
A logical approach to
model interpretability

Marcelo Arenas
PUC & IMFD Chile and RelationalAI, Berkeley

Joint work with Daniel Báez,  Pablo Barceló, Diego Bustamante, José
Thomas Caraball, Jorge Pérez, and Bernardo Subercaseaux

1



 

 

A growing interest in developing methods to
explain predictions made by machine learning
models

This has led to the development of several
notions of explanation

Instead of struggling with the increasing number
of such notions, one can developed a declarative
query language for interpretability task

Motivation

2



To show how such a framework can be developed by
interpreting classification models as labeled graphs,

and by using first-order logic as a query language

The goal of this talk

3



Extracting nodes from a graph:
regular paths queries

n :0 Infected n :1 Bus
e :0 rides

n :2 Person n :3 Bus

n :4 Person

e :2 rides

e :1 rides

e :3 rides

Person/rides/Bus/rides /Infected‒

4



n :0 Infected n :1 Bus
e :0 rides

n :2 Person n :3 Bus

n :4 Person

e :2 rides

e :1 rides

e :3 rides

Person/rides/Bus/rides /Infected‒

Extracting nodes from a graph:
regular paths queries

5



n :0 Infected n :1 Bus
e :0 rides

n :2 Person

e :1 rides

Person/rides/Bus/rides /Infected‒

, , , e1 n1 e0 n0,n2

Extracting nodes from a graph:
regular paths queries

6



n :0 Infected n :1 Bus
e :0 rides

n :2 Person

e :1 rides

Person/rides/Bus/rides /Infected‒

, , , e1 n1 e0 n0,n2

Extracting nodes from a graph:
regular paths queries

7



Person(x) ∧ ∃y (rides(x, y) ∧ Bus(y) ∧ ∃z (rides(z, y) ∧ Infected(z)))

n :0 Infected n :1 Bus
e :0 rides

n :2 Person n :3 Bus

n :4 Person

e :2 rides

e :1 rides

e :3 rides

Extracting nodes from a graph:
first-order logic

8



(Infected) (Bus)

(Person) (Bus)

(Person)

n0 n1

n3 n4

n5

Extracting nodes from a graph:
graph neural networks

9



Processing by layers in GNNs:
the input

(Infected
0 ) (Bus

0 )

(Bus
0 )

(Person
0 )

n0 n1

n3 n4

n5(Person
0 )

10



Computing the first layer

(Infected
0 ) (Bus

0 )

(Bus
0 )

(Person
0 )

n0 n1

n3 n4

n5(Person
0 )

11



(Infected
0 ) (Bus

0 )

(Person
0 ) (Bus

0 )

(Person
0 )

n0 n1

n3 n4

n5

Computing the first layer

12



(Infected
0 ) (Bus

1 )

(Person
0 ) (Bus

0 )

(Person
0 )

n0 n1

n3 n4

n5

Computing the first layer

13



The result of the first layer

(Infected
0 ) (Bus

1 )

(Person
0 ) (Bus

0 )

(Person
0 )

n0 n1

n3 n4

n5

14



(Infected
0 ) (Bus

1 )

(Person
0 ) (Bus

0 )

(Person
0 )

n0 n1

n3 n4

n5

Computing the second layer

15



(Infected
0 ) (Bus

1 )

(Person
0 ) (Bus

0 )

(Person
0 )

n0 n1

n3 n4

n5

Computing the second layer

16



(Infected
0 ) (Bus

1 )

(Person
1 ) (Bus

0 )

(Person
0 )

n0 n1

n3 n4

n5

Computing the second layer

17



The result of the second
layer

(Infected
0 ) (Bus

1 )

(Person
1 ) (Bus

0 )

(Person
0 )

n0 n1

n3 n4

n5

18



The architecture of GNNs

:  vector of features of node  at layer u(i) u i

:  vector of features from the input graphu(0)

  =  

                     and  are neighbors in 

u(i) COMB(i)(u ,(i−1)

AGG(i)({{v ∣(i−1) u v G}}))

If  is the last layer:  is the result for node k CSL(u )(k) u

19



The architecture of GNNs

(Infected
0 ) (Bus

1 )

(Person
1 ) (Bus

0 )

(Person
0 )

n0 n1

n3 n4

n5

(Person
0 )CSL = 0

20

(Person
1 )= 1CSL

CSL(Bus
1 )= 0

Person/rides/Bus/rides /Infected‒



The architecture of GNNs

(Infected
0 ) (Bus

1 )

(Person
1 ) (Bus

0 )

(Person
0 )

n0 n1

n3 n4

n5

(Person
0 )CSL = 0

21

(Person
1 )= 1CSL

CSL(Bus
1 )= 0

Person/rides/Bus/rides /Infected‒



GNNs as a query language

How do we explain the results of the query?
Part of a more general issue: explainability or
interpretability of black box model results

22



A call for an interpretability
query language

Several interpretability notions have been
studied independently
Interpretability admits no silver bullet; different
contexts require different notions
Interpretability may require combining different
notions; it is better to think of it as an interactive
process

23



A call for an interpretability
query language

This naturally suggests the possibility of
interpretability query languages
These language should de declarative, and
should allow to express a wide variety of queries
This gives control to the end-user to tailor
interpretability queries to their particular needs

24



Our main goal is to develop such an
interpretability query language

Basic ingredients: classification models
are represented as labeled graphs, and

first-order logic is used as query language

25



We start by focusing on a
simple but widely used model

Decision trees are widely used, in particular
because they are considered readily 
interpretable models
The main ingredients of our logical approach are
already present in this case

26



true false

w

true

false

z

10

0

0

1

1

27

y

z

10

10

false true

0 1
x

truefalse

0 1

w

true

0
1

w y

A decision tree



A classification model:

M : {0, 1} →n {0, 1}

The dimension of  is , and each 
is called a feature

M n i ∈ {1,… ,n}

 is an instancee ∈ {0, 1}n

 accepts  if , otherwise  rejects M e M(e) = 1 M e

28



A decision tree  of
dimension 

T

n

true false

true

false

10

0

0

1

1

0 1

29

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1
Each internal node is labeled with a
feature , and has two
outgoing edges labeled  and 

i ∈ {1,… ,n}

0 1

Each leaf is labeled  or true false
No two nodes on a path from the
root to a leaf have the same label



A decision tree  of
dimension 

T

n

Every instance  defines a unique
path  from the
root to a leaf

e
n , e ,n ,… , e ,n1 1 2 k−1 k

 if the label  is T (e) = 1 nk true

true false

true

false

10

0

0

1

1

0

30

1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1



A decision tree  of
dimension 

T

n

 for instance T (e ) =1 1 e =1 (1, 0, 1, 1)

true false

true

false

10

0

0

1

1

0

31

1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Every instance  defines a unique
path  from the
root to a leaf

 if the label  is 

e
n , e ,n ,… , e ,n1 1 2 k−1 k

T (e) = 1 nk true



The evaluation of a model
as a query

Is  for instance ?T (e ) =1 1 e =1 (1, 0, 1, 0)

true false

true

false

10

0

0

1

1

0

32

1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

(1/1 + 2/0 + 3/1 + 4/0) /true∗



But our problem is to explain
the output of a model

What are interesting notions of explanation?
What notions have been studied? What notions
are used in practice?
Can these notions be expressed as queries over
decision trees?

33



Is there a completion of  that is
classified positively?

2 ↦ 0

true false

true

false

10

0

0

1

1

0 1

34

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

   (1/(0 + 1) + 2/0 +

But our problem is to explain
the output of a model

3/(0 + 1) + 4/(0 + 1)) /true∗

Are all the completions of 
classified positively?

2 ↦ 0



 for T (e) = 1 e = (1, 1, 1, 1)

true false

true

false

10

0

0

1

1

0 1

35

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
sufficient reason

The value of feature  is not needed to
obtain this result

3

 is a sufficient reason{1, 2, 4}



 for T (e) = 1 e = (1, 1, 1, 1)

true false

true

false

10

0

0

1

1

0 1

36

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
minimal sufficient reason

The value of features  and  are not
needed to obtain this result

1 3

 is a minimal sufficient       
reason
{2, 4}



If the values of features  are
fixed, then the output of the model       
is fixed

{1, 3, 4}

true false

true

false

10

0

0

1

1

0 1

37

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
relevant feature set

The output of the model depends     
only on these features



true false

true

false

10

0

0

1

1

0 1
2

38

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
relevant feature set

If the values of features  are
fixed, then the output of the model       
is fixed

{1, 3, 4}

If :e[1] = e[3] = e[4] = 0

T (e) = 1



true false

true

false

10

0

0

1

1

0 1
2

39

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
relevant feature set

If the values of features  are
fixed, then the output of the model       
is fixed

{1, 3, 4}

If  and :   e[1] = e[3] = 1 e[4] = 0

T (e) = 0



MNIST: relevant feature set

40



Can these queries be expressed
in a graph query language?

How do we express the previous interpretability
queries?
Is there a common framework for them?
Is there a natural framework based on labeled
graphs?

41



false

w

z

1
0

00
1

1

y

42

z

1
0

1

0

0 1x

0

1

w

0
1

w y

true

Binary decision
diagrams (BDDs)

OBDDs
FBDDs

Can these queries be expressed
in a graph query language?



A first attempt: FOIL

First-order logic defined on a suitable vocabulary to
describe classification models

Key notion: partial instance  of dimensión e ∈ {0, 1,⊥}n n

 is subsumed by  if  are partial instances such
that for every , if  , then 
e1 e2 e , e1 2

i ∈ {1,… ,n} e [i] =1  ⊥ e [i] =1 e [i]2

(1,⊥, 0,⊥)  ⊆  (1, 0, 0,⊥)  ⊆  (1, 0, 0, 1)

43



A first attempt: FOIL

First-order logic defined on a suitable vocabulary to
describe classification models: {Pos, ⊆}

A model  of dimensión  is represented as a   
structure :

M n

AM

The domain of  is AM {0, 1,⊥}n

 holds if  is an instance such that Pos(e) e M(e) = 1
 holds if  are partial instances such that 

is subsumed by 
e ⊆1 e2 e , e1 2 e1

e2

44



The semantics of FOIL

Given a FOIL formula , a classification
model  of dimensión , and instances , , …, 

Φ(x ,x ,… ,x )1 2 k

M n e1 e2 ek

(in the usual sense)

M ⊨ Φ(e , e ,… , e )1 2 k

⟺

A ⊨M Φ(e , e ,… , e )1 2 k

45



Some examples

 Full(x)  =  ∀y (x ⊆ y → x = y)

AllPos(x)  =  ∀y ((x ⊆ y ∧ Full(y)) → Pos(y))

AllNeg(x)  =  ∀y ((x ⊆ y ∧ Full(y)) → ¬Pos(y))

46



 for , and 
is a sufficient reason for this
T (e) = 1 e = (1, 1, 1, 1) e =1 (1, 1,⊥, 1)

true false

true

false

10

0

0

1

1

0 1

47

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
sufficient reason

SR(x, y)  =  Full(x) ∧ y ⊆ x ∧

(Pos(x) → AllPos(y)) ∧

(¬Pos(x) → AllNeg(y))

T ⊨ SR(e, e )1



 for , and 
is a minimal sufficient reason for this
T (e) = 1 e = (1, 1, 1, 1) e =2 (⊥, 1,⊥, 1)

true false

true

false

10

0

0

1

1

0 1

48

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
minimal sufficient reason



 for , and 
is a minimal sufficient reason for this
T (e) = 1 e = (1, 1, 1, 1) e =2 (⊥, 1,⊥, 1)

true false

true

false

10

0

0

1

1

0 1

49

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

Notions of explanation:
minimal sufficient reason

MinimalSR(x, y)  =  SR(x, y) ∧

∀z ((SR(x, z) ∧ z ⊆ y) → z = y)

T ⊨ MinimalSR(e, e )2



FOIL is a graph query
language

false

4

3

1
0

00
1

1

1

50

3

1
0

1

0

0 12

0

1

4

0
1

4 1

true



FOIL is a graph query
language

false

4

3

1
0

00
1

1

1

51

3

1
0

1

0

0 12

0

1

4

0
1

4 1

true
This path represents the
instance (1, 1, 0, 0)



FOIL is a graph query
language

false

4

3

1
0

00
1

1

1

52

3

1
0

1

0

0 12

0

1

4

0
1

4 1

true



FOIL is a graph query
language

false

4

3

1
0

00
1

1

1

53

3

1
0

1

0

0 12

0

1

4

0
1

4 1

true

This path represents the
partial instance (⊥, 1,⊥, 1)



Expressiveness and
complexity of FOIL

What notions of explanation can be expressed in
FOIL? 
What notions of explanation cannot be
expressed in FOIL?
What is the complexity of the evaluation
problem for FOIL?

54



The evaluation problem for
FOIL

We consider the data complexity of the problem, so
fix a FOIL formula Φ(x ,… ,x )1 k

:Eval(Φ)

Input: decision tree  of dimension  and partial
instances  of dimension 

T n

e ,… , e1 k n

Output: yes if , and no
otherwise

T ⊨ Φ(e ,… , e )1 k

55



The evaluation problem for
FOIL

   if and ony if   T ⊨ Φ(e ,… , e )1 k A ⊨T Φ(e ,… , e )1 k

But  could be of exponential size in the size of AT T

 should not be materialized to check whether AT

T ⊨ Φ(e ,… , e )1 k

 is used only to define the semantics of FOIL AT

56



Bad news ...

Theorem:

1. For every FOIL formula , there exists  such
that  is in 

Φ k ≥ 0
Eval(Φ) Σk

P

2. For every , there exists a FOIL formula 
such that  is -hard

k ≥ 0 Φ
Eval(Φ) Σk

P

57



 is a minimum sufficient
reason for  over 
e =2 (⊥, 1,⊥, 1)

e T

true false

true

false

10

0

0

1

1

0 1

58

2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

More bad news ...

 for T (e) = 1 e = (1, 1, 1, 1)

 is a minimum sufficient reason for 
over 
{2, 4} e

T

There is no sufficient reason for  over 
 with a smaller number of features

e
T



More bad news ...

Theorem:
There is no FOIL formula  such
that, for every decision tree , instance  and
partial instance :

 is a minimum sufficient reason for  over 

MinimumSR(x, y)
T e1

e2
T ⊨ MinimumSR(e , e )1 2

⟺

e2 e1 T

59



How do we overcome these
limitations?

We use first-order logic, over a larger vocabulary
but with some syntactic restrictions 
We continue using some common notions for
graphs
Our goal is to find languages   with polynomial or
even NP data complexity, since the latter allows
the use of SAT solvers

60



The logic StratiFOILed is defined by considering
three layers

1. Atomic formulas
2. Guarded formulas
3. The formulas from StratiFOILed itself

The StratiFOILed Logic

61



The first layer

 can be considered as a syntactic predicate, it does not
refer to the models
⊆

We need another predicate like that. Given partial
instances  of dimension :

 holds
if and only if

|

e , e1 2 n

LEL(e , e )1 2

{i ∈ {1,…n} ∣ e [i] =1 ⊥}∣ ≥ ∣{i ∈ {1,…n} ∣ e [i] =1 ⊥}∣

62



Why do we need another
syntactic predicate?

MinimumSR(x, y)  =  SR(x, y) ∧

∀z ((SR(x, z) ∧ LEL(z, y)) → LEL(y, z))

How many more predicates do we need to include?

63



Atomic formulas

All the syntactic predicates needed in our formalism can
be expressed as first-order queries over {⊆, LEL}

Theorem: if  is a first-order formula defined over         
, then  can be solved in polynomial time

Φ
{⊆,LEL} Eval(Φ)

Atomic formulas of StratiFOILed: the set of first-order
formulas defined over {⊆, LEL}

64



true false

true

false

10

0

0

1

1

0 1
2

65

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1

The second layer

:Node(e)



The second layer

:Node(e)

(0, 0,⊥,⊥)

(⊥, 1, 0, 0)

(0, 0, 1, 0)

true false

true

false

10

0

0

66

1

1

0 1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1



The second layer

:PosLeaf(e)

true false

true

false

10

0

0

1

1

0

67

1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1



The second layer

:PosLeaf(e)

(0, 1, 0, 0)

true false

true

false

10

0

0

1

1

0

68

1
2

1

3

4

10

10

false true

4

truefalse

0 1

true

0
1

3

4

1(0, 0, 0,⊥)



Guarded formulas

1. Each atomic formula is a guarded formula
2. Boolean combinations of guarded formulas are

guarded formulas
3. If  is a guarded formula, then so areΦ

∃x (Node(x) ∧ Φ) ∀x (Node(x) → Φ)

∃x (PosLeaf(x) ∧ Φ) ∀x (PosLeaf(x) → Φ)

69



An example of a guarded
formula

FRS(x)  =  ∀y [Node(y) → (AllPos(y)  →

∀z (Node(z) → (AllNeg(z) →

¬∃w (Suf(x,w) ∧ Cons(w, y) ∧ Cons(w, z)))))]

guarded formula

70



An example of a guarded
formula

FRS(x)  =  ∀y [Node(y) → (AllPos(y)  →

∀z (Node(z) → (AllNeg(z) →

¬∃w (Suf(x,w) ∧ Cons(w, y) ∧ Cons(w, z)))))]

guarded formula

71



atomic formulas

An example of a guarded
formula

FRS(x)  =  ∀y [Node(y) → (AllPos(y)  →

∀z (Node(z) → (AllNeg(z) →

¬∃w (Suf(x,w) ∧ Cons(w, y) ∧ Cons(w, z)))))]

72



atomic formula

An example of a guarded
formula

FRS(x)  =  ∀y [Node(y) → (AllPos(y)  →

∀z (Node(z) → (AllNeg(z) →

¬∃w (Suf(x,w) ∧ Cons(w, y) ∧ Cons(w, z)))))]

73



The third layer: StratiFOILed

1. Each guarded formula is a StratiFOILed formula
2. If  is a guarded formula, then  and 

 are StratiFOILed formulas
Φ ∃x ⋯∃x Φ1 k

∀x ⋯∀x Φ1 k

3. Boolean combinations of StratiFOILed formulas
are StratiFOILed formulas

74



Examples of StratiFOILed
formulas

FRS(x)  =  ∀y [Node(y) → (AllPos(y)  →

∀z (Node(z) → (AllNeg(z) →

¬∃w (Suf(x,w) ∧ Cons(w, y) ∧ Cons(w, z)))))]

,  can be expressed as a
StratiFOILed formulas
MinimalFRS(x) MinimumFRS(x)

, ,  can be expressed as
StratiFOILed formulas
SR(x, y) MinimalSR(x, y) MinimumSR(x, y)

75



The evaluation problem for
StratiFOILed

Theorem:

1. For each StratiFOILed formula , there exists 
such that  is in 

Φ k ≥ 1
Eval(Φ) BHk

2. For every , there exists a StratiFOILed formula 
such that  is in -hard

k ≥ 1 Φ
Eval(Φ) BHk

: Boolean Hierarchy over BH NP

76



 can be solved with a fixed number of calls to a
SAT solver, for each StratiFOILed formula 
Eval(Φ)

Φ

The evaluation problem for
StratiFOILed

77



Implementation based on
SAT solvers

Given the complexity of the evaluation problem for
StratiFOILed, we use:

YalSAT: to find a truth assignment that satisfies
a propositional formula
Kissat: to prove that a propositional formula is
not satisfiable

Any SAT solver can be used

78



MNIST: sufficient reason

α(x, z) = ∃y (SR(x, y) ∧ LEL(y, z))

e

 satisfies that u ∈730 {0, 1,⊥}784 ∣{i ∈ {1,… , 784} ∣ u [i] =730 ⊥}∣ = 730

Evaluate whether  holdsα(e,u )730

79



MNIST: sufficient reason

Evaluation time of α(x,u )720

80



Evaluation time of α(x,u )ℓ
with ℓ  = 0.05 × dim

Synthetic data: sufficient reason

81



MNIST: relevant feature set

β(y) = ∃x (RFS(x) ∧ LEL(x, y))

Evaluate whether  holdsα(u )392

82



Concluding remarks

StratiFOILed is a model-specific interpretability
query language

 
 
 

How can the definition of StratiFOILed be
extended to OBDDs and FBDDs?
What are the right definitions of  and 

 in these cases?
Node(x)

PosLeaf(x)

83



Concluding remarks

FOIL is a model-agnostic interpretability query
language

The evaluation problem for some fragments of
FOIL can be solved in polynomial time for
decision trees and OBDDs
What is an appropriate fragment of FOIL to be
evaluated using SAT solvers?
What is an appropriate interpretability query
language for FBDDs that is based on FOIL?

84



Concluding remarks

What is an appropriate interpretability query
language for labeled graphs and GNNs?

Which can be evaluated in polynomial time, or
using SAT solvers
What is an appropriate model-agnostic
interpretability query language?
What is an appropriate model-specific
interpretability query language?

85



Thanks!

86



Backup slides

87



WL test for graph
isomorphism

88



WL test for graph
isomorphism

(1)

(1) (1)

(1)

(1)

89



WL test for graph
isomorphism

(1)

(1)

(1) (1)

(1){{ , , }}(1) (1) (1)

{{ , }}(1) (1)

{{ , , }}(1) (1) (1)

{{ , }}(1) (1) {{ , }}(1) (1)

90



WL test for graph
isomorphism

(3)

(2) (2)

(3)

(2)

91



WL test for graph
isomorphism

(2)

(3)

(2) (2)

(3)

{{ , }}(3) (3)

{{ , , }}(2) (2) (3) {{ , , }}(2) (2) (3)

{{ , }}(2) (3) {{ , }}(2) (3)

92



WL test for graph
isomorphism

(5)

(6) (6)

(5)

(4)

93



WL test for graph
isomorphism

(5)

(6) (6)

(5){{ , , }}(4) (5) (6) {{ , , }}(4) (5) (6)

{{ , }}(5) (6) {{ , }}(5) (6)

(4){{ , }}(5) (5)

94



WL test for graph
isomorphism

(7)

(8)

(9) (9)

(8)

95



WL test for graph
isomorphism

96


