A logical approach to model interpretability

Marcelo Arenas PUC & IMFD Chile and RelationalAI, Berkeley

Joint work with Daniel Báez, Pablo Barceló, Diego Bustamante, José Thomas Caraball, Jorge Pérez, and Bernardo Subercaseaux

1

Motivation

- A growing interest in developing methods to explain predictions made by machine learning models
- This has led to the development of several notions of explanation
- Instead of struggling with the increasing number of such notions, one can developed a declarative query language for interpretability task

The goal of this talk

To show how such a framework can be developed by interpreting classification models as **labeled graphs**, and by using **first-order logic** as a query language

Extracting nodes from a graph: first-order logic

 $Person(x) \wedge \exists y \ (rides(x, y) \wedge Bus(y) \wedge \exists z \ (rides(z, y) \wedge Infected(z)))$

Extracting nodes from a graph: graph neural networks

Processing by layers in GNNs: the input

The result of the first layer

Computing the second layer

Computing the second layer

Computing the second layer

The result of the second layer

The architecture of GNNs

 $u^{(i)}$: vector of features of node u at layer i

 $u^{(0)}$: vector of features from the input graph

$$
u^{(i)} = \text{COMP}^{(i)}\big(u^{(i-1)},
$$

$$
\text{AGG}^{(i)}\big(\{\{v^{(i-1)} \mid u \text{ and } v \text{ are neighbors in } G\}\big)\big)
$$

If k is the last layer: ${\rm CSL}(u^{(k)})$ is the result for node u

The architecture of GNNs

 $Person/rides/Bus/rides^-/Infected$

 $\left($ *Infected* 0 $\sqrt{ }$ *Bus* 1) $\left($ *Person* 1 \bigcup (Bus) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\left($ *Person* $\begin{pmatrix} 0 & 1 \end{pmatrix}$ n_0 \longrightarrow n_1 n_3 \longrightarrow n_4 n_5 $\overline{ }$ $\mathrm{CSL}\left(\frac{Person}{0}\right)=0$ $\overline{ }$ $\mathrm{CSL}\left(\frac{Person}{1} \right)=1$ $\mathrm{CSL}\left(\frac{Bus}{1}\right)$ $\binom{5us}{1} = 0$

The architecture of GNNs

 $Person/rides/Bus/rides^-/Infected$

 $\left($ *Infected* 0 $\sqrt{ }$ *Bus* 1) $\left($ *Person* 1 \bigcup (Bus) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\left($ *Person* $\begin{pmatrix} 0 & 1 \end{pmatrix}$ n_0 \longrightarrow n_1 n_3 \longrightarrow n_4 n_5 $\overline{ }$ $\mathrm{CSL}\left(\frac{Person}{0}\right)=0$ $\overline{ }$ $\mathrm{CSL}\left(\frac{Person}{1} \right)=1$ $\mathrm{CSL}\left(\frac{Bus}{1}\right)$ $\binom{5us}{1} = 0$

GNNs as a query language

- How do we explain the results of the query?
- Part of a more general issue: explainability or interpretability of black box model results

A call for an interpretability query language

- Several interpretability notions have been studied independently
- Interpretability admits no silver bullet; different contexts require different notions
- Interpretability may require combining different notions; it is better to think of it as an interactive process

A call for an interpretability query language

- This naturally suggests the possibility of interpretability query languages
- These language should de declarative, and should allow to express a wide variety of queries
- This gives control to the end-user to tailor interpretability queries to their particular needs

Our main goal is to develop such an interpretability query language

Basic ingredients: classification models are represented as labeled graphs, and first-order logic is used as query language

We start by focusing on a simple but widely used model

- **Decision trees** are widely used, in particular because they are considered *readily* interpretable models
- The main ingredients of our logical approach are already present in this case

A decision tree

A classification model: $\mathcal{M}:\{0,1\}^n \rightarrow \{0,1\}^n$

- The dimension of ${\cal M}$ is n , and each $i\in\{1,\ldots,n\}$ is called a feature
- $\mathbf{e} \in \{0,1\}^n$ is an instance
- \bullet M accepts **e** if $\mathcal{M}(\mathbf{e}) = 1$, otherwise M rejects **e**

A decision tree $\mathcal T$ of dimension *n*

- \bullet Each internal node is labeled with a feature $i\in\{1,\ldots,n\}$, and has two outgoing edges labeled 0 and 1
- Each leaf is labeled **true** or **false**
- No two nodes on a path from the root to a leaf have the same label

A decision tree $\mathcal T$ of dimension *n*

- Every instance defines a unique **e** ${\sf path}\ n_1, e_1, n_2, \ldots, e_{k-1}, n_k$ from the root to a leaf
- $\mathcal{T}(\mathbf{e}) = 1$ if the label n_k is true

A decision tree $\mathcal T$ of dimension *n*

- Every instance defines a unique **e** ${\sf path}\ n_1, e_1, n_2, \ldots, e_{k-1}, n_k$ from the root to a leaf
- $\mathcal{T}(\mathbf{e}) = 1$ if the label n_k is \mathbf{true}

$$
\mathcal{T}(\mathbf{e_1}) = 1 \text{ for instance } \mathbf{e_1} = (1,0,1,1)
$$

The evaluation of a model as a query

Is $\mathcal{T}({\bf e}_1) = 1$ for instance ${\bf e}_1 = (1, 0, 1, 0)$?

 $(1/1+2/0+3/1+4/0)^*$ /true

But our problem is to explain the output of a model

- What are interesting notions of explanation?
- What notions have been studied? What notions are used in practice?
- Can these notions be expressed as queries over decision trees?

But our problem is to explain the output of a model

Is there a completion of $2\mapsto 0$ that is classified positively?

$$
\frac{\big(1/(0+1)+2/0+}{3/(0+1)+4/(0+1)\big)^*}/{\bf true}
$$

Are all the completions of $2\mapsto 0$ classified positively?

Notions of explanation: sufficient reason

$$
\mathcal{T}(\mathbf{e})=1\text{ for }\mathbf{e}=(1,1,1,1)
$$

The value of feature 3 is not needed to $\,$ obtain this result

{1, 2, 4} is a *sufficient reason*

Notions of explanation: minimal sufficient reason

$$
\mathcal{T}(\mathbf{e})=1\text{ for }\mathbf{e}=(1,1,1,1)
$$

The value of features 1 and 3 are not needed to obtain this result

 $\{2,4\}$ is a minimal sufficient *reason*

Notions of explanation: relevant feature set

If the values of features $\{1,3,4\}$ are fixed, then the output of the model is fixed

The output of the model depends only on these features

Notions of explanation: relevant feature set

If the values of features $\{1,3,4\}$ are fixed, then the output of the model is fixed

$$
\mathsf{If}~ \mathbf{e}[1] = \mathbf{e}[3] = \mathbf{e}[4] = 0 \mathsf{:} \\ \mathcal{T}(\mathbf{e}) = 1
$$

Notions of explanation: relevant feature set

If the values of features $\{1,3,4\}$ are fixed, then the output of the model is fixed

$$
\mathsf{If}~ \mathbf{e}[1] = \mathbf{e}[3] = 1 \text{ and } \mathbf{e}[4] = 0 \mathsf{:}
$$

$$
\mathcal{T}(\mathbf{e}) = 0
$$

MNIST: relevant feature set

Can these queries be expressed in a graph query language?

- How do we express the previous interpretability queries?
- Is there a common framework for them?
- Is there a *natural* framework based on labeled graphs?

Can these queries be expressed in a graph query language?

Binary decision diagrams (BDDs)

- **OBDDs**
- FBDDs

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to describe classification models

Key notion: partial instance $\mathbf{e} \in \{0,1,\bot\}^n$ of dimensión n

 \mathbf{e}_{1} is subsumed by \mathbf{e}_{2} if $\mathbf{e}_{1}, \mathbf{e}_{2}$ are partial instances such i that for every $i \in \{1, \ldots, n\}$, if $\mathbf{e}_{1}[i] \neq \bot$, then $\mathbf{e}_{1}[i] = \mathbf{e}_{2}[i]$

 $(1, \perp, 0, \perp) \subseteq (1, 0, 0, \perp) \subseteq (1, 0, 0, 1)$

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to describe classification models: {Pos, ⊆}

A model ${\mathcal M}$ of dimensión n is represented as a structure $\mathfrak{A}_\mathcal{M}$:

- The domain of $\mathfrak{A}_\mathcal{M}$ is $\{0,1,\bot\}^n$
- $Pos(e)$ holds if e is an instance such that $\mathcal{M}(e) = 1$
- $\mathbf{e}_{1} \subseteq \mathbf{e}_{2}$ holds if $\mathbf{e}_{1}, \mathbf{e}_{2}$ are partial instances such that \mathbf{e}_{1} is subsumed by \mathbf{e}_{2}

The semantics of FOIL

Given a **FOIL** formula $\Phi(x_1, x_2, \ldots, x_k)$, a classification model M of dimensión n , and instances \mathbf{e}_{1} , \mathbf{e}_{2} , ..., \mathbf{e}_{k}

$$
\mathcal{M} \models \Phi(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k) \\
\iff \\
\mathfrak{A}_\mathcal{M} \models \Phi(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k) \\
\text{(in the usual sense)}
$$

Some examples

$$
\mathrm{Full}(x) \ = \ \forall y \, (x \subseteq y \to x = y)
$$

$$
\text{AllPos}(x) \ = \ \forall y \, \bigl((x \subseteq y \land \text{Full}(y)) \to \text{Pos}(y)\bigr)
$$

$$
\mathrm{AllNeg}(x) \;=\; \forall y \, \bigl((x \subseteq y \land \mathrm{Full}(y)) \to \lnot \mathrm{Pos}(y)\bigr)
$$

Notions of explanation: sufficient reason

Notions of explanation: minimal sufficient reason

 $\mathcal{T}(\mathbf{e})=1$ for $\mathbf{e}=(1,1,1,1)$, and $\mathbf{e}_2=(\bot,1,\bot,1)$ is a minimal sufficient reason for this

Notions of explanation: minimal sufficient reason

 $\mathcal{T}(\mathbf{e})=1$ for $\mathbf{e}=(1,1,1,1)$, and $\mathbf{e}_2=(\bot,1,\bot,1)$ is a minimal sufficient reason for this **true false** $0/$ 1 0 $\overline{0}$ 1 1 \bigvee 1 \mathfrak{D} 1 3 4 $0/$ \1 $0/$ \1 **false true** 4 **false true** $0/$ \ 1 **true** $\overline{0}$ 1 3 4 1 $\text{MinimalSR}(x, y) = \text{SR}(x, y) \wedge$ $\forall z ((\text{SR}(x, z) \land z \subseteq y) \rightarrow z = y)$ $\mathcal{T} \models \text{MinimalSR}(\mathbf{e}, \mathbf{e}_2)$

true false

This path represents the instance $(1, 1, 0, 0)$

This path represents the partial instance $(\perp, 1, \perp, 1)$

Expressiveness and complexity of FOIL

- What notions of explanation can be expressed in **FOIL**?
- What notions of explanation cannot be expressed in **FOIL**?
- What is the complexity of the evaluation problem for **FOIL**?

The evaluation problem for FOIL

We consider the data complexity of the problem, so fix a **FOIL** formula $\Phi(x_1, \ldots, x_k)$

Eval(Φ):

- **Input:** decision tree T of dimension n and partial instances $\mathbf{e}_{1},\ldots,\mathbf{e}_{k}$ of dimension n
- $\textsf{Output:}$ yes if $\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$, and no otherwise

The evaluation problem for FOIL

 $\mathcal{T} \models \Phi(\mathbf{e}_1,\ldots,\mathbf{e}_k)$ if and ony if $\mathfrak{A}_{\mathcal{T}} \models \Phi(\mathbf{e}_1,\ldots,\mathbf{e}_k)$

But $\mathfrak{A}_{\mathcal{T}}$ could be of exponential size in the size of \mathcal{T}

- $\mathfrak{A}_{\mathcal{T}}$ should not be materialized to check whether $\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$
- \bullet $\mathfrak{A}_{\mathcal{T}}$ is used only to define the semantics of **FOIL**

Bad news ...

Theorem:

- 1. For every **FOIL** formula Φ , there exists $k\geq 0$ such that $\operatorname{Eval}(\Phi)$ is in Σ_k^{P}
- 2. For every $k\geq 0$, there exists a **FOIL** formula Φ such that $\operatorname{Eval}(\Phi)$ is $\Sigma^{\rm P}_k$ -hard

More bad news ...

$$
\mathcal{T}(\mathbf{e})=1\text{ for }\mathbf{e}=(1,1,1,1)
$$

 $\{2,4\}$ is a minimum sufficient reason for $\bf e$ over $\mathcal T$

There is no sufficient reason for **e** over τ with a smaller number of features

 $\mathbf{e}_{2}=(\bot,1,\bot,1)$ is a minimum sufficient reason for ${\bf e}$ over ${\cal T}$

More bad news ...

Theorem:

There is no **FOIL** formula $\operatorname{MinimumSR}(x, y)$ such that, for every decision tree \mathcal{T} , instance \mathbf{e}_{1} and partial instance \mathbf{e}_2 :

 $\mathcal{T} \models \text{MinimumSR}(\mathbf{e}_1, \mathbf{e}_2)$

 \iff

\mathbf{e}_{2} is a minimum sufficient reason for \mathbf{e}_{1} over \mathcal{T}

How do we overcome these limitations?

- We use first-order logic, over a larger vocabulary but with some syntactic restrictions
- We continue using some common notions for graphs
- Our goal is to find languages with polynomial or even NP data complexity, since the latter allows the use of SAT solvers

The StratiFOILed Logic

The logic **StratiFOILed** is defined by considering three layers

- 1. Atomic formulas
- 2. Guarded formulas
- 3. The formulas from **StratiFOILed** itself

The first layer

 \subseteq can be considered as a *syntactic* predicate, it does not refer to the models

We need another predicate like that. Given partial instances $\mathbf{e}_1, \mathbf{e}_2$ of dimension n :

> $\mathrm{LEL}(\mathbf{e}_1, \mathbf{e}_2)$ holds if and only if

 $|\{i \in \{1, \dots n\} \mid \mathbf{e}_1[i] = \bot\}| \geq |\{i \in \{1, \dots n\} \mid \mathbf{e}_1[i] = \bot\}|$

Why do we need another syntactic predicate?

MinimumSR $(x, y) = SR(x, y) \wedge$ $\forall z \left((\text{SR}(x, z) \land \text{LEL}(z, y)) \rightarrow \text{LEL}(y, z) \right)$

How many more predicates do we need to include?

Atomic formulas

All the syntactic predicates needed in our formalism can be expressed as first-order queries over $\{\subseteq, {\rm LEL}\}$

Theorem: if Φ is a first-order formula defined over $\{\subseteq, \text{LEL}\}$, then $\text{Eval}(\Phi)$ can be solved in polynomial time

Atomic formulas of StratiFOILed: the set of first-order formulas defined over $\{\subseteq, {\rm LEL}\}$

The second layer

Node(**e**):

The second layer

The second layer

PosLeaf(**e**):

The second layer PosLeaf(**e**): $(0, 1, 0, 0)$ **true false true false** $0/$ 1 Ω Ω 1 1 Ω 1 2 1 3 4 $0/$ \1 $\mathbf 1$ **false true** 4 **false true** $\mathbf{0}$ **true** 0 1 3 4 1 $(0, 0, 0, \perp)$

Guarded formulas

- 1. Each atomic formula is a guarded formula
- 2. Boolean combinations of guarded formulas are guarded formulas
- 3. If Φ is a guarded formula, then so are
	- $\exists x \, (\text{Node}(x) \land \Phi)$ $\forall x \, (\text{Node}(x) \to \Phi)$

 $\exists x \, (\text{PosLeaf}(x) \land \Phi)$ $\forall x \, (\text{PosLeaf}(x) \to \Phi)$

An example of a guarded formula

$$
\begin{array}{c}\n\text{FRS}(x) = \bigvee \{ \text{Node}(y) \rightarrow (\text{AllPos}(y) \rightarrow \\ \nabla z \, (\text{Node}(z) \rightarrow (\text{AllNeg}(z) \rightarrow \\ \nabla \exists w \, (\text{Suf}(x, w) \land \text{Cons}(w, y) \land \text{Cons}(w, z))))))\n\end{array}
$$
\nguarded formula

An example of a guarded formula

$$
\begin{array}{rcl}\n\text{FRS}(x) & = & \forall y \left[\text{Node}(y) \rightarrow (\text{AllPos}(y) \rightarrow \\ & \sqrt{\forall z \left(\text{Node}(z) \rightarrow (\text{AllNeg}(z) \rightarrow \\ \neg \exists w \left(\text{Suf}(x, w) \land \text{Cons}(w, y) \land \text{Cons}(w, z) \right) \right) \right) \right] \\
\text{guarded formula}\n\end{array}
$$

An example of a guarded formula

$$
\begin{array}{rcl}\n\text{FRS}(x) & = & \forall y \left[\text{Node}(y) \rightarrow (\text{AllPos}(y) \rightarrow \\ & \forall z \left(\text{Node}(z) \rightarrow (\text{AllNeg}(z) \rightarrow \\ & \neg \exists w \left(\text{Suf}(x, w) \land \text{Cons}(w, y) \land \text{Cons}(w, z) \right) \right) \right) \right] \\
 & & \text{atomic formulas}\n\end{array}
$$
An example of a guarded formula

$$
\begin{array}{l} \text{FRS}(x) \ = \ \forall y \left[\text{Node}(y) \rightarrow (\text{AllPos}(y) \ \rightarrow \\ \\ \hline \forall z \ (\text{Node}(z) \rightarrow (\text{AllNeg}(z) \rightarrow \\ \hline \exists w \ (\text{Suf}(x,w) \land \text{Cons}(w,y) \land \text{Cons}(w,z)) \ \text{D} \right] \end{array}
$$

The third layer: StratiFOILed

- 1. Each guarded formula is a **StratiFOILed** formula
- 2. If Φ is a guarded formula, then $\exists x_1 \cdots \exists x_k \, \Phi$ and $\forall x_1 \cdots \forall x_k \Phi$ are <code>StratiFOILed</code> formulas
- 3. Boolean combinations of **StratiFOILed** formulas are **StratiFOILed** formulas

Examples of StratiFOILed formulas

 $\mathrm{SR}(x,y)$, $\mathrm{MinimalSR}(x,y)$, $\mathrm{MinimumSR}(x,y)$ can be expressed as **StratiFOILed** formulas

$$
\begin{aligned} \operatorname{FRS}(x) \; &= \; \forall y \, \big[\mathrm{Node}(y) \to (\mathrm{AllPos}(y) \, \to \\ & \; \forall z \, (\mathrm{Node}(z) \to (\mathrm{AllNeg}(z) \to \\ & \; \neg \exists w \, (\mathrm{Suf}(x,w) \wedge \mathrm{Cons}(w,y) \wedge \mathrm{Cons}(w,z)))) \big] \end{aligned}
$$

 $\operatorname{MinimalFRS}(x)$, $\operatorname{MinimumFRS}(x)$ can be expressed as a **StratiFOILed** formulas

The evaluation problem for StratiFOILed

BH: Boolean Hierarchy over NP

Theorem:

- 1. For each **StratiFOILed** formula Φ , there exists $k \geq 1$ such that $\mathrm{Eval}(\Phi)$ is in BH_k
- 2. For every $k\geq 1$, there exists a <code>StratiFOILed</code> formula Φ such that $\mathrm{Eval}(\Phi)$ is in BH_k -hard

The evaluation problem for StratiFOILed

 $\operatorname{Eval}(\Phi)$ can be solved with a fixed number of calls to a SAT solver, for each **StratiFOILed** formula Φ

Implementation based on SAT solvers

Any SAT solver can be used

Given the complexity of the evaluation problem for **StratiFOILed**, we use:

- **YalSAT:** to find a truth assignment that satisfies a propositional formula
- **Kissat:** to prove that a propositional formula is not satisfiable

MNIST: sufficient reason

$$
\alpha(x,z) = \exists y\, (\text{SR}(x,y) \land \text{LEL}(y,z))
$$

Evaluate whether α (**e**, **u**₇₃₀) holds

 $\mathbf{u}_{730} \in \{0,1,\bot\}^{784}$ satisfies that $|\{i \in \{1,\ldots,784\} \mid \mathbf{u}_{730}[i] = \bot\}| = 730$

MNIST: sufficient reason

Evaluation time of $\alpha(x, \mathbf{u}_{720})$

Synthetic data: sufficient reason

Evaluation time of $\alpha(x, \mathbf{u}_\ell)$ with $\ell = 0.05 \times \text{dim}$

MNIST: relevant feature set

$$
\beta(y) = \exists x\, (\mathrm{RFS}(x) \wedge \mathrm{LEL}(x,y))
$$

Evaluate whether $\alpha(\mathbf{u}_{392})$ holds

Concluding remarks

StratiFOILed is a model-specific interpretability query language

- How can the definition of **StratiFOILed** be extended to OBDDs and FBDDs?
- What are the right definitions of $\mathrm{Node}(x)$ and $\operatorname{PosLeaf}(x)$ in these cases?

Concluding remarks

FOIL is a model-agnostic interpretability query language

- The evaluation problem for some fragments of **FOIL** can be solved in polynomial time for decision trees and OBDDs
- What is an appropriate fragment of **FOIL** to be evaluated using SAT solvers?
- What is an appropriate interpretability query language for FBDDs that is based on **FOIL**?

Concluding remarks

What is an appropriate interpretability query language for **labeled graphs** and **GNNs**?

- Which can be evaluated in polynomial time, or using SAT solvers
- What is an appropriate model-agnostic interpretability query language?
- What is an appropriate model-specific interpretability query language?

Thanks!

Backup slides

