
SPARQL over RDF, and its possible extensions to

RDFS

Marcelo Arenas

Department of Computer Science
Pontificia Universidad Católica de Chile

&
Center for Web Research

Universidad de Chile

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 1 / 57

Outline

◮ RDF and RDFS: A brief introduction

◮ SPARQL: A query language for RDF
◮ Formal semantics
◮ Complexity of the evaluation problem
◮ Optimization methods

◮ SPARQL as a query language for RDFS
◮ Formal semantics and the closure of an RDFS graph

◮ NAV-SPARQL: A navigational query language for RDFS

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 2 / 57

Outline

◮ RDF and RDFS: A brief introduction

◮ SPARQL: A query language for RDF
◮ Formal semantics
◮ Complexity of the evaluation problem
◮ Optimization methods

◮ SPARQL as a query language for RDFS
◮ Formal semantics and the closure of an RDFS graph

◮ NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge Pérez.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 2 / 57

Outline

◮ RDF and RDFS: A brief introduction

◮ SPARQL: A query language for RDF
◮ Formal semantics
◮ Complexity of the evaluation problem
◮ Optimization methods

◮ SPARQL as a query language for RDFS
◮ Formal semantics and the closure of an RDFS graph

◮ NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge Pérez.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 3 / 57

RDF in a nutshell

◮ RDF is the W3C proposal framework for representing
information in the Web.

◮ Abstract syntax based on directed labeled graph.

◮ Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties).

◮ Formal semantics.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 4 / 57

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 5 / 57

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 5 / 57

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 5 / 57

RDF: An example

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Ronaldinho Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Spain

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 6 / 57

Outline

◮ RDF and RDFS: A brief introduction

◮ SPARQL: A query language for RDF
◮ Formal semantics
◮ Complexity of the evaluation problem
◮ Optimization methods

◮ SPARQL as a query language for RDFS
◮ Formal semantics and the closure of an RDFS graph

◮ NAV-SPARQL: A navigational query language for RDFS

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 7 / 57

Querying RDF: SPARQL

◮ SPARQL is the W3C candidate recommendation query
language for RDF.

◮ SPARQL is a graph-matching query language.

◮ A SPARQL query consists of three parts:
◮ Pattern matching: optional, union, nesting, filtering.
◮ Solution modifiers: projection, distinct, order, limit, offset.
◮ Output part: construction of new triples,

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 8 / 57

A simple RDF query language

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 9 / 57

A simple RDF query language

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 9 / 57

A simple RDF query language

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 9 / 57

A simple RDF query language

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 9 / 57

A simple RDF query language

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ←

◮ Head: processing of some variables.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 9 / 57

A simple RDF query language

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ← P

◮ Head: processing of some variables.

◮ Body: pattern matching expression.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 9 / 57

A simple RDF query language

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ← P

◮ Head: processing of some variables.

◮ Body: pattern matching expression.

We focus on P .

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 9 / 57

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ P1

P2 }

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2 }

{ P3

P4 }

}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7 } }

}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9 }

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 10 / 57

A formal semantics for SPARQL

A formal approach would be beneficial for:

◮ Clarifying corner cases

◮ Helping in the implementation process

◮ Providing sound foundations

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 11 / 57

A formal semantics for SPARQL

A formal approach would be beneficial for:

◮ Clarifying corner cases

◮ Helping in the implementation process

◮ Providing sound foundations

In this presentation:

◮ A formal compositional semantics for SPARQL

◮ A study of the complexity of evaluating SPARQL

◮ Optimization procedures

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 11 / 57

A standard algebraic syntax

◮ Triple patterns: just triples + variables, without blanks

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

{ P1 P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

{ P1 FILTER (R) } (P1 FILTER R)

original SPARQL syntax algebraic syntax

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 12 / 57

A standard algebraic syntax

◮ Explicit precedence/association

Example

{ t1

t2

OPTIONAL { t3 }

OPTIONAL { t4 }

t5

}

((((t1 AND t2) OPT t3) OPT t4) AND t5)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 13 / 57

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

The evaluation of a pattern results in a set of mappings.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 14 / 57

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

The evaluation of a pattern results in a set of mappings.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 14 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that

◮ make t to match the graph

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that

◮ make t to match the graph

◮ have as domain the variables in t.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that

◮ make t to match the graph

◮ have as domain the variables in t.

Example

graph triple evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that

◮ make t to match the graph

◮ have as domain the variables in t.

Example

graph triple evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that

◮ make t to match the graph

◮ have as domain the variables in t.

Example

graph triple evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 15 / 57

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared
variables.

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 16 / 57

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared
variables.

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 16 / 57

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared
variables.

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 16 / 57

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared
variables.

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 16 / 57

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared
variables.

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 16 / 57

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared
variables.

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

◮ µ2 and µ3 are not compatible

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 16 / 57

Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 17 / 57

Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 M2

◮ extending mappings in M1 with compatible mappings in M2

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 17 / 57

Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 M2

◮ extending mappings in M1 with compatible mappings in M2

Difference: M1 r M2

◮ mappings in M1 that cannot be extended with mappings in M2

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 17 / 57

Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 M2

◮ extending mappings in M1 with compatible mappings in M2

Difference: M1 r M2

◮ mappings in M1 that cannot be extended with mappings in M2

Union: M1 ∪M2

◮ mappings in M1 plus mappings in M2 (set theoretical union)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 17 / 57

Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 M2

◮ extending mappings in M1 with compatible mappings in M2

Difference: M1 r M2

◮ mappings in M1 that cannot be extended with mappings in M2

Union: M1 ∪M2

◮ mappings in M1 plus mappings in M2 (set theoretical union)

Definition

Left Outer Join: M1 M2 = (M1 M2) ∪ (M1 r M2)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 17 / 57

Semantics of SPARQL operators

Let M1 and M2 be the result of evaluating P1 and P2.

Definition

The evaluation of:

(P1 AND P2) →
(P1 UNION P2) →
(P1 OPT P2) →

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 18 / 57

Semantics of SPARQL operators

Let M1 and M2 be the result of evaluating P1 and P2.

Definition

The evaluation of:

(P1 AND P2) → M1 M2

(P1 UNION P2) →
(P1 OPT P2) →

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 18 / 57

Semantics of SPARQL operators

Let M1 and M2 be the result of evaluating P1 and P2.

Definition

The evaluation of:

(P1 AND P2) → M1 M2

(P1 UNION P2) → M1 ∪M2

(P1 OPT P2) →

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 18 / 57

Semantics of SPARQL operators

Let M1 and M2 be the result of evaluating P1 and P2.

Definition

The evaluation of:

(P1 AND P2) → M1 M2

(P1 UNION P2) → M1 ∪M2

(P1 OPT P2) → M1 M2

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 18 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Join

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Difference

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Union

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Boolean filter expressions (value constraints)

In filter expressions we consider:

◮ equality = among variables and RDF terms

◮ unary predicate bound

◮ boolean combinations (∧, ∨, ¬)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 20 / 57

Satisfaction of value constraints

A mapping satisfies:

◮ ?X = c if it gives the value c to variable ?X

◮ ?X =?Y if it gives the same value to ?X and ?Y

◮ bound(?X) if it is defined for ?X

Definition

Evaluation of (P FILTER R): Set of mappings in the evaluation of
P that satisfy R .

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 21 / 57

The evaluation problem

Input:

A mapping, a graph pattern, and an RDF graph.

Question:

Is the mapping in the evaluation of the pattern against the graph?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 22 / 57

Evaluation of simple patterns is polynomial

Theorem

For patterns using only AND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern × size of the graph).

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 23 / 57

Evaluation of simple patterns is polynomial

Theorem

For patterns using only AND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern × size of the graph).

Proof idea
◮ Check that the mapping makes every triple to match.

◮ Then check that the mapping satisfies the FILTERs.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 23 / 57

Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete for AND-FILTER-UNION
expressions.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 24 / 57

Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete for AND-FILTER-UNION
expressions.

Proof idea
◮ Reduction from 3SAT.

◮ ¬ bound is used to encode negation.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 24 / 57

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 25 / 57

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

Can we efficiently evaluate SPARQL queries in practice?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 25 / 57

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

Can we efficiently evaluate SPARQL queries in practice?

◮ We need to understand how the complexity depends on the
operators of SPARQL.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 25 / 57

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 26 / 57

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.

Graph pattern expressions are usually in this normal form.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 26 / 57

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.

Graph pattern expressions are usually in this normal form.

Corollary

The evaluation problem is polynomial for AND-FILTER-UNION
expressions in the UNION normal form.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 26 / 57

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 27 / 57

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea
◮ Reduction from QBF: A pattern encodes a quantified

propositional formula

∀x1∃y1∀x2∃y2 · · ·ψ.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 27 / 57

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea
◮ Reduction from QBF: A pattern encodes a quantified

propositional formula

∀x1∃y1∀x2∃y2 · · ·ψ.

◮ Nested OPTs are used to encode quantifier alternation.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 27 / 57

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G :

Rψ :

Pψ :

Pϕ :

µ0 :

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ :

Pψ :

Pϕ :

µ0 :

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ :

Pϕ :

µ0 :

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER Rψ)

Pϕ :

µ0 :

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER Rψ)

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

µ0 :

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Rψ : ((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1))

Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER Rψ)

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

µ0 : {?B0 7→ 1}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPACE-hardness: A closer look

ϕ : ∀x1∃y1 (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1)
Pψ : (((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER

((?X1 = 1∨ ?Y1 = 0) ∧ (?X1 = 0∨ ?Y1 = 1)))
Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 7→ 1

?X1 7→ 0 ?Y1 7→ i ?B0 7→ 0

?X1 7→ 1 ?Y1 7→ j ?B0 7→ 0

Q1

?X1 7→ 0

?X1 7→ 1

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 29 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑
?B0

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑
?B0 ?B0

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

Is ?B0 giving optional information for P1?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

Is ?B0 giving optional information for P1?

◮ No, ?B0 is giving optional information for (a, true, ?B0)?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

↑ ↑ ↑
?B0 × ?B0

Is ?B0 giving optional information for P1?

◮ No, ?B0 is giving optional information for (a, true, ?B0)?

These patterns rarely occur in practice.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 30 / 57

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 31 / 57

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 31 / 57

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 31 / 57

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 31 / 57

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example
(

(?Y , name, paul) OPT (?X , email, ?Z)

)

AND (?X , name, john)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 31 / 57

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example
(

(?Y , name, paul) OPT (?X , email, ?Z)

)

AND (?X , name, john)

↑

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 31 / 57

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example
(

(?Y , name, paul) OPT (?X , email, ?Z)

)

AND (?X , name, john)

↑ ↑

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 31 / 57

Well–designed patterns

Definition

An AND-FILTER-OPT pattern is well–designed if for every OPT in
the pattern:

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example
(

(?Y , name, paul) OPT (?X , email, ?Z)

)

AND (?X , name, john)

�� ↑ ↑

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 31 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 32 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of the form
P1 UNION P2 UNION · · · UNION Pk , where each Pi is a
well-designed AND-FILTER-OPT pattern.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 32 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of the form
P1 UNION P2 UNION · · · UNION Pk , where each Pi is a
well-designed AND-FILTER-OPT pattern.

Can we use this in practice?

◮ Well-designed patterns are suitable for optimization.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 32 / 57

Classical optimization

◮ Classical optimization assumes null–rejection.
◮ null–rejection: the join/outer–join condition must fail in the

presence of nulls.

◮ SPARQL operations are not null–rejecting.
◮ by definition of compatible mappings.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 33 / 57

Classical optimization

◮ Classical optimization assumes null–rejection.
◮ null–rejection: the join/outer–join condition must fail in the

presence of nulls.

◮ SPARQL operations are not null–rejecting.
◮ by definition of compatible mappings.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 33 / 57

Classical optimization

◮ Classical optimization assumes null–rejection.
◮ null–rejection: the join/outer–join condition must fail in the

presence of nulls.

◮ SPARQL operations are not null–rejecting.
◮ by definition of compatible mappings.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 33 / 57

Well–designed graph patterns and optimization

Consider the following rules:

((P1 OPT P2) FILTER R) −→ ((P1 FILTER R) OPT P2) (1)

(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3) (2)

((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2) (3)

Proposition

If P is a well-designed pattern and Q is obtained from P by
applying either (1) or (2) or (3), then Q is a well-designed pattern
equivalent to P.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 34 / 57

Well–designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns Q1, . . ., Qk such that:

P is constructed from Q1, . . ., Qk by using only the OPT operator.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 35 / 57

Well–designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns Q1, . . ., Qk such that:

P is constructed from Q1, . . ., Qk by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a pattern in OPT
normal form.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 35 / 57

Well–designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns Q1, . . ., Qk such that:

P is constructed from Q1, . . ., Qk by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a pattern in OPT
normal form.

Patterns in OPT normal form can be evaluated more efficiently:

◮ AND-FILTER expressions are evaluated first, and then the results
are combined using the OPT operator.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 35 / 57

Outline

◮ RDF and RDFS: A brief introduction

◮ SPARQL: A query language for RDF
◮ Formal semantics
◮ Complexity of the evaluation problem
◮ Optimization methods

◮ SPARQL as a query language for RDFS
◮ Formal semantics and the closure of an RDFS graph

◮ NAV-SPARQL: A navigational query language for RDFS

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 36 / 57

Querying RDFS data

◮ RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

◮ Evaluating queries which involve this vocabulary is
challenging.

◮ There is not yet consensus in the Semantic Web community
on how to define a query language for RDFS.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 37 / 57

A simple SPARQL query: (Ronaldinho, rdf:type, person)

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Ronaldinho Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Spain

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 38 / 57

SPARQL over RDFS

Checking whether a triple t is in a graph G is the basic step when
answering queries over RDF.

◮ For the case of RDFS, we need to check whether t is implied by G .

The notion of entailment in RDFS can be defined in terms of
classical notions such model, interpretation, etc.

◮ As for the case of first-order logic.

This notion can also be characterized by a set of inference rules.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 39 / 57

Entailment in RDFS

There are inference systems characterizing the notion of entailment
in RDFS:

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :
(a, rdf:sc, b) (b, rdf:sc, c)

(a, rdf:sc, c)

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

· · ·

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 40 / 57

SPARQL over RDFS: Closure of a graph

The closure of an RDFS graph G , denoted by cl(G), is the graph
obtained by adding to G all the triples that are implied by G .

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 41 / 57

SPARQL over RDFS: Closure of a graph

The closure of an RDFS graph G , denoted by cl(G), is the graph
obtained by adding to G all the triples that are implied by G .

Basic step for answering queries over RDFS:

◮ Checking whether a tripe t is in cl(G).

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 41 / 57

SPARQL over RDFS: Closure of a graph

The closure of an RDFS graph G , denoted by cl(G), is the graph
obtained by adding to G all the triples that are implied by G .

Basic step for answering queries over RDFS:

◮ Checking whether a tripe t is in cl(G).

Definition

The RDFS-evaluation of a graph pattern P over an RDFS graph G
is defined as the evaluation of P over cl(G).

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 41 / 57

Example: (Ronaldinho, rdf:type, person) over the closure

rdf:type

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Ronaldinho Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Spainlives in

rdf:type

rdf:sc

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 42 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

◮ Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

◮ Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

◮ The approach is not goal-oriented.

When evaluating (a, rdf:sc, b), a goal-oriented approach should
not compute cl(G):

◮ It should just verify whether there exists a path from a to b in
G where every edge has label rdf:sc.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

◮ It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

◮ It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

◮ Navigational operators allow to express natural queries that are not
expressible in SPARQL over RDFS.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Outline

◮ RDF and RDFS: A brief introduction

◮ SPARQL: A query language for RDF
◮ Formal semantics
◮ Complexity of the evaluation problem
◮ Optimization methods

◮ SPARQL as a query language for RDFS
◮ Formal semantics and the closure of an RDFS graph

◮ NAV-SPARQL: A navigational query language for RDFS

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 45 / 57

Navigational axes

Forward axes for an RDF triple (a, p, b):

next

ba

p

edge node

Backward axes for an RDF triple (a, p, b):

p

a b

next-1

node-1edge-1

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 46 / 57

A first attempt: 0-NAV-SPARQL

Syntax of navigational expressions:

exp := self | self::a | axis |

axis::a | exp/exp | exp|exp | exp∗

where a ∈ U and axis ∈ {next, next-1, edge, edge-1, node,
node-1}.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 47 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Jexp∗KG = JselfKG ∪ JexpKG ∪ Jexp/expKG ∪
Jexp/exp/expKG ∪ · · ·

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x , exp, y), where exp is a navigational expression.

◮ Examples: (Ronaldinho, next::lives in, Spain) and
(?X , (next::(rdf:sc))+, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X , exp, ?Y)
over an RDFS graph G is the set of mappings µ such that

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 49 / 57

A first attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x , exp, y), where exp is a navigational expression.

◮ Examples: (Ronaldinho, next::lives in, Spain) and
(?X , (next::(rdf:sc))+, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X , exp, ?Y)
over an RDFS graph G is the set of mappings µ such that

◮ The domain of µ is {?X , ?Y }, and

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 49 / 57

A first attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x , exp, y), where exp is a navigational expression.

◮ Examples: (Ronaldinho, next::lives in, Spain) and
(?X , (next::(rdf:sc))+, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X , exp, ?Y)
over an RDFS graph G is the set of mappings µ such that

◮ The domain of µ is {?X , ?Y }, and

◮ (µ(?X), µ(?Y)) ∈ JexpKG

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 49 / 57

A first attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x , exp, y), where exp is a navigational expression.

◮ Examples: (Ronaldinho, next::lives in, Spain) and
(?X , (next::(rdf:sc))+, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X , exp, ?Y)
over an RDFS graph G is the set of mappings µ such that

◮ The domain of µ is {?X , ?Y }, and

◮ (µ(?X), µ(?Y)) ∈ JexpKG

Example: (?X , (next::Iberia)+, ?Y) AND (?X , (next::AirFrance)+, ?Y)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 49 / 57

Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 50 / 57

Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a 0-NAV-SPARQL pattern Q such that:

◮ RDFS-evaluation of P over G = evaluation of Q over G .

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 50 / 57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G ,

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 51 / 57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G ,

The previous theorem holds even for P = (?X , a, ?Y), where a is
an arbitrary element in U.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 51 / 57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G ,

The previous theorem holds even for P = (?X , a, ?Y), where a is
an arbitrary element in U.

How can we capture SPARQL over RDFS?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 51 / 57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G ,

The previous theorem holds even for P = (?X , a, ?Y), where a is
an arbitrary element in U.

How can we capture SPARQL over RDFS?

◮ We adopt the notion of branching from XPath.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 51 / 57

A successful attempt: NAV-SPARQL

Syntax of navigational expressions:

exp := self | self::a | axis |

axis::a | axis::[exp] | exp/exp | exp|exp | exp∗

where a ∈ U and axis ∈ {next, next-1, edge, edge-1, node,
node-1}.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 52 / 57

A successful attempt: NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 53 / 57

A successful attempt: NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

Jnext::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , z , y) ∈ G and
(z ,w) ∈ JexpKG}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 53 / 57

A successful attempt: NAV-SPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

Jnext::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , z , y) ∈ G and
(z ,w) ∈ JexpKG}

Jedge::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , y , z) ∈ G and
(z ,w) ∈ JexpKG}

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 53 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Example: (?X , a, ?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y).

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 54 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Example: (?X , a, ?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y).

a
rdf:sp rdf:sp rdf:sp

?X

?Y

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 54 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Example: (?X , a, ?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y).

?Y

a
rdf:sp rdf:sp rdf:sp

?X

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 54 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL pattern
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G ,

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 55 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL pattern
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G ,

Proof idea

Replace (?X , a, ?Y) by (?X ,R(a), ?Y), where:

R(rdf:sc) = (next::(rdf:sc))+

R(rdf:sp) = (next::(rdf:sp))+

· · ·

R(b) = next::[(next::(rdf:sp))∗/(self::b)]

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 55 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL pattern
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G ,

Proof idea

Replace (?X , a, ?Y) by (?X ,R(a), ?Y), where:

R(rdf:sc) = (next::(rdf:sc))+

R(rdf:sp) = (next::(rdf:sp))+

· · ·

R(b) = next::[(next::(rdf:sp))∗/(self::b)]

Note: R(rdf:type) uses next, edge and node-1.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 55 / 57

The extra expressive power of NAV-SPARQL

travel

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

travel

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

travel

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

travel

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

rdf:sp

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

travel

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

rdf:sp

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

travel

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

rdf:sp

CalaisParis Dover London

travel B travel Ctravel A

travel train travel ferry travel bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

travel

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

◮ This query cannot be expressed in SPARQL over RDFS.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 56 / 57

Ongoing work

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

◮ Implementation of SPARQL.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

◮ Implementation of SPARQL.
◮ How useful are the optimization rules in practice?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

◮ Implementation of SPARQL.
◮ How useful are the optimization rules in practice?

◮ Implementation of NAV-SPARQL.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

◮ Implementation of SPARQL.
◮ How useful are the optimization rules in practice?

◮ Implementation of NAV-SPARQL.
◮ Can this language be implemented efficiently?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

◮ Implementation of SPARQL.
◮ How useful are the optimization rules in practice?

◮ Implementation of NAV-SPARQL.
◮ Can this language be implemented efficiently? Can this

language be used over large RDFS graphs?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

◮ Implementation of SPARQL.
◮ How useful are the optimization rules in practice?

◮ Implementation of NAV-SPARQL.
◮ Can this language be implemented efficiently? Can this

language be used over large RDFS graphs?

◮ Is the extra expressive power of NAV-SPARQL useful in
practice?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

◮ Implementation of SPARQL.
◮ How useful are the optimization rules in practice?

◮ Implementation of NAV-SPARQL.
◮ Can this language be implemented efficiently? Can this

language be used over large RDFS graphs?

◮ Is the extra expressive power of NAV-SPARQL useful in
practice?

◮ Is there a fragment of NAV-SPARQL which is also appropriate
for RDFS?

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

◮ Implementation of SPARQL.
◮ How useful are the optimization rules in practice?

◮ Implementation of NAV-SPARQL.
◮ Can this language be implemented efficiently? Can this

language be used over large RDFS graphs?

◮ Is the extra expressive power of NAV-SPARQL useful in
practice?

◮ Is there a fragment of NAV-SPARQL which is also appropriate
for RDFS? One level of nesting is enough to capture SPARQL
over RDFS.

M. Arenas – SPARQL over RDF, and its possible extensions to RDFS 57 / 57

