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Resource Description Framework (RDF) 

•  Data model for representing information about web resources 

•  Uniform Resource Identifier (URI) - http://dbpedia.org/resource/Jeffrey_Ullman 

•  URIs are organized as RDF graphs - (subject, predicate, object) 
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Resource Description Framework (RDF) 

•  Data model for representing information about web resources 

•  Uniform Resource Identifier (URI) - http://dbpedia.org/resource/Jeffrey_Ullman 

•  URIs are organized as RDF graphs - (subject, predicate, object) 

(dbpedia:Ullman,  is_author_of,  “Database Systems: The Complete Book”) 

(dbpedia:Ullman,  name,  “Jeffrey Ullman”) 

(dbpedia:Aho,  is_coauthor_of,  dbpedia:Ullman) 

(dbpedia:Aho,  name,  “Alfred Aho”) 

dbpedia: <http://dbpedia.org/resource/> 
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SPARQL 

•  Graph-matching query language 

•  First public working draft in 2004 by W3C 

•  W3C recommendation in 2008 

SELECT ?X 

(?Y, is_author_of, ?Z) AND (?Y, name, ?X) 

algebraic syntax introduced in [Pérez, A. & Gutierrez, TODS 2009] 



SPARQL 

SELECT ?X 

(?Y, is_author_of, ?Z) AND (?Y, name, ?X) 

(dbpedia:Ullman,  is_author_of,  “Database Systems: The Complete Book”) 

(dbpedia:Ullman,  name,  “Jeffrey Ullman”) 

(dbpedia:Aho,  is_coauthor_of,  dbpedia:Ullman) 
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SPARQL 

SELECT ?X 

(?Y, is_author_of, ?Z) AND (?Y, name, ?X) 

(dbpedia:Ullman,  is_author_of,  “Database Systems: The Complete Book”) 

(dbpedia:Ullman,  name,  “Jeffrey Ullman”) 

(dbpedia:Aho,  is_coauthor_of,  dbpedia:Ullman) 

(dbpedia:Aho,  name,  “Alfred Aho”) 

Answer: “Jeffrey Ullman” 



RDFS and OWL Vocabularies 
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(r1, owl:onProperty, is_coauthor_of) 

(r1, owl:someValuesFrom, owl:Thing) 
 

(r2, rdf:type, owl:Restriction) 
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(dbpedia:Ullman, name, “Jeffrey Ullman”) 

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman) 
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(r1, rdf:type, owl:Restriction) 

(r1, owl:onProperty, is_coauthor_of) 
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(r2, rdf:type, owl:Restriction) 

(r2, owl:onProperty, is_author_of) 
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(r1, rdfs:subClassOf, r2) 

r1 = {a | there exists a URI b such that  

 (a, is_coauthor_of, b)} 

r2 = {a | there exists a URI b such that  

(a, is_author_of, b)} 
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(r2, owl:onProperty, is_author_of) 

(r2, owl:someValuesFrom, owl:Thing) 
 
(r1, rdfs:subClassOf, r2) 

 each co-author is an author 
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Need for Decoupling 

SELECT ?X 
(?Y, is_author_of, ?Z) AND (?Y, name, ?X) 

vs 

SELECT ?X 

(?Y, rdf:type, ?Z)  AND 

(?Z, rdf:type, owl:Restriction)  AND 

(?Z, owl:onProperty, is_author_of)  AND 

(?Z, owl:someValuesFrom, owl:Thing) 

AND (?Y, name, ?X)) 



Our Objectives 

•  Decouple the reasoning part and the actual query  -  simpler queries 
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Our Objectives 

•  Decouple the reasoning part and the actual query  -  simpler queries 

 
•  Navigational capabilities  -  exploit the graph structure of RDF data 
 
 

•  General form of recursion  -  central feature for graph query languages 

RDFS/OWL 

vocabulary 

actual 

query 

RDF 

graph 

fixed and query independent 



The rest of the Talk 

•  The modular query language TriQ 

 
•  From SPARQL over OWL 2 QL to TriQ 

 
•  TriQ-Lite - a tractable language 

 
•  Concluding remarks 
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Triple Query Language (TriQ) 

M  =  [QRDFS/OWL, QSPARQL] 
 
 

ans(M,G) = ans(QSPARQL, ans(QRDFS/OWL, G)) 

What is the right syntax for QRDFS/OWL and QSPARQL? 

- Datalog[¬s] represents every SPARQL query 

- Datalog[9, ?] is appropriate for ontological reasoning 

Datalog[9, ¬s, ?] 

weakly-guarded Datalog[9, ¬s, ?] 



Weakly-Guarded Datalog[9,¬s] 

All body-variables at affected positions occur in a positive body-atom 

appears in an 9-position or just in affected positions  
in the body 

P(?X, ?Y), S(?Y, ?Z)  →  9?W  T(?Y, ?X, ?W) 
 

T(?X, ?Y, ?Z)  →  9?W  P(?W, ?Y) 
 

P(?X, ?Y), ¬R(?X)  →  9?Z  Q(?X, ?Z) 
 
 

Affected positions  =  ? 
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Weakly-Guarded Datalog[9,¬s] 

All body-variables at affected positions occur in a positive body-atom 

appears in an 9-position or just in affected positions 
in the body 

P(?X, ?Y), S(?Y, ?Z)  →  9?W  T(?Y, ?X, ?W) 
 

T(?X, ?Y, ?Z)  →  9?W  P(?W, ?Y) 
 

P(?X, ?Y), ¬R(?X)  →  9?Z  Q(?X, ?Z) 
 
 

Affected positions  = {T[3], P[1], Q[2], T[2], P[2], Q[1] } 
 
 



Weakly-Guarded Datalog[9,¬s, ?] 

All body-variables at affected positions occur in a positive body-atom 

appears in an 9-position or just in affected positions 
in the body 

weakly-guarded Datalog[9, ¬s]     +     Φ(x1, …, xk) → ?  
 
= 
 

weakly-guarded Datalog[9, ¬s, ?] 
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Triple Query Language (TriQ) 

M  =  [QRDFS/OWL, QSPARQL] 

weakly-guarded Datalog[9, ¬s, ?] queries 

Weakly-guarded Datalog[9, ¬s, ?] query: (Π, Λ) 
 

•  Π is a weakly-guarded Datalog[9, ¬s, ?] program 

•  Λ is a set of answer rules:  Φ(x1, …, xk) → answer(x1, …, xk) 
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•  Theorem: Query evaluation for TriQ is in EXPTIME 
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Triple Query Language (TriQ): Complexity 

•  Theorem: Query evaluation for TriQ is in EXPTIME 

 
•  Theorem [Gottlob, Rudolph & Šimkus, PODS 2014]: Every query that 

can be evaluated in EXPTIME can be expressed in weakly-guarded 

Datalog[9,¬s] (no order) 

 
•  Corollary: TriQ and weakly-guarded Datalog[9,¬s] capture EXPTIME 

(no order) 
       



From SPARQL to TriQ 

for every object a, we ask for the name and the phone of a, if the phone 

number of a is available; otherwise, we only ask for the name of a 

Q  =  (?X, name, ?Y)  OPT (?X, phone, ?Z)  

A B 



From SPARQL to TriQ 

for every object a, we ask for the name and the phone of a, if the phone 

number of a is available; otherwise, we only ask for the name of a 

Q  =  (?X, name, ?Y)  OPT (?X, phone, ?Z)  

A B 

MQ  =  [ (ø, τbgp(Q)), (τopr(Q), τout(Q)) ] 

evaluate basic graph 
patterns (A and B) 

encode the semantics of 
SPARQL operators (OPT) 

output rules 



From SPARQL to TriQ 

Q  =  (?X, name, ?Y)  OPT (?X, phone, ?Z)  

A B 

triple(?X, name, ?Y)   →   queryA(?X, ?Y) 

triple(?X, phone, ?Y)   →   queryB(?X, ?Y) 

The program τbgp(Q): 



From SPARQL to TriQ 

Q  =  (?X, name, ?Y)  OPT (?X, phone, ?Z)  

A B 

The program τopr(Q): 

queryA(?X, ?Y), queryB(?X, ?Z)   →   queryQ(?X, ?Y, ?Z) 
 
 
 
 
 

 

list of individuals with phone number 

queryA(?X, ?Y), queryB(?X, ?Z)   →   compatibleQ(?X) 
 
 
 
 
 

 



From SPARQL to TriQ 

Q  =  (?X, name, ?Y)  OPT (?X, phone, ?Z)  

A B 

The program τopr(Q): 

queryA(?X, ?Y), queryB(?X, ?Z)   →   queryQ(?X, ?Y, ?Z) 
 
 
 
 
 

 

list of individuals with phone number 

queryA(?X, ?Y), queryB(?X, ?Z)   →   compatibleQ(?X) 
 
 
 
 
 

 
queryA(?X, ?Y), ¬compatibleQ(?X)   →   queryQ,{3}(?X, ?Y) 

 
 
 
 
 

 

the third argument (phone number) is missing 



From SPARQL to TriQ 

Q  =  (?X, name, ?Y)  OPT (?X, phone, ?Z)  

A B 

queryQ(?X, ?Y, ?Z) →   answerQ(?X, ?Y, ?Z) 

queryQ,{3}(?X, ?Y)   →   answerQ,{3}(?X, ?Y) 

The program τout(Q): 



From SPARQL to TriQ 

Q  =  (?X, name, ?Y)  OPT (?X, phone, ?Z)  

A B 

queryQ,ø(?X, ?Y, ?Z) →   answerQ,ø(?X, ?Y, ?Z) 

queryQ,{3}(?X, ?Y)   →   answerQ,{3}(?X, ?Y) 

The program τout(Q): 



From SPARQL to TriQ 

Q  =  (?X, name, ?Y)  OPT (?X, phone, ?Z) 

A B 

Given an RDF graph G:  
 

evaluation of Q over G  =  ans(MQ, DB(G)) 

MQ  =  [ (ø, τbgp(Q)), (τopr(Q), τout(Q)) ] 



From SPARQL to TriQ 

Q  =  (?X, name, ?Y)  OPT (?X, phone, ?Z) 

A B 

Given an RDF graph G:  
 

evaluation of Q over G  =  ans(MQ, DB(G)) 

MQ  =  [ (ø, τbgp(Q)), (τopr(Q), τout(Q)) ] 

{ triple(a, b, c) | (a, b, c) belongs to G} 



From SPARQL over OWL 2 QL to TriQ 

G  =  {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}  

•  Elements of G that eat something:  SELECT ?X  (?X, eats, ?Y) 

•  However, the answer is empty due to the active domain semantics 



From SPARQL over OWL 2 QL to TriQ 

•  Elements of G that eat something:  SELECT ?X  (?X, eats, ?Y) 

•  However, the answer is empty due to the active domain semantics 

 
•  We need the query (?X, rdf:type, 9eats):  

•  This is what is called “the evaluation of Q over G under the OWL 2 direct 
semantics entailment regime”   

G  I= OWL2   (dog, rdf:type, 9eats)  

G  =  {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}  



From SPARQL over OWL 2 QL to TriQ 

G  =  {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}  

Q = (?X, rdf:type, 9eats) 

MQ  =  [ (τOWL2QL, τbgp(Q)), (ø, τout(Q)) ] 

fixed program used to encode 
the semantics I= OWL2  

triple1(?X, rdf:type, 9eats), dom(?X) → queryQ(?X) 

queryQ(?X) → answerQ(?X) 



From SPARQL over OWL 2 QL to TriQ 

Theorem: Given a SPARQL query Q and an RDF graph G: 
 
The evaluation of Q over G under the OWL 2 direct semantics 
entailment regime  =  ans(MQ, DB(G)) 

•  MQ  =  [ (τOWL2QL, τbgp(Q)), (τopr(Q), τout(Q)) ] is a TriQ query 

•  τOWL2QL is fixed, it does not depend on Q 



Active Domain Semantics Revisited 

•  Elements of G that eat something:  SELECT ?X  (?X, eats, ?Y) 

•  However, the answer is empty due to the active domain semantics 

 
•  We need the query (?X, rdf:type, 9eats)  

G  =  {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}  
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Q  =  SELECT ?X  (?X, eats, ?Y) 

MQ  =  [ (τOWL2QL, τbgp(Q)), (ø, τout(Q)) ] 

triple1(?X, eats, ?Y), dom(?X) → queryP(?X) 

G  =  {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}  



Active Domain Semantics Revisited 

Q  =  SELECT ?X  (?X, eats, ?Y) 

MQ  =  [ (τOWL2QL, τbgp(Q)), (ø, τout(Q)) ] 

triple1(?X, eats, ?Y), dom(?X) → queryP(?X) 

G  =  {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}  

Q  =  (?X, eats, _:b) 



The Language TriQ-Lite 

TriQ 

PTIME-complete 

EXPTIME-complete 
constant-join programs 

join variables occur only at non-affected positions 



The Language TriQ-Lite 

Theorem: Every SPARQL query under the entailment regime for 
OWL 2 QL can be expressed as a TriQ-Lite query (with or without 
the active domain restriction). 
 



Proof sketch: 
 
PTIME-membership: enough to consider the evaluation problem for weakly-
guarded constant-join Datalog[9, ¬s, ?] 

•  Let D be an RDF graph and (Π, Λ) be a weakly-guarded constant-join 
Datalog[9, ¬s, ?] query 

•  First step: Constraints are eliminated from Π to generate ex(Π) 
•  Checking for inconsistencies 

•  Second step: ground chase is computed 
•  Atoms p(a1, …, ak) in chase(D, ex(Π)) such that a1, …, ak are URIs 
•  ALOGSPACE algorithm 

The Language TriQ-Lite 

Theorem: Query evaluation for TriQ-Lite is PTIME-complete 



Proof sketch: 
 
•  Third step: negation is eliminated from ex(Π) to generate DL and ex(Π)+

 

•  Every atom ¬p(t1, …, tk) in a rule of ex(Π) is replaced by cp(t1, …, tk), where 
cp stores the complement of p 

•  DL is the extension of D with the atoms cp(a1, …, ak) such that a1, …, ak are 
URIs, which are computed in each strata of ex(Π) by using the ground chase 

  

•  Last step: transform ex(Π)+ into a linear Datalog[9] program ΠL 

•  Key observation: in every rule of ex(Π)+, every variable that can be assigned 
non-URI values must occur only in the weak-guard.  

The Language TriQ-Lite 

Theorem: Query evaluation for TriQ-Lite is PTIME-complete 



Proof sketch: 
 
•  To finish the proof: query evaluation problem for linear Datalog[9] is in PTIME in 

program complexity  
•  Program complexity: only Λ is fixed, program ΠL and RDF graph DL depend 

on Π and D 

PTIME-hardness: since Datalog is already PTIME-hard 

 

The Language TriQ-Lite 

Theorem: Query evaluation for TriQ-Lite is PTIME-complete 



Concluding remarks 

1.  We introduce the modular query language TriQ 
•  TripQ captures EXPTIME (no order) 

2.  We show that every SPARQL query can be expressed in TriQ 
•  Including the OWL 2 direct semantics entailment regime 
•  Dropping the active domain restriction 

 
3.  We identify the tractable fragment TriQ-Lite of TriQ with the same 

properties as in 2. 

 
4.  We also prove that the existential quantification in TriQ-Lite is 

necessary  
•  In the paper, we define and study some notions of program 

expressiveness 
 



Thank you! 



Backup slides 



RDFS and OWL Vocabularies 

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”) 

(dbpedia:Ullman, owl:sameAs, yago:Ullman) 

(yago:Ullman, name, “Jeffrey Ullman”) 

SELECT ?X 

(((?Y, rdf:type, ?Z)  AND 

(?Z, rdf:type, owl:Restriction)  AND 

(?Z, owl:onProperty, is_author_of)  AND 

(?Z, owl:someValuesFrom, owl:Thing) 

AND (?Y, name, ?X)) 
UNION 
((?Y, is_author_of, ?Z) AND (?Y, owl:sameAs, ?W)  

AND (?W, name, ?X))) 

…
 

Can be even worse… 



The Program τOWL2QL 

•  Collect the domain elements: 

•  Store the elements in the ontology: 

triple(?X, ?Y, ?Z) → dom(?X), dom(?Y), dom(?Z) 

triple(?X, rdf:type, ?Y) → type(?X, ?Y) 

triple(?X, rdfs:subPropertyOf, ?Y) → sp(?X, ?Y) 

triple(?X, owl:inverseOf, ?Y) → inv(?Y, ?X) 

triple(?X, owl:Restriction, ?Y) → rest(?X, ?Y) 

triple(?X, rdfs:subClassOf, ?Y) → sc(?X, ?Y) 

triple(?X, owl:DisjointWith, ?Y) → disj(?X, ?Y) 

triple(?X, ?Y, ?Z) → triple1(?X, ?Y, ?Z) 



•  Reason about properties: 

•  Reason about classes: 

•  Reason about disjointness constraints: 

sp(?X, ?Y), inv(?Z, ?X), inv(?W, ?Y) → sp(?Z, ?W) 

type(?X, owl:ObjectProperty) → sp(?X, ?X) 

sp(?X, ?Y), sp(?Y, ?Z) → sp(?X, ?Z) 

The Program τOWL2QL 

sp(?X, ?Y), rest(?Z, ?X), rest(?W, ?Y) → sc(?Z, ?W) 

type(?X, owl:Class) → sc(?X, ?X) 

sc(?X, ?Y), sc(?Y, ?Z) → sc(?X, ?Z) 

disj(?X, ?Y), sc(?Z, ?X), sc(?W, ?Y) → disj(?Z, ?W) 



The Program τOWL2QL 

•  Reason about membership assertions: 

triple1(?X, ?U, ?Y), sp(?U, ?V) → triple1(?X, ?V, ?Y) 

triple1(?X, ?U, ?Y), inv(?U, ?V) → triple1(?Y, ?V, ?X) 

type(?X, ?Y), rest(?Y, ?U) → 9?Z triple1(?X, ?U, ?Z) 

type(?X, ?Y), sc(?Y, ?Z) → type(?X, ?Z) 

type(?X, ?Y) → triple1(?X, rdf:type, ?Y) 

triple1(?X, ?U, ?Y), rest(?Z, ?U) → type(?X, ?Z) 

type(?X, ?Y), type(?X, ?Z), disj(?Y, ?Z) → ?  



Active Domain Semantics Revisited 

Dropping the active domain semantics in SPARQL 
is non-trivial: 

 
Consider the query (?X, rdfs:subClassOf, ?Y) 

G  =  {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}  



•  Is existential quantification really necessary? 

•  TriQ-Lite is Datalog rewritable - it seems that it is not 

•  But, what about our main objective - need for decoupling? 

Is TriQ-Lite really necessary? 



Is TriQ-Lite really necessary? 

MQ  =  [ (τOWL2QL, τbgp(Q)), (τopr(Q), τout(Q)) ] 
 

Theorem: There exists an RDF graph G and a SPARQL query Q such 

that, for every Datalog[¬s, ?] program Π:  

ans(MQ,Π, DB(G))  ≠  ans(MQ, DB(G)) 

MQ,Π  =  [ (Π, τbgp(Q)), (τopr(Q), τout(Q)) ] 
 



Is TriQ-Lite really necessary? 

Proof sketch: 

(c, rdfs:subClassOf, 9p) 

(9p--, rdfs:subClassOf, c) 

(a, rdf:type, c) 

RDF graph G: 



Is TriQ-Lite really necessary? 

Proof sketch: 

c(?X) → 9?Y p(?X, ?Y) 

p(?X, ?Y) → c(?Y) 

c(a) 

(c, rdfs:subClassOf, 9p) 

(9p--, rdfs:subClassOf, c) 

(a, rdf:type, c) 

RDF graph G: 



Is TriQ-Lite really necessary? 

Proof sketch: 

(c, rdfs:subClassOf, 9p) 

(9p--, rdfs:subClassOf, c) 

(a, rdf:type, c) 

RDF graph G: 

SELECT ?X ( (?X, p, ?U) AND (?U, p, ?V) )  UNION  

SELECT ?X ?Y ( (?X, p, ?W) AND (?W, p, ?Y) ) 

SPARQL query Q: 



Is TriQ-Lite really necessary? 

Proof sketch: 

(c, rdfs:subClassOf, 9p) 

(9p--, rdfs:subClassOf, c) 

(a, rdf:type, c) 

RDF graph G: 

SELECT ?X ( (?X, p, ?U) AND (?U, p, ?V) )  UNION  

SELECT ?X ?Y ( (?X, p, ?W) AND (?W, p, ?Y) ) 

SPARQL query Q: 



Is TriQ-Lite really necessary? 

Proof sketch: 

(c, rdfs:subClassOf, 9p) 

(9p--, rdfs:subClassOf, c) 

(a, rdf:type, c) 

RDF graph G: 

SELECT ?X ( (?X, p, ?U) AND (?U, p, ?V) )  UNION  

SELECT ?X ?Y ( (?X, p, ?W) AND (?W, p, ?Y) ) 

SPARQL query Q: 

Answer: a 



Is TriQ-Lite really necessary? 

Proof sketch: 

(c, rdfs:subClassOf, 9p) 

(9p--, rdfs:subClassOf, c) 

(a, rdf:type, c) 

RDF graph G: 

SELECT ?X ( (?X, p, ?U) AND (?U, p, ?V) )  UNION  

SELECT ?X ?Y ( (?X, p, ?W) AND (?W, p, ?Y) ) 

SPARQL query Q: 

Answer: a 

In a Datalog[¬s, ?] program: a is an 
answer if and only if there exists a 
URI b such that (a,b) is an answer 



Program Expressive Power 

Pep: captures the expressive power of a program 
 



Program Expressive Power 

Pep: captures the expressive power of a program 
 
PepΩ[Π] = { (D, Λ, p(a1, …, ak))  |  (Π, Λ) is a program in Ω and p(a1, …, ak) 
is in ans((Π, Λ), D) } 

 
Pep[Ω] = { PepΩ[Π]  |  Π is a program in Ω } 
 
Ω1 is more expressive than Ω2 if Pep[Ω2] is a proper subset of Pep[Ω1]  



Program Expressive Power 

Pep: captures the expressive power of a program 
 
PepΩ[Π] = { (D, Λ, p(a1, …, ak))  |  (Π, Λ) is a program in Ω and p(a1, …, ak) 
is in ans((Π, Λ), D) } 

 
Pep[Ω] = { PepΩ[Π]  |  Π is a program in Ω } 
 
Ω1 is more expressive than Ω2 if Pep[Ω2] is a proper subset of Pep[Ω1]  

Theorem: weakly-guarded constant-join Datalog[9,¬s,?] is more 

expressive than Datalog[¬s,?] 


