
A brief introduction
to database theory

Marcelo Arenas
PUC Chile

Outline

Relational schemas
Queries
Data dependencies
Normal forms
Connections between normalization theory and
information theory

A relational database

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Course

Relation schema: R[U]

set of attributes {A ,… ,A }1 krelation name

Course[{Number, Title, Section, Room}]

The schema of a relation

We use notation Course[Number, Title, Section, Room]

Relation schema: R[U]

relation name

: domain of attribute dom(A)i Ai

-tuple assigns a value to each attribute ,
where
U t t(A)i Ai

t(A) ∈i dom(A)i

The schema of a relation

set of attributes {A ,… ,A }1 k

Relation schema: R[U]

relation name

(Number: CS201, Title: Databases, Section: 1, Room: AL1)

(CS201, Databases, 1, AL1)

The schema of a relation

set of attributes {A ,… ,A }1 k

Relation schema: R[U]

relation name

An instance of is a finite set of -tuplesI R[U] U

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

The schema of a relation

set of attributes {A ,… ,A }1 k

Relational schema S = {R [U],R [U],… ,R [U]}1 1 2 2 n n

 is a relation schemaR [U]i i

An instance of assigns to each symbol an
instance

I S R [U]i i

IRi

A relational schema

 Course[Number, Title, Section, Room],
 Location[Room, Address]
S = {

}

I =Course

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

I =Location

AL1 95 Queen's Park

AL2 95 Queen's Park

AL3 95 Queen's Park

GB1 35 St. George Street

A relational schema

Querying a database

We introduce a widely used query language for
relational databases: relational algebra

It has the same expressive power as first-order
logic

Selection: , σ (I)A=a σ (I)A=B

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

σ (Room=GB1) =

Number Title Section Room

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Projection: , where
is a set of attributes

π (I)X X

Number Title

CS201 Databases

CS300 Machine learning
Set semantics

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

 π ({Number,Title}) =

Projection: , where
is a set of attributes

π (I)X X

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

 π ({Number,Title}) =

Number Title

CS201 Databases

CS201 Databases

CS201 Databases

CS201 Databases

CS300 Machine learning

Bag semantics

Rename: ρ (I)A→B

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

 ρ (Number→ID) =

ID Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Join: I ⋈ J

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

ID Title Section Room Address

CS201 Databases 1 AL1 95 Queen's Park

CS201 Databases 2 AL2 95 Queen's Park

CS201 Databases 3 AL3 95 Queen's Park

CS201 Databases 3 GB1 35 St. George Street

CS300 Machine learning 1 GB1 35 St. George Street

Room Address

AL1 95 Queen's Park

AL2 95 Queen's Park

AL3 95 Queen's Park

GB1 35 St. George Street

⋈ =

Union and difference

Union and difference operators are defined as the
usual set theoretic operators

Notation: and I ∪ J I − J

 and are instances of the same relation
schema
I J

R[U]

Relational algebra is
compositional

Room Address A B

AL1 95 Queen's Park AL1 95 Queen's Park

AL1 95 Queen's Park AL2 95 Queen's Park

AL1 95 Queen's Park AL3 95 Queen's Park

AL1 95 Queen's Park GB1 35 St. George Street

 AL2 95 Queen's Park AL1 95 Queen's Park

...

Room Address

AL1 95 Queen's Park

AL2 95 Queen's Park

AL3 95 Queen's Park

GB1 35 St. George
Street

 ρ (ρ (Address→B Room→A⋈

Room Address

AL1 95 Queen's Park

AL2 95 Queen's Park

AL3 95 Queen's Park

GB1 35 St. George
Street

)) =

Evaluation of a query

Let be a relational algebra expression over a
relational schemas , and be an instance of

Q

S I S

 denotes the relation obtained by evaluating
over

A tuple is an answer to over if

Q(I) Q

I

t Q I t ∈ Q(I)

 denotes the relation obtained by evaluating
over

A tuple is an answer to over if

Q(I) Q

I

t Q I t ∈ Q(I)

Evaluation of a query

Theorem: the problem of verifying, given , , ,
whether is PSPACE-complete

Q I t

t ∈ Q(I)

Equivalence with first-order
logic

σ (I)A=a

σ (I)A=B

Assume that , are instances of and ,
respectively

I J R[A,B] S[A,C]

R(x, y) ∧ x = a

R(x, y) ∧ x = y

π (I)A ∃y R(x, y)

I ⋈ J R(x, y) ∧ S(x, z)

Equivalence with first-order
logic

π (R) −A π (S)A

Return the values of attribute that appear in but
not in

A R

S

, are instances of and , respectivelyI J R[A,B] S[A,C]

 = Q(x) ∃y R(x, y) ∧ ¬∃z S(x, z)

A fundamental fragments:
conjunctive queries

The fragment of relational algebra defined by the
operator , , , σA=a σA=B πX ⋈

The fragment of first-order logic consisting of
queries of the form

where each is a tuple of variables and constants

Q() = x̄ ∃ (R () ∧ȳ 1 ū1 ⋯∧R ()),n ūn

ūi

Evaluation of a conjunctive
query

Theorem: the problem of verifying, given a
conjunctive query , , , whether is NP-
complete

Q I t t ∈ Q(I)

Why is query evaluation
NP-hard?

Reduction from the graph 3-coloring problem

How to avoid this high
complexity?

Consider the query:
q =1 ∃x∃y∃z∃w (R(x, y) ∧ S(x, z) ∧ T (y,w) ∧ U(z) ∧ U(w))

How to avoid this high
complexity?

R(x, y)

S(x, z) T (y,w)

U(z)

Tree structure

∃x∃y∃z∃w (R(x, y) ∧ S(x, z) ∧ T (y,w) ∧ U(z) ∧ U(w))

U(w)

How to avoid this high
complexity?

Now consider the query:
q =2 ∃x∃y∃z (R(x, y) ∧ S(x, z) ∧ T (y, z))

How to avoid this high
complexity?

R(x, y)

S(x, z) T (y, z)

q =2 ∃x∃y∃z (R(x, y) ∧ S(x, z) ∧ T (y, z))

How to avoid this high
complexity?

q =2 ∃x∃y∃z (R(x, y) ∧ S(x, z) ∧ T (y, z))

Several ways to measure how acyclic is a query have
been studied: treewidth, hypertree width, ...

Polynomial-time evaluation for classes of queries
with bounded degree of acyclicity

Data dependencies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Each course must have a unique title

Data dependencies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Number Title→

Data dependencies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

This table does not satisfies the data dependency
Number, Section Room{ } →

A complete definition of a
schema

Database schema: (S, Σ)

set of data dependencies
over S

relational schema

 is an instance of if is an instance of and
 satisfies each data dependency in
I (S, Σ) I S

I Σ

A complete definition of a
schema

We will introduce some fundamental classes of
data dependencies

Functional dependencies

A functional dependency over a relation schema
is an expression with

R[U]
X → Y X,Y ⊆ U

For a -tuple , we use notation for the restriction of to the
set of attribute

If = (Number: CS201, Title: Databases, Section: 1, Room: AL1),
then

[Number, Title] = (Number: CS201, Title: Databases)

U t t[X] t

X

t

t

Functional dependencies

An instance of satisfies if for every :

if , then

I R[U] X → Y t , t ∈1 2 I

t [X] =1 t [X]2 t [Y] =1 t [Y]2

A functional dependency over a relation schema
is an expression with

R[U]
X → Y X,Y ⊆ U

We use notation to indicate that
satisfies

I ⊨ X → Y I

X → Y

Key dependencies

A key dependency over a relation schema is a
functional dependency with

We use to denote the key dependency

R[U]
X → U X ⊆ U

X

Key dependencies

Given that Number Title is in the schema,
{Number, Section, Room} is a key dependency

→

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Key dependencies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Key dependencies

If Number, Section Room is in the schema,{ } →

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS300 Machine learning 1 GB1

{Number, Section} is a key dependency

The implication problem for
functional dependencies

Let be a set of functional
dependencies over a relational schema

Σ ∪ {X → Y }
S

 if for every instance of :

if , then

Σ ⊨ X → Y I S

I ⊨ Σ I ⊨ X → Y

 if for every I ⊨ Σ I ⊨ φ φ ∈ Σ

The implication problem for
functional dependencies

Number Title, Number, Section Room
Number, Section Number, Title, Section, Room

{ → { }→ } ⊨

{ } → { }

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS300 Machine learning 1 GB1

The implication problem for
functional dependencies

Theorem: The implication problem for functional
dependencies can be solved in linear time

Multivalued dependencies

Theater Movie Snack

Cineplex CODA coffee

Cineplex CODA popcorn

Cineplex Belfast coffee

Cineplex Belfast popcorn

Carlton Dune fries

Carlton Dune popcorn

Carlton CODA fries

Carlton CODA popcorn

Theater Movie→→

Multivalued dependencies

A multivalued dependency over a relation schema
 is an expression with R[U] X →→ Y X,Y ⊆ U

We use notation for XY X ∪ Y

An instance of satisfies if for every
 with , there exists such

that:
 and

I R[U] X →→ Y

t , t ∈1 2 I t [X] =1 t [X]2 t ∈3 I

t [XY] =3 t [XY]1 t [XZ] =3 t [XZ]2

A multivalued dependency over a relation schema
 is an expression with R[U] X →→ Y X,Y ⊆ U

Multivalued dependencies

Let Z = U −XY

The implication problem for
functional and multivalued

dependencies

Theorem: The implication problem for functional
and multivalued dependencies can be solved in
polynomial time

Notice that X → Y ⊨ X →→ Y

Join dependencies

A join dependency over a relation schema is an
expression with

R[U]
⋈ [X ,X ,… ,X]1 2 n X ,X ,… ,X ⊆1 2 n U

An instance of satisfies if :I R[U] ⋈ [X ,X ,… ,X]1 2 n

I = π (I) ⋈X1 π (I) ⋈X2 ⋯⋈ π (I)Xn

Join dependencies

Theater Movie Snack

Cineplex CODA coffee

Cineplex CODA popcorn

Cineplex Belfast coffee

Cineplex Belfast popcorn

Carlton Dune fries

Carlton Dune popcorn

Carlton CODA fries

Carlton CODA popcorn

 I =

Theater, Movie Theater, Snack⋈ [{ }, { }]

Join dependencies

Theater Movie

Cineplex CODA

Cineplex Belfast

Carlton Dune

Carlton CODA

Theater Snack

Cineplex coffee

Cineplex popcorn

Carlton fries

Carlton popcorn

 π (I){Theater,Movie} π (I){Theater, Snack}

 I = π (I) ⋈{Theater,Movie} π (I){Theater, Snack}

The implication problem for
functional, multivalued and

join dependencies

Theorem: The implication problem for functional,
multivalued and join dependencies is NP-hard, and
can be solved in exponential time

Update anomalies

Number Title Section Room
CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Number Title→

Update anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Number Title→

Update anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number Title→

Insertion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number Title→

Insertion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

CS202 Databases II ? ?

Number Title→

Deletion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number Title→

Deletion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number Title→

Deletion anomalies

Number Title Section Room
CS201 Databases I 1 AL1

CS201 Databases I 2 AL2

CS201 Databases I 3 AL3

CS201 Databases I 3 GB1

CS300 Machine learning 1 GB1

Number Title→

Normal forms

A normal form imposes syntactic restrictions on a
database schema

To avoid update, insertion and deletion anomalies

(S, Σ)

Functional dependencies:
BCNF

 is in BCNF if for every non-trivial functional
dependency such that :

X is a key dependency over

(R[U], Σ)
X → A Σ ⊨ X → A

R[U]

A data dependency over a relation schema is trivial
if for every instance of

φ R[U]
I ⊨ φ I R[U]

A functional dependency is trivial if and only if X → A A ∈ X

is not in BCNF

(Course[Number, Title, Section, Room],
Number Title)→

since Number is not a key dependency

Functional dependencies:
BCNF

Transforming to BCNF

Number Title Section Room

CS201 Databases 1 AL1

CS201 Databases 2 AL2

CS201 Databases 3 AL3

CS201 Databases 3 GB1

CS300 Machine learning 1 GB1

Number Title→

Transforming to BCNF

Number Title

CS201 Databases

CS300 Machine learning

Number Title→

Number Section Room

CS201 1 AL1

CS201 2 AL2

CS201 3 AL3

CS201 3 GB1

CS300 1 GB1

Transforming to BCNF

(Course[Number, Title, Section, Room],
Number Title)→

(CourseInfo[Number, Title], Number Title)→

(Semester[Number, Section, Room],)∅

is replaced by

Testing BNCF

Theorem: the problem of verifying, given a database schema
 with a set of functional dependencies, whether
 is in BCNF can be solved in polynomial time

(R[U], Σ) Σ

(R[U], Σ)

Functional and multivalued
dependencies: 4NF

 is in 4NF if for every non-trivial mutivalued
dependency such that :

X is a key dependency over

(R[U], Σ)
X →→ Y Σ ⊨ X →→ Y

R[U]

is not in 4NF

(Cinema[Theater, Movie, Snack],
Theater Movie)→→

since Theater is not a key dependency

Functional dependencies:
BCNF

Transforming to 4NF

Theater Title→→

Theater Movie Snack

Cineplex CODA coffee

Cineplex CODA popcorn

Cineplex Belfast coffee

Cineplex Belfast popcorn

Carlton Dune fries

Carlton Dune popcorn

Carlton CODA fries

Carlton CODA popcorn

Transforming to 4NF

Theater Movie

Cineplex CODA

Cineplex Belfast

Carlton Dune

Carlton CODA

Theater Snack

Cineplex coffee

Cineplex popcorn

Carlton fries

Carlton popcorn

Transforming to 4NF

(Cinema[Theater, Movie, Snack],
Theater Movie)→→

(CinemaMovie[Theater, Movie],)∅

is replaced by

(CinemaSnack[Theater, Snack],)∅

Testing 4NF

Theorem: the problem of verifying, given a database schema
 with a set of functional and multivalued

dependencies, whether is in 4NF can be solved in
polynomial time

(R[U], Σ) Σ

(R[U], Σ)

Normal forms for functional
and join dependencies

Several definitions can be found in the literature:

5NF

PJ/NF (Projection/Join NF)

5NFR (Reduced-5NF)

⇓

⇓

Information theory to the
rescue

The goal is to develop tools for testing when a
normal form correspond to a good design

Based on information theory, a measure of
information content of an element in a database is
defined

Information content (or
amount of uncertainty)

A B C

1 2 3

1 4

A B→
A B C

1 2 3

1 2 4

1 5

Defining the measure

A B C
1 2 3

1 2 4

A B→

A B C
1 3

1 2 4

A B→

set of values occurring in I

dom(I) ⊆ {1,… , k}

Defining the measure

A B C
1 3

2 4

A B→

dom(I) ⊆ {1,… , k}

: set of positionsX

Pr(∣ { })

Defining the measure

A B C
1 3

2 4

A B→

Pr(2 ∣ X) =

Pr(a ∣ X) =

6 + 5 ⋅ 5
6

6 + 5 ⋅ 5
5

Pr(∣ { })

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

a = 2

Defining the measure

A B C
1 3

2 4

A B→

Pr(2 ∣ X) =

Pr(a ∣ X) =

6 + 5 ⋅ 5
6

6 + 5 ⋅ 5
5

a = 2

Pr(∣ { })

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

=
31
6

=
31
5

Defining the measure

A B C
1 2 3

1 2 4

A B→

Defining the measure

A B C
1 3

1 2 4

A B→

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

Defining the measure

A B C
1 3

2

A B→

: set of positionsX

Pr(∣ { , })

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

Defining the measure

A B C
1 3

2

A B→

: set of positionsX

Pr(∣ { , })

dom(I) ⊆ {1, 2, 3, 4, 5, 6}

Pr(2 ∣ X) =

Pr(a ∣ X) =

35 + 5 ⋅ 30
35

35 + 5 ⋅ 30
30

a = 2

Defining the measure

The use of conditional
entropy

Parameters:

A databases schema
An instance of
A position in
A value (to restrict the domain of instances to
be considered)

(S, Σ)
I (S, Σ)

p I

k

Inf (p ∣I
k Σ) will be used as the measure of the amount

of information in position p

The use of conditional
entropy

Inf (p ∣I
k Σ) =

(Pr(X) Pr(a ∣ X) log)
X : set of positions

∑
a∈{1,…,k}

∑
Pr(a ∣ X)

1

The measure depends on k

We would like it to be defined for an
arbitrary large value of k

The general measure

The value is compared with the
maximum entropy

Inf (p ∣I
k Σ)

log k

log k
Inf (p ∣ Σ)I

k

k→∞
limInf (p ∣I Σ) =

Lemma: the measure is well defined for data
dependencies defined in first-order logic

A general notion of being
well designed

A database schema is well designed if for
every instance of and every position in :

(S, Σ)
I (S, Σ) p I

Inf (p ∣I Σ) = 1

Some basic properties

The measure does not depend on a particular
representation of constraints:
If and are equivalent, then Σ1 Σ2 Inf (p ∣I Σ) =1 Inf (p ∣I Σ)2

A B C

1 2 3

1 4

A B→
A B C

1 2 3

1 2 4

1 5

0.875
0.781

Justifying normal forms

If is a set of functional dependencies:
 is well-designed if and only if is in BCNF

Σ

(S, Σ) (S, Σ)

If is a set of functional and multivalued dependencies:
 is well-designed if and only if is in 4NF

Σ

(S, Σ) (S, Σ)

Justifying normal forms

If is a set of functional and join dependencies:

If is in PJ/NF or in 5NFR, then is well-
designed. The converse is not true
A syntactic characterization of being well-designed
has been developed

Σ

(S, Σ) (S, Σ)

Thanks!

Background material

Normalization algorithm

Transforms a database schema into a database
schema that conforms to a normal form

(S, Σ)
(S , Σ)′ ′

Two desirable properties of the algorithm: information
losslessness and dependency preservation

Information losslessness

We consider normalization algorithms that transform a
database schema into a database schema

 such that and
(R[U], Σ)

(S , Σ)′ ′ S =′ {R [U],R [U],… ,R [U]}1 1 2 2 k k

U ,U ,… ,U ⊆1 2 k U

 is a lossless decomposition of if for
every instance of , there exists an instance of

 such that:

 for every

(S , Σ)′ ′ (R[U], Σ)
I (R[U], Σ) J

(S , Σ)′ ′

J =Ri π (I)Ui i ∈ {1,… , k}

I = J ⋈R1 J ⋈R2 ⋯⋈ JRk

Information losslessness

The examples of decomposition shown in this
presentation are lossless

Dependency preservation

For functional dependencies, we consider normalization
algorithms that transform a database schema
into a database schema
 such that

(R[U], Σ)
{(R [U], Σ),… , (R [U], Σ)}1 1 1 k k k

U ,… ,U ⊆1 k U

 is a dependency preserving
decomposition of if:
{(R [U], Σ),… , (R [U], Σ)}1 1 1 k k k

(R[U], Σ)

Σ ≡ Σ ∪1 ⋯∪Σk

For functional dependencies, the examples of
decomposition shown in this presentation are
dependency preserving

Dependency preservation

