# Exchanging more than Complete Data 

Marcelo Arenas<br>Department of Computer Science Pontificia Universidad Católica de Chile

This is joint work with Jorge Pérez (U. de Chile) and Juan Reutter (U. Edinburgh)

## Outline: First part

- The data exchange problem
- Some fundamental results in relational data exchange
- The need for a more general data exchange framework
- Two important scenarios: Incomplete databases and knowledge bases


## Outline: First part

- The data exchange problem
- Some fundamental results in relational data exchange
- The need for a more general data exchange framework
- Two important scenarios: Incomplete databases and knowledge bases


## The problem of data exchange

Given: A source schema S, a target schema $\mathbf{T}$ and a specification $\Sigma$ of the relationship between these schemas

Data exchange: Problem of materializing an instance of $\mathbf{T}$ given an instance of $\mathbf{S}$

- Target instance should reflect the source data as accurately as possible, given the constraints imposed by $\Sigma$ and $\mathbf{T}$
- It should be efficiently computable
- It should allow one to evaluate queries on the target in a way that is semantically consistent with the source data


## Data exchange in a picture

## $\Sigma$

Schema S
Schema T

## Data exchange in a picture



Schema S
Schema T

## Data exchange in a picture



## Data exchange in a picture



Schema S


Schema T

## Data exchange in a picture



Schema S


Schema T

## Data exchange: Some fundamental questions

What are the challenges in the area?

- What is a good language for specifying the relationship between source and target data?
- Expressiveness versus complexity
- What is a good instance to materialize?
- What does it mean to answer a query over target data?
- How do we answer queries over target data? Can we do this efficiently?


## Exchanging relational data

The data exchange problem has been extensively studied in the relational world.

- It has also been commercially implemented: IBM Clio

Relational data exchange setting:

- Source and target schemas: Relational schemas
- Relationship between source and target schemas: Source-to-target tuple-generating dependencies (st-tgds)

Semantics of data exchange has been precisely defined.

- Efficient algorithms for materializing target instances and for answering queries over the target schema have been developed


## Schema mapping: The key component in relational data exchange

Schema mapping: $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$

- S and $\mathbf{T}$ are disjoint relational schemas
- $\Sigma$ is a finite set of st-tgds:

$$
\forall \bar{x} \forall \bar{y}(\varphi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z}))
$$

$\varphi(\bar{x}, \bar{y})$ : conjunction of relational atomic formulas over $\mathbf{S}$
$\psi(\bar{x}, \bar{z})$ : conjunction of relational atomic formulas over $\mathbf{T}$

## Relational schema mappings: An example

## Example

- S: Employee(name)
- T: Dept(name, number)
- $\Sigma$ :

$$
\forall x(\operatorname{Employee}(x) \rightarrow \exists y \operatorname{Dept}(x, y))
$$

## Relational schema mappings: An example

## Example

- S: Employee(name)
- T: Dept(name, number)
- $\Sigma$ :

$$
\forall x(\operatorname{Employee}(x) \rightarrow \exists y \operatorname{Dept}(x, y))
$$

## Note

We omit universal quantifiers in st-tgds:

$$
\text { Employee }(x) \rightarrow \exists y \operatorname{Dept}(x, y)
$$

## Relational data exchange problem

Fixed: $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$

Problem: Given instance $/$ of $\mathbf{S}$, find an instance $J$ of $\mathbf{T}$ such that $(I, J)$ satisfies $\Sigma$

- $(I, J)$ satisfies $\varphi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z})$ if whenever $I$ satisfies $\varphi(\bar{a}, \bar{b})$, there is a tuple $\bar{c}$ such that $J$ satisfies $\psi(\bar{a}, \bar{c})$


## Relational data exchange problem

Fixed: $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$

Problem: Given instance $/$ of $\mathbf{S}$, find an instance $J$ of $\mathbf{T}$ such that $(I, J)$ satisfies $\Sigma$

- $(I, J)$ satisfies $\varphi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z})$ if whenever $I$ satisfies $\varphi(\bar{a}, \bar{b})$, there is a tuple $\bar{c}$ such that $J$ satisfies $\psi(\bar{a}, \bar{c})$


## Notation

$J$ is a solution for $I$ under $\mathcal{M}$

- Sol $_{\mathcal{M}}(I)$ : Set of solutions for $I$ under $\mathcal{M}$


## The notion of solution: Example

## Example

- S: Employee(name)
- T: Dept(name, number)
- $\Sigma$ : Employee $(x) \rightarrow \exists y \operatorname{Dept}(x, y)$

Solutions for $I=\{$ Employee(Peter) $\}$ :

## The notion of solution: Example

## Example

- S: Employee(name)
- T: Dept(name, number)
- $\Sigma: \operatorname{Employee}(x) \rightarrow \exists y \operatorname{Dept}(x, y)$

Solutions for $I=\{$ Employee(Peter) $\}$ :

$$
J_{1}:\{\operatorname{Dept}(\text { Peter }, 1)\}
$$

## The notion of solution: Example

## Example

- S: Employee(name)
- T: Dept(name, number)
- $\Sigma$ : Employee $(x) \rightarrow \exists y \operatorname{Dept}(x, y)$

Solutions for $I=\{$ Employee(Peter) $\}$ :

```
J
J}\mp@code{\}:{\operatorname{Dept(Peter,1), Dept(Peter,2)}
```


## The notion of solution: Example

## Example

- S: Employee(name)
- T: Dept(name, number)
- $\Sigma$ : Employee $(x) \rightarrow \exists y \operatorname{Dept}(x, y)$

Solutions for $I=\{$ Employee(Peter) $\}$ :
$J_{1}:\{\operatorname{Dept}($ Peter, 1$)\}$
$J_{2}:\{\operatorname{Dept}($ Peter, 1$), \operatorname{Dept}($ Peter, 2$)\}$
$J_{3}:\{\operatorname{Dept}($ Peter, 1$), \operatorname{Dept}($ John, 1$)\}$

## The notion of solution: Example

## Example

- S: Employee(name)
- T: Dept(name, number)
- $\Sigma$ : Employee $(x) \rightarrow \exists y \operatorname{Dept}(x, y)$

Solutions for $I=\{$ Employee(Peter) $\}$ :
$J_{1}:\{\operatorname{Dept}($ Peter, 1$)\}$
$J_{2}:\{\operatorname{Dept}($ Peter, 1$), \operatorname{Dept}($ Peter, 2$)\}$
$J_{3}:\{\operatorname{Dept}($ Peter, 1$), \operatorname{Dept}($ John,1 $)\}$
$J_{4}:\left\{\operatorname{Dept}\left(\right.\right.$ Peter,$\left.\left.n_{1}\right)\right\}$

## The notion of solution: Example

## Example

- S: Employee(name)
- T: Dept(name, number)
- $\Sigma$ : Employee $(x) \rightarrow \exists y \operatorname{Dept}(x, y)$

Solutions for $I=\{$ Employee(Peter) $\}$ :

$$
\begin{aligned}
& J_{1}:\{\operatorname{Dept}(\text { Peter }, 1)\} \\
& J_{2}:\{\operatorname{Dept}(\text { Peter }, 1), \operatorname{Dept}(\text { Peter }, 2)\} \\
& J_{3}:\{\operatorname{Dept}(\text { Peter }, 1), \operatorname{Dept}(\text { John }, 1)\} \\
& J_{4}:\left\{\operatorname{Dept}\left(\text { Peter }, n_{1}\right)\right\} \\
& J_{5}:\left\{\operatorname{Dept}\left(\text { Peter }, n_{1}\right), \operatorname{Dept}\left(\text { Peter }, n_{2}\right)\right\}
\end{aligned}
$$

## Canonical universal solution

## Algorithm

Input : $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$ and an instance $/$ of $\mathbf{S}$
Output : Canonical universal solution $J^{\star}$ for $I$ under $\mathcal{M}$
let $J^{\star}:=$ empty instance of $\mathbf{T}$
for every $\varphi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} \psi(\bar{x}, \bar{z})$ in $\Sigma$ do
for every $\bar{a}, \bar{b}$ such that $I$ satisfies $\varphi(\bar{a}, \bar{b})$ do
create a fresh tuple $\bar{n}$ of pairwise distinct null values insert $\psi(\bar{a}, \bar{n})$ into $J^{\star}$

## Canonical universal solution: Example

## Example

Consider mapping $\mathcal{M}$ specified by dependency:

$$
\text { Employee }(x) \rightarrow \exists y \operatorname{Dept}(x, y)
$$

Canonical universal solution for $I=\{$ Employee(Peter), Employee(John) $\}$ :

- For $a=$ Peter do
- Create a fresh null value $n_{1}$
- Insert $\operatorname{Dept}\left(\right.$ Peter, $\left.n_{1}\right)$ into $J^{\star}$
- For $a=$ John do
- Create a fresh null value $n_{2}$
- Insert Dept(John, $n_{2}$ ) into $J^{\star}$

Result: $J^{\star}=\left\{\operatorname{Dept}\left(\right.\right.$ Peter, $\left.\left.n_{1}\right), \operatorname{Dept}\left(J o h n, n_{2}\right)\right\}$

## Query answering in data exchange

Given: Mapping $\mathcal{M}$, source instance $/$ and query $Q$ over the target schema

- What does it mean to answer $Q$ ?


## Query answering in data exchange

Given: Mapping $\mathcal{M}$, source instance I and query $Q$ over the target schema

- What does it mean to answer $Q$ ?


## Definition (Certain answers)

$$
\operatorname{certain}_{\mathcal{M}}(Q, I)=\bigcap_{J \text { is a solution for } I \text { under } \mathcal{M}} Q(J)
$$

## Certain answers: Example

## Example

Consider mapping $\mathcal{M}$ specified by:

$$
\operatorname{Employee}(x) \rightarrow \exists y \operatorname{Dept}(x, y)
$$

Given instance $I=\{$ Employee $($ Peter $)\}$ :

$$
\begin{array}{ll}
\operatorname{certain}_{\mathcal{M}}(\exists y \operatorname{Dept}(x, y), I) & =\{\text { Peter }\} \\
\operatorname{certain}_{\mathcal{M}}(\operatorname{Dept}(x, y), I) & =\emptyset
\end{array}
$$

## Query rewriting: An approach for answering queries

How can we compute certain answers?

- Naïve algorithm does not work: infinitely many solutions


## Query rewriting: An approach for answering queries

How can we compute certain answers?

- Naïve algorithm does not work: infinitely many solutions

Approach proposed in [FKMP03]: Query Rewriting
Given a mapping $\mathcal{M}$ and a target query $Q$, compute a query $Q^{\star}$ such that for every source instance $/$ with canonical universal solution $J^{\star}$ :

$$
\operatorname{certain}_{\mathcal{M}}(Q, I)=Q^{\star}\left(J^{\star}\right)
$$

## Query rewriting over the canonical universal solution

## Theorem (FKMP03)

Given a mapping $\mathcal{M}$ specified by st-tgds and a union of conjunctive queries $Q$, there exists a query $Q^{\star}$ such that for every source instance I with canonical universal solution J^:

$$
\operatorname{certain}_{\mathcal{M}}(Q, I)=Q^{\star}\left(J^{\star}\right)
$$

## Query rewriting over the canonical universal solution

## Theorem (FKMP03)

Given a mapping $\mathcal{M}$ specified by st-tgds and a union of conjunctive queries $Q$, there exists a query $Q^{\star}$ such that for every source instance I with canonical universal solution J^:

$$
\operatorname{certain}_{\mathcal{M}}(Q, I)=Q^{\star}\left(J^{\star}\right)
$$

Proof idea: Assume that $\mathbf{C}(a)$ holds whenever $a$ is a constant.
Then:

$$
Q^{\star}\left(x_{1}, \ldots, x_{m}\right)=\mathbf{C}\left(x_{1}\right) \wedge \cdots \wedge \mathbf{C}\left(x_{m}\right) \wedge Q\left(x_{1}, \ldots, x_{m}\right)
$$

## Computing certain answers: Complexity

Data complexity: Data exchange setting and query are considered to be fixed.

## Corollary (FKMP03)

For mappings given by st-tgds, certain answers for UCQ can be computed in polynomial time (data complexity)

## Relational data exchange: Some lessons learned

Key steps in the development of the area:

- Definition of schema mappings: Precise syntax and semantics
- Definition of the notion of solution
- Identification of good solutions
- Polynomial time algorithms for materializing good solutions
- Definition of target queries: Precise semantics
- Polynomial time algorithms for computing certain answers for UCQ


## Relational data exchange: Some lessons learned

Key steps in the development of the area:

- Definition of schema mappings: Precise syntax and semantics
- Definition of the notion of solution
- Identification of good solutions
- Polynomial time algorithms for materializing good solutions
- Definition of target queries: Precise semantics
- Polynomial time algorithms for computing certain answers for UCQ

Creating schema mappings is a time consuming and expensive process

- Manual or semi-automatic process in general


## Outline: First part

- The data exchange problem
- Some fundamental results in relational data exchange
- The need for a more general data exchange framework
- Two important scenarios: Incomplete databases and knowledge bases


## Ongoing project: Reusing schema mappings



We need some operators for schema mappings

## Ongoing project: Reusing schema mappings



We need some operators for schema mappings

- Composition in the above case


## Metadata management

Contributions mentioned in the previous slides are just a first step towards the development of a general framework for data exchange.

In fact, as pointed in [B03],
many information system problems involve not only the design and integration of complex application artifacts, but also their subsequent manipulation.

## Metadata management

This has motivated the need for the development of a general infrastructure for managing schema mappings.

The problem of managing schema mappings is called metadata management.

High-level algebraic operators, such as compose, are used to manipulate mappings.

- What other operators are needed?


## An inverse operator is also needed



Composition and inverse operators have to be combined

## An inverse operator is also needed



Composition and inverse operators have to be combined

## Metadata management: A more general data exchange framework is needed

Composition and inverse operators have been extensively studied in the relational world.

- Semantics, computation, ...

Combining these operators is an open issue.

## Metadata management: A more general data exchange framework is needed

Composition and inverse operators have been extensively studied in the relational world.

- Semantics, computation, ...

Combining these operators is an open issue.

- Key observation: A target instance of a mapping can be the source instance of another mapping


## Metadata management: A more general data exchange framework is needed

Composition and inverse operators have been extensively studied in the relational world.

- Semantics, computation, ...

Combining these operators is an open issue.

- Key observation: A target instance of a mapping can be the source instance of another mapping
- Sources instances may contain null values


## Metadata management: A more general data exchange framework is needed

Composition and inverse operators have been extensively studied in the relational world.

- Semantics, computation, ...

Combining these operators is an open issue.

- Key observation: A target instance of a mapping can be the source instance of another mapping
- Sources instances may contain null values

There is a need for a data exchange framework that can handle databases with incomplete information.

## But this is not the only reason...

Nowadays several applications use knowledge bases to represent data.

- A knowledge base has not only data but also rules that allows to infer new data
- In the Semantics Web: RDFS and OWL ontologies


## But this is not the only reason...

Nowadays several applications use knowledge bases to represent data.

- A knowledge base has not only data but also rules that allows to infer new data
- In the Semantics Web: RDFS and OWL ontologies

In a data exchange application over the Semantics Web:
The input is a mapping and a source specification including data and rules, and the output is a target specification also including data and rules

## But this is not the only reason...

Nowadays several applications use knowledge bases to represent data.

- A knowledge base has not only data but also rules that allows to infer new data
- In the Semantics Web: RDFS and OWL ontologies

In a data exchange application over the Semantics Web:
The input is a mapping and a source specification including data and rules, and the output is a target specification also including data and rules

There is a need for a data exchange framework that can handle knowledge bases.

## Knowledge exchange: A more general data exchange framework is needed

## Example

Assume given the following source knowledge base:
Data:

| Father |  |  | Mother |  |
| :--- | :--- | :--- | :--- | :---: |
|  |  |  | Carrie |  |
| Andy | Bob |  |  |  |
| Bob | Danny |  |  |  |
|  |  |  |  |  |
| Danny | Eddie |  |  |  |

Rules:

$$
\begin{aligned}
\text { Father }(x, y) & \rightarrow \operatorname{Parent}(x, y) \\
\text { Mother }(x, y) & \rightarrow \operatorname{Parent}(x, y) \\
\operatorname{Parent}(x, y) \wedge \operatorname{Parent}(y, z) & \rightarrow \operatorname{Grandparent}(x, z)
\end{aligned}
$$

## Knowledge exchange: A more general data exchange framework is needed

Example (cont'd)
Given a mapping:

$$
\begin{aligned}
\text { Father }(x, y) & \rightarrow \text { Padre }(x, y) \\
\text { Grandparent }(x, y) & \rightarrow \text { Abuelo }(x, y)
\end{aligned}
$$

What is a good translation of the initial knowledge base?

## Knowledge exchange: A more general data exchange framework is needed

## Example (cont'd)

Given a mapping:

$$
\begin{aligned}
\text { Father }(x, y) & \rightarrow \text { Padre }(x, y) \\
\text { Grandparent }(x, y) & \rightarrow \text { Abuelo }(x, y)
\end{aligned}
$$

What is a good translation of the initial knowledge base?
Data:

| Padre |  |
| :--- | :--- |
| Andy | Bob |
| Bob | Danny |
| Danny | Eddie |


| Abuelo |  |
| :--- | :--- |
| Andy | Danny |
| Carrie | Danny |
| Bob | Eddie |

Rules: $\emptyset$

## Knowledge exchange: A more general data exchange framework is needed

## Example (cont'd)

Our first alternative does not include any translation of the source rules:

$$
\begin{aligned}
\text { Father }(x, y) & \rightarrow \operatorname{Parent}(x, y) \\
\operatorname{Mother}(x, y) & \rightarrow \operatorname{Parent}(x, y) \\
\operatorname{Parent}(x, y) \wedge \operatorname{Parent}(y, z) & \rightarrow \operatorname{Grandparent}(x, z)
\end{aligned}
$$

## Knowledge exchange: A more general data exchange framework is needed

## Example (cont'd)

Our first alternative does not include any translation of the source rules:

$$
\begin{aligned}
\text { Mother }(x, y) & \rightarrow \operatorname{Parent}(x, y) \\
\operatorname{Parent}(x, y) \wedge \operatorname{Parent}(y, z) & \rightarrow \operatorname{Grandparent}(x, z)
\end{aligned}
$$

## Knowledge exchange: A more general data exchange framework is needed

Example (cont'd)
Our first alternative does not include any translation of the source rules:

$$
\operatorname{Parent}(x, y) \wedge \operatorname{Parent}(y, z) \quad \rightarrow \quad \text { Grandparent }(x, z)
$$

## Knowledge exchange: A more general data exchange framework is needed

Example (cont'd)
Our first alternative does not include any translation of the source rules:

$$
\operatorname{Padre}(x, y) \wedge \operatorname{Padre}(y, z) \quad \rightarrow \operatorname{Abuelo}(x, z)
$$

## Knowledge exchange: A more general data exchange framework is needed

## Example (cont'd)

Our first alternative does not include any translation of the source rules:

$$
\operatorname{Padre}(x, y) \wedge \operatorname{Padre}(y, z) \quad \rightarrow \operatorname{Abuelo}(x, z)
$$

What data should we materialize?

## Knowledge exchange: A more general data exchange framework is needed

## Example (cont'd)

Our first alternative does not include any translation of the source rules:

$$
\operatorname{Padre}(x, y) \wedge \operatorname{Padre}(y, z) \quad \rightarrow \operatorname{Abuelo}(x, z)
$$

What data should we materialize?

| Padre |  |
| :--- | :--- |
| Andy | Bob |
| Bob | Danny |
| Danny | Eddie |


| Abuelo |  |
| :--- | :--- |
| Andy | Danny |
| Carrie | Danny |
| Bob | Eddie |

## Knowledge exchange: A more general data exchange framework is needed

## Example (cont'd)

Our first alternative does not include any translation of the source rules:

$$
\operatorname{Padre}(x, y) \wedge \operatorname{Padre}(y, z) \quad \rightarrow \quad \operatorname{Abuelo}(x, z)
$$

What data should we materialize?

| Padre |  |
| :--- | :--- |
| Andy | Bob |
| Bob | Danny |
| Danny | Eddie |

$\frac{\text { Abuelo }}{\text { Carrie Danny }}$

## Knowledge exchange: A more general data exchange framework is needed

## Example (cont'd)

Our first alternative does not include any translation of the source rules:

$$
\operatorname{Padre}(x, y) \wedge \operatorname{Padre}(y, z) \quad \rightarrow \operatorname{Abuelo}(x, z)
$$

What data should we materialize?

| Padre |  |
| :--- | :--- |
| Andy | Bob |
| Bob | Danny |
| Danny | Eddie |

$\frac{\text { Abuelo }}{\text { Carrie Danny }}$

Is this a good translation? Why?

## One can exchange more than complete data

- In data exchange one starts with a database instance (with complete information).
- What if we have an initial object that has several interpretations?
- A representation of a set of possible instances
- We propose a new general formalism to exchange representations of possible instances
- We apply it to the problems of exchanging instances with incomplete information and exchanging knowledge bases


## Outline: Second part

- Formalism for exchanging representations systems
- Applications to incomplete instances
- Applications to knowledge bases
- Concluding remarks


## Outline: Second part

- Formalism for exchanging representations systems
- Applications to incomplete instances
- Applications to knowledge bases
- Concluding remarks


## Representation systems

A representation system $\mathcal{R}=(\mathbf{W}$, rep $)$ consists of:

- a set W of representatives
- a function rep that assigns a set of instances to every element in W

$$
\operatorname{rep}(\mathcal{V})=\left\{I_{1}, I_{2}, I_{3}, \ldots\right\} \text { for every } \mathcal{V} \in \mathbf{W}
$$

Uniformity assumption: For every $\mathcal{V} \in \mathbf{W}$, there exists a relational schema $\mathbf{S}$ (the type of $\mathcal{V}$ ) such that $\operatorname{rep}(\mathcal{V}) \subseteq \operatorname{Inst}(\mathbf{S})$

## Representation systems

A representation system $\mathcal{R}=(\mathbf{W}$, rep) consists of:

- a set $\mathbf{W}$ of representatives
- a function rep that assigns a set of instances to every element in W

$$
\operatorname{rep}(\mathcal{V})=\left\{I_{1}, I_{2}, I_{3}, \ldots\right\} \text { for every } \mathcal{V} \in \mathbf{W}
$$

Uniformity assumption: For every $\mathcal{V} \in \mathbf{W}$, there exists a relational schema $\mathbf{S}$ (the type of $\mathcal{V}$ ) such that $\operatorname{rep}(\mathcal{V}) \subseteq \operatorname{lnst}(\mathbf{S})$

Incomplete instances and knowledge bases are representation systems

## In classical data exchange we consider only complete data

Recall that given $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma), I \in \operatorname{lnst}(\mathbf{S})$ and $J \in \operatorname{lnst}(\mathbf{T}): J$ is a solution for $I$ under $\mathcal{M}$ if $(I, J) \models \Sigma$

$$
J \in \operatorname{Sol}_{\mathcal{M}}(I)
$$

## In classical data exchange we consider only complete data

Recall that given $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma), I \in \operatorname{lnst}(\mathbf{S})$ and $J \in \operatorname{lnst}(\mathbf{T}): J$ is a solution for $I$ under $\mathcal{M}$ if $(I, J) \models \Sigma$

$$
J \in \operatorname{Sol}_{\mathcal{M}}(I)
$$

This can be extended to set of instances. Given $\mathcal{X} \subseteq \operatorname{lnst}(\mathbf{S})$ :

$$
\operatorname{Sol}_{\mathcal{M}}(\mathcal{X})=\bigcup_{I \in \mathcal{X}} \operatorname{Sol}_{\mathcal{M}}(I)
$$

## Extending the definition to representation systems

Given:

- a mapping $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$
- a representation system $\mathcal{R}=(\mathbf{W}$, rep $)$
- $\mathcal{U}, \mathcal{V} \in \mathbf{W}$ of types $\mathbf{S}$ and $\mathbf{T}$, respectively


## Extending the definition to representation systems

Given:

- a mapping $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$
- a representation system $\mathcal{R}=(\mathbf{W}$, rep $)$
- $\mathcal{U}, \mathcal{V} \in \mathbf{W}$ of types $\mathbf{S}$ and $\mathbf{T}$, respectively


## Definition (APR11)

$\mathcal{V}$ is an $\mathcal{R}$-solution of $\mathcal{U}$ under $\mathcal{M}$ if

$$
\operatorname{rep}(\mathcal{V}) \subseteq \operatorname{Sol}_{\mathcal{M}}(\operatorname{rep}(\mathcal{U}))
$$

## Extending the definition to representation systems

Given:

- a mapping $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$
- a representation system $\mathcal{R}=(\mathbf{W}$, rep $)$
- $\mathcal{U}, \mathcal{V} \in \mathbf{W}$ of types $\mathbf{S}$ and $\mathbf{T}$, respectively


## Definition (APR11)

$\mathcal{V}$ is an $\mathcal{R}$-solution of $\mathcal{U}$ under $\mathcal{M}$ if

$$
\operatorname{rep}(\mathcal{V}) \subseteq \operatorname{Sol}_{\mathcal{M}}(\operatorname{rep}(\mathcal{U}))
$$

Or equivalently: $\mathcal{V}$ is an $\mathcal{R}$-solution of $\mathcal{U}$ if for every $J \in \operatorname{rep}(\mathcal{V})$, there exists $I \in \operatorname{rep}(\mathcal{U})$ such that $J \in \operatorname{Sol}_{\mathcal{M}}(I)$.

## Universal solutions

What is a good solution in this framework?

## Universal solutions

What is a good solution in this framework?

## Definition (APR11)

$\mathcal{V}$ is an universal $\mathcal{R}$-solution of $\mathcal{U}$ under $\mathcal{M}$ if

$$
\operatorname{rep}(\mathcal{V})=\operatorname{Sol}_{\mathcal{M}}(\operatorname{rep}(\mathcal{U}))
$$

## Strong representation systems

Let $\mathcal{C}$ be a class of mappings.

## Strong representation systems

Let $\mathcal{C}$ be a class of mappings.

## Definition (APR11)

$\mathcal{R}=(\mathbf{W}$, rep) is a strong representation system for $\mathcal{C}$ if for every $\mathcal{M} \in \mathcal{C} \quad$ and for every $\mathcal{U} \in \mathbf{W} \quad$, there exists a
$\mathcal{V} \in \mathbf{W}$

$$
\operatorname{rep}(\mathcal{V})=\operatorname{Sol}_{\mathcal{M}}(\operatorname{rep}(\mathcal{U}))
$$

## Strong representation systems

Let $\mathcal{C}$ be a class of mappings.

## Definition (APR11)

$\mathcal{R}=(\mathbf{W}$, rep $)$ is a strong representation system for $\mathcal{C}$ if for every
$\mathcal{M} \in \mathcal{C}$ from $\mathbf{S}$ to $\mathbf{T}$, and for every $\mathcal{U} \in \mathbf{W}$, there exists a
$\mathcal{V} \in \mathbf{W}$

$$
\operatorname{rep}(\mathcal{V})=\operatorname{Sol}_{\mathcal{M}}(\operatorname{rep}(\mathcal{U}))
$$

## Strong representation systems

Let $\mathcal{C}$ be a class of mappings.

## Definition (APR11)

$\mathcal{R}=(\mathbf{W}$, rep $)$ is a strong representation system for $\mathcal{C}$ if for every $\mathcal{M} \in \mathcal{C}$ from $\mathbf{S}$ to $\mathbf{T}$, and for every $\mathcal{U} \in \mathbf{W}$ of type $\mathbf{S}$, there exists a $\mathcal{V} \in \mathbf{W}$

$$
\operatorname{rep}(\mathcal{V})=\operatorname{Sol}_{\mathcal{M}}(\operatorname{rep}(\mathcal{U}))
$$

## Strong representation systems

Let $\mathcal{C}$ be a class of mappings.

## Definition (APR11)

$\mathcal{R}=(\mathbf{W}$, rep $)$ is a strong representation system for $\mathcal{C}$ if for every $\mathcal{M} \in \mathcal{C}$ from $\mathbf{S}$ to $\mathbf{T}$, and for every $\mathcal{U} \in \mathbf{W}$ of type $\mathbf{S}$, there exists a $\mathcal{V} \in \mathbf{W}$ of type $\mathbf{T}$ :

$$
\operatorname{rep}(\mathcal{V})=\operatorname{Sol}_{\mathcal{M}}(\operatorname{rep}(\mathcal{U}))
$$

## Strong representation systems

Let $\mathcal{C}$ be a class of mappings.

## Definition (APR11)

$\mathcal{R}=(\mathbf{W}$, rep $)$ is a strong representation system for $\mathcal{C}$ if for every $\mathcal{M} \in \mathcal{C}$ from $\mathbf{S}$ to $\mathbf{T}$, and for every $\mathcal{U} \in \mathbf{W}$ of type $\mathbf{S}$, there exists a $\mathcal{V} \in \mathbf{W}$ of type $\mathbf{T}$ :

$$
\operatorname{rep}(\mathcal{V})=\operatorname{Sol}_{\mathcal{M}}(\operatorname{rep}(\mathcal{U}))
$$

If $\mathcal{R}=(\mathbf{W}$, rep $)$ is a strong representation system, then the universal solutions for the representatives in $\mathbf{W}$ can be represented in the same system.

## Outline: Second part

- Formalism for exchanging representations systems
- Applications to incomplete instances
- Applications to knowledge bases
- Concluding remarks


## Motivating questions

What is a strong representation system for the class of mappings specified by st-tgds?

- Are instances including nulls enough?

Can the fundamental data exchange problems be solved in polynomial time in this setting?

- Computing (universal) solutions
- Computing certain answers


## Naive instances

We have already considered naive instances: Instances with null values

- Example: Canonical universal solution

A naive instance $\mathcal{I}$ has labeled nulls:

$$
\begin{aligned}
& R\left(1, n_{1}\right) \\
& R\left(n_{1}, 2\right) \\
& R\left(1, n_{2}\right)
\end{aligned}
$$

## Naive instances

We have already considered naive instances: Instances with null values

- Example: Canonical universal solution

A naive instance $\mathcal{I}$ has labeled nulls:

$$
\begin{aligned}
& R\left(1, n_{1}\right) \\
& R\left(n_{1}, 2\right) \\
& R\left(1, n_{2}\right)
\end{aligned}
$$

The interpretations of $\mathcal{I}$ are constructed by replacing nulls by constants:

$$
\operatorname{rep}(\mathcal{I})=\{K \mid \mu(\mathcal{I}) \subseteq K \text { for some valuation } \mu\}
$$

## Are naive instances expressive enough?

Naive instances have been extensively used in data exchange:

## Proposition (FKMP03)

Let $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where $\Sigma$ is a set of st-tgds. Then for every instance I of $\mathbf{S}$, there exists a naive instance $\mathcal{J}$ of $\mathbf{T}$ such that:

$$
\operatorname{rep}(\mathcal{J})=\operatorname{Sol}_{\mathcal{M}}(I)
$$

In fact, the canonical universal solution satisfies the property mentioned above.

## Are naive instances expressive enough?

But naive instances are not expressive enough to deal with incomplete information in the source instances:

## Proposition (APR11)

Naive instances are not a strong representation system for the class of mappings specified by st-tgds

## Are naive instances expressive enough?

## Example

Consider a mapping $\mathcal{M}$ specified by:

$$
\begin{array}{ll}
\operatorname{Manager}(x, y) & \rightarrow \text { Reports }(x, y) \\
\operatorname{Manager}(x, x) & \rightarrow \text { SelfManager }(x)
\end{array}
$$

The canonical universal solution for $\mathcal{I}=\{\operatorname{Manager}(n$, Peter $)\}$ under $\mathcal{M}$ :

$$
\mathcal{J}=\{\operatorname{Reports}(n, \text { Peter })\}
$$

But $\mathcal{J}$ is not a good solution for $\mathcal{I}$.

- It cannot represent the fact that if $n$ is given value Peter, then SelfManager(Peter) should hold in the target.


## Conditional instances

What should be added to naive instances to obtain a strong representation system?

## Conditional instances

What should be added to naive instances to obtain a strong representation system?

- Answer from database theory: Conditions on the nulls


## Conditional instances

What should be added to naive instances to obtain a strong representation system?

- Answer from database theory: Conditions on the nulls

Conditional instances: Naive instances plus tuple conditions

A tuple condition is a positive Boolean combinations of:

- equalities and inequalities between nulls, and between nulls and constants


## Conditional instances

## Example

$$
\begin{array}{l|l}
R\left(1, n_{1}\right) & n_{1}=n_{2} \\
R\left(n_{1}, n_{2}\right) & n_{1} \neq n_{2} \vee n_{2}=2
\end{array}
$$

## Conditional instances

## Example

$$
\begin{array}{l|l}
R\left(1, n_{1}\right) & n_{1}=n_{2} \\
R\left(n_{1}, n_{2}\right) & n_{1} \neq n_{2} \vee n_{2}=2
\end{array}
$$

Semantics:

## Conditional instances

## Example

$$
\begin{array}{l|l}
R\left(1, n_{1}\right) & n_{1}=n_{2} \\
R\left(n_{1}, n_{2}\right) & n_{1} \neq n_{2} \quad \vee n_{2}=2
\end{array}
$$

Semantics:

$$
\mu\left(n_{1}\right)=\mu\left(n_{2}\right)=2 \quad \mu\left(n_{1}\right)=\mu\left(n_{2}\right)=3 \quad \mu\left(n_{1}\right)=2, \mu\left(n_{2}\right)=3
$$

## Conditional instances

## Example

$$
\begin{array}{l|l}
R\left(1, n_{1}\right) & n_{1}=n_{2} \\
R\left(n_{1}, n_{2}\right) & n_{1} \neq n_{2} \vee n_{2}=2
\end{array}
$$

Semantics:

$$
\begin{gathered}
\frac{\mu\left(n_{1}\right)=\mu\left(n_{2}\right)=2}{R(1,2)} \quad \mu\left(n_{1}\right)=\mu\left(n_{2}\right)=3 \quad \mu\left(n_{1}\right)=2, \mu\left(n_{2}\right)=3 \\
R(2,2)
\end{gathered} \quad
$$

## Conditional instances

## Example

$$
\begin{array}{l|l}
R\left(1, n_{1}\right) & n_{1}=n_{2} \\
R\left(n_{1}, n_{2}\right) & n_{1} \neq n_{2} \vee n_{2}=2
\end{array}
$$

Semantics:

$$
\begin{gathered}
\mu\left(n_{1}\right)=\mu\left(n_{2}\right)=2 \\
R(1,2) \\
R(2,2)
\end{gathered} \quad \frac{\mu\left(n_{1}\right)=\mu\left(n_{2}\right)=3}{R(1,3)} \quad \mu\left(n_{1}\right)=2, \mu\left(n_{2}\right)=3
$$

## Conditional instances

## Example

$$
\begin{array}{l|l}
R\left(1, n_{1}\right) & n_{1}=n_{2} \\
R\left(n_{1}, n_{2}\right) & n_{1} \neq n_{2} \vee n_{2}=2
\end{array}
$$

Semantics:

$$
\begin{aligned}
& \frac{\mu\left(n_{1}\right)=\mu\left(n_{2}\right)=2}{R(1,2)} \quad \frac{\mu\left(n_{1}\right)=\mu\left(n_{2}\right)=3}{R(1,3)} \quad \mu\left(n_{1}\right)=2, \mu\left(n_{2}\right)=3 \\
& R(1,2) \\
& R(1,3) \\
& R(2,3)
\end{aligned}
$$

## Conditional instances

## Example

$$
\begin{array}{l|l}
R\left(1, n_{1}\right) & n_{1}=n_{2} \\
R\left(n_{1}, n_{2}\right) & n_{1} \neq n_{2} \quad \vee n_{2}=2
\end{array}
$$

Semantics:

$$
\begin{aligned}
& \frac{\mu\left(n_{1}\right)=\mu\left(n_{2}\right)=2}{R(1,2)} \quad \frac{\mu\left(n_{1}\right)=\mu\left(n_{2}\right)=3}{R(1,3)} \quad \mu\left(n_{1}\right)=2, \mu\left(n_{2}\right)=3 \\
& R(2,2) \\
& R(2,3)
\end{aligned}
$$

Interpretations of a conditional instance $\mathcal{I}$ :

$$
\operatorname{rep}(\mathcal{I})=\{K \mid \mu(\mathcal{I}) \subseteq K \text { for some valuation } \mu\}
$$

## Positive conditional instances

Many problems are intractable over conditional instances.

- We also consider a restricted class of conditional instances

Positive conditional instances: Conditional instances without inequalities

## (Positive) conditional instances are enough

## Theorem (APR11)

Both conditional instances and positive conditional instances are strong representation systems for the class of mappings specified by st-tgds.

## Example

Consider again the mapping $\mathcal{M}$ specified by:

$$
\begin{aligned}
& \text { Manager }(x, y) \rightarrow \text { Reports }(x, y) \\
& \text { Manager }(x, x) \rightarrow \text { SelfManager }(x)
\end{aligned}
$$

The following is a universal solution for $\mathcal{I}=\{$ Manager $(n$, Peter $)\}$

$$
\begin{array}{l|l}
\text { Reports( } n, \text { Peter) } & \text { true } \\
\text { SelfManager(Peter) } & n=\text { Peter }
\end{array}
$$

## Positive conditional instances are exactly the needed representation system

Positive conditional instances are minimal:

## Theorem (APR11)

All the following are needed to obtain a strong representation system for the class of mappings specified by st-tgds:

- equalities between nulls
- equalities between constant and nulls
- conjunctions and disjunctions

Conditional instances are enough but not minimal.

## Positive conditional instance can be used in practice!

Let $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where $\Sigma$ is a set of st-tgds.

## Positive conditional instance can be used in practice!

Let $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where $\Sigma$ is a set of st-tgds.
Theorem (APR11)
There exists a polynomial time algorithm that, given a positive conditional instance $\mathcal{I}$ over $\mathbf{S}$, computes a positive conditional instance $\mathcal{J}$ over $\mathbf{T}$ that is a universal solution for $\mathcal{I}$ under $\mathcal{M}$.

## Positive conditional instance can be used in practice!

Let $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where $\Sigma$ is a set of st-tgds.

## Theorem (APR11)

There exists a polynomial time algorithm that, given a positive conditional instance $\mathcal{I}$ over $\mathbf{S}$, computes a positive conditional instance $\mathcal{J}$ over $\mathbf{T}$ that is a universal solution for $\mathcal{I}$ under $\mathcal{M}$.

Let $Q$ be a union of conjunctive queries over $\mathbf{T}$.

$$
Q(\mathcal{J})=\bigcap_{J \in \operatorname{rep}(\mathcal{J})} Q(J)
$$

$$
\operatorname{certain}_{\mathcal{M}}(Q, \mathcal{I})=\bigcap_{\mathcal{J} \text { is a solution for } \mathcal{I} \text { under } \mathcal{M}} Q(\mathcal{J})
$$

## Positive conditional instance can be used in practice!

## Theorem (APR11)

There exists a polynomial time algorithm that, given a positive conditional instance $\mathcal{I}$ over $\mathbf{S}$, computes certain $\mathcal{M}(Q, \mathcal{I})$.

## Positive conditional instance can be used in practice!

## Theorem (APR11)

There exists a polynomial time algorithm that, given a positive conditional instance $\mathcal{I}$ over $\mathbf{S}$, computes certain $\mathcal{M}^{(Q, \mathcal{I}) \text {. }}$

The same result holds for the class of unions of conjunctive queries with at most one inequality per disjunct.

- The other important class of queries in the data exchange area for which certain answers can be computed in polynomial time


## Outline: Second part

- Formalism for exchanging representations systems
- Applications to incomplete instances
- Applications to knowledge bases
- Concluding remarks

The semantics of knowledge bases is given by sets of instances

Knowledge base over S: $(I, \Gamma)$ such that

- $I \in \operatorname{Inst}(\mathbf{S})$
- 「 a set of rules over $\mathbf{S}$

Semantics: finite models

$$
\operatorname{Mod}(I, \Gamma)=\{K \in \operatorname{Inst}(\mathbf{S}) \mid I \subseteq K \text { and } K \models \Gamma\}
$$

## We can apply our formalism to knowledge bases

$\left(I_{2}, \Gamma_{2}\right)$ is a $K B$-solution for $\left(I_{1}, \Gamma_{1}\right)$ under $\mathcal{M}$ if:

$$
\operatorname{Mod}\left(I_{2}, \Gamma_{2}\right) \subseteq \operatorname{Sol}_{\mathcal{M}}\left(\operatorname{Mod}\left(I_{1}, \Gamma_{1}\right)\right)
$$

$\left(I_{2}, \Gamma_{2}\right)$ is a universal $K B$-solution for $\left(I_{1}, \Gamma_{1}\right)$ under $\mathcal{M}$ if:

$$
\operatorname{Mod}\left(I_{2}, \Gamma_{2}\right)=\operatorname{Sol}_{\mathcal{M}}\left(\operatorname{Mod}\left(I_{1}, \Gamma_{1}\right)\right)
$$

## Motivating questions

Same as for the case of instances with incomplete information.

- Constructing universal KB-solutions
- Answering target queries

New fundamental problem: Construct solutions including as much implicit knowledge as possible.

## What are good knowledge-base solutions?

First alternative: universal KB-solutions

But there exist some other KB-solutions desirable to materialize

- Minimality comes into play


## What are good knowledge-base solutions?

First alternative: universal KB-solutions

But there exist some other KB-solutions desirable to materialize

- Minimality comes into play

Given sets $\mathcal{X}, \mathcal{Y}$ of instances:

- $\mathcal{X} \equiv_{\text {min }} \mathcal{Y}$ if $\mathcal{X}$ and $\mathcal{Y}$ coincide in the minimal instances under $\subseteq$


## Definition

$\left(I_{2}, \Gamma_{2}\right)$ is a minimal $K B$-solution of $\left(I_{1}, \Gamma_{1}\right)$ under $\mathcal{M}$ if:

$$
\operatorname{Mod}\left(I_{2}, \Gamma_{2}\right) \equiv_{\min } \quad \operatorname{Sol} \mathcal{M}_{\mathcal{M}}\left(\operatorname{Mod}\left(I_{1}, \Gamma_{1}\right)\right)
$$

## Two requirements to construct minimal knowledge-base solutions

Given $\left(I_{1}, \Gamma_{1}\right)$ and $\mathcal{M}$, when constructing a minimal KB-solution $\left(I_{2}, \Gamma_{2}\right)$ we would like:

## Two requirements to construct minimal knowledge-base solutions

Given $\left(I_{1}, \Gamma_{1}\right)$ and $\mathcal{M}$, when constructing a minimal KB-solution $\left(I_{2}, \Gamma_{2}\right)$ we would like:

1. $\Gamma_{2}$ to only depend on $\Gamma_{1}$ and $\mathcal{M}$ :

$$
\Gamma_{2} \text { is safe for } \Gamma_{1} \text { and } \mathcal{M}
$$

## Two requirements to construct minimal knowledge-base solutions

Given $\left(I_{1}, \Gamma_{1}\right)$ and $\mathcal{M}$, when constructing a minimal KB-solution $\left(I_{2}, \Gamma_{2}\right)$ we would like:

1. $\Gamma_{2}$ to only depend on $\Gamma_{1}$ and $\mathcal{M}$ :

$$
\Gamma_{2} \text { is safe for } \Gamma_{1} \text { and } \mathcal{M}
$$

## Definition

$\Gamma_{2}$ is safe for $\Gamma_{1}$ and $\mathcal{M}$, if for every $I_{1}$ there exists $I_{2}$ :
$\left(I_{2}, \Gamma_{2}\right)$ is a minimal KB-solution of $\left(I_{1}, \Gamma_{1}\right)$ under $\mathcal{M}$

## Two requirements to construct minimal knowledge-base solutions

2. $\Gamma_{2}$ to be as informative as possible (thus minimizing the size of $I_{2}$ ):

## Two requirements to construct minimal knowledge-base solutions

2. $\Gamma_{2}$ to be as informative as possible (thus minimizing the size of $I_{2}$ ):

## Definition

$\Gamma_{2}$ is optimal-safe if for every other safe set $\Gamma^{\prime}$ :

$$
\Gamma_{2} \models \Gamma^{\prime}
$$

## Computing minimal KB-solutions

To obtain algorithms for computing minimal KB-solutions, we need to specify the language used in knowledge bases.

- Full st-tgd:

$$
\forall \bar{x} \forall \bar{y}(\varphi(\bar{x}, \bar{y}) \rightarrow \psi(\bar{x}))
$$

## Computing minimal KB-solutions

To obtain algorithms for computing minimal KB-solutions, we need to specify the language used in knowledge bases.

- Full st-tgd:

$$
\forall \bar{x} \forall \bar{y}(\varphi(\bar{x}, \bar{y}) \rightarrow \psi(\bar{x}))
$$

## Theorem (APR11)

There exists a polynomial-time algorithm that, given $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where $\Sigma$ is a set of full st-tgds, and given a set $\Gamma_{1}$ of full tgds over $\mathbf{S}$, computes a set $\Gamma_{2}$ of second-order logic sentences over $\mathbf{T}$ that is optimal-safe for $\Gamma_{1}$ and $\mathcal{M}$.

## Computing minimal KB-solutions

Unfortunately, first-order logic is no expressive enough.

## Theorem (APR11)

There exist $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where $\Sigma$ is a set of full st-tgds, and a set $\Gamma_{1}$ of full tgds over $\mathbf{S}$ such that:
no FO-sentence is optimal-safe for $\Gamma_{1}$ and $\mathcal{M}$.

## Computing minimal KB-solutions

Unfortunately, first-order logic is no expressive enough.

## Theorem (APR11)

There exist $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where $\Sigma$ is a set of full st-tgds, and a set $\Gamma_{1}$ of full tgds over $\mathbf{S}$ such that:
no FO-sentence is optimal-safe for $\Gamma_{1}$ and $\mathcal{M}$.

How can we deal with these problems in practice?

## Computing minimal KB-solutions

Unfortunately, first-order logic is no expressive enough.

## Theorem (APR11)

There exist $\mathcal{M}=(\mathbf{S}, \mathbf{T}, \Sigma)$, where $\Sigma$ is a set of full st-tgds, and a set $\Gamma_{1}$ of full tgds over $\mathbf{S}$ such that:
no FO-sentence is optimal-safe for $\Gamma_{1}$ and $\mathcal{M}$.

How can we deal with these problems in practice?

- We need to restrict the language used to specify knowledge bases: Description logics!


## Outline: Second part

- Formalism for exchanging representations systems
- Applications to incomplete instances
- Applications to knowledge bases
- Concluding remarks


## We can exchange more than complete data

We propose a general formalism to exchange representation systems

- Applications to incomplete instances
- Applications to knowledge bases

Next step: Apply our general setting to the Semantic Web

- Semantic Web data has nulls (blank nodes)
- Semantic Web specifications have rules (RDFS, OWL)

Lots of interesting problems to solve if knowledge bases are specified by means of description logics.

- Better results can be obtained


## We can exchange more than complete data

We propose a general formalism to exchange representation systems

- Applications to incomplete instances
- Applications to knowledge bases

Next step: Apply our general setting to the Semantic Web

- Semantic Web data has nulls (blank nodes)
- Semantic Web specifications have rules (RDFS, OWL)

Lots of interesting problems to solve if knowledge bases are specified by means of description logics.

- Better results can be obtained


## We can exchange more than complete data

We propose a general formalism to exchange representation systems

- Applications to incomplete instances
- Applications to knowledge bases

Next step: Apply our general setting to the Semantic Web

- Semantic Web data has nulls (blank nodes)
- Semantic Web specifications have rules (RDFS, OWL)

Lots of interesting problems to solve if knowledge bases are specified by means of description logics.

- Better results can be obtained


## Thank you!

## Bibliography

[APR11] M. Arenas, J. Pérez, J. Reutter. Data Exchange beyond Complete Data. PODS 2011.
[B03] P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. CIDR 2003.
[FKMP03] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data Exchange: Semantics and Query Answering. ICDT 2003.

