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The length n of paths as a parameter

Two fundamental problems:

» COUNT(G,r,n): count the number of paths p in G such that p
conforms to regular expression r and the length of pis n

> nis given in unary as 0"

» GEN(G,r,n): generate uniformly at random a path p in G such
that p conforms to r and the length of p is n



COUNT is #P-complete

Only approximate solutions are possible

> Best known approximations work in quasi-polynomial time



COUNT is #P-complete

Only approximate solutions are possible

> Best known approximations work in quasi-polynomial time

Our goal is to construct an FPRAS B for COUNT

> For every G, r, n and error € € (0, 1):

Pr COUNT(G, r,n) — B(G,r,n,e)
COUNT(G, r,n)

> B works in time poly(||G|[, |||, n, %)
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COUNT can be reduced to the following problem

Input : An NFA A, a length n given in unary and € € (0,1)
Output :  Number of words w such that w € L(A) and |w| =n



COUNT can be reduced to the following problem

Input : An NFA A, a length n given in unary and € € (0,1)
Output :  Number of words w such that w € L(A) and |w| =n

A=(Q,{0,1},A,I,F)
> Q is a finite set of states
> ACQx{0,1} x Q is the transition relation
> | C Q is a set of initial states

> F C Qis a set of final (accepting) states



The problem to solve

Assuming L,(A) = L(A)n{0,1}"

The task is to compute a number N that is a (1 & €)-approximation
of |L,(A)l:
(L =ILa(A)l < N < (1+¢)|Lq(A)]

Besides, number N has to be computed in time poly(m, n, %)
with m = | Q|



First component: unroll automaton A

Construct Aynron from A:
> for each state g € Q, include copies q°, ¢*, ..., ¢" in Aunronl

» for each transition (p,a,q) € A and i € {0,1,...,n— 1}, include
transition (p', a,q' 1) in Aunron

Besides, eliminate from Ay, Unnecessary states: each state g’ is
reachable from an initial state p° (p € /)



Second component: a sketch to be used in the estimation

Define £(q') as the set of strings w such that there is a path from an
initial state p° to ¢’ labeled with w

> Notice that |w| =i

Besides, define for every X C Q:

cx) = L)

qgeX



Second component: a sketch to be used in the estimation

Define £(q') as the set of strings w such that there is a path from an
initial state p° to ¢’ labeled with w

> Notice that |w| =i
Besides, define for every X C Q:

cx) = L)

qgeX

Then the task is to compute an estimation of |£(F")]



Second component: a sketch to be used in the estimation

Let v = (nm
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Second component: a sketch to be used in the estimation

nm

Let v = [

1

c

We maintain for each state g':
> N(g'): a (14 x2)-approximation of |£(q')]

> S(g'): a multiset of uniform samples from £(q') of size 2’

Data structure to be inductively computed:

sketch[i] = {N(¢),S(¢/)|0<j<iand g€ Q}
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The algorithm template

1. Construct A nron from A

2. For each state g € /, set N(q°) = |£(¢°)| =1 and
S(¢°) = £(e°) = {\)

3. Foreach i=1,...,n and state g € Q:

(a) Compute N(q') given sketch[i — 1]

(b) Sample polynomially many uniform elements from £(q") using
N(q') and sketch[i — 1], and let S(g') be the multiset of
uniform samples obtained

4. Return an estimation of |£(F")| given sketch[n]
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Computing an estimation N(F") of |[L(F")]

We use notation N(X') for an estimation |£(X")]

» Such an estimation is not only needed in the last step of the
algorithm, but also in the inductive construction of sketch[/]

Notice that [£(X')| = Z |L(p")| does not hold in general
peX
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Computing an estimation N(F") of |[L(F")]

We use notation N(X') for an estimation |£(X")]

» Such an estimation is not only needed in the last step of the
algorithm, but also in the inductive construction of sketch[/]

Notice that [£(X')| = Z |L(p")| does not hold in general
peX

But the following holds, given a linear order < on Q:

Sy~ | £d)]

peX qeX 1 q<p
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Computing an estimation N(X') of |£(X")]

We have that:

cxH = Sleee) s U Ld)

peX geX  g<p
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Computing an estimation N(X') of |£(X")]

We have that:

1£(X")]

Sy~ | £d)

peX geX  g<p

i |‘c(p,) ~ quX:q<p £(ql)|
g{ 1£(p")] )
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Computing an estimation N(X') of |£(X")]

We have that:

1£(X")]

Sy~ | £d)

peX geX  g<p

i |‘C(p,) ~ quX:q<p £(ql)|
g{ 1£(p")] )

So we will use the following approximation:

, NEICARN oen ('
N(XT) = ZN(p’)| ) Lf;f:)r“’ @)
peX
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Computing an estimation N(X') of |£(X")]

N(X') can be computed in polynomial time in the size of sketchl[i]

> S(p') ~ Ugex:q<p L(q") is constructed by checking for each
w € S(p') whether w is not in £(q') for every g € X with ¢ < p
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Computing an estimation N(X') of |£(X")]

N(X') can be computed in polynomial time in the size of sketchl[i]

> S(p') ~ Ugex:q<p L(q") is constructed by checking for each
w € S(p') whether w is not in £(q') for every g € X with ¢ < p

What guarantees that N(X') is a good estimation of |£(X')|?
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The main property to maintain

E(7) holds if for every p € Q and X C Q:

[£(P) ~ Ugex £(a)] [5(P') ~ Ugex £(9)]

1£(p")] N S(p)]

15



The use of the main property

Proposition

If £(i) holds and N(p') is a (1 + k=2)"-approximation of |L(p')| for
every p € Q, then N(X') is a (1 & x~2)*1-approximation of |L(X")| for
every X C @
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The use of the main property

Proposition

If £(i) holds and N(p') is a (1 + k=2)"-approximation of |L(p')| for
every p € Q, then N(X') is a (1 + x~2)"**-approximation of |L(X')| for
every X C Q

£(0) holds and N(p°) is a (1 + k=2)%approximation of |£(p®)] for
every p € Q

> Recall that N(p°) = |£(p°)] and S(p°) = L(p°) for every p € Q
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£(0) holds and N(p°) is a (1 + k=2)%approximation of |£(p®)] for
every p € Q

> Recall that N(p°) = |£(p°)] and S(p°) = L(p°) for every p € Q

Then N(X9) is a (1 & x~2)-approximation of |£(X?)| for every X C Q
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The use of the main property

For each state p € Q and b =0, 1, define:

Ro(pY) = {q°|(q° b,p") is a transition in Ao}
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The use of the main property

For each state p € Q and b =0, 1, define:

Rb(Pl) _ {qO ‘ (qo, b, pl) is a transition in Aunron}

Then L(p') = L(Ro(p")) - {0} & L(Ru(p")) - {1}
> So that [£(p")| = [L(Ro(p"))| + [L(Ri(p"))]
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The use of the main property

For each state p € Q and b =0, 1, define:

Rb(Pl) _ {qO ‘ (qo, b, pl) is a transition in Aunron}

Then L(p') = L(Ro(p")) - {0} & L(Ru(p")) - {1}
> So that [£(p")| = [L(Ro(p"))| + [L(Ri(p"))]

Hence, given that N(Ry(p')) is a (1 4 x~2)-approximation of |L£(Ry(p!))|
for b= 0, 1:

N(Ro(pt)) + N(Ry(p')) is a (1 & k~2)-approximation of N(p!)
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The use of the main property: a summary

£(0) holds and N(p°) is a (1 4 k=2)%-approximation of |£(p%)] for
every p € Q
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£(0) holds and N(p°) is a (1 4 k=2)%-approximation of |£(p%)] for
every p € Q

4
N(XO) is a (1 4+ x2)!-approximation of |£(X?)| for every X C @

4

N(p*) = N(Ro(p')) + N(Ri(p")) is a (1 4 x~2) -approximation of N(p')
for every p € Q
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The use of the main property: a summary

N(p') is a (1 4 x~2)1-approximation of |L(p!)| for
every p € Q
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The use of the main property: a summary

£(1) holds and N(p!) is a (1 4 k=2)'-approximation of |£(p!)| for
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The use of the main property: a summary

£(1) holds and N(p!) is a (1 4 k=2)'-approximation of |£(p!)| for
every p € Q

4

N(X1) is a (1 4+ x~2)%-approximation of |£(X1)| for every X C @
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The use of the main property: a summary

£(1) holds and N(p!) is a (1 4 k=2)'-approximation of |£(p!)| for
every p € Q

4
N(X1) is a (1 4+ x~2)%-approximation of |£(X1)| for every X C @

4

N(p?) = N(Ro(p?)) + N(R1(p?)) is a (1 + k~2)?-approximation of N(p?)
for every p € Q

4
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The final result

Proposition

If £(i) holds for every i € {0,1, ..

(1 £ €)-approximation of |L(F")|

.,n}, then N(F") is a
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The final result

Proposition

If £(i) holds for every i € {0,1,...,n}, then N(F") is a
(1 £ €)-approximation of |L(F")|

The issue then is to maintain property £()

> Multisets S(q') of uniform samples play a central role on this

20



Sampling from a state

We need to construct the multiset S(q') of uniform samples

Recall that:

» S(q') contains 2x” words from £(q')

» S(q') is computed assuming that N(q') and
sketch[i — 1] = {N(¢),S(¢’) | 0 < j < i— 1} have already been
constructed

21



To recall

3. Foreach i=1,...,n and state g € Q:
(a) Compute N(q') given sketch[i — 1]
(b) Sample polynomially many uniform elements from £(q") using
N(q') and sketch[i — 1], and let S(q') be the multiset of
uniform samples obtained

29



Sampling from q'

To generate a sample in £(g'), we construct a sequence w', w
wl, w0 such that

> wi= )\

» Wj = bjo+1 with bj < {O, 1}
> wl € L(q)

i—1

27



Sampling from q'

To generate a sample in £(g'), we construct a sequence w'/, w/™!

wl, w0 such that

> owi= )\
» Wj = bjo+1 with bj < {O, 1}
> wl € L(q)

To choose w~t = bw!, construct for b =0, 1:

P, = {p'|(p't, b,q") is a transition in Aunon}

27



Sampling from q'

P} and Pi are sets of states at layer i — 1

We can use the following estimations:

i— 1 |5(pi71)\

UqGX 1g<p E(qi_l)’

N(X1) Z/v

peX

|S(p™1)
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Sampling from q'

P} and Pi are sets of states at layer i — 1

We can use the following estimations:

i— 1 |S(pi71)\

quX 1g<p E(qi_l)’

N(X1) Z/v

peX

We choose b € {0,1} with probability:

|S(p™1)

24



We could have started from a set of states

The previous procedure works for every set of states P':
P, = {p~'|3r e P :(pt b,r')is a transition in Aupon}

In particular, we applied the procedure for P' = {q'}
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We could have started from a set of states

The previous procedure works for every set of states P':
P, = {p~'|3r e P :(pt b,r')is a transition in Aupon}

In particular, we applied the procedure for P' = {q'}

The following recursive procedure summarizes the previous idea:
Sample(i, {ql} )\7 790)

It uses sets of states P' = {q'}, P'~1, ..., P!, P and an initial
probability ¢q

25



The sampling algorithm

Sample(j, P/, w/, )
1. If j = 0, then with probability ¢ return w®, otherwise return fail

2. Compute P, = {p/~1 |3 € P/ - (p/~1, b, ) is a transition
in Aunron} for b=10,1

N(P]

3. Choose b € {0,1} with probability p, = %

N(Pg) + N(Py)

4. Set PIm1 = P! and wi~! = buw/

i -1 j—1 ¢
5. Return Sample(j — 1, P/~ w/ 7pb)

26



The key observation

Let x = x; - - - x; be word in £(q')
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The key observation

Let x = x; - - - x; be word in £(q')

We have that:

Pr(the output of Sample is x)
= Pr(w® = x A the last call to Sample does not fail)
= Pr(the last call to Sample does not fail | w° = x) - Pr(w® = x)
LR\ NP
(W owe) ) (L weep)
=1 N(Po) + N(Py) =1 N(Po) + N(Pp)
= ¥o
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The value of the initial probability g

Proposition
Assume that £(j) holds for each j < i. If w is the output of
Sample(i, {g'}, \, %qs)) then

> ¢ € (0,1) in every recursive call to Sample
> Pr(w=fail) <1-e°
o5

> PI’(W:X):W

for every x € L(q')

28



The value of the initial probability g

Proposition
Assume that £(j) holds for each j < i. If w is the output of
Sample(i, {g'}, \, %qs)) then

> ¢ € (0,1) in every recursive call to Sample
> Pr(w=fail) <1-e°
o5

> Pr(W:x):W

for every x € L(q')

Hence, conditioned on not failing, Sample(i, {g'}, \, %qs)) returns a

uniform sample from £(q’)
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The last step: bounding the probability of breaking the
main assumption

Recall that (i) holds if for every g € Q and X C Q:

1£(a) ~ Upex £)] - [S5(@) ~ Upex £(P)|
1£(q")] |5(q")] 3

We know that £(0) holds.

20



The last step: bounding the probability of breaking the
main assumption

Recall that (i) holds if for every g € Q and X C Q:

1£(q") ~ Upex £(p)] B 15(a") ~ Upex £(p7)]
1£(q)| 15(q")]

We know that £(0) holds. We need to compute a lower bound for:

()

20



Bounding the probability of breaking £(/)

i—1
Assume that /\ E(j) holds
j=0

Let g € Q and S(g') be a multiset of 2x” samples from £(q') computed

by calling Sample(i, {g'}, A, %)

» Each element of S(q') is obtained by repeatedly calling Sample
until the output is different from fail

Assume that S(q') = {wy, ..., w;} with t = 27

20



Bounding the probability of breaking £(/)

Let X C @, and Y; be a Bernoulli random variable for i € {1,... t}:

Yi=1 ifandonlyif w; e <£(qi) ~ U L(p")>

peX

21



Bounding the probability of breaking £(/)

Let X C @, and Y; be a Bernoulli random variable for i € {1,... t}:

Yi=1 ifandonlyif w; e <£(qi) ~ U L(p")>

peX

We have that:

1£(0") ~ Upex £(P)]

Evil = ()]
SV = 15(6) Upex £(6')
£ = IS(q)]

21



By using Hoeffding's inequality

15(@) ~ Upex £ 1£(@) ~ Upex £ | _ 1
P(' 15(q")| B Z(q") ‘ =

K3
i—1

/\E(j)) < 2e7™

j=0



By using Hoeffding's inequality

w3

15(@) ~ Upex £ 1£(@) ~ Upex £ | _ 1
P(' 15(q")| B Z(q") ‘ =

i—1

A 6(1)) < 2e7™

j=0

By taking the union bound:

' 15(0) ~ Upex £(P)|1£(a") ~ Upex £(0) ‘ 1 '
15(q)] 1£(q") -

7\(1 5(])) < 27

Pr(EqEQHXQQ 3
K

9



The conclusion

Rewriting the previous result:

Pr<5(i)

We conclude that:

i—1
/\50)) > 1—e 2
j=0
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The complete algorithm

Input: NFA A=(Q,{0,1},A, I, F) with m=|Q
unary and error ¢ € (0,1)

, length n given in
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1. If £,(A) =0, then return 0

, length n given in
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The complete algorithm

Input: NFA A=(Q,{0,1},A, I, F) with m=|Q
unary and error ¢ € (0,1)

1. If £,(A) =0, then return 0

2. Construct Aynro and set k5 = [22]

, length n given in
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The complete algorithm

Input: NFA A= (Q,{0,1}, A, I, F) with m = |Q]|, length n given in
unary and error ¢ € (0,1)

1. If £,(A) =0, then return 0
2. Construct Ayprop and set k= [ ]

3. Remove each state g’ from Ao that is not reachable from an
initial state in /°
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The complete algorithm

Input: NFA A= (Q,{0,1}, A, I, F) with m = |Q]|, length n given in
unary and error ¢ € (0,1)

1. If £,(A) =0, then return 0
2. Construct Ayprop and set k= [ ]

3. Remove each state g’ from Ao that is not reachable from an
initial state in /°

4. For each q° € 19, set N(g°) =1 and S(q°) = {)\}

34



The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:
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The complete algorithm

5. For each layer i = 1,...,n and state g’ in Ao

5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1
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5.2 Set N(q') = N(Ro) + N(R;)
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for b=0,1
5.2 Set N(q') = N(Ro) + N(R;)
5.3 Set S(q') = 0. Then while |S(q")| < 2x7:

5.3.1 Run Sample(i,{g'}, \, ,\7(—;)) until it returns w # fail, and at

most c(x) € ©(log(x)) times
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5.3 Set S(q') = 0. Then while |S(q")| < 2x7:

5.3.1 Run Sample(i,{g'}, \, ,\7(—;)) until it returns w # fail, and at
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5.3.2 If w = fail, then return 0 (failure event)
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The complete algorithm

5. For each layer i = 1,...,n and state g’ in Aunrorr:
5.1 Set R, = {p'~1| (p'1, b,q') is a transition in Anon}
for b=0,1
5.2 Set N(q') = N(Ro) + N(R;)
5.3 Set S(q') = 0. Then while |S(q")| < 2x7:

5.3.1 Run Sample(i,{g'}, \, ,\7(—;)) until it returns w # fail, and at

most c(x) € ©(log(x)) times
5.3.2 If w = fail, then return 0 (failure event)
5.3.3 Set S(q') = S(¢') U {w} (recall that S(q') allows duplicates)

6. Return N(F™) as an estimation of |£,(A)|

25K



The complete algorithm: final comments

The probability that the algorithm returns a wrong estimate is at most %

> Considering c(x) = [%W

The algorithm runs in time poly(m, n, 1)

26



Final remarks

» The algorithm also provides a randomized polynomial-time
algorithm for GEN

» Such an algorithm can also be obtained from [Jerrum, Valiant
& Vazirani 1986]

» COUNT is SpanL-complete under parsimonious reductions. We
conclude that each function in SpanL admits an FPRAS

> Spanl is the class of functions computable as |S|, where S is
the set of output values returned by an NL Turing machine

7



The complete version of the paper can be found at
https://arxiv.org/abs/1906.09226

Thanks!
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