = L(p°) for every p € Q

Then N(X9) is a (1 £ x~2)-approximation of |£(X?)| for every X C Q

> We want to use the values N(X°) to estimate the values N(p!)
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The use of the main property

For p € @, define:

Y = {qo | (qO,O,pl) is a transition in Aunron}
Z = {q0 | (qo, 1,p1) is a transition in Aynron}
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The use of the main property
For p € @, define:

Y = {qo | (qO,O,pl) is a transition in Aunron}
Z = {q°|(q°%1,p") is a transition in A,n.on}

Then L(pt) = L(Y)-{0} W £(Z)- {1}
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The use of the main property
For p € @, define:

Y = {qo | (qO,O,pl) is a transition in Aunron}
Z = {q0 | (qo, l,pl) is a transition in Aynron}

Then L(pt) = L(Y)-{0} w £(Z)- {1}
> So that |£(p")] = |£(Y)| + [£(2)|
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The use of the main property

For p € @, define:

Y = {q°](q%0,p") is a transition in Aupon}
7 - {qO | (qo’ 1,p1) is a transition in Aynron}

Then L(pt) = L(Y)-{0} w £(Z)- {1}
> So that |£(p")] = |£(Y)| + [£(2)|

Hence, given that N(Y) is a (1 & x~2)-approximation of |£(Y)| and
N(Z) is a (1 & x~2)-approximation of |£(Z)]:

N(Y) + N(Z) is a (1 & x~2)-approximation of N(p')

21



The use of the main property: a summary

£(0) holds and N(p°) is a (1 + x~2)%-approximation of |£(p°)| for
every p € @
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£(0) holds and N(p°) is a (1 + x~2)%-approximation of |£(p°)| for
every p € @

4

N(X°) is a (1 + k=2)'-approximation of |£(X?)| for every X C Q
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The use of the main property: a summary

£(0) holds and N(p°) is a (1 + x~2)%-approximation of |£(p°)| for
every p € @

4

N(X°) is a (1 + k=2)'-approximation of |£(X?)| for every X C Q

4

N(p*) = N(Ro(p)) + N(Ri(p")) is a (1 4 x~2) -approximation of N(p')
for every p € Q

where R,(p') = {q° | (q°, b, p!) is a transition in A,pon}
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The use of the main property: a summary
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every p € Q
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The use of the main property: a summary
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every p € Q
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£(1) holds and N(p') is a (1 + x~2)*-approximation of |£(p!)| for
every p € Q

4

N(X') is a (1 + k=2)?-approximation of |L(X?)| for every X C Q
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The use of the main property: a summary

£(1) holds and N(p') is a (1 + x~2)*-approximation of |£(p!)| for
every p € Q

4

N(X') is a (1 + k=2)?-approximation of |L(X?)| for every X C Q

Y

N(p?) = N(Ro(p?)) + N(R1(p?)) is a (1 + k=2)?-approximation of N(p?)
for every p € Q

where Ry(p?) = {q* | (¢*, b, p) is a transition in A,pon}

23



The final result

Proposition

If (i) holds for every i € {0,1, ..

(1 £ €)-approximation of |L(F")|

.,n}, then N(F") is a

34



Questions?
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How can we maintain
property E(i)?
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Sampling from a state

We need to construct the multiset S(g'™) of uniform samples

Recall that:

> S(g™*1) contains 27 words from £(g'*1)

> S(g'*t1) is computed assuming that N(g'*!) and
sketch[i] = {N(¢), S(¢’) | 0 <j < i} have already been
constructed

7



To recall

3. Foreach i=0,...,n—1 and state g € Q:
(a) Compute N(g'*1) given sketch][i]

(b) Sample polynomially many uniform elements from L(g™"1)
using N(q'*1) and sketchl[i], and let S(g'™!) be the multiset of
uniform samples obtained

28



Sampling from ¢'**

To generate a sample in L',(q"H), we construct a sequence witl wi,

wl, w0 such that
> witl =\
> w/ = bw/tl with b; € {0,1}
> w0 e L£(git)

i

20



Sampling from g'*!

i

To generate a sample in L',(q"H), we construct a sequence witl wi,

wl, w0 such that
> witl =\
> w/ = bw/tl with b; € {0,1}
> w0 e L£(git)

To choose w' = bw't!, construct for b = 0, 1:

P, = {p'|(p',b,q"") is a transition in Aupon}

20



Sampling from q'

Py and P; are sets of states at layer i

We can compute N(Py) and N(Py) as follows:

S(P) N Ugex: qep £(a)]

NX) = 3 N(p)

peX

|S(p")]

20



Sampling from q'

Py and P; are sets of states at layer i

We can compute N(Py) and N(Py) as follows:

S(P) N Ugex: qep £(a)]

NX) = 3 N(p)

st [5(7)]
We choose b € {0,1} with probability:

N(Pp)
N(Po) + N(Py)

20



We could have started from a set of states

The previous procedure works for every set of states P+
P, = {p"|3rtt e P (p' b, rt)is a transition in Auon}

In particular, we applied the procedure for P+ = {g'+1}

41



We could have started from a set of states

The previous procedure works for every set of states P+
P, = {p"|3rtt e P (p' b, rt)is a transition in Auon}

In particular, we applied the procedure for P+ = {g'+1}

The following recursive procedure summarizes the previous idea:
sample(i +1, {qi+1 }7 /\5 ‘150)

It uses sets of states P'*1 = {q*1}, P/, ..., P1, P? and an initial
probability ¢q

41



The sampling algorithm

Sample(j, P/, w/, )
1. If j = 0, then with probability ¢ return w®, otherwise return fail
2. Compute P;, = {p/=1 | 3 € P/ : (p/~1, b,F) is a transition
in Aynron} for b=10,1

N(Pj»)
N(Pjo) + N(Pj1)

3. Choose b € {0,1} with probability p, =
4. Set Pi—1 = Pj.p and wi—t = pwd

o i—1 -1 ¢
5. Return Sample(j — 1, P/~ w/ 7Pb)

49



The key observation

Let x = x; - - - x;41 be a word in £(g™*1)
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The key observation

Let x = x; - - - x;41 be a word in £(g™*1)

We have that:

Pr(the output of Sample is x)
= Pr(w® = x A the last call to Sample does not fail)

= Pr(the last call to Sample does not fail | w® = x) - Pr(w®

:)()

((HN ,o)+17v)(11)>_1 )(HN P

= %o

)
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The value of the initial probability g

Proposition
Assume that E(j) holds for each j < i+ 1. If w is the output of
Sample(i + 1, {g' "1}, \, N(%il)) then

> ¢ € (0,1) in every recursive call to Sample
» Pr(w=fail) <1-e°
o5

> PI’(W:X):W

for every x € L(q't1)

a4



The value of the initial probability g

Proposition

Assume that E(j) holds for each j < i+ 1. If w is the output of

Sample(i + 1, {g"™*}, A Lil)) then

? N(q

> ¢ € (0,1) in every recursive call to Sample

» Pr(w=fail) <1-e°
.

> Pr(W:x):W

for every x € L(q't1)

Hence, conditioned on not failing, Sample(i + 1, {g'"1}, \,

returns a uniform sample from £(g'*1)

r\l))
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Bounding the probability of breaking the main assumption

Recall that £(i) holds if for every g € Q and X C Q:

1£(q") ~ Upex £(p)] B 15(a") ~ Upex £(p7)| o1
1£(q")] 1S(q")| K
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Bounding the probability of breaking the main assumption

Recall that £(i) holds if for every g € Q and X C Q:

1£(a") ~ Upex £(p7)| B 15(a") ~ Upex £(p7)| o1
1£(q")] 1S(q")| K

By using Hoeffding's inequality, it is possible to conclude that:

Pr(j/n\og(j)> > 1-e"
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The complete algorithm: final comments

Putting all together, we obtain that the probability that the algorithm
returns a wrong estimate is at most %

The algorithm runs in time poly(m, n, 1)
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The extension of the approach
to tree automata
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Tree automata
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Tree automata
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The problem #TA

Input : A tree automaton (TA) T over the alphabet {0,1} and
a number n (given in unary)
Output :  Number of trees t such that t € £(T) and the number

of nodes of t is n

40



Constructing an FPRAS for #TA
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Constructing an FPRAS for #TA
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Reducing to a counting problem for succinct NFA

O,
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Succinct NFA S = (Q, X, A, I, F)

> Q, | and F as before
> ¥ is an alphabet

P Y is assumed to be succinctly encoded via some representation
> A C Q x 2% x Q is the transition relation

> If (p, A, q) € A, then A is also assumed to be succinctly encoded
via some representation

wi -+ - w, € L(S) if there exists a sequence of states qoqi . .. gn such that
qgo € 1, gn € F and for every w;, there exists A such that w; € A and
(ql'*l’, A-, ql) €A

» The length of wi---w, is n
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The main result about #Succinct-NFA

The definition of #Succinct-NFA:

Input : A succinct NFA S and a length n (given in unary)
Output :  Number of words w such that w € £(S) and |w| = n
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The main result about #Succinct-NFA

The definition of #Succinct-NFA:

Input : A succinct NFA S and a length n (given in unary)
Output : Number of words w such that w € £(S) and |w| = n
Theorem

#Succinct-NFA admits an FPRAS when restricted to the class of succinct NFA

S=(Q,X,A, I, F) such that for every (p, A, q) € A, there exists an oracle
which can:

(1) test membership in A,
(2) produce an estimate of the size of |A|, and

(3) generate almost-uniform samples from A.
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The main result about #TA

#TA admits an FPRAS
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Let #ACQ:

Input : A database D and an acyclic conjunctive query Q
Output : |Q(D)|
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The results presented in this talk are proved in [ACJR21a] and [ACJR21b]

Future work:
» Make algorithms practical
» Implementation of FPRAS for #NFA works well with smaller bounds
» Can the results be extended for semantic acyclicity?
» Can the results be extended to context free grammars?

» Only quasi-polynomial time approximation are known for this
problem [GJKSMO97]
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COUNT is SpanL-complete (under parsimonious
reductions)

Consider the following NFA A:

Assume we need to return the number of words of length 4 accepted by A
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Reduction from #NFA to COUNT

Define r = (s/u+ u/u/1/u/u/ 4+ u/0/u/u/u+0/u+ ...+ u/t)"
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Reduction from #NFA to COUNT

Define r = (s/u+ u/u/1/u/u/ 4+ u/0/u/u/u+0/u+ ...+ u/t)"

Number of words of length 4 accepted by A

Number of paths p in G such that p conforms to r and
the length of pis 21 = (5 x 3+ 4 +2)
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Bounding the probability of breaking the main assumption

Recall that £(i) holds if for every g € Q@ and X C Q:

1£(a") ~ Upex £ [5(4) ~ Upex £(P)) 1
1£(q")] 1S(q")] K3

We know that £(0) holds.
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Bounding the probability of breaking the main assumption

Recall that £(i) holds if for every g € Q@ and X C Q:

1£(a") ~ Upex £ 1S(d) ~ Upexﬁ(p)! 1
1£(q")] |S(q")] K

We know that £(0) holds. We need to compute a lower bound for:

*(A0)
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Bounding the probability of breaking £(/)

i—1
Assume that /\ E(j) holds
j=0

Let g € Q and S(g') be a multiset of 2x” samples from £(q') computed

by calling Sample(i, {g'}, A, %)

» Each element of S(q') is obtained by repeatedly calling Sample
until the output is different from fail

Assume that S(q') = {wy, ..., w;} with t = 27
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Bounding the probability of breaking £(/)

Let X C @, and Y; be a Bernoulli random variable for i € {1,... t}:

Yi=1 ifandonlyif w; e <£(qi) ~ U L(p")>

peX
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Bounding the probability of breaking £(/)

Let X C @, and Y; be a Bernoulli random variable for i € {1,... t}:

Yi=1 ifandonlyif w; e <£(qi) ~ U L(p")>

peX

We have that:

1£(0") ~ Upex £(P)]

Evil = ()]
SV = 15(6) Upex £(6')
£ = IS(q)]
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By using Hoeffding's inequality

15() ~ Upex £0)]
5(q)|

1£(4") ~ Uyex £()]
12(q)

d

1
> =

}\(ts<j))
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By using Hoeffding's inequality

15(") ~ U,pex £(p)]
P (‘ 5(a) -
1£(q') ~ Upex £()] 1A N
e | 2w /\05(’)) -
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By taking the union bound

15(6) ~ Upex £(P))]

Pr(30 @3x < o =gy

1£(q") ~ Uex £(p )l'
1£(q")

o) =
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By taking the union bound

ee(a e qax ¢ 0L Voo 001

T Ts@)l -
LURVELCITINE j/\os(j)) <
|z:(q") |£L(Jpe)xﬁ(f’)| = ;/_\:5(1)) <
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By taking the union bound

' 15(6) ~ Upex £(P))]

Pr(aqe QIXCQ

TSl
LURVELCITINE j/\os(j)) <
EEn(
£(4) TEL(J;ie)Tﬁ(p’)I > 1 ;/_\:5(1)) <

4 —2K

m2M2eM < k2"2e™H < 2e
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The conclusion

Rewriting the previous result:

Pr<5(i)

We conclude that:

i—1
/\50)) > 1—e 2
j=0
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The complete algorithm

Input: NFA A= (Q,{0,1}, A, I, F) with m = |Q]|, length n given in
unary and error ¢ € (0,1)

1. If £,(A) =0, then return 0
2. Construct Ayprop and set k= [ ]

3. Remove each state g’ from Ao that is not reachable from an
initial state in /°

4. For each q° € 19, set N(g°) =1 and S(q°) = {)\}
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The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:
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The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:
5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1
5.2 Set N(q') = N(Ro) + N(R;)
5.3 Set S(q') = 0. Then while |S(q")| < 2x7:

5.3.1 Run Sample(i,{g'}, \, ,\7(—;)) until it returns w # fail, and at

most c(x) € ©(log(x)) times
5.3.2 If w = fail, then return 0 (failure event)
5.3.3 Set S(q') = S(¢') U {w} (recall that S(q') allows duplicates)

6. Return N(F™) as an estimation of |£,(A)|
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The complete algorithm: final comments

The probability that the algorithm returns a wrong estimate is at most %

> Considering c(x) = [%W

The algorithm runs in time poly(m, n, 1)
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