
A brief introduction
to database theory

Marcelo Arenas
PUC Chile



Outline

Relational schemas
Queries
Data dependencies
Normal forms
Connections between normalization theory and
information theory



A relational database

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Course



Relation schema: R[U ]

set of attributes {A ,… ,A }1 krelation name

Course[ {Number, Title, Section, Room} ]

The schema of a relation

We use notation Course[Number, Title, Section, Room]



Relation schema: R[U ]

relation name

: domain of attribute dom(A )i Ai

-tuple  assigns a value  to each attribute ,
where 
U t t(A )i Ai

t(A ) ∈i dom(A )i

The schema of a relation

set of attributes {A ,… ,A }1 k



Relation schema: R[U ]

relation name

(Number: CS201, Title: Databases, Section: 1, Room: AL1)

(CS201, Databases, 1, AL1)

The schema of a relation

set of attributes {A ,… ,A }1 k



Relation schema: R[U ]

relation name

An instance  of  is a finite set of -tuplesI R[U ] U

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

The schema of a relation

set of attributes {A ,… ,A }1 k



Relational schema S = {R [U ],R [U ],… ,R [U ]}1 1 2 2 n n

 is a relation schemaR [U ]i i

An instance  of  assigns to each symbol  an
instance 

I S R [U ]i i

IRi

A relational schema



  Course[Number, Title, Section, Room],
            Location[Room, Address]  
S = {

}

I =Course

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

I =Location

AL1 95 Queen's Park

AL2 95 Queen's Park

AL3 95 Queen's Park

GB1 35 St. George Street

A relational schema



Querying a database

We introduce a widely used query language for
relational databases: relational algebra

It has the same expressive power as first-order
logic



Selection:  ,  σ (I)A=a σ (I)A=B

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

σ (Room=GB1  ) =

Number Title Section Room

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1



Projection:  , where 
is a set of attributes

π (I)X X

Number Title

CS201 Databases

CS300 Machine learning
Set semantics

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

 π ({Number,Title}  ) =



Projection:  , where 
is a set of attributes

π (I)X X

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

 π ({Number,Title}  ) =

Number Title

CS201 Databases

CS201 Databases

CS201 Databases

CS201 Databases

CS300 Machine learning

Bag semantics



Rename:  ρ (I)A→B

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

 ρ (Number→ID  ) =

ID Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1



Join:  I ⋈ J

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

ID Title Section Room Address

CS201 Databases 1 AL1 95 Queen's Park

CS201 Databases 2 AL2 95 Queen's Park

CS201 Databases 3 AL3 95 Queen's Park

CS201 Databases 3 GB1 35 St. George Street

CS300 Machine learning 1 GB1 35 St. George Street

Room Address

AL1 95 Queen's Park

AL2 95 Queen's Park

AL3 95 Queen's Park

GB1 35 St. George Street

⋈ =



Union and difference

Union and difference operators are defined as the
usual set theoretic operators

Notation:    and  I ∪ J I − J

 and  are instances of the same relation
schema 
I J

R[U ]



Relational algebra is
compositional

Room Address A B

AL1 95 Queen's Park AL1 95 Queen's Park

AL1 95 Queen's Park AL2  95 Queen's Park

AL1 95 Queen's Park  AL3  95 Queen's Park

AL1 95 Queen's Park  GB1 35 St. George Street

 AL2  95 Queen's Park  AL1  95 Queen's Park

... ... ... ...

Room Address

AL1 95 Queen's Park

AL2 95 Queen's Park

AL3 95 Queen's Park

GB1 35 St. George
Street

 ρ (ρ (Address→B Room→A⋈

Room Address

AL1 95 Queen's Park

AL2 95 Queen's Park

AL3 95 Queen's Park

GB1 35 St. George
Street

)) =



Evaluation of a query

Let  be a relational algebra expression over a
relational schemas , and  be an instance of 

Q

S I S

 denotes the relation obtained by evaluating 
over 

A tuple  is an answer to  over  if 

Q(I) Q

I

t Q I t ∈ Q(I)

 denotes the relation obtained by evaluating 
over 

A tuple  is an answer to  over  if 

Q(I) Q

I

t Q I t ∈ Q(I)



Evaluation of a query

Theorem: the problem of verifying, given , , ,
whether  is PSPACE-complete

Q I t

t ∈ Q(I)



Equivalence with first-order
logic

σ (I)A=a

σ (I)A=B

Assume that ,  are instances of  and ,
respectively

I J R[A,B] S[A,C]

R(x, y) ∧ x = a

R(x, y) ∧ x = y

π (I)A ∃y R(x, y)

I ⋈ J R(x, y) ∧ S(x, z)



Equivalence with first-order
logic

π (R) −A π (S)A

Return the values of attribute  that appear in  but
not in 

A R

S

,  are instances of  and , respectivelyI J R[A,B] S[A,C]

  =  Q(x) ∃y R(x, y) ∧ ¬∃z S(x, z)



A fundamental fragments:
conjunctive queries

The fragment of relational algebra defined by the
operator , , , σA=a σA=B πX ⋈

The fragment of first-order logic consisting of
queries of the form

where each  is a tuple of variables and constants

Q( )  = x̄ ∃ (R ( ) ∧ȳ 1 ū1 ⋯∧R ( )),n ūn

ūi



Evaluation of a conjunctive
query

Theorem: the problem of verifying, given a
conjunctive query , , , whether  is NP-
complete

Q I t t ∈ Q(I)



Why is query evaluation
NP-hard?

Reduction from the graph 3-coloring problem



How to avoid this high
complexity?

Consider the query:
q =1 ∃x∃y∃z∃w (R(x, y) ∧ S(x, z) ∧ T (y,w) ∧ U(z) ∧ U(w))



How to avoid this high
complexity?

R(x, y)

S(x, z) T (y,w)

U(z)

Tree structure

∃x∃y∃z∃w (R(x, y) ∧ S(x, z) ∧ T (y,w) ∧ U(z) ∧ U(w))

U(w)



How to avoid this high
complexity?

Now consider the query:
q =2 ∃x∃y∃z (R(x, y) ∧ S(x, z) ∧ T (y, z))



How to avoid this high
complexity?

R(x, y)

S(x, z) T (y, z)

q =2 ∃x∃y∃z (R(x, y) ∧ S(x, z) ∧ T (y, z))



How to avoid this high
complexity?

q =2 ∃x∃y∃z (R(x, y) ∧ S(x, z) ∧ T (y, z))

Several ways to measure how acyclic is a query have
been studied: treewidth, hypertree width, ...

Polynomial-time evaluation for classes of queries
with bounded degree of acyclicity



Data dependencies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Each course must have a unique title



Data dependencies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Number  Title→



Data dependencies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

This table does not satisfies the data dependency
Number, Section    Room{ } →



A complete definition of a
schema

Database schema: (S, Σ)

set of data dependencies
over S

relational schema

 is an instance of  if  is an instance of  and 
 satisfies each data dependency in 
I (S, Σ) I S

I Σ



A complete definition of a
schema

We will introduce some fundamental classes of
data dependencies



Functional dependencies

A functional dependency over a relation schema 
is an expression  with 

R[U ]
X → Y X,Y ⊆ U

For a -tuple , we use notation  for the restriction of  to the
set of attribute 

 
If    =  (Number: CS201, Title: Databases, Section: 1, Room: AL1),
then
 

[Number, Title]  =  (Number: CS201, Title: Databases)

U t t[X] t

X

t

t



Functional dependencies

An instance  of  satisfies  if for every :

if , then  

I R[U ] X → Y t , t ∈1 2 I

t [X] =1 t [X]2 t [Y ] =1 t [Y ]2

A functional dependency over a relation schema 
is an expression  with 

R[U ]
X → Y X,Y ⊆ U

We use notation  to indicate that 
satisfies 

I ⊨ X → Y I

X → Y



Key dependencies

A key dependency over a relation schema  is a
functional dependency  with 

We use  to denote the key dependency

R[U ]
X → U X ⊆ U

X



Key dependencies

Given that Number  Title is in the schema,
{Number, Section, Room} is a key dependency

→

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1



Key dependencies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1



Key dependencies

If Number, Section   Room is in the schema,{ } →

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS300 Machine learning 1 GB1

{Number, Section} is a key dependency



The implication problem for
functional dependencies

Let  be a set of functional
dependencies over a relational schema 

Σ ∪ {X → Y }
S

  if for every instance  of :

if , then 

Σ ⊨ X → Y I S

I ⊨ Σ I ⊨ X → Y

  if   for every I ⊨ Σ I ⊨ φ φ ∈ Σ



The implication problem for
functional dependencies

Number  Title,  Number, Section  Room
Number, Section Number, Title, Section, Room

{ → { }→ } ⊨

{ } → { }

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS300 Machine learning 1 GB1



The implication problem for
functional dependencies

Theorem: The implication problem for functional
dependencies can be solved in linear time



Multivalued dependencies

Theater Movie Snack

Cineplex  CODA  coffee

Cineplex  CODA  popcorn

Cineplex  Belfast coffee

Cineplex  Belfast popcorn

Carlton Dune fries

Carlton Dune popcorn

Carlton CODA  fries

Carlton CODA  popcorn

Theater   Movie→→



Multivalued dependencies

A multivalued dependency over a relation schema 
 is an expression  with R[U ] X →→ Y X,Y ⊆ U

We use notation  for XY X ∪ Y



An instance  of  satisfies  if for every 
 with , there exists  such

that:
  and   

I R[U ] X →→ Y

t , t ∈1 2 I t [X] =1 t [X]2 t ∈3 I

t [XY ] =3 t [XY ]1 t [XZ] =3 t [XZ]2

A multivalued dependency over a relation schema 
 is an expression  with R[U ] X →→ Y X,Y ⊆ U

Multivalued dependencies

Let Z = U −XY



The implication problem for
functional and multivalued

dependencies

Theorem: The implication problem for functional
and multivalued dependencies can be solved in
polynomial time

Notice that  X → Y ⊨ X →→ Y



Join dependencies

A join dependency over a relation schema  is an
expression  with 

R[U ]
⋈ [X ,X ,… ,X ]1 2 n X ,X ,… ,X ⊆1 2 n U

An instance  of  satisfies   if :I R[U ] ⋈ [X ,X ,… ,X ]1 2 n

I = π (I) ⋈X1 π (I) ⋈X2 ⋯⋈ π (I)Xn



Join dependencies

Theater Movie Snack

Cineplex  CODA  coffee

Cineplex  CODA  popcorn

Cineplex  Belfast coffee

Cineplex  Belfast popcorn

Carlton Dune fries

Carlton Dune popcorn

Carlton CODA  fries

Carlton CODA  popcorn

   I =

Theater, Movie Theater, Snack⋈ [{ },  { }]



Join dependencies

Theater Movie

Cineplex  CODA 

Cineplex  Belfast

Carlton Dune

Carlton CODA 

Theater Snack

Cineplex  coffee

Cineplex  popcorn

Carlton fries

Carlton popcorn

                              π (I){Theater,Movie} π (I){Theater, Snack}

         I = π (I) ⋈{Theater,Movie} π (I){Theater, Snack}



The implication problem for
functional, multivalued and

join dependencies

Theorem: The implication problem for functional,
multivalued and join dependencies is NP-hard, and
can be solved in exponential time



Update anomalies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Number  Title→



Update anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Number  Title→



Update anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number  Title→



Insertion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number  Title→



Insertion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

CS202 Databases II ? ?

Number  Title→



Deletion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number  Title→



Deletion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number  Title→



Deletion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number  Title→



Normal forms

A normal form imposes syntactic restrictions on a
database schema 

To avoid update, insertion and deletion anomalies

(S, Σ)



Functional dependencies:
BCNF

 is in BCNF if for every non-trivial functional
dependency  such that :

X is a key dependency over 

(R[U ], Σ)
X → A Σ ⊨ X → A

R[U ]

A data dependency  over a relation schema  is trivial
if  for every instance  of 

φ R[U ]
I ⊨ φ I R[U ]

A functional dependency  is trivial if and only if X → A A ∈ X



is not in BCNF 

(Course[Number, Title, Section, Room],
Number  Title)→

since Number is not a key dependency

Functional dependencies:
BCNF



Transforming to BCNF

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Number  Title→



Transforming to BCNF

Number Title

CS201 Databases

CS300 Machine learning

Number  Title→

Number Section Room

CS201 1 AL1

CS201 2 AL2

CS201 3 AL3

CS201 3 GB1

CS300 1 GB1



Transforming to BCNF

(Course[Number, Title, Section, Room],
Number  Title)→

(CourseInfo[Number, Title], Number  Title)→

(Semester[Number, Section, Room], )∅

is replaced by



Testing BNCF

Theorem: the problem of verifying, given a database schema 
 with  a set of functional dependencies, whether 
 is in BCNF can be solved in polynomial time

(R[U ], Σ) Σ

(R[U ], Σ)



Functional and multivalued
dependencies: 4NF

 is in 4NF if for every non-trivial mutivalued
dependency  such that :

X is a key dependency over 

(R[U ], Σ)
X →→ Y Σ ⊨ X →→ Y

R[U ]



is not in 4NF 

(Cinema[Theater, Movie, Snack],
Theater  Movie)→→

since Theater is not a key dependency

Functional dependencies:
BCNF



Transforming to 4NF

Theater  Title→→

Theater Movie Snack

Cineplex  CODA  coffee

Cineplex  CODA  popcorn

Cineplex  Belfast coffee

Cineplex  Belfast popcorn

Carlton Dune fries

Carlton Dune popcorn

Carlton CODA  fries

Carlton CODA  popcorn



Transforming to 4NF

Theater Movie

Cineplex  CODA 

Cineplex  Belfast

Carlton Dune

Carlton CODA 

Theater Snack

Cineplex  coffee

Cineplex  popcorn

Carlton fries

Carlton popcorn



Transforming to 4NF

(Cinema[Theater, Movie, Snack],
Theater  Movie)→→

(CinemaMovie[Theater, Movie], )∅

is replaced by

(CinemaSnack[Theater, Snack], )∅



Testing 4NF

Theorem: the problem of verifying, given a database schema 
 with  a set of functional and multivalued

dependencies, whether  is in 4NF can be solved in
polynomial time

(R[U ], Σ) Σ

(R[U ], Σ)



Normal forms for functional
and join dependencies

Several definitions can be found in the literature:
 

5NF

PJ/NF (Projection/Join NF)
 

5NFR (Reduced-5NF)

⇓

⇓



Information theory to the
rescue

The goal is to develop tools for testing when a
normal form correspond to a good design

Based on information theory, a measure of
information content of an element in a database is
defined



Information content (or
amount of uncertainty)

A B C

1 2 3

1 4

A  B→
A B C

1 2 3

1 2 4

1 5



Defining the measure

A B C
1 2 3

1 2 4

A  B→



A B C
1 3

1 2 4

A  B→

set of values occurring in I

dom(I) ⊆ {1,… , k}

Defining the measure



A B C
1 3

2 4

A  B→

dom(I) ⊆ {1,… , k}

: set of positionsX

Pr(       ∣ {       } )

Defining the measure



A B C
1 3

2 4

A  B→

Pr(2 ∣ X) =

Pr(a ∣ X) =

6 + 5 ⋅ 5
6

6 + 5 ⋅ 5
5

Pr(       ∣ {       } )

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

a = 2

Defining the measure



A B C
1 3

2 4

A  B→

Pr(2 ∣ X) =

Pr(a ∣ X) =

6 + 5 ⋅ 5
6

6 + 5 ⋅ 5
5

a = 2

Pr(       ∣ {       } )

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

=
31
6

=
31
5

Defining the measure



A B C
1 2 3

1 2 4

A  B→

Defining the measure



A B C
1 3

1 2 4

A  B→

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

Defining the measure



A B C
1 3

2

A  B→

: set of positionsX

Pr(       ∣ {      ,        } )

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

Defining the measure



A B C
1 3

2

A  B→

: set of positionsX

Pr(       ∣ {      ,        } )

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

Pr(2 ∣ X) =

Pr(a ∣ X) =

35 + 5 ⋅ 30
35

35 + 5 ⋅ 30
30

a = 2

Defining the measure



The use of conditional
entropy

Parameters:

A databases schema 
An instance  of 
A position  in 
A value  (to restrict the domain of instances to
be considered)

(S, Σ)
I (S, Σ)

p I

k

Inf (p ∣I
k Σ) will be used as the measure of the amount

of information in position p



The use of conditional
entropy

Inf (p ∣I
k Σ) =

(Pr(X) Pr(a ∣ X) log )
X : set of positions

∑
a∈{1,…,k}

∑
Pr(a ∣ X)

1

The measure depends on k

We would like it to be defined for an
arbitrary large value of k



The general measure

The value  is compared with the
maximum entropy 

Inf (p ∣I
k Σ)

log k

log k
Inf (p ∣ Σ)I

k

k→∞
limInf (p ∣I Σ) =

Lemma: the measure is well defined for data
dependencies defined in first-order logic



A general notion of being
well designed

A database schema  is well designed if for
every instance  of  and every position  in :

(S, Σ)
I (S, Σ) p I

Inf (p ∣I Σ) = 1



Some basic properties

The measure does not depend on a particular
representation of constraints:
If  and  are equivalent, then Σ1 Σ2 Inf (p ∣I Σ ) =1 Inf (p ∣I Σ )2

A B C

1 2 3

1 4

A  B→
A B C

1 2 3

1 2 4

1 5

0.875
0.781



Justifying normal forms

If  is a set of functional dependencies:  
 is well-designed if and only if  is in BCNF

Σ

(S, Σ) (S, Σ)

If  is a set of functional and multivalued dependencies:  
 is well-designed if and only if  is in 4NF

Σ

(S, Σ) (S, Σ)



Justifying normal forms

If  is a set of functional and join dependencies:

If  is in PJ/NF or in 5NFR, then  is well-
designed. The converse is not true
A syntactic characterization of being well-designed
has been developed

Σ

(S, Σ) (S, Σ)



Thanks!



Background material



Normalization algorithm

Transforms a database schema  into a database
schema  that conforms to a normal form

(S, Σ)
(S , Σ )′ ′

Two desirable properties of the algorithm: information
losslessness and dependency preservation



Information losslessness

We consider normalization algorithms that transform a
database schema  into a database schema 

 such that  and 
(R[U ], Σ)

(S , Σ )′ ′ S =′ {R [U ],R [U ],… ,R [U ]}1 1 2 2 k k

U ,U ,… ,U ⊆1 2 k U



 is a lossless decomposition of  if for
every instance  of , there exists an instance  of

 such that:

                     for every 

                    

(S , Σ )′ ′ (R[U ], Σ)
I (R[U ], Σ) J

(S , Σ )′ ′

J =Ri π (I)Ui i ∈ {1,… , k}

I = J ⋈R1 J ⋈R2 ⋯⋈ JRk

Information losslessness

The examples of decomposition shown in this
presentation are lossless



Dependency preservation

For functional dependencies, we consider normalization
algorithms that transform a database schema 
into a database schema 
 such that 

(R[U ], Σ)
{(R [U ], Σ ),… , (R [U ], Σ )}1 1 1 k k k

U ,… ,U ⊆1 k U



 is a dependency preserving
decomposition of  if:
{(R [U ], Σ ),… , (R [U ], Σ )}1 1 1 k k k

(R[U ], Σ)

Σ ≡ Σ ∪1 ⋯∪Σk

For functional dependencies, the examples of
decomposition shown in this presentation are
dependency preserving

Dependency preservation


