SPARQL over RDF, and its possible extensions to RDFS

Marcelo Arenas

Department of Computer Science Pontificia Universidad Católica de Chile & Center for Web Research Universidad de Chile

M. Arenas - SPARQL over RDF, and its possible extensions to RDFS

- RDF and RDFS: A brief introduction
- SPARQL: A query language for RDF
 - Formal semantics
 - Complexity of the evaluation problem
 - Optimization methods
- SPARQL as a query language for RDFS
 - Formal semantics and the closure of an RDFS graph
- NAV-SPARQL: A navigational query language for RDFS

- RDF and RDFS: A brief introduction
- SPARQL: A query language for RDF
 - Formal semantics
 - Complexity of the evaluation problem
 - Optimization methods
- SPARQL as a query language for RDFS
 - Formal semantics and the closure of an RDFS graph
- NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge Pérez.

RDF and RDFS: A brief introduction

- SPARQL: A query language for RDF
 - Formal semantics
 - Complexity of the evaluation problem
 - Optimization methods
- SPARQL as a query language for RDFS
 - Formal semantics and the closure of an RDFS graph
- NAV-SPARQL: A navigational query language for RDFS

This is joint work with Claudio Gutierrez and Jorge Pérez.

- RDF is the W3C proposal framework for representing information in the Web.
- Abstract syntax based on directed labeled graph.
- Schema definition language (RDFS): Define new vocabulary (typing, inheritance of classes and properties).
- Formal semantics.

RDF formal model

- $U = \text{set of } \mathbf{U} \text{ris}$
- B = set of B lank nodes
- L = set of Literals

문어 문

RDF formal model

- $U = \text{set of } \mathbf{U} \text{ris}$
- B = set of B lank nodes
- L = set of Literals

$(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$ is called an RDF triple

RDF formal model

- U = set of U ris
- B = set of B lank nodes
- L = set of Literals

 $(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$ is called an RDF triple

A set of RDF triples is called an RDF graph

RDF: An example

- RDF and RDFS: A brief introduction
- SPARQL: A query language for RDF
 - Formal semantics
 - Complexity of the evaluation problem
 - Optimization methods
- SPARQL as a query language for RDFS
 - Formal semantics and the closure of an RDFS graph
- NAV-SPARQL: A navigational query language for RDFS

- SPARQL is the W3C candidate recommendation query language for RDF.
- SPARQL is a graph-matching query language.
- A SPARQL query consists of three parts:
 - > Pattern matching: optional, union, nesting, filtering.
 - Solution modifiers: projection, distinct, order, limit, offset.
 - Output part: construction of new triples,

```
SELECT ?Name ?Email
WHERE
{
    ?X :name ?Name
    ?X :email ?Email
}
```

```
SELECT ?Name ?Email
WHERE
{
    ?X :name ?Name
    ?X :email ?Email
}
```

```
SELECT ?Name ?Email
WHERE
{
    ?X :name ?Name
    ?X :email ?Email
}
```

3

17 ▶

문에 세종에 다

```
SELECT ?Name ?Email
WHERE
{
    ?X :name ?Name
    ?X :email ?Email
}
```

æ

물에 귀 문어 ?

A ► <

```
SELECT ?Name ?Email
WHERE
{
    ?X :name ?Name
    ?X :email ?Email
}
```

In general, in a query we have:

H ←

Head: processing of some variables.

```
SELECT ?Name ?Email
WHERE
{
    ?X :name ?Name
    ?X :email ?Email
}
```

In general, in a query we have:

 $H \leftarrow P$

- Head: processing of some variables.
- Body: pattern matching expression.

```
SELECT ?Name ?Email
WHERE
{
    ?X :name ?Name
    ?X :email ?Email
}
```

In general, in a query we have:

 $H \leftarrow P$

- Head: processing of some variables.
- Body: pattern matching expression.

We focus on *P*.

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering

{ P1 P2 }

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering

{ { P1 P2 OPTIONAL { P5 } } { P3 P4 **OPTIONAL** { P7 } } }

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering

```
{ { P1
    P2
    OPTIONAL { P5 } }
  { P3
    P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
}
```

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering

```
{ { P1
    P2
    OPTIONAL { P5 } }
  { P3
    P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
}
UNTON
{ P9 }
```

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering

```
{ { P1
    P2
    OPTIONAL { P5 } }
  { P3
    P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
}
UNTON
{ P9
 FILTER (R) }
```

A formal semantics for SPARQL

A formal approach would be beneficial for:

- Clarifying corner cases
- Helping in the implementation process
- Providing sound foundations

A formal semantics for SPARQL

A formal approach would be beneficial for:

- Clarifying corner cases
- Helping in the implementation process
- Providing sound foundations

In this presentation:

- A formal compositional semantics for SPARQL
- A study of the complexity of evaluating SPARQL
- Optimization procedures

A standard algebraic syntax

Triple patterns: just triples + variables, without blanks	
?X :name "john"	(?X, name, john)
Graph patterns: full parenthesized algebra	
{ P1 P2 }	$(P_1 \text{ AND } P_2)$
{ P1 OPTIONAL { P2 }}	(<i>P</i> ₁ OPT <i>P</i> ₂)
{ P1 } UNION { P2 }	$(P_1 \text{ UNION } P_2)$
{ P1 FILTER (R) }	$(P_1 \text{ FILTER } R)$
original SPARQL syntax	algebraic syntax

æ

э

A standard algebraic syntax

Explicit precedence/association

▶ ★ 臣 ▶ ★ 臣 ▶

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

The evaluation of a pattern results in a set of mappings.

M. Arenas - SPARQL over RDF, and its possible extensions to RDFS

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

The evaluation of a pattern results in a set of mappings.

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that

make t to match the graph

Given an RDF graph and a triple pattern t

Definition

The evaluation of t is the set of mappings that

- make t to match the graph
- have as domain the variables in t.

Given an RDF graph and a triple pattern t

Given an RDF graph and a triple pattern t

Given an RDF graph and a triple pattern t

Definition

Two mappings are compatible if they agree in their shared variables.

Example

	?X	?Y	?Z	?V
μ_{1} :	R_1	john		
μ_2 :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2

- ∢ ≣ →

Definition

Two mappings are compatible if they agree in their shared variables.

- ∢ ≣ →

Definition

Two mappings are compatible if they agree in their shared variables.

Definition

Two mappings are compatible if they agree in their shared variables.

Example

Definition

Two mappings are compatible if they agree in their shared variables.

Example

	?X	?Y	?Z	?V
μ_{1} :	R_1	john		
μ_{2} :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2
$\mu_1\cup\mu_2$:	R_1	john	J@edu.ex	
$\mu_1\cup\mu_3$:	R_1	john	P@edu.ex	R_2

- ∢ ≣ →

Definition

Two mappings are compatible if they agree in their shared variables.

Example

	?X	?Y	?Z	?V
μ_{1} :	R_1	john		
μ_2 :	R_1		J@edu.ex	
μ_{3} :			P@edu.ex	R_2
$\mu_1\cup\mu_2$:	R_1	john	J@edu.ex	
$\mu_1\cup\mu_3$:	R_1	john	P@edu.ex	R_2

• μ_2 and μ_3 are not compatible

Let M_1 and M_2 be sets of mappings:

Definition

Let M_1 and M_2 be sets of mappings:

Definition

Join: $M_1 \bowtie M_2$

• extending mappings in M_1 with compatible mappings in M_2

Let M_1 and M_2 be sets of mappings:

Definition

Join: $M_1 \bowtie M_2$

• extending mappings in M_1 with compatible mappings in M_2

Difference: $M_1 \smallsetminus M_2$

• mappings in M_1 that cannot be extended with mappings in M_2

Let M_1 and M_2 be sets of mappings:

Definition

Join: $M_1 \bowtie M_2$

• extending mappings in M_1 with compatible mappings in M_2

Difference: $M_1 \smallsetminus M_2$

• mappings in M_1 that cannot be extended with mappings in M_2

Union: $M_1 \cup M_2$

• mappings in M_1 plus mappings in M_2 (set theoretical union)

Let M_1 and M_2 be sets of mappings:

Definition

Join: $M_1 \bowtie M_2$

• extending mappings in M_1 with compatible mappings in M_2

Difference: $M_1 \smallsetminus M_2$

• mappings in M_1 that cannot be extended with mappings in M_2

Union: $M_1 \cup M_2$

• mappings in M_1 plus mappings in M_2 (set theoretical union)

Definition

Left Outer Join: $M_1 \bowtie M_2 = (M_1 \bowtie M_2) \cup (M_1 \smallsetminus M_2)$

- 4 同 2 4 回 2 4 回 2 4

 Definition

 The evaluation of:

 $(P_1 \text{ AND } P_2)$
 $(P_1 \text{ UNION } P_2)$
 $(P_1 \text{ OPT } P_2)$

DefinitionThe evaluation of: $(P_1 \text{ AND } P_2) \rightarrow (P_1 \text{ UNION } P_2) \rightarrow (P_1 \text{ OPT } P_2) \rightarrow (P_1 \text$

DefinitionThe evaluation of: $(P_1 \text{ AND } P_2) \rightarrow M_1 \Join M_2$ $(P_1 \text{ UNION } P_2) \rightarrow M_1 \cup M_2$ $(P_1 \text{ OPT } P_2) \rightarrow$

DefinitionThe evaluation of: $(P_1 \text{ AND } P_2) \rightarrow M_1 \Join M_2$ $(P_1 \text{ UNION } P_2) \rightarrow M_1 \cup M_2$ $(P_1 \text{ OPT } P_2) \rightarrow M_1 \bowtie M_2$

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

æ

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

æ

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

æ

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

?X	?Y
R_1	john
R_2	paul

æ

▲□→ ▲ □→ ▲ □→

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

?X	?Y
R_1	john
R_2	paul

<回> < 注> < 注>

æ

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

?X	?Y
R_1	john
R_2	paul

<回> < 注> < 注>

æ

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

æ

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

► from the Join

э

伺 と く ヨ と く ヨ と

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

from the Difference

э

伺 と く ヨ と く ヨ と

Example

 $(R_1, name, john)$ $(R_1, email, J@ed.ex)$ $(R_2, name, paul)$

((?X, name, ?Y) OPT (?X, email, ?E))

from the Union

э

In filter expressions we consider:

- equality = among variables and RDF terms
- unary predicate bound
- ▶ boolean combinations (∧, ∨, ¬)

Satisfaction of value constraints

A mapping satisfies:

- ?X = c if it gives the value c to variable ?X
- ?X =?Y if it gives the same value to ?X and ?Y
- bound(?X) if it is defined for ?X

Definition

Evaluation of (P FILTER R): Set of mappings in the evaluation of P that satisfy R.

Input:

A mapping, a graph pattern, and an RDF graph.

Question:

Is the mapping in the evaluation of the pattern against the graph?

Theorem

For patterns using only AND and FILTER operators (AND-FILTER expressions), the evaluation problem is polynomial:

 $O(size of the pattern \times size of the graph).$

Theorem

For patterns using only AND and FILTER operators (AND-FILTER expressions), the evaluation problem is polynomial:

 $O(size of the pattern \times size of the graph).$

Proof idea

- Check that the mapping makes every triple to match.
- Then check that the mapping satisfies the FILTERs.

Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete for AND-FILTER-UNION expressions.

Evaluation including UNION is NP-complete

Theorem

The evaluation problem is NP-complete for AND-FILTER-UNION expressions.

Proof idea

- Reduction from 3SAT.
- ▶ ¬ bound is used to encode negation.

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that include OPT operator, the evaluation problem is PSPACE-complete.

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that include OPT operator, the evaluation problem is PSPACE-complete.

Can we efficiently evaluate SPARQL queries in practice?

In general: Evaluation problem is PSPACE-complete

Theorem

For general patterns that include OPT operator, the evaluation problem is PSPACE-complete.

Can we efficiently evaluate SPARQL queries in practice?

 We need to understand how the complexity depends on the operators of SPARQL.

A simple normal from

Proposition (UNION Normal Form)

Every graph pattern is equivalent to one of the form

 P_1 UNION P_2 UNION \cdots UNION P_n

where each P_i is UNION-free.
A simple normal from

Proposition (UNION Normal Form) Every graph pattern is equivalent to one of the form P_1 UNION P_2 UNION \cdots UNION P_n where each P_i is UNION-free.

Graph pattern expressions are usually in this normal form.

A simple normal from

Proposition (UNION Normal Form) Every graph pattern is equivalent to one of the form P_1 UNION P_2 UNION \cdots UNION P_n where each P_i is UNION-free.

Graph pattern expressions are usually in this normal form.

Corollary

The evaluation problem is polynomial for AND-FILTER-UNION expressions in the UNION normal form.

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for AND-FILTER-OPT expressions.

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for AND-FILTER-OPT expressions.

Proof idea

 Reduction from QBF: A pattern encodes a quantified propositional formula

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 \cdots \psi.$$

PSPACE-completeness: A stronger lower bound

Theorem

The evaluation problem remains PSPACE-complete for AND-FILTER-OPT expressions.

Proof idea

 Reduction from QBF: A pattern encodes a quantified propositional formula

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 \cdots \psi.$$

Nested OPTs are used to encode quantifier alternation.

Assume $\varphi = \forall x_1 \exists y_1 \psi$, where $\psi = (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1)$.

We generate G, P_{φ} and μ_0 such that μ_0 belongs to the answer of P_{φ} over G iff φ is valid:

3

Assume $\varphi = \forall x_1 \exists y_1 \psi$, where $\psi = (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1)$.

We generate G, P_{φ} and μ_0 such that μ_0 belongs to the answer of P_{φ} over G iff φ is valid:

- G : {(a,tv,0), (a,tv,1), (a,false,0), (a,true,1)}
- R_ψ :
- P_{ψ} :
- P_{φ} :
- μ_0 :

Assume $\varphi = \forall x_1 \exists y_1 \psi$, where $\psi = (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1)$.

We generate G, P_{φ} and μ_0 such that μ_0 belongs to the answer of P_{φ} over G iff φ is valid:

G : {(a,tv,0), (a,tv,1), (a,false,0), (a,true,1)}

$$R_{\psi} \quad : \quad ((?X_1 = 1 \lor ?Y_1 = 0) \land (?X_1 = 0 \lor ?Y_1 = 1))$$

$$P_{\psi}$$
 :

$$P_{arphi}$$
 :

 μ_0 :

Assume $\varphi = \forall x_1 \exists y_1 \psi$, where $\psi = (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1)$.

We generate G, P_{φ} and μ_0 such that μ_0 belongs to the answer of P_{φ} over G iff φ is valid:

G : {(a,tv,0), (a,tv,1), (a,false,0), (a,true,1)}

$$R_{\psi} : ((?X_1 = 1 \lor ?Y_1 = 0) \land (?X_1 = 0 \lor ?Y_1 = 1))$$

- P_{ψ} : ((($a, tv, ?X_1$) AND ($a, tv, ?Y_1$)) FILTER R_{ψ})
- P_{arphi} :

 μ_{0} :

Assume $\varphi = \forall x_1 \exists y_1 \psi$, where $\psi = (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1)$.

We generate G, P_{φ} and μ_0 such that μ_0 belongs to the answer of P_{φ} over G iff φ is valid:

G : {(a,tv,0), (a,tv,1), (a,false,0), (a,true,1)}

$$R_{\psi} : ((?X_1 = 1 \lor ?Y_1 = 0) \land (?X_1 = 0 \lor ?Y_1 = 1))$$

- P_{ψ} : ((($a, tv, ?X_1$) AND ($a, tv, ?Y_1$)) FILTER R_{ψ})
- P_{φ} : (a,true,? B_0) OPT (P_1 OPT (Q_1 AND P_{ψ}))

 μ_0 :

Assume $\varphi = \forall x_1 \exists y_1 \psi$, where $\psi = (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1)$.

We generate G, P_{φ} and μ_0 such that μ_0 belongs to the answer of P_{φ} over G iff φ is valid:

G : {(a,tv,0), (a,tv,1), (a,false,0), (a,true,1)}

$$R_{\psi} : ((?X_1 = 1 \lor ?Y_1 = 0) \land (?X_1 = 0 \lor ?Y_1 = 1))$$

- P_{ψ} : ((($a, tv, ?X_1$) AND ($a, tv, ?Y_1$)) FILTER R_{ψ})
- P_{φ} : (a,true,? B_0) OPT (P_1 OPT (Q_1 AND P_{ψ}))
- μ_0 : $\{?B_0 \mapsto 1\}$

э

A B F A B F

 $B_0 \mapsto 1$

æ

▶ * 문 ▶ * 문 ▶

п

$$?B_0 \mapsto 1$$

æ

- ▲ 문 ▶ - ▲ 문 ▶

$$\varphi : \forall x_1 \exists y_1 (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1) \\ P_{\psi} : (((a, tv, ?X_1) AND (a, tv, ?Y_1)) FILTER \\ ((?X_1 = 1 \lor ?Y_1 = 0) \land (?X_1 = 0 \lor ?Y_1 = 1))) \\ P_{\varphi} : (a, true, ?B_0) OPT (P_1 OPT (Q_1 AND P_{\psi})) \\ P_1 : (a, tv, ?X_1) \\ Q_1 : (a, tv, ?X_1) AND (a, tv, ?Y_1) AND (a, false, ?B_0) \\ P_1 \qquad Q_1 \\ ?X_1 \mapsto 0 \qquad ?X_1 \mapsto 0 ?Y_1 \mapsto i ?B_0 \mapsto 0 \\ ?B_0 \mapsto 1$$

æ

(★ 문 ► ★ 문 ►

$$\varphi : \forall x_1 \exists y_1 (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1) \\ P_{\psi} : (((a, tv, ?X_1) AND (a, tv, ?Y_1)) FILTER \\ ((?X_1 = 1 \lor ?Y_1 = 0) \land (?X_1 = 0 \lor ?Y_1 = 1))) \\ P_{\varphi} : (a, true, ?B_0) OPT (P_1 OPT (Q_1 AND P_{\psi})) \\ P_1 : (a, tv, ?X_1) \\ Q_1 : (a, tv, ?X_1) AND (a, tv, ?Y_1) AND (a, false, ?B_0) \\ P_1 \qquad Q_1 \\ ?X_1 \mapsto 0 \longrightarrow ?X_1 \mapsto 0 ?Y_1 \mapsto i ?B_0 \mapsto 0 \\ ?B_0 \mapsto 1$$

æ

(本部) (本語) (本語) (

$$\varphi : \forall x_1 \exists y_1 (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1) \\ P_{\psi} : (((a, tv, ?X_1) AND (a, tv, ?Y_1)) FILTER \\ ((?X_1 = 1 \lor ?Y_1 = 0) \land (?X_1 = 0 \lor ?Y_1 = 1))) \\ P_{\varphi} : (a, true, ?B_0) OPT (P_1 OPT (Q_1 AND P_{\psi})) \\ P_1 : (a, tv, ?X_1) \\ Q_1 : (a, tv, ?X_1) AND (a, tv, ?Y_1) AND (a, false, ?B_0) \\ P_1 \qquad Q_1 \\ ?X_1 \mapsto 0 \longrightarrow ?X_1 \mapsto 0 ?Y_1 \mapsto i ?B_0 \mapsto 0 \\ ?B_0 \mapsto 1 \qquad ?X_1 \mapsto 1 ?Y_1 \mapsto j ?B_0 \mapsto 0$$

æ

(★ 문 ► ★ 문 ►

Patterns in the reduction are not very natural:

 $(a, \text{true}, ?B_0)$ OPT $(P_1 \text{ OPT } (Q_1 \text{ AND } P_{\psi}))$

Patterns in the reduction are not very natural:

$$(a, \texttt{true}, ?B_0)$$
 OPT $(P_1$ OPT $(Q_1$ AND $P_{\psi}))$

$$\uparrow$$
 $?B_0$

Patterns in the reduction are not very natural:

Patterns in the reduction are not very natural:

$$(a, \text{true}, ?B_0) \quad \text{OPT} \quad (P_1 \quad \text{OPT} \quad (Q_1 \quad \text{AND} \quad P_{\psi}))$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$?B_0 \qquad \times \qquad ?B_0$$

Patterns in the reduction are not very natural:

$$(a, \text{true}, ?B_0) \quad \text{OPT} \quad (P_1 \quad \text{OPT} \quad (Q_1 \quad \text{AND} \quad P_{\psi}))$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$?B_0 \qquad \times \qquad ?B_0$$

Is P_0 giving optional information for P_1 ?

Patterns in the reduction are not very natural:

$$(a, \text{true}, ?B_0) \quad \text{OPT} \quad (P_1 \quad \text{OPT} \quad (Q_1 \quad \text{AND} \quad P_{\psi}))$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$?B_0 \qquad \times \qquad ?B_0$$

Is P_0 giving optional information for P_1 ?

▶ No, $?B_0$ is giving optional information for $(a, true, ?B_0)$?

Patterns in the reduction are not very natural:

$$(a, \text{true}, ?B_0) \quad \text{OPT} \quad (P_1 \quad \text{OPT} \quad (Q_1 \quad \text{AND} \quad P_{\psi}))$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$?B_0 \qquad \times \qquad ?B_0$$

Is P_0 giving optional information for P_1 ?

▶ No, $?B_0$ is giving optional information for $(a, true, ?B_0)$?

These patterns rarely occur in practice.

Definition

An AND-FILTER-OPT pattern is well-designed if for every OPT in the pattern:

 $(\cdots \cdots (A \text{ OPT } B) \cdots)$

Definition

An AND-FILTER-OPT pattern is well-designed if for every OPT in the pattern:

$$(\cdots (A \text{ OPT } B) \cdots)$$

Definition

An AND-FILTER-OPT pattern is well-designed if for every OPT in the pattern:

$$\begin{pmatrix} \cdots \cdots \cdots & (A \text{ OPT } B) \cdots \cdots \end{pmatrix} \uparrow \uparrow \uparrow \uparrow$$

Definition

An AND-FILTER-OPT pattern is well-designed if for every OPT in the pattern:

$$\begin{pmatrix} \cdots \cdots \cdots & (A \text{ OPT } B) \cdots \cdots \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

Definition

An AND-FILTER-OPT pattern is well-designed if for every OPT in the pattern:

$$\begin{pmatrix} \cdots \cdots \cdots & (A \text{ OPT } B) \cdots \cdots \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

if a variable occurs inside B and anywhere outside the OPT operator, then the variable must also occur inside A.

Example

$$\left((?Y, \mathsf{name, paul}) \mathsf{OPT} (?X, \mathsf{email}, ?Z)
ight)$$
 AND $(?X, \mathsf{name, john})$

Definition

An AND-FILTER-OPT pattern is well-designed if for every OPT in the pattern:

$$\begin{pmatrix} \cdots \cdots \cdots & (A \text{ OPT } B) \cdots \cdots \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

if a variable occurs inside B and anywhere outside the OPT operator, then the variable must also occur inside A.

Example

$$\left((?Y, \text{ name, paul}) \text{ OPT}(?X, \text{ email}, ?Z)\right) \text{ AND }(?X, \text{ name, john})$$

Definition

An AND-FILTER-OPT pattern is well-designed if for every OPT in the pattern:

$$\begin{pmatrix} \cdots \cdots \cdots & (A \text{ OPT } B) \cdots \cdots \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

if a variable occurs inside B and anywhere outside the OPT operator, then the variable must also occur inside A.

Example $\left((?Y, name, paul) \text{ OPT } (?X, email, ?Z) \right) \text{ AND } (?X, name, john)$ $\uparrow \qquad \uparrow$

Definition

An AND-FILTER-OPT pattern is well-designed if for every OPT in the pattern:

$$\begin{pmatrix} \cdots \cdots \cdots & (A \text{ OPT } B) \cdots \cdots \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

if a variable occurs inside B and anywhere outside the OPT operator, then the variable must also occur inside A.

Example (?Y, name, paul) OPT (?X, email, ?Z) \land \uparrow \uparrow

Theorem

The evaluation problem is coNP-complete for well-designed AND-FILTER-OPT patterns.

Theorem

The evaluation problem is coNP-complete for well-designed AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of the form P_1 UNION P_2 UNION \cdots UNION P_k , where each P_i is a well-designed AND-FILTER-OPT pattern.

Theorem

The evaluation problem is coNP-complete for well-designed AND-FILTER-OPT patterns.

Corollary

The evaluation problem is coNP-complete for patterns of the form P_1 UNION P_2 UNION \cdots UNION P_k , where each P_i is a well-designed AND-FILTER-OPT pattern.

Can we use this in practice?

► Well-designed patterns are suitable for optimization.

Classical optimization assumes null-rejection.

- null-rejection: the join/outer-join condition must fail in the presence of nulls.
- SPARQL operations are not null-rejecting.
 - by definition of compatible mappings.
Classical optimization assumes null-rejection.

 null-rejection: the join/outer-join condition must fail in the presence of nulls.

SPARQL operations are not null-rejecting.

by definition of compatible mappings.

Classical optimization assumes null-rejection.

- null-rejection: the join/outer-join condition must fail in the presence of nulls.
- SPARQL operations are not null-rejecting.
 - by definition of compatible mappings.

Consider the following rules:

- $((P_1 \text{ OPT } P_2) \text{ FILTER } R) \longrightarrow ((P_1 \text{ FILTER } R) \text{ OPT } P_2)$ (1)
 - $(P_1 \text{ AND } (P_2 \text{ OPT } P_3)) \longrightarrow ((P_1 \text{ AND } P_2) \text{ OPT } P_3)$ (2)
 - $((P_1 \text{ OPT } P_2) \text{ AND } P_3) \longrightarrow ((P_1 \text{ AND } P_3) \text{ OPT } P_2)$ (3)

Proposition

If P is a well-designed pattern and Q is obtained from P by applying either (1) or (2) or (3), then Q is a well-designed pattern equivalent to P.

A I > A I > A

A graph pattern P is in OPT normal form if there exist AND-FILTER patterns Q_1, \ldots, Q_k such that:

P is constructed from Q_1, \ldots, Q_k by using only the OPT operator.

A graph pattern P is in OPT normal form if there exist AND-FILTER patterns Q_1, \ldots, Q_k such that:

P is constructed from Q_1, \ldots, Q_k by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a pattern in OPT normal form.

A graph pattern P is in OPT normal form if there exist AND-FILTER patterns Q_1, \ldots, Q_k such that:

P is constructed from Q_1, \ldots, Q_k by using only the OPT operator.

Theorem

Every well-designed pattern is equivalent to a pattern in OPT normal form.

Patterns in OPT normal form can be evaluated more efficiently:

 AND-FILTER expressions are evaluated first, and then the results are combined using the OPT operator.

Outline

- RDF and RDFS: A brief introduction
- SPARQL: A query language for RDF
 - Formal semantics
 - Complexity of the evaluation problem
 - Optimization methods
- SPARQL as a query language for RDFS
 - Formal semantics and the closure of an RDFS graph
- NAV-SPARQL: A navigational query language for RDFS

- RDFS extends RDF with a schema vocabulary: subPropertyOf (rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range (rdf:range), type (rdf:type).
- Evaluating queries which involve this vocabulary is challenging.
- There is not yet consensus in the Semantic Web community on how to define a query language for RDFS.

A simple SPARQL query: (Ronaldinho, rdf:type, person)

Checking whether a triple t is in a graph G is the basic step when answering queries over RDF.

For the case of RDFS, we need to check whether t is implied by G.

The notion of entailment in RDFS can be defined in terms of classical notions such model, interpretation, etc.

As for the case of first-order logic.

This notion can also be characterized by a set of inference rules.

Entailment in RDFS

There are inference systems characterizing the notion of entailment in RDFS:

Subproperty rules:
$$\frac{(p, rdf:sp, q) \quad (a, p, b)}{(a, q, b)}$$
Subclass rules: $\frac{(a, rdf:sc, b) \quad (b, rdf:sc, c)}{(a, rdf:sc, c)}$ Typing rules: $\frac{(p, rdf:dom, c) \quad (a, p, b)}{(a, rdf:type, c)}$

. . .

A B F A B F

The closure of an RDFS graph G, denoted by cl(G), is the graph obtained by adding to G all the triples that are implied by G.

The closure of an RDFS graph G, denoted by cl(G), is the graph obtained by adding to G all the triples that are implied by G.

Basic step for answering queries over RDFS:

► Checking whether a tripe *t* is in cl(*G*).

The closure of an RDFS graph G, denoted by cl(G), is the graph obtained by adding to G all the triples that are implied by G.

Basic step for answering queries over RDFS:

► Checking whether a tripe *t* is in cl(*G*).

Definition

The *RDFS-evaluation of a graph pattern* P over an *RDFS graph* G is defined as the evaluation of P over cl(G).

Example: (Ronaldinho, rdf:type, person) over the closure

A simple approach for answering a SPARQL query P over an RDFS graph G:

▶ Compute cl(G), and then evaluate P over cl(G) as for RDF.

A simple approach for answering a SPARQL query P over an RDFS graph G:

• Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

A simple approach for answering a SPARQL query P over an RDFS graph G:

• Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

▶ The size of the closure of *G* can be quadratic in the size of *G*.

A simple approach for answering a SPARQL query P over an RDFS graph G:

• Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

- ▶ The size of the closure of *G* can be quadratic in the size of *G*.
- Once the closure has been computed, all the queries are evaluated over a graph which can be much larger than the original graph.

A simple approach for answering a SPARQL query P over an RDFS graph G:

• Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

- ▶ The size of the closure of *G* can be quadratic in the size of *G*.
- Once the closure has been computed, all the queries are evaluated over a graph which can be much larger than the original graph.
- ▶ The approach is not goal-oriented.

When evaluating (a, rdf:sc, b), a goal-oriented approach should not compute cl(G):

It should just verify whether there exists a path from a to b in G where every edge has label rdf:sc.

伺 とう ほう うちょう

The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS.

The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

► A query P over an RDFS graph G is answered by navigating G (cl(G) is not computed).

The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

► A query P over an RDFS graph G is answered by navigating G (cl(G) is not computed).

This approach has some advantages:

The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

► A query P over an RDFS graph G is answered by navigating G (cl(G) is not computed).

This approach has some advantages:

It is goal-oriented.

The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

► A query P over an RDFS graph G is answered by navigating G (cl(G) is not computed).

This approach has some advantages:

- It is goal-oriented.
- It has been used to design query languages for XML (e.g., XPath and XQuery). The results for these languages can be used here.

The example (a, rdf:sc, b) suggests that a query language with navigational capabilities could be appropriate for RDFS.

Our approach: Extend SPARQL with navigational capabilities.

► A query P over an RDFS graph G is answered by navigating G (cl(G) is not computed).

This approach has some advantages:

- It is goal-oriented.
- It has been used to design query languages for XML (e.g., XPath and XQuery). The results for these languages can be used here.
- Navigational operators allow to express natural queries that are not expressible in SPARQL over RDFS.

向下 イヨト イヨト

Outline

- RDF and RDFS: A brief introduction
- SPARQL: A query language for RDF
 - Formal semantics
 - Complexity of the evaluation problem
 - Optimization methods
- SPARQL as a query language for RDFS
 - Formal semantics and the closure of an RDFS graph
- NAV-SPARQL: A navigational query language for RDFS

Navigational axes

Forward axes for an RDF triple (a, p, b):

Backward axes for an RDF triple (a, p, b):

Syntax of navigational expressions:

```
exp := self | self::a | axis |
axis::a | exp/exp | exp|exp | exp^*
```

where $a \in U$ and $axis \in \{next, next^{-1}, edge, edge^{-1}, node, node^{-1}\}$.

A first attempt: 0-NAV-SPARQL

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions is defined as follows:

 $[[self]]_G = \{(x,x) \mid x \text{ is in } G\}$

A first attempt: 0-NAV-SPARQL

Given an RDFS graph G, the semantics of navigational expressions is defined as follows:

 $[self]_G = \{(x,x) \mid x \text{ is in } G \}$ $[next]_G = \{(x,y) \mid \exists z \in U \ (x,z,y) \in G \}$

$$\begin{split} \llbracket \texttt{self} \rrbracket_G &= \{(x,x) \mid x \text{ is in } G \} \\ \llbracket \texttt{next} \rrbracket_G &= \{(x,y) \mid \exists z \in U \ (x,z,y) \in G \} \\ \llbracket \texttt{edge} \rrbracket_G &= \{(x,y) \mid \exists z \in U \ (x,y,z) \in G \} \end{split}$$

$$\begin{split} & [\![\texttt{self}]\!]_G = \{(x,x) \mid x \text{ is in } G \} \\ & [\![\texttt{next}]\!]_G = \{(x,y) \mid \exists z \in U \ (x,z,y) \in G \} \\ & [\![\texttt{edge}]\!]_G = \{(x,y) \mid \exists z \in U \ (x,y,z) \in G \} \\ & \texttt{self::a}\!]_G = \{(a,a)\} \end{split}$$

$$\begin{split} \llbracket \texttt{self} \rrbracket_G &= \{(x,x) \mid x \text{ is in } G \} \\ \llbracket \texttt{next} \rrbracket_G &= \{(x,y) \mid \exists z \in U \ (x,z,y) \in G \} \\ \llbracket \texttt{edge} \rrbracket_G &= \{(x,y) \mid \exists z \in U \ (x,y,z) \in G \} \\ \llbracket \texttt{self} :: a \rrbracket_G &= \{(a,a) \} \\ \llbracket \texttt{next} :: a \rrbracket_G &= \{(x,y) \mid (x,a,y) \in G \} \end{split}$$
$$\begin{split} \llbracket \texttt{self} \rrbracket_G &= \{(x,x) \mid x \text{ is in } G \} \\ \llbracket \texttt{next} \rrbracket_G &= \{(x,y) \mid \exists z \in U \; (x,z,y) \in G \} \\ \llbracket \texttt{edge} \rrbracket_G &= \{(x,y) \mid \exists z \in U \; (x,y,z) \in G \} \\ \llbracket \texttt{self::a} \rrbracket_G &= \{(x,y) \mid (x,a,y) \in G \} \\ \llbracket \texttt{next::a} \rrbracket_G &= \{(x,y) \mid (x,y,a) \in G \} \\ \llbracket \texttt{edge::a} \rrbracket_G &= \{(x,y) \mid (x,y,a) \in G \} \\ \llbracket \texttt{exp}_1/\texttt{exp}_2 \rrbracket_G &= \{(x,y) \mid \exists z \; (x,z) \in \llbracket \texttt{exp}_1 \rrbracket_G \text{ and} \\ & (z,y) \in \llbracket \texttt{exp}_2 \rrbracket_G \} \end{split}$$

ſ

$$\begin{split} & [\![self]]_G = \{(x,x) \mid x \text{ is in } G \} \\ & [\![next]]_G = \{(x,y) \mid \exists z \in U \ (x,z,y) \in G \} \\ & [\![edge]]_G = \{(x,y) \mid \exists z \in U \ (x,y,z) \in G \} \\ & [\![self::a]]_G = \{(a,a)\} \\ & [\![next::a]]_G = \{(x,y) \mid (x,a,y) \in G \} \\ & [\![edge::a]]_G = \{(x,y) \mid (x,y,a) \in G \} \\ & [\![edge::a]]_G = \{(x,y) \mid \exists z \ (x,z) \in [\![exp_1]]_G \text{ and} \\ & (z,y) \in [\![exp_2]]_G \} \\ & [\![exp_1|exp_2]]_G = [\![exp_1]]_G \cup [\![exp_2]]_G \end{split}$$

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the form (x, exp, y), where exp is a navigational expression.

Examples: (Ronaldinho, next::lives_in, Spain) and (?X, (next::(rdf:sc))⁺, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X, exp, ?Y)over an RDFS graph G is the set of mappings μ such that

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the form (x, exp, y), where exp is a navigational expression.

Examples: (Ronaldinho, next::lives_in, Spain) and (?X, (next::(rdf:sc))⁺, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X, exp, ?Y)over an RDFS graph G is the set of mappings μ such that

• The domain of μ is $\{?X, ?Y\}$, and

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the form (x, exp, y), where exp is a navigational expression.

Examples: (Ronaldinho, next::lives_in, Spain) and (?X, (next::(rdf:sc))⁺, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X, exp, ?Y)over an RDFS graph G is the set of mappings μ such that

- The domain of μ is $\{?X, ?Y\}$, and
- $\blacktriangleright (\mu(?X),\mu(?Y)) \in \llbracket exp \rrbracket_G$

Syntax of 0-NAV-SPARQL: SPARQL extended with triples of the form (x, exp, y), where exp is a navigational expression.

Examples: (Ronaldinho, next::lives_in, Spain) and (?X, (next::(rdf:sc))⁺, ?Y).

Semantics of 0-NAV-SPARQL: The evaluation of t = (?X, exp, ?Y)over an RDFS graph G is the set of mappings μ such that

- The domain of μ is $\{?X, ?Y\}$, and
- $(\mu(?X),\mu(?Y)) \in \llbracket exp \rrbracket_G$

Example: $(?X, (next::lberia)^+, ?Y)$ AND $(?X, (next::AirFrance)^+, ?Y)$

A + + = + + = + - =

How do we test whether a language is appropriate for RDFS?

Can we capture SPARQL over RDFS?

How do we test whether a language is appropriate for RDFS?

Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P, we would like to find a 0-NAV-SPARQL pattern Q such that:

▶ RDFS-evaluation of P over G = evaluation of Q over G.

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no 0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Is 0-NAV-SPARQL a good language for RDFS?

Theorem

There is a SPARQL pattern P for which there is no 0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even for P = (?X, a, ?Y), where a is an arbitrary element in U.

Theorem

There is a SPARQL pattern P for which there is no 0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even for P = (?X, a, ?Y), where a is an arbitrary element in U.

How can we capture SPARQL over RDFS?

Theorem

There is a SPARQL pattern P for which there is no 0-NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

The previous theorem holds even for P = (?X, a, ?Y), where a is an arbitrary element in U.

How can we capture SPARQL over RDFS?

• We adopt the notion of branching from XPath.

Syntax of navigational expressions:

$$\begin{array}{rcl} exp & := & \texttt{self} \ \mid \ \texttt{self}::a \ \mid \ \texttt{axis} \ \mid \\ & \texttt{axis}::a \ \mid \ \texttt{axis}::[exp] \ \mid \ exp/exp \ \mid \ exp|exp \ \mid \ exp^* \end{array}$$
where $a \in U$ and $\texttt{axis} \in \{\texttt{next}, \ \texttt{next}^{-1}, \ \texttt{edge}, \ \texttt{edge}^{-1}, \ \texttt{node}, \ \texttt{node}^{-1}\}.$

• • = • • = •

 $\llbracket \texttt{next} :: [exp] \rrbracket_G = \{ (x, y) \mid \exists z, w \in U \ (x, z, y) \in G \text{ and} \\ (z, w) \in \llbracket exp \rrbracket_G \}$

 $[[next::[exp]]]_G = \{(x,y) \mid \exists z, w \in U \ (x,z,y) \in G \text{ and} \\ (z,w) \in [[exp]]_G \} = \{(x,y) \mid \exists z, w \in U \ (x,y,z) \in G \text{ and} \\ (z,w) \in [[exp]]_G \}$

M. Arenas

Example: (?X, a, ?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X, next::[(next::(rdf:sp))*/(self::a)], ?Y).

Example: (?X, a, ?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X, next::[(next::(rdf:sp))*/(self::a)], ?Y).

Example: (?X, a, ?Y) over RDFS is equivalent to NAV-SPARQL
pattern (?X, next::[(next::(rdf:sp))*/(self::a)], ?Y).

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea

Replace (?X, a, ?Y) by (?X, R(a), ?Y), where:

. . .

$$egin{array}{rll} R(extrm{rdf:sc}) &=& (extrm{next}::(extrm{rdf:sc}))^+ \ R(extrm{rdf:sp}) &=& (extrm{next}::(extrm{rdf:sp}))^+ \end{array}$$

 $R(b) = \text{next::}[(\text{next::}(\text{rdf:sp}))^*/(\text{self::}b)]$

ヘロト ヘロト ヘヨト

Theorem

For every SPARQL pattern P, there exists a NAV-SPARQL pattern Q such that, for every RDFS graph G:

RDFS-evaluation of P over G = evaluation of Q over G,

Proof idea

Replace (?X, a, ?Y) by (?X, R(a), ?Y), where:

. . .

R(rdf:sc)	=	$(\texttt{next}::(\texttt{rdf}:\texttt{sc}))^+$
R(rdf:sp)	=	$(\texttt{next}::(\texttt{rdf}:\texttt{sp}))^+$

 $R(b) = \text{next::}[(\text{next::}(\text{rdf:sp}))^*/(\text{self::}b)]$

Note: R(rdf:type) uses next, edge and node⁻¹.

アメロアメモアメモア

æ

回 と く ヨ と く ヨ と

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])+, ?Y)

æ

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])+, ?Y)

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])+, ?Y)

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])+, ?Y)

æ

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])+, ?Y)

æ

A natural query: (?X, (next::[(next::(rdf:sp))*/(self::travel)])+, ?Y)

▶ This query cannot be expressed in SPARQL over RDFS.

伺 と く ヨ と く ヨ と

Ongoing work

æ

<ロ> <同> <同> < 回> < 回>

Implementation of SPARQL.

æ

글 > : < 글 >

- Implementation of SPARQL.
 - How useful are the optimization rules in practice?

- Implementation of SPARQL.
 - How useful are the optimization rules in practice?
- Implementation of NAV-SPARQL.

- Implementation of SPARQL.
 - How useful are the optimization rules in practice?
- Implementation of NAV-SPARQL.
 - Can this language be implemented efficiently?
- Implementation of SPARQL.
 - How useful are the optimization rules in practice?
- Implementation of NAV-SPARQL.
 - Can this language be implemented efficiently? Can this language be used over large RDFS graphs?

- Implementation of SPARQL.
 - How useful are the optimization rules in practice?
- Implementation of NAV-SPARQL.
 - Can this language be implemented efficiently? Can this language be used over large RDFS graphs?
 - Is the extra expressive power of NAV-SPARQL useful in practice?

- Implementation of SPARQL.
 - How useful are the optimization rules in practice?
- Implementation of NAV-SPARQL.
 - Can this language be implemented efficiently? Can this language be used over large RDFS graphs?
 - Is the extra expressive power of NAV-SPARQL useful in practice?
 - Is there a fragment of NAV-SPARQL which is also appropriate for RDFS?

- Implementation of SPARQL.
 - How useful are the optimization rules in practice?
- Implementation of NAV-SPARQL.
 - Can this language be implemented efficiently? Can this language be used over large RDFS graphs?
 - Is the extra expressive power of NAV-SPARQL useful in practice?
 - Is there a fragment of NAV-SPARQL which is also appropriate for RDFS? One level of nesting is enough to capture SPARQL over RDFS.