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The problem of data exchange

Given: A source schema S, a target schema T and a specification
ΣST of the relationship between these schemas

Data exchange: Problem of materializing an instance of T given
an instance of S

◮ Target instance should reflect the source data as accurately as
possible, given the constraints imposed by ΣST and T

◮ It should be efficiently computable

◮ It should allow one to evaluate queries on the target in a way
that is semantically consistent with the source data
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Data exchange: Some fundamental questions

Why is data exchange an interesting problem?

◮ Is it a difficult problem?

What are the challenges in the area?

◮ What is a good language for specifying the relationship
between source and target data?

◮ What is a good instance to materialize? Why is it good?

◮ What does it mean to answer a queries over target data?

◮ How do we answer queries over target data? Can we do this
efficiently?
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Data exchange in relational databases

It has been extensively studied in the relational world.

◮ It has also been implemented: IBM Clio

Relational data exchange setting:

◮ Source and target schemas: Relational schemas

◮ Relationship between source and target schemas:
Source-to-target tuple-generating dependencies (st-tgds)

Semantics of data exchange has been precisely defined.

◮ Efficient algorithms for materializing target instances and for
answering queries over the target schema have been developed
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Schema mapping: The key component in relational data

exchange

Schema mapping: M = (S,T,ΣST)

◮ S and T are disjoint relational schemas

◮ ΣST is a finite set of st-tgds:

∀x̄∀ȳ (ϕ(x̄ , ȳ) → ∃z̄ ψ(x̄ , z̄))

ϕ(x̄ , ȳ ): conjunction of relational atomic formulas over S

ψ(x̄ , z̄): conjunction of relational atomic formulas over T
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Relational data exchange problem

Fixed: M = (S,T,ΣST)

Problem: Given instance I of S, find an instance J of T such that
(I , J) satisfies ΣST

◮ (I , J) satisfies ϕ(x̄ , ȳ ) → ∃z̄ ψ(x̄ , z̄) if whenever I satisfies
ϕ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄)
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Relational data exchange problem

Fixed: M = (S,T,ΣST)

Problem: Given instance I of S, find an instance J of T such that
(I , J) satisfies ΣST

◮ (I , J) satisfies ϕ(x̄ , ȳ ) → ∃z̄ ψ(x̄ , z̄) if whenever I satisfies
ϕ(ā, b̄), there is a tuple c̄ such that J satisfies ψ(ā, c̄)

Notation

J is a solution for I under M

◮ SolM(I ): Set of solutions for I under M
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Relational data exchange: An example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x) → ∃y dept(x , y)

Solutions for I = {employee(Peter)}:
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Relational data exchange: An example

Example

◮ S: employee(name)

◮ T: dept(name, number)

◮ ΣST: employee(x) → ∃y dept(x , y)

Solutions for I = {employee(Peter)}:

J1: dept(Peter,1)

J2: dept(Peter,1), dept(Peter,2)

J3: dept(Peter,1), dept(John,1)

J4: dept(Peter,n1)

J5: dept(Peter,n1), dept(Peter,n2)
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Canonical universal solution

Question

What is a good instance to materialize?

M. Arenas – Data Exchange and Metadata Management - Dagstuhl, November 2012 11 / 67



Canonical universal solution

Question

What is a good instance to materialize?

Algorithm (chase)

Input : (S,T,ΣST) and an instance I of S
Output : Canonical universal solution J⋆ for I under M

let J⋆ := empty instance of T
for every ϕ(x̄ , ȳ) → ∃z̄ ψ(x̄ , z̄) in ΣST do

for every ā, b̄ such that I satisfies ϕ(ā, b̄) do
create a fresh tuple n̄ of pairwise distinct null values
insert ψ(ā, n̄) into J⋆
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Canonical universal solution: Example

Example

Consider mapping M specified by dependency:

employee(x) → ∃y dept(x , y)

Canonical universal solution for I = {employee(Peter), employee(John)}:

J⋆ = {dept(Peter , n1), dept(John, n2)}
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Query answering in data exchange

Given: Mapping M, source instance I and query Q over the target
schema

◮ What does it mean to answer Q?
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Query answering in data exchange

Given: Mapping M, source instance I and query Q over the target
schema

◮ What does it mean to answer Q?

Definition (Certain answers)

certainM(Q, I ) =
⋂

J is a solution for I under M

Q(J)
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Certain answers: Example

Example

Consider mapping M specified by:

employee(x) → ∃y dept(x , y)

Given instance I = {employee(Peter )}:

certainM(∃y dept(x , y), I ) = {Peter}
certainM(dept(x , y), I ) = ∅
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Query rewriting: An approach for answering queries

How can we compute certain answers?

◮ Näıve algorithm does not work: infinitely many solutions
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Query rewriting: An approach for answering queries

How can we compute certain answers?

◮ Näıve algorithm does not work: infinitely many solutions

Approach proposed in [FKMP03]: Query Rewriting

Given a mapping M and a target query Q, compute a query
Q⋆ such that for every source instance I with canonical
universal solution J⋆:

certainM(Q, I ) = Q⋆(J⋆)
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Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping M specified by st-tgds and a union of
conjunctive queries Q, there exists a query Q⋆ such that for every
source instance I with canonical universal solution J⋆:

certainM(Q, I ) = Q⋆(J⋆)
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Query rewriting over the canonical universal solution

Theorem (FKMP03)

Given a mapping M specified by st-tgds and a union of
conjunctive queries Q, there exists a query Q⋆ such that for every
source instance I with canonical universal solution J⋆:

certainM(Q, I ) = Q⋆(J⋆)

Proof idea: Assume that C(a) holds whenever a is a constant.

Then:

Q⋆(x1, . . . , xm) = C(x1) ∧ · · · ∧ C(xm) ∧Q(x1, . . . , xm)
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Computing certain answers: Complexity

Data complexity: Data exchange setting and query are considered
to be fixed.

Corollary (FKMP03)

For mappings given by st-tgds, certain answers for UCQ can be
computed in polynomial time (data complexity)
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Relational data exchange: Some lessons learned

Key steps in the development of the area:

◮ Definition of schema mappings: Precise syntax and semantics
◮ Definition of the notion of solution

◮ Identification of good solutions

◮ Polynomial time algorithms for materializing good solutions

◮ Definition of target queries: Precise semantics

◮ Polynomial time algorithms for computing certain answers for
UCQ
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Relational data exchange: Some lessons learned

Key steps in the development of the area:

◮ Definition of schema mappings: Precise syntax and semantics
◮ Definition of the notion of solution

◮ Identification of good solutions

◮ Polynomial time algorithms for materializing good solutions

◮ Definition of target queries: Precise semantics

◮ Polynomial time algorithms for computing certain answers for
UCQ

Creating schema mappings is a time consuming and expensive
process

◮ Manual or semi-automatic process in general
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Can we reuse schema mappings?

ΣSU

ΣST

S T U

ΣTU
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Can we reuse schema mappings?

ΣSU = ΣST ◦ ΣTU

ΣST

S T U

ΣTU

We need some operators for schema mappings

◮ Composition in the above case
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Metadata management

Contributions mentioned in the previous slides are just a first step
towards the development of a general framework for data exchange.

In fact, as pointed in [B03],

many information system problems involve not only the design
and integration of complex application artifacts, but also their
subsequent manipulation.
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Metadata management

This has motivated the need for the development of a general
infrastructure for managing schema mappings.

The problem of managing schema mappings is called metadata

management.

High-level algebraic operators, such as compose, are used to
manipulate mappings.

◮ What other operators are needed?
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More operators are needed

ΣVS?

ΣST

S T U

ΣTU

V

ΣSVΣVS = Σ−1
SV

(Σ−1
VS ◦ ΣST) ◦ ΣTUΣ−1

VS ◦ ΣST
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The composition operator

Question

What is the semantics of the composition operator?
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The composition operator

Question

What is the semantics of the composition operator?

Notation

We can view a mapping M as a set of pairs:

(I , J) ∈ M iff J ∈ SolM(I )
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The composition operator

Question

What is the semantics of the composition operator?

Notation

We can view a mapping M as a set of pairs:

(I , J) ∈ M iff J ∈ SolM(I )

Definition (FKPT04)

Let M12 be a mapping from S1 to S2, and M23 a mapping from
S2 to S3:

M12 ◦M23 = {(I1, I3) |

∃I2 : (I1, I2) ∈ M12 and (I2, I3) ∈ M23}
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Expressing the composition of mappings

Question

What is the right language for expressing the composition?

◮ st-tgds?
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Expressing the composition of mappings

Question

What is the right language for expressing the composition?

◮ st-tgds?

Example (FKPT04)

Consider mappings:

M12 : takes(n, c) → takes1(n, c)

takes(n, c) → ∃s student(n, s)

M23 : student(n, s) ∧ takes1(n, c) → enrolled(s, c)
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Expressing the composition of mappings

Question

What is the right language for expressing the composition?

◮ st-tgds?

Example (FKPT04)

Consider mappings:

M12 : takes(n, c) → takes1(n, c)

takes(n, c) → ∃s student(n, s)

M23 : student(n, s) ∧ takes1(n, c) → enrolled(s, c)

Does the following st-tgd express the composition?

takes(n, c) → ∃y enrolled(y , c)
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Expressing the composition of mappings

Example (Cont’d)

This is the right dependency:

∀n∃y∀c (takes(n, c) → enrolled(y , c))
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Expressing the composition of mappings

Example (Cont’d)

This is the right dependency:

∀n∃y∀c (takes(n, c) → enrolled(y , c))

Is first-order logic enough?

◮ Complexity theory can help us to answer this question
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Expressing the composition of mappings: A complexity

argument

How difficult is the composition problem?

◮ Fix mappings M12 and M23

◮ Problem: Decide whether (I1, I3) ∈ M12 ◦M23

If M12 ◦M23 is defined by a set of first-order sentences, then the
composition problem can be solved efficiently: It is in AC0

◮ AC0 ( PTIME
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Expressing the composition of mappings: A complexity

argument

How difficult is the composition problem?

◮ Fix mappings M12 and M23

◮ Problem: Decide whether (I1, I3) ∈ M12 ◦M23

If M12 ◦M23 is defined by a set of first-order sentences, then the
composition problem can be solved efficiently: It is in AC0

◮ AC0 ( PTIME

But the composition problem is not easy: It can be NP-hard

◮ AC0 ( PTIME ⊆ NP
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Expressing the composition of mappings: A complexity

argument

Let see a difficult case taken from [FKPT04].

M12 is specified by:

node(x) → ∃y coloring(x , y)

edge(x , y) → edge′(x , y)

M23 is specified by:

edge′(x , y) ∧ coloring (x , u) ∧ coloring(y , u) → error (x , y)

coloring (x , y) → color (y)
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Expressing the composition of mappings: A complexity

argument

What is the complexity of verifying whether (I1, I3) ∈ M12 ◦M23?
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Expressing the composition of mappings: A complexity

argument

What is the complexity of verifying whether (I1, I3) ∈ M12 ◦M23?

Given a graph G = (N,E ), consider instances I1, I3:

node in I1 : N
edge in I1 : E
color in I3 : {1, 2, 3}
error in I3 : ∅

Then: G is 3-colorable iff (I1, I3) ∈ M12 ◦M23
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Expressing the composition of mappings

Back to our initial question:

What is the right language for expressing the composition?
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Expressing the composition of mappings

Back to our initial question:

What is the right language for expressing the composition?

Complexity theory can help us again:

◮ NP-hardness and Fagin’s theorem: We need at least
existential second-order logic
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Expressing the composition of mappings

Back to our initial question:

What is the right language for expressing the composition?

Complexity theory can help us again:

◮ NP-hardness and Fagin’s theorem: We need at least
existential second-order logic

◮ Good news: There is a nice second-order language for
expressing the composition
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SO tgds: The right language for expressing the

composition of mappings

Example

Consider again the mappings:

M12 : takes(n, c) → takes1(n, c)

takes(n, c) → ∃s student(n, s)

M23 : student(n, s) ∧ takes1(n, c) → enrolled(s, c)

The following SO tgd defines the composition:

∃f ∀n∀c (takes(n, c) → enrolled(f (n), c))
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SO tgds: The right language for expressing the

composition of mappings

Example

Consider again mappings M12:

node(x) → ∃y coloring(x , y)

edge(x , y) → edge′(x , y)

and M23:

edge′(x , y) ∧ coloring (x , u) ∧ coloring(y , u) → error (x , y)

coloring (x , y) → color (y)
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SO tgds: The right language for expressing the

composition of mappings

Example (Cont’d)

The following SO tgd defines the composition:

∃f

[

∀x(node(x) → color (f (x))) ∧

∀x∀y(edge(x , y) ∧ f (x) = f (y) → error (x , y))

]
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SO tgds: The right language for expressing the

composition of mappings

Example (Cont’d)

The following SO tgd defines the composition:

∃f

[

∀x(node(x) → color (f (x))) ∧

∀x∀y(edge(x , y) ∧ f (x) = f (y) → error (x , y))

]

This example shows the main ingredients of SO tgds:

◮ Predicates including terms: color (f (x))

◮ Equality between terms in the premises: f (x) = f (y)
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SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding data exchange and
composition

◮ Canonical universal solution and certain answers to UCQ can
be computed in polynomial time (data complexity)
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SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding data exchange and
composition

◮ Canonical universal solution and certain answers to UCQ can
be computed in polynomial time (data complexity)

Theorem (FKPT04)

If M12 and M23 are specified by SO tgds, then M12 ◦M23 can be
specified by an SO tgd
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SO tgds: The right language for expressing the

composition of mappings

SO tgds were introduced in [FKPT04]

◮ They have good properties regarding data exchange and
composition

◮ Canonical universal solution and certain answers to UCQ can
be computed in polynomial time (data complexity)

Theorem (FKPT04)

If M12 and M23 are specified by SO tgds, then M12 ◦M23 can be
specified by an SO tgd

◮ There exists an exponential time algorithm that computes such SO
tgds
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SO tgds: The right language for expressing the

composition of mappings

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a
finite set of st-tgds, is defined by an SO tgd
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SO tgds: The right language for expressing the

composition of mappings

Corollary (FKPT04)

The composition of a finite number of mappings, each defined by a
finite set of st-tgds, is defined by an SO tgd

But not only that, SO tgds are exactly the right language:

Theorem (FKPT05)

Every SO tgd defines the composition of a finite number of
mappings, each defined by a finite set of st-tgds.
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Outline of the talk

◮ Data exchange: An overview of the relational case

◮ Metadata management

◮ Composition operator

◮ Concluding remarks
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Concluding remarks

◮ Composition and inverse operators are fundamental in
metadata management

◮ The problem of composing schema mappings given by st-tgds
is solved

◮ Considerable progress has been made on the problem of
inverting schema mappings

◮ Combining these operators is an open issue

◮ Some progress has been made

◮ But we do not know whether there is a good language for both
operators. Is there a reasonable language that is closed under
both operators?
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Thank you!
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Backup slides

◮ Inverse operator

◮ Combination of both operators

◮ Key ingredient: Conditional tables
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The inverse operator

Schema TSchema S

ΣST
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The inverse operator

Question

What is the semantics of the inverse operator?

This turns out to be a very difficult question.

We consider three notions of inverse here:

◮ Fagin-inverse

◮ Quasi-inverse

◮ Maximum recovery
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The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping
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The notion of Fagin-inverse

Intuition: A mapping composed with its inverse should be equal to
the identity mapping

What is the identity mapping?

◮ IdS = {(I , I ) | I is an instance of S}?

For mapping specified by st-tgds, IdS is not the right notion.

◮ IdS = {(I1, I2) | I1, I2 are instances of S and I1 ⊆ I2}
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The notion of Fagin-inverse: Formal definition

Definition (F06)

Let M be a mapping from S1 to S2, and M⋆ a mapping from S2

to S1. Then M⋆ is a Fagin-inverse of M if:

M◦M⋆ = IdS1

M. Arenas – Data Exchange and Metadata Management - Dagstuhl, November 2012 45 / 67



The notion of Fagin-inverse: Formal definition

Definition (F06)

Let M be a mapping from S1 to S2, and M⋆ a mapping from S2

to S1. Then M⋆ is a Fagin-inverse of M if:

M◦M⋆ = IdS1

Example

Consider mapping M specified by:

A(x) → R(x) ∧ ∃y S(x , y)

Then the following are Fagin-inverses of M:

M⋆

1 : R(x) → A(x)
M⋆

2 : S(x , y) → A(x)
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Is Fagin-inverse the right notion of inverse for mappings?

On the positive side: It is a natural notion

◮ With good computational properties

On the negative side: A mapping specified by st-tgds is not
guaranteed to admit a Fagin-inverse

◮ For example: Mapping specified by A(x , y) → R(x) does not
admit a Fagin-inverse

In fact: This notion turns out to be rather restrictive, as it is rare
that a schema mapping possesses a Fagin-inverse.
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Is Fagin-inverse the right notion of inverse for mappings?

The notion of quasi-inverse was introduced in [FKPT07] to
overcome this limitation.

◮ The idea is to relax the notion of Fagin-inverse by not
differentiating between source instances that are equivalent
for data exchange purposes

Numerous non-Fagin-invertible mappings possess natural and
useful quasi-inverses.

◮ But there are still simple mappings specified by st-tgds that
have no quasi-inverse

The notion of maximum recovery overcome this limitation.
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Recovery: specifies how to recover sound information

Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M
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Data may be lost in the exchange through a mapping M
◮ We would like to find a mapping M⋆ that at least recovers

sound data w.r.t. M
◮ M⋆ is called a recovery of M

Example

Consider a mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

What mappings are recoveries of M?

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v) X

M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z) X
M⋆
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Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
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Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)

Intuitively: M⋆

2 is better than M⋆

1
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Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆
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Intuitively: M⋆

2 is better than M⋆

1
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Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆
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Intuitively: M⋆
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Maximum recovery: The most informative recovery

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

These mappings are recoveries of M:

M⋆

1 : shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2 : shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4 : shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z

Intuitively: M⋆

2 is better than M⋆

1

M⋆

4 is better than M⋆

2 and M⋆

1

We would like to find a recovery of M that is better than any
other recovery: Maximum recovery
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The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 and M⋆ a mapping from S2

to S1. Then M⋆ is a recovery of M if:

for every instance I of S1: (I , I ) ∈ M ◦M⋆
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The notion of recovery: Formalization

Definition (APR08)

Let M be a mapping from S1 to S2 and M⋆ a mapping from S2

to S1. Then M⋆ is a recovery of M if:

for every instance I of S1: (I , I ) ∈ M ◦M⋆

Example

Consider again mapping M specified by:

emp(x , y , z) ∧ y 6= z → shuttle(x , z)

This mapping is not a recovery of M:

M⋆

3: shuttle(x , z) → ∃u emp(x , z , u)
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The notion of recovery: Formalization

Example (Cont’d)

On the other hand, these mappings are recoveries of M:

M⋆

1: shuttle(x , z) → ∃u∃v emp(x , u, v)
M⋆

2: shuttle(x , z) → ∃u emp(x , u, z)
M⋆

4: shuttle(x , z) → ∃u emp(x , u, z) ∧ u 6= z
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The notion of maximum recovery

M

I
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The notion of maximum recovery

M⋆

2

M

M⋆

1

I
M⋆

3

Definition (APR08)

M⋆ is a maximum recovery of M if:

◮ M⋆ is a recovery of M

◮ for every recovery M′ of M: M◦M⋆ ⊆ M◦M′

M. Arenas – Data Exchange and Metadata Management - Dagstuhl, November 2012 52 / 67



A basic property of (maximum) recoveries

We have seen three notions of inversion for mappings.

◮ How can we show that a notion of inverse is appropriate?
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A basic property of (maximum) recoveries

We have seen three notions of inversion for mappings.

◮ How can we show that a notion of inverse is appropriate?

A criterion: How much of the initial information is recovered?

◮ How close is a space of solution to a particular solution? How
close is SolM◦M⋆(I ) to I?

Simple approach: Compare the information that can be retrieved
from I and SolM◦M⋆(I )
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A basic property of (maximum) recoveries

To compare the information that can be retrieved from I and
SolM◦M⋆(I ): Compare Q(I ) to certainM◦M⋆(Q, I )
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Observation

Let M be a mapping from S to T, I an instance of S, Q a query
over S and M⋆ a recovery of M:
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A basic property of (maximum) recoveries

To compare the information that can be retrieved from I and
SolM◦M⋆(I ): Compare Q(I ) to certainM◦M⋆(Q, I )

Observation

Let M be a mapping from S to T, I an instance of S, Q a query
over S and M⋆ a recovery of M:

certainM◦M⋆(Q, I ) ⊆ Q(I )

Information retrieved from SolM◦M⋆(I ) is sound w.r.t. I .

◮ Is certainM◦M⋆(Q, I ) = Q(I )?

◮ Not always possible: P(x , y) → R(x) and Q(x , y) = P(x , y)
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A fundamental property of maximum recoveries

Definition

◮ M′ recovers Q under M if for every source instance I :

Q(I ) = certainM◦M′(Q, I )

◮ Q can be recovered under M if the above mapping M′ exists
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A fundamental property of maximum recoveries

Definition

◮ M′ recovers Q under M if for every source instance I :

Q(I ) = certainM◦M′(Q, I )

◮ Q can be recovered under M if the above mapping M′ exists

Theorem (APRR09)

Let M⋆ be a maximum recovery of a mapping M. If Q can be
recovered under M, then M⋆ recovers Q under M.
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On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.
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On the existence of maximum recoveries

Maximum recoveries overcome one of the limitations of
Fagin-inverses and quasi-inverses.

Theorem (APR08)

Every mapping specified by st-tgds has a maximum recovery.

Example

Consider a mapping M specified by:

P(x , y) ∧ P(y , z) → R(x , z) ∧ T (y)

M has neither an inverse nor a quasi-inverse [FKPT07]. A maximum
recovery of M is specified by:

R(x , z) → ∃y P(x , y) ∧ P(y , z)

T (y) → ∃x∃z P(x , y) ∧ P(y , z)

M. Arenas – Data Exchange and Metadata Management - Dagstuhl, November 2012 56 / 67



Maximum recoveries strictly generalize Fagin-inverses

M is closed-down on the left if it satisfies the following condition:

If J is a solution for I2 and I1 ⊆ I2, then J is a solution for I1

The notion of Fagin-inverse is defined in [F06] focusing on these
mappings.
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If J is a solution for I2 and I1 ⊆ I2, then J is a solution for I1

The notion of Fagin-inverse is defined in [F06] focusing on these
mappings.

Theorem (APR08)

If M is closed-down on the left and Fagin-invertible: M⋆ is an
inverse of M iff M⋆ is a maximum recovery of M.
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Maximum recoveries strictly generalize Fagin-inverses

M is closed-down on the left if it satisfies the following condition:

If J is a solution for I2 and I1 ⊆ I2, then J is a solution for I1

The notion of Fagin-inverse is defined in [F06] focusing on these
mappings.

Theorem (APR08)

If M is closed-down on the left and Fagin-invertible: M⋆ is an
inverse of M iff M⋆ is a maximum recovery of M.

A similar theorem can be proved for the notion of quasi-inverse.
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Computing maximum recoveries

The simple process of “reversing the arrows” of st-tgds does not
work properly

◮ For example, consider mapping specified by st-tgds
A(x) → T (x) and B(x) → T (x)
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Computing maximum recoveries

The simple process of “reversing the arrows” of st-tgds does not
work properly

◮ For example, consider mapping specified by st-tgds
A(x) → T (x) and B(x) → T (x)

We present an algorithm that is based on query rewriting.

◮ We can reuse the large body of work on query rewriting

Definition

Given a mapping M and a target query Q: Query Q ′ is a rewriting
over the source of Q if for every source instance I :

certainM(Q, I ) = Q ′(I )
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Computing maximum recoveries

Algorithm

Input : A mapping M = (S,T,Σ), where Σ is a set of
st-tgds

Output : A mapping M⋆ = (T,S,Σ⋆) that is a maximum
recovery of M

let Σ⋆ := ∅
for every ϕ(x̄ , ȳ) → ∃z̄ ψ(x̄ , ȳ ) in Σ do

compute a first-order logic formula α(x̄) that is
a source rewriting of ∃z̄ ψ(x̄ , z̄) under M

add dependency ψ(x̄ , z̄) ∧ C(x̄) → α(x̄) to Σ⋆
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Complexity of the algorithm

Theorem (APR08,APR09)

There is an exponential time algorithm that, given a mapping M
specified by st-tgds, computes a maximum recovery of M.
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Complexity of the algorithm

Theorem (APR08,APR09)

There is an exponential time algorithm that, given a mapping M
specified by st-tgds, computes a maximum recovery of M.

A few words about the language needed to express the maximum
recovery:

◮ Output of the algorithm: CQC(·)-to-UCQ= dependencies

◮ Predicate C(·), disjunction and equality are needed
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Backup slides

◮ Inverse operator

◮ Combination of both operators

◮ Key ingredient: Conditional tables
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We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?
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Theorem (APR11)
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We need to combine the operators

Can we combine the composition and inverse operators?

◮ Is there a good language for both operators?

Some bad news:

Theorem (APR11)

There exists a mapping specified by an SO tgd that has neither a
Fagin-inverse nor a quasi-inverse nor a maximum recovery.

Do we need yet another notion of inverse?

◮ No, we need to revisit the semantics of mappings
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What went wrong?

Key observation: A target instance of a mapping can be the source
instance of another mapping.

◮ Sources instances may contain null values
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What went wrong?

Key observation: A target instance of a mapping can be the source
instance of another mapping.

◮ Sources instances may contain null values

Example

Consider a mapping M specified by:

P(x , y) → R(x , y)

P(x , x) → T (x)

The canonical universal solution for I = {P(n, a)} under M:

J⋆ = {R(n, a)}

But J⋆ is not a good solution for I .

◮ It cannot represent the fact that if n is given value a, then T (a)
should hold in the target.
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A solution to the problem

We use conditional tables instead of the usual instances.

◮ What about complexity?
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A solution to the problem

We use conditional tables instead of the usual instances.

◮ What about complexity?

Example

Consider again mapping M specified by:

P(x , y) → R(x , y)

P(x , x) → T (x)

The following conditional table is a good solution for I = {P(n, a)}:

R(n, a) true
T (n) n = a
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Can conditional tables be used in real data exchange

systems?

Good news: We just need positive conditions

◮ Good solutions can be computed in polynomial time (data
complexity)

◮ Certain answers for UCQ can be computed in polynomial
time (data complexity)
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Can conditional tables be used in real data exchange

systems?

Good news: We just need positive conditions

◮ Good solutions can be computed in polynomial time (data
complexity)

◮ Certain answers for UCQ can be computed in polynomial
time (data complexity)

Theorem (APR11)

If instances are replaced by positive conditional tables:

◮ SO tgds are still the right language for the composition of
mappings given by st-tgds

◮ Every mapping specified by an SO tgd admits a maximum
recovery
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