SPARQL over RDF, and its possible extensions to
RDFS

Marcelo Arenas

Department of Computer Science
Pontificia Universidad Catdlica de Chile
&

Center for Web Research
Universidad de Chile

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 1/57

Outline

» RDF and RDFS: A brief introduction

» SPARQL: A query language for RDF

» Formal semantics
» Complexity of the evaluation problem
» Optimization methods

» SPARQL as a query language for RDFS

» Formal semantics and the closure of an RDFS graph

» NAV-SPARQL: A navigational query language for RDFS

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 2 /57

Outline

» RDF and RDFS: A brief introduction

» SPARQL: A query language for RDF

» Formal semantics
» Complexity of the evaluation problem
» Optimization methods

» SPARQL as a query language for RDFS

» Formal semantics and the closure of an RDFS graph

» NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge Pérez.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 2 /57

Outline

» RDF and RDFS: A brief introduction

» SPARQL: A query language for RDF

» Formal semantics
» Complexity of the evaluation problem
» Optimization methods

» SPARQL as a query language for RDFS

» Formal semantics and the closure of an RDFS graph

» NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge Pérez.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 3/57

RDF in a nutshell

» RDF is the W3C proposal framework for representing
information in the Web.

» Abstract syntax based on directed labeled graph.

» Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties).

» Formal semantics.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 4 /57

RDF formal model

U
4
b o
t t
m—>ﬂ B = set of Blank nodes
AN O IR L = set of Literals
U B U B L

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 5 /57

RDF formal model

U
4
Predicate U
B
») » v) L
U B U B L

(s,p,0) e (UUB)x Ux (UUBUL) s

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

= set of Uris
= set of Blank nodes

= set of Literals

called an RDF triple

5/ 57

RDF formal model

U
4
b o
t t
m—>ﬂ B = set of Blank nodes
AN O IR L = set of Literals
U B U B L

(s,p,0) € (UUB) x Ux (UUBUL) is called an RDF triple

A set of RDF triples is called an RDF graph

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 5 /57

RDF: An example

rdf :dom i rdf :range
person works_in company
rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
soccer_player <—@—» soccer_team
rdf :dom rdf :range
rdf:type rdf:type
() \ plays_in (\
[Ronaldinho } { Barcelona ‘
lives_in Spain

M. Arenas —

SPARQL over RDF, and its possible extensions to RDFS

6/ 57

Outline

» RDF and RDFS: A brief introduction

» SPARQL: A query language for RDF

» Formal semantics
» Complexity of the evaluation problem
» Optimization methods

» SPARQL as a query language for RDFS

» Formal semantics and the closure of an RDFS graph

» NAV-SPARQL: A navigational query language for RDFS

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 7 /57

Querying RDF: SPARQL

» SPARQL is the W3C candidate recommendation query
language for RDF.

» SPARQL is a graph-matching query language.

» A SPARQL query consists of three parts:

» Pattern matching: optional, union, nesting, filtering.
» Solution modifiers: projection, distinct, order, limit, offset.
» Output part: construction of new triples,

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 8 /57

A simple RDF query language

SELECT 7Name

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 9 /57

A simple RDF query language

SELECT 7Name
WHERE

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 9 /57

A simple RDF query language

SELECT ?Name
WHERE
{

?X :name 7Name

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 9 /57

A simple RDF query language

SELECT ?Name 7Email
WHERE
{
?X :name 7Name
?X :email 7Email

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

9 /57

A simple RDF query language

SELECT 7?Name 7Email
WHERE
{
?X :name 7Name
?X :email 7Email

}

In general, in a query we have:

H «—

» Head: processing of some variables.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

9 /57

A simple RDF query language

SELECT 7Name 7Email
WHERE
{

7?X :name 7Name
?X :email 7Email

}

In general, in a query we have:

H~—P

» Head: processing of some variables.

» Body: pattern matching expression.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 9 /57

A simple RDF query language

SELECT 7Name 7Email
WHERE
{

7?X :name 7Name
?X :email 7Email

}

In general, in a query we have:

H~—P

» Head: processing of some variables.

» Body: pattern matching expression.

We focus on P.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 9 /57

But things can become more complex ...

{P1
Interesting features of pattern P2 }

matching on graphs

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

{{P1
Interesting features of pattern P2 }
matching on graphs
» Grouping {p3
P4 }
}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

{{p
Interesting features of pattern P2
matching on graphs OPTIONAL { P5 } }
> .
Grouping £ 55
» Optional parts P4

OPTIONAL { P7 } 1}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

{{P1
Interesting features of pattern P2
matching on graphs OPTIONAL { P5 } }
» Grouping £ 55
» Optional parts P4
> Nesting OPTIONAL { P7

OPTIONAL { P8 +} 1} }

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

{{pm
Interesting features of pattern P2
matching on graphs OPTIONAL { P5 } }
» Grouping £ 55
» Optional parts P4
> Nesting OPTIONAL { P7
. OPTIONAL { P8 + } 1
» Union of patterns 3
UNION
{ P9}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 10 / 57

But things can become more complex ...

{{P1
Interesting features of pattern P2
matching on graphs OPTIONAL { P5 } }
> .
Grouping Pa
» Optional parts P4
_ OPTIONAL { P8 } 1} }
» Union of patterns 3
» Filtering UNION

{ P9
FILTER (R) }

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 10 / 57

A formal semantics for SPARQL

A formal approach would be beneficial for:
» Clarifying corner cases
» Helping in the implementation process

» Providing sound foundations

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 11 / 57

A formal semantics for SPARQL

A formal approach would be beneficial for:
» Clarifying corner cases
» Helping in the implementation process

» Providing sound foundations

In this presentation:
» A formal compositional semantics for SPARQL
» A study of the complexity of evaluating SPARQL

» Optimization procedures

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 11 / 57

A standard algebraic syntax

» Triple patterns: just triples + variables, without blanks

?X :name "john"

(?X, name, john)

» Graph patterns: full parenthesized algebra

{ PL P2 }

{ P1 OPTIONAL { P2 }}
{ P13} UNION { P2}
{ P1 FILTER (R) }

original SPARQL syntax

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

(P, AND P,)
(P, OPT P,)
(P, UNION P,)

(P, FILTER R)

algebraic syntax

12 / 57

A standard algebraic syntax

» Explicit precedence/association

Example

{ t1
t2
OPTIONAL { t3 2}
OPTIONAL { t4 2}
t5

((((t1 AND to) OPT t3) OPT ;) AND ts5)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 13 / 57

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 14 / 57

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms.

The evaluation of a pattern results in a set of mappings.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 14 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition
The evaluation of t is the set of mappings that

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition
The evaluation of t is the set of mappings that
» make t to match the graph

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition
The evaluation of t is the set of mappings that
» make t to match the graph

» have as domain the variables in t.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that
» make t to match the graph

» have as domain the variables in t.

Example

graph triple
(R1, name, john)
(R1, email, J@ed.ex) (?X, name, ?Y)
(R2, name, paul)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

M1
H2:

evaluation
X | Y
R1 | john
Ry | paul

15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that
» make t to match the graph

» have as domain the variables in t.

Example

graph triple
(R1, name, john)
(R1, email, J@ed.ex) (?X, name, 7Y)
(R2, name, paul)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

M1
H2:

evaluation
X | Y
R1 | john
Ry | paul

15 / 57

The semantics of triple patterns

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that
» make t to match the graph

» have as domain the variables in t.

Example

graph triple
(R1, name, john)
(R1, email, J@ed.ex) (?X, name, 7Y)
(R2, name, paul)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

Ha:
2!

evaluation
XY
R1 | john
Ry | paul

15 / 57

Compatible mappings

Two mappings are compatible if they agree in their shared

Definition

variables.

Example
M-
M2
M3

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

X | Y (V4 4%

R1 | john

R1 JOedu.ex
PQedu.ex | R,

16 / 57

Compatible mappings

Two mappings are compatible if they agree in their shared

Definition

variables.

Example
M1 -
2
M3

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

X | Y (V4 4%

Ry | john

R1 JOedu.ex
PQedu.ex | R,

16 / 57

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared

variables.

Example

M1 -
2
M3
p1 U o

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

X | Y (V4 7V

R; | john

R1 JOedu.ex
PQedu.ex | R,

R1 | john | J@edu.ex

16 / 57

Compatible mappings

Definition
Two mappings are compatible if they agree in their shared
variables.
Example
X | Y (V4 7V
w1 | Ry | john
w2 | Ry JOedu.ex
13 PQedu.ex | Ry
prUpo: | Ry | john | J@edu.ex
M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

16 / 57

Compatible mappings

Definition
Two mappings are compatible if they agree in their shared
variables.
Example
X | Y (V4 7V
w1 | Ry | john
w2 | Ry JOedu.ex
13 PQedu.ex | Ry
prUpo: | Ry | john | J@edu.ex
p1Ups: | Ry | john | P@edu.ex | R»
M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

16 / 57

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared

variables.

Example

[
M2
M3
p1 U o
p1 U sz

X | Y (V4 4%

R1 | john

R1 JOedu.ex
PQedu.ex | R,

R1 | john | J@edu.ex

R1 | john | P@edu.ex | R»

» Lo and p3 are not compatible

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

16 / 57

Sets of mappings and operations

Let M; and M, be sets of mappings:

Definition

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 17 / 57

Sets of mappings and operations

Let M; and M, be sets of mappings:

Definition
Join: My X M,

» extending mappings in M; with compatible mappings in M

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 17 / 57

Sets of mappings and operations

Let M; and M, be sets of mappings:
Definition
Join: My X M,
» extending mappings in M; with compatible mappings in M

Difference: My ~ M,
» mappings in M; that cannot be extended with mappings in M,

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 17 / 57

Sets of mappings and operations

Let M; and M, be sets of mappings:
Definition
Join: My X M,
» extending mappings in M; with compatible mappings in M
Difference: My ~ M,
» mappings in M; that cannot be extended with mappings in M,

Union: M; U M,

» mappings in M; plus mappings in M, (set theoretical union)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 17 / 57

Sets of mappings and operations

Let M; and M, be sets of mappings:
Definition
Join: My X M,
» extending mappings in M; with compatible mappings in M

Difference: My ~ M,
» mappings in M; that cannot be extended with mappings in M,

Union: M; U M,

» mappings in M; plus mappings in M, (set theoretical union)

Definition

Left Outer Join: My X My = (My X My) U (My . My)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

17 / 57

Semantics of SPARQL operators

Let My and M, be the result of evaluating Py and Ps.

Definition
The evaluation of:
(P1 AND P5) —
(P1 UNION P5) —
(P1 OPT Py) —

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 18 / 57

Semantics of SPARQL operators

Let My and M, be the result of evaluating Py and Ps.

Definition
The evaluation of:
(P1 AND P2) — My X My
(P1 UNION P5) —
(P1 OPT Py) —

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 18 / 57

Semantics of SPARQL operators

Let My and M, be the result of evaluating Py and Ps.

Definition
The evaluation of:
(P1 AND P2) — My X M,
(P1 UNION P2) — M; U My
(P1 OPT Py) —

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 18 / 57

Semantics of SPARQL operators

Let My and M, be the result of evaluating Py and Ps.

Definition
The evaluation of:
(P1 AND P2) — My X My
(P1 UNION P2) — My U My
(Pl OPT P2) — Ml N M2

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 18 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X, name, 7Y) OPT (?X, email, ?E))

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X. name, 7Y) OPT (?X, email, 7E))

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)
((?X, name, 7Y) OPT (?X, email, ?E))

X | ?Y

R1 | john

R> | paul

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

Example
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)
((?X, name, 7Y) OPT (?X, email, 7E))

X | ?Y

Ry | john

R> | paul

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 19 / 57

Simple example

((?X, name, 7Y) OPT (?X, email, 7E))

Example
X | Y
Ry | john
R> | paul

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

X

TE

Ry

JOed.ex

19 / 57

Simple example

((?X, name, 7Y) OPT (?X, email, ?E))

Example
X | Y
R1 | john
R> | paul

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

X

TE

Ry

JOed.ex

19 / 57

Simple example

Example
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)
((?X, name, 7Y) OPT (?X, email, ?E))

X | Y X | Y 7E

R1 | john

R> | paul

X

TE

Ry

JOed.ex

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

19 / 57

Simple example

Example
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)
((?X, name, 7Y) OPT (?X, email, ?E))

X | Y X | Y 7E

Ry | john Ry | john | J@ed.ex

R> | paul

X

TE

Ry

JOed.ex

» from the Join

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

19 / 57

Simple example

Example
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)
((?X, name, 7Y) OPT (?X, email, ?E))

X | Y X | Y 7E

R1 | john

R> | paul R> | paul

X

TE

Ry

JOed.ex

» from the Difference

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

19 / 57

Simple example

Example
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)
((?X, name, 7Y) OPT (?X, email, ?E))

X | Y X | Y 7E

Ry | john Ry | john | J@ed.ex

R> | paul R> | paul

X

TE

Ry

JOed.ex

» from the Union

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

19 / 57

Boolean filter expressions (value constraints)

In filter expressions we consider:
» equality = among variables and RDF terms
» unary predicate bound

» boolean combinations (A, V,)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 20 / 57

Satisfaction of value constraints

A mapping satisfies:
» 7X = c if it gives the value ¢ to variable 7X
» 7X =7Y if it gives the same value to 7X and 7Y
» bound(?X) if it is defined for 7.X

Definition
Evaluation of (P FILTER R): Set of mappings in the evaluation of
P that satisfy R.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 21 /57

The evaluation problem

Input:
A mapping, a graph pattern, and an RDF graph.

Question:
Is the mapping in the evaluation of the pattern against the graph?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 22 / 57

Evaluation of simple patterns is polynomial

Theorem

For patterns using only AND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern x size of the graph).

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 23 / 57

Evaluation of simple patterns is polynomial

Theorem

For patterns using only AND and FILTER operators (AND-FILTER
expressions), the evaluation problem is polynomial:

O(size of the pattern x size of the graph).

Proof idea
» Check that the mapping makes every triple to match.
» Then check that the mapping satisfies the FILTERs.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 23 / 57

Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete for AND-FILTER-UNION
expressions.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 24 / 57

Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete for AND-FILTER-UNION
expressions.

Proof idea
» Reduction from 3SAT.

» —bound is used to encode negation.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 24 / 57

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 25 / 57

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

Can we efficiently evaluate SPARQL queries in practice?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 25 / 57

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that include OPT operator, the evaluation
problem is PSPACE-complete.

Can we efficiently evaluate SPARQL queries in practice?

» We need to understand how the complexity depends on the
operators of SPARQL.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 25 / 57

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form
P; UNION P, UNION --- UNION P,

where each P; is UNION—free.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 26 / 57

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form
P; UNION P, UNION --- UNION P,

where each P; is UNION—free.

Graph pattern expressions are usually in this normal form.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 26 / 57

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form
P; UNION P, UNION --- UNION P,

where each P; is UNION—free.
Graph pattern expressions are usually in this normal form.

Corollary

The evaluation problem is polynomial for AND-FILTER-UNION
expressions in the UNION normal form.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 26 / 57

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 27 / 57

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea

» Reduction from QBF: A pattern encodes a quantified
propositional formula

Vx13dy1Vxodys - - - 1.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 27 / 57

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for
AND-FILTER-OPT expressions.

Proof idea

» Reduction from QBF: A pattern encodes a quantified
propositional formula

VX13y1VX23y2 tee Qﬁ
» Nested OPTs are used to encode quantifier alternation.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 27 / 57

PSPACE-hardness: A closer look

Assume ¢ = Vx;3y1 1, where ¥ = (x1 V —y1) A (—x1 V y1).

We generate G, P, and 1o such that o belongs to the answer of
P, over G iff ¢ is valid:

Ko

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ¢ = Vx;3y1 1, where ¥ = (x1 V —y1) A (—x1 V y1).

We generate G, P, and 1o such that o belongs to the answer of
P, over G iff ¢ is valid:

G : {(a,tv,0), (a,tv,1), (a,false,0), (a,true,1)}

Ko

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ¢ = Vx;3y1 1, where ¥ = (x1 V —y1) A (—x1 V y1).

We generate G, P, and 1o such that o belongs to the answer of
P, over G iff ¢ is valid:

G : {(a,tv,0), (a,tv,1), (a,false,0), (a,true,1)}
Ry + ((PXi=1v?Y1=0) A (?X1=0V7Y1 =1))
Py

Py

Ko

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ¢ = Vx;3y1 1, where ¥ = (x1 V —y1) A (—x1 V y1).

We generate G, P, and 1o such that o belongs to the answer of
P, over G iff ¢ is valid:

G : {(a,tv,0), (a,tv,1), (a,false,0), (a,true, 1)}
Ry : ((X1=1V?Y1=0) A (2X; =0V?Y; =1))
P, ¢ (((a,tv,?X1) AND (a,tv,?v;)) FILTER Ry)
P

Ko

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ¢ = Vx;3y1 1, where ¥ = (x1 V —y1) A (—x1 V y1).

We generate G, P, and 1o such that o belongs to the answer of
P, over G iff ¢ is valid:

G : {(a,tv,0), (a,tv,1), (a,false,0), (a,true, 1)}
Ry + (X1 =1V?Yi=0) A (2X; =0V?Y; = 1))
P, = (((a,tv,?X1) AND (a,tv,?Yy)) FILTER Ry)
P, : (atrue,7By) OPT (P1 OPT (Q: AND Py))

Ko

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

Assume ¢ = Vx;3y1 1, where ¥ = (x1 V —y1) A (—x1 V y1).

We generate G, P, and 1o such that o belongs to the answer of
P, over G iff ¢ is valid:

Ko

{(a,tv,0), (a,tv,1), (a,false,0), (a,true,1)}
(XL =1V?Y1=0) A (2X; =0V ?Y; =1))
(((a,tv,7X1) AND (a,tv,?Y)) FILTER Ry)
(a,true, ?By) OPT (P; OPT (@1 AND Py))

(7B 1}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 28 / 57

PSPACE-hardness: A closer look

o o Vxadyi (a Vo oy) A (exa Vo)
Py : (((atv,2X1) AND (a,tv,?Y)) FILTER
((7X1 =1Vv?Y; = 0) VAN (?Xl =0V?Y; = 1)))
P, : (a,true,?By) OPT (Py OPT (Q1 AND Py))
P (a,tv, 7X1)
@ : (a,tv,?X1) AND (a,tv,?Y1) AND (a,false, ?By)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPACE-hardness: A closer look

o o Vxadyi (a Vo oy) A (exa Vo)
Py : (((atv,2X1) AND (a,tv,?Y)) FILTER
((7X1 =1Vv?Y; = 0) VAN (?Xl =0V?Y; = 1)))
P, : (a,true,?By) OPT (Py OPT (Q1 AND Py))
P (a,tv, 7X1)
@ : (a,tv,?X1) AND (a,tv,?Y1) AND (a,false, ?By)

Bg—1

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPACE-hardness: A closer look

o o Vxadyi (a Vo oy) A (exa Vo)
Py : (((atv,2X1) AND (a,tv,?Y)) FILTER
((7X1 =1Vv?Y; = 0) VAN (?Xl =0V?Y; = 1)))
P, : (a,true,?By) OPT (Py OPT (Q1 AND Py))
P (a,tv, 7X1)
@ : (a,tv,?X1) AND (a,tv,?Y1) AND (a,false, ?By)

Py

Bg—1

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPACE-hardness: A closer look

o o Vxadyi (a Vo oy) A (exa Vo)
Py : (((atv,2X1) AND (a,tv,?Y)) FILTER
((7X1 =1Vv?Y; = 0) VAN (?Xl =0V?Y; = 1)))
P, : (a,true,?By) OPT (Py OPT (Q1 AND Py))
P (a,tv, 7X1)
@ : (a,tv,?X1) AND (a,tv,?Y1) AND (a,false, ?By)

Py Q1

/ X4 —=0 — ?X;—0 ?Yy— i ?Byp—0
Bg—1

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPA

M. Arenas —

CE-hardness: A closer look

o o Vxadyi (a Vo oy) A (exa Vo)
Py : (((atv,2X1) AND (a,tv,?Y)) FILTER
((7X1 =1Vv?Y; = 0) VAN (?Xl =0V?Y; = 1)))
P, : (a,true,?By) OPT (Py OPT (Q1 AND Py))
P (a,tv, 7X1)
@ : (a,tv,?X1) AND (a,tv,?Y1) AND (a,false, ?By)

Py Q1

X1 —0

X1 —0 ?Yy—i ?Bp—0

Bg—1

?Xl’_’l

SPARQL over RDF, and its possible extensions to RDFS 29 / 57

PSPA

M. Arenas —

CE-hardness: A closer look

o o Vxadyi (a Vo oy) A (exa Vo)
Py : (((atv,2X1) AND (a,tv,?Y)) FILTER
((7X1 =1Vv?Y; = 0) VAN (?Xl =0V?Y; = 1)))
P, : (a,true,?By) OPT (Py OPT (Q1 AND Py))
P (a,tv, 7X1)
@ : (a,tv,?X1) AND (a,tv,?Y1) AND (a,false, ?By)

Py Q1

X1 —0

X1 —0 ?Yy—i ?Bp—0

Bg—1

?X1>—>1 — ?X1>—>1 7Y10—>_] 730»—»0

SPARQL over RDF, and its possible extensions to RDFS 29 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a,true,?By) OPT (P; OPT (@ AND Py))

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a,true,?By) OPT (P; OPT (@ AND Py))

7B,

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a,true,?By) OPT (P; OPT (@ AND Py))

7B, 7B,

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a,true,?By) OPT (P; OPT (@ AND Py))

I 1

7B, X 7B,

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a,true,?By) OPT (P; OPT (@ AND Py))

I 1

7B, X 7B,

Is 7By giving optional information for P;?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a,true,?By) OPT (P; OPT (@ AND Py))

I 1

7B, X 7B,

Is 7By giving optional information for P;?

» No, 7By is giving optional information for (a, true, ?By)?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 30 / 57

AND-FILTER-OPT fragment: Reducing the complexity

Patterns in the reduction are not very natural:

(a,true,?By) OPT (P; OPT (@ AND Py))

I 1

7B, X 7B,

Is 7By giving optional information for P;?

» No, 7By is giving optional information for (a, true, ?By)?

These patterns rarely occur in practice.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 30 / 57

Well-designed patterns

Definition
An AND-FILTER-OPT pattern is well-designed if for every OPT in
the pattern:

(coreeneens (A OPT B) «oeeeenenen)

if a variable occurs

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 31 /57

Well-designed patterns

Definition
An AND-FILTER-OPT pattern is well-designed if for every OPT in
the pattern:

(coreeneens (A OPT B) «oeeeenenen)
T

if a variable occurs inside B

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 31 /57

Well-designed patterns

Definition
An AND-FILTER-OPT pattern is well-designed if for every OPT in
the pattern:

(coreeneens (A OPT B) «oeeeenenen)
T T T
if a variable occurs inside B and anywhere outside the OPT
operator,

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 31 /57

Well-designed patterns

Definition
An AND-FILTER-OPT pattern is well-designed if for every OPT in
the pattern:

(coreeneens (A OPT B) «oeeeenenen)
7 7 T 7

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 31 /57

Well-designed patterns

Definition
An AND-FILTER-OPT pattern is well-designed if for every OPT in
the pattern:

(coreeneens (A OPT B) «oeeeenenen)
7 7 T 7

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example

((?Y, name, paul) OPT (?X, email, ?2)) AND (?X, name, john)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 31 /57

Well-designed patterns

Definition
An AND-FILTER-OPT pattern is well-designed if for every OPT in
the pattern:

(coreeneens (A OPT B) «oeeeenenen)
7 7 T 7

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example

((?Y, name, paul) OPT (?X, email, ?2)) AND (?X, name, john)
7

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 31 /57

Well-designed patterns

Definition
An AND-FILTER-OPT pattern is well-designed if for every OPT in
the pattern:

(coreeneens (A OPT B) «oeeeenenen)
7 7 T 7

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example

((?Y, name, paul) OPT (?X, email, ?2)) AND (7X, name, john)
7 7

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 31 /57

Well-designed patterns

Definition
An AND-FILTER-OPT pattern is well-designed if for every OPT in
the pattern:

(coreeneens (A OPT B) «oeeeenenen)
7 7 T 7

if a variable occurs inside B and anywhere outside the OPT
operator, then the variable must also occur inside A.

Example

((?Y, name, paul) OPT (?X, email, ?2)) AND (7X, name, john)
X 7 7

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 31 /57

AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 32 /57

AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of the form
P; UNION P> UNION --- UNION Py, where each P; is a
well-designed AND-FILTER-OPT pattern.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 32 /57

AND-FILTER-OPT fragment: Reducing the complexity

Theorem

The evaluation problem is coNP-complete for well-designed
AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of the form
P; UNION P> UNION --- UNION Py, where each P; is a
well-designed AND-FILTER-OPT pattern.

Can we use this in practice?

» Well-designed patterns are suitable for optimization.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 32 /57

Classical optimization

» Classical optimization assumes null-rejection.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 33 /57

Classical optimization

» Classical optimization assumes null-rejection.

» null-rejection: the join/outer—join condition must fail in the
presence of nulls.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 33 /57

Classical optimization

» Classical optimization assumes null-rejection.

» null-rejection: the join/outer—join condition must fail in the
presence of nulls.

» SPARQL operations are not null-rejecting.
» by definition of compatible mappings.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 33 /57

Well-designed graph patterns and optimization

Consider the following rules:

(P, OPT P,) FILTERR) — ((P. FILTER R) OPT P,) (1)
(PL AND (P, OPT P3)) — ((P1 AND P,) OPT P3) (2)
(P, OPT P,) AND P;) — ((P. AND P;) OPT P,) (3)

Proposition

If P is a well-designed pattern and Q is obtained from P by
applying either (1) or (2) or (3), then Q is a well-designed pattern
equivalent to P.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 34 / 57

Well-designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns @1, ..., Qk such that:

P is constructed from @1, ..., Qk by using only the OPT operator.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 35/ 57

Well-designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns @1, ..., Qk such that:

P is constructed from @1, ..., Qk by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a pattern in OPT
normal form.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 35/ 57

Well-designed graph patterns and optimization

A graph pattern P is in OPT normal form if there exist
AND-FILTER patterns @1, ..., Qk such that:

P is constructed from @1, ..., Qk by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a pattern in OPT
normal form.

Patterns in OPT normal form can be evaluated more efficiently:

» AND-FILTER expressions are evaluated first, and then the results
are combined using the OPT operator.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 35/ 57

Outline

» RDF and RDFS: A brief introduction

» SPARQL: A query language for RDF

» Formal semantics
» Complexity of the evaluation problem
» Optimization methods

» SPARQL as a query language for RDFS

» Formal semantics and the closure of an RDFS graph

» NAV-SPARQL: A navigational query language for RDFS

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 36 / 57

Querying RDFS data

M. Arenas —

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf :range), type (rdf:type).

Evaluating queries which involve this vocabulary is
challenging.

There is not yet consensus in the Semantic Web community
on how to define a query language for RDFS.

SPARQL over RDF, and its possible extensions to RDFS 37 /57

A simple SPARQL query: (Ronaldinho, rdf : type, person)

M. Arenas

rdf :dom i rdf :range
person works_in company

rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
soccer_player <—@—» soccer_team
rdf :dom rdf :range
rdf:type rdf:type

) lays_i (
dinho prays-n Ba

rcelona

— SPARQL over RDF, and its possible extensions to RDFS 38 / 57

lives_in

SPARQL over RDFS

Checking whether a triple t is in a graph G is the basic step when
answering queries over RDF.

» For the case of RDFS, we need to check whether t is implied by G.

The notion of entailment in RDFS can be defined in terms of
classical notions such model, interpretation, etc.

» As for the case of first-order logic.

This notion can also be characterized by a set of inference rules.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 39 / 57

Entailment in RDFS

There are inference systems characterizing the notion of entailment
in RDFS:

_ (p,rdf:sp,q) (a,p,b)
Subproperty rules (a, q,b)

(a,rdf:sc,b) (b,rdf:sc,c)
(a,rdf:sc,c)

Subclass rules

(p,rdf:dom,c) (a,p,b)
(a,rdf:type, c)

Typing rules

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 40 / 57

SPARQL over RDFS: Closure of a graph

The closure of an RDFS graph G, denoted by cl(G), is the graph
obtained by adding to G all the triples that are implied by G.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 41 / 57

SPARQL over RDFS: Closure of a graph

The closure of an RDFS graph G, denoted by cl(G), is the graph
obtained by adding to G all the triples that are implied by G.

Basic step for answering queries over RDFS:

» Checking whether a tripe t is in cl(G).

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 41 / 57

SPARQL over RDFS: Closure of a graph

The closure of an RDFS graph G, denoted by cl(G), is the graph
obtained by adding to G all the triples that are implied by G.

Basic step for answering queries over RDFS:

» Checking whether a tripe t is in cl(G).

Definition
The RDFS-evaluation of a graph pattern P over an RDFS graph G
is defined as the evaluation of P over cl(G).

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 41 / 57

Example: (Ronaldinho, rdf :type, person) over the closure

[
rdf:sc |
)
/
“/
[

rdf:type |

kf :type

M. Arenas

person

/ rdf:sc
/
/

sportman

rdf:sc

{ soccer_player

N

N\

rdf :dom

works_in

rdf:sp

plays_in

rdf :range
company

rdf:sc

SPARQL over RDF, and its possible extensions to RDFS

soccer_team
rdf :range
rdf:type
l / plays_in (
Ronaldinho £ Barcelona
“ves_in

42 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G:

» Compute cl(G), and then evaluate P over cl(G) as for RDF.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G:
» Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G:

» Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

» The size of the closure of G can be quadratic in the size of G.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G:

» Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:
» The size of the closure of G can be quadratic in the size of G.

» Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G:

>

Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

>

>

M. Arenas —

The size of the closure of G can be quadratic in the size of G.

Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

The approach is not goal-oriented.

When evaluating (a, rdf :sc, b), a goal-oriented approach should
not compute cl(G):

» It should just verify whether there exists a path from a to b in
G where every edge has label rdf:sc.

SPARQL over RDF, and its possible extensions to RDFS 43 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

» A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

» A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

» A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:

» It is goal-oriented.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

» A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:
» It is goal-oriented.

> It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

» A query P over an RDFS graph G is answered by navigating G
(cl(G) is not computed).

This approach has some advantages:
» It is goal-oriented.

> It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

> Navigational operators allow to express natural queries that are not
expressible in SPARQL over RDFS.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 44 / 57

Outline

» RDF and RDFS: A brief introduction

» SPARQL: A query language for RDF

» Formal semantics
» Complexity of the evaluation problem
» Optimization methods

» SPARQL as a query language for RDFS

» Formal semantics and the closure of an RDFS graph

» NAV-SPARQL: A navigational query language for RDFS

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 45 / 57

Navigational axes

Forward axes for an RDF triple (a, p, b):

d, d
RO
next

Backward axes for an RDF triple (a, p, b):

edge™ node™!

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

46 / 57

A first attempt: 0-NAV-SPARQL

Syntax of navigational expressions:

exp = self | self:a | axis |

axis:a | exp/exp | explexp | exp”

where a € U and axis € {next, next™, edge, edge™, node,
node™t}.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 47 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

[self]l¢ = {(x,x)|xisin G}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

[self]l¢ = {(x,x)|xisin G}
[next]le¢ = {(x,y)|3zeU(x,z,y) € G}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

[self]l¢ = {(x,x)|xisin G}
[next]le¢ = {(x,y)|3zeU(x,z,y) € G}
HedgeﬂG = {(va) ‘326 U(X,y,Z)E G}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

[self]l¢ = {(x,x)|xisin G}

[next]le¢ = {(x,y)|3zeU(x,z,y) € G}

[edge]lc = {(x,y)|3z€U(x,y,z) € G}
[selfrale = {(a.2)}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions

is defined as follows:

[self]l¢ = {(x,x)|xisin G}
[next]le¢ = {(x,y)|3zeU(x,z,y) € G}
[edge]c = {(xy)|3z€U(xy,2) € G}
[selfrale = {(a.2)}
[nextzale = {(xy)[(x,a,y) € G}
M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions

is defined as follows:

[self]l¢ = {(x,x)|xisin G}

[next]le¢ = {(x,y)|3zeU(x,z,y) € G}

[edge]lc = {(x,y)|3z€U(x,y,z) € G}
[self:a]¢ = {(a,a)}
[next:ale = {(x,y)|(x,a,y) € G}
ledgerale = {(xy)|(xy.2) € G}

48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

[self]l¢ = {(x,x)|xisin G}
[next]le¢ = {(x,y)|3zeU(x,z,y) € G}
[[edgeﬂG = {(X,y)‘HZE U(X,y,Z)E G}
[self:a]¢ = {(a,a)}
[next:ale = {(x,y)|(x,a,y) € G}
[[edge::aﬂG - {(X,y) ‘ (X,y,a) € G}
[expi/expolc = {(x,y) |3z (x,z) € [exp;]¢ and

(z,y) € [expa] G}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions

is defined as follows:

[self]s
[next] g
[edge]c
[self:a]¢g
[next::a]¢
[edge::a] ¢
[exp1/expa] 6

[exp1|expa] 6

x,x) | xisin G}
x,y) |3z € U(x,z,y) € G}
x,y) |3z € U (x,y,z) € G}

(x,a,y) € G}

(x,y,a) € G}

3z (x, z) € [exp;] ¢ and
(z,y) € [expa]c}

lexpi]c U [expa]c

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

48 / 57

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

[self]l¢ = {(x,x)|xisin G}
[next]le = A{(x,y)|3ze U (x,z,y) € G}
[[edgeﬂG - {(va)|326 U(X,y,Z)E G}
[self:a]¢ = {(a,a)}
[next:al¢ = {(x,y)|(x,ay) € G}
[edge:ale = {(x,y)|(x,y,a) € G}
[expi/expolc = {(x,y) |3z (x,z) € [exp;]¢ and
(z,y) € [expa]c}
lexpilexpole = [expi]c U [expa]c
[exp*lc = [self]c U [exp]c U [exp/explc U

[exp/exp/exp]g U - -

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 48 / 57

A first attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x, exp,y), where exp is a navigational expression.

» Examples: (Ronaldinho, next::lives_in, Spain) and
(?X, (next::(rdf:sc))t, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X, exp, ?Y)
over an RDFS graph G is the set of mappings i such that

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 49 / 57

A first attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x, exp,y), where exp is a navigational expression.

» Examples: (Ronaldinho, next::lives_in, Spain) and
(?X, (next::(rdf:sc))t, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X, exp, ?Y)
over an RDFS graph G is the set of mappings i such that

» The domain of w is {?X,?Y}, and

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 49 / 57

A first attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x, exp,y), where exp is a navigational expression.

» Examples: (Ronaldinho, next::lives_in, Spain) and
(?X, (next::(rdf:sc))t, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X, exp, ?Y)
over an RDFS graph G is the set of mappings i such that

» The domain of w is {?X,?Y}, and
> (u(?X), 1(?Y)) € [explc

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 49 / 57

A first attempt: 0-NAV-SPARQL

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the
form (x, exp,y), where exp is a navigational expression.

» Examples: (Ronaldinho, next::lives_in, Spain) and
(?X, (next::(rdf:sc))t, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X, exp, ?Y)
over an RDFS graph G is the set of mappings i such that

» The domain of w is {?X,?Y}, and
> (u(?X), 1(?Y)) € [explc

Example: (7X, (next:lberia)™, ?Y) AND (?X, (next::AirFrance)™, ?7Y)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 49 / 57

Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
» Can we capture SPARQL over RDFS?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 50 / 57

Is 0-NAV-SPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?
» Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P, we would like to
find a 0-NAV-SPARQL pattern @ such that:

» RDFS-evaluation of P over G = evaluation of Q over G.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 50 / 57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 51 / 57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even for P = (7X,a,7Y), where a is
an arbitrary element in U.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 51 / 57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even for P = (7X,a,7Y), where a is
an arbitrary element in U.

How can we capture SPARQL over RDFS?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 51 / 57

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no
0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even for P = (7X,a,7Y), where a is
an arbitrary element in U.

How can we capture SPARQL over RDFS?
» We adopt the notion of branching from XPath.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 51 / 57

A successful attempt: NAV-SPARQL

Syntax of navigational expressions:

exp := self | self:a | axis |

axis::a | axis:[exp| | exp/exp | explexp | exp*

where a € U and axis € {next, next™, edge, edge™, node,
node™t}.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 52 / 57

A successful attempt: NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 53 / 57

A successful attempt: NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

[next:[expll¢ = A{(x,y)|3z,we U (x,z,y) € G and
(z,w) € [explc}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 53 / 57

A successful attempt: NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions
is defined as follows:

[next:[expll¢ = A{(x,y)|3z,we U (x,z,y) € G and
(z,w) € [explc}
[edge:[expll¢ = A{(x,y)|3z,we U (x,y,z) € G and

(z,w) € [explc}

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 53 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Example: (?X, a,?7Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X,next::[(next::(rdf:sp))*/(self::a)],?Y).

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 54 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Example: (?X, a,?7Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X,next::[(next::(rdf:sp))*/(self::a)],?Y).

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 54 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Example: (?X, a,?7Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X,next::[(next::(rdf:sp))*/(self::a)],?Y).

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

54 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL pattern
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 55 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL pattern
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea
Replace (7X,a,?Y) by (?X, R(a),?Y), where:

R(rdf:sc) = (next:(rdf:sc))”
R(rdf:sp) = (next:(rdf:sp))"

R(b) = next:[(next:(rdf:sp))*/(self::b)]

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 55 / 57

NAV-SPARQL: Capturing SPARQL over RDFS

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL pattern
Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea
Replace (7X,a,?Y) by (?X, R(a),?Y), where:
R(rdf:sc) = (next:(rdf:sc))”
R(rdf:sp) = (next:(rdf:sp))"
R(b) = next:[(next:(rdf:sp))*/(self::b)]

Note: R(rdf:type) uses next, edge and node™*.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 55 / 57

The extra expressive power of NAV-SPARQL

travel

rdf:sp rdf:sp

travel_train travel_ferry travel_bus
rdf:sp rdf:sp rdf:sp

travel_A travel_B travel_C

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

travel

rdf:sp rdf:sp

travel_train travel_ferry travel_bus
rdf:sp rdf:sp rdf:sp

travel_A travel_B travel_C

A natural query: (?X, (next::[(next::(rdf:sp))*/(self:travel)])™, ?Y)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

travel

rdf:sp rdf:sp

travel_train travel_ferry travel_bus
rdf:sp rdf:sp rdf:sp

travel_A travel_B travel_C
P

A natural query: (?X, (next::[(next::(rdf:sp))*/(self:travel)])™, ?Y)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

rdf: sp//////

travel_train

rdf:sp

P Calais

rdf:sp

rdf:sp

travel_ferry

travel B

t

Dover

travel_bus

rdf:sp

travel_C

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])t, ?Y)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

56 / 57

The extra expressive power of NAV-SPARQL

rdf: sp// rdf:sp

travel_train travel_bus

rdf:sp rdf:sp rdf:sp

travel B travel_.C
PP

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])t, ?Y)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

56 / 57

The extra expressive power of NAV-SPARQL

travel

rdf :M rdf :sp Nif :sp

travel_bus

rdf:sp rdf:sp rdf:sp

travel_train

travel_B

PP

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])t, ?Y)

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 56 / 57

The extra expressive power of NAV-SPARQL

travel

rdf: sp/ rdf:sp \"df :sp

travel_bus

rdf:sp rdf:sp rdf:sp

travel_train

travel_B

PP

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])t, ?Y)

» This query cannot be expressed in SPARQL over RDFS.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 56 / 57

Do

]
|||||
U

» Implementation of SPARQL.

«O>» «Fr « » 4= o>

Ongoing work

» Implementation of SPARQL.
» How useful are the optimization rules in practice?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

» Implementation of SPARQL.
» How useful are the optimization rules in practice?

» Implementation of NAV-SPARQL.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

» Implementation of SPARQL.
» How useful are the optimization rules in practice?

» Implementation of NAV-SPARQL.

» Can this language be implemented efficiently?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

» Implementation of SPARQL.
» How useful are the optimization rules in practice?

» Implementation of NAV-SPARQL.

» Can this language be implemented efficiently? Can this
language be used over large RDFS graphs?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

» Implementation of SPARQL.
» How useful are the optimization rules in practice?

» Implementation of NAV-SPARQL.

» Can this language be implemented efficiently? Can this
language be used over large RDFS graphs?

» |s the extra expressive power of NAV-SPARQL useful in
practice?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS

57 / 57

Ongoing work

» Implementation of SPARQL.

» How useful are the optimization rules in practice?

» Implementation of NAV-SPARQL.

» Can this language be implemented efficiently? Can this
language be used over large RDFS graphs?

» |s the extra expressive power of NAV-SPARQL useful in
practice?

» Is there a fragment of NAV-SPARQL which is also appropriate
for RDFS?

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 57 / 57

Ongoing work

» Implementation of SPARQL.
» How useful are the optimization rules in practice?

» Implementation of NAV-SPARQL.
» Can this language be implemented efficiently? Can this
language be used over large RDFS graphs?
» |s the extra expressive power of NAV-SPARQL useful in
practice?

» Is there a fragment of NAV-SPARQL which is also appropriate
for RDFS? One level of nesting is enough to capture SPARQL
over RDFS.

M. Arenas — SPARQL over RDF, and its possible extensions to RDFS 57 / 57

