A logical approach to model interpretability

Marcelo Arenas
PUC & IMFD Chile and RelationalAI

Joint work with Daniel Báez, Pablo Barceló, Diego Bustamante, José Thomas Caraball, Jorge Pérez, and Bernardo Subercaseaux

Motivation

- A growing interest in developing methods to explain predictions made by machine learning models
- This has led to the development of several notions of explanation
- Instead of struggling with the increasing number of such notions, one can developed a declarative query language for interpretability task

A call for an interpretability query language

- Several interpretability notions have been studied independently
- Interpretability admits no silver bullet; different contexts require different notions
- Interpretability may require combining different notions; it is better to think of it as an interactive process

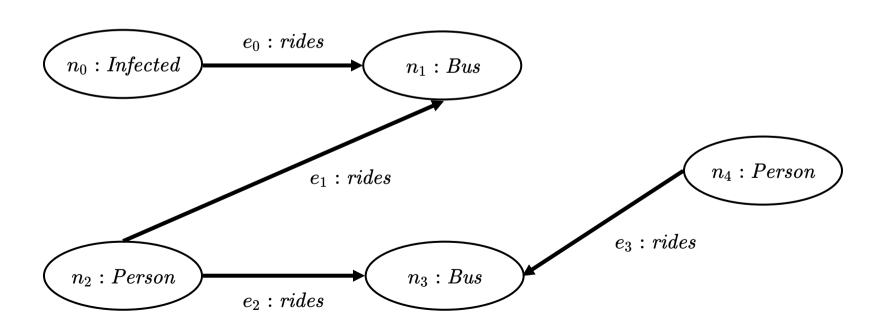
A call for an interpretability query language

- This naturally suggests the possibility of interpretability query languages
- These languages should de declarative, and should allow to express a wide variety of queries
- This gives control to the end-user to tailor interpretability queries to their particular needs

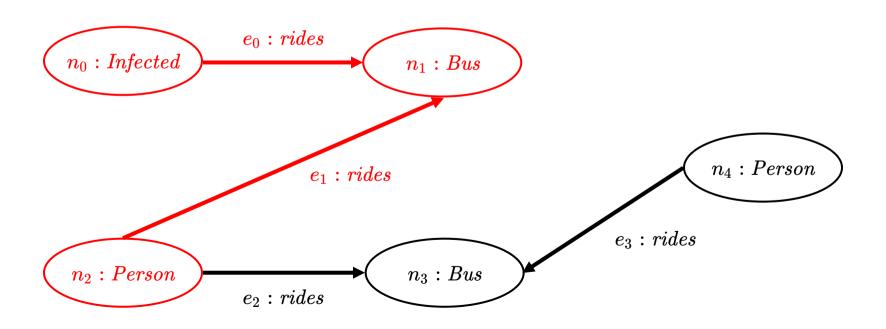
Our goal is to develop such an interpretability query language

Basic ingredients: classification models are represented as **labeled graphs**, and **first-order logic** is used as query language

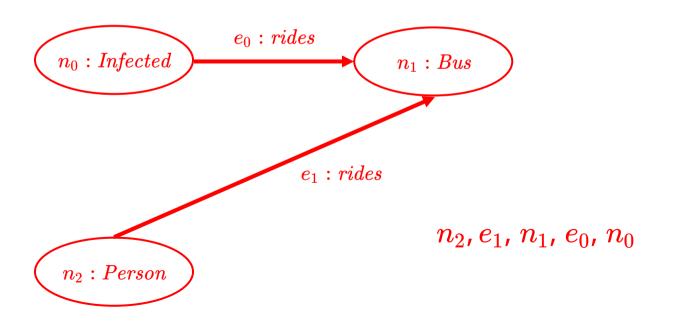
 $Person/rides/Bus/rides^{-}/Infected$



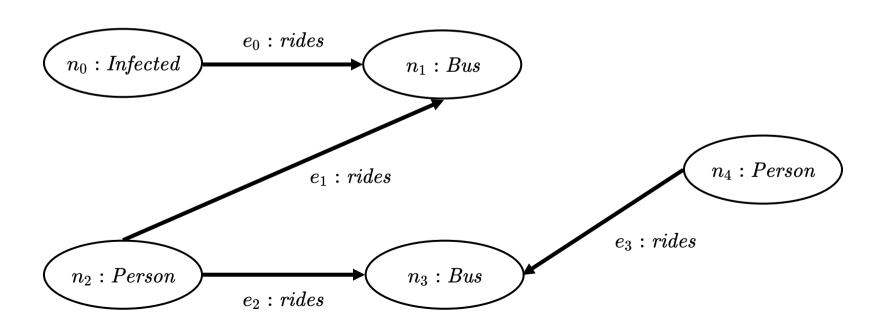
 $Person/rides/Bus/rides^{-}/Infected$



 $Person/rides/Bus/rides^{-}/Infected$



 $Person(x) \wedge rides(x,y) \wedge Bus(y) \wedge rides(z,y) \wedge Infected(z)$



An interpretability query language

We start by focusing on a simple but widely used model

- Decision trees are widely used, in particular because they are considered *readily* interpretable models
- The main ingredients of our logical approach are already present in this case

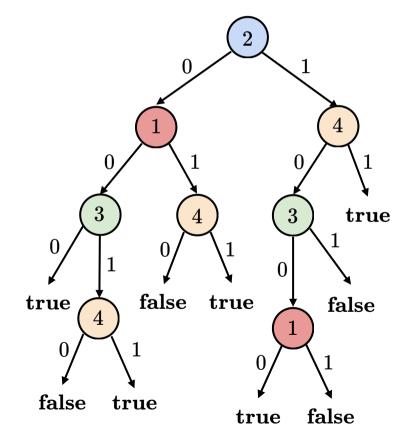
A classification model:

$$\mathcal{M}:\{0,1\}^n
ightarrow \{0,1\}$$

- The dimension of \mathcal{M} is n, and each $i \in \{1, \ldots, n\}$ is called a feature
- $\mathbf{e} \in \{0,1\}^n$ is an instance
- \mathcal{M} accepts \mathbf{e} if $\mathcal{M}(\mathbf{e}) = 1$, otherwise \mathcal{M} rejects \mathbf{e}

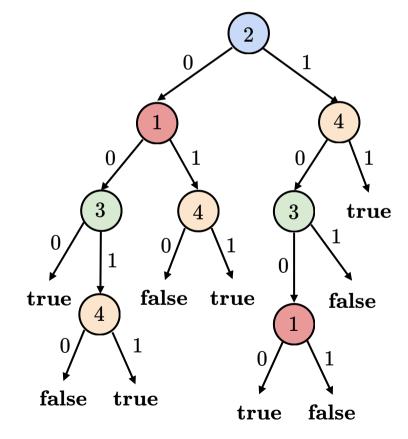
A decision tree \mathcal{T} of dimension n

- Each internal node is labeled with a feature $i \in \{1, \dots, n\}$, and has two outgoing edges labeled 0 and 1
- Each leaf is labeled **true** or **false**
- No two nodes on a path from the root to a leaf have the same label



A decision tree \mathcal{T} of dimension n

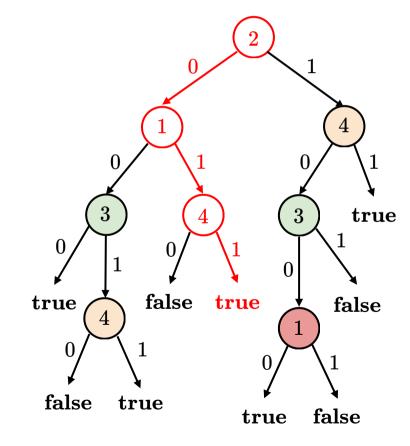
- Every instance ${f e}$ defines a unique path $n_1, e_1, n_2, \ldots, e_{k-1}, n_k$ from the root to a leaf
- $\mathcal{T}(\mathbf{e}) = 1$ if the label n_k is **true**



A decision tree \mathcal{T} of dimension n

- Every instance ${f e}$ defines a unique path $n_1, e_1, n_2, \ldots, e_{k-1}, n_k$ from the root to a leaf
- $\mathcal{T}(\mathbf{e}) = 1$ if the label n_k is **true**

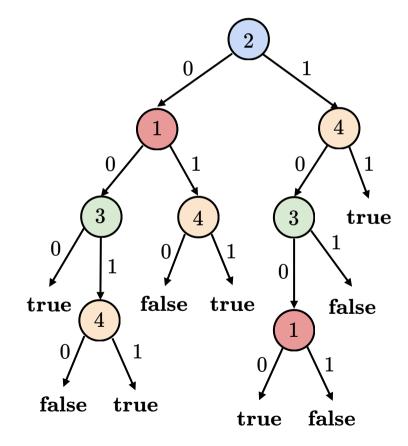
 $\mathcal{T}(\mathbf{e_1}) = 1$ for instance $\mathbf{e_1} = (1,0,1,1)$



The evaluation of a model as a query

Is $\mathcal{T}(\mathbf{e_1}) = 1$ for instance $\mathbf{e_1} = (1, 0, 1, 0)$?

 $(1/1+2/0+3/1+4/0)^*/$ true



But our problem is to explain the output of a model

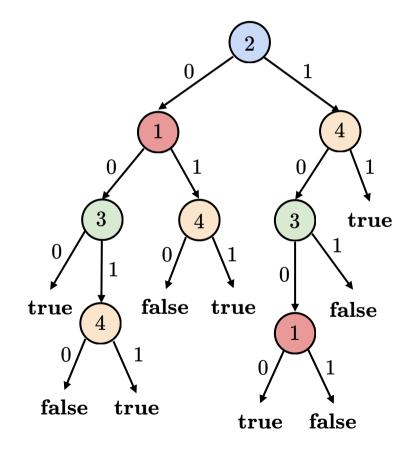
- What are interesting notions of explanation?
- What notions have been studied? What notions are used in practice?
- Can these notions be expressed as queries over decision trees?

But our problem is to explain the output of a model

Is there a completion of $2 \mapsto 0$ that is classified positively?

$$ig(1/(0+1)+{2/0\over 2}+\ 3/(0+1)+4/(0+1)ig)^*/{f true}$$

Are all the completions of $2\mapsto 0$ classified positively?

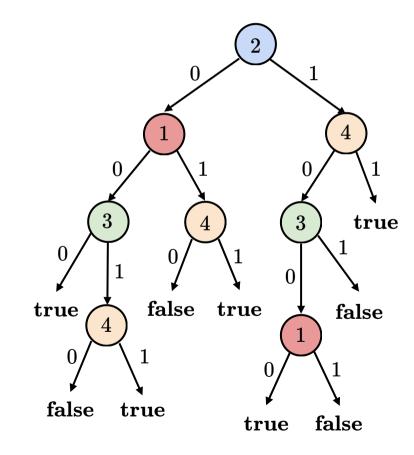


Notions of explanation: sufficient reason

$$\mathcal{T}(\mathbf{e}) = 1$$
 for $\mathbf{e} = (1,1,1,1)$

The value of feature 3 is not needed to obtain this result

• $\{1, 2, 4\}$ is a sufficient reason

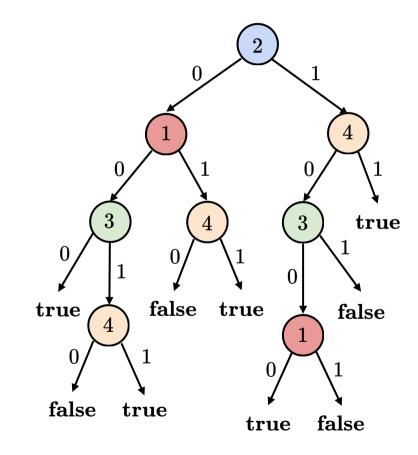


Notions of explanation: minimal sufficient reason

$$\mathcal{T}(\mathbf{e}) = 1$$
 for $\mathbf{e} = (1,1,1,1)$

The value of features 1 and 3 are not needed to obtain this result

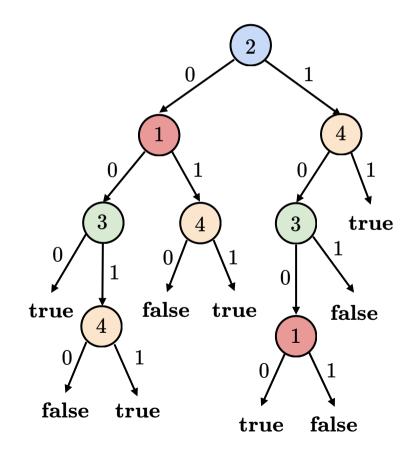
• {2,4} is a minimal sufficient reason



Notions of explanation: relevant feature set

If the values of features $\{1,3,4\}$ are fixed, then the output of the model is fixed

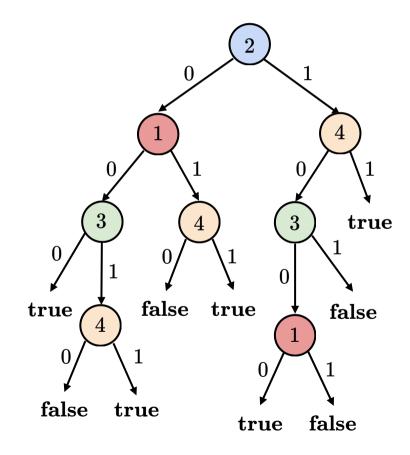
The output of the model depends only on these features



Notions of explanation: relevant feature set

If the values of features $\{1, 3, 4\}$ are fixed, then the output of the model is fixed

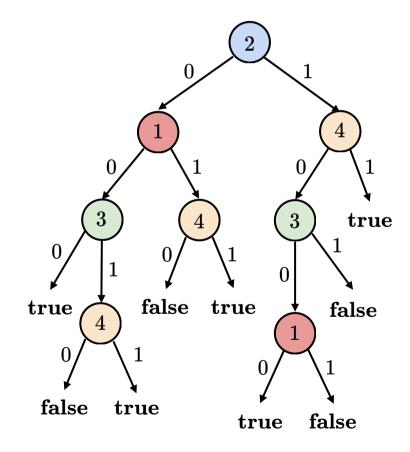
If
$$\mathbf{e}[1] = \mathbf{e}[3] = \mathbf{e}[4] = 0$$
: $\mathcal{T}(\mathbf{e}) = 1$



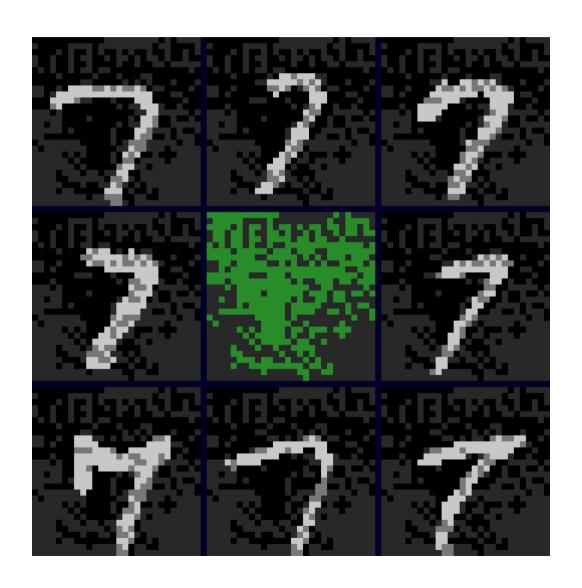
Notions of explanation: relevant feature set

If the values of features $\{1, 3, 4\}$ are fixed, then the output of the model is fixed

If
$$\mathbf{e}[1] = \mathbf{e}[3] = 1$$
 and $\mathbf{e}[4] = 0$: $\mathcal{T}(\mathbf{e}) = 0$



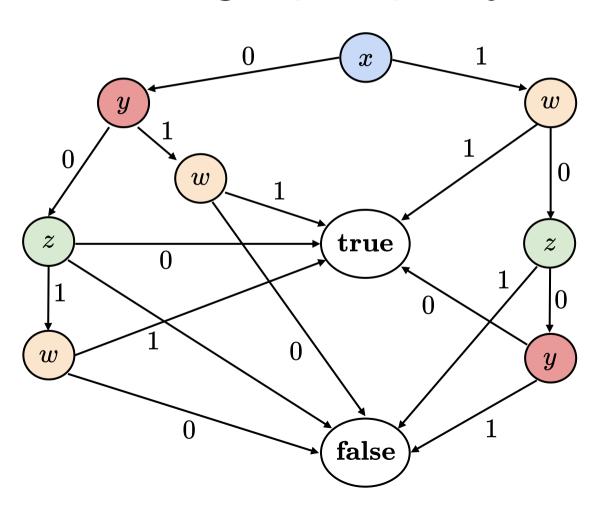
MNIST: relevant feature set



Can these queries be expressed in a graph query language?

- How do we express the previous interpretability queries?
- Is there a common framework for them?
- Is there a *natural* framework based on labeled graphs?

Can these queries be expressed in a graph query language?



Binary decision diagrams (BDDs)

- OBDDs
- FBDDs

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to describe classification models

Key notion: partial instance $\mathbf{e} \in \{0, 1, \bot\}^n$ of dimensión n

 \mathbf{e}_1 is subsumed by \mathbf{e}_2 if $\mathbf{e}_1, \mathbf{e}_2$ are partial instances such that for every $i \in \{1, \dots, n\}$, if $\mathbf{e}_1[i] \neq \bot$, then $\mathbf{e}_1[i] = \mathbf{e}_2[i]$

$$(1, \perp, 0, \perp) \subseteq (1, 0, 0, \perp) \subseteq (1, 0, 0, 1)$$

A first attempt: FOIL

First-order logic defined on a suitable vocabulary to describe classification models: $\{Pos, \subseteq\}$

A model \mathcal{M} of dimensión n is represented as a structure $\mathfrak{A}_{\mathcal{M}}$:

- The domain of $\mathfrak{A}_{\mathcal{M}}$ is $\{0,1,\perp\}^n$
- Pos(e) holds if e is an instance such that $\mathcal{M}(e) = 1$
- $e_1 \subseteq e_2$ holds if e_1, e_2 are partial instances such that e_1 is subsumed by e_2

The semantics of FOIL

Given a **FOIL** formula $\Phi(x_1, x_2, ..., x_k)$, a classification model \mathcal{M} of dimensión n, and instances \mathbf{e}_1 , \mathbf{e}_2 , ..., \mathbf{e}_k

$$\mathcal{M} \models \Phi(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k) \ \iff \ \mathfrak{A}_{\mathcal{M}} \models \Phi(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k) \ ext{(in the usual sense)}$$

Some examples

$$\mathrm{Full}(x) \ = \ orall y \, (x \subseteq y
ightarrow x = y)$$

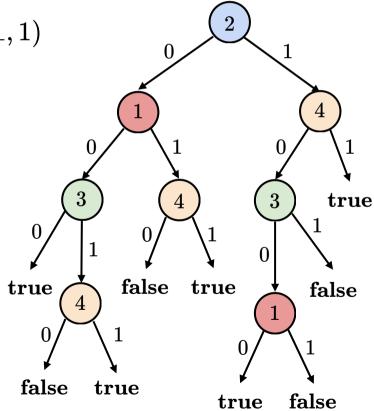
$$ext{AllPos}(x) \ = \ orall y \ ig((x \subseteq y \wedge ext{Full}(y))
ightarrow ext{Pos}(y) ig)$$

$$\operatorname{AllNeg}(x) \ = \ orall y \ ig((x \subseteq y \wedge \operatorname{Full}(y)) o
eg \operatorname{Pos}(y)ig)$$

Notions of explanation: sufficient reason

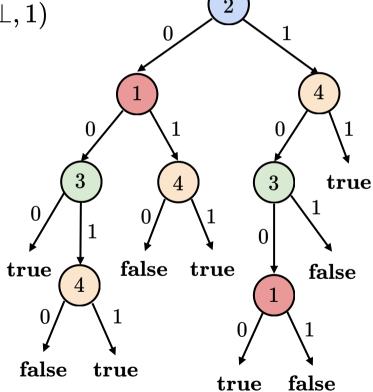
 $\mathcal{T}(\mathbf{e})=1$ for $\mathbf{e}=(1,1,1,1)$, and $\mathbf{e}_1=(1,1,\perp,1)$ is a sufficient reason for this

$$\mathcal{T} \models \mathrm{SR}(\mathbf{e}, \mathbf{e}_1)$$



Notions of explanation: minimal sufficient reason

 $\mathcal{T}(\mathbf{e})=1$ for $\mathbf{e}=(1,1,1,1)$, and $\mathbf{e}_2=(\perp,1,\perp,1)$ is a minimal sufficient reason for this

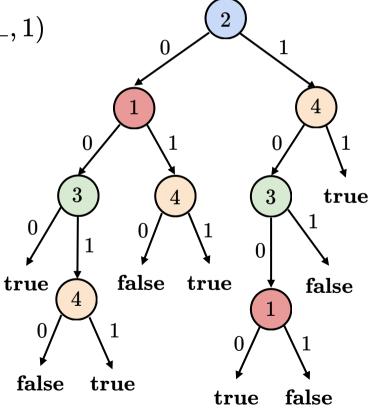


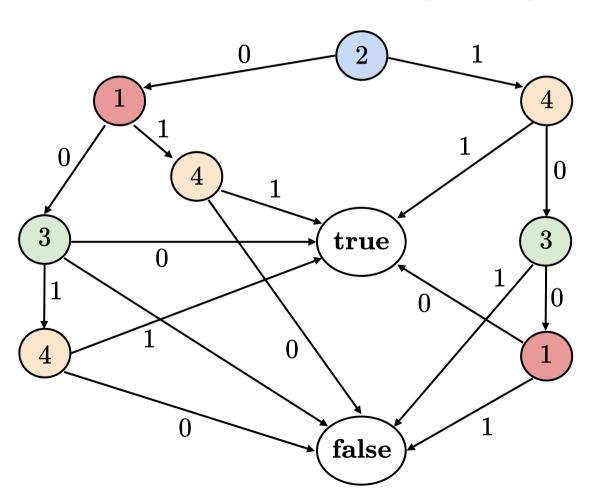
Notions of explanation: minimal sufficient reason

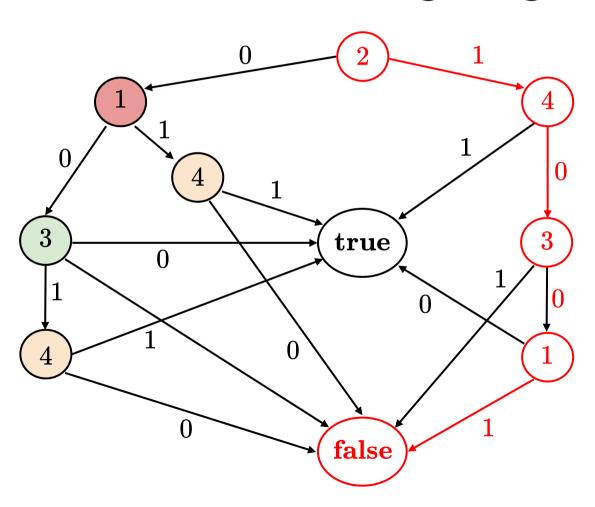
 $\mathcal{T}(\mathbf{e})=1$ for $\mathbf{e}=(1,1,1,1)$, and $\mathbf{e}_2=(\perp,1,\perp,1)$ is a minimal sufficient reason for this

 $\mathcal{T} \models \operatorname{MinimalSR}(\mathbf{e}, \mathbf{e}_2)$

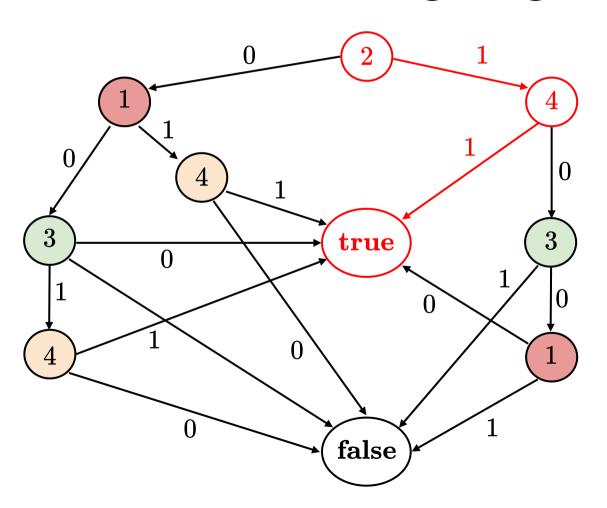
 $egin{array}{ll} ext{MinimalSR}(x,y) &= ext{SR}(x,y) \wedge \ & orall z \left((ext{SR}(x,z) \wedge z \subseteq y)
ightarrow z = y
ight) \end{array}$

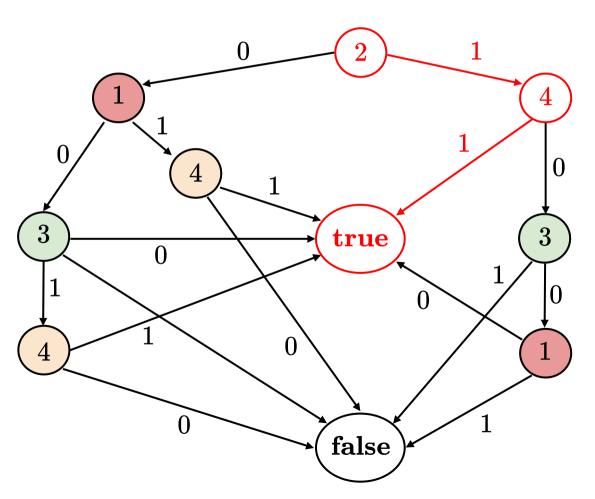






This path represents the instance (1, 1, 0, 0)





This path represents the partial instance $(\bot, 1, \bot, 1)$

Expressiveness and complexity of FOIL

- What notions of explanation can be expressed in FOIL?
- What notions of explanation cannot be expressed in FOIL?
- What is the complexity of the evaluation problem for FOIL?

The evaluation problem for FOIL

We consider the data complexity of the problem, so fix a **FOIL** formula $\Phi(x_1, \ldots, x_k)$

Eval (Φ) :

- **Input:** decision tree \mathcal{T} of dimension n and partial instances $\mathbf{e}_1, \dots, \mathbf{e}_k$ of dimension n
- **Output:** yes if $\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$, and no otherwise

The evaluation problem for FOIL

$$\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$$
 if and ony if $\mathfrak{A}_{\mathcal{T}} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$

But $\mathfrak{A}_{\mathcal{T}}$ could be of exponential size in the size of \mathcal{T}

- $\mathfrak{A}_{\mathcal{T}}$ should not be materialized to check whether $\mathcal{T} \models \Phi(\mathbf{e}_1, \dots, \mathbf{e}_k)$
- $\mathfrak{A}_{\mathcal{T}}$ is used only to define the semantics of **FOIL**

Bad news ...

Theorem:

- 1. For every **FOIL** formula Φ , there exists $k \geq 0$ such that $\operatorname{Eval}(\Phi)$ is in Σ_k^P
- 2. For every $k \geq 0$, there exists a **FOIL** formula Φ such that $\operatorname{Eval}(\Phi)$ is Σ_k^P -hard

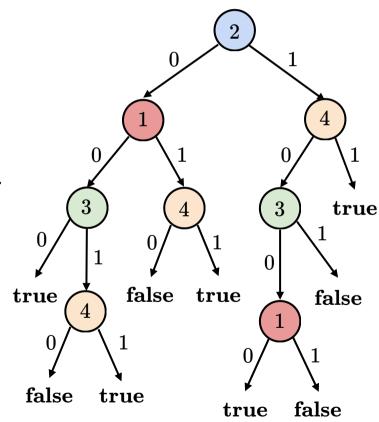
More bad news ...

$$\mathcal{T}(\mathbf{e}) = 1$$
 for $\mathbf{e} = (1, 1, 1, 1)$

 $\{2,4\}$ is a minimum sufficient reason for ${f e}$ over ${\cal T}$

• There is no sufficient reason for e over \mathcal{T} with a smaller number of features

 $\mathbf{e}_2 = (\bot, 1, \bot, 1)$ is a minimum sufficient reason for \mathbf{e} over \mathcal{T}



More bad news ...

Theorem:

There is no **FOIL** formula $\operatorname{MinimumSR}(x, y)$ such that, for every decision tree \mathcal{T} , instance \mathbf{e}_1 and partial instance \mathbf{e}_2 :

$$\mathcal{T} \models \operatorname{MinimumSR}(\mathbf{e}_1, \mathbf{e}_2)$$

 \mathbf{e}_2 is a minimum sufficient reason for \mathbf{e}_1 over \mathcal{T}

How do we overcome these limitations?

- We use first-order logic, over a larger vocabulary but with some syntactic restrictions
- We continue using some common notions for graphs
- Our goal is to find languages with polynomial or even NP data complexity, since the latter allows the use of SAT solvers

The StratiFOILed Logic

StratiFOILed is a model-specific interpretability query language

Specifically designed for decision trees

The logic **StratiFOILed** is defined by considering three layers

The StratiFOILed Logic

All the notions of explanation discussed in this talk can be expressed in **StratiFOILed**

• SR(x, y), MinimalSR(x, y), MinimumSR(x, y), FRS(x), MinimalFRS(x), MinimumFRS(x)

 $\operatorname{Eval}(\Phi)$ can be solved with a fixed number of calls to a SAT solver, for each **StratiFOILed** formula Φ

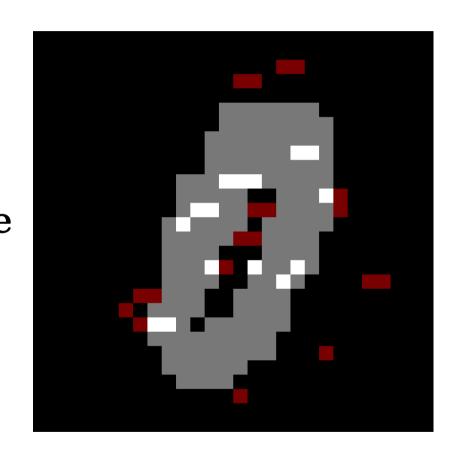
Implementation based on SAT solvers

Any SAT solver can be used

Given the complexity of the evaluation problem for **StratiFOILed**, we use:

- YalSAT: to find a truth assignment that satisfies a propositional formula
- **Kissat:** to prove that a propositional formula is not satisfiable

MNIST: sufficient reason



$$lpha(x,z) = \exists y \left(\mathrm{SR}(x,y) \wedge \mathrm{LEL}(y,z) \right)$$

Evaluate whether $\alpha(\mathbf{e}, \mathbf{u}_{730})$ holds

 $\mathbf{u}_{730} \in \{0,1,ot\}^{784}$ satisfies that $|\{i \in \{1,\dots,784\} \mid \mathbf{u}_{730}[i] = ot\}| = 730$

Concluding remarks

StratiFOILed is a model-specific interpretability query language

 How can the definition of **StratiFOILed** be extended to OBDDs and FBDDs?

Concluding remarks

FOIL is a model-agnostic interpretability query language

- The evaluation problem for some fragments of FOIL can be solved in polynomial time for decision trees and OBDDs
- What is an appropriate fragment of **FOIL** to be evaluated using SAT solvers?
- What is an appropriate interpretability query language for FBDDs that is based on FOIL?

Concluding remarks

How can probabilities be incorporated into this framework?

 A probability distribution on the possible values of features, and a probabilistic classifier

Probabilistic circuits seem to be the right model for this

 A natural and robust generalization of Boolean circuits, with many well-understood properties

Thanks!

Backup slides

The StratiFOILed Logic

The logic **StratiFOILed** is defined by considering three layers

- 1. Atomic formulas
- 2. Guarded formulas
- 3. The formulas from **StratiFOILed** itself

The first layer

⊆ can be considered as a *syntactic* predicate, it does not refer to the models

We need another predicate like that. Given partial instances e_1 , e_2 of dimension n:

$$\mathrm{LEL}(\mathbf{e}_1,\mathbf{e}_2)$$
 holds if and only if $|\{i\in\{1,\dots n\}\mid \mathbf{e}_1[i]=ot\}|\geq |\{i\in\{1,\dots n\}\mid \mathbf{e}_1[i]=ot\}|$

Why do we need another syntactic predicate?

$$egin{aligned} ext{MinimumSR}(x,y) &= ext{SR}(x,y) \land \ &orall z \left((ext{SR}(x,z) \land ext{LEL}(z,y))
ightarrow ext{LEL}(y,z)
ight) \end{aligned}$$

How many more predicates do we need to include?

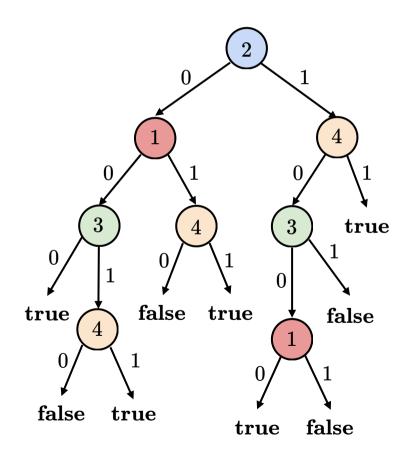
Atomic formulas

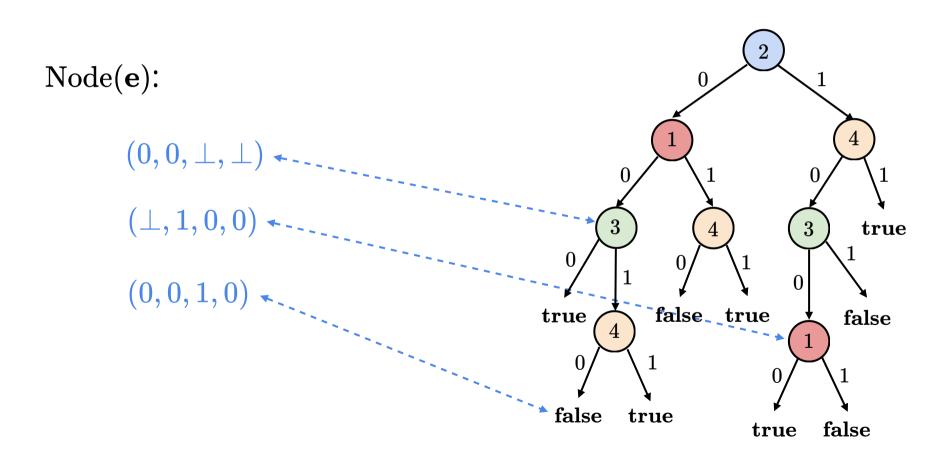
All the syntactic predicates needed in our formalism can be expressed as first-order queries over $\{\subseteq, LEL\}$

Theorem: if Φ is a first-order formula defined over $\{\subseteq, \mathrm{LEL}\}$, then $\mathrm{Eval}(\Phi)$ can be solved in polynomial time

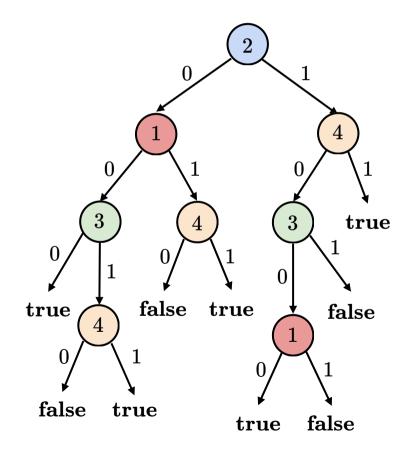
Atomic formulas of StratiFOILed: the set of first-order formulas defined over $\{\subseteq, LEL\}$

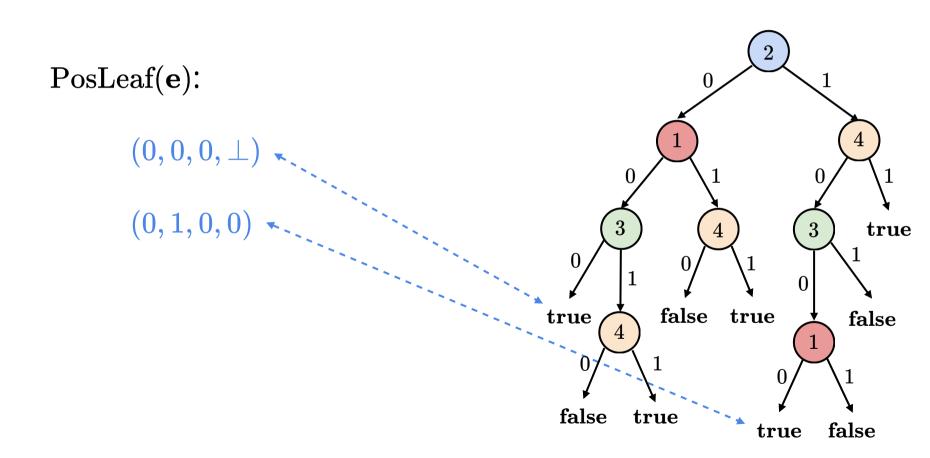
Node(e):





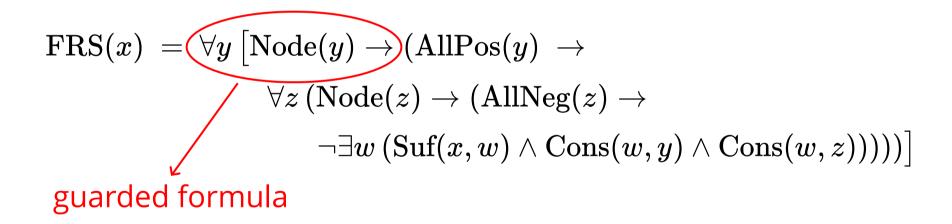
PosLeaf(e):





Guarded formulas

- 1. Each atomic formula is a guarded formula
- 2. Boolean combinations of guarded formulas are guarded formulas
- 3. If Φ is a guarded formula, then so are



$$\operatorname{FRS}(x) = orall y \left[\operatorname{Node}(y) o (\operatorname{AllPos}(y) o \ orall z \left(\operatorname{Node}(z) o (\operatorname{AllNeg}(z) o \ orall z \left(\operatorname{Suf}(x,w) \wedge \operatorname{Cons}(w,y) \wedge \operatorname{Cons}(w,z)
ight)
ight)
ight)$$
guarded formula

$$\operatorname{FRS}(x) = orall y \left[\operatorname{Node}(y) o (\operatorname{AllPos}(y) o
ightarrow (\operatorname{Node}(z) o (\operatorname{AllNeg}(z) o
ightarrow (\operatorname{Suf}(x,w) \wedge \operatorname{Cons}(w,y) \wedge \operatorname{Cons}(w,z))))
ight)$$
 atomic formula

The third layer: StratiFOILed

- 1. Each guarded formula is a **StratiFOILed** formula
- 2. If Φ is a guarded formula, then $\exists x_1 \cdots \exists x_k \Phi$ and $\forall x_1 \cdots \forall x_k \Phi$ are **StratiFOILed** formulas
- 3. Boolean combinations of **StratiFOILed** formulas are **StratiFOILed** formulas

Examples of StratiFOILed formulas

SR(x, y), MinimalSR(x, y), MinimumSR(x, y) can be expressed as **StratiFOILed** formulas

$$egin{aligned} ext{FRS}(x) &= orall y \left[ext{Node}(y)
ightarrow (ext{AllPos}(y)
ightarrow \ &orall z \left(ext{Node}(z)
ightarrow (ext{AllNeg}(z)
ightarrow \ &
onumber \exists w \left(ext{Suf}(x,w) \wedge ext{Cons}(w,y) \wedge ext{Cons}(w,z))))
ight)
brace \end{aligned}$$

MinimalFRS(x), MinimumFRS(x) can be expressed as a **StratiFOILed** formulas

The evaluation problem for StratiFOILed

BH: Boolean Hierarchy over NP

Theorem:

- 1. For each **StratiFOILed** formula Φ , there exists $k \geq 1$ such that $\operatorname{Eval}(\Phi)$ is in BH_k
- 2. For every $k \geq 1$, there exists a **StratiFOILed** formula Φ such that $\operatorname{Eval}(\Phi)$ is in BH_k -hard