A logical approach to model interpretability

Marcelo Arenas PUC & IMFD Chile and RelationalAI, Berkeley

Joint work with Daniel Báez, Pablo Barceló, Diego Bustamante, José Thomas Caraball, Jorge Pérez, and Bernardo Subercaseaux

1

Motivation

- A growing interest in developing methods to explain predictions made by machine learning models
- This has led to the development of several notions of explanation
- Instead of struggling with the increasing number of such notions, one can developed a declarative query language for interpretability task

The goal of this talk

To show how such a framework can be developed by interpreting classification models as **labeled graphs**, and by using **first-order logic** as a query language

Extracting nodes from a graph: first-order logic

 $\mathit{Person}(x) \land \exists y \, (\mathit{rides}(x,y) \land \mathit{Bus}(y) \land \exists z \, (\mathit{rides}(z,y) \land \mathit{Infected}(z)))$

Extracting nodes from a graph: graph neural networks

Processing by layers in GNNs: the input

The result of the first layer

Computing the second layer

Computing the second layer

Computing the second layer

The result of the second layer

The architecture of GNNs

 $u^{(i)}$: vector of features of node u at layer i

• $u^{(0)}$: vector of features from the input graph

$$u^{(i)} = \operatorname{COMB}^{(i)} \left(u^{(i-1)}, \operatorname{AGG}^{(i)} \left(\{ v^{(i-1)} \mid u \text{ and } v \text{ are neighbors in } G \} \} \right) \right)$$

If k is the last layer: $CSL(u^{(k)})$ is the result for node u

The architecture of GNNs

 $Person/rides/Bus/rides^-/Infected$

 $\operatorname{CSL} \begin{pmatrix} \operatorname{Person} \\ 0 \end{pmatrix} = 0 \qquad \begin{pmatrix} \operatorname{Infected} \\ 0 \end{pmatrix} \begin{pmatrix} \operatorname{Bus} \\ 1 \end{pmatrix}$ $\operatorname{CSL} \begin{pmatrix} \operatorname{Person} \\ 1 \end{pmatrix} = 1 \qquad \begin{pmatrix} \operatorname{Person} \\ 0 \end{pmatrix} \begin{pmatrix} \operatorname{Bus} \\ 0 \end{pmatrix} \begin{pmatrix} \operatorname{Bus} \\ 0 \end{pmatrix}$ $\begin{pmatrix} \operatorname{Bus} \\ 0 \end{pmatrix} \begin{pmatrix} \operatorname{Rus} \\ 0 \end{pmatrix}$ $\begin{pmatrix} \operatorname{Rus} \\ 0 \end{pmatrix} \begin{pmatrix} \operatorname{Rus} \\ 0 \end{pmatrix} \begin{pmatrix} \operatorname{Rus} \\ 0 \end{pmatrix}$

The architecture of GNNs

 $Person/rides/Bus/rides^-/Infected$

 $\operatorname{CSL} \begin{pmatrix} \operatorname{Person} \\ 0 \end{pmatrix} = 0 \qquad \begin{pmatrix} \operatorname{Infected} \\ 0 \end{pmatrix} \begin{pmatrix} \operatorname{Bus} \\ 1 \end{pmatrix}$ $\operatorname{CSL} \begin{pmatrix} \operatorname{Person} \\ 1 \end{pmatrix} = 1 \qquad \begin{pmatrix} \operatorname{Person} \\ 1 \end{pmatrix} \begin{pmatrix} \operatorname{Person} \\ 0 \end{pmatrix} \begin{pmatrix} \operatorname{Bus} \\ 0 \end{pmatrix} \begin{pmatrix} n_{5} \end{pmatrix}$ $\operatorname{CSL} \begin{pmatrix} \operatorname{Bus} \\ 1 \end{pmatrix} = 0 \qquad \begin{pmatrix} n_{3} \end{pmatrix} \begin{pmatrix} n_{4} \end{pmatrix} \begin{pmatrix} n_{4} \end{pmatrix} \begin{pmatrix} n_{5} \end{pmatrix}$

GNNs as a query language

- How do we explain the results of the query?
- Part of a more general issue: explainability or interpretability of black box model results

A call for an interpretability query language

- Several interpretability notions have been studied independently
- Interpretability admits no silver bullet; different contexts require different notions
- Interpretability may require combining different notions; it is better to think of it as an interactive process

A call for an interpretability query language

- This naturally suggests the possibility of interpretability query languages
- These language should de declarative, and should allow to express a wide variety of queries
- This gives control to the end-user to tailor interpretability queries to their particular needs

Our main goal is to develop such an interpretability query language

Basic ingredients: classification models are represented as labeled graphs, and first-order logic is used as query language

We start by focusing on a simple but widely used model

- **Decision trees** are widely used, in particular because they are considered *readily* interpretable models
- The main ingredients of our logical approach are already present in this case

A decision tree

A classification model: $\mathcal{M}: \{0,1\}^n \rightarrow \{0,1\}$

- The dimension of \mathcal{M} is n, and each $i \in \{1, \ldots, n\}$ is called a feature
- $\mathbf{e} \in \{0,1\}^n$ is an instance
- \mathcal{M} accepts \mathbf{e} if $\mathcal{M}(\mathbf{e}) = 1$, otherwise \mathcal{M} rejects \mathbf{e}

A decision tree \mathcal{T} of dimension n

- Each internal node is labeled with a feature $i \in \{1, \ldots, n\}$, and has two outgoing edges labeled 0 and 1
- Each leaf is labeled **true** or **false**
- No two nodes on a path from the root to a leaf have the same label

A decision tree \mathcal{T} of dimension n

- Every instance e defines a unique path $n_1, e_1, n_2, \ldots, e_{k-1}, n_k$ from the root to a leaf
- $\mathcal{T}(\mathbf{e}) = 1$ if the label n_k is **true**

A decision tree \mathcal{T} of dimension n

- Every instance e defines a unique path $n_1, e_1, n_2, \ldots, e_{k-1}, n_k$ from the root to a leaf
- $\mathcal{T}(\mathbf{e}) = 1$ if the label n_k is **true**

$$\mathcal{T}(\mathbf{e_1}) = 1$$
 for instance $\mathbf{e_1} = (1,0,1,1)$

The evaluation of a model as a query

Is $T(e_1) = 1$ for instance $e_1 = (1, 0, 1, 0)$?

 $(1/1+2/0+3/1+4/0)^*/$ true

But our problem is to explain the output of a model

- What are interesting notions of explanation?
- What notions have been studied? What notions are used in practice?
- Can these notions be expressed as queries over decision trees?

But our problem is to explain the output of a model

Is there a completion of $2 \mapsto 0$ that is classified positively?

```
ig(1/(0+1)+2/0+\ 3/(0+1)+4/(0+1)ig)^*/{f true}
```

Are all the completions of $2 \mapsto 0$ classified positively?

Notions of explanation: sufficient reason

$$\mathcal{T}(\mathbf{e}) = 1$$
 for $\mathbf{e} = (1,1,1,1)$

The value of feature 3 is not needed to obtain this result

• $\{1, 2, 4\}$ is a sufficient reason

Notions of explanation: minimal sufficient reason

$$\mathcal{T}(\mathbf{e})=1$$
 for $\mathbf{e}=(1,1,1,1)$

The value of features 1 and 3 are not needed to obtain this result

• {2,4} is a minimal sufficient reason

Notions of explanation: relevant feature set

If the values of features $\{1, 3, 4\}$ are fixed, then the output of the model is fixed

The output of the model depends only on these features

Notions of explanation: relevant feature set

If the values of features $\{1, 3, 4\}$ are fixed, then the output of the model is fixed

If
$$\mathbf{e}[1] = \mathbf{e}[3] = \mathbf{e}[4] = 0$$
: $\mathcal{T}(\mathbf{e}) = 1$

Notions of explanation: relevant feature set

If the values of features $\{1, 3, 4\}$ are fixed, then the output of the model is fixed

If
$$\mathbf{e}[1] = \mathbf{e}[3] = 1$$
 and $\mathbf{e}[4] = 0$: $\mathcal{T}(\mathbf{e}) = \mathbf{0}$

MNIST: relevant feature set

Can these queries be expressed in a graph query language?

- How do we express the previous interpretability queries?
- Is there a common framework for them?
- Is there a *natural* framework based on labeled graphs?

Can these queries be expressed in a graph query language?

Binary decision diagrams (BDDs)

- OBDDs
- FBDDs

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to describe classification models

Key notion: partial instance $\mathbf{e} \in \{0, 1, \bot\}^n$ of dimensión n

 \mathbf{e}_1 is subsumed by \mathbf{e}_2 if $\mathbf{e}_1, \mathbf{e}_2$ are partial instances such that for every $i \in \{1, \dots, n\}$, if $\mathbf{e}_1[i] \neq \bot$, then $\mathbf{e}_1[i] = \mathbf{e}_2[i]$

 $(1, \bot, 0, \bot) \; \subseteq \; (1, 0, 0, \bot) \; \subseteq \; (1, 0, 0, 1)$

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to describe classification models: $\{Pos, \subseteq\}$

A model \mathcal{M} of dimensión n is represented as a structure $\mathfrak{A}_{\mathcal{M}}$:

- The domain of $\mathfrak{A}_{\mathcal{M}}$ is $\{0, 1, \bot\}^n$
- Pos(e) holds if e is an instance such that $\mathcal{M}(e) = 1$
- $e_1 \subseteq e_2$ holds if e_1, e_2 are partial instances such that e_1 is subsumed by e_2

The semantics of FOIL

Given a **FOIL** formula $\Phi(x_1, x_2, ..., x_k)$, a classification model \mathcal{M} of dimensión n, and instances \mathbf{e}_1 , \mathbf{e}_2 , ..., \mathbf{e}_k

$$\mathcal{M} \models \Phi(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k) \ \iff \ \mathfrak{A}_{\mathcal{M}} \models \Phi(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k) \ (ext{in the usual sense})$$

Some examples

$$\mathrm{Full}(x) \;=\; orall y \, (x \subseteq y o x = y)$$

$$\operatorname{AllPos}(x) \ = \ orall y \left((x \subseteq y \wedge \operatorname{Full}(y))
ightarrow \operatorname{Pos}(y)
ight)$$

$$\operatorname{AllNeg}(x) \ = \ orall y \left((x \subseteq y \wedge \operatorname{Full}(y))
ightarrow
eg \operatorname{Pos}(y)
ight)$$

Notions of explanation: sufficient reason

Notions of explanation: minimal sufficient reason

 $\mathcal{T}(\mathbf{e}) = 1$ for $\mathbf{e} = (1, 1, 1, 1)$, and $\mathbf{e}_2 = (\perp, 1, \perp, 1)$ is a minimal sufficient reason for this

Notions of explanation: minimal sufficient reason

 $\mathbf{2}$ $\mathcal{T}(\mathbf{e}) = 1$ for $\mathbf{e} = (1, 1, 1, 1)$, and $\mathbf{e}_2 = (\perp, 1, \perp, 1)$ is a minimal sufficient reason for this $\mathcal{T} \models \text{MinimalSR}(\mathbf{e}, \mathbf{e}_2)$ 3 true 3 $\mathrm{MinimalSR}(x,y) \ = \ \mathrm{SR}(x,y) \ \land$ $orall z\left((\mathrm{SR}(x,z)\wedge z\subseteq y)
ightarrow z=y
ight)$ false true true false () 1 false true

false

true

This path represents the instance (1, 1, 0, 0)

This path represents the partial instance $(\perp, 1, \perp, 1)$

Expressiveness and complexity of FOIL

- What notions of explanation can be expressed in **FOIL**?
- What notions of explanation cannot be expressed in **FOIL**?
- What is the complexity of the evaluation problem for **FOIL**?

The evaluation problem for FOIL

We consider the data complexity of the problem, so fix a **FOIL** formula $\Phi(x_1, \ldots, x_k)$

$Eval(\Phi)$:

- **Input:** decision tree \mathcal{T} of dimension n and partial instances $\mathbf{e}_1, \ldots, \mathbf{e}_k$ of dimension n
- **Output:** yes if $\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$, and no otherwise

The evaluation problem for FOIL

 $\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$ if and ony if $\mathfrak{A}_{\mathcal{T}} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$

But $\mathfrak{A}_{\mathcal{T}}$ could be of exponential size in the size of \mathcal{T}

- $\mathfrak{A}_{\mathcal{T}}$ should not be materialized to check whether $\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$
- $\mathfrak{A}_{\mathcal{T}}$ is used only to define the semantics of **FOIL**

Bad news ...

Theorem:

- 1. For every **FOIL** formula Φ , there exists $k \ge 0$ such that $\text{Eval}(\Phi)$ is in Σ_k^{P}
- 2. For every $k \ge 0$, there exists a **FOIL** formula Φ such that $\text{Eval}(\Phi)$ is Σ_k^{P} -hard

More bad news ...

$$\mathcal{T}(\mathbf{e}) = 1$$
 for $\mathbf{e} = (1, 1, 1, 1)$

 $\{2,4\}$ is a minimum sufficient reason for ${\bf e}$ over ${\cal T}$

• There is no sufficient reason for e over \mathcal{T} with a smaller number of features

 $\mathbf{e}_2 = (\perp, 1, \perp, 1)$ is a minimum sufficient reason for \mathbf{e} over \mathcal{T}

More bad news ...

Theorem:

There is no **FOIL** formula $\operatorname{MinimumSR}(x, y)$ such that, for every decision tree \mathcal{T} , instance \mathbf{e}_1 and partial instance \mathbf{e}_2 :

 $\mathcal{T} \models \operatorname{MinimumSR}(\mathbf{e}_1, \mathbf{e}_2)$

\mathbf{e}_2 is a minimum sufficient reason for \mathbf{e}_1 over $\mathcal T$

How do we overcome these limitations?

- We use first-order logic, over a larger vocabulary but with some syntactic restrictions
- We continue using some common notions for graphs
- Our goal is to find languages with polynomial or even NP data complexity, since the latter allows the use of SAT solvers

The StratiFOILed Logic

The logic **StratiFOILed** is defined by considering three layers

- 1. Atomic formulas
- 2. Guarded formulas
- 3. The formulas from **StratiFOILed** itself

The first layer

 \subseteq can be considered as a *syntactic* predicate, it does not refer to the models

We need another predicate like that. Given partial instances e_1 , e_2 of dimension n:

 $rac{ ext{LEL}(extbf{e}_1, extbf{e}_2)}{ ext{if and only if}}$

 $|\{i\in\{1,\ldots n\}\mid \mathbf{e}_1[i]=ota\}|\geq |\{i\in\{1,\ldots n\}\mid \mathbf{e}_1[i]=ota\}|$

Why do we need another syntactic predicate?

 $egin{aligned} \operatorname{MinimumSR}(x,y) &= &\operatorname{SR}(x,y) \land \ &orall z \left((\operatorname{SR}(x,z) \land \operatorname{LEL}(z,y))
ightarrow \operatorname{LEL}(y,z)
ight) \end{aligned}$

How many more predicates do we need to include?

Atomic formulas

All the syntactic predicates needed in our formalism can be expressed as first-order queries over $\{\subseteq, \text{LEL}\}$

Theorem: if Φ is a first-order formula defined over $\{\subseteq, \text{LEL}\}$, then $\text{Eval}(\Phi)$ can be solved in polynomial time

Atomic formulas of StratiFOILed: the set of first-order formulas defined over $\{\subseteq, \text{LEL}\}$

The second layer

Node(e):

The second layer 2 Node(e): () 4 $(0,0,\perp,\perp)$ + 0 0 $(\perp,1,0,0)$ true 3 3 4 0 0 (0, 0, 1, 0)0 false_true true false 1 0 1 0 false true

false true

The second layer

PosLeaf(e):

The second layer 2 PosLeaf(e):() $(0,0,0,\perp)$ 4 0 0 (0, 1, 0, 0)3 true 3 4 0 0 1 0 false true true false 4 1 0 0 false true false true

Guarded formulas

- 1. Each atomic formula is a guarded formula
- 2. Boolean combinations of guarded formulas are guarded formulas
- 3. If Φ is a guarded formula, then so are

 $\exists x \, (\mathrm{Node}(x) \wedge \Phi) \qquad \quad orall x \, (\mathrm{Node}(x) o \Phi)$

 $\exists x \, (\operatorname{PosLeaf}(x) \land \Phi) \qquad \quad \forall x \, (\operatorname{PosLeaf}(x)
ightarrow \Phi)$

An example of a guarded formula

$$\begin{array}{ll} \mathrm{FRS}(x) = & \forall y \left[\mathrm{Node}(y) \rightarrow (\mathrm{AllPos}(y) \rightarrow \\ & \forall z \left(\mathrm{Node}(z) \rightarrow (\mathrm{AllNeg}(z) \rightarrow \\ & \neg \exists w \left(\mathrm{Suf}(x,w) \wedge \mathrm{Cons}(w,y) \wedge \mathrm{Cons}(w,z) \right) \right) \right) \end{array}$$
guarded formula

An example of a guarded formula

$$\begin{array}{ll} \mathrm{FRS}(x) \ = \ \forall y \left[\mathrm{Node}(y) \rightarrow (\mathrm{AllPos}(y) \ \rightarrow \\ & \forall z \, (\mathrm{Node}(z) \rightarrow) (\mathrm{AllNeg}(z) \rightarrow \\ & \neg \exists w \, (\mathrm{Suf}(x,w) \wedge \mathrm{Cons}(w,y) \wedge \mathrm{Cons}(w,z))))) \right] \\ \\ & \mathsf{guarded formula} \end{array}$$

An example of a guarded formula

$$\begin{aligned} \mathrm{FRS}(x) \ = \ \forall y \left[\mathrm{Node}(y) \rightarrow (\mathrm{AllPos}(y) \rightarrow \\ \forall z \left(\mathrm{Node}(z) \rightarrow (\mathrm{AllNeg}(z) \rightarrow \\ \neg \exists w \left(\mathrm{Suf}(x,w) \land \mathrm{Cons}(w,y) \land \mathrm{Cons}(w,z) \right) \right) \right) \right] \\ \\ atomic \ formulas \end{aligned}$$
An example of a guarded formula

The third layer: StratiFOILed

- 1. Each guarded formula is a **StratiFOILed** formula
- 2. If Φ is a guarded formula, then $\exists x_1 \cdots \exists x_k \Phi$ and $\forall x_1 \cdots \forall x_k \Phi$ are **StratiFOILed** formulas
- 3. Boolean combinations of **StratiFOILed** formulas are **StratiFOILed** formulas

Examples of StratiFOILed formulas

SR(x, y), MinimalSR(x, y), MinimumSR(x, y) can be expressed as **StratiFOILed** formulas

$$egin{aligned} \mathrm{FRS}(x) \ &= \ orall y \left[\mathrm{Node}(y)
ightarrow (\mathrm{AllPos}(y)
ightarrow \ & orall z \left(\mathrm{Node}(z)
ightarrow (\mathrm{AllNeg}(z)
ightarrow \ &
onumber \neg \exists w \left(\mathrm{Suf}(x,w) \wedge \mathrm{Cons}(w,y) \wedge \mathrm{Cons}(w,z)
ight)
ight)))) \end{aligned}$$

MinimalFRS(x), MinimumFRS(x) can be expressed as a **StratiFOILed** formulas

The evaluation problem for StratiFOILed

BH: Boolean Hierarchy over NP

Theorem:

- 1. For each **StratiFOILed** formula Φ , there exists $k \ge 1$ such that $\text{Eval}(\Phi)$ is in BH_k
- 2. For every $k \ge 1$, there exists a **StratiFOILed** formula Φ such that $\text{Eval}(\Phi)$ is in BH_k -hard

The evaluation problem for StratiFOILed

 $Eval(\Phi)$ can be solved with a fixed number of calls to a SAT solver, for each **StratiFOILed** formula Φ

Implementation based on SAT solvers

Any SAT solver can be used

Given the complexity of the evaluation problem for **StratiFOILed**, we use:

- **YalSAT:** to find a truth assignment that satisfies a propositional formula
- **Kissat:** to prove that a propositional formula is not satisfiable

MNIST: sufficient reason

$$lpha(x,z) = \exists y \left(\mathrm{SR}(x,y) \wedge \mathrm{LEL}(y,z)
ight)$$

Evaluate whether $\alpha(\mathbf{e}, \mathbf{u}_{730})$ holds

 ${f u}_{730}\in\{0,1,ot\}^{784}$ satisfies that $|\{i\in\{1,\ldots,784\}\mid {f u}_{730}[i]=ot\}|=730$

MNIST: sufficient reason

Evaluation time of $\alpha(x, \mathbf{u}_{720})$

Synthetic data: sufficient reason

Evaluation time of $lpha(x, \mathbf{u}_\ell)$ with $\ell~=0.05 imes \dim$

MNIST: relevant feature set

 $eta(y) = \exists x \left(\mathrm{RFS}(x) \wedge \mathrm{LEL}(x,y)
ight)$

Evaluate whether $\alpha(\mathbf{u}_{392})$ holds

Concluding remarks

StratiFOILed is a model-specific interpretability query language

- How can the definition of **StratiFOILed** be extended to OBDDs and FBDDs?
- What are the right definitions of Node(*x*) and PosLeaf(*x*) in these cases?

Concluding remarks

FOIL is a model-agnostic interpretability query language

- The evaluation problem for some fragments of FOIL can be solved in polynomial time for decision trees and OBDDs
- What is an appropriate fragment of **FOIL** to be evaluated using SAT solvers?
- What is an appropriate interpretability query language for FBDDs that is based on **FOIL**?

Concluding remarks

What is an appropriate interpretability query language for **labeled graphs** and **GNNs**?

- Which can be evaluated in polynomial time, or using SAT solvers
- What is an appropriate model-agnostic interpretability query language?
- What is an appropriate model-specific interpretability query language?

Thanks!

Backup slides

