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†Universidad de Chile

Santiago, January 2015

1



RDF + SPARQL

MOTIVATION

2



Relational Semantic Web

Tables

SQL

3



Relational Semantic Web

Tables RDF Graphs

SQL

3



Relational Semantic Web

Tables RDF Graphs

SQL SPARQL

3



Relational Semantic Web

Tables RDF Graphs

SQL SPARQL

Closed Data

(inside an organization)

3



Relational Semantic Web

Tables RDF Graphs

SQL SPARQL

Closed Data Open Data

(inside an organization) (available on the Web)

3



Demo: Can you answer these questions?

4



Demo: Can you answer these questions?

People in Wikipedia that has “University of Chile” as alma mater?

4



Demo: Can you answer these questions?

People in Wikipedia that has “University of Chile” as alma mater?

Who is the oldest person appearing in Wikipedia
that was born in Chile?

4



Demo: Can you answer these questions?

People in Wikipedia that has “University of Chile” as alma mater?

Who is the oldest person appearing in Wikipedia
that was born in Chile?

What is the rainiest place during February?
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Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific Goals:

◮ Build a description language with standard semantics

◮ Make semantics machine-processable and understandable

◮ Incorporate logical infrastructure to reason about resources

◮ W3C Proposal: Resource Description Framework (RDF)
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RDF in a nutshell

◮ RDF is the W3C proposal framework for representing
information in the Web

◮ Abstract syntax based on directed labeled graph

◮ Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties)

◮ Extensible URI-based vocabulary

◮ Formal semantics
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RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

8



RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

8



RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph
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An example of an RDF graph: DBLP

inPods:FaginLN01 :Moni Naor

:Amnon Lotem

:Ronald Fagin

inPods:2001

"Optimal Aggregation ..."

dc:creator
dc:creator

dc:
cre

ato
r

dct:PartOf

dc:title
swrc:series

conf:pods

<http://purl.org/dc/terms/>

: <http://dblp.l3s.de/d2r/resource/authors/>

conf: <http://dblp.l3s.de/d2r/resource/conferences/>

inPods: <http://dblp.l3s.de/d2r/resource/publications/conf/pods/>

swrc: <http://swrc.ontoware.org/ontology#>

dc:

dct:

<http://purl.org/dc/elements/1.1/>
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An example of a URI

http://dblp.l3s.de/d2r/resource/conferences/pods
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URI can be used for any abstract resource

http://dblp.l3s.de/d2r/page/authors/Ronald Fagin
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RDF: Another example

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain:b

address
lives in
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Some peculiarities of the RDF data model

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels
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Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Spain:b

lives in

country

address
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RDF + RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

plus semantics for this vocabulary
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RDFS: Messi is a Person

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain
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Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G
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Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

The closure of an RDFS graph G (cl(G )) is the graph obtained by
adding to G all the triples that are implied by G .

A basic property of the closure:

◮ G implies t iff t ∈ cl(G )
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Example: (Messi, rdf:type, person) over the closure

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

rdf:type

rdf:sc

rdf:type

Spain

lives in
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Does the blank node add some information?

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain:b

address
lives in
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What about now?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain:b

lives in
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SPARQL
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Querying RDF: SPARQL

◮ SPARQL is the W3C recommendation query language for
RDF (January 2008).

◮ SPARQL is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language

◮ SPARQL is a graph-matching query language.

◮ A SPARQL query consists of three parts:

◮ Pattern matching: optional, union, filtering, . . .
◮ Solution modifiers: projection, distinct, order, limit, offset, . . .
◮ Output part: construction of new triples, . . ..
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SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC
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SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

A SPARQL query consists of a:

Head: Processing of the variables

Body: Pattern matching expression
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SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC, and their Web
pages if this information is available:

SELECT ?Author ?WebPage

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

OPTIONAL {

?Author foaf:homePage ?WebPage . }

}
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But things can become more complex...

Interesting features of pattern
matching on graphs

SELECT ?X1 ?X2 ...

{ P1 .

P2 }
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matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting
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◮ + several new features in the
new version (March 2013):
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But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

◮ ...

◮ + several new features in the
new version (March 2013):
navigation, entailment regimes,
federation, . . .

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER ( R ) }}

What is the (formal) meaning of a general SPARQL query?
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SPARQL: An algebraic syntax

V : set of variables

Each variable is assumed to start with ?
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SPARQL: An algebraic syntax

V : set of variables

Each variable is assumed to start with ?

Triple pattern: t ∈ (U ∪ V )× (U ∪ V )× (U ∪ L ∪ V )
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SPARQL: An algebraic syntax

V : set of variables

Each variable is assumed to start with ?

Triple pattern: t ∈ (U ∪ V )× (U ∪ V )× (U ∪ L ∪ V )

Examples: (?X , name, john), (?X , name, ?Y )

Basic graph pattern (bgp): Finite set of triple patterns

Examples: {(?X , knows, ?Y ), (?Y , name, john)}
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SPARQL: An algebraic syntax (cont’d)

Recursive definition of SPARQL graph patterns:

◮ Every basic graph pattern is a graph pattern

◮ If P1, P2 are graph patterns, then (P1 AND P2), (P1 OPT P2),
(P1 UNION P2) are graph pattern

◮ If P is a graph pattern and R is a built-in condition, then
(P FILTER R) is a graph pattern

SPARQL query:

◮ If P is a graph pattern and W is a finite set of variables, then
(SELECT W P) is a SPARQL query

27



Standard versus algebraic notation

?X :name "john" (?X , name, john)
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Standard versus algebraic notation

?X :name "john" (?X , name, john)

{ P1 . P2 } (P1 AND P2 )

{ P1 OPTIONAL { P2 }} (P1 OPT P2 )

{ P1 } UNION { P2 } (P1 UNION P2 )

{ P1 FILTER ( R ) } (P1 FILTER R )

SELECT W WHERE { P } ( SELECT W P )
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Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)
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Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Z → john}
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Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Z → john}

t = (?X , name, ?Z )
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Mappings: building block for the semantics

Definition

A mapping is a partial function:

µ : V −→ (U ∪ L ∪ B)

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Z → john}

t = (?X , name, ?Z )

µ(t) = (R1, name, john)

29



The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G , denoted by
JtKG , is the set of all mappings µ such that:
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The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G , denoted by
JtKG , is the set of all mappings µ such that:

◮ dom(µ) is exactly the set of variables occurring in t

◮ µ(t) ∈ G
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Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG
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Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG
{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}
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Example

G
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Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG
{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

J(?X , email, ?E )KG
{

µ = {?X → R1, ?E → J@ed.ex}
}
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Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

?X ?N
µ1 R1 john
µ2 R2 paul

J(?X , email, ?E )KG

?X ?E
µ R1 J@ed.ex
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Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W )KG

J(R2, name, paul)KG

J(R3, name, ringo)KG
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Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W )KG
{ }

J(R2, name, paul)KG

J(R3, name, ringo)KG
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Example

G
(R1, name, john)
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Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W )KG
{ }

J(R2, name, paul)KG
{

µ∅ = { }
}

J(R3, name, ringo)KG
{ }
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Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

◮ var(P): set of variables mentioned in P
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◮ var(P): set of variables mentioned in P
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µ(P) = {µ(t) | t ∈ P}
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Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

◮ var(P): set of variables mentioned in P

Given a mapping µ such that var(P) ⊆ dom(µ):

µ(P) = {µ(t) | t ∈ P}

Definition

The evaluation of P over an RDF graph G , denoted by JPKG , is
the set of mappings µ:

◮ dom(µ) = var(P)

◮ µ(P) ⊆ G
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Semantics of basic graph patterns: An example

graph bgp evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

{(?X , name, ?Y ),
(?X , email, ?Z )}
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Semantics of basic graph patterns: An example
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(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

{(?X , name, ?Y ),
(?X , email, ?Z )}

?X ?Y ?Z
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Semantics of basic graph patterns: An example

graph bgp evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

{(?X , name, ?Y ),
(?X , email, ?Z )}

?X ?Y ?Z
µ: R1 john J@ed.ex

Notation
t is used to represent {t}

34



Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X ) = µ2(?X )
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µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

35



Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X ) = µ2(?X )

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

35



Compatible mappings: mappings that can be merged

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X ) = µ2(?X )

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

◮ µ2 and µ3 are not compatible
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Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings:

Definition

Join: Ω1 Ω2

◮ {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1, µ2 are compatibles}

◮ extending mappings in Ω1 with compatible mappings in Ω2

will be used to define AND
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Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings:

Definition

Join: Ω1 Ω2

◮ {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1, µ2 are compatibles}

◮ extending mappings in Ω1 with compatible mappings in Ω2

will be used to define AND

Definition
Union: Ω1 ∪ Ω2

◮ {µ | µ ∈ Ω1 or µ ∈ Ω2}

◮ mappings in Ω1 plus mappings in Ω2 (the usual union of sets)

will be used to define UNION
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Sets of mappings and operations

Definition
Difference: Ω1 r Ω2

◮ {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatibles}

◮ mappings in Ω1 that cannot be extended with mappings in Ω2
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Sets of mappings and operations

Definition
Difference: Ω1 r Ω2

◮ {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatibles}

◮ mappings in Ω1 that cannot be extended with mappings in Ω2

Definition

Left outer join: Ω1 Ω2 = (Ω1 Ω2) ∪ (Ω1 r Ω2)

◮ extension of mappings in Ω1 with compatible mappings in Ω2

◮ plus the mappings in Ω1 that cannot be extended.

will be used to define OPT
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Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

J(P1 AND P2)KG =

J(P1 UNION P2)KG =

J(P1 OPT P2)KG =

J(SELECT W P)KG =
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Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

J(P1 AND P2)KG = JP1KG JP2KG

J(P1 UNION P2)KG = JP1KG ∪ JP2KG

J(P1 OPT P2)KG = JP1KG JP2KG

J(SELECT W P)KG = {µ|W | µ ∈ JPKG}

38



Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

J(P1 AND P2)KG = JP1KG JP2KG

J(P1 UNION P2)KG = JP1KG ∪ JP2KG

J(P1 OPT P2)KG = JP1KG JP2KG

J(SELECT W P)KG = {µ|W | µ ∈ JPKG}

dom(µ|W ) = dom(µ) ∩W and

µ|W (?X ) = µ(?X ) for every ?X ∈ dom(µ|W )

38



Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E ))KG
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?X ?N
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µ3 R3 ringo
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Example (AND)
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Example (AND)
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?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
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µ5 R3 R@ed.ex
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Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)
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J(?X , name, ?N)KG J(?X , email, ?E )KG

?X ?N
µ1 R1 john
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µ3 R3 ringo

?X ?E
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?X ?N ?E
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µ3 ∪ µ5 R3 ringo R@ed.ex
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Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E ))KG
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Example (OPT)
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J((?X , name, ?N) OPT (?X , email, ?E ))KG
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?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul
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Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E ))KG

J(?X , name, ?N)KG J(?X , email, ?E )KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

40



Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG
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Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

41



Example (UNION)
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J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG
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µ1 R1 J@ed.ex
µ2 R3 R@ed.ex
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Example (UNION)
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?X ?Info
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?X ?Info
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Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

∪
?X ?Info

µ3 R3 www.ringo.com
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Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

∪
?X ?Info

µ3 R3 www.ringo.com

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex
µ3 R3 www.ringo.com

41



Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E )))KG
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Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E )))KG

SELECT{?N , ?E}
?X ?N ?E

µ1 R1 john J@ed.ex
µ2 R3 ringo R@ed.ex
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Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E )))KG

SELECT{?N , ?E}
?X ?N ?E

µ1 R1 john J@ed.ex
µ2 R3 ringo R@ed.ex

?N ?E
µ1|{?N,?E}

john J@ed.ex

µ2|{?N,?E}
ringo R@ed.ex

42



Filter expressions (value constraints)

Filter expression: (P FILTER R)

◮ P is a graph pattern

◮ R is a built-in condition

We consider in R :

◮ equality = among variables and RDF terms

◮ unary predicate bound

◮ boolean combinations (∧, ∨, ¬)
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Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

44



Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X ) = c

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X ) = µ(?Y )

◮ R is bound(?X ) and ?X ∈ dom(µ)

44



Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X ) = c

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X ) = µ(?Y )

◮ R is bound(?X ) and ?X ∈ dom(µ)

◮ usual rules for Boolean connectives

44



Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X ) = c

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X ) = µ(?Y )

◮ R is bound(?X ) and ?X ∈ dom(µ)

◮ usual rules for Boolean connectives

Definition

FILTER : selects mappings that satisfy a condition

J(P FILTER R)KG = {µ ∈ JPKG | µ |= R}

44



Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

45



Example (FILTER)
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(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

45



Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?N = ringo ∨ ?N = paul

45



Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?N = ringo ∨ ?N = paul

?X ?N
µ2 R2 paul
µ3 R3 ringo

45



Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E )) FILTER ¬ bound(?E ))KG
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Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E )) FILTER ¬ bound(?E ))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul
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Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E )) FILTER ¬ bound(?E ))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E )
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Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E )) FILTER ¬ bound(?E ))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E )

?X ?N
µ2 R2 paul
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SPARQL 1.1
(and some research issues)
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SPARQL 1.1

A new version of SPARQL was recently released (March 2013):
SPARQL 1.1

Some new features in SPARQL 1.1:

◮ Entailment regimes for RDFS and OWL

◮ Navigational capabilities: Property paths

◮ An operator (SERVICE) to distribute the execution of a query

Also in this version: Nesting of SELECT expressions, aggregates
and some forms of negation (NOT EXISTS, MINUS)
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To remember: Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).
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To remember: Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

How do we evaluate a query over RDFS data?
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A simple SPARQL query: (Messi, rdf:type, person)

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain
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Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
answering queries over RDF.

◮ For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined as for
first-order logic.

This notion can also be characterized by a set of inference rules.
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An inference system for RDFS

Sub-property :
(A, rdf:sp, B) (B, rdf:sp, C)

(A, rdf:sp, C)

(A, rdf:sp, B) (X , A, Y)
(X , B, Y)

Subclass :
(A, rdf:sc, B) (B, rdf:sc, C)

(A, rdf:sc, C)

(A, rdf:sc, B) (X , rdf:type, A)
(X , rdf:type, B)

Typing :
(A, rdf:dom, B) (X , A, Y)

(X , rdf:type, B)

(A, rdf:range, B) (X , A, Y)
(Y, rdf:type, B)
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Entailment in RDFS

Theorem (H03,MPG09,GHM11)

The previous system of inference rules characterize the notion of
entailment in RDFS (without blank nodes).

Thus, a triple t can be deduced from an RDF graph G (G |= t) iff
t can be deduced from G by applying the inference rules a finite
number of times.
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An entailment regime for RDFS in SPARQL 1.1

Basic graph patterns are evaluated by considering RDFS entailment.

Definition

The evaluation of a bgp P over an RDF graph G , denoted by JPKG , is
the set of mappings µ:

◮ dom(µ) = var(P)

◮ For every t ∈ P : G |= µ(t)
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An entailment regime for RDFS in SPARQL 1.1

Basic graph patterns are evaluated by considering RDFS entailment.

Definition

The evaluation of a bgp P over an RDF graph G , denoted by JPKG , is
the set of mappings µ:

◮ dom(µ) = var(P)

◮ For every t ∈ P : G |= µ(t)

The semantics of AND, UNION, OPT, FILTER and SELECT are defined
as before.

◮ RDFS entailment is only used at the level of bgps
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Example 1: What is the answer to

(?X , rdf:type, person)?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain
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Example 2: What is the answer to

(Messi, rdf:type, person)?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain
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Example 3: What is the answer to

{(Messi, rdf:type, ?Y ), (?Y , rdf:sc, person)}?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain
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Entailment regimes in SPARQL 1.1: Some observations

SPARQL 1.1 can be used to query not only data but also schema
information

◮ For example: (?X , rdf:sc, person)
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Entailment regimes in SPARQL 1.1: Some observations (cont’d)

Web Ontology Language (OWL): A more general ontology
language for the Semantic Web

◮ Users can define their own axioms

For example: every Chilean has a RUT number

59



Entailment regimes in SPARQL 1.1: Some observations (cont’d)

Web Ontology Language (OWL): A more general ontology
language for the Semantic Web

◮ Users can define their own axioms

For example: every Chilean has a RUT number

Basic graph patterns can also be evaluated by considering OWL
entailment.

◮ G |= µ(t) has to be defined according to the semantics of
OWL
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Entailment regimes in SPARQL 1.1: Some observations (cont’d)

◮ What are the consequences of considering entailment only at the level
bgps?

Example

Let G be a graph consisting of (john, rdf:type, student) together with:

(student, rdf:sc, u)
(u, owl:union, l)
(l , rdf:first, undergrad)
(l , rdf:rest, r)
(r , rdf:first, grad)
(r , rdf:rest, rdf:nil)































axiom student ⊑ (undergrad ⊔ grad)
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Entailment regimes in SPARQL 1.1: Some observations (cont’d)

◮ What are the consequences of considering entailment only at the level
bgps?

Example

Let G be a graph consisting of (john, rdf:type, student) together with:

(student, rdf:sc, u)
(u, owl:union, l)
(l , rdf:first, undergrad)
(l , rdf:rest, r)
(r , rdf:first, grad)
(r , rdf:rest, rdf:nil)































axiom student ⊑ (undergrad ⊔ grad)

What should be the answer to

P = ((?X , rdf:type, undergrad) UNION (?X , rdf:type, grad))?
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Entailment regimes in SPARQL 1.1: Some observations (cont’d)

◮ What are the consequences of considering entailment only at the level
bgps?

Example

Let G be a graph consisting of (john, rdf:type, student) together with:

(student, rdf:sc, u)
(u, owl:union, l)
(l , rdf:first, undergrad)
(l , rdf:rest, r)
(r , rdf:first, grad)
(r , rdf:rest, rdf:nil)































axiom student ⊑ (undergrad ⊔ grad)

What should be the answer to

P = ((?X , rdf:type, undergrad) UNION (?X , rdf:type, grad))?

◮ Under the current semantics: JPKG = ∅
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Entailment regimes in SPARQL 1.1: Some observations (cont’d)

It is possible to define a certain-answers semantics for SPARQL 1.1.

◮ Previous example shows that this semantics does not coincide with the
official semantics of SPARQL 1.1
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Entailment regimes in SPARQL 1.1: Some observations (cont’d)

It is possible to define a certain-answers semantics for SPARQL 1.1.

◮ Previous example shows that this semantics does not coincide with the
official semantics of SPARQL 1.1

Open issues

◮ How natural is the semantics of SPARQL 1.1? Is it a good semantics?
Why?

◮ Under which (natural) restrictions these two semantics coincide?
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SPARQL provides limited navigational capabilities

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf
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(SELECT ?X ((?X , friendOf, ?Y ) AND (?Y , name, George)))
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A possible solution: Property paths

URI 2
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A possible solution: Property paths

URI 2
email

paul@puc.cl
name

email

phone

name

friendOf john@utexas.edu

URI 1

Paul
446928888

John

Peter
name

name
George

URI 0

friendOf

URI 3

friendOf

(SELECT ?X ((?X , (friendOf)∗, ?Y ) AND (?Y , name, George)))
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Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

exp := a | exp/exp | exp|exp | exp∗

where a ∈ U
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Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

exp := a | exp/exp | exp|exp | exp∗

where a ∈ U

Other expressions are allowed:

ˆexp : inverse path
!(a1| . . . |an) : a URI which is not one of ai (1 ≤ i ≤ n)
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Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:
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Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

JaKG = {(x , y) | (x , a, y) ∈ G}
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Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

JaKG = {(x , y) | (x , a, y) ∈ G}
Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and

(z , y) ∈ Jexp2KG}
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Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

JaKG = {(x , y) | (x , a, y) ∈ G}
Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and

(z , y) ∈ Jexp2KG}
Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG
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Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

JaKG = {(x , y) | (x , a, y) ∈ G}
Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and

(z , y) ∈ Jexp2KG}
Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Jexp∗KG = {(a, a) | a is a URI in G} ∪ JexpKG ∪
Jexp/expKG ∪ Jexp/exp/expKG ∪ · · ·

65



Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x , exp, y)

◮ exp is a property path

◮ x (resp. y) is either an element from U or a variable
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Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x , exp, y)

◮ exp is a property path

◮ x (resp. y) is either an element from U or a variable

Example

◮ (?X , (friendOf)∗, ?Y ): Verifies whether there exists a path of
friends of arbitrary length from ?X to ?Y

◮ (?X , (rdf:sc)∗, person): Verifies whether the value stored in ?X is
a subclass of person

◮ (?X , (rdf:sp)∗, ?Y ): Verifies whether the value stored in ?X is a
subproperty of the value stored in ?Y
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Semantics of property paths

Evaluation of t = (?X , exp, ?Y ) over an RDF graph G is the set of
mappings µ such that:
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Semantics of property paths

Evaluation of t = (?X , exp, ?Y ) over an RDF graph G is the set of
mappings µ such that:

◮ dom(µ) = {?X , ?Y }

◮ (µ(?X ), µ(?Y )) ∈ JexpKG
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Semantics of property paths

Evaluation of t = (?X , exp, ?Y ) over an RDF graph G is the set of
mappings µ such that:

◮ dom(µ) = {?X , ?Y }

◮ (µ(?X ), µ(?Y )) ∈ JexpKG

Other cases are defined analogously.
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Semantics of property paths

Evaluation of t = (?X , exp, ?Y ) over an RDF graph G is the set of
mappings µ such that:

◮ dom(µ) = {?X , ?Y }

◮ (µ(?X ), µ(?Y )) ∈ JexpKG

Other cases are defined analogously.

Example

◮ ((?X , KLM/(KLM)∗, ?Y ) FILTER ¬(?X =?Y )): It is possible to go from
?X to ?Y by using the airline KLM, where ?X , ?Y are different cities
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SPARQL 1.1: Entailment regimes and property paths

List the pairs a, b of cities such that there is a way to travel from a to b.

rdfs:sp

LondonOxford Madrid Valladolid

British Airwaysthe Airline Renfe

bus service flight service train service

rdfs:sp rdfs:sp rdfs:sp

transportation service

rdfs:sp rdfs:sp
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SPARQL 1.1: Entailment regimes and property paths

List the pairs a, b of cities such that there is a way to travel from a to b.

rdfs:sp

LondonOxford Madrid Valladolid

British Airwaysthe Airline Renfe

bus service flight service train service

rdfs:sp rdfs:sp rdfs:sp

transportation service

rdfs:sp rdfs:sp

In SPARQL 1.1: (?X , transportation service∗, ?Y )

68



Navigational capabilities in SPARQL 1.1: Some observations

Previous query can be expressed in SPARQL 1.1 as the intermediate form of
navigation involves RDFS vocabulary.
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Navigational capabilities in SPARQL 1.1: Some observations

Previous query can be expressed in SPARQL 1.1 as the intermediate form of
navigation involves RDFS vocabulary.

Not expressible: List pairs a, b of persons that are connected through a path of
nodes certified by certifying agency [RK13]:

certified by

Alice Bob

linkedTolinkedTo linkedTo

certified by certified by certified by

certifying agency

certified by certified by
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Navigational capabilities in SPARQL 1.1: Some observations (cont’d)

◮ Some proposals solve the aforementioned issues: nSPARQL [PAG10],

nested monadically defined queries [RK13], triple algebra [LRV13]

◮ RDFS entailment can be handled in these proposals by using

navigational capabilities
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Navigational capabilities in SPARQL 1.1: Some observations (cont’d)

◮ Some proposals solve the aforementioned issues: nSPARQL [PAG10],

nested monadically defined queries [RK13], triple algebra [LRV13]

◮ RDFS entailment can be handled in these proposals by using

navigational capabilities

Open issues

◮ How can OWL entailment be handled in these proposals?

◮ What navigational capabilities should be added to SPARQL 1.1?

◮ There is a need for query languages that can return paths
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RFD graphs can be interconnected

DBpedia

DBLP

inPods:FaginLN01

:Ronald Fagin

dbpedia:Ronald Fagin dbpedia:Oklahoma

yago:ResearchWorker

dc:creator

owl
:sa

meA
s

dbo:birthPlace

rdf:type

rdfs:subClassOf
yago:DatabaseResearchers

<http://dbpedia.org/ontology/>

<http://www.w3.org/2000/01/rdf-schema#>

owl:

rdfs:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>rdf:

<http://dbpedia.org/resource/>dbpedia:

yago: <http://dbpedia.org/class/yago>

: <http://dblp.l3s.de/d2r/resource/authors/>

dbo:

<http://www.w3.org/2002/07/owl#>
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Querying interconnected RDF graphs

Retrieve the authors that have published in PODS and were born
in Oklahoma:

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:PartOf ?Conf .

?Conf swrc:series conf:pods .

SERVICE <http://dbpedia.org/sparql> {

?Person owl:sameAs ?Author .

?Person dbo:birthPlace dbpedia:Oklahoma . }

}
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Federation in SPARQL 1.1

New rule to generate graph patterns:

◮ If P is a graph pattern and c ∈ (U ∪ V ), then (SERVICE c P) is a
graph pattern.
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Federation in SPARQL 1.1

New rule to generate graph patterns:

◮ If P is a graph pattern and c ∈ (U ∪ V ), then (SERVICE c P) is a
graph pattern.

We will define the semantics of this new operator.

◮ This corresponds with the official semantics for (SERVICE c P)
with c ∈ U

◮ (SERVICE ?X P) is allowed in the official specification of SPARQL
1.1, but its semantics is not defined
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Semantics of SERVICE

ep(·): Partial function from U to the set of all RDF graphs

◮ If c ∈ dom(ep), then ep(c) is the RDF graph associated with the
endpoint accessible via c
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Semantics of SERVICE

ep(·): Partial function from U to the set of all RDF graphs

◮ If c ∈ dom(ep), then ep(c) is the RDF graph associated with the
endpoint accessible via c

Definition [BACP13]

The evaluation of P = (SERVICE c P1) over an RDF graph G is defined as:

◮ if c ∈ dom(ep), then JPKG = JP1Kep(c)

◮ if c ∈ U \ dom(ep), then JPKG = {µ∅} (where µ∅ is the mapping with
empty domain)

◮ if c ∈ V , then

JPKG =
⋃

a∈dom(ep)

(

JP1Kep(a) {c → a}

)

,
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Are variables useful in SERVICE queries?

Consider the query:

(?X , service address, ?Y ) AND (SERVICE ?Y (?N, email, ?E ))
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Are variables useful in SERVICE queries?

Consider the query:

(?X , service address, ?Y ) AND (SERVICE ?Y (?N, email, ?E ))

There is a simple strategy to compute the answer to this query.

◮ Can this strategy be generalized?
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How can we evaluate SERVICE queries?

We need some notion of boundedness

◮ A variable ?X is bound in a graph pattern P if for every RDF graph G

and every µ ∈ JPKG , it holds that ?X ∈ dom(µ) and µ(?X ) ∈ U

First attempt: Graph pattern P can be evaluated if for every sub-pattern
(SERVICE ?X P1) of P, it holds that ?X is bound in P

◮ ?Y is bound in
(?X , service address, ?Y ) AND (SERVICE ?Y (?N, email, ?E))
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The first attempt: Too restrictive

Consider the query:

(?X , service description, ?Z ) UNION
(

(?X , service address, ?Y ) AND (SERVICE ?Y (?N , email, ?E ))

)

?Y is not bound in this query, but there is a simple strategy to

evaluate it.
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The first attempt: Not appropriate for nested SERVICE

operators

Consider the query:

(?U1, related with, ?U2) AND
[

SERVICE ?U1

(

(?N , email, ?E ) OPT

(SERVICE ?U2 (?N , phone, ?F ))

)]
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Solving the problems . . .

Notation: T (P) is the parse tree of P, in which every node corresponds to a
sub-pattern of P

Parse tree of (?Y , a, ?Z ) UNION ((?X , b, c) AND (SERVICE ?X (?Y , a, ?Z ))):

(?Y , a, ?Z) UNION ((?X , b, c) AND (SERVICE ?X (?Y , a, ?Z)))

(?Y , a, ?Z) (?X , b, c) AND (SERVICE ?X (?Y , a, ?Z))

(?X , b, c) (SERVICE ?X (?Y , a, ?Z))

(?Y , a, ?Z)
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A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of T (P) with label
(SERVICE ?X P1), it holds that:

◮ there exists a node v of T (P) with label P2 such that v is an ancestor of
u in T (P) and ?X is bound in P2

◮ P1 is service-bound
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A more appropriate notion of boundedness (cont’d)

But we still have a problem:

Proposition (BACP13)

The problem of verifying, given a graph pattern P, whether P is
service-bound is undecidable.

We consider a (syntactic) sufficient condition for
service-boundedness.
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An appropriate notion: Service-safeness

The set of strongly bound variables in P , denoted by SB(P), is
recursively defined as follows:

◮ if P is a bgp, then SB(P) = var(P)

◮ if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

◮ if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2)

◮ if P = (P1 OPT P2), then SB(P) = SB(P1)

◮ if P = (P1 FILTER R), then SB(P) = SB(P1)

◮ if P = (SERVICE c P1), then SB(P) = ∅
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An appropriate notion: Service-safeness (cont’d)

Definition [BACP13]

A graph pattern P is service-safe if for every node u of T (P) with label
(SERVICE ?X P1), it holds that:

◮ there exists a node v of T (P) with label P2 such that v is an ancestor of
u in T (P) and ?X ∈ SB(P2)

◮ P1 is service-safe

If P is service-safe, then there is a strategy to evaluate P without considering
all possible SPARQL endpoints.
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An appropriate notion: Service-safeness (cont’d)

Definition [BACP13]

A graph pattern P is service-safe if for every node u of T (P) with label
(SERVICE ?X P1), it holds that:

◮ there exists a node v of T (P) with label P2 such that v is an ancestor of
u in T (P) and ?X ∈ SB(P2)

◮ P1 is service-safe

If P is service-safe, then there is a strategy to evaluate P without considering
all possible SPARQL endpoints.

Open issue

Is service-safeness the right condition to ensure that a query containing the
SERVICE operator can be executed? Why?
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Take-home message

◮ RDF is the framework proposed by the W3C to represent information in
the Web

◮ SPARQL is the W3C recommendation query language for RDF (January
2008)

◮ SPARLQ 1.1 is the new version of SPARQL (March 2013)

◮ SPARQL 1.1 includes some interesting and useful new features

◮ Entailment regimes for RDFS and OWL, navigational
capabilities and an operator to distribute the execution of a
query

◮ There are some interesting open issues about these features
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Thank you!
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