A Polynomial-Time Approximation Algorithm for Counting Words Accepted by an NFA

Marcelo Arenas

PUC & IMFD Chile

Joint work with Luis Alberto Croquevielle, Rajesh Jayaram and Cristian Riveros

- **/ ₽** ► - 3

A graph database G

A query over G: $(friend + knows)^*$

A query over G: $(friend + knows)^*$

A query over G: $(friend + knows)^*$

</2> > ∃

The length n of paths as a parameter

Two fundamental problems:

- COUNT(G, r, n): count the number of paths p in G such that p conforms to regular expression r and the length of p is n
 - *n* is given in unary as 0ⁿ
- GEN(G, r, n): generate uniformly at random a path p in G such that p conforms to r and the length of p is n

COUNT is #P-complete

Only approximate solutions are possible

Best known approximations work in quasi-polynomial time

COUNT is #P-complete

Only approximate solutions are possible

Best known approximations work in quasi-polynomial time

Our goal is to construct an FPRAS ${\mathcal B}$ for COUNT

► For every *G*, *r*, *n* and error
$$\varepsilon \in (0, 1)$$
:

$$\Pr\left(\left|\frac{\text{COUNT}(G, r, n) - \mathcal{B}(G, r, n, \varepsilon)}{\text{COUNT}(G, r, n)}\right| \le \varepsilon\right) \ge \frac{3}{4}$$

$$\blacktriangleright \mathcal{B}$$
 works in time poly $(\|G\|, \|r\|, n, \frac{1}{\varepsilon})$

COUNT can be reduced to the following problem

Input : An NFA A, a length n given in unary and $\varepsilon \in (0, 1)$ Output : Number of words w such that $w \in \mathcal{L}(\mathcal{A})$ and |w| = n

COUNT can be reduced to the following problem

Input : An NFA A, a length n given in unary and $\varepsilon \in (0, 1)$ Output : Number of words w such that $w \in \mathcal{L}(\mathcal{A})$ and |w| = n

- $A = (Q, \{0,1\}, \Delta, I, F)$
 - Q is a finite set of states
 - $\Delta \subseteq Q \times \{0,1\} \times Q$ is the transition relation
 - $I \subseteq Q$ is a set of initial states
 - $F \subseteq Q$ is a set of final (accepting) states

The problem to solve

Assuming $\mathcal{L}_n(A) = \mathcal{L}(A) \cap \{0,1\}^n$

The task is to compute a number N that is a $(1 \pm \varepsilon)$ -approximation of $|\mathcal{L}_n(A)|$:

$$(1-\varepsilon)|\mathcal{L}_n(A)| \leq N \leq (1+\varepsilon)|\mathcal{L}_n(A)|$$

Besides, number N has to be computed in time poly $(m, n, \frac{1}{\varepsilon})$ with m = |Q|

< 🗗 🕨

First component: unroll automaton A

Construct A_{unroll} from A:

▶ for each state $q \in Q$, include copies q^0 , q^1 , ..., q^n in A_{unroll}

▶ for each transition $(p, a, q) \in \Delta$ and $i \in \{0, 1, ..., n-1\}$, include transition (p^i, a, q^{i+1}) in A_{unroll}

Besides, eliminate from A_{unroll} unnecessary states: each state q^i is reachable from an initial state p^0 $(p \in I)$

Define $\mathcal{L}(q^i)$ as the set of strings w such that there is a path from an initial state p^0 to q^i labeled with w

• Notice that
$$|w| = i$$

Besides, define for every $X \subseteq Q$:

$$\mathcal{L}(X^i) \;\; = \;\; igcup_{q \in X} \mathcal{L}(q^i)$$

Define $\mathcal{L}(q^i)$ as the set of strings w such that there is a path from an initial state p^0 to q^i labeled with w

• Notice that
$$|w| = i$$

Besides, define for every $X \subseteq Q$:

$$\mathcal{L}(X^i) \;\; = \;\; igcup_{q \in X} \mathcal{L}(q^i)$$

Then the task is to compute an estimation of $|\mathcal{L}(F^n)|$

Let
$$\kappa = \lceil \frac{nm}{\varepsilon} \rceil$$

Let $\kappa = \lceil \frac{nm}{\varepsilon} \rceil$

We maintain for each state q^i :

- $N(q^i)$: a $(1 \pm \kappa^{-2})^i$ -approximation of $|\mathcal{L}(q^i)|$
- ► $S(q^i)$: a multiset of uniform samples from $\mathcal{L}(q^i)$ of size $2\kappa^7$

Data structure to be inductively computed:

 $\mathsf{sketch}[i] = \{N(q^j), S(q^j) \mid 0 \le j \le i \text{ and } q \in Q\}$

I

The algorithm template

1. Construct A_{unroll} from A

- 2. For each state $q \in I$, set $N(q^0) = |\mathcal{L}(q^0)| = 1$ and $S(q^0) = \mathcal{L}(q^0) = \{\lambda\}$
- 3. For each $i = 1, \ldots, n$ and state $q \in Q$:
 - (a) Compute $N(q^i)$ given sketch[i-1]
 - (b) Sample polynomially many uniform elements from $\mathcal{L}(q^i)$ using $N(q^i)$ and sketch[i-1], and let $S(q^i)$ be the multiset of uniform samples obtained
- 4. Return an estimation of $|\mathcal{L}(F^n)|$ given sketch[n]

We use notation $N(X^i)$ for an estimation $|\mathcal{L}(X^i)|$

Such an estimation is not only needed in the last step of the algorithm, but also in the inductive construction of sketch[i]

Notice that
$$|\mathcal{L}(X^i)| = \sum_{p \in X} |\mathcal{L}(p^i)|$$
 does not hold in general

We use notation $N(X^i)$ for an estimation $|\mathcal{L}(X^i)|$

Such an estimation is not only needed in the last step of the algorithm, but also in the inductive construction of sketch[i]

Notice that
$$|\mathcal{L}(X^i)| = \sum_{p \in X} |\mathcal{L}(p^i)|$$
 does not hold in general

But the following holds, given a linear order < on Q:

$$|\mathcal{L}(X^i)| = \sum_{p \in X} \left| \mathcal{L}(p^i) \smallsetminus \bigcup_{q \in X : q < p} \mathcal{L}(q^i) \right|$$

We have that:

$$|\mathcal{L}(X^i)| = \sum_{p \in X} \left| \mathcal{L}(p^i) \smallsetminus \bigcup_{q \in X : q < p} \mathcal{L}(q^i) \right|$$

We have that:

$$\begin{split} \mathcal{L}(X^{i})| &= \sum_{p \in X} \left| \mathcal{L}(p^{i}) \smallsetminus \bigcup_{q \in X : q < p} \mathcal{L}(q^{i}) \right| \\ &= \sum_{p \in X} \left| \mathcal{L}(p^{i}) \right| \frac{\left| \mathcal{L}(p^{i}) \smallsetminus \bigcup_{q \in X : q < p} \mathcal{L}(q^{i}) \right|}{\left| \mathcal{L}(p^{i}) \right|} \end{aligned}$$

</ >
</ >
</ >

We have that:

$$\begin{split} \mathcal{L}(X^{i})| &= \sum_{p \in X} \left| \mathcal{L}(p^{i}) \smallsetminus \bigcup_{q \in X : q < p} \mathcal{L}(q^{i}) \right| \\ &= \sum_{p \in X} \left| \mathcal{L}(p^{i}) \right| \frac{\left| \mathcal{L}(p^{i}) \smallsetminus \bigcup_{q \in X : q < p} \mathcal{L}(q^{i}) \right|}{\left| \mathcal{L}(p^{i}) \right|} \end{aligned}$$

So we will use the following approximation:

$$N(X^{i}) = \sum_{p \in X} N(p^{i}) \frac{\left| S(p^{i}) \smallsetminus \bigcup_{q \in X : q < p} \mathcal{L}(q^{i}) \right|}{\left| S(p^{i}) \right|}$$

<**₽** > E

 $N(X^i)$ can be computed in polynomial time in the size of sketch[i]

► $S(p^i) \setminus \bigcup_{q \in X : q < p} \mathcal{L}(q^i)$ is constructed by checking for each $w \in S(p^i)$ whether w is not in $\mathcal{L}(q^i)$ for every $q \in X$ with q < p

 $N(X^i)$ can be computed in polynomial time in the size of sketch[i]

► $S(p^i) \setminus \bigcup_{q \in X : q < p} \mathcal{L}(q^i)$ is constructed by checking for each $w \in S(p^i)$ whether w is not in $\mathcal{L}(q^i)$ for every $q \in X$ with q < p

What guarantees that $N(X^i)$ is a good estimation of $|\mathcal{L}(X^i)|$?

The main property to maintain

 $\mathcal{E}(i)$ holds if for every $p \in Q$ and $X \subseteq Q$:

$$\frac{\left|\mathcal{L}(p^{i})\smallsetminus\bigcup_{q\in X}\mathcal{L}(q^{i})\right|}{\left|\mathcal{L}(p^{i})\right|} - \frac{\left|S(p^{i})\smallsetminus\bigcup_{q\in X}\mathcal{L}(q^{i})\right|}{\left|S(p^{i})\right|} \ < \ \frac{1}{\kappa^{3}}$$

Proposition

If $\mathcal{E}(i)$ holds and $N(p^i)$ is a $(1 \pm \kappa^{-2})^i$ -approximation of $|\mathcal{L}(p^i)|$ for every $p \in Q$, then $N(X^i)$ is a $(1 \pm \kappa^{-2})^{i+1}$ -approximation of $|\mathcal{L}(X^i)|$ for every $X \subseteq Q$

Proposition

If $\mathcal{E}(i)$ holds and $N(p^i)$ is a $(1 \pm \kappa^{-2})^i$ -approximation of $|\mathcal{L}(p^i)|$ for every $p \in Q$, then $N(X^i)$ is a $(1 \pm \kappa^{-2})^{i+1}$ -approximation of $|\mathcal{L}(X^i)|$ for every $X \subseteq Q$

 $\mathcal{E}(0)$ holds and $\textit{N}(p^0)$ is a $(1\pm\kappa^{-2})^0\text{-approximation}$ of $|\mathcal{L}(p^0)|$ for every $p\in Q$

▶ Recall that $N(p^0) = |\mathcal{L}(p^0)|$ and $S(p^0) = \mathcal{L}(p^0)$ for every $p \in Q$

I ⊡

Proposition

If $\mathcal{E}(i)$ holds and $N(p^i)$ is a $(1 \pm \kappa^{-2})^i$ -approximation of $|\mathcal{L}(p^i)|$ for every $p \in Q$, then $N(X^i)$ is a $(1 \pm \kappa^{-2})^{i+1}$ -approximation of $|\mathcal{L}(X^i)|$ for every $X \subseteq Q$

 $\mathcal{E}(0)$ holds and $\mathit{N}(p^0)$ is a $(1\pm\kappa^{-2})^0\text{-approximation}$ of $|\mathcal{L}(p^0)|$ for every $p\in Q$

▶ Recall that $N(p^0) = |\mathcal{L}(p^0)|$ and $S(p^0) = \mathcal{L}(p^0)$ for every $p \in Q$

Then $N(X^0)$ is a $(1 \pm \kappa^{-2})$ -approximation of $|\mathcal{L}(X^0)|$ for every $X \subseteq Q$

For each state $p \in Q$ and b = 0, 1, define:

 $R_b(p^1) = \{q^0 \mid (q^0, b, p^1) \text{ is a transition in } A_{unroll}\}$

17

For each state $p \in Q$ and b = 0, 1, define:

 $R_b(p^1) = \{q^0 \mid (q^0, b, p^1) \text{ is a transition in } A_{unroll}\}$

Then
$$\mathcal{L}(p^1) = \mathcal{L}(R_0(p^1)) \cdot \{0\} \ \ \ \mathcal{L}(R_1(p^1)) \cdot \{1\}$$

So that $|\mathcal{L}(p^1)| = |\mathcal{L}(R_0(p^1))| + |\mathcal{L}(R_1(p^1))|$

For each state $p \in Q$ and b = 0, 1, define:

 $R_b(p^1) = \{q^0 \mid (q^0, b, p^1) \text{ is a transition in } A_{unroll}\}$

Then
$$\mathcal{L}(p^1) = \mathcal{L}(R_0(p^1)) \cdot \{0\} \ \ \mathcal{L}(R_1(p^1)) \cdot \{1\}$$

So that $|\mathcal{L}(p^1)| = |\mathcal{L}(R_0(p^1))| + |\mathcal{L}(R_1(p^1))|$

Hence, given that $N(R_b(p^1))$ is a $(1 \pm \kappa^{-2})$ -approximation of $|\mathcal{L}(R_b(p^1))|$ for b = 0, 1:

 $N(R_0(p^1)) + N(R_1(p^1))$ is a $(1 \pm \kappa^{-2})$ -approximation of $N(p^1)$

 $\mathcal{E}(0)$ holds and $N(p^0)$ is a $(1\pm\kappa^{-2})^0$ -approximation of $|\mathcal{L}(p^0)|$ for every $p\in Q$

 $\mathcal{E}(0)$ holds and $N(p^0)$ is a $(1 \pm \kappa^{-2})^0$ -approximation of $|\mathcal{L}(p^0)|$ for every $p \in Q$

 $\mathit{N}(X^0)$ is a $(1\pm\kappa^{-2})^1$ -approximation of $|\mathcal{L}(X^0)|$ for every $X\subseteq Q$

<**₽**> E

$${m N}(p^1)$$
 is a $(1\pm\kappa^{-2})^1$ -approximation of $|{\mathcal L}(p^1)|$ for every ${m
ho}\in Q$

 ${\cal E}(1)$ holds and ${\it N}(p^1)$ is a $(1\pm\kappa^{-2})^1$ -approximation of $|{\cal L}(p^1)|$ for every $p\in Q$
The use of the main property: a summary

The use of the main property: a summary

19

The use of the main property: a summary

$$\begin{array}{l} \mathcal{E}(1) \text{ holds and } N(p^1) \text{ is a } (1 \pm \kappa^{-2})^1 \text{-approximation of } |\mathcal{L}(p^1)| \text{ for every } p \in Q \\ & \Downarrow \\ N(X^1) \text{ is a } (1 \pm \kappa^{-2})^2 \text{-approximation of } |\mathcal{L}(X^1)| \text{ for every } X \subseteq Q \\ & \Downarrow \\ N(p^2) = N(R_0(p^2)) + N(R_1(p^2)) \text{ is a } (1 \pm \kappa^{-2})^2 \text{-approximation of } N(p^2) \\ & \text{ for every } p \in Q \\ & \Downarrow \end{array}$$

. . .

</r>
</r>

The final result

Proposition

If $\mathcal{E}(i)$ holds for every $i \in \{0, 1, ..., n\}$, then $N(F^n)$ is a $(1 \pm \varepsilon)$ -approximation of $|\mathcal{L}(F^n)|$

The final result

Proposition

If $\mathcal{E}(i)$ holds for every $i \in \{0, 1, ..., n\}$, then $N(F^n)$ is a $(1 \pm \varepsilon)$ -approximation of $|\mathcal{L}(F^n)|$

The issue then is to maintain property $\mathcal{E}(i)$

• Multisets $S(q^i)$ of uniform samples play a central role on this

We need to construct the multiset $S(q^i)$ of uniform samples

Recall that:

- $S(q^i)$ contains $2\kappa^7$ words from $\mathcal{L}(q^i)$
- ▶ $S(q^i)$ is computed assuming that $N(q^i)$ and sketch $[i-1] = \{N(q^i), S(q^i) \mid 0 \le j \le i-1\}$ have already been constructed

To recall

1. Construct A_{unroll} from A

- 2. For each state $q \in I$, set $N(q^0) = |\mathcal{L}(q^0)| = 1$ and $S(q^0) = \mathcal{L}(q^0) = \{\lambda\}$
- 3. For each $i = 1, \ldots, n$ and state $q \in Q$:
 - (a) Compute $N(q^i)$ given sketch[i-1]
 - (b) Sample polynomially many uniform elements from $\mathcal{L}(q^i)$ using $N(q^i)$ and sketch[i-1], and let $S(q^i)$ be the multiset of uniform samples obtained
- **4**. Return an estimation of $|\mathcal{L}(F^n)|$ given sketch[n]

To generate a sample in $\mathcal{L}(q^i)$, we construct a sequence w^i , w^{i-1} , ..., w^1 , w^0 such that

$$w^{i} = \lambda$$

$$w^{j} = b_{j}w^{j+1} \text{ with } b_{j} \in \{0,1\}$$

$$w^{0} \in \mathcal{L}(q^{i})$$

To generate a sample in $\mathcal{L}(q^i)$, we construct a sequence w^i , w^{i-1} , ..., w^1 , w^0 such that

$$w^{i} = \lambda$$

$$w^{j} = b_{j}w^{j+1} \text{ with } b_{j} \in \{0, 1\}$$

$$w^{0} \in \mathcal{L}(q^{i})$$

To choose $w^{i-1} = bw^i$, construct for b = 0, 1:

 $P_b^i = \{p^{i-1} \mid (p^{i-1}, b, q^i) \text{ is a transition in } A_{unroll}\}$

 P_0^i and P_1^i are sets of states at layer i-1

We can use the following estimations:

$$N(X^{i-1}) = \sum_{p \in X} N(p^{i-1}) \frac{|S(p^{i-1}) \setminus \bigcup_{q \in X : q < p} \mathcal{L}(q^{i-1})|}{|S(p^{i-1})|}$$

 P_0^i and P_1^i are sets of states at layer i-1

We can use the following estimations:

$$N(X^{i-1}) = \sum_{p \in X} N(p^{i-1}) \frac{|S(p^{i-1}) \setminus \bigcup_{q \in X: q < p} \mathcal{L}(q^{i-1})|}{|S(p^{i-1})|}$$

We choose $b \in \{0, 1\}$ with probability:

$$\frac{N(P_b^i)}{N(P_0^i) + N(P_1^i)}$$

</l></l>

We could have started from a set of states

The previous procedure works for every set of states P^i :

$$P_b^i = \{p^{i-1} \mid \exists r^i \in P^i : (p^{i-1}, b, r^i) \text{ is a transition in } A_{unroll}\}$$

In particular, we applied the procedure for $P^i = \{q^i\}$

We could have started from a set of states

The previous procedure works for every set of states P^i :

$$P_b^i = \{p^{i-1} \mid \exists r^i \in P^i : (p^{i-1}, b, r^i) \text{ is a transition in } A_{unroll}\}$$

In particular, we applied the procedure for $P^i = \{q^i\}$

The following recursive procedure summarizes the previous idea:

Sample $(i, \{q^i\}, \lambda, \varphi_0)$

It uses sets of states $P^i=\{q^i\},~P^{i-1},~\ldots,~P^1,~P^0$ and an initial probability φ_0

<**₽** ► E

The sampling algorithm

Sample (j, P^j, w^j, φ)

1. If j = 0, then with probability φ return w^0 , otherwise return fail

2. Compute $P_b^j = \{p^{j-1} \mid \exists r^j \in P^j : (p^{j-1}, b, r^j) \text{ is a transition}$ in $A_{unroll}\}$ for b = 0, 1

3. Choose
$$b \in \{0,1\}$$
 with probability $p_b = \frac{N(P_b^j)}{N(P_0^j) + N(P_1^j)}$

4. Set
$$P^{j-1} = P^{j}_{b}$$
 and $w^{j-1} = bw^{j}$

5. Return **Sample** $(j - 1, P^{j-1}, w^{j-1}, \frac{\varphi}{p_b})$

The key observation

Let $x = x_1 \cdots x_i$ be word in $\mathcal{L}(q^i)$

The key observation

Let $x = x_1 \cdots x_i$ be word in $\mathcal{L}(q^i)$

We have that:

Pr(the output of **Sample** is *x*)

$$= \mathbf{Pr}(w^{0} = x \land \text{ the last call to Sample does not fail})$$

= $\mathbf{Pr}(\text{the last call to Sample does not fail} | w^{0} = x) \cdot \mathbf{Pr}(w^{0} = x)$
= $\left(\left(\prod_{j=1}^{i} \frac{N(P_{x_{j}}^{j})}{N(P_{0}^{j}) + N(P_{1}^{j})} \right)^{-1} \cdot \varphi_{0} \right) \cdot \left(\prod_{j=1}^{i} \frac{N(P_{x_{j}}^{j})}{N(P_{0}^{j}) + N(P_{1}^{j})} \right)$
= φ_{0}

<⊡ > ⊇

The value of the initial probability φ_0

Proposition

Assume that $\mathcal{E}(j)$ holds for each j < i. If w is the output of **Sample** $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})$, then

• $\varphi \in (0,1)$ in every recursive call to Sample

The value of the initial probability φ_0

Proposition

Assume that $\mathcal{E}(j)$ holds for each j < i. If w is the output of **Sample** $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})$, then

• $\varphi \in (0,1)$ in every recursive call to Sample

Hence, conditioned on not failing, **Sample** $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})$ returns a uniform sample from $\mathcal{L}(q^i)$

The last step: bounding the probability of breaking the main assumption

Recall that $\mathcal{E}(i)$ holds if for every $q \in Q$ and $X \subseteq Q$:

$$\frac{\left|\mathcal{L}(q^{i})\smallsetminus\bigcup_{p\in X}\mathcal{L}(p^{i})\right|}{\left|\mathcal{L}(q^{i})\right|} - \frac{\left|S(q^{i})\smallsetminus\bigcup_{p\in X}\mathcal{L}(p^{i})\right|}{\left|S(q^{i})\right|} \left| \quad < \quad \frac{1}{\kappa^{3}}$$

We know that $\mathcal{E}(0)$ holds.

The last step: bounding the probability of breaking the main assumption

Recall that $\mathcal{E}(i)$ holds if for every $q \in Q$ and $X \subseteq Q$:

$$\frac{\left|\mathcal{L}(q^{i})\smallsetminus\bigcup_{p\in X}\mathcal{L}(p^{i})\right|}{\left|\mathcal{L}(q^{i})\right|} - \frac{\left|S(q^{i})\smallsetminus\bigcup_{p\in X}\mathcal{L}(p^{i})\right|}{\left|S(q^{i})\right|} \left| \quad < \quad \frac{1}{\kappa^{3}}$$

We know that $\mathcal{E}(0)$ holds. We need to compute a lower bound for:

$$\Pr\left(\bigwedge_{j=0}^{n}\mathcal{E}(j)\right)$$

</2> > E

Bounding the probability of breaking $\mathcal{E}(i)$

Assume that
$$\bigwedge_{j=0}^{i-1} \mathcal{E}(j)$$
 holds

Let $q \in Q$ and $S(q^i)$ be a multiset of $2\kappa^7$ samples from $\mathcal{L}(q^i)$ computed by calling **Sample** $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})$

Each element of S(qⁱ) is obtained by repeatedly calling Sample until the output is different from fail

Assume that $S(q^i) = \{w_1, \ldots, w_t\}$ with $t = 2\kappa^7$

Bounding the probability of breaking $\mathcal{E}(i)$

Let $X \subseteq Q$, and Y_i be a Bernoulli random variable for $i \in \{1, \ldots, t\}$:

$$Y_i = 1$$
 if and only if $w_i \in \left(\mathcal{L}(q^i) \smallsetminus \bigcup_{p \in X} \mathcal{L}(p^i)\right)$

Bounding the probability of breaking $\mathcal{E}(i)$

Let $X \subseteq Q$, and Y_i be a Bernoulli random variable for $i \in \{1, \ldots, t\}$:

$$Y_i = 1$$
 if and only if $w_i \in \left(\mathcal{L}(q^i) \smallsetminus igcup_{p \in X} \mathcal{L}(p^i)
ight)$

We have that:

$$\begin{split} \mathbb{E}[Y_i] &= \frac{|\mathcal{L}(q^i) \smallsetminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|\mathcal{L}(q^i)|} \\ \sum_{j=1}^t Y_i &= |S(q^i) \smallsetminus \bigcup_{p \in X} \mathcal{L}(p^i)| \\ t &= |S(q^i)| \end{split}$$

By using Hoeffding's inequality

By using Hoeffding's inequality

By taking the union bound:

$$\Pr\left(\exists q \in Q \, \exists X \subseteq Q \, \left| \frac{|S(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|S(q^i)|} - \frac{|\mathcal{L}(q^i) \setminus \bigcup_{p \in X} \mathcal{L}(p^i)|}{|\mathcal{L}(q^i)|} \right| \geq \frac{1}{\kappa^3} \\ \bigwedge_{j=0}^{i-1} \mathcal{E}(j) \right) \leq 2e^{-2\kappa}$$

</ >
</ >

The conclusion

Rewriting the previous result:

$$\Pr\left(\mathcal{E}(i) \mid \bigwedge_{j=0}^{i-1} \mathcal{E}(j)\right) \geq 1 - e^{-2\kappa}$$

We conclude that:

$$\mathsf{Pr}\left(\bigwedge_{j=0}^{n}\mathcal{E}(j)
ight) \geq 1-e^{-\kappa}$$

</2> ≥

Input: NFA $A = (Q, \{0, 1\}, \Delta, I, F)$ with m = |Q|, length n given in unary and error $\varepsilon \in (0, 1)$

1. If $\mathcal{L}_n(A) = \emptyset$, then return 0

- 1. If $\mathcal{L}_n(A) = \emptyset$, then return 0
- 2. Construct A_{unroll} and set $\kappa = \lceil \frac{nm}{\varepsilon} \rceil$

- 1. If $\mathcal{L}_n(A) = \emptyset$, then return 0
- 2. Construct A_{unroll} and set $\kappa = \lceil \frac{nm}{\varepsilon} \rceil$
- 3. Remove each state q^i from A_{unroll} that is not reachable from an initial state in l^0

- 1. If $\mathcal{L}_n(A) = \emptyset$, then return 0
- 2. Construct A_{unroll} and set $\kappa = \lceil \frac{nm}{\varepsilon} \rceil$
- 3. Remove each state q^i from A_{unroll} that is not reachable from an initial state in I^0
- 4. For each $q^0 \in I^0$, set $N(q^0) = 1$ and $S(q^0) = \{\lambda\}$

5. For each layer i = 1, ..., n and state q^i in A_{unroll} :

5. For each layer i = 1, ..., n and state q^i in A_{unroll} :

5.1 Set
$$R_b = \{p^{i-1} \mid (p^{i-1}, b, q^i) \text{ is a transition in } A_{unroll}\}$$

for $b = 0, 1$

5. For each layer i = 1, ..., n and state q^i in A_{unroll} :

5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1}, b, q^i) \text{ is a transition in } A_{unroll}\}$ for b = 0, 1

5.2 Set $N(q^i) = N(R_0) + N(R_1)$

5. For each layer i = 1, ..., n and state q^i in A_{unroll} :

- 5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1}, b, q^i) \text{ is a transition in } A_{unroll}\}$ for b = 0, 1
- 5.2 Set $N(q^i) = N(R_0) + N(R_1)$
- 5.3 Set $S(q^i) = \emptyset$. Then while $|S(q^i)| < 2\kappa^7$:

5. For each layer i = 1, ..., n and state q^i in A_{unroll} :

5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1}, b, q^i) \text{ is a transition in } A_{unroll}\}$ for b = 0, 1

5.2 Set
$$N(q^i) = N(R_0) + N(R_1)$$

5.3 Set $S(q^i) = \emptyset$. Then while $|S(q^i)| < 2\kappa^7$:

5.3.1 Run Sample $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})$ until it returns $w \neq fail$, and at most $c(\kappa) \in \Theta(\log(\kappa))$ times
The complete algorithm

5. For each layer i = 1, ..., n and state q^i in A_{unroll} :

5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1}, b, q^i) \text{ is a transition in } A_{unroll}\}$ for b = 0, 1

5.2 Set
$$N(q^i) = N(R_0) + N(R_1)$$

5.3 Set $S(q^i) = \emptyset$. Then while $|S(q^i)| < 2\kappa^7$:

5.3.1 Run Sample $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})$ until it returns $w \neq fail$, and at most $c(\kappa) \in \Theta(\log(\kappa))$ times

5.3.2 If w =fail, then return 0 (failure event)

The complete algorithm

5. For each layer i = 1, ..., n and state q^i in A_{unroll} :

5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1}, b, q^i) \text{ is a transition in } A_{unroll}\}$ for b = 0, 1

5.2 Set
$$N(q^i) = N(R_0) + N(R_1)$$

5.3 Set $S(q^i) = \emptyset$. Then while $|S(q^i)| < 2\kappa^7$:

5.3.1 Run Sample $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})$ until it returns $w \neq fail$, and at most $c(\kappa) \in \Theta(\log(\kappa))$ times

5.3.2 If w =fail, then return 0 (failure event)

5.3.3 Set $S(q^i) = S(q^i) \cup \{w\}$ (recall that $S(q^i)$ allows duplicates)

The complete algorithm

5. For each layer i = 1, ..., n and state q^i in A_{unroll} :

5.1 Set $R_b = \{p^{i-1} \mid (p^{i-1}, b, q^i) \text{ is a transition in } A_{unroll}\}$ for b = 0, 1

5.2 Set
$$N(q^i) = N(R_0) + N(R_1)$$

5.3 Set $S(q^i) = \emptyset$. Then while $|S(q^i)| < 2\kappa^7$:

5.3.1 Run Sample $(i, \{q^i\}, \lambda, \frac{e^{-5}}{N(q^i)})$ until it returns $w \neq fail$, and at most $c(\kappa) \in \Theta(\log(\kappa))$ times

5.3.2 If w =fail, then return 0 (failure event)

5.3.3 Set $S(q^i) = S(q^i) \cup \{w\}$ (recall that $S(q^i)$ allows duplicates)

6. Return $N(F^n)$ as an estimation of $|\mathcal{L}_n(A)|$

The complete algorithm: final comments

The probability that the algorithm returns a wrong estimate is at most $\frac{1}{4}$

• Considering
$$c(\kappa) = \left\lceil \frac{2 + \log(4) + 8 \log(\kappa)}{\log(1 - e^{-9})^{-1}} \right\rceil$$

The algorithm runs in time $poly(m, n, \frac{1}{\varepsilon})$

Final remarks

- The algorithm also provides a randomized polynomial-time algorithm for GEN
 - Such an algorithm can also be obtained from [Jerrum, Valiant & Vazirani 1986]

- COUNT is SpanL-complete under parsimonious reductions. We conclude that each function in SpanL admits an FPRAS
 - SpanL is the class of functions computable as |S|, where S is the set of output values returned by an NL Turing machine

The complete version of the paper can be found at https://arxiv.org/abs/1906.09226

Thanks!