
Expressive Languages for Querying the Semantic Web

 Marcelo Arenas1 Georg Gottlob2 Andreas Pieris2

 1Department of Computer Science, PUC Chile, Chile
2Department Computer Science, University of Oxford, UK

 Dagstuhl 2014

Resource Description Framework (RDF)

•  Data model for representing information about web resources

•  Uniform Resource Identifier (URI) - http://dbpedia.org/resource/Jeffrey_Ullman

•  URIs are organized as RDF graphs - (subject, predicate, object)

Resource Description Framework (RDF)

•  Data model for representing information about web resources

•  Uniform Resource Identifier (URI) - http://dbpedia.org/resource/Jeffrey_Ullman

•  URIs are organized as RDF graphs - (subject, predicate, object)

dbpedia: <http://dbpedia.org/resource/>

“Jeffrey Ullman” dbpedia:Aho “Alfred Aho”

“Database Systems: The Complete Book” dbpedia:Ullman
is_author_of

name is_coauthor_of

name

Resource Description Framework (RDF)

•  Data model for representing information about web resources

•  Uniform Resource Identifier (URI) - http://dbpedia.org/resource/Jeffrey_Ullman

•  URIs are organized as RDF graphs - (subject, predicate, object)

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

dbpedia: <http://dbpedia.org/resource/>

SPARQL

•  Graph-matching query language

•  First public working draft in 2004 by W3C

•  W3C recommendation in 2008

SPARQL

•  Graph-matching query language

•  First public working draft in 2004 by W3C

•  W3C recommendation in 2008

SELECT ?X

WHERE {

?Y is_author_of ?Z .

?Y name ?X . }

SPARQL

•  Graph-matching query language

•  First public working draft in 2004 by W3C

•  W3C recommendation in 2008

SELECT ?X

(?Y, is_author_of, ?Z) AND (?Y, name, ?X)

algebraic syntax introduced in [Pérez, A. & Gutierrez, TODS 2009]

SPARQL

SELECT ?X

(?Y, is_author_of, ?Z) AND (?Y, name, ?X)

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

SPARQL

SELECT ?X

(?Y, is_author_of, ?Z) AND (?Y, name, ?X)

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

Answer: “Jeffrey Ullman”

RDFS and OWL Vocabularies

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

(r1, rdf:type, owl:Restriction)

(r1, owl:onProperty, is_coauthor_of)

(r1, owl:someValuesFrom, owl:Thing)

(r2, rdf:type, owl:Restriction)

(r2, owl:onProperty, is_author_of)

(r2, owl:someValuesFrom, owl:Thing)

(r1, rdfs:subClassOf, r2)

RDFS and OWL Vocabularies

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

(r1, rdf:type, owl:Restriction)

(r1, owl:onProperty, is_coauthor_of)

(r1, owl:someValuesFrom, owl:Thing)

(r2, rdf:type, owl:Restriction)

(r2, owl:onProperty, is_author_of)

(r2, owl:someValuesFrom, owl:Thing)

(r1, rdfs:subClassOf, r2)

r1 = {a | there exists a URI b such that

 (a, is_coauthor_of, b)}

r2 = {a | there exists a URI b such that

(a, is_author_of, b)}

RDFS and OWL Vocabularies

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

(r1, rdf:type, owl:Restriction)

(r1, owl:onProperty, is_coauthor_of)

(r1, owl:someValuesFrom, owl:Thing)

(r2, rdf:type, owl:Restriction)

(r2, owl:onProperty, is_author_of)

(r2, owl:someValuesFrom, owl:Thing)

(r1, rdfs:subClassOf, r2)

 each co-author is an author

RDFS and OWL Vocabularies

SELECT ?X

(?Y, is_author_of, ?Z) AND (?Y, name, ?X)

Expected answers: Jeffrey Ullman

Alfred Aho

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

(r1, rdf:type, owl:Restriction)

(r1, owl:onProperty, is_coauthor_of)

(r1, owl:someValuesFrom, owl:Thing)

(r2, rdf:type, owl:Restriction)

(r2, owl:onProperty, is_author_of)

(r2, owl:someValuesFrom, owl:Thing)

(r1, rdfs:subClassOf, r2)

RDFS and OWL Vocabularies

SELECT ?X

(?Y, is_author_of, ?Z) AND (?Y, name, ?X)

Expected answers: Jeffrey Ullman

Alfred Aho

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

(r1, rdf:type, owl:Restriction)

(r1, owl:onProperty, is_coauthor_of)

(r1, owl:someValuesFrom, owl:Thing)

(r2, rdf:type, owl:Restriction)

(r2, owl:onProperty, is_author_of)

(r2, owl:someValuesFrom, owl:Thing)

(r1, rdfs:subClassOf, r2)

RDFS and OWL Vocabularies

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

(r1, rdf:type, owl:Restriction)

(r1, owl:onProperty, is_coauthor_of)

(r1, owl:someValuesFrom, owl:Thing)

(r2, rdf:type, owl:Restriction)

(r2, owl:onProperty, is_author_of)

(r2, owl:someValuesFrom, owl:Thing)

(r1, rdfs:subClassOf, r2)

SELECT ?X

(?Y, rdf:type, ?Z) AND

(?Z, rdf:type, owl:Restriction) AND

(?Z, owl:onProperty, is_author_of) AND

(?Z, owl:someValuesFrom, owl:Thing)

AND (?Y, name, ?X)

Jeffrey Ullman
Alfred Aho

RDFS and OWL Vocabularies

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, name, “Jeffrey Ullman”)

(dbpedia:Aho, is_coauthor_of, dbpedia:Ullman)

(dbpedia:Aho, name, “Alfred Aho”)

(r1, rdf:type, owl:Restriction)

(r1, owl:onProperty, is_coauthor_of)

(r1, owl:someValuesFrom, owl:Thing)

(r2, rdf:type, owl:Restriction)

(r2, owl:onProperty, is_author_of)

(r2, owl:someValuesFrom, owl:Thing)

(r1, rdfs:subClassOf, r2)

SELECT ?X

(?Y, rdf:type, ?Z) AND

(?Z, rdf:type, owl:Restriction) AND

(?Z, owl:onProperty, is_author_of) AND

(?Z, owl:someValuesFrom, owl:Thing)

AND (?Y, name, ?X)

Jeffrey Ullman
Alfred Aho

Need for Decoupling

SELECT ?X
(?Y, is_author_of, ?Z) AND (?Y, name, ?X)

vs

SELECT ?X

(?Y, rdf:type, ?Z) AND

(?Z, rdf:type, owl:Restriction) AND

(?Z, owl:onProperty, is_author_of) AND

(?Z, owl:someValuesFrom, owl:Thing)

AND (?Y, name, ?X))

Our Objectives

•  Decouple the reasoning part and the actual query - simpler queries

RDFS/OWL

vocabulary

actual

query

RDF

graph

fixed and query independent

Our Objectives

•  Decouple the reasoning part and the actual query - simpler queries

•  Navigational capabilities - exploit the graph structure of RDF data

•  General form of recursion - central feature for graph query languages

RDFS/OWL

vocabulary

actual

query

RDF

graph

fixed and query independent

The rest of the Talk

•  The modular query language TriQ

•  From SPARQL over OWL 2 QL to TriQ

•  TriQ-Lite - a tractable language

•  Concluding remarks

Triple Query Language (TriQ)

M = [QRDFS/OWL, QSPARQL]

ans(M,G) = ans(QSPARQL, ans(QRDFS/OWL, G))

Triple Query Language (TriQ)

M = [QRDFS/OWL, QSPARQL]

ans(M,G) = ans(QSPARQL, ans(QRDFS/OWL, G))

What is the right syntax for QRDFS/OWL and QSPARQL?

Triple Query Language (TriQ)

M = [QRDFS/OWL, QSPARQL]

ans(M,G) = ans(QSPARQL, ans(QRDFS/OWL, G))

What is the right syntax for QRDFS/OWL and QSPARQL?

- Datalog[¬s] represents every SPARQL query

- Datalog[9, ?] is appropriate for ontological reasoning

Datalog[9, ¬s, ?]

Triple Query Language (TriQ)

M = [QRDFS/OWL, QSPARQL]

ans(M,G) = ans(QSPARQL, ans(QRDFS/OWL, G))

What is the right syntax for QRDFS/OWL and QSPARQL?

- Datalog[¬s] represents every SPARQL query

- Datalog[9, ?] is appropriate for ontological reasoning

Datalog[9, ¬s, ?]

weakly-guarded Datalog[9, ¬s, ?]

Weakly-Guarded Datalog[9,¬s]

All body-variables at affected positions occur in a positive body-atom

appears in an 9-position or just in affected positions
in the body

P(?X, ?Y), S(?Y, ?Z) → 9?W T(?Y, ?X, ?W)

T(?X, ?Y, ?Z) → 9?W P(?W, ?Y)

P(?X, ?Y), ¬R(?X) → 9?Z Q(?X, ?Z)

Affected positions = ?

Weakly-Guarded Datalog[9,¬s]

All body-variables at affected positions occur in a positive body-atom

appears in an 9-position or just in affected positions
in the body

P(?X, ?Y), S(?Y, ?Z) → 9?W T(?Y, ?X, ?W)

T(?X, ?Y, ?Z) → 9?W P(?W, ?Y)

P(?X, ?Y), ¬R(?X) → 9?Z Q(?X, ?Z)

Affected positions = {T[3], P[1], Q[2]

Weakly-Guarded Datalog[9,¬s]

All body-variables at affected positions occur in a positive body-atom

appears in an 9-position or just in affected positions
in the body

P(?X, ?Y), S(?Y, ?Z) → 9?W T(?Y, ?X, ?W)

T(?X, ?Y, ?Z) → 9?W P(?W, ?Y)

P(?X, ?Y), ¬R(?X) → 9?Z Q(?X, ?Z)

Affected positions = {T[3], P[1], Q[2], T[2]

Weakly-Guarded Datalog[9,¬s]

All body-variables at affected positions occur in a positive body-atom

appears in an 9-position or just in affected positions
in the body

P(?X, ?Y), S(?Y, ?Z) → 9?W T(?Y, ?X, ?W)

T(?X, ?Y, ?Z) → 9?W P(?W, ?Y)

P(?X, ?Y), ¬R(?X) → 9?Z Q(?X, ?Z)

Affected positions = {T[3], P[1], Q[2], T[2], P[2]

Weakly-Guarded Datalog[9,¬s]

All body-variables at affected positions occur in a positive body-atom

appears in an 9-position or just in affected positions
in the body

P(?X, ?Y), S(?Y, ?Z) → 9?W T(?Y, ?X, ?W)

T(?X, ?Y, ?Z) → 9?W P(?W, ?Y)

P(?X, ?Y), ¬R(?X) → 9?Z Q(?X, ?Z)

Affected positions = {T[3], P[1], Q[2], T[2], P[2], Q[1],

Weakly-Guarded Datalog[9,¬s]

All body-variables at affected positions occur in a positive body-atom

appears in an 9-position or just in affected positions
in the body

P(?X, ?Y), S(?Y, ?Z) → 9?W T(?Y, ?X, ?W)

T(?X, ?Y, ?Z) → 9?W P(?W, ?Y)

P(?X, ?Y), ¬R(?X) → 9?Z Q(?X, ?Z)

Affected positions = {T[3], P[1], Q[2], T[2], P[2], Q[1],

Weakly-Guarded Datalog[9,¬s]

All body-variables at affected positions occur in a positive body-atom

appears in an 9-position or just in affected positions
in the body

P(?X, ?Y), S(?Y, ?Z) → 9?W T(?Y, ?X, ?W)

T(?X, ?Y, ?Z) → 9?W P(?W, ?Y)

P(?X, ?Y), ¬R(?X) → 9?Z Q(?X, ?Z)

Affected positions = {T[3], P[1], Q[2], T[2], P[2], Q[1] }

Weakly-Guarded Datalog[9,¬s]

All body-variables at affected positions occur in a positive body-atom

appears in an 9-position or just in affected positions
in the body

P(?X, ?Y), S(?Y, ?Z) → 9?W T(?Y, ?X, ?W)

T(?X, ?Y, ?Z) → 9?W P(?W, ?Y)

P(?X, ?Y), ¬R(?X) → 9?Z Q(?X, ?Z)

Affected positions = {T[3], P[1], Q[2], T[2], P[2], Q[1] }

Weakly-Guarded Datalog[9,¬s, ?]

All body-variables at affected positions occur in a positive body-atom

appears in an 9-position or just in affected positions
in the body

weakly-guarded Datalog[9, ¬s] + Φ(x1, …, xk) → ?

=

weakly-guarded Datalog[9, ¬s, ?]

Triple Query Language (TriQ)

M = [QRDFS/OWL, QSPARQL]

weakly-guarded Datalog[9, ¬s, ?] queries

Triple Query Language (TriQ)

M = [QRDFS/OWL, QSPARQL]

weakly-guarded Datalog[9, ¬s, ?] queries

Weakly-guarded Datalog[9, ¬s, ?] query: (Π, Λ)

•  Π is a weakly-guarded Datalog[9, ¬s, ?] program

•  Λ is a set of answer rules: Φ(x1, …, xk) → answer(x1, …, xk)

Triple Query Language (TriQ): Complexity

•  Theorem: Query evaluation for TriQ is in EXPTIME

Triple Query Language (TriQ): Complexity

•  Theorem: Query evaluation for TriQ is in EXPTIME

•  Theorem [Gottlob, Rudolph & Šimkus, PODS 2014]: Every query that

can be evaluated in EXPTIME can be expressed in weakly-guarded

Datalog[9,¬s] (no order)

Triple Query Language (TriQ): Complexity

•  Theorem: Query evaluation for TriQ is in EXPTIME

•  Theorem [Gottlob, Rudolph & Šimkus, PODS 2014]: Every query that

can be evaluated in EXPTIME can be expressed in weakly-guarded

Datalog[9,¬s] (no order)

•  Corollary: TriQ and weakly-guarded Datalog[9,¬s] capture EXPTIME

(no order)

From SPARQL to TriQ

for every object a, we ask for the name and the phone of a, if the phone

number of a is available; otherwise, we only ask for the name of a

Q = (?X, name, ?Y) OPT (?X, phone, ?Z)

A B

From SPARQL to TriQ

for every object a, we ask for the name and the phone of a, if the phone

number of a is available; otherwise, we only ask for the name of a

Q = (?X, name, ?Y) OPT (?X, phone, ?Z)

A B

MQ = [(ø, τbgp(Q)), (τopr(Q), τout(Q))]

evaluate basic graph
patterns (A and B)

encode the semantics of
SPARQL operators (OPT)

output rules

From SPARQL to TriQ

Q = (?X, name, ?Y) OPT (?X, phone, ?Z)

A B

triple(?X, name, ?Y) → queryA(?X, ?Y)

triple(?X, phone, ?Y) → queryB(?X, ?Y)

The program τbgp(Q):

From SPARQL to TriQ

Q = (?X, name, ?Y) OPT (?X, phone, ?Z)

A B

The program τopr(Q):

queryA(?X, ?Y), queryB(?X, ?Z) → queryQ(?X, ?Y, ?Z)

list of individuals with phone number

queryA(?X, ?Y), queryB(?X, ?Z) → compatibleQ(?X)

From SPARQL to TriQ

Q = (?X, name, ?Y) OPT (?X, phone, ?Z)

A B

The program τopr(Q):

queryA(?X, ?Y), queryB(?X, ?Z) → queryQ(?X, ?Y, ?Z)

list of individuals with phone number

queryA(?X, ?Y), queryB(?X, ?Z) → compatibleQ(?X)

queryA(?X, ?Y), ¬compatibleQ(?X) → queryQ,{3}(?X, ?Y)

the third argument (phone number) is missing

From SPARQL to TriQ

Q = (?X, name, ?Y) OPT (?X, phone, ?Z)

A B

queryQ(?X, ?Y, ?Z) → answerQ(?X, ?Y, ?Z)

queryQ,{3}(?X, ?Y) → answerQ,{3}(?X, ?Y)

The program τout(Q):

From SPARQL to TriQ

Q = (?X, name, ?Y) OPT (?X, phone, ?Z)

A B

queryQ,ø(?X, ?Y, ?Z) → answerQ,ø(?X, ?Y, ?Z)

queryQ,{3}(?X, ?Y) → answerQ,{3}(?X, ?Y)

The program τout(Q):

From SPARQL to TriQ

Q = (?X, name, ?Y) OPT (?X, phone, ?Z)

A B

Given an RDF graph G:

evaluation of Q over G = ans(MQ, DB(G))

MQ = [(ø, τbgp(Q)), (τopr(Q), τout(Q))]

From SPARQL to TriQ

Q = (?X, name, ?Y) OPT (?X, phone, ?Z)

A B

Given an RDF graph G:

evaluation of Q over G = ans(MQ, DB(G))

MQ = [(ø, τbgp(Q)), (τopr(Q), τout(Q))]

{ triple(a, b, c) | (a, b, c) belongs to G}

From SPARQL over OWL 2 QL to TriQ

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

•  Elements of G that eat something: SELECT ?X (?X, eats, ?Y)

•  However, the answer is empty due to the active domain semantics

From SPARQL over OWL 2 QL to TriQ

•  Elements of G that eat something: SELECT ?X (?X, eats, ?Y)

•  However, the answer is empty due to the active domain semantics

•  We need the query (?X, rdf:type, 9eats):

•  This is what is called “the evaluation of Q over G under the OWL 2 direct
semantics entailment regime”

G I= OWL2 (dog, rdf:type, 9eats)

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

From SPARQL over OWL 2 QL to TriQ

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

Q = (?X, rdf:type, 9eats)

MQ = [(τOWL2QL, τbgp(Q)), (ø, τout(Q))]

fixed program used to encode
the semantics I= OWL2

triple1(?X, rdf:type, 9eats), dom(?X) → queryQ(?X)

queryQ(?X) → answerQ(?X)

From SPARQL over OWL 2 QL to TriQ

Theorem: Given a SPARQL query Q and an RDF graph G:

The evaluation of Q over G under the OWL 2 direct semantics
entailment regime = ans(MQ, DB(G))

•  MQ = [(τOWL2QL, τbgp(Q)), (τopr(Q), τout(Q))] is a TriQ query

•  τOWL2QL is fixed, it does not depend on Q

Active Domain Semantics Revisited

•  Elements of G that eat something: SELECT ?X (?X, eats, ?Y)

•  However, the answer is empty due to the active domain semantics

•  We need the query (?X, rdf:type, 9eats)

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

Active Domain Semantics Revisited

Q = (?X, rdf:type, 9eats)

MQ = [(τOWL2QL, τbgp(Q)), (ø, τout(Q))]

triple1(?X, rdf:type, 9eats), dom(?X) → queryQ(?X)

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

Active Domain Semantics Revisited

Q = SELECT ?X (?X, eats, ?Y)

MQ = [(τOWL2QL, τbgp(Q)), (τopr(Q), τout(Q))]

triple1(?X, eats, ?Y),
dom(?X), dom(?Y) → queryP(?X,?Y)

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

P

queryP(?X,?Y) → queryQ(?X)

Active Domain Semantics Revisited

Q = SELECT ?X (?X, eats, ?Y)

MQ = [(τOWL2QL, τbgp(Q)), (τopr(Q), τout(Q))]

triple1(?X, eats, ?Y),
dom(?X), dom(?Y) → queryP(?X,?Y)

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

P

queryP(?X,?Y) → queryQ(?X)

Active Domain Semantics Revisited

Q = SELECT ?X (?X, eats, ?Y)

MQ = [(τOWL2QL, τbgp(Q)), (ø, τout(Q))]

triple1(?X, eats, ?Y), dom(?X) → queryP(?X)

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

Active Domain Semantics Revisited

Q = SELECT ?X (?X, eats, ?Y)

MQ = [(τOWL2QL, τbgp(Q)), (ø, τout(Q))]

triple1(?X, eats, ?Y), dom(?X) → queryP(?X)

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

Q = (?X, eats, _:b)

The Language TriQ-Lite

TriQ

PTIME-complete

EXPTIME-complete
constant-join programs

join variables occur only at non-affected positions

The Language TriQ-Lite

Theorem: Every SPARQL query under the entailment regime for
OWL 2 QL can be expressed as a TriQ-Lite query (with or without
the active domain restriction).

Proof sketch:

PTIME-membership: enough to consider the evaluation problem for weakly-
guarded constant-join Datalog[9, ¬s, ?]

•  Let D be an RDF graph and (Π, Λ) be a weakly-guarded constant-join
Datalog[9, ¬s, ?] query

•  First step: Constraints are eliminated from Π to generate ex(Π)
•  Checking for inconsistencies

•  Second step: ground chase is computed
•  Atoms p(a1, …, ak) in chase(D, ex(Π)) such that a1, …, ak are URIs
•  ALOGSPACE algorithm

The Language TriQ-Lite

Theorem: Query evaluation for TriQ-Lite is PTIME-complete

Proof sketch:

•  Third step: negation is eliminated from ex(Π) to generate DL and ex(Π)+

•  Every atom ¬p(t1, …, tk) in a rule of ex(Π) is replaced by cp(t1, …, tk), where
cp stores the complement of p

•  DL is the extension of D with the atoms cp(a1, …, ak) such that a1, …, ak are
URIs, which are computed in each strata of ex(Π) by using the ground chase

•  Last step: transform ex(Π)+ into a linear Datalog[9] program ΠL

•  Key observation: in every rule of ex(Π)+, every variable that can be assigned
non-URI values must occur only in the weak-guard.

The Language TriQ-Lite

Theorem: Query evaluation for TriQ-Lite is PTIME-complete

Proof sketch:

•  To finish the proof: query evaluation problem for linear Datalog[9] is in PTIME in

program complexity
•  Program complexity: only Λ is fixed, program ΠL and RDF graph DL depend

on Π and D

PTIME-hardness: since Datalog is already PTIME-hard

The Language TriQ-Lite

Theorem: Query evaluation for TriQ-Lite is PTIME-complete

Concluding remarks

1.  We introduce the modular query language TriQ
•  TripQ captures EXPTIME (no order)

2.  We show that every SPARQL query can be expressed in TriQ
•  Including the OWL 2 direct semantics entailment regime
•  Dropping the active domain restriction

3.  We identify the tractable fragment TriQ-Lite of TriQ with the same

properties as in 2.

4.  We also prove that the existential quantification in TriQ-Lite is

necessary
•  In the paper, we define and study some notions of program

expressiveness

Thank you!

Backup slides

RDFS and OWL Vocabularies

(dbpedia:Ullman, is_author_of, “Database Systems: The Complete Book”)

(dbpedia:Ullman, owl:sameAs, yago:Ullman)

(yago:Ullman, name, “Jeffrey Ullman”)

SELECT ?X

(((?Y, rdf:type, ?Z) AND

(?Z, rdf:type, owl:Restriction) AND

(?Z, owl:onProperty, is_author_of) AND

(?Z, owl:someValuesFrom, owl:Thing)

AND (?Y, name, ?X))
UNION
((?Y, is_author_of, ?Z) AND (?Y, owl:sameAs, ?W)

AND (?W, name, ?X)))

…

Can be even worse…

The Program τOWL2QL

•  Collect the domain elements:

•  Store the elements in the ontology:

triple(?X, ?Y, ?Z) → dom(?X), dom(?Y), dom(?Z)

triple(?X, rdf:type, ?Y) → type(?X, ?Y)

triple(?X, rdfs:subPropertyOf, ?Y) → sp(?X, ?Y)

triple(?X, owl:inverseOf, ?Y) → inv(?Y, ?X)

triple(?X, owl:Restriction, ?Y) → rest(?X, ?Y)

triple(?X, rdfs:subClassOf, ?Y) → sc(?X, ?Y)

triple(?X, owl:DisjointWith, ?Y) → disj(?X, ?Y)

triple(?X, ?Y, ?Z) → triple1(?X, ?Y, ?Z)

•  Reason about properties:

•  Reason about classes:

•  Reason about disjointness constraints:

sp(?X, ?Y), inv(?Z, ?X), inv(?W, ?Y) → sp(?Z, ?W)

type(?X, owl:ObjectProperty) → sp(?X, ?X)

sp(?X, ?Y), sp(?Y, ?Z) → sp(?X, ?Z)

The Program τOWL2QL

sp(?X, ?Y), rest(?Z, ?X), rest(?W, ?Y) → sc(?Z, ?W)

type(?X, owl:Class) → sc(?X, ?X)

sc(?X, ?Y), sc(?Y, ?Z) → sc(?X, ?Z)

disj(?X, ?Y), sc(?Z, ?X), sc(?W, ?Y) → disj(?Z, ?W)

The Program τOWL2QL

•  Reason about membership assertions:

triple1(?X, ?U, ?Y), sp(?U, ?V) → triple1(?X, ?V, ?Y)

triple1(?X, ?U, ?Y), inv(?U, ?V) → triple1(?Y, ?V, ?X)

type(?X, ?Y), rest(?Y, ?U) → 9?Z triple1(?X, ?U, ?Z)

type(?X, ?Y), sc(?Y, ?Z) → type(?X, ?Z)

type(?X, ?Y) → triple1(?X, rdf:type, ?Y)

triple1(?X, ?U, ?Y), rest(?Z, ?U) → type(?X, ?Z)

type(?X, ?Y), type(?X, ?Z), disj(?Y, ?Z) → ?

Active Domain Semantics Revisited

Dropping the active domain semantics in SPARQL
is non-trivial:

Consider the query (?X, rdfs:subClassOf, ?Y)

G = {(dog, rdf:type, animal), (animal, rdfs:subClassOf, 9eats)}

•  Is existential quantification really necessary?

•  TriQ-Lite is Datalog rewritable - it seems that it is not

•  But, what about our main objective - need for decoupling?

Is TriQ-Lite really necessary?

Is TriQ-Lite really necessary?

MQ = [(τOWL2QL, τbgp(Q)), (τopr(Q), τout(Q))]

Theorem: There exists an RDF graph G and a SPARQL query Q such

that, for every Datalog[¬s, ?] program Π:

ans(MQ,Π, DB(G)) ≠ ans(MQ, DB(G))

MQ,Π = [(Π, τbgp(Q)), (τopr(Q), τout(Q))]

Is TriQ-Lite really necessary?

Proof sketch:

(c, rdfs:subClassOf, 9p)

(9p--, rdfs:subClassOf, c)

(a, rdf:type, c)

RDF graph G:

Is TriQ-Lite really necessary?

Proof sketch:

c(?X) → 9?Y p(?X, ?Y)

p(?X, ?Y) → c(?Y)

c(a)

(c, rdfs:subClassOf, 9p)

(9p--, rdfs:subClassOf, c)

(a, rdf:type, c)

RDF graph G:

Is TriQ-Lite really necessary?

Proof sketch:

(c, rdfs:subClassOf, 9p)

(9p--, rdfs:subClassOf, c)

(a, rdf:type, c)

RDF graph G:

SELECT ?X ((?X, p, ?U) AND (?U, p, ?V)) UNION

SELECT ?X ?Y ((?X, p, ?W) AND (?W, p, ?Y))

SPARQL query Q:

Is TriQ-Lite really necessary?

Proof sketch:

(c, rdfs:subClassOf, 9p)

(9p--, rdfs:subClassOf, c)

(a, rdf:type, c)

RDF graph G:

SELECT ?X ((?X, p, ?U) AND (?U, p, ?V)) UNION

SELECT ?X ?Y ((?X, p, ?W) AND (?W, p, ?Y))

SPARQL query Q:

Is TriQ-Lite really necessary?

Proof sketch:

(c, rdfs:subClassOf, 9p)

(9p--, rdfs:subClassOf, c)

(a, rdf:type, c)

RDF graph G:

SELECT ?X ((?X, p, ?U) AND (?U, p, ?V)) UNION

SELECT ?X ?Y ((?X, p, ?W) AND (?W, p, ?Y))

SPARQL query Q:

Answer: a

Is TriQ-Lite really necessary?

Proof sketch:

(c, rdfs:subClassOf, 9p)

(9p--, rdfs:subClassOf, c)

(a, rdf:type, c)

RDF graph G:

SELECT ?X ((?X, p, ?U) AND (?U, p, ?V)) UNION

SELECT ?X ?Y ((?X, p, ?W) AND (?W, p, ?Y))

SPARQL query Q:

Answer: a

In a Datalog[¬s, ?] program: a is an
answer if and only if there exists a
URI b such that (a,b) is an answer

Program Expressive Power

Pep: captures the expressive power of a program

Program Expressive Power

Pep: captures the expressive power of a program

PepΩ[Π] = { (D, Λ, p(a1, …, ak)) | (Π, Λ) is a program in Ω and p(a1, …, ak)
is in ans((Π, Λ), D) }

Pep[Ω] = { PepΩ[Π] | Π is a program in Ω }

Ω1 is more expressive than Ω2 if Pep[Ω2] is a proper subset of Pep[Ω1]

Program Expressive Power

Pep: captures the expressive power of a program

PepΩ[Π] = { (D, Λ, p(a1, …, ak)) | (Π, Λ) is a program in Ω and p(a1, …, ak)
is in ans((Π, Λ), D) }

Pep[Ω] = { PepΩ[Π] | Π is a program in Ω }

Ω1 is more expressive than Ω2 if Pep[Ω2] is a proper subset of Pep[Ω1]

Theorem: weakly-guarded constant-join Datalog[9,¬s,?] is more

expressive than Datalog[¬s,?]

