XML Data Exchange

Marcelo Arenas P. Universidad Católica de Chile

Joint work with Leonid Libkin (U. of Toronto)

Data Exchange in Relational Databases

- Data exchange has been extensively studied in the relational world.
 - It has also been implemented: Clio.
- Relational data exchange settings:
 - Source and target schemas: Relational schemas.
 - Relationship between source and target schemas: Source-to-target dependencies.
- Semantics of data exchange has been precisely defined.
 - Algorithms for materializing target instances and for answering queries over the target have been developed.

Outline

- XML data exchange settings.
 - XML source-to-target dependencies.
- Query answering in XML data exchange.
- Final remarks.

Outline

- XML data exchange settings.
 - XML source-to-target dependencies.
- Query answering in XML data exchange.
- Final remarks.

XML Documents

XML Documents

 $\begin{array}{cccc} db & \rightarrow & book^+ \\ \text{DTD}: & book & \rightarrow & author^+ \\ & author & \rightarrow & \varepsilon \end{array}$

4

XML Documents

XML Data Exchange Settings

• Source and target schemas are given by DTDs.

• To specify the relationship between the source and the target schemas we use source-to-target dependencies.

To define these dependencies, we use tree patterns ...

Collect tuples (x, y): (Algebra, Hungerford), (Real Analysis, Royden)

Tree Patterns

• Tree patterns: XPath-like language.

- Example: book(@title = x)[author(@name = y)]

 Language also includes wildcard _ (matching more than one symbol) and descendant operator //.

XML Source-to-target Dependencies

Source-to-target dependency (STD):

 $\psi_{\mathbf{T}}(\bar{x},\bar{z}) \coloneqq \varphi_{\mathbf{S}}(\bar{x},\bar{y}),$

where $\varphi_{\mathbf{S}}(\bar{x}, \bar{y})$ and $\psi_{\mathbf{T}}(\bar{x}, \bar{z})$ are tree-pattern formulas over the source and target DTDs, resp.

XML Data Exchange Settings

9

Example: Finding Solutions

Let T be our original tree:

Example: Finding Solutions

A solution for *T*:

Outline

- XML data exchange settings.
 - XML source-to-target dependencies.
- Query answering in XML data exchange.
- Final remarks.

Query Answering in XML Data Exchange

• Decision to make: What is our query language?

• We start by considering a query language that produces tuples of values.

Conjunctive Tree Queries

• Query language $CTQ^{//}$ is defined by

$$Q \quad := \quad \varphi \quad | \quad Q \wedge Q \quad | \quad \exists x \, Q,$$

where φ ranges over tree-pattern formulas.

• By disallowing descendant // we obtain restriction CTQ.

Example: Conjunctive Tree Query

List all pairs of authors that have written articles with the same title.

- Given: A source tree T and a conjunctive tree query Q over the target.
- Answer to Q should represent the answer to this query in the space of solutions for T.
- Certain answers semantics:

$$\underline{certain}(Q,T) = \bigcap_{T' \text{ is a solution for } T} Q(T').$$

Computing Certain Answers

We study the following problem.

Given data exchange setting $(D_{\mathbf{S}}, D_{\mathbf{T}}, \Sigma_{\mathbf{ST}})$ and query Q:

PROBLEM:	CERTAIN-ANSWERS (Q) .
INPUT:	Tree T conforming to $D_{\mathbf{S}}$ and tuple \overline{a} .
QUESTION:	Is $\bar{a} \in \underline{certain}(Q,T)$?

Computing Certain Answers: General Picture

Theorem For every XML data exchange setting and $CTQ^{//}$ -query Q, CERTAIN-ANSWERS(Q) is in coNP.

Remark: In terms of the size of the document (data complexity).

Theorem There exist an XML data exchange setting and a $CTQ^{//}$ -query Q such that CERTAIN-ANSWERS(Q) is coNP-hard.

We want to find tractable cases ...

Computing Certain Answers: Finding Tractable Cases

• To find tractable cases, we have to concentrate on fully-specified STDs:

We impose restrictions on tree patterns over target DTDs:

- no descendant relation //; and
- no wildcard _; and
- all patterns start at the root.

No restrictions imposed on tree patterns over source DTDs.

• Subsume non-relational data exchange handled by Clio.

From now on, all STDs are fully-specified.

Computing Certain Answers: Towards a Classification

Given a class C of regular expressions and a class Q of queries:

C is tractable for Q if for every data exchange setting in which target DTDs only use regular expressions from C and every Q-query Q, CERTAIN-ANSWERS(Q) is in PTIME.

C is coNP-complete for Q if there is a data exchange setting in which target DTDs only use regular expressions from C and a Q-query Q such that CERTAIN-ANSWERS(Q) is coNP-complete.

Remark (Ladner): If PTIME \neq NP, there are problems in coNP which are neither tractable nor coNP-complete.

Computing Certain Answers: Towards a Classification

- Our classification is based on classes of regular expressions used in target DTDs.
- They must contain the simplest type of regular expressions: $(a + b + c)^*$
- Such classes will be called admissible.

Computing Certain Answers: Dichotomy

Theorem

- 1) Every admissible class C of regular expressions is either tractable or coNP-complete for $CTQ^{//}$.
- 2) For every tractable class: Given a source tree T, one can compute in PTIME a solution T^* for T such that

<u>certain</u>(Q, T) = remove_null_tuples $(Q(T^{\star}))$.

3) It is decidable whether the regular expressions used in a target DTD belong to a tractable class.

Outline

- XML data exchange settings.
 - XML source-to-target dependencies.
- Query answering in XML data exchange.
- Final remarks.

Final Remarks

- Dichotomy also holds for unions of conjunctive queries.
- Future work:
 - We would like to consider XML query languages that produce XML trees.

How do we define certain answers?

- The notion of reasonable solutions needs to be investigated further.