
Discovering XSD Keys from XML Data

Marcelo Arenas

PUC Chile & U. of Oxford

Joint work with Jonny Daenen, Frank Neven, Martin Ugarte, Jan Van den
Bussche and Stijn Vansummeren

Beihang University, August 2013

1

XML trees: An example

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

2

XML schema (XSD): An example

db/country 7→ name region∗

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

3

XML schema (XSD): An example

db/country 7→ name region∗

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

3

XML schema (XSD): An example

db/country 7→ name region∗

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

3

XML schema (XSD): An example

db/country/region/city 7→ name population

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

4

XSD Keys: An example

(db/country, .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

5

XSD Keys: An example

(db/country, .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

5

XSD Keys: An example

(db/country, .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

5

XSD Keys: An example

(db/country, .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

5

XSD key mining

Support of a key in an XML tree: Number of nodes captured by the key

(db/country, .//city, (./name))

db

country country

region

city

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

6

XSD key mining

Support of a key in an XML tree: Number of nodes captured by the key

(db/country, .//city, (./name))

db

country country

region

city

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

6

XSD key mining (cont’d)

Given an XSD X , an XML tree t satisfying X and a threshold N,
we want to find all keys φ such that:

1. t satisfies φ

2. the support of φ in t is greater than N

3. φ meets some quality requirements (which are defined only
with respect to X)

7

XSD key mining (cont’d)

Important issues:

I Collections of XML trees are not considered, as a collection
can always be combined into a single XML tree by introducing
a common root

I The standard definition of XML keys (given by the W3C) is
considered in this work

I The quality requirements play a fundamental role in this work

8

Outline

I A bit of notation: XML trees and XSDs

I XSD keys: Formal definition

I XSD key mining problem: Formal definition

I The consistency problem: Complexity

I An XSD key mining algorithm

I Experimental evaluation: A few words

I Take-home message

9

Outline

I A bit of notation: XML trees and XSDs

I XSD keys: Formal definition

I XSD key mining problem: Formal definition

I The consistency problem: Complexity

I An XSD key mining algorithm

I Experimental evaluation: A few words

I Take-home message

9

XML trees

Given: Finite set Σ of element names and an infinite set Data of
data elements.

I Σ, Data are assumed to be disjoint

XML tree (or just tree): (t, labt)

I t: Finite, unranked and sibling-ordered tree

I labt : node labeling function with range (Σ ∪Data), which
labels non-leaf nodes with Σ

Mixed content is not allowed: When a node is labeled with Data,
then it is the only child of its parent.

10

XML trees

Given: Finite set Σ of element names and an infinite set Data of
data elements.

I Σ, Data are assumed to be disjoint

XML tree (or just tree): (t, labt)

I t: Finite, unranked and sibling-ordered tree

I labt : node labeling function with range (Σ ∪Data), which
labels non-leaf nodes with Σ

Mixed content is not allowed: When a node is labeled with Data,
then it is the only child of its parent.

10

XML trees: An example

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

11

XSD: Definition

An XSD defines the structure of a collection of XML trees.

Formally: X = (A, λ)

I A = (Q,Σ ∪ {data}, q0, δ) is a DFA without final states

I λ assigns to each state in Q a (one-unambiguous) regular
expression over (Σ ∪ {data})

I There exists a polynomial-time algorithm that, given q ∈ Q,
generates a DFA accepting λ(q)

12

XSD: Definition

An XSD defines the structure of a collection of XML trees.

Formally: X = (A, λ)

I A = (Q,Σ ∪ {data}, q0, δ) is a DFA without final states

I λ assigns to each state in Q a (one-unambiguous) regular
expression over (Σ ∪ {data})

I There exists a polynomial-time algorithm that, given q ∈ Q,
generates a DFA accepting λ(q)

12

Conforming to an XSD

λ(q1) = name region∗

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

13

Conforming to an XSD

λ(q1) = name region∗

db

country q1 country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

13

Conforming to an XSD

λ(q1) = name region∗

db

country q1 country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

13

Conforming to an XSD

λ(q1) = name region∗

db

country q1 country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

13

Conforming to an XSD

λ(q3) = data

db

country country

name

"USA"

region region

name

"Texas"

city city

name q3

"Austin"

population

"820,611"

. . .

. . .

. . .

14

Conforming to an XSD

λ(q3) = data

db

country country

name

"USA"

region region

name

"Texas"

city city

name q3

"Austin"

population

"820,611"

. . .

. . .

. . .

14

Outline

I A bit of notation: XML trees and XSDs

I XSD keys: Formal definition

I XSD key mining problem: Formal definition

I The consistency problem: Complexity

I An XSD key mining algorithm

I Experimental evaluation: A few words

I Take-home message

15

Defining XSD keys: Contexts

Let X = (A, λ) be an XSD, where Q is the set of states of A

A context c = (q, a) is a pair in Q × Σ

Given an XML tree t, CNodest(c) is the set of nodes v in t such that

1. labt(v) = a

2. A halts in state q on input the string formed by the labels on the
path from t’s root to v

16

Defining XSD keys: Contexts

Let X = (A, λ) be an XSD, where Q is the set of states of A

A context c = (q, a) is a pair in Q × Σ

Given an XML tree t, CNodest(c) is the set of nodes v in t such that

1. labt(v) = a

2. A halts in state q on input the string formed by the labels on the
path from t’s root to v

16

Defining XSD keys: Selector expressions

A selector expression is of one of the following three forms:

I . (the dot symbol)

I ./a1/ · · · /ak (starting with the child axis), where k ≥ 1 and for
every i ∈ {1, . . . , k}, either ai ∈ Σ or ai = ∗

I .//a1/ · · · /ak (starting with the descendant axis), where k ≥ 1 and
for every i ∈ {1, . . . , k}, either ai ∈ Σ or ai = ∗

A union of selector expressions is of the form (τ1| · · · |τm), where m ≥ 1
and each τi is a selector expression.

SE denotes the class of selector expressions and DSE the class of union

of selector expressions.

17

Selector expressions: Semantics

Let w = w1 . . .wn be a string, where each wi ∈ Σ.

I w is said to match ./a1/ · · · /ak if n = k and for every
i ∈ {1, . . . , k}: wi = ai or ai = ∗

I w is said to match .//a1/ · · · /ak if a suffix of w matches
./a1/ · · · /ak

18

Selector expressions: Semantics (cont’d)

Let t be an XML tree, v a node in t and τ a selector expression.

τ(t, v): Nodes in t that are reachable from v by following τ .

I τ(t, v) = {v} if τ = .

I Otherwise, τ(t, v) contains every node v ′ such that

I v ′ is a descendant of v in t, and

I the path of labels from v to v ′ (but excluding the label of v)
matches τ

If τ ′ = (τ1| · · · |τm) is a disjunction of selector expressions:

τ ′(t, v) = τ1(t, v) ∪ · · · ∪ τm(t, v)

19

Selector expressions: Semantics (cont’d)

Let t be an XML tree, v a node in t and τ a selector expression.

τ(t, v): Nodes in t that are reachable from v by following τ .

I τ(t, v) = {v} if τ = .

I Otherwise, τ(t, v) contains every node v ′ such that

I v ′ is a descendant of v in t, and

I the path of labels from v to v ′ (but excluding the label of v)
matches τ

If τ ′ = (τ1| · · · |τm) is a disjunction of selector expressions:

τ ′(t, v) = τ1(t, v) ∪ · · · ∪ τm(t, v)

19

Selector expressions: Semantics (cont’d)

Let t be an XML tree, v a node in t and τ a selector expression.

τ(t, v): Nodes in t that are reachable from v by following τ .

I τ(t, v) = {v} if τ = .

I Otherwise, τ(t, v) contains every node v ′ such that

I v ′ is a descendant of v in t, and

I the path of labels from v to v ′ (but excluding the label of v)
matches τ

If τ ′ = (τ1| · · · |τm) is a disjunction of selector expressions:

τ ′(t, v) = τ1(t, v) ∪ · · · ∪ τm(t, v)

19

XSD keys: Definition

Definition

An XSD key, defined w.r.t. an XSD X , is a tuple φ = (c , τ,P):

I c is a context in X ,

I τ ∈ DSE , and

I P = (p1, . . . , pk), where k ≥ 1 and each pi ∈ DSE

Notation: τ is the target path and each pi is a key path

20

XSD Keys: Some examples

((country, q1), .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

21

XSD Keys: Some examples

((country, q1), .//city, (./name))

db

country q1 country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

21

XSD Keys: Some examples

((country, q1), .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

21

XSD Keys: Some examples

((country, q1), .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

21

XSD Keys: Some examples

((region, q4), .//city, (./name))

db

country country

name

"USA"

region region q4

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

22

Satisfaction of XSD keys: Structural requirements

((region, q4), .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

population

"820,611"

. . .

. . .

. . .

23

Satisfaction of XSD keys: Structural requirements

((region, q4), .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

"Austin"

name

"Bat City"

population

"820,611"

. . .

. . .

. . .

23

Satisfaction of XSD keys: Structural requirements

((region, q4), .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

population

"820,611"

. . .

. . .

. . .

23

Satisfaction of XSD keys: Structural requirements

((region, q4), .//city, (./name))

db

country country

name

"USA"

region region

name

"Texas"

city city

name

first-part second-part

"Bat" "City"

population

"820,611"

. . .

. . .

. . .

23

Satisfaction of XSD keys: Formalizing the structural
requirements

v is a Data-node in an XML tree t if v has a single child u, and
labt(u) ∈ Data.

I Then valuet(v) = labt(u)

Definition

A key φ = (c , τ, (p1, . . . , pk)) qualifies in an XML tree t if for every
v ∈ CNodest(c), every u ∈ τ(t, v) and every pi :

pi (t, u) is a singleton containing a Data-node

24

Satisfaction of XSD keys: Formalizing the structural
requirements

v is a Data-node in an XML tree t if v has a single child u, and
labt(u) ∈ Data.

I Then valuet(v) = labt(u)

Definition

A key φ = (c , τ, (p1, . . . , pk)) qualifies in an XML tree t if for every
v ∈ CNodest(c), every u ∈ τ(t, v) and every pi :

pi (t, u) is a singleton containing a Data-node

24

Satisfaction of XSD keys: Complete definition

Let u be a node in an XML tree t, and P = (p1, . . . , pk) a sequence of
disjunctions of selector expressions.

Assume that pi (t, u) = {ui} with ui a Data-node, for every
i ∈ {1, . . . , k}.

I Then recordP(t, u) = [valuet(u1), . . . , valuet(uk)]

Definition

An XML tree t satisfies a key φ = (c , τ,P), denoted by t |= φ, if:

1. φ qualifies in t

2. for every v ∈ CNodest(c) and every pair u1, u2 of distinct nodes in
τ(t, v), it holds that recordP(t, u1) 6= recordP(t, u2)

25

Satisfaction of XSD keys: Complete definition

Let u be a node in an XML tree t, and P = (p1, . . . , pk) a sequence of
disjunctions of selector expressions.

Assume that pi (t, u) = {ui} with ui a Data-node, for every
i ∈ {1, . . . , k}.

I Then recordP(t, u) = [valuet(u1), . . . , valuet(uk)]

Definition

An XML tree t satisfies a key φ = (c , τ,P), denoted by t |= φ, if:

1. φ qualifies in t

2. for every v ∈ CNodest(c) and every pair u1, u2 of distinct nodes in
τ(t, v), it holds that recordP(t, u1) 6= recordP(t, u2)

25

Outline

I A bit of notation: XML trees and XSDs

I XSD keys: Formal definition

I XSD key mining problem: Formal definition

I The consistency problem: Complexity

I An XSD key mining algorithm

I Experimental evaluation: A few words

I Take-home message

26

XSD key mining problem: Definition

First, we need to define the support of a key in an XML tree.

Assume that φ = (c , τ,P). Given an XML tree t:

TNodest(φ) =
⋃

v∈CNodest(c)

τ(t, v)

Then supp(φ, t) = |TNodest(φ)|
I supp(c , τ, t) is also used to denote supp(φ, t)

27

XSD key mining problem: Definition (cont’d)

Second, we need to introduce a fundamental quality requirement:

Definition
A key φ is consistent w.r.t. an XSD X if φ qualifies in every XML tree
conforming to X

Now we can formally define the XSD mining problem:

Definition
Given an XSD X , and XML tree t conforming to X and a threshold N,
the XSD key mining problem consists of finding all keys φ such that:

I t |= φ

I supp(φ, t) > N

I φ is consistent w.r.t. X

28

XSD key mining problem: Definition (cont’d)

Second, we need to introduce a fundamental quality requirement:

Definition
A key φ is consistent w.r.t. an XSD X if φ qualifies in every XML tree
conforming to X

Now we can formally define the XSD mining problem:

Definition
Given an XSD X , and XML tree t conforming to X and a threshold N,
the XSD key mining problem consists of finding all keys φ such that:

I t |= φ

I supp(φ, t) > N

I φ is consistent w.r.t. X

28

Outline

I A bit of notation: XML trees and XSDs

I XSD keys: Formal definition

I XSD key mining problem: Formal definition

I The consistency problem: Complexity

I An XSD key mining algorithm

I Experimental evaluation: A few words

I Take-home message

29

First problem to solve: The consistency problem

Consistency(DSE) is the problem of verifying, given an XSD X
and a key φ, whether φ is consistent w.r.t. X .

I Consistency(SE) is defined analogously, but assuming that
target and key paths are selector expressions

To determine the complexity of these problems, we study a closely
related problem.

30

Cardinality of selector expression results

Notation:

I L(X): set of trees t conforming to XSD X

I τ(t): defined as τ(t, r), where r is the root of tree t

Definition

Given • ∈ {<,=, >} and k ≥ 0:

∀•k,SEtree = {(X , p) | X is an XSD,

p ∈ SE and for every t ∈ L(X) : |p(t)| • k}

∀•k,DSEtree is defined analogously.

31

Cardinality of selector expression results

Notation:

I L(X): set of trees t conforming to XSD X

I τ(t): defined as τ(t, r), where r is the root of tree t

Definition

Given • ∈ {<,=, >} and k ≥ 0:

∀•k,SEtree = {(X , p) | X is an XSD,

p ∈ SE and for every t ∈ L(X) : |p(t)| • k}

∀•k,DSEtree is defined analogously.

31

Cardinality of selector expression results and the
consistency problem

Proposition

I ∀=1,SE
tree is polynomially equivalent to Consistency(SE)

I ∀=1,DSE
tree is polynomially equivalent to Consistency(DSE)

We study the more general family of problems ∀•k,SEtree

32

A useful detour: The string case

Notation:

I L(A): set of strings s accepted by DFA A

I τ(s): defined as before but considering string s as a tree

Definition

Given • ∈ {<,=, >} and k ≥ 0:

∀•k,SEstring = {(A, p) | A is a DFA,

p ∈ SE and for every s ∈ L(A) : |p(s)| • k}

33

The complexity of ∀<2,SE
string

We have that ∀=1,SE
string = ∀<2,SE

string ∩ ∀
>0,SE
string

Proposition

∀<2,SE
string is in Ptime

Proof idea: Assume given a DFA A and selector expression p.

Construct an NFA Bp accepting every string s such that |p(s)| ≥ 2

Verify whether L(A× Bp) = ∅

I (A, p) ∈ ∀<2,SE
string if and only if L(A× Bp) = ∅

34

The complexity of ∀<2,SE
string

We have that ∀=1,SE
string = ∀<2,SE

string ∩ ∀
>0,SE
string

Proposition

∀<2,SE
string is in Ptime

Proof idea: Assume given a DFA A and selector expression p.

Construct an NFA Bp accepting every string s such that |p(s)| ≥ 2

Verify whether L(A× Bp) = ∅

I (A, p) ∈ ∀<2,SE
string if and only if L(A× Bp) = ∅

34

The complexity of ∀<2,SE
string

We have that ∀=1,SE
string = ∀<2,SE

string ∩ ∀
>0,SE
string

Proposition

∀<2,SE
string is in Ptime

Proof idea: Assume given a DFA A and selector expression p.

Construct an NFA Bp accepting every string s such that |p(s)| ≥ 2

Verify whether L(A× Bp) = ∅

I (A, p) ∈ ∀<2,SE
string if and only if L(A× Bp) = ∅

34

The complexity of ∀<2,SE
string

We have that ∀=1,SE
string = ∀<2,SE

string ∩ ∀
>0,SE
string

Proposition

∀<2,SE
string is in Ptime

Proof idea: Assume given a DFA A and selector expression p.

Construct an NFA Bp accepting every string s such that |p(s)| ≥ 2

Verify whether L(A× Bp) = ∅

I (A, p) ∈ ∀<2,SE
string if and only if L(A× Bp) = ∅

34

The complexity of ∀>0,SE
string : A more difficult problem

Proposition

∀>0,SE
string is Pspace-complete

35

The complexity of ∀=k ,SE
string : A more surprising result

We have that ∀=1,SE
string = ∀<2,SE

string ∩ ∀
>0,SE
string

I We conclude that ∀=1,SE
string is in Pspace

But a lot more can be proved:

Theorem

∀=1,SE
string is in Ptime

36

The complexity of ∀=k ,SE
string : A more surprising result

We have that ∀=1,SE
string = ∀<2,SE

string ∩ ∀
>0,SE
string

I We conclude that ∀=1,SE
string is in Pspace

But a lot more can be proved:

Theorem

∀=1,SE
string is in Ptime

36

∀=1,SE
string is in Ptime: Proof idea

Assume given a DFA A and selector expression p.

The following polynomial-time algorithm verifies whether
(A, p) ∈ ∀=1,SE

string :

1. Check whether (A, p) ∈ ∀<2,SE
string . If this condition holds, then go to

step 2. Otherwise return no.

2. Construct an NFA Cp such that:

I s ∈ L(Cp) iff |p(s)| ≥ 1

I the number of accepting runs of Cp on s is equal to |p(s)|

3. Compute A× Cp

37

∀=1,SE
string is in Ptime: Proof idea (cont’d)

4. Check whether L(A) ⊆ L(A× Cp). If this condition holds, then
return yes, otherwise return no

I This is equivalent to verifying whether L(A) ⊆ L(Cp)

Key observations:

I Containment problem for unambiguous finite automata (UFAs)
can be solved in polynomial time [SH85].

I An NFA D is unambiguous if for every s ∈ L(D), there is only
one accepting run of D on s

I A and A× Cp are UFAs

I Given that A is a DFA, (A, p) ∈ ∀<2,SE
string and the number of

accepting runs of Cp on a string s is equal to |p(s)|

38

∀=1,SE
string is in Ptime: Proof idea (cont’d)

4. Check whether L(A) ⊆ L(A× Cp). If this condition holds, then
return yes, otherwise return no

I This is equivalent to verifying whether L(A) ⊆ L(Cp)

Key observations:

I Containment problem for unambiguous finite automata (UFAs)
can be solved in polynomial time [SH85].

I An NFA D is unambiguous if for every s ∈ L(D), there is only
one accepting run of D on s

I A and A× Cp are UFAs

I Given that A is a DFA, (A, p) ∈ ∀<2,SE
string and the number of

accepting runs of Cp on a string s is equal to |p(s)|

38

String case: Summary of results

P ∀>k,P
string ∀<k,P

string ∀=k,P
string (k ≥ 1)

RE Pspace-complete in Ptime Pspace-complete
DSE Pspace-complete in Ptime coNP-complete
SE Pspace-complete in Ptime in Ptime
SE∗ in Ptime in Ptime in Ptime

SE// in Ptime in Ptime in Ptime

Notation:

RE : regular expressions
SE∗: selector expressions not using ∗
SE//: selector expressions not using //

39

Tree case: Summary of results

P ∀>k,P
tree ∀<k,P

tree ∀=k,P
tree (k ≥ 1)

RE Exptime-complete in Ptime
in Exptime
Pspace-hard

DSE Exptime-complete in Ptime
in Exptime
coNP-hard

SE Exptime-complete in Ptime in Ptime
SE∗ in Exptime in Ptime in Ptime

SE// in Ptime in Ptime in Ptime

40

The consistency problem: Main results

Theorem
I Consistency(SE) is in Ptime

I Consistency(DSE) is coNP-hard and in Exptime

41

Outline

I A bit of notation: XML trees and XSDs

I XSD keys: Formal definition

I XSD key mining problem: Formal definition

I The consistency problem: Complexity

I An XSD key mining algorithm

I Experimental evaluation: A few words

I Take-home message

42

An XSD key mining algorithm

Input: XSD X , a tree t conforming to X and a threshold N

Algorithm:

for all c ∈ ContextMinert,X do
for all τ ∈ TargetPathMinert,X ,N(c) do

S := OneKeyPathMinert,X (c , τ)
P := MinimalKeyPathSetMinert,X (c , τ, S)
for each P ∈ P return (c , τ,P)

Restrictions:

I We focus on selector expressions (we disregard the union operator)

I We consider target and key paths up to a given length kmax (which
can be at most the depth of t)

43

An XSD key mining algorithm

Input: XSD X , a tree t conforming to X and a threshold N

Algorithm:

for all c ∈ ContextMinert,X do
for all τ ∈ TargetPathMinert,X ,N(c) do

S := OneKeyPathMinert,X (c , τ)
P := MinimalKeyPathSetMinert,X (c , τ, S)
for each P ∈ P return (c , τ,P)

Restrictions:

I We focus on selector expressions (we disregard the union operator)

I We consider target and key paths up to a given length kmax (which
can be at most the depth of t)

43

ContextMinert,X

It returns a list of possible contexts based on X and t.

Prefix tree PT(t) is used in this procedure: Obtained by collapsing all
nodes with the same ancestor string.

db

(q1, 1)

country

(q2, 2)

name

(q3, 2)

region

(q4, 5)

name

(q5, 5)

city

. . .

44

TargetPathMinert,X ,N(c)

Given a context node c , it returns a list of target paths with
support greater than N in t.

I It follows a framework of levelwise search [MT97]

Consider the following partial order on selector expressions:

τ1 � τ2 iff for every tree t: τ2(t) ⊆ τ1(t)

If τ1 � τ2, then τ2 is more specific than τ1

45

Deciding �

Consider the following “one-step specialization relation” on selector
expressions:

I τ ≺1 τ
′ if τ ′ is obtained from τ by one of the following operations:

I if τ starts with the descendant axis, replace it by the child axis

I if τ starts with the descendant axis, insert a wildcard step right
after it

I replacing a wildcard with an element name

We can decide whether τ � τ ′ by using relation ≺1:

Proposition

� is equal to the reflexive and transitive closure of ≺1.

46

Deciding �

Consider the following “one-step specialization relation” on selector
expressions:

I τ ≺1 τ
′ if τ ′ is obtained from τ by one of the following operations:

I if τ starts with the descendant axis, replace it by the child axis

I if τ starts with the descendant axis, insert a wildcard step right
after it

I replacing a wildcard with an element name

We can decide whether τ � τ ′ by using relation ≺1:

Proposition

� is equal to the reflexive and transitive closure of ≺1.

46

TargetPathMinert,X ,N(c) (cont’d)

Let U be the set of all selector expressions of length at most kmax.

TargetPathMinert,X ,N(c) uses partial order �:

C0 := {.//∗}
i := 0
while Ci 6= ∅ do

Fi := {τ ∈ Ci | supp(c , τ, t) > N}
Ci+1 := {τ ∈ U | ∀τ ′ ∈ U : τ ′ ≺ τ ⇒ τ ′ ∈

⋃
j≤i Fj} \

⋃
j≤i Cj

i := i + 1
return

⋃
j≤i Fj

Some remarks:

I Prefix tree PT(t) is used when checking supp(c, τ, t) > N

I For more specific results:
⋃

j≤i Fj is replaced by Fi

I A more efficient implementation uses ≺1 instead of �

47

TargetPathMinert,X ,N(c) (cont’d)

Let U be the set of all selector expressions of length at most kmax.

TargetPathMinert,X ,N(c) uses partial order �:

C0 := {.//∗}
i := 0
while Ci 6= ∅ do

Fi := {τ ∈ Ci | supp(c , τ, t) > N}
Ci+1 := {τ ∈ U | ∀τ ′ ∈ U : τ ′ ≺ τ ⇒ τ ′ ∈

⋃
j≤i Fj} \

⋃
j≤i Cj

i := i + 1
return

⋃
j≤i Fj

Some remarks:

I Prefix tree PT(t) is used when checking supp(c , τ, t) > N

I For more specific results:
⋃

j≤i Fj is replaced by Fi

I A more efficient implementation uses ≺1 instead of �

47

TargetPathMinert,X ,N(c) (cont’d)

Let U be the set of all selector expressions of length at most kmax.

TargetPathMinert,X ,N(c) uses partial order �:

C0 := {.//∗}
i := 0
while Ci 6= ∅ do

Fi := {τ ∈ Ci | supp(c , τ, t) > N}
Ci+1 := {τ ∈ U | ∀τ ′ ∈ U : τ ′ ≺ τ ⇒ τ ′ ∈

⋃
j≤i Fj} \

⋃
j≤i Cj

i := i + 1
return

⋃
j≤i Fj

Some remarks:

I Prefix tree PT(t) is used when checking supp(c , τ, t) > N

I For more specific results:
⋃

j≤i Fj is replaced by Fi

I A more efficient implementation uses ≺1 instead of �

47

TargetPathMinert,X ,N(c) (cont’d)

Let U be the set of all selector expressions of length at most kmax.

TargetPathMinert,X ,N(c) uses partial order �:

C0 := {.//∗}
i := 0
while Ci 6= ∅ do

Fi := {τ ∈ Ci | supp(c , τ, t) > N}
Ci+1 := {τ ∈ U | ∀τ ′ ∈ U : τ ′ ≺ τ ⇒ τ ′ ∈

⋃
j≤i Fj} \

⋃
j≤i Cj

i := i + 1
return

⋃
j≤i Fj

Some remarks:

I Prefix tree PT(t) is used when checking supp(c , τ, t) > N

I For more specific results:
⋃

j≤i Fj is replaced by Fi

I A more efficient implementation uses ≺1 instead of �

47

TargetPathMinert,X ,N(c) (cont’d)

Let U be the set of all selector expressions of length at most kmax.

TargetPathMinert,X ,N(c) uses partial order �:

C0 := {.//∗}
i := 0
while Ci 6= ∅ do

Fi := {τ ∈ Ci | supp(c , τ, t) > N}
Ci+1 := {τ ∈ U | ∀τ ′ ∈ U : τ ′ ≺ τ ⇒ τ ′ ∈

⋃
j≤i Fj} \

⋃
j≤i Cj

i := i + 1
return

⋃
j≤i Fj

Some remarks:

I Prefix tree PT(t) is used when checking supp(c , τ, t) > N

I For more specific results:
⋃

j≤i Fj is replaced by Fi

I A more efficient implementation uses ≺1 instead of �

47

OneKeyPathMinert,X (c , τ)

It returns the set of all key paths p of length at most kmax for
which (c , τ, (p)) is consistent with X

It uses the consistency algorithm presented in the previous slides.

I To reduce the number of consistency tests, it only considers
the candidates p for which (c , τ, (p)) qualifies in t

48

MinimalKeyPathSetMinert,X (c , τ, S)

It returns a set P of minimal subsets P of S for which
t |= (c , τ,P)

I We capitalize on existing relational techniques for mining
functional dependencies

Assume that S = {p1, . . . , pk}, and let R be a relation such that:

I The schema of R is (CID,TID, p1 . . . , pk)

I (v , u, a1, . . . , ak) ∈ R iff v ∈ CNodest(c), u ∈ τ(t, v) and
recordS(t, u) = [a1, . . . , ak]

49

MinimalKeyPathSetMinert,X (c , τ, S) (cont’d)

For every P = {pi1 , . . . , pin}, with 1 ≤ i1 < · · · < in ≤ k , we have
that:

t |= (c , τ, (pi1 , . . . , pin))
iff

CID, pi1 , . . . , pin → TID holds in R

Thus, we can now plug in any existing functional dependency
discovery algorithm.

50

Outline

I A bit of notation: XML trees and XSDs

I XSD keys: Formal definition

I XSD key mining problem: Formal definition

I The consistency problem: Complexity

I An XSD key mining algorithm

I Experimental evaluation: A few words

I Take-home message

51

Experimental evaluation: Setting

We use a corpus of 90 XML trees and associated XSDs from the
University of Amsterdam XML Web Collection.

I Maximal and average number of elements occurring in trees is 91K
and 5K, respectively

I Maximal and average number of elements occurring in XSDs is 532
and 52, respectively

We search for keys with target path length at most 4 and key path length
at most 2.

52

Experimental evaluation: A few words

I In ContextMinert,X , the use of prefix trees allows to reduce the
number of contexts: 52% do not need to be considered

I In TargetPathMinert,X ,N(c), the framework of levelwise search
allows a significant reduction in the number of target paths
considered:

possible TPs 2.4× 1011

candidate TPs 6.7× 106

supported TPs 8.4× 104

53

Experimental evaluation: A few words (cont’d)

I In OneKeyPathMinert,X (c , τ), start by checking consistency on
trees allows a significant reduction on the number of expensive
consistency tests:

candidate KPs 48144
consistent KPs on tree 484
consistent KPs on XSD 288

I Resulting keys from MinimalKeyPathSetMinert,X (c , τ, S):

consistency test no yes
support 10 100 10 100

derived keys 107 54 43 16
trees with keys 27 15 19 10
average nr. of keys per tree 4 3.6 2.2 1.6
max nr. of keys per tree 23 23 9 4

54

Outline

I A bit of notation: XML trees and XSDs

I XSD keys: Formal definition

I XSD key mining problem: Formal definition

I The consistency problem: Complexity

I An XSD key mining algorithm

I Experimental evaluation: A few words

I Take-home message

55

Take-home message

I We consider the problem of discovering XSD keys from a
given XML tree that conforms to a given XSD.

I We consider the semantics for XSD keys proposed by the
W3C, and we incorporate in our discovering algorithm some
quality criteria like consistency, which was shown to be
decidable in polynomial time.

56

Thank you!

57

Bibliography

[MT97] H. Mannila, H. Toivonen: Levelwise Search and Borders of Theories
in Knowledge Discovery. Data Min. Knowl. Discov. 1(3): 241–
258, 1997

[S90] H. Seidl: Deciding Equivalence of Finite Tree Automata. SIAM J.
Comput. 19(3):424–437, 1990

[SH85] R. E. Stearns, H. B. Hunt III: On the Equivalence and Containment
Problems for Unambiguous Regular Expressions, Regular Grammars
and Finite Automata. SIAM J. Comput. 14(3):598–611, 1985

58

Backup slides

59

The complexity of ∀>0,SE
string : A more difficult problem

We show how to reduce CNF-SAT to ∀>0,SE
string .

Let ϕ be a propositional formula in CNF.

I We define a DFA A and a selector expression p such that ϕ is
not satisfiable if and only if (A, p) ∈ ∀>0,SE

string

Assume that ϕ = C1 ∧C2 ∧ · · · ∧Cm and that ϕ mentions variables
x1, . . ., xn.

I For each xi : strings 01, 10 are used to encode values false and
true, respectively

60

The complexity of ∀>0,SE
string : A more difficult problem

(cont’d)

A string w is accepted by A iff w = s1#s2# · · ·#sm, where

I si is a string of length 2n representing a satisfying assignment
for clause Ci

Example

If ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3 ∨ ¬x4), then the following
strings are accepted by A:

10010101#10010101
01011001#10100101

61

The complexity of ∀>0,SE
string : A more difficult problem

Assignments si , sj (i 6= j) can be inconsistent.

I Inconsistent bits will be at distance 2n. In particular, one will
find a 0 followed by 2n symbols, and then followed by a 1

Thus, we consider the following selector expression:

p = .//0 / ∗ / · · · / ∗ /︸ ︷︷ ︸
2n times

1

62

The complexity of ∀=k ,SE
string : The general case

Theorem

∀=k,SE
string is in Ptime (for every k ≥ 0)

Proof idea: ∀=0,SE
string = ∀<1,SE

string , so let’s consider the case k ≥ 1

Polynomial-time algorithm to verify whether (A, p) ∈ ∀=k,SE
string :

1. Check whether (A, p) ∈ ∀<k+1,SE
string . If this condition holds, then go

to step 2. Otherwise return no.

2. Construct an NFA Bk
p such that:

I s ∈ L(Bk
p) iff |p(s)| ≥ k

I if s ∈ L(Bk
p), then the number of accepting runs of Bk

p on s is

|p(s)|!
(|p(s)| − k)!

63

The complexity of ∀=k ,SE
string : The general case

Theorem

∀=k,SE
string is in Ptime (for every k ≥ 0)

Proof idea: ∀=0,SE
string = ∀<1,SE

string , so let’s consider the case k ≥ 1

Polynomial-time algorithm to verify whether (A, p) ∈ ∀=k,SE
string :

1. Check whether (A, p) ∈ ∀<k+1,SE
string . If this condition holds, then go

to step 2. Otherwise return no.

2. Construct an NFA Bk
p such that:

I s ∈ L(Bk
p) iff |p(s)| ≥ k

I if s ∈ L(Bk
p), then the number of accepting runs of Bk

p on s is

|p(s)|!
(|p(s)| − k)!

63

The complexity of ∀=k ,SE
string : The general case (cont’d)

3. Compute A× Bk
p

4. Check whether L(A) ⊆ L(A× Bk
p). If this condition holds, then

return yes, otherwise return no

Key observations:

I Containment problem for c-unambiguous finite automata
(c-UFAs) can be solved in polynomial time [SH85].

I A× Bp is a k!-UFA:

I If (A, p) ∈ ∀<k+1,SE
string and s ∈ L(A× Bk

p), then |p(s)| = k and

the number of accepting runs of A× Bk
p on s is bounded by:

|p(s)|!
(|p(s)| − k)!

=
k!

(k − k)!
= k!

64

A polynomial-time algorithm for ∀=1,SE
tree : Binary representations

Tree t:

db

country country country

Binary representation fcns(t) of t:

db

country #

country

country

#

65

Binary representations: Main results

We use binary top-down tree automata (BTA) to process binary trees.

I There exists a deterministic BTA A# such that for every binary tree
t ′: t ′ ∈ L(A#) iff there exists a tree t for which t ′ = fcns(t)

The following problems can be solved in polynomial-time:

I Given an XSD X , construct a deterministic BTA AX such that for
every tree t: fcns(t) ∈ L(AX) if and only if t ∈ L(X)

I Given a selector expression p, construct a BTA Bp such that for
every tree t:

I fcns(t) ∈ L(Bp) if and only if |p(t)| ≥ 1

I the number of accepting runs of Bp on fcns(t) is equal to |p(t)|

66

A polynomial-time algorithm for ∀=1,SE
tree : Putting all together

Assume given an XSD X and selector expression p.

The following polynomial-time algorithm verifies whether
(X , p) ∈ ∀=1,SE

tree :

1. Check whether (X , p) ∈ ∀<2,SE
tree . If this condition holds, then go to

step 2. Otherwise return no.

2. Construct a BTA Bp such that for every tree t:

I fcns(t) ∈ L(Bp) iff |p(t)| ≥ 1

I the number of accepting runs of Bp on fcns(t) is equal to |p(t)|

3. Compute A# × AX and A# × AX × Bp

67

A polynomial-time algorithm for ∀=1,SE
tree : Putting all together

4. Check whether L(A# × AX) ⊆ L(A# × AX × Bp). If this condition
holds, then return yes, otherwise return no

Key observations:

I Containment problem for unambiguous BTAs can be solved in
polynomial time [S90].

I A# × AX and A# × AX × Bp are unambiguous BTAs

I Given that A#, AX are deterministic, (X , p) ∈ ∀<2,SE
string and the

number of accepting runs of Bp on a tree t′ = fcns(t) is equal
to |p(t)|

68

