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A query over G : (friend + knows)∗
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The length n of paths as a parameter

Two fundamental problems:

I COUNT(G , r , n): count the number of paths p in G such that p
conforms to regular expression r and the length of p is n

I n is given in unary as 0n

I GEN(G , r , n): generate uniformly at random a path p in G such
that p conforms to r and the length of p is n

4



COUNT is #P-complete

Only approximate solutions are possible

I Best known approximations work in quasi-polynomial time

Our goal is to construct an FPRAS B for COUNT

I For every G , r , n and error ε ∈ (0, 1):

Pr

(∣∣∣∣COUNT(G , r , n)− B(G , r , n, ε)

COUNT(G , r , n)

∣∣∣∣ ≤ ε) ≥ 3

4

I B works in time poly(‖G‖, ‖r‖, n, 1ε )
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COUNT can be reduced to the following problem

Input : An NFA A, a length n given in unary and ε ∈ (0, 1)
Output : Number of words w such that w ∈ L(A) and |w | = n

A = (Q, {0, 1},∆, I ,F )

I Q is a finite set of states

I ∆ ⊆ Q × {0, 1} × Q is the transition relation

I I ⊆ Q is a set of initial states

I F ⊆ Q is a set of final (accepting) states
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The problem to solve

Assuming Ln(A) = L(A) ∩ {0, 1}n

The task is to compute a number N that is a (1± ε)-approximation
of |Ln(A)|:

(1− ε)|Ln(A)| ≤ N ≤ (1 + ε)|Ln(A)|

Besides, number N has to be computed in time poly(m, n, 1ε )
with m = |Q|
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First component: unroll automaton A

Construct Aunroll from A:

I for each state q ∈ Q, include copies q0, q1, . . ., qn in Aunroll

I for each transition (p, a, q) ∈ ∆ and i ∈ {0, 1, . . . , n − 1}, include
transition (pi , a, qi+1) in Aunroll

Besides, eliminate from Aunroll unnecessary states: each state qi is
reachable from an initial state p0 (p ∈ I )
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Second component: a sketch to be used in the estimation

Define L(qi ) as the set of strings w such that there is a path from an
initial state p0 to qi labeled with w

I Notice that |w | = i

Besides, define for every X ⊆ Q:

L(X i ) =
⋃
q∈X

L(qi )

Then the task is to compute an estimation of |L(F n)|
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Second component: a sketch to be used in the estimation

Let κ = dnm
ε
e

We maintain for each state qi :

I N(qi ): a (1± κ−2)i -approximation of |L(qi )|
I S(qi ): a multiset of uniform samples from L(qi ) of size 2κ7

Data structure to be inductively computed:

sketch[i ] = {N(qj),S(qj) | 0 ≤ j ≤ i and q ∈ Q}
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The algorithm template

1. Construct Aunroll from A

2. For each state q ∈ I , set N(q0) = |L(q0)| = 1 and
S(q0) = L(q0) = {λ}

3. For each i = 1, . . . , n and state q ∈ Q:

(a) Compute N(qi ) given sketch[i − 1]

(b) Sample polynomially many uniform elements from L(qi ) using
N(qi ) and sketch[i − 1], and let S(qi ) be the multiset of
uniform samples obtained

4. Return an estimation of |L(F n)| given sketch[n]
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Computing an estimation N(F n) of |L(F n)|

We use notation N(X i ) for an estimation |L(X i )|
I Such an estimation is not only needed in the last step of the

algorithm, but also in the inductive construction of sketch[i ]

Notice that |L(X i )| =
∑
p∈X

|L(pi )| does not hold in general

But the following holds, given a linear order < on Q:

|L(X i )| =
∑
p∈X

∣∣L(pi ) r
⋃

q∈X : q<p

L(qi )
∣∣
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Computing an estimation N(X i) of |L(X i)|

N(X i ) can be computed in polynomial time in the size of sketch[i ]

I S(pi ) r
⋃

q∈X : q<p L(qi ) is constructed by checking for each

w ∈ S(pi ) whether w is not in L(qi ) for every q ∈ X with q < p

What guarantees that N(X i ) is a good estimation of |L(X i )|?
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The main property to maintain

E(i) holds if for every p ∈ Q and X ⊆ Q:

∣∣∣∣
∣∣L(pi ) r

⋃
q∈X L(qi )

∣∣∣∣L(pi )
∣∣ −

∣∣S(pi ) r
⋃

q∈X L(qi )
∣∣∣∣S(pi )

∣∣
∣∣∣∣ <

1

κ3
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The use of the main property

Proposition

If E(i) holds and N(pi ) is a (1± κ−2)i -approximation of |L(pi )| for
every p ∈ Q, then N(X i ) is a (1± κ−2)i+1-approximation of |L(X i )| for
every X ⊆ Q

E(0) holds and N(p0) is a (1± κ−2)0-approximation of |L(p0)| for
every p ∈ Q

I Recall that N(p0) = |L(p0)| and S(p0) = L(p0) for every p ∈ Q

Then N(X 0) is a (1± κ−2)-approximation of |L(X 0)| for every X ⊆ Q
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The use of the main property

For each state p ∈ Q and b = 0, 1, define:

Rb(p1) = {q0 | (q0, b, p1) is a transition in Aunroll}

Then L(p1) = L(R0(p1)) · {0} ] L(R1(p1)) · {1}
I So that |L(p1)| = |L(R0(p1))|+ |L(R1(p1))|

Hence, given that N(Rb(p1)) is a (1± κ−2)-approximation of |L(Rb(p1))|
for b = 0, 1:

N(R0(p1)) + N(R1(p1)) is a (1± κ−2)-approximation of N(p1)
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The use of the main property: a summary

E(0) holds and N(p0) is a (1± κ−2)0-approximation of |L(p0)| for
every p ∈ Q

⇓

N(X 0) is a (1± κ−2)1-approximation of |L(X 0)| for every X ⊆ Q

⇓

N(p1) = N(R0(p1)) + N(R1(p1)) is a (1± κ−2)1-approximation of N(p1)
for every p ∈ Q
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The use of the main property: a summary

E(1) holds and
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N(p2) = N(R0(p2)) + N(R1(p2)) is a (1± κ−2)2-approximation of N(p2)
for every p ∈ Q

⇓

. . .
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The final result

Proposition

If E(i) holds for every i ∈ {0, 1, . . . , n}, then N(F n) is a
(1± ε)-approximation of |L(F n)|

The issue then is to maintain property E(i)

I Multisets S(qi ) of uniform samples play a central role on this
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Sampling from a state

We need to construct the multiset S(qi ) of uniform samples

Recall that:

I S(qi ) contains 2κ7 words from L(qi )

I S(qi ) is computed assuming that N(qi ) and
sketch[i − 1] = {N(qj),S(qj) | 0 ≤ j ≤ i − 1} have already been
constructed
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To recall

1. Construct Aunroll from A

2. For each state q ∈ I , set N(q0) = |L(q0)| = 1 and
S(q0) = L(q0) = {λ}

3. For each i = 1, . . . , n and state q ∈ Q:

(a) Compute N(qi ) given sketch[i − 1]

(b) Sample polynomially many uniform elements from L(qi ) using
N(qi ) and sketch[i − 1], and let S(qi ) be the multiset of
uniform samples obtained

4. Return an estimation of |L(F n)| given sketch[n]
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Sampling from qi

To generate a sample in L(qi ), we construct a sequence w i , w i−1, . . .,
w1, w0 such that

I w i = λ

I w j = bjw
j+1 with bj ∈ {0, 1}

I w0 ∈ L(qi )

To choose w i−1 = bw i , construct for b = 0, 1:

P i
b = {pi−1 | (pi−1, b, qi ) is a transition in Aunroll}
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Sampling from qi

P i
0 and P i

1 are sets of states at layer i − 1

We can use the following estimations:

N(X i−1) =
∑
p∈X

N(pi−1)

∣∣S(pi−1) r
⋃

q∈X : q<p L(qi−1)
∣∣∣∣S(pi−1)

∣∣

We choose b ∈ {0, 1} with probability:

N(P i
b)

N(P i
0) + N(P i

1)
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We could have started from a set of states

The previous procedure works for every set of states P i :

P i
b = {pi−1 | ∃r i ∈ P i : (pi−1, b, r i ) is a transition in Aunroll}

In particular, we applied the procedure for P i = {qi}

The following recursive procedure summarizes the previous idea:

Sample(i , {qi}, λ, ϕ0)

It uses sets of states P i = {qi}, P i−1, . . ., P1, P0 and an initial
probability ϕ0
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The sampling algorithm

Sample(j ,P j ,w j , ϕ)

1. If j = 0, then with probability ϕ return w0, otherwise return fail

2. Compute P j
b = {pj−1 | ∃r j ∈ P j : (pj−1, b, r j) is a transition

in Aunroll} for b = 0, 1

3. Choose b ∈ {0, 1} with probability pb =
N(P j

b)

N(P j
0) + N(P j

1)

4. Set P j−1 = P j
b and w j−1 = bw j

5. Return Sample(j − 1,P j−1,w j−1, ϕpb )

26



The key observation

Let x = x1 · · · xi be word in L(qi )

We have that:

Pr(the output of Sample is x)

= Pr(w0 = x ∧ the last call to Sample does not fail)

= Pr(the last call to Sample does not fail | w0 = x) · Pr(w0 = x)

=

(( i∏
j=1

N(P j
xj )

N(P j
0) + N(P j

1)

)−1
· ϕ0

)
·
( i∏

j=1

N(P j
xj )

N(P j
0) + N(P j

1)

)
= ϕ0
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The value of the initial probability ϕ0

Proposition

Assume that E(j) holds for each j < i . If w is the output of

Sample(i , {qi}, λ, e−5

N(qi ) ), then

I ϕ ∈ (0, 1) in every recursive call to Sample

I Pr(w = fail) ≤ 1− e−9

I Pr(w = x) =
e−5

N(qi )
for every x ∈ L(qi )

Hence, conditioned on not failing, Sample(i , {qi}, λ, e−5

N(qi ) ) returns a

uniform sample from L(qi )
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I Pr(w = fail) ≤ 1− e−9

I Pr(w = x) =
e−5

N(qi )
for every x ∈ L(qi )

Hence, conditioned on not failing, Sample(i , {qi}, λ, e−5

N(qi ) ) returns a

uniform sample from L(qi )
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The last step: bounding the probability of breaking the
main assumption

Recall that E(i) holds if for every q ∈ Q and X ⊆ Q:

∣∣∣∣
∣∣L(qi ) r

⋃
p∈X L(pi )

∣∣∣∣L(qi )
∣∣ −

∣∣S(qi ) r
⋃

p∈X L(pi )
∣∣∣∣S(qi )

∣∣
∣∣∣∣ <

1

κ3

We know that E(0) holds.

We need to compute a lower bound for:

Pr

( n∧
j=0

E(j)

)
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Bounding the probability of breaking E(i)

Assume that
i−1∧
j=0

E(j) holds

Let q ∈ Q and S(qi ) be a multiset of 2κ7 samples from L(qi ) computed

by calling Sample(i , {qi}, λ, e−5

N(qi ) )

I Each element of S(qi ) is obtained by repeatedly calling Sample
until the output is different from fail

Assume that S(qi ) = {w1, . . . ,wt} with t = 2κ7
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Bounding the probability of breaking E(i)

Let X ⊆ Q, and Yi be a Bernoulli random variable for i ∈ {1, . . . , t}:

Yi = 1 if and only if wi ∈
(
L(qi ) r

⋃
p∈X

L(pi )

)

We have that:

E[Yi ] =
|L(qi ) r

⋃
p∈X L(pi )|

|L(qi )|
t∑

j=1

Yi = |S(qi ) r
⋃

p∈X L(pi )|

t = |S(qi )|
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By using Hoeffding’s inequality

Pr

(∣∣∣∣ |S(qi ) r
⋃

p∈X L(pi )|
|S(qi )| −

|L(qi ) r
⋃

p∈X L(pi )|
|L(qi )|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣
i−1∧
j=0

E(j)

)
≤ 2e−4κ

By taking the union bound:

Pr

(
∃q ∈ Q ∃X ⊆ Q

∣∣∣∣ |S(qi ) r
⋃

p∈X L(pi )|
|S(qi )| −

|L(qi ) r
⋃

p∈X L(pi )|
|L(qi )|

∣∣∣∣ ≥ 1

κ3

∣∣∣∣
i−1∧
j=0

E(j)

)
≤ 2e−2κ
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The conclusion

Rewriting the previous result:

Pr

(
E(i)

∣∣∣∣ i−1∧
j=0

E(j)

)
≥ 1− e−2κ

We conclude that:

Pr

( n∧
j=0

E(j)

)
≥ 1− e−κ
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The complete algorithm

Input: NFA A = (Q, {0, 1},∆, I ,F ) with m = |Q|, length n given in
unary and error ε ∈ (0, 1)

1. If Ln(A) = ∅, then return 0

2. Construct Aunroll and set κ = d nmε e

3. Remove each state qi from Aunroll that is not reachable from an
initial state in I 0

4. For each q0 ∈ I 0, set N(q0) = 1 and S(q0) = {λ}
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The complete algorithm

5. For each layer i = 1, . . . , n and state qi in Aunroll:

5.1 Set Rb = {pi−1 | (pi−1, b, qi ) is a transition in Aunroll}
for b = 0, 1

5.2 Set N(qi ) = N(R0) + N(R1)

5.3 Set S(qi ) = ∅. Then while |S(qi )| < 2κ7:

5.3.1 Run Sample(i , {qi}, λ, e−5

N(qi )
) until it returns w 6= fail, and at

most c(κ) ∈ Θ(log(κ)) times

5.3.2 If w = fail, then return 0 (failure event)

5.3.3 Set S(qi ) = S(qi ) ∪ {w} (recall that S(qi ) allows duplicates)

6. Return N(F n) as an estimation of |Ln(A)|
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The complete algorithm: final comments

The probability that the algorithm returns a wrong estimate is at most 1
4

I Considering c(κ) = d 2+log(4)+8 log(κ)
log(1−e−9)−1 e

The algorithm runs in time poly(m, n, 1ε )
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Final remarks

I The algorithm also provides a randomized polynomial-time
algorithm for GEN

I Such an algorithm can also be obtained from [Jerrum, Valiant
& Vazirani 1986]

I COUNT is SpanL-complete under parsimonious reductions. We
conclude that each function in SpanL admits an FPRAS

I SpanL is the class of functions computable as |S |, where S is
the set of output values returned by an NL Turing machine
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The complete version of the paper can be found at
https://arxiv.org/abs/1906.09226

Thanks!
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