M. Arenas

Exchanging more than Complete Data

Marcelo Arenas

Department of Computer Science
Pontificia Universidad Catdlica de Chile

This is joint work with Jorge Pérez (U. de Chile) and Juan Reutter (U. Edinburgh)

— Exchanging more than Complete Data - DL2011 1/63

Outline: First part

» The data exchange problem
» Some fundamental results in relational data exchange

» The need for a more general data exchange framework

» Two important scenarios: Incomplete databases and knowledge
bases

M. Arenas — Exchanging more than Complete Data - DL2011 2 /63

Outline: First part

» The data exchange problem
» Some fundamental results in relational data exchange

» The need for a more general data exchange framework

» Two important scenarios: Incomplete databases and knowledge
bases

M. Arenas — Exchanging more than Complete Data - DL2011 3/63

The problem of data exchange

Given: A source schema S, a target schema T and a specification
> of the relationship between these schemas

Data exchange: Problem of materializing an instance of T given
an instance of S

» Target instance should reflect the source data as accurately as
possible, given the constraints imposed by > and T

» It should be efficiently computable

» It should allow one to evaluate queries on the target in a way
that is semantically consistent with the source data

M. Arenas — Exchanging more than Complete Data - DL2011 4 /63

Data exchange in a picture

pN
Schema S Schema T
M. Arenas — Exchanging more than Complete Data - DL2011

5/63

Data exchange in a picture

Schema S Schema T

M. Arenas — Exchanging more than Complete Data - DL2011 5/63

Data exchange in a picture

Schema S Schema T

M. Arenas — Exchanging more than Complete Data - DL2011 5/63

Data exchange in a picture

Schema S Schema T

M. Arenas — Exchanging more than Complete Data - DL2011 5/63

Data exchange in a picture

Schema S Schema T

M. Arenas — Exchanging more than Complete Data - DL2011 5/63

Data exchange: Some fundamental questions

What are the challenges in the area?

» What is a good language for specifying the relationship
between source and target data?

» Expressiveness versus complexity
» What is a good instance to materialize?
» What does it mean to answer a query over target data?

» How do we answer queries over target data? Can we do this
efficiently?

M. Arenas — Exchanging more than Complete Data - DL2011 6 /63

Exchanging relational data

The data exchange problem has been extensively studied in the
relational world.

» It has also been commercially implemented: IBM Clio

Relational data exchange setting:
» Source and target schemas: Relational schemas

» Relationship between source and target schemas:
Source-to-target tuple-generating dependencies (st-tgds)

Semantics of data exchange has been precisely defined.

» Efficient algorithms for materializing target instances and for
answering queries over the target schema have been developed

M. Arenas — Exchanging more than Complete Data - DL2011 7 /63

Schema mapping: The key component in relational data
exchange

Schema mapping: M = (S, T,X)
» S and T are disjoint relational schemas
» > is a finite set of st-tgds:
XYY (p(%,7) — F29(%,2))

©(x,¥): conjunction of relational atomic formulas over S

(X, Z): conjunction of relational atomic formulas over T

M. Arenas — Exchanging more than Complete Data - DL2011 8 /63

Relational schema mappings: An example

Example
» S: Employee(name)

» T: Dept(name, number)

> >

Vx (Employee(x) — dy Dept(x,y))

M. Arenas — Exchanging more than Complete Data - DL2011

9/63

Relational schema mappings: An example
Example
» S: Employee(name)
» T: Dept(name, number)

> >

Vx (Employee(x) — dy Dept(x,y))

Note
We omit universal quantifiers in st-tgds:

Employee(x) — Jy Dept(x,y)

M. Arenas — Exchanging more than Complete Data - DL2011 9 /63

Relational data exchange problem

Fixed: M = (S, T,X)
Problem: Given instance | of S, find an instance J of T such that
(1,J) satisfies &

> (1,J) satisfies ¢(x,y) — 3z ¢ (x, z) if whenever | satisfies

(3, b), there is a tuple T such that J satisfies (3, €)

M. Arenas — Exchanging more than Complete Data - DL2011 10 / 63

Relational data exchange problem

Fixed: M = (S, T,X)

Problem: Given instance | of S, find an instance J of T such that
(1,J) satisfies &

> (1,J) satisfies ¢(x,y) — 3z ¢ (x, z) if whenever | satisfies

(3, b), there is a tuple T such that J satisfies (3, €)

Notation
J is a solution for / under M
» Sola(/): Set of solutions for / under M

M. Arenas — Exchanging more than Complete Data - DL2011 10 / 63

The notion of solution: Example

Example
» S: Employee(name)
» T: Dept(name, number)

» Y: Employee(x) — JyDept(x,y)

Solutions for | = {Employee(Peter)}:

M. Arenas — Exchanging more than Complete Data - DL2011 11 / 63

The notion of solution: Example

Example
» S: Employee(name)
» T: Dept(name, number)

» Y: Employee(x) — JyDept(x,y)

Solutions for | = {Employee(Peter)}:
J1: {Dept(Peter,1)}

M. Arenas — Exchanging more than Complete Data - DL2011 11 / 63

The notion of solution: Example

Example
» S: Employee(name)
» T: Dept(name, number)

» Y: Employee(x) — JyDept(x,y)

Solutions for | = {Employee(Peter)}:
J1: {Dept(Peter,1)}
Jo: {Dept(Peter,1), Dept(Peter,2)}

M. Arenas — Exchanging more than Complete Data - DL2011 11 / 63

The notion of solution: Example

Example
» S: Employee(name)
» T: Dept(name, number)

» Y: Employee(x) — JyDept(x,y)

Solutions for | = {Employee(Peter)}:
J1: {Dept(Peter,1)}
Jo: {Dept(Peter,1), Dept(Peter,2)}
(Peter,1), Dept(John,1)}

J3: {Dept

M. Arenas — Exchanging more than Complete Data - DL2011 11 / 63

The notion of solution: Example

Example
» S: Employee(name)
» T: Dept(name, number)

» Y: Employee(x) — JyDept(x,y)

Solutions for | = {Employee(Peter)}:
J1: {Dept(Peter,1)}
Jo: {Dept(Peter,1), Dept(Peter,2)}
J3: {Dept(Peter,1), Dept(John,1)}
Ja: {Dept(Peter,n)}

M. Arenas — Exchanging more than Complete Data - DL2011 11 / 63

The notion of solution: Example

Example
» S: Employee(name)
» T: Dept(name, number)

» Y: Employee(x) — JyDept(x,y)

Solutions for | = {Employee(Peter)}:
J1: {Dept(Peter,1)}
Jo: {Dept(Peter,1), Dept(Peter,2)}
Peter,1), Dept(John,1)}
Peter,n;)}

J3: {Dept
Ja: {Dept

(
(
(
Js: {Dept(Peter,n;), Dept(Peter,n,)}

M. Arenas — Exchanging more than Complete Data - DL2011 11 / 63

Canonical universal solution

Algorithm
Input . M= (S,T,X) and an instance / of S
Output : Canonical universal solution J* for | under M

let J* := empty instance of T
for every o(x,y) — 3z¢(x,Z) in X do
for every 3, b such that / satisfies ¢(3, b) do
create a fresh tuple n of pairwise distinct null values
insert ¢(3, i) into J*

M. Arenas — Exchanging more than Complete Data - DL2011 12 / 63

Canonical universal solution: Example

Example
Consider mapping M specified by dependency:
Employee(x) — JyDept(x,y)

Canonical universal solution for
| = {Employee(Peter), Enployee(John)}:

» For a = Peter do

» Create a fresh null value n;
> Insert Dept(Peter, ny) into J*

» For a = John do

» Create a fresh null value n,
» Insert Dept(John, ny) into J*

Result: J* = {Dept(Peter, n1), Dept(John, ny)}

M. Arenas — Exchanging more than Complete Data - DL2011 13 / 63

Query answering in data exchange

Given: Mapping M, source instance | and query @ over the target
schema

» What does it mean to answer Q7

M. Arenas — Exchanging more than Complete Data - DL2011 14 / 63

Query answering in data exchange

Given: Mapping M, source instance | and query @ over the target
schema

» What does it mean to answer Q7

Definition (Certain answers)

certainp(Q, 1) = m Q(J)

J is a solution for | under M

M. Arenas — Exchanging more than Complete Data - DL2011 14 / 63

Certain answers: Example

Example
Consider mapping M specified by:

Employee(x) — JyDept(x,y)

Given instance | = {Employee(Peter)}:

,v), 1) = {Peter}
) = 0

certainq(Jy Dept(x
certainaq(Dept(x, y)

M. Arenas — Exchanging more than Complete Data - DL2011 15 / 63

Query rewriting: An approach for answering queries

How can we compute certain answers?

» Naive algorithm does not work: infinitely many solutions

M. Arenas — Exchanging more than Complete Data - DL2011 16 / 63

Query rewriting: An approach for answering queries

How can we compute certain answers?

» Naive algorithm does not work: infinitely many solutions

Approach proposed in [FKMPO03]: Query Rewriting

Given a mapping M and a target query @, compute a query
Q* such that for every source instance / with canonical
universal solution J*:

certainp(Q, 1) = Q*(JY)

M. Arenas — Exchanging more than Complete Data - DL2011 16 / 63

Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping M specified by st-tgds and a union of
conjunctive queries @, there exists a query Q* such that for every
source instance | with canonical universal solution J*:

certainp(Q, 1) = Q*(J)

M. Arenas — Exchanging more than Complete Data - DL2011 17 / 63

Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping M specified by st-tgds and a union of
conjunctive queries @, there exists a query Q* such that for every
source instance | with canonical universal solution J*:

certainp(Q, 1) = Q*(J)

Proof idea: Assume that C(a) holds whenever a is a constant.

Then:
Q*(x1,---yxm) = Ca)A- AC(xm) A Q(X1, .-+, Xm)

M. Arenas — Exchanging more than Complete Data - DL2011 17 / 63

Computing certain answers: Complexity

Data complexity: Data exchange setting and query are considered
to be fixed.

Corollary (FKMPO03)

For mappings given by st-tgds, certain answers for UCQ can be
computed in polynomial time (data complexity)

M. Arenas — Exchanging more than Complete Data - DL2011

18 / 63

Relational data exchange: Some lessons learned

Key steps in the development of the area:

» Definition of schema mappings: Precise syntax and semantics
» Definition of the notion of solution

» Identification of good solutions
» Polynomial time algorithms for materializing good solutions
» Definition of target queries: Precise semantics

» Polynomial time algorithms for computing certain answers for

ucQ

M. Arenas — Exchanging more than Complete Data - DL2011 19 / 63

Relational data exchange: Some lessons learned

Key steps in the development of the area:

» Definition of schema mappings: Precise syntax and semantics
» Definition of the notion of solution

v

Identification of good solutions

v

Polynomial time algorithms for materializing good solutions

v

Definition of target queries: Precise semantics

v

Polynomial time algorithms for computing certain answers for

ucQ

Creating schema mappings is a time consuming and expensive
process

» Manual or semi-automatic process in general

M. Arenas — Exchanging more than Complete Data - DL2011 19 / 63

Outline: First part

» The data exchange problem
» Some fundamental results in relational data exchange

» The need for a more general data exchange framework

» Two important scenarios: Incomplete databases and knowledge
bases

M. Arenas — Exchanging more than Complete Data - DL2011 20 / 63

Ongoing project: Reusing schema mappings

dsT

M. Arenas — Exchanging more than Complete Data - DL2011 21 /63

Ongoing project: Reusing schema mappings

st >TuU

M. Arenas — Exchanging more than Complete Data - DL2011 21 /63

Ongoing project: Reusing schema mappings

Ysu?

M. Arenas — Exchanging more than Complete Data - DL2011 21 /63

Ongoing project: Reusing schema mappings

Ysu?

We need some operators for schema mappings

M. Arenas — Exchanging more than Complete Data - DL2011 21 /63

Ongoing project: Reusing schema mappings

Ysy = XsToXTU

We need some operators for schema mappings

» Composition in the above case

M. Arenas — Exchanging more than Complete Data - DL2011 21 /63

Metadata management

Contributions mentioned in the previous slides are just a first step
towards the development of a general framework for data exchange.

In fact, as pointed in [B03],

many information system problems involve not only the design
and integration of complex application artifacts, but also their
subsequent manipulation.

M. Arenas — Exchanging more than Complete Data - DL2011 22 /63

Metadata management

This has motivated the need for the development of a general
infrastructure for managing schema mappings.

The problem of managing schema mappings is called metadata
management.

High-level algebraic operators, such as compose, are used to
manipulate mappings.

» What other operators are needed?

M. Arenas — Exchanging more than Complete Data - DL2011 23 /63

An inverse operator is also needed

st

M. Arenas — Exchanging more than Complete Data - DL2011 24 / 63

An inverse operator is also needed

Xsv

<

M. Arenas — Exchanging more than Complete Data - DL2011 24 / 63

An inverse operator is also needed

Yvs? Ysv

<

M. Arenas — Exchanging more than Complete Data - DL2011 24 / 63

An inverse operator is also needed

Tvs = Tgy Ysv

<

M. Arenas — Exchanging more than Complete Data - DL2011 24 / 63

An inverse operator is also needed

Tvs = Tgy Ysv
Zg\} o} ZST

<

Composition and inverse operators have to be combined

M. Arenas — Exchanging more than Complete Data - DL2011 24 / 63

An inverse operator is also needed

Tus =Ygy 2sv
(Zg\,l oX¥st)oXTy

<

Composition and inverse operators have to be combined

M. Arenas — Exchanging more than Complete Data - DL2011

24 / 63

Metadata management: A more general data exchange
framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

» Semantics, computation, ...

Combining these operators is an open issue.

M. Arenas — Exchanging more than Complete Data - DL2011 25 /63

Metadata management: A more general data exchange
framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

» Semantics, computation, ...

Combining these operators is an open issue.

> Key observation: A target instance of a mapping can be the source
instance of another mapping

M. Arenas — Exchanging more than Complete Data - DL2011 25 /63

Metadata management: A more general data exchange
framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

» Semantics, computation, ...

Combining these operators is an open issue.

> Key observation: A target instance of a mapping can be the source
instance of another mapping

» Sources instances may contain null values

M. Arenas — Exchanging more than Complete Data - DL2011 25 /63

Metadata management: A more general data exchange
framework is needed

Composition and inverse operators have been extensively studied in the
relational world.

» Semantics, computation, ...

Combining these operators is an open issue.

> Key observation: A target instance of a mapping can be the source
instance of another mapping

» Sources instances may contain null values

There is a need for a data exchange framework that can handle databases
with incomplete information.

M. Arenas — Exchanging more than Complete Data - DL2011 25 /63

But this is not the only reason ...

Nowadays several applications use knowledge bases to represent data.

> A knowledge base has not only data but also rules that allows to
infer new data

» In the Semantics Web: RDFS and OWL ontologies

M. Arenas — Exchanging more than Complete Data - DL2011 26 / 63

But this is not the only reason ...

Nowadays several applications use knowledge bases to represent data.

> A knowledge base has not only data but also rules that allows to
infer new data

» In the Semantics Web: RDFS and OWL ontologies

In a data exchange application over the Semantics Web:

The input is a mapping and a source specification including data
and rules, and the output is a target specification also including
data and rules

M. Arenas — Exchanging more than Complete Data - DL2011 26 / 63

But this is not the only reason ...

Nowadays several applications use knowledge bases to represent data.

> A knowledge base has not only data but also rules that allows to
infer new data

» In the Semantics Web: RDFS and OWL ontologies

In a data exchange application over the Semantics Web:

The input is a mapping and a source specification including data
and rules, and the output is a target specification also including
data and rules

There is a need for a data exchange framework that can handle
knowledge bases.

M. Arenas — Exchanging more than Complete Data - DL2011 26 / 63

Knowledge exchange: A more general data exchange

framework is needed

Example

Assume given the following source knowledge base:

Data:
Father
Andy Bob
Bob Danny
Danny Eddie
Rules:
Father(x,y)
Mother(x, y)

Parent(x, y) A Parent(y, z)

M. Arenas — Exchanging more than Complete Data - DL2011

Mother

Carrie Bob

—

—

—

Parent(x, y)
Parent(x, y)

Grandparent(x, z)

27 / 63

Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)
Given a mapping:
Father(x,y) — Padre(x,y)
Grandparent(x,y) — Abuelo(x,y)

What is a good translation of the initial knowledge base?

M. Arenas — Exchanging more than Complete Data - DL2011 28 / 63

Knowledge exchange: A more general data exchange

framework is needed

Example (cont'd)
Given a mapping:
Father(x, y)
Grandparent(x, y)

— Padre(x, y)
— Abuelo(x, y)

What is a good translation of the initial knowledge base?

Data:
Padre
Andy Bob
Bob Danny
Danny Eddie
Rules: ()
M. Arenas — Exchanging more than Complete Data - DL2011

Abuelo
Andy Danny
Carrie Danny
Bob Eddie

28 / 63

Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Father(x,y) — Parent(x,y)
Mother(x,y) — Parent(x,y)
Parent(x,y) A Parent(y,z) — Grandparent(x,z)

M. Arenas — Exchanging more than Complete Data - DL2011 29 / 63

Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Mother(x,y) — Parent(x,y)
Parent(x,y) A Parent(y,z) — Grandparent(x,z)

M. Arenas — Exchanging more than Complete Data - DL2011 29 / 63

Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Parent(x,y) A Parent(y,z) — Grandparent(x,z)

M. Arenas — Exchanging more than Complete Data - DL2011 29 / 63

Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Padre(x,y) A Padre(y,z) — Abuelo(x,Zz)

M. Arenas — Exchanging more than Complete Data - DL2011 29 / 63

Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Padre(x,y) A Padre(y,z) — Abuelo(x,Zz)

What data should we materialize?

M. Arenas — Exchanging more than Complete Data - DL2011 29 / 63

Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Padre(x,y) A Padre(y,z) — Abuelo(x,Zz)

What data should we materialize?

Padre Abuelo
Andy Bob Andy Danny
Bob Danny Carrie Danny
Danny Eddie Bob Eddie
M. Arenas — Exchanging more than Complete Data - DL2011

29 / 63

Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Padre(x,y) A Padre(y,z) — Abuelo(x,Zz)

What data should we materialize?

Padre Abuelo
Andy Bob
Bob Danny Carrie Danny
Danny Eddie

M. Arenas — Exchanging more than Complete Data - DL2011 29 / 63

Knowledge exchange: A more general data exchange
framework is needed

Example (cont'd)

Our first alternative does not include any translation of the source rules:

Padre(x,y) A Padre(y,z) — Abuelo(x,Zz)

What data should we materialize?

Padre Abuelo
Andy Bob
Bob Danny Carrie Danny
Danny Eddie

Is this a good translation? Why?

M. Arenas — Exchanging more than Complete Data - DL2011 29 / 63

One can exchange more than complete data

» In data exchange one starts with a database instance (with
complete information).

» What if we have an initial object that has several
interpretations?

» A representation of a set of possible instances

» We propose a new general formalism to exchange
representations of possible instances

» We apply it to the problems of exchanging instances with
incomplete information and exchanging knowledge bases

M. Arenas — Exchanging more than Complete Data - DL2011 30 /63

Outline: Second part

» Formalism for exchanging representations systems
» Applications to incomplete instances
» Applications to knowledge bases

» Concluding remarks

M. Arenas — Exchanging more than Complete Data - DL2011 31/63

Outline: Second part

» Formalism for exchanging representations systems
» Applications to incomplete instances
» Applications to knowledge bases

» Concluding remarks

M. Arenas — Exchanging more than Complete Data - DL2011 32 /63

Representation systems

A representation system R = (W, rep) consists of:
» a set W of representatives

» a function rep that assigns a set of instances to every element
in W

rep(V) = {h, h, ...} for every V €¢ W

Uniformity assumption: For every V € W, there exists a relational
schema S (the type of V) such that rep(V) C Inst(S)

M. Arenas — Exchanging more than Complete Data - DL2011 33 /63

Representation systems

A representation system R = (W, rep) consists of:
» a set W of representatives

» a function rep that assigns a set of instances to every element
in W

rep(V) = {h, h, ...} for every V €¢ W

Uniformity assumption: For every V € W, there exists a relational
schema S (the type of V) such that rep(V) C Inst(S)

Incomplete instances and knowledge bases are representation
systems

M. Arenas — Exchanging more than Complete Data - DL2011 33 /63

In classical data exchange we consider only complete data

Recall that given M = (S, T,X), | € Inst(S) and J € Inst(T): Jis
a solution for / under M if (/I,J) E X

J € Solpm(1)

M. Arenas — Exchanging more than Complete Data - DL2011 34 /63

In classical data exchange we consider only complete data

Recall that given M = (S, T,X), | € Inst(S) and J € Inst(T): Jis
a solution for / under M if (/I,J) E X

J € Solpm(1)
This can be extended to set of instances. Given X' C Inst(S):

Sol (X U Sol v (/
leX

M. Arenas — Exchanging more than Complete Data - DL2011 34 /63

Extending the definition to representation systems

Given:
» a mapping M = (S, T,X)
> a representation system R = (W, rep)
> U,V € W of types S and T, respectively

M. Arenas — Exchanging more than Complete Data - DL2011 35 /63

Extending the definition to representation systems

Given:
» a mapping M = (S, T,X)
> a representation system R = (W, rep)
> U,V € W of types S and T, respectively

Definition (APRll)
V is an R-solution of U under M if

rep(V) < Solu(rep(lf))

M. Arenas — Exchanging more than Complete Data - DL2011 35 /63

Extending the definition to representation systems

Given:
» a mapping M = (S, T,X)
> a representation system R = (W, rep)
> U,V € W of types S and T, respectively

Definition (APRll)
V is an R-solution of U under M if

rep(V) C Soly(rep(U))

Or equivalently: V is an R-solution of U if for every J € rep(V),
there exists | € rep(U) such that J € Sol (/).

M. Arenas — Exchanging more than Complete Data - DL2011 35 /63

Universal solutions

What is a good solution in this framework?

M. Arenas — Exchanging more than Complete Data - DL2011 36 / 63

Universal solutions

What is a good solution in this framework?

Definition (APR11)

V is an universal R-solution of U under M if

rep(V) = Solr(rep(Uf))

M. Arenas — Exchanging more than Complete Data - DL2011 36 / 63

Strong representation systems

Let C be a class of mappings.

M. Arenas — Exchanging more than Complete Data - DL2011 37 /63

Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
MeC and for every U € W , there exists a

VeW
rep(V) = Solam(rep(if))

M. Arenas — Exchanging more than Complete Data - DL2011 37 /63

Strong representation systems

Let C be a class of mappings.

Definition (APR11)
R = (W, rep) is a strong representation system for C if for every
M eC from S to T, and for every Y € W , there exists a

VeWw
rep(V) = Solam(rep(if))

M. Arenas — Exchanging more than Complete Data - DL2011 37 /63

Strong representation systems

Let C be a class of mappings.

Definition (APR11)
R = (W, rep) is a strong representation system for C if for every
M € C from S to T, and for every U € W of type S, there exists a

VeWw
rep(V) = Solam(rep(if))

M. Arenas — Exchanging more than Complete Data - DL2011 37 /63

Strong representation systems

Let C be a class of mappings.

Definition (APR11)
R = (W, rep) is a strong representation system for C if for every
M € C from S to T, and for every U € W of type S, there exists a

YV € W of type T:
rep(V) = Solam(rep(if))

M. Arenas — Exchanging more than Complete Data - DL2011 37 /63

Strong representation systems

Let C be a class of mappings.

Definition (APR11)

R = (W, rep) is a strong representation system for C if for every
M € C from S to T, and for every U € W of type S, there exists a
YV € W of type T:

rep(V) = Solr(rep(U))

If R = (W, rep) is a strong representation system, then the
universal solutions for the representatives in W can be represented
in the same system.

M. Arenas — Exchanging more than Complete Data - DL2011 37 /63

Outline: Second part

» Formalism for exchanging representations systems
» Applications to incomplete instances
» Applications to knowledge bases

» Concluding remarks

M. Arenas — Exchanging more than Complete Data - DL2011 38 /63

Motivating questions

What is a strong representation system for the class of mappings
specified by st-tgds?

» Are instances including nulls enough?

Can the fundamental data exchange problems be solved in
polynomial time in this setting?

» Computing (universal) solutions

» Computing certain answers

M. Arenas — Exchanging more than Complete Data - DL2011 39 /63

Naive instances

We have already considered naive instances: Instances with null values

» Example: Canonical universal solution

A naive instance Z has labeled nulls:

R(l, n1)
R(nl, 2)
R(l, n2)

M. Arenas — Exchanging more than Complete Data - DL2011 40 / 63

Naive instances

We have already considered naive instances: Instances with null values

» Example: Canonical universal solution

A naive instance Z has labeled nulls:

R(l, n1)
R(nl, 2)
R(l, n2)

The interpretations of Z are constructed by replacing nulls by constants:

rep(Z) = {K|wu(Z) C K for some valuation p}

M. Arenas — Exchanging more than Complete Data - DL2011 40 / 63

Are naive instances expressive enough?

Naive instances have been extensively used in data exchange:

Proposition (FKMP03)

Let M = (S, T,X), where ¥ is a set of st-tgds. Then for every
instance | of S, there exists a naive instance J of T such that:

rep(J) = Solam(/)

In fact, the canonical universal solution satisfies the property
mentioned above.

M. Arenas — Exchanging more than Complete Data - DL2011 41 /63

Are naive instances expressive enough?

But naive instances are not expressive enough to deal with
incomplete information in the source instances:

Proposition (APR11)

Naive instances are not a strong representation system for the class
of mappings specified by st-tgds

M. Arenas — Exchanging more than Complete Data - DL2011 42 /63

Are naive instances expressive enough?

Example

Consider a mapping M specified by:
Manager(x,y) — Reports(x,y)
Manager(x,x) — SelfManager(x)

The canonical universal solution for Z = {Manager(n, Peter)} under M:

J = {Reports(n,Peter)}

But J is not a good solution for 7.

» It cannot represent the fact that if n is given value Peter, then
SelfManager(Peter) should hold in the target.

M. Arenas — Exchanging more than Complete Data - DL2011

43/ 63

Conditional instances

What should be added to naive instances to obtain a strong
representation system?

M. Arenas — Exchanging more than Complete Data - DL2011 44 / 63

Conditional instances

What should be added to naive instances to obtain a strong
representation system?

» Answer from database theory: Conditions on the nulls

M. Arenas — Exchanging more than Complete Data - DL2011

44 / 63

Conditional instances

What should be added to naive instances to obtain a strong
representation system?

» Answer from database theory: Conditions on the nulls

Conditional instances: Naive instances plus tuple conditions
A tuple condition is a positive Boolean combinations of:

» equalities and inequalities between nulls, and between nulls
and constants

M. Arenas — Exchanging more than Complete Data - DL2011 44 / 63

R(L,m) | m=n
R(ny, m)

«or «Fr o« o

n17én2 V; n2:2

Conditional instances

Example

R(l,nl) n = nyp
R(nl,ng) n#ny V onp=2

Semantics:

M. Arenas — Exchanging more than Complete Data - DL2011 45 / 63

Conditional instances

Example

R(l,nl) n = nyp
R(nl,ng) n#ny V onp=2

Semantics:

p(m) = p(np) =2 p(ni) = p(n2) =3 p(ni) =2, pu(n) =3

M. Arenas — Exchanging more than Complete Data - DL2011

45 / 63

Conditional instances

Example

R(l,nl) n = nyp
R(nl,ng) n#ny V onp=2

Semantics:

p(m) = p(np) =2 p(ni) = p(np) =3 p(ni) =2, pu(n) =3

R(1,2)
R(2,2)

M. Arenas — Exchanging more than Complete Data - DL2011

45 / 63

Conditional instances

Example
R(]., nl) n = nyp
R(nl,ng) n#ny V onp=2
Semantics:
pu(n) = p(n2) =2 p(m) =p(n2) =3 p(m) =2,pu(m) =3
R(1,2) R(1,3)
R(2,2)

M. Arenas — Exchanging more than Complete Data - DL2011 45 / 63

Conditional instances

Example
R(]., nl) n = nyp
R(nl,ng) n#ny V onp=2
Semantics:
p(m) = p(n2) =2 p(m) = p(n2) =3 p(n) =2, pu(n) =3
R(1,2) R(1,3)
R(2,2) R(2,3)

M. Arenas — Exchanging more than Complete Data - DL2011 45 / 63

Conditional instances

Example

R(l,nl) n = nyp
R(nl,ng) n#ny V onp=2

Semantics:

p(m) = p(np) =2 p(ni) = p(np) =3 p(ni) =2, p(no) =3

R(1,2) R(1,3)
R(2,2) R(2,3)

Interpretations of a conditional instance Z:

rep(Z) = {K|u(Z) C K for some valuation u}

M. Arenas — Exchanging more than Complete Data - DL2011

45 / 63

Positive conditional instances

Many problems are intractable over conditional instances.

» We also consider a restricted class of conditional instances

Positive conditional instances: Conditional instances without
inequalities

M. Arenas — Exchanging more than Complete Data - DL2011 46 / 63

(Positive) conditional instances are enough

Theorem (APR11)

Both conditional instances and positive conditional instances are strong
representation systems for the class of mappings specified by st-tgds.

Example
Consider again the mapping M specified by:
Manager(x,y) — Reports(x,y)

Manager(x,x) — SelfManager(x)
The following is a universal solution for Z = {Manager(n, Peter)}

Reports(n, Peter) true
SelfManager(Peter) | n = Peter

M. Arenas — Exchanging more than Complete Data - DL2011 47 / 63

Positive conditional instances are exactly the needed
representation system

Positive conditional instances are minimal:

Theorem (APR11)

All the following are needed to obtain a strong representation
system for the class of mappings specified by st-tgds:

» equalities between nulls
» equalities between constant and nulls

» conjunctions and disjunctions

Conditional instances are enough but not minimal.

M. Arenas — Exchanging more than Complete Data - DL2011 48 / 63

Positive conditional instance can be used in practice!

Let M = (S, T,X), where X is a set of st-tgds.

M. Arenas — Exchanging more than Complete Data - DL2011 49 / 63

Positive conditional instance can be used in practice!

Let M = (S, T,X), where X is a set of st-tgds.

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance T over S, computes a positive conditional instance
J over T that is a universal solution for T under M.

M. Arenas — Exchanging more than Complete Data - DL2011

49 / 63

Positive conditional instance can be used in practice!

Let M = (S, T,X), where X is a set of st-tgds.

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance T over S, computes a positive conditional instance
J over T that is a universal solution for T under M.

Let @ be a union of conjunctive queries over T.

RQUI) = [) QU

Jerep(T)

certaing(Q,Z) = ﬂ Q(T)

J is a solution for Z under M

M. Arenas — Exchanging more than Complete Data - DL2011 49 / 63

Positive conditional instance can be used in practice!

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance T over S, computes certainp(Q,Z).

M. Arenas — Exchanging more than Complete Data - DL2011 50 / 63

Positive conditional instance can be used in practice!

Theorem (APR11)

There exists a polynomial time algorithm that, given a positive
conditional instance T over S, computes certainp(Q,Z).

The same result holds for the class of unions of conjunctive queries with
at most one inequality per disjunct.

» The other important class of queries in the data exchange area for
which certain answers can be computed in polynomial time

M. Arenas — Exchanging more than Complete Data - DL2011 50 / 63

Outline: Second part

» Formalism for exchanging representations systems
» Applications to incomplete instances
» Applications to knowledge bases

» Concluding remarks

M. Arenas — Exchanging more than Complete Data - DL2011 51 /63

The semantics of knowledge bases is given by sets of
Instances

Knowledge base over S: (/,I) such that
> | € Inst(S)
» [a set of rules over S

Semantics: finite models

Mod(/,T) = {Ke€lnst(S)|/ C Kand K =T}

M. Arenas — Exchanging more than Complete Data - DL2011 52 /63

We can apply our formalism to knowledge bases

(h,T2) is a KB-solution for (l;,T1) under M if:

Mod(h,2) € Solp(Mod(/i,T1))

(h,T2) is a universal KB-solution for (l1,T1) under M if:

Mod(h,T2) = Solp(Mod(h,T1))

M. Arenas — Exchanging more than Complete Data - DL2011 53 / 63

Motivating questions

Same as for the case of instances with incomplete information.
» Constructing universal KB-solutions

» Answering target queries

New fundamental problem: Construct solutions including as much
implicit knowledge as possible.

M. Arenas — Exchanging more than Complete Data - DL2011 54 / 63

What are good knowledge-base solutions?

First alternative: universal KB-solutions

But there exist some other KB-solutions desirable to materialize

» Minimality comes into play

M. Arenas — Exchanging more than Complete Data - DL2011

55 / 63

What are good knowledge-base solutions?

First alternative: universal KB-solutions

But there exist some other KB-solutions desirable to materialize

» Minimality comes into play

Given sets X,) of instances:

> X =,in Vif X and Y coincide in the minimal instances under C
Definition
(k,T2) is a minimal KB-solution of (l,I'1) under M if:

MOd(IQ,rz) =min SoIM(Mod(ll,Fl))

M. Arenas — Exchanging more than Complete Data - DL2011 55 / 63

Two requirements to construct minimal knowledge-base
solutions

Given (l,1) and M, when constructing a minimal KB-solution
(h,T2) we would like:

M. Arenas — Exchanging more than Complete Data - DL2011 56 / 63

Two requirements to construct minimal knowledge-base
solutions

Given (l,1) and M, when constructing a minimal KB-solution
(h,T2) we would like:

1. T to only depend on I'; and M:

5 is safe for 1 and M

M. Arenas — Exchanging more than Complete Data - DL2011 56 / 63

Two requirements to construct minimal knowledge-base
solutions

Given (l,1) and M, when constructing a minimal KB-solution
(h,T2) we would like:

1. T to only depend on I'; and M:

5 is safe for 1 and M

Definition
I> is safe for ['; and M, if for every /1 there exists /:

(h,T2) is a minimal KB-solution of (/1,1) under M

M. Arenas — Exchanging more than Complete Data - DL2011 56 / 63

Two requirements to construct minimal knowledge-base
solutions

2. Ty to be as informative as possible (thus minimizing the size
of h):

M. Arenas — Exchanging more than Complete Data - DL2011 57 / 63

Two requirements to construct minimal knowledge-base
solutions

2. Ty to be as informative as possible (thus minimizing the size
of h):

Definition

I> is optimal-safe if for every other safe set [:

e

M. Arenas — Exchanging more than Complete Data - DL2011 57 / 63

Computing minimal KB-solutions

To obtain algorithms for computing minimal KB-solutions, we need
to specify the language used in knowledge bases.

» Full st-tgd:

VRYY (p(X, 7) — (%))

M. Arenas — Exchanging more than Complete Data - DL2011 58 / 63

Computing minimal KB-solutions

To obtain algorithms for computing minimal KB-solutions, we need
to specify the language used in knowledge bases.

» Full st-tgd:

VRYY (p(X, 7) — (%))

Theorem (APR11)

There exists a polynomial-time algorithm that, given

M = (S,T,X), where ¥ is a set of full st-tgds, and given a set I';
of full tgds over S, computes a set [y of second-order logic
sentences over T that is optimal-safe for 1 and M.

M. Arenas — Exchanging more than Complete Data - DL2011 58 / 63

Computing minimal KB-solutions

Unfortunately, first-order logic is no expressive enough.

Theorem (APR11)

There exist M = (S, T,X), where ¥ is a set of full st-tgds, and a
set ['1 of full tgds over S such that:

no FO-sentence is optimal-safe for 'y and M.

M. Arenas — Exchanging more than Complete Data - DL2011 59 / 63

Computing minimal KB-solutions

Unfortunately, first-order logic is no expressive enough.
Theorem (APR11)

There exist M = (S, T,X), where ¥ is a set of full st-tgds, and a
set ['1 of full tgds over S such that:

no FO-sentence is optimal-safe for 'y and M.

How can we deal with these problems in practice?

M. Arenas — Exchanging more than Complete Data - DL2011 59 / 63

Computing minimal KB-solutions

Unfortunately, first-order logic is no expressive enough.

Theorem (APR11)

There exist M = (S, T,X), where ¥ is a set of full st-tgds, and a
set ['1 of full tgds over S such that:

no FO-sentence is optimal-safe for 'y and M.

How can we deal with these problems in practice?

» We need to restrict the language used to specify knowledge
bases: Description logics!

M. Arenas — Exchanging more than Complete Data - DL2011 59 / 63

Outline: Second part

» Formalism for exchanging representations systems
» Applications to incomplete instances
» Applications to knowledge bases

» Concluding remarks

M. Arenas — Exchanging more than Complete Data - DL2011 60 / 63

We can exchange more than complete data

We propose a general formalism to exchange representation
systems

» Applications to incomplete instances

» Applications to knowledge bases

M. Arenas — Exchanging more than Complete Data - DL2011 61 / 63

We can exchange more than complete data

We propose a general formalism to exchange representation
systems

» Applications to incomplete instances

» Applications to knowledge bases

Next step: Apply our general setting to the Semantic Web
» Semantic Web data has nulls (blank nodes)
» Semantic Web specifications have rules (RDFS, OWL)

M. Arenas — Exchanging more than Complete Data - DL2011 61 / 63

We can exchange more than complete data

We propose a general formalism to exchange representation
systems

» Applications to incomplete instances

» Applications to knowledge bases

Next step: Apply our general setting to the Semantic Web
» Semantic Web data has nulls (blank nodes)
» Semantic Web specifications have rules (RDFS, OWL)

Lots of interesting problems to solve if knowledge bases are
specified by means of description logics.

» Better results can be obtained

M. Arenas — Exchanging more than Complete Data - DL2011 61 / 63

Thank youl!

M. Arenas — Exchanging more than Complete Data - DL2011 62 / 63

Bibliography

[APR11] M. Arenas, J. Pérez, J. Reutter. Data Exchange beyond Complete
Data. PODS 2011.

[B0O3] P. A. Bernstein. Applying Model Management to Classical Meta
Data Problems. CIDR 2003.

[FKMPO03] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data Exchange:
Semantics and Query Answering. ICDT 2003.

M. Arenas — Exchanging more than Complete Data - DL2011 63 / 63

