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The problem of data exchange

Given: A source schema S, a target schema T and a specification
> of the relationship between these schemas

Data exchange: Problem of materializing an instance of T given
an instance of S

» Target instance should reflect the source data as accurately as
possible, given the constraints imposed by > and T

» It should be efficiently computable

» It should allow one to evaluate queries on the target in a way
that is semantically consistent with the source data
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Data exchange in a picture
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Data exchange: Some fundamental questions

What are the challenges in the area?

» What is a good language for specifying the relationship
between source and target data?

» Expressiveness versus complexity
» What is a good instance to materialize?
» What does it mean to answer a query over target data?

» How do we answer queries over target data? Can we do this
efficiently?
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Exchanging relational data

The data exchange problem has been extensively studied in the
relational world.

» It has also been commercially implemented: IBM Clio

Relational data exchange setting:
» Source and target schemas: Relational schemas

» Relationship between source and target schemas:
Source-to-target tuple-generating dependencies (st-tgds)

Semantics of data exchange has been precisely defined.

» Efficient algorithms for materializing target instances and for
answering queries over the target schema have been developed
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Schema mapping: The key component in relational data
exchange

Schema mapping: M = (S, T,X)
» S and T are disjoint relational schemas
» > is a finite set of st-tgds:
XYY (p(%,7) — F29(%,2))

©(x,¥): conjunction of relational atomic formulas over S

(X, Z): conjunction of relational atomic formulas over T
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Relational schema mappings: An example

Example
» S: Employee(name)

» T: Dept(name, number)

> >

Vx (Employee(x) — dy Dept(x,y))
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Relational schema mappings: An example
Example
» S: Employee(name)
» T: Dept(name, number)

> >

Vx (Employee(x) — dy Dept(x,y))

Note
We omit universal quantifiers in st-tgds:

Employee(x) — Jy Dept(x,y)
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Relational data exchange problem

Fixed: M = (S, T,X)
Problem: Given instance | of S, find an instance J of T such that
(1,J) satisfies &

> (1,J) satisfies ¢(x,y) — 3z ¢ (x, z) if whenever | satisfies

(3, b), there is a tuple T such that J satisfies (3, €)
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Relational data exchange problem

Fixed: M = (S, T,X)

Problem: Given instance | of S, find an instance J of T such that
(1,J) satisfies &

> (1,J) satisfies ¢(x,y) — 3z ¢ (x, z) if whenever | satisfies

(3, b), there is a tuple T such that J satisfies (3, €)

Notation
J is a solution for / under M
» Sola(/): Set of solutions for / under M
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The notion of solution: Example

Example
» S: Employee(name)
» T: Dept(name, number)

» Y: Employee(x) — JyDept(x,y)

Solutions for | = {Employee(Peter)}:
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Example
» S: Employee(name)
» T: Dept(name, number)

» Y: Employee(x) — JyDept(x,y)

Solutions for | = {Employee(Peter)}:
J1: {Dept(Peter,1)}
Jo: {Dept(Peter,1), Dept(Peter,2)}
Peter,1), Dept(John,1)}
Peter,n;)}

J3: {Dept
Ja: {Dept

(
(
(
Js: {Dept(Peter,n;), Dept(Peter,n,)}
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Canonical universal solution

Algorithm
Input . M= (S,T,X) and an instance / of S
Output : Canonical universal solution J* for | under M

let J* := empty instance of T
for every o(x,y) — 3z¢(x,Z) in X do
for every 3, b such that / satisfies ¢(3, b) do
create a fresh tuple n of pairwise distinct null values
insert ¢(3, i) into J*
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Canonical universal solution: Example

Example
Consider mapping M specified by dependency:
Employee(x) — JyDept(x,y)

Canonical universal solution for
| = {Employee(Peter), Enployee(John)}:

» For a = Peter do

» Create a fresh null value n;
> Insert Dept(Peter, ny) into J*

» For a = John do

» Create a fresh null value n,
» Insert Dept(John, ny) into J*

Result: J* = {Dept(Peter, n1), Dept(John, ny)}
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Query answering in data exchange

Given: Mapping M, source instance | and query @ over the target
schema

» What does it mean to answer Q7
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Query answering in data exchange

Given: Mapping M, source instance | and query @ over the target
schema

» What does it mean to answer Q7

Definition (Certain answers)

certainp(Q, 1) = m Q(J)

J is a solution for | under M
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Certain answers: Example

Example
Consider mapping M specified by:

Employee(x) — JyDept(x,y)

Given instance | = {Employee(Peter)}:

,v), 1) = {Peter}
) = 0

certainq(Jy Dept(x
certainaq(Dept(x, y)
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Query rewriting: An approach for answering queries

How can we compute certain answers?

» Naive algorithm does not work: infinitely many solutions
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Query rewriting: An approach for answering queries

How can we compute certain answers?

» Naive algorithm does not work: infinitely many solutions

Approach proposed in [FKMPO03]: Query Rewriting

Given a mapping M and a target query @, compute a query
Q* such that for every source instance / with canonical
universal solution J*:

certainp(Q, 1) = Q*(JY)
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Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping M specified by st-tgds and a union of
conjunctive queries @, there exists a query Q* such that for every
source instance | with canonical universal solution J*:

certainp(Q, 1) = Q*(J)
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Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping M specified by st-tgds and a union of
conjunctive queries @, there exists a query Q* such that for every
source instance | with canonical universal solution J*:

certainp(Q, 1) = Q*(J)

Proof idea: Assume that C(a) holds whenever a is a constant.

Then:
Q*(x1,---yxm) = Ca)A- AC(xm) A Q(X1, .-+, Xm)
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Computing certain answers: Complexity

Data complexity: Data exchange setting and query are considered
to be fixed.

Corollary (FKMPO03)

For mappings given by st-tgds, certain answers for UCQ can be
computed in polynomial time (data complexity)

M. Arenas — Exchanging more than Complete Data - DL2011

18 / 63



Relational data exchange: Some lessons learned

Key steps in the development of the area:

» Definition of schema mappings: Precise syntax and semantics
» Definition of the notion of solution

» Identification of good solutions
» Polynomial time algorithms for materializing good solutions
» Definition of target queries: Precise semantics

» Polynomial time algorithms for computing certain answers for

ucQ
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Relational data exchange: Some lessons learned

Key steps in the development of the area:

» Definition of schema mappings: Precise syntax and semantics
» Definition of the notion of solution

v

Identification of good solutions

v

Polynomial time algorithms for materializing good solutions

v

Definition of target queries: Precise semantics

v

Polynomial time algorithms for computing certain answers for

ucQ

Creating schema mappings is a time consuming and expensive
process

» Manual or semi-automatic process in general
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Outline: First part

» The data exchange problem
» Some fundamental results in relational data exchange

» The need for a more general data exchange framework

» Two important scenarios: Incomplete databases and knowledge
bases
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Ongoing project: Reusing schema mappings

dsT

M. Arenas — Exchanging more than Complete Data - DL2011 21 /63



Ongoing project: Reusing schema mappings

st >TuU

M. Arenas — Exchanging more than Complete Data - DL2011 21 /63



Ongoing project: Reusing schema mappings

Ysu?

M. Arenas — Exchanging more than Complete Data - DL2011 21 /63



Ongoing project: Reusing schema mappings

Ysu?

We need some operators for schema mappings
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Ongoing project: Reusing schema mappings

Ysy = XsToXTU

We need some operators for schema mappings

» Composition in the above case
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Metadata management

Contributions mentioned in the previous slides are just a first step
towards the development of a general framework for data exchange.

In fact, as pointed in [B03],

many information system problems involve not only the design
and integration of complex application artifacts, but also their
subsequent manipulation.
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Metadata management

This has motivated the need for the development of a general
infrastructure for managing schema mappings.

The problem of managing schema mappings is called metadata
management.

High-level algebraic operators, such as compose, are used to
manipulate mappings.

» What other operators are needed?
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An inverse operator is also needed

st
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An inverse operator is also needed

Xsv
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An inverse operator is also needed

Yvs? Ysv

<
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An inverse operator is also needed

Tvs = Tgy Ysv

<

M. Arenas — Exchanging more than Complete Data - DL2011 24 / 63



An inverse operator is also needed

Tvs = Tgy Ysv
Zg\} o} ZST

<

Composition and inverse operators have to be combined
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An inverse operator is also needed

Tus =Ygy 2sv
(Zg\,l oX¥st)oXTy

<

Composition and inverse operators have to be combined
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Metadata management: A more general data exchange
framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

» Semantics, computation, ...

Combining these operators is an open issue.

M. Arenas — Exchanging more than Complete Data - DL2011 25 /63



Metadata management: A more general data exchange
framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

» Semantics, computation, ...

Combining these operators is an open issue.

> Key observation: A target instance of a mapping can be the source
instance of another mapping

M. Arenas — Exchanging more than Complete Data - DL2011 25 /63



Metadata management: A more general data exchange
framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

» Semantics, computation, ...

Combining these operators is an open issue.

> Key observation: A target instance of a mapping can be the source
instance of another mapping

» Sources instances may contain null values

M. Arenas — Exchanging more than Complete Data - DL2011 25 /63



Metadata management: A more general data exchange
framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

» Semantics, computation, ...

Combining these operators is an open issue.

> Key observation: A target instance of a mapping can be the source
instance of another mapping

» Sources instances may contain null values

There is a need for a data exchange framework that can handle databases
with incomplete information.
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But this is not the only reason ...

Nowadays several applications use knowledge bases to represent data.

> A knowledge base has not only data but also rules that allows to
infer new data

» In the Semantics Web: RDFS and OWL ontologies
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But this is not the only reason ...

Nowadays several applications use knowledge bases to represent data.

> A knowledge base has not only data but also rules that allows to
infer new data

» In the Semantics Web: RDFS and OWL ontologies

In a data exchange application over the Semantics Web:

The input is a mapping and a source specification including data
and rules, and the output is a target specification also including
data and rules

There is a need for a data exchange framework that can handle
knowledge bases.
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Knowledge exchange: A more general data exchange

framework is needed

Example

Assume given the following source knowledge base:

Data:
Father
Andy Bob
Bob Danny
Danny Eddie
Rules:
Father(x,y)
Mother(x, y)

Parent(x, y) A Parent(y, z)

M. Arenas — Exchanging more than Complete Data - DL2011
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Carrie  Bob
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Parent(x, y)
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Grandparent(x, z)
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Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)
Given a mapping:
Father(x,y) — Padre(x,y)
Grandparent(x,y) — Abuelo(x,y)

What is a good translation of the initial knowledge base?
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Knowledge exchange: A more general data exchange

framework is needed

Example (cont'd)
Given a mapping:
Father(x, y)
Grandparent(x, y)

—  Padre(x, y)
—  Abuelo(x, y)

What is a good translation of the initial knowledge base?

Data:
Padre
Andy  Bob
Bob Danny
Danny Eddie
Rules: ()
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Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Father(x,y) — Parent(x,y)
Mother(x,y) — Parent(x,y)
Parent(x,y) A Parent(y,z) — Grandparent(x,z)
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Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:
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Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Padre(x,y) A Padre(y,z) — Abuelo(x,Zz)

What data should we materialize?
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Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Padre(x,y) A Padre(y,z) — Abuelo(x,Zz)

What data should we materialize?

Padre Abuelo
Andy Bob Andy Danny
Bob Danny Carrie  Danny
Danny Eddie Bob Eddie
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Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Padre(x,y) A Padre(y,z) — Abuelo(x,Zz)

What data should we materialize?
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Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Padre(x,y) A Padre(y,z) — Abuelo(x,Zz)

What data should we materialize?

Padre Abuelo
Andy  Bob
Bob Danny Carrie  Danny
Danny Eddie

Is this a good translation? Why?
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One can exchange more than complete data

» In data exchange one starts with a database instance (with
complete information).

» What if we have an initial object that has several
interpretations?

» A representation of a set of possible instances

» We propose a new general formalism to exchange
representations of possible instances

» We apply it to the problems of exchanging instances with
incomplete information and exchanging knowledge bases
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Outline: Second part

» Formalism for exchanging representations systems
» Applications to incomplete instances
» Applications to knowledge bases

» Concluding remarks
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Representation systems

A representation system R = (W, rep) consists of:
» a set W of representatives

» a function rep that assigns a set of instances to every element
in W

rep(V) = {h, h, ...} for every V €¢ W

Uniformity assumption: For every V € W, there exists a relational
schema S (the type of V) such that rep(V) C Inst(S)
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Representation systems

A representation system R = (W, rep) consists of:
» a set W of representatives

» a function rep that assigns a set of instances to every element
in W

rep(V) = {h, h, ...} for every V €¢ W

Uniformity assumption: For every V € W, there exists a relational
schema S (the type of V) such that rep(V) C Inst(S)

Incomplete instances and knowledge bases are representation
systems
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In classical data exchange we consider only complete data

Recall that given M = (S, T,X), | € Inst(S) and J € Inst(T): Jis
a solution for / under M if (/I,J) E X

J € Solpm(1)
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In classical data exchange we consider only complete data

Recall that given M = (S, T,X), | € Inst(S) and J € Inst(T): Jis
a solution for / under M if (/I,J) E X

J € Solpm(1)
This can be extended to set of instances. Given X' C Inst(S):

Sol (X U Sol v (/
leX
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Extending the definition to representation systems

Given:
» a mapping M = (S, T,X)
> a representation system R = (W, rep)
> U,V € W of types S and T, respectively
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Extending the definition to representation systems

Given:
» a mapping M = (S, T,X)
> a representation system R = (W, rep)
> U,V € W of types S and T, respectively

Definition (APRll)
V is an R-solution of U under M if

rep(V) < Solu(rep(lf))
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Extending the definition to representation systems

Given:
» a mapping M = (S, T,X)
> a representation system R = (W, rep)
> U,V € W of types S and T, respectively

Definition (APRll)
V is an R-solution of U under M if

rep(V) C  Soly(rep(U))

Or equivalently: V is an R-solution of U if for every J € rep(V),
there exists | € rep(U) such that J € Sol (/).
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Universal solutions

What is a good solution in this framework?

M. Arenas — Exchanging more than Complete Data - DL2011 36 / 63



Universal solutions

What is a good solution in this framework?

Definition (APR11)

V is an universal R-solution of U under M if

rep(V) = Solr(rep(Uf))
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Strong representation systems

Let C be a class of mappings.
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Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
MeC and for every U € W , there exists a

VeW
rep(V) = Solam(rep(if))

M. Arenas — Exchanging more than Complete Data - DL2011 37 /63



Strong representation systems

Let C be a class of mappings.

Definition (APR11)
R = (W, rep) is a strong representation system for C if for every
M eC from S to T, and for every Y € W , there exists a

VeWw
rep(V) = Solam(rep(if))
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Strong representation systems

Let C be a class of mappings.

Definition (APR11)
R = (W, rep) is a strong representation system for C if for every
M € C from S to T, and for every U € W of type S, there exists a

VeWw
rep(V) = Solam(rep(if))
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Strong representation systems

Let C be a class of mappings.

Definition (APR11)
R = (W, rep) is a strong representation system for C if for every
M € C from S to T, and for every U € W of type S, there exists a

YV € W of type T:
rep(V) = Solam(rep(if))
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Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
M € C from S to T, and for every U € W of type S, there exists a
YV € W of type T:

rep(V) = Solr(rep(U))

If R = (W, rep) is a strong representation system, then the
universal solutions for the representatives in W can be represented
in the same system.
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Outline: Second part

» Formalism for exchanging representations systems
» Applications to incomplete instances
» Applications to knowledge bases

» Concluding remarks
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Motivating questions

What is a strong representation system for the class of mappings
specified by st-tgds?

» Are instances including nulls enough?

Can the fundamental data exchange problems be solved in
polynomial time in this setting?

» Computing (universal) solutions

» Computing certain answers
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Naive instances

We have already considered naive instances: Instances with null values

» Example: Canonical universal solution

A naive instance Z has labeled nulls:

R(l, n1)
R(nl, 2)
R(l, n2)
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Naive instances

We have already considered naive instances: Instances with null values

» Example: Canonical universal solution

A naive instance Z has labeled nulls:

R(l, n1)
R(nl, 2)
R(l, n2)

The interpretations of Z are constructed by replacing nulls by constants:

rep(Z) = {K|wu(Z) C K for some valuation p}
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Are naive instances expressive enough?

Naive instances have been extensively used in data exchange:

Proposition (FKMP03)

Let M = (S, T,X), where ¥ is a set of st-tgds. Then for every
instance | of S, there exists a naive instance J of T such that:

rep(J) = Solam(/)

In fact, the canonical universal solution satisfies the property
mentioned above.

M. Arenas — Exchanging more than Complete Data - DL2011 41 /63



Are naive instances expressive enough?

But naive instances are not expressive enough to deal with
incomplete information in the source instances:

Proposition (APR11)

Naive instances are not a strong representation system for the class
of mappings specified by st-tgds
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Are naive instances expressive enough?

Example

Consider a mapping M specified by:
Manager(x,y) — Reports(x,y)
Manager(x,x) — SelfManager(x)

The canonical universal solution for Z = {Manager(n, Peter)} under M:

J = {Reports(n,Peter)}

But J is not a good solution for 7.

» It cannot represent the fact that if n is given value Peter, then
SelfManager(Peter) should hold in the target.
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Conditional instances

What should be added to naive instances to obtain a strong
representation system?
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Conditional instances

What should be added to naive instances to obtain a strong
representation system?

» Answer from database theory: Conditions on the nulls

Conditional instances: Naive instances plus tuple conditions
A tuple condition is a positive Boolean combinations of:

» equalities and inequalities between nulls, and between nulls
and constants
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Conditional instances

Example

R(l,nl) n = nyp
R(nl,ng) n#ny V onp=2

Semantics:
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Semantics:

p(m) = p(np) =2 p(ni) = p(n2) =3 p(ni) =2, pu(n) =3
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Semantics:

p(m) = p(np) =2 p(ni) = p(np) =3 p(ni) =2, pu(n) =3

R(1,2)
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Conditional instances

Example
R(]., nl) n = nyp
R(nl,ng) n#ny V onp=2
Semantics:
pu(n) = p(n2) =2 p(m) =p(n2) =3 p(m) =2,pu(m) =3
R(1,2) R(1,3)
R(2,2)
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Conditional instances

Example

R(l,nl) n = nyp
R(nl,ng) n#ny V onp=2

Semantics:

p(m) = p(np) =2 p(ni) = p(np) =3 p(ni) =2, p(no) =3

R(1,2) R(1,3)
R(2,2) R(2,3)

Interpretations of a conditional instance Z:

rep(Z) = {K|u(Z) C K for some valuation u}
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Positive conditional instances

Many problems are intractable over conditional instances.

» We also consider a restricted class of conditional instances

Positive conditional instances: Conditional instances without
inequalities
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(Positive) conditional instances are enough

Theorem (APR11)

Both conditional instances and positive conditional instances are strong
representation systems for the class of mappings specified by st-tgds.

Example
Consider again the mapping M specified by:
Manager(x,y) — Reports(x,y)

Manager(x,x) — SelfManager(x)
The following is a universal solution for Z = {Manager(n, Peter)}

Reports(n, Peter) true
SelfManager(Peter) | n = Peter
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Positive conditional instances are exactly the needed
representation system

Positive conditional instances are minimal:

Theorem (APR11)

All the following are needed to obtain a strong representation
system for the class of mappings specified by st-tgds:

» equalities between nulls
» equalities between constant and nulls

» conjunctions and disjunctions

Conditional instances are enough but not minimal.
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Positive conditional instance can be used in practice!

Let M = (S, T,X), where X is a set of st-tgds.
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Positive conditional instance can be used in practice!

Let M = (S, T,X), where X is a set of st-tgds.

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance T over S, computes a positive conditional instance
J over T that is a universal solution for T under M.
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Positive conditional instance can be used in practice!

Let M = (S, T,X), where X is a set of st-tgds.

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance T over S, computes a positive conditional instance
J over T that is a universal solution for T under M.

Let @ be a union of conjunctive queries over T.

RQUI) = [) QU

Jerep(T)

certaing(Q,Z) = ﬂ Q(T)

J is a solution for Z under M
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Positive conditional instance can be used in practice!

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance T over S, computes certainp(Q,Z).
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Positive conditional instance can be used in practice!

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance T over S, computes certainp(Q,Z).

The same result holds for the class of unions of conjunctive queries with
at most one inequality per disjunct.

» The other important class of queries in the data exchange area for
which certain answers can be computed in polynomial time
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Outline: Second part

» Formalism for exchanging representations systems
» Applications to incomplete instances
» Applications to knowledge bases

» Concluding remarks
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The semantics of knowledge bases is given by sets of
Instances

Knowledge base over S: (/,I) such that
> | € Inst(S)
» [ a set of rules over S

Semantics: finite models

Mod(/,T) = {Ke€lnst(S)|/ C Kand K =T}

M. Arenas — Exchanging more than Complete Data - DL2011 52 /63



We can apply our formalism to knowledge bases

(h,T2) is a KB-solution for (l;,T1) under M if:

Mod(h,2) € Solp(Mod(/i,T1))

(h,T2) is a universal KB-solution for (l1,T1) under M if:

Mod(h,T2) = Solp(Mod(h,T1))
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Motivating questions

Same as for the case of instances with incomplete information.
» Constructing universal KB-solutions

» Answering target queries

New fundamental problem: Construct solutions including as much
implicit knowledge as possible.
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What are good knowledge-base solutions?

First alternative: universal KB-solutions

But there exist some other KB-solutions desirable to materialize

» Minimality comes into play
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What are good knowledge-base solutions?

First alternative: universal KB-solutions

But there exist some other KB-solutions desirable to materialize

» Minimality comes into play

Given sets X, ) of instances:

> X =,in Vif X and Y coincide in the minimal instances under C
Definition
(k,T2) is a minimal KB-solution of (l,I'1) under M if:

MOd(IQ,rz) =min SoIM(Mod(ll,Fl))

M. Arenas — Exchanging more than Complete Data - DL2011 55 / 63



Two requirements to construct minimal knowledge-base
solutions

Given (l,1) and M, when constructing a minimal KB-solution
(h,T2) we would like:
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1. T to only depend on I'; and M:
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Two requirements to construct minimal knowledge-base
solutions

Given (l,1) and M, when constructing a minimal KB-solution
(h,T2) we would like:

1. T to only depend on I'; and M:

5 is safe for 1 and M

Definition
I> is safe for ['; and M, if for every /1 there exists /:

(h,T2) is a minimal KB-solution of (/1,1) under M
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Two requirements to construct minimal knowledge-base
solutions

2. Ty to be as informative as possible (thus minimizing the size
of h):
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Two requirements to construct minimal knowledge-base
solutions

2. Ty to be as informative as possible (thus minimizing the size
of h):

Definition

I> is optimal-safe if for every other safe set [:

e
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Computing minimal KB-solutions

To obtain algorithms for computing minimal KB-solutions, we need
to specify the language used in knowledge bases.

» Full st-tgd:

VRYY (p(X, 7) — (%))
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Computing minimal KB-solutions

To obtain algorithms for computing minimal KB-solutions, we need
to specify the language used in knowledge bases.

» Full st-tgd:

VRYY (p(X, 7) — (%))

Theorem (APR11)

There exists a polynomial-time algorithm that, given

M = (S,T,X), where ¥ is a set of full st-tgds, and given a set I';
of full tgds over S, computes a set [y of second-order logic
sentences over T that is optimal-safe for 1 and M.
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Computing minimal KB-solutions

Unfortunately, first-order logic is no expressive enough.

Theorem (APR11)

There exist M = (S, T,X), where ¥ is a set of full st-tgds, and a
set ['1 of full tgds over S such that:

no FO-sentence is optimal-safe for 'y and M.
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no FO-sentence is optimal-safe for 'y and M.
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Computing minimal KB-solutions

Unfortunately, first-order logic is no expressive enough.

Theorem (APR11)

There exist M = (S, T,X), where ¥ is a set of full st-tgds, and a
set ['1 of full tgds over S such that:

no FO-sentence is optimal-safe for 'y and M.

How can we deal with these problems in practice?

» We need to restrict the language used to specify knowledge
bases: Description logics!
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Outline: Second part

» Formalism for exchanging representations systems
» Applications to incomplete instances
» Applications to knowledge bases

» Concluding remarks

M. Arenas — Exchanging more than Complete Data - DL2011 60 / 63



We can exchange more than complete data

We propose a general formalism to exchange representation
systems

» Applications to incomplete instances

» Applications to knowledge bases
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Next step: Apply our general setting to the Semantic Web
» Semantic Web data has nulls (blank nodes)
» Semantic Web specifications have rules (RDFS, OWL)
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We can exchange more than complete data

We propose a general formalism to exchange representation
systems

» Applications to incomplete instances

» Applications to knowledge bases

Next step: Apply our general setting to the Semantic Web
» Semantic Web data has nulls (blank nodes)
» Semantic Web specifications have rules (RDFS, OWL)

Lots of interesting problems to solve if knowledge bases are
specified by means of description logics.

» Better results can be obtained
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Thank youl!
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