A Polynomial-Time Approximation Algorithm for Counting Words Accepted by an NFA

Marcelo Arenas
PUC \& IMFD Chile

Joint work with Luis Alberto Croquevielle, Rajesh Jayaram and Cristian Riveros

A graph database G

A query over G: (friend + knows)*

A query over G: (friend + knows)*

A query over G: (friend + knows)*

The length n of paths as a parameter

Two fundamental problems:

- COUNT (G, r, n) : count the number of paths p in G such that p conforms to regular expression r and the length of p is n
- n is given in unary as 0^{n}
- $\operatorname{GEN}(G, r, n)$: generate uniformly at random a path p in G such that p conforms to r and the length of p is n

COUNT is \#P-complete

Only approximate solutions are possible

- Best known approximations work in quasi-polynomial time

COUNT is \#P-complete

Only approximate solutions are possible

- Best known approximations work in quasi-polynomial time

Our goal is to construct an FPRAS \mathcal{B} for COUNT

- For every G, r, n and error $\varepsilon \in(0,1)$:

$$
\operatorname{Pr}\left(\left|\frac{\operatorname{COUNT}(G, r, n)-\mathcal{B}(G, r, n, \varepsilon)}{\operatorname{COUNT}(G, r, n)}\right| \leq \varepsilon\right) \geq \frac{3}{4}
$$

- \mathcal{B} works in time poly $\left(\|G\|,\|r\|, n, \frac{1}{\varepsilon}\right)$

COUNT can be reduced to the following problem

Input : An NFA A, a length n given in unary and $\varepsilon \in(0,1)$
Output : Number of words w such that $w \in \mathcal{L}(\mathcal{A})$ and $|w|=n$

COUNT can be reduced to the following problem

Input : An NFA A, a length n given in unary and $\varepsilon \in(0,1)$
Output : Number of words w such that $w \in \mathcal{L}(\mathcal{A})$ and $|w|=n$
$A=(Q,\{0,1\}, \Delta, I, F)$

- Q is a finite set of states
- $\Delta \subseteq Q \times\{0,1\} \times Q$ is the transition relation
- $I \subseteq Q$ is a set of initial states
- $F \subseteq Q$ is a set of final (accepting) states

The problem to solve

Assuming $\mathcal{L}_{n}(A)=\mathcal{L}(A) \cap\{0,1\}^{n}$

The task is to compute a number N that is a $(1 \pm \varepsilon)$-approximation of $\left|\mathcal{L}_{n}(A)\right|$:

$$
(1-\varepsilon)\left|\mathcal{L}_{n}(A)\right| \leq N \leq(1+\varepsilon)\left|\mathcal{L}_{n}(A)\right|
$$

Besides, number N has to be computed in time poly ($m, n, \frac{1}{\varepsilon}$) with $m=|Q|$

First component: unroll automaton A

Construct $A_{\text {unroll }}$ from A :

- for each state $q \in Q$, include copies $q^{0}, q^{1}, \ldots, q^{n}$ in $A_{\text {unroll }}$
- for each transition $(p, a, q) \in \Delta$ and $i \in\{0,1, \ldots, n-1\}$, include transition $\left(p^{i}, a, q^{i+1}\right)$ in $A_{\text {unroll }}$

Besides, eliminate from $A_{\text {unroll }}$ unnecessary states: each state q^{i} is reachable from an initial state $p^{0}(p \in I)$

Second component: a sketch to be used in the estimation

Define $\mathcal{L}\left(q^{i}\right)$ as the set of strings w such that there is a path from an initial state p^{0} to q^{i} labeled with w

- Notice that $|w|=i$

Besides, define for every $X \subseteq Q$:

$$
\mathcal{L}\left(X^{i}\right)=\bigcup_{q \in X} \mathcal{L}\left(q^{i}\right)
$$

Second component: a sketch to be used in the estimation

Define $\mathcal{L}\left(q^{i}\right)$ as the set of strings w such that there is a path from an initial state p^{0} to q^{i} labeled with w

- Notice that $|w|=i$

Besides, define for every $X \subseteq Q$:

$$
\mathcal{L}\left(X^{i}\right)=\bigcup_{q \in X} \mathcal{L}\left(q^{i}\right)
$$

Then the task is to compute an estimation of $\left|\mathcal{L}\left(F^{n}\right)\right|$

Second component: a sketch to be used in the estimation

$$
\text { Let } \kappa=\left\lceil\frac{n m}{\varepsilon}\right\rceil
$$

Second component: a sketch to be used in the estimation

$$
\text { Let } \kappa=\left\lceil\frac{n m}{\varepsilon}\right\rceil
$$

We maintain for each state q^{i} :

- $N\left(q^{i}\right):$ a $\left(1 \pm \kappa^{-2}\right)^{i}$-approximation of $\left|\mathcal{L}\left(q^{i}\right)\right|$
- $S\left(q^{i}\right)$: a multiset of uniform samples from $\mathcal{L}\left(q^{i}\right)$ of size $2 \kappa^{7}$

Data structure to be inductively computed:

$$
\operatorname{sketch}[i]=\left\{N\left(q^{j}\right), S\left(q^{j}\right) \mid 0 \leq j \leq i \text { and } q \in Q\right\}
$$

The algorithm template

1. Construct $A_{\text {unroll }}$ from A
2. For each state $q \in I$, set $N\left(q^{0}\right)=\left|\mathcal{L}\left(q^{0}\right)\right|=1$ and $S\left(q^{0}\right)=\mathcal{L}\left(q^{0}\right)=\{\lambda\}$
3. For each $i=1, \ldots, n$ and state $q \in Q$:
(a) Compute $N\left(q^{i}\right)$ given sketch $[i-1]$
(b) Sample polynomially many uniform elements from $\mathcal{L}\left(q^{i}\right)$ using $N\left(q^{i}\right)$ and sketch $[i-1]$, and let $S\left(q^{i}\right)$ be the multiset of uniform samples obtained
4. Return an estimation of $\left|\mathcal{L}\left(F^{n}\right)\right|$ given sketch $[n]$

Computing an estimation $N\left(F^{n}\right)$ of $\left|\mathcal{L}\left(F^{n}\right)\right|$

We use notation $N\left(X^{i}\right)$ for an estimation $\left|\mathcal{L}\left(X^{i}\right)\right|$

- Such an estimation is not only needed in the last step of the algorithm, but also in the inductive construction of sketch[i]

Notice that $\left|\mathcal{L}\left(X^{i}\right)\right|=\sum_{p \in X}\left|\mathcal{L}\left(p^{i}\right)\right|$ does not hold in general

Computing an estimation $N\left(F^{n}\right)$ of $\left|\mathcal{L}\left(F^{n}\right)\right|$

We use notation $N\left(X^{i}\right)$ for an estimation $\left|\mathcal{L}\left(X^{i}\right)\right|$

- Such an estimation is not only needed in the last step of the algorithm, but also in the inductive construction of sketch[i]

Notice that $\left|\mathcal{L}\left(X^{i}\right)\right|=\sum_{p \in X}\left|\mathcal{L}\left(p^{i}\right)\right|$ does not hold in general

But the following holds, given a linear order $<$ on Q :

$$
\left|\mathcal{L}\left(X^{i}\right)\right|=\sum_{p \in X}\left|\mathcal{L}\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i}\right)\right|
$$

Computing an estimation $N\left(X^{i}\right)$ of $\left|\mathcal{L}\left(X^{i}\right)\right|$

We have that:

$$
\left|\mathcal{L}\left(X^{i}\right)\right|=\sum_{p \in X}\left|\mathcal{L}\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i}\right)\right|
$$

Computing an estimation $N\left(X^{i}\right)$ of $\left|\mathcal{L}\left(X^{i}\right)\right|$

We have that:

$$
\begin{aligned}
\left|\mathcal{L}\left(X^{i}\right)\right| & =\sum_{p \in X}\left|\mathcal{L}\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i}\right)\right| \\
& =\sum_{p \in X}\left|\mathcal{L}\left(p^{i}\right)\right| \frac{\left|\mathcal{L}\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i}\right)\right|}{\left|\mathcal{L}\left(p^{i}\right)\right|}
\end{aligned}
$$

Computing an estimation $N\left(X^{i}\right)$ of $\left|\mathcal{L}\left(X^{i}\right)\right|$

We have that:

$$
\begin{aligned}
\left|\mathcal{L}\left(X^{i}\right)\right| & =\sum_{p \in X}\left|\mathcal{L}\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i}\right)\right| \\
& =\sum_{p \in X}\left|\mathcal{L}\left(p^{i}\right)\right| \frac{\left|\mathcal{L}\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i}\right)\right|}{\left|\mathcal{L}\left(p^{i}\right)\right|}
\end{aligned}
$$

So we will use the following approximation:

$$
N\left(X^{i}\right)=\sum_{p \in X} N\left(p^{i}\right) \frac{\left|S\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i}\right)\right|}{\left|S\left(p^{i}\right)\right|}
$$

Computing an estimation $N\left(X^{i}\right)$ of $\left|\mathcal{L}\left(X^{i}\right)\right|$

$N\left(X^{i}\right)$ can be computed in polynomial time in the size of sketch $[i]$

- $S\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i}\right)$ is constructed by checking for each $w \in S\left(p^{i}\right)$ whether w is not in $\mathcal{L}\left(q^{i}\right)$ for every $q \in X$ with $q<p$

Computing an estimation $N\left(X^{i}\right)$ of $\left|\mathcal{L}\left(X^{i}\right)\right|$

$N\left(X^{i}\right)$ can be computed in polynomial time in the size of sketch $[i]$

- $S\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i}\right)$ is constructed by checking for each $w \in S\left(p^{i}\right)$ whether w is not in $\mathcal{L}\left(q^{i}\right)$ for every $q \in X$ with $q<p$

What guarantees that $N\left(X^{i}\right)$ is a good estimation of $\left|\mathcal{L}\left(X^{i}\right)\right|$?

The main property to maintain

$\mathcal{E}(i)$ holds if for every $p \in Q$ and $X \subseteq Q$:

$$
\left|\frac{\left|\mathcal{L}\left(p^{i}\right) \backslash \bigcup_{q \in X} \mathcal{L}\left(q^{i}\right)\right|}{\left|\mathcal{L}\left(p^{i}\right)\right|}-\frac{\left|S\left(p^{i}\right) \backslash \bigcup_{q \in X} \mathcal{L}\left(q^{i}\right)\right|}{\left|S\left(p^{i}\right)\right|}\right|<\frac{1}{\kappa^{3}}
$$

The use of the main property

Proposition

If $\mathcal{E}(i)$ holds and $N\left(p^{i}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{i}$-approximation of $\left|\mathcal{L}\left(p^{i}\right)\right|$ for every $p \in Q$, then $N\left(X^{i}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{i+1}$-approximation of $\left|\mathcal{L}\left(X^{i}\right)\right|$ for every $X \subseteq Q$

The use of the main property

Proposition

If $\mathcal{E}(i)$ holds and $N\left(p^{i}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{i}$-approximation of $\left|\mathcal{L}\left(p^{i}\right)\right|$ for every $p \in Q$, then $N\left(X^{i}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{i+1}$-approximation of $\left|\mathcal{L}\left(X^{i}\right)\right|$ for every $X \subseteq Q$
$\mathcal{E}(0)$ holds and $N\left(p^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{0}$-approximation of $\left|\mathcal{L}\left(p^{0}\right)\right|$ for every $p \in Q$

- Recall that $N\left(p^{0}\right)=\left|\mathcal{L}\left(p^{0}\right)\right|$ and $S\left(p^{0}\right)=\mathcal{L}\left(p^{0}\right)$ for every $p \in Q$

The use of the main property

Proposition

If $\mathcal{E}(i)$ holds and $N\left(p^{i}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{i}$-approximation of $\left|\mathcal{L}\left(p^{i}\right)\right|$ for every $p \in Q$, then $N\left(X^{i}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{i+1}$-approximation of $\left|\mathcal{L}\left(X^{i}\right)\right|$ for every $X \subseteq Q$
$\mathcal{E}(0)$ holds and $N\left(p^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{0}$-approximation of $\left|\mathcal{L}\left(p^{0}\right)\right|$ for every $p \in Q$

- Recall that $N\left(p^{0}\right)=\left|\mathcal{L}\left(p^{0}\right)\right|$ and $S\left(p^{0}\right)=\mathcal{L}\left(p^{0}\right)$ for every $p \in Q$

Then $N\left(X^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)$-approximation of $\left|\mathcal{L}\left(X^{0}\right)\right|$ for every $X \subseteq Q$

The use of the main property

For each state $p \in Q$ and $b=0,1$, define:

$$
R_{b}\left(p^{1}\right)=\left\{q^{0} \mid\left(q^{0}, b, p^{1}\right) \text { is a transition in } A_{\text {unroll }}\right\}
$$

The use of the main property

For each state $p \in Q$ and $b=0,1$, define:

$$
R_{b}\left(p^{1}\right)=\left\{q^{0} \mid\left(q^{0}, b, p^{1}\right) \text { is a transition in } A_{\text {unroll }}\right\}
$$

Then $\mathcal{L}\left(p^{1}\right)=\mathcal{L}\left(R_{0}\left(p^{1}\right)\right) \cdot\{0\} \uplus \mathcal{L}\left(R_{1}\left(p^{1}\right)\right) \cdot\{1\}$

- So that $\left|\mathcal{L}\left(p^{1}\right)\right|=\left|\mathcal{L}\left(R_{0}\left(p^{1}\right)\right)\right|+\left|\mathcal{L}\left(R_{1}\left(p^{1}\right)\right)\right|$

The use of the main property

For each state $p \in Q$ and $b=0,1$, define:

$$
R_{b}\left(p^{1}\right)=\left\{q^{0} \mid\left(q^{0}, b, p^{1}\right) \text { is a transition in } A_{\text {unroll }}\right\}
$$

Then $\mathcal{L}\left(p^{1}\right)=\mathcal{L}\left(R_{0}\left(p^{1}\right)\right) \cdot\{0\} \uplus \mathcal{L}\left(R_{1}\left(p^{1}\right)\right) \cdot\{1\}$

- So that $\left|\mathcal{L}\left(p^{1}\right)\right|=\left|\mathcal{L}\left(R_{0}\left(p^{1}\right)\right)\right|+\left|\mathcal{L}\left(R_{1}\left(p^{1}\right)\right)\right|$

Hence, given that $N\left(R_{b}\left(p^{1}\right)\right)$ is a $\left(1 \pm \kappa^{-2}\right)$-approximation of $\left|\mathcal{L}\left(R_{b}\left(p^{1}\right)\right)\right|$ for $b=0,1$:

$$
N\left(R_{0}\left(p^{1}\right)\right)+N\left(R_{1}\left(p^{1}\right)\right) \text { is a }\left(1 \pm \kappa^{-2}\right) \text {-approximation of } N\left(p^{1}\right)
$$

The use of the main property: a summary

$\mathcal{E}(0)$ holds and $N\left(p^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{0}$-approximation of $\left|\mathcal{L}\left(p^{0}\right)\right|$ for every $p \in Q$

The use of the main property: a summary

$\mathcal{E}(0)$ holds and $N\left(p^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{0}$-approximation of $\left|\mathcal{L}\left(p^{0}\right)\right|$ for every $p \in Q$
\Downarrow
$N\left(X^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $\left|\mathcal{L}\left(X^{0}\right)\right|$ for every $X \subseteq Q$

The use of the main property: a summary

$\mathcal{E}(0)$ holds and $N\left(p^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{0}$-approximation of $\left|\mathcal{L}\left(p^{0}\right)\right|$ for every $p \in Q$

$$
\Downarrow
$$

$N\left(X^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $\left|\mathcal{L}\left(X^{0}\right)\right|$ for every $X \subseteq Q$

$$
\Downarrow
$$

$N\left(p^{1}\right)=N\left(R_{0}\left(p^{1}\right)\right)+N\left(R_{1}\left(p^{1}\right)\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $N\left(p^{1}\right)$ for every $p \in Q$

The use of the main property: a summary

$$
\begin{gathered}
N\left(p^{1}\right) \text { is a }\left(1 \pm \kappa^{-2}\right)^{1} \text {-approximation of }\left|\mathcal{L}\left(p^{1}\right)\right| \text { for } \\
\text { every } p \in Q
\end{gathered}
$$

The use of the main property: a summary

$\mathcal{E}(1)$ holds and $N\left(p^{1}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $\left|\mathcal{L}\left(p^{1}\right)\right|$ for every $p \in Q$

The use of the main property: a summary

$\mathcal{E}(1)$ holds and $N\left(p^{1}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $\left|\mathcal{L}\left(p^{1}\right)\right|$ for every $p \in Q$
\Downarrow
$N\left(X^{1}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{2}$-approximation of $\left|\mathcal{L}\left(X^{1}\right)\right|$ for every $X \subseteq Q$

The use of the main property: a summary

$\mathcal{E}(1)$ holds and $N\left(p^{1}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $\left|\mathcal{L}\left(p^{1}\right)\right|$ for every $p \in Q$
\Downarrow
$N\left(X^{1}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{2}$-approximation of $\left|\mathcal{L}\left(X^{1}\right)\right|$ for every $X \subseteq Q$
\Downarrow
$N\left(p^{2}\right)=N\left(R_{0}\left(p^{2}\right)\right)+N\left(R_{1}\left(p^{2}\right)\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{2}$-approximation of $N\left(p^{2}\right)$ for every $p \in Q$

The use of the main property: a summary

$\mathcal{E}(1)$ holds and $N\left(p^{1}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $\left|\mathcal{L}\left(p^{1}\right)\right|$ for every $p \in Q$
\Downarrow
$N\left(X^{1}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{2}$-approximation of $\left|\mathcal{L}\left(X^{1}\right)\right|$ for every $X \subseteq Q$
\Downarrow
$N\left(p^{2}\right)=N\left(R_{0}\left(p^{2}\right)\right)+N\left(R_{1}\left(p^{2}\right)\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{2}$-approximation of $N\left(p^{2}\right)$ for every $p \in Q$
\Downarrow

The final result

Proposition

If $\mathcal{E}(i)$ holds for every $i \in\{0,1, \ldots, n\}$, then $N\left(F^{n}\right)$ is a $(1 \pm \varepsilon)$-approximation of $\left|\mathcal{L}\left(F^{n}\right)\right|$

The final result

Proposition

If $\mathcal{E}(i)$ holds for every $i \in\{0,1, \ldots, n\}$, then $N\left(F^{n}\right)$ is a $(1 \pm \varepsilon)$-approximation of $\left|\mathcal{L}\left(F^{n}\right)\right|$

The issue then is to maintain property $\mathcal{E}(i)$

- Multisets $S\left(q^{i}\right)$ of uniform samples play a central role on this

Sampling from a state

We need to construct the multiset $S\left(q^{i}\right)$ of uniform samples

Recall that:

- $S\left(q^{i}\right)$ contains $2 \kappa^{7}$ words from $\mathcal{L}\left(q^{i}\right)$
- $S\left(q^{i}\right)$ is computed assuming that $N\left(q^{i}\right)$ and sketch $[i-1]=\left\{N\left(q^{j}\right), S\left(q^{j}\right) \mid 0 \leq j \leq i-1\right\}$ have already been constructed

To recall

1. Construct $A_{\text {unroll }}$ from A
2. For each state $q \in I$, set $N\left(q^{0}\right)=\left|\mathcal{L}\left(q^{0}\right)\right|=1$ and $S\left(q^{0}\right)=\mathcal{L}\left(q^{0}\right)=\{\lambda\}$
3. For each $i=1, \ldots, n$ and state $q \in Q$:
(a) Compute $N\left(q^{i}\right)$ given sketch $[i-1]$
(b) Sample polynomially many uniform elements from $\mathcal{L}\left(q^{i}\right)$ using $N\left(q^{i}\right)$ and sketch $[i-1]$, and let $S\left(q^{i}\right)$ be the multiset of uniform samples obtained
4. Return an estimation of $\left|\mathcal{L}\left(F^{n}\right)\right|$ given sketch $[n]$

Sampling from q^{i}

To generate a sample in $\mathcal{L}\left(q^{i}\right)$, we construct a sequence w^{i}, w^{i-1}, \ldots, w^{1}, w^{0} such that

- $w^{i}=\lambda$
- $w^{j}=b_{j} w^{j+1}$ with $b_{j} \in\{0,1\}$
- $w^{0} \in \mathcal{L}\left(q^{i}\right)$

Sampling from q^{i}

To generate a sample in $\mathcal{L}\left(q^{i}\right)$, we construct a sequence w^{i}, w^{i-1}, \ldots, w^{1}, w^{0} such that

- $w^{i}=\lambda$
- $w^{j}=b_{j} w^{j+1}$ with $b_{j} \in\{0,1\}$
- $w^{0} \in \mathcal{L}\left(q^{i}\right)$

To choose $w^{i-1}=b w^{i}$, construct for $b=0,1$:

$$
P_{b}^{i}=\left\{p^{i-1} \mid\left(p^{i-1}, b, q^{i}\right) \text { is a transition in } A_{\text {unroll }}\right\}
$$

Sampling from q^{i}

P_{0}^{i} and P_{1}^{i} are sets of states at layer $i-1$

We can use the following estimations:

$$
N\left(X^{i-1}\right)=\sum_{p \in X} N\left(p^{i-1}\right) \frac{\left|S\left(p^{i-1}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i-1}\right)\right|}{\left|S\left(p^{i-1}\right)\right|}
$$

Sampling from q^{i}

P_{0}^{i} and P_{1}^{i} are sets of states at layer $i-1$

We can use the following estimations:

$$
N\left(X^{i-1}\right)=\sum_{p \in X} N\left(p^{i-1}\right) \frac{\left|S\left(p^{i-1}\right) \backslash \bigcup_{q \in X: q<p} \mathcal{L}\left(q^{i-1}\right)\right|}{\left|S\left(p^{i-1}\right)\right|}
$$

We choose $b \in\{0,1\}$ with probability:

$$
\frac{N\left(P_{b}^{i}\right)}{N\left(P_{0}^{i}\right)+N\left(P_{1}^{i}\right)}
$$

We could have started from a set of states

The previous procedure works for every set of states P^{i} :

$$
P_{b}^{i}=\left\{p^{i-1} \mid \exists r^{i} \in P^{i}:\left(p^{i-1}, b, r^{i}\right) \text { is a transition in } A_{\text {unroll }}\right\}
$$

In particular, we applied the procedure for $P^{i}=\left\{q^{i}\right\}$

We could have started from a set of states

The previous procedure works for every set of states P^{i} :

$$
P_{b}^{i}=\left\{p^{i-1} \mid \exists r^{i} \in P^{i}:\left(p^{i-1}, b, r^{i}\right) \text { is a transition in } A_{\text {unroll }}\right\}
$$

In particular, we applied the procedure for $P^{i}=\left\{q^{i}\right\}$

The following recursive procedure summarizes the previous idea:

$$
\text { Sample }\left(i,\left\{q^{i}\right\}, \lambda, \varphi_{0}\right)
$$

It uses sets of states $P^{i}=\left\{q^{i}\right\}, P^{i-1}, \ldots, P^{1}, P^{0}$ and an initial probability φ_{0}

The sampling algorithm

Sample $\left(j, P^{j}, w^{j}, \varphi\right)$

1. If $j=0$, then with probability φ return w^{0}, otherwise return fail
2. Compute $P_{b}^{j}=\left\{p^{j-1} \mid \exists r^{j} \in P^{j}:\left(p^{j-1}, b, r^{j}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$ for $b=0,1$
3. Choose $b \in\{0,1\}$ with probability $p_{b}=\frac{N\left(P_{b}^{j}\right)}{N\left(P_{0}^{j}\right)+N\left(P_{1}^{j}\right)}$
4. Set $P^{j-1}=P_{b}^{j}$ and $w^{j-1}=b w^{j}$
5. Return Sample $\left(j-1, P^{j-1}, w^{j-1}, \frac{\varphi}{p_{b}}\right)$

The key observation

Let $x=x_{1} \cdots x_{i}$ be word in $\mathcal{L}\left(q^{i}\right)$

The key observation

Let $x=x_{1} \cdots x_{i}$ be word in $\mathcal{L}\left(q^{i}\right)$

We have that:
$\operatorname{Pr}($ the output of Sample is x)
$=\operatorname{Pr}\left(w^{0}=x \wedge\right.$ the last call to Sample does not fail)
$=\operatorname{Pr}\left(\right.$ the last call to Sample does not fail $\left.\mid w^{0}=x\right) \cdot \operatorname{Pr}\left(w^{0}=x\right)$
$=\left(\left(\prod_{j=1}^{i} \frac{N\left(P_{x_{j}}^{j}\right)}{N\left(P_{0}^{j}\right)+N\left(P_{1}^{j}\right)}\right)^{-1} \cdot \varphi_{0}\right) \cdot\left(\prod_{j=1}^{i} \frac{N\left(P_{x_{j}}^{j}\right)}{N\left(P_{0}^{j}\right)+N\left(P_{1}^{j}\right)}\right)$
$=\varphi_{0}$

The value of the initial probability φ_{0}

Proposition
Assume that $\mathcal{E}(j)$ holds for each $j<i$. If w is the output of Sample($\left.i,\left\{q^{i}\right\}, \lambda, \frac{e^{-5}}{N\left(q^{i}\right)}\right)$, then

- $\varphi \in(0,1)$ in every recursive call to Sample
- $\operatorname{Pr}(w=$ fail $) \leq 1-e^{-9}$
- $\operatorname{Pr}(w=x)=\frac{e^{-5}}{N\left(q^{i}\right)}$ for every $x \in \mathcal{L}\left(q^{i}\right)$

The value of the initial probability φ_{0}

Proposition

Assume that $\mathcal{E}(j)$ holds for each $j<i$. If w is the output of Sample($\left.i,\left\{q^{i}\right\}, \lambda, \frac{e^{-5}}{N\left(q^{i}\right)}\right)$, then

- $\varphi \in(0,1)$ in every recursive call to Sample
- $\operatorname{Pr}(w=$ fail $) \leq 1-e^{-9}$
- $\operatorname{Pr}(w=x)=\frac{e^{-5}}{N\left(q^{i}\right)}$ for every $x \in \mathcal{L}\left(q^{i}\right)$

Hence, conditioned on not failing, Sample $\left(i,\left\{q^{i}\right\}, \lambda, \frac{e^{-5}}{N\left(q^{i}\right)}\right)$ returns a uniform sample from $\mathcal{L}\left(q^{i}\right)$

The last step: bounding the probability of breaking the main assumption

Recall that $\mathcal{E}(i)$ holds if for every $q \in Q$ and $X \subseteq Q$:

$$
\left|\frac{\left|\mathcal{L}\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|\mathcal{L}\left(q^{i}\right)\right|}-\frac{\left|S\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|S\left(q^{i}\right)\right|}\right|<\frac{1}{k^{3}}
$$

We know that $\mathcal{E}(0)$ holds.

The last step: bounding the probability of breaking the main assumption

Recall that $\mathcal{E}(i)$ holds if for every $q \in Q$ and $X \subseteq Q$:

$$
\left|\frac{\left|\mathcal{L}\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|\mathcal{L}\left(q^{i}\right)\right|}-\frac{\left|S\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|S\left(q^{i}\right)\right|}\right|<\frac{1}{\kappa^{3}}
$$

We know that $\mathcal{E}(0)$ holds. We need to compute a lower bound for:

$$
\operatorname{Pr}\left(\bigwedge_{j=0}^{n} \mathcal{E}(j)\right)
$$

Bounding the probability of breaking $\mathcal{E}(i)$

Assume that $\bigwedge_{j=0}^{i-1} \mathcal{E}(j)$ holds

Let $q \in Q$ and $S\left(q^{i}\right)$ be a multiset of $2 \kappa^{7}$ samples from $\mathcal{L}\left(q^{i}\right)$ computed by calling Sample($\left.i,\left\{q^{i}\right\}, \lambda, \frac{e^{-5}}{N\left(q^{i}\right)}\right)$

- Each element of $S\left(q^{i}\right)$ is obtained by repeatedly calling Sample until the output is different from fail

Assume that $S\left(q^{i}\right)=\left\{w_{1}, \ldots, w_{t}\right\}$ with $t=2 \kappa^{7}$

Bounding the probability of breaking $\mathcal{E}(i)$

Let $X \subseteq Q$, and Y_{i} be a Bernoulli random variable for $i \in\{1, \ldots, t\}$:

$$
Y_{i}=1 \quad \text { if and only if } \quad w_{i} \in\left(\mathcal{L}\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right)
$$

Bounding the probability of breaking $\mathcal{E}(i)$

Let $X \subseteq Q$, and Y_{i} be a Bernoulli random variable for $i \in\{1, \ldots, t\}$:

$$
Y_{i}=1 \quad \text { if and only if } \quad w_{i} \in\left(\mathcal{L}\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right)
$$

We have that:

$$
\begin{aligned}
\mathbb{E}\left[Y_{i}\right] & =\frac{\left|\mathcal{L}\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|\mathcal{L}\left(q^{i}\right)\right|} \\
\sum_{j=1}^{t} Y_{i} & =\left|S\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right| \\
t & =\left|S\left(q^{i}\right)\right|
\end{aligned}
$$

By using Hoeffding's inequality

$$
\begin{aligned}
\operatorname{Pr}\left(\left|\frac{\left|S\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|S\left(q^{i}\right)\right|}-\frac{\left|\mathcal{L}\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|\mathcal{L}\left(q^{i}\right)\right|}\right|\right. & \left.\geq \frac{1}{\kappa^{3}} \right\rvert\, \\
& \left.\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \leq 2 e^{-4 \kappa}
\end{aligned}
$$

By using Hoeffding's inequality

$$
\begin{aligned}
\operatorname{Pr}\left(\left|\frac{\left|S\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|S\left(q^{i}\right)\right|}-\frac{\left|\mathcal{L}\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|\mathcal{L}\left(q^{i}\right)\right|}\right|\right. & \left.\geq \frac{1}{\kappa^{3}} \right\rvert\, \\
& \left.\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \leq 2 e^{-4 \kappa}
\end{aligned}
$$

By taking the union bound:

$$
\begin{array}{r}
\operatorname{Pr}\left(\exists q \in Q \exists X \subseteq Q\left|\frac{\left|S\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|S\left(q^{i}\right)\right|}-\frac{\left|\mathcal{L}\left(q^{i}\right) \backslash \bigcup_{p \in X} \mathcal{L}\left(p^{i}\right)\right|}{\left|\mathcal{L}\left(q^{i}\right)\right|}\right| \geq \frac{1}{\kappa^{3}}\right. \\
\left.\bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \leq 2 e^{-2 \kappa}
\end{array}
$$

The conclusion

Rewriting the previous result:

$$
\operatorname{Pr}\left(\mathcal{E}(i) \mid \bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \geq 1-e^{-2 \kappa}
$$

We conclude that:

$$
\operatorname{Pr}\left(\bigwedge_{j=0}^{n} \mathcal{E}(j)\right) \geq 1-e^{-\kappa}
$$

The complete algorithm

Input: NFA $A=(Q,\{0,1\}, \Delta, I, F)$ with $m=|Q|$, length n given in unary and error $\varepsilon \in(0,1)$

The complete algorithm

Input: NFA $A=(Q,\{0,1\}, \Delta, I, F)$ with $m=|Q|$, length n given in unary and error $\varepsilon \in(0,1)$

1. If $\mathcal{L}_{n}(A)=\emptyset$, then return 0

The complete algorithm

Input: NFA $A=(Q,\{0,1\}, \Delta, I, F)$ with $m=|Q|$, length n given in unary and error $\varepsilon \in(0,1)$

1. If $\mathcal{L}_{n}(A)=\emptyset$, then return 0
2. Construct $A_{\text {unroll }}$ and set $\kappa=\left\lceil\frac{n m}{\varepsilon}\right\rceil$

The complete algorithm

Input: NFA $A=(Q,\{0,1\}, \Delta, I, F)$ with $m=|Q|$, length n given in unary and error $\varepsilon \in(0,1)$

1. If $\mathcal{L}_{n}(A)=\emptyset$, then return 0
2. Construct $A_{\text {unroll }}$ and set $\kappa=\left\lceil\frac{n m}{\varepsilon}\right\rceil$
3. Remove each state q^{i} from $A_{\text {unroll }}$ that is not reachable from an initial state in I^{0}

The complete algorithm

Input: NFA $A=(Q,\{0,1\}, \Delta, I, F)$ with $m=|Q|$, length n given in unary and error $\varepsilon \in(0,1)$

1. If $\mathcal{L}_{n}(A)=\emptyset$, then return 0
2. Construct $A_{\text {unroll }}$ and set $\kappa=\left\lceil\frac{n m}{\varepsilon}\right\rceil$
3. Remove each state q^{i} from $A_{\text {unroll }}$ that is not reachable from an initial state in I^{0}
4. For each $q^{0} \in I^{0}$, set $N\left(q^{0}\right)=1$ and $S\left(q^{0}\right)=\{\lambda\}$

The complete algorithm

5. For each layer $i=1, \ldots, n$ and state q^{i} in $A_{\text {unroll: }}$:

The complete algorithm

5. For each layer $i=1, \ldots, n$ and state q^{i} in $A_{\text {unroll }}$:
5.1 Set $R_{b}=\left\{p^{i-1} \mid\left(p^{i-1}, b, q^{i}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$ for $b=0,1$

The complete algorithm

5. For each layer $i=1, \ldots, n$ and state q^{i} in $A_{\text {unroll }}$:
5.1 Set $R_{b}=\left\{p^{i-1} \mid\left(p^{i-1}, b, q^{i}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$ for $b=0,1$
5.2 Set $N\left(q^{i}\right)=N\left(R_{0}\right)+N\left(R_{1}\right)$

The complete algorithm

5. For each layer $i=1, \ldots, n$ and state q^{i} in $A_{\text {unroll: }}$:
5.1 Set $R_{b}=\left\{p^{i-1} \mid\left(p^{i-1}, b, q^{i}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$ for $b=0,1$
5.2 Set $N\left(q^{i}\right)=N\left(R_{0}\right)+N\left(R_{1}\right)$
5.3 Set $S\left(q^{i}\right)=\emptyset$. Then while $\left|S\left(q^{i}\right)\right|<2 \kappa^{7}$:

The complete algorithm

5. For each layer $i=1, \ldots, n$ and state q^{i} in $A_{\text {unroll: }}$:
5.1 Set $R_{b}=\left\{p^{i-1} \mid\left(p^{i-1}, b, q^{i}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$ for $b=0,1$
5.2 Set $N\left(q^{i}\right)=N\left(R_{0}\right)+N\left(R_{1}\right)$
5.3 Set $S\left(q^{i}\right)=\emptyset$. Then while $\left|S\left(q^{i}\right)\right|<2 \kappa^{7}$:
5.3.1 Run Sample $\left(i,\left\{q^{i}\right\}, \lambda, \frac{e^{-5}}{N\left(q^{\prime}\right)}\right)$ until it returns $w \neq$ fail, and at most $c(\kappa) \in \Theta(\log (\kappa))$ times

The complete algorithm

5. For each layer $i=1, \ldots, n$ and state q^{i} in $A_{\text {unroll: }}$:
5.1 Set $R_{b}=\left\{p^{i-1} \mid\left(p^{i-1}, b, q^{i}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$ for $b=0,1$
5.2 Set $N\left(q^{i}\right)=N\left(R_{0}\right)+N\left(R_{1}\right)$
5.3 Set $S\left(q^{i}\right)=\emptyset$. Then while $\left|S\left(q^{i}\right)\right|<2 \kappa^{7}$:
5.3.1 Run Sample $\left(i,\left\{q^{i}\right\}, \lambda, \frac{e^{-5}}{N\left(q^{\prime}\right)}\right)$ until it returns $w \neq$ fail, and at most $c(\kappa) \in \Theta(\log (\kappa))$ times
5.3.2 If $w=$ fail, then return 0 (failure event)

The complete algorithm

5. For each layer $i=1, \ldots, n$ and state q^{i} in $A_{\text {unroll }}$:
5.1 Set $R_{b}=\left\{p^{i-1} \mid\left(p^{i-1}, b, q^{i}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$ for $b=0,1$
5.2 Set $N\left(q^{i}\right)=N\left(R_{0}\right)+N\left(R_{1}\right)$
5.3 Set $S\left(q^{i}\right)=\emptyset$. Then while $\left|S\left(q^{i}\right)\right|<2 \kappa^{7}$:
5.3.1 Run Sample $\left(i,\left\{q^{i}\right\}, \lambda, \frac{e^{-5}}{N\left(q^{\prime}\right)}\right)$ until it returns $w \neq$ fail, and at most $c(\kappa) \in \Theta(\log (\kappa))$ times
5.3.2 If $w=$ fail, then return 0 (failure event)
5.3.3 Set $S\left(q^{i}\right)=S\left(q^{i}\right) \cup\{w\}$ (recall that $S\left(q^{i}\right)$ allows duplicates)

The complete algorithm

5. For each layer $i=1, \ldots, n$ and state q^{i} in $A_{\text {unroll: }}$:
5.1 Set $R_{b}=\left\{p^{i-1} \mid\left(p^{i-1}, b, q^{i}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$ for $b=0,1$
5.2 Set $N\left(q^{i}\right)=N\left(R_{0}\right)+N\left(R_{1}\right)$
5.3 Set $S\left(q^{i}\right)=\emptyset$. Then while $\left|S\left(q^{i}\right)\right|<2 \kappa^{7}$:
5.3.1 Run Sample $\left(i,\left\{q^{i}\right\}, \lambda, \frac{e^{-5}}{N\left(q^{i}\right)}\right)$ until it returns $w \neq$ fail, and at most $c(\kappa) \in \Theta(\log (\kappa))$ times
5.3.2 If $w=$ fail, then return 0 (failure event)
5.3.3 Set $S\left(q^{i}\right)=S\left(q^{i}\right) \cup\{w\}$ (recall that $S\left(q^{i}\right)$ allows duplicates)
6. Return $N\left(F^{n}\right)$ as an estimation of $\left|\mathcal{L}_{n}(A)\right|$

The complete algorithm: final comments

The probability that the algorithm returns a wrong estimate is at most $\frac{1}{4}$

- Considering $c(\kappa)=\left\lceil\frac{2+\log (4)+8 \log (\kappa)}{\log \left(1-e^{-9}\right)^{-1}}\right\rceil$

The algorithm runs in time poly $\left(m, n, \frac{1}{\varepsilon}\right)$

Final remarks

- The algorithm also provides a randomized polynomial-time algorithm for GEN
- Such an algorithm can also be obtained from [Jerrum, Valiant \& Vazirani 1986]
- COUNT is SpanL-complete under parsimonious reductions. We conclude that each function in SpanL admits an FPRAS
- SpanL is the class of functions computable as $|S|$, where S is the set of output values returned by an NL Turing machine

The complete version of the paper can be found at https://arxiv.org/abs/1906.09226

Thanks!

