Querying Semantic Web Data with SPARQL

Marcelo Arenas* and Jorge Pérez ${ }^{\dagger}$
*Pontificia Universidad Católica de Chile
${ }^{\dagger}$ Universidad de Chile

Santiago, January 2015

RDF + SPARQL

 MOTIVATION
Relational

Semantic Web

Tables

SQL

Relational

Semantic Web

Tables
 RDF Graphs

SQL

Relational

Semantic Web

Tables
 RDF Graphs

SQL

SPARQL

Relational

Semantic Web

Tables

SQL

RDF Graphs

SPARQL

Closed Data

(inside an organization)

Relational

Semantic Web

Tables

SQL

Closed Data

(inside an organization)

RDF Graphs

SPARQL

Open Data
(available on the Web)

Demo: Can you answer these questions?

Demo: Can you answer these questions?

People in Wikipedia that has "University of Chile" as alma mater?

Demo: Can you answer these questions?

People in Wikipedia that has "University of Chile" as alma mater?

Who is the oldest person appearing in Wikipedia that was born in Chile?

Demo: Can you answer these questions?

People in Wikipedia that has "University of Chile" as alma mater?

Who is the oldest person appearing in Wikipedia that was born in Chile?

What is the rainiest place during February?

RDF

Semantic Web

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

> [Tim Berners-Lee et al. 2001.]

Specific Goals:

- Build a description language with standard semantics
- Make semantics machine-processable and understandable
- Incorporate logical infrastructure to reason about resources
- W3C Proposal: Resource Description Framework (RDF)

RDF in a nutshell

- RDF is the W3C proposal framework for representing information in the Web
- Abstract syntax based on directed labeled graph
- Schema definition language (RDFS): Define new vocabulary (typing, inheritance of classes and properties)
- Extensible URI-based vocabulary
- Formal semantics

RDF formal model

$$
\begin{aligned}
U & =\text { set of Uris } \\
B & =\text { set of Blank nodes } \\
L & =\text { set of Literals }
\end{aligned}
$$

RDF formal model

$$
\begin{aligned}
U & =\text { set of Uris } \\
B & =\text { set of Blank nodes } \\
L & =\text { set of Literals }
\end{aligned}
$$

$$
(s, p, o) \in(U \cup B) \times U \times(U \cup B \cup L) \text { is called an RDF triple }
$$

RDF formal model

$$
\begin{aligned}
U & =\text { set of Uris } \\
B & =\text { set of Blank nodes } \\
L & =\text { set of Literals }
\end{aligned}
$$

$(s, p, o) \in(U \cup B) \times U \times(U \cup B \cup L)$ is called an RDF triple
A set of RDF triples is called an RDF graph

An example of an RDF graph: DBLP

An example of a URI

http：／／dblp．13s．de／d2r／resource／conferences／pods

PODS｜D2R Server publishing the

＋8皆http：／／dblp．13s．de／d2r／page／conferences／pods
［ $\#$ ：$<=$ Apple（136）V Amazon Yahool News（919） 7

Resource URI：http：／／h

Home I Example Conferences

Property	Value
rdfs：label	PODS（xsd：string）
rdfs：seeAlso	＜http：／／dblp．13s．de／Venues／PODS＞
is swrc：series of	＜http：／／dblp．13s．de／d2r／resource／publications／conf／pods／00＞
is swro：series of	＜http：／／dblp．13s．de／d2r／resource／publications／conf／pods／2001＞
is swrc：series of	＜http：／／dblp．13s．de／d2r／resource／publications／conf／pods／2002
is swro：series of	＜http：／／dblp．13s．de／d2r／resource／publications／conf／pods／2003＞
is swrc：series of	＜http：／／dblp．13s．de／d2r／resource／publications／cont／pods／2004＞
is swro：series of	＜http：／／dblp．13s．de／d2r／resource／publications／conf／pods／2005＞

URI can be used for any abstract resource

http://dblp.13s.de/d2r/page/authors/Ronald_Fagin

Ronald Fagin | D2R Server publishing the
$4>+8$ http://dblp.13s.de/d2r/page/authors/Ronald_Fagin
D : \#\#: $<=$ Apple (136) \geqslant Amazon Yahoo! News (926) *
RoI
Resource URI: http://dblp.l3s

Home I Example Authors

Property	Value
is dc:creator of	http://dblp.13s.de/d2r/resource/publications/conf/aai/FagiHV86
is do:creator of	http://dblp.13s.de/d2r/resource/publications/conf/aai/FaginHMV94
is dc:creator of	http://dblp.13s.de/d2r/resource/publications/conf/aaai/HalpernF90
is dc:creator of	http://dblp.13s.de/d2r/resource/publications/conf/apcom/Fagin09
is dc:creator of	http://dblp.l3s.de/d2r/resource/publications/conf/birthday/FaginHHMPV09
is dc:creator of	http://dblp.13s.de/d2r/resource/publications/conf/caap/Fagin83
is dc:creator of	http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93
is dc:creator of	http://dblp.13s.de/d2r/resource/publications/conf/concur/HalpernF88

RDF: Another example

Some peculiarities of the RDF data model

- Existential variables as datavalues (null values)
- Built-in vocabulary with fixed semantics (RDFS)
- Graph model where nodes may also be edge labels

Previous example: A better representation

Previous example: A better representation

Previous example: A better representation

RDF + RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf (rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range (rdf:range), type (rdf:type).
plus semantics for this vocabulary

RDFS: Messi is a Person

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

- For the case of RDFS, we need to check whether t is implied by G

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

- For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc.

- As for the case of first-order logic

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

- For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc.

- As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

- For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc.

- As for the case of first-order logic

This notion can also be characterized by a set of inference rules.
The closure of an RDFS graph $G(\mathrm{cl}(G))$ is the graph obtained by adding to G all the triples that are implied by G.
A basic property of the closure:

- G implies t iff $t \in \mathrm{cl}(G)$

Example: (Messi, rdf:type, person) over the closure

Does the blank node add some information?

What about now?

SPARQL

Querying RDF: SPARQL

- SPARQL is the W3C recommendation query language for RDF (January 2008).
- SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query Language
- SPARQL is a graph-matching query language.
- A SPARQL query consists of three parts:
- Pattern matching: optional, union, filtering, ...
- Solution modifiers: projection, distinct, order, limit, offset, ...
- Output part: construction of new triples,

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC SELECT ?Author

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC
SELECT ?Author
WHERE
\{
\}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
    ?Paper dc:creator ?Author.
}
```


SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
    ?Paper
    ?Paper
            dc:creator
                    dct:part0f
                                    ?Author .
                                    ?Conf .
}
```


SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
    ?Paper
    ?Paper
    ?Conf
}
```

```
    ?Author .
    dct:partOf ?Conf .
    swrc:series conf:iswc .
```


SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
```

?Paper
?Paper
?Conf \}
dc:creator dct:part0f swrc:series conf:iswc .

A SPARQL query consists of a:

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
    ?Paper
    ?Paper
        dc:creator
        dct:part0f
        ?Author .
    swrc:series conf:iswc .
}
```

A SPARQL query consists of a:
Head: Processing of the variables

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
    ?Paper
    ?Paper
    ?Conf
}
```

```
dc:creator
```

dc:creator
dct:part0f
dct:part0f
swrc:series
swrc:series
?Author
?Author
?Conf .
?Conf .
conf:iswc .

```
conf:iswc .
```

A SPARQL query consists of a:
Head: Processing of the variables
Body: Pattern matching expression

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC, and their Web pages if this information is available:

```
SELECT ?Author ?WebPage
WHERE
{
?Paper dc:creator ?Author .
    ?Paper dct:partOf ?Conf .
    ?Conf swrc:series conf:iswc .
    OPTIONAL {
    ?Author foaf:homePage ?WebPage . }
}
```


SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC, and their Web pages if this information is available:

```
SELECT ?Author ?WebPage
WHERE
{
?Paper dc:creator ?Author .
    ?Paper dct:partOf ?Conf .
    ?Conf swrc:series conf:iswc .
    OPTIONAL {
    ?Author foaf:homePage ?WebPage . }
}
```


But things can become more complex...

Interesting features of pattern
matching on graphs

```
SELECT ?X1 ?X2 ...
    { P1 .
    P2 }
```


But things can become more complex...

Interesting features of pattern matching on graphs

- Grouping

```
SELECT ?X1 ?X2 ...
    {{ P1 .
    P2 }
    { P3 .
    P4 }
    }
```


But things can become more complex...

Interesting features of pattern matching on graphs

- Grouping
- Optional parts

```
SELECT ?X1 ?X2 ...
    {{ P1 .
    P2
    OPTIONAL { P5 } }
    { P3 .
    P4
    OPTIONAL { P7 } }
    }
```


But things can become more complex...

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting

```
SELECT ?X1 ?X2 ...
    {{ P1 .
    P2
    OPTIONAL { P5 } }
    { P3 .
    P4
    OPTIONAL { P7
        OPTIONAL { P8 } } }
}
```


But things can become more complex...

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns

```
SELECT ?X1 ?X2 ...
{{{ P1 .
    P2
    OPTIONAL { P5 } }
    { P3 .
    P4
    OPTIONAL { P7
        OPTIONAL { P8 } } }
}
UNION
{ P9 }}
```


But things can become more complex...

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering

```
SELECT ?X1 ?X2 ...
{{{ P1 .
    P2
    OPTIONAL { P5 } }
    { P3 .
    P4
    OPTIONAL { P7
        OPTIONAL { P8 } } }
}
UNION
{ P9
    FILTER ( R ) }}
```


But things can become more complex...

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering
- ...
- + several new features in the new version (March 2013): navigation, entailment regimes, federation, ...

```
SELECT ?X1 ?X2 ...
{{{ P1 .
    P2
    OPTIONAL { P5 } }
    { P3.
    P4
    OPTIONAL { P7
        OPTIONAL { P8 } } }
    }
UNION
{ P9
    FILTER ( R ) }}
```


But things can become more complex...

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering
- ...
- + several new features in the new version (March 2013): navigation, entailment regimes, federation, ...

```
SELECT ?X1 ?X2 ...
```

SELECT ?X1 ?X2 ...
{{{ P1.
{{{ P1.
P2
P2
OPTIONAL { P5 } }
OPTIONAL { P5 } }
{ P3 .
{ P3 .
P4
P4
OPTIONAL { P7
OPTIONAL { P7
OPTIONAL { P8 } } }
OPTIONAL { P8 } } }
}
}
UNION
UNION
{ P9
{ P9
FILTER (R) }}

```
    FILTER ( R ) }}
```

What is the (formal) meaning of a general SPARQL query?

SPARQL: An algebraic syntax

V : set of variables
Each variable is assumed to start with ?

SPARQL: An algebraic syntax

V : set of variables
Each variable is assumed to start with ?

Triple pattern: $t \in(U \cup V) \times(U \cup V) \times(U \cup L \cup V)$
Examples: (?X, name, john), (?X, name, ?Y)

SPARQL: An algebraic syntax

V : set of variables
Each variable is assumed to start with ?

Triple pattern: $t \in(U \cup V) \times(U \cup V) \times(U \cup L \cup V)$
Examples: (?X, name, john), (?X, name, ?Y)

Basic graph pattern (bgp): Finite set of triple patterns
Examples: $\{(? X$, knows, $? Y),(? Y$, name, john $)\}$

SPARQL: An algebraic syntax (cont'd)

Recursive definition of SPARQL graph patterns:

- Every basic graph pattern is a graph pattern
- If P_{1}, P_{2} are graph patterns, then $\left(P_{1}\right.$ AND $\left.P_{2}\right),\left(P_{1}\right.$ OPT $\left.P_{2}\right)$, (P_{1} UNION P_{2}) are graph pattern
- If P is a graph pattern and R is a built-in condition, then $(P$ FILTER $R)$ is a graph pattern

SPARQL query:

- If P is a graph pattern and W is a finite set of variables, then (SELECT $W P$) is a SPARQL query

Standard versus algebraic notation

?X :name "john"
(?X, name, john)

Standard versus algebraic notation

```
?X :name "john"
```

\{ P1 . P2 \}
(?X, name, john)
(P_{1} AND P_{2})

Standard versus algebraic notation

?X :name "john"
(?X, name, john)
\{ P1. P2 \}
(P_{1} AND P_{2})
\{ P1 OPTIONAL \{ P2 \}\}
$\left(P_{1}\right.$ OPT $\left.P_{2}\right)$

Standard versus algebraic notation

$$
\begin{array}{ll}
\text { ?X :name "john" } & \text { (?X, name, john) } \\
\text { \{ P1 . P2 \} } & \left(P_{1} \text { AND } P_{2}\right) \\
\hline \text { \{ P1 OPTIONAL }\{\text { P2 \}\} } & \left(P_{1} \text { OPT } P_{2}\right) \\
\hline \text { P } 1 \text { \} UNION }\{\text { P2 \} } & \left(P_{1} \text { UNION } P_{2}\right)
\end{array}
$$

Standard versus algebraic notation

```
?X :name "john"
{ P1. P2 }
{ P1 OPTIONAL { P2 }}
{ P1 } UNION { P2 }
{ P1 FILTER ( R ) }
```

(?X, name, john)
(P_{1} AND P_{2})
$\left(P_{1}\right.$ OPT $\left.P_{2}\right)$
(P_{1} UNION P_{2})
(P_{1} FILTER R)

Standard versus algebraic notation

```
?X :name "john"
```

\{ P1. P2 \}
\{ P1 OPTIONAL \{ P2 \}\}
\{ P1 \} UNION \{ P2 \}
\{ P1 FILTER (R) \}
SELECT W WHERE \{ P \}
(?X, name, john)
(P_{1} AND P_{2})
$\left(P_{1}\right.$ OPT $\left.P_{2}\right)$
(P_{1} UNION P_{2})
(P_{1} FILTER R)
(SELECT W P)

Mappings: building block for the semantics

Definition

A mapping is a partial function:

$$
\mu: V \longrightarrow(U \cup L \cup B)
$$

Mappings: building block for the semantics

Definition

A mapping is a partial function:

$$
\mu: V \longrightarrow(U \cup L \cup B)
$$

Given a mapping μ and a triple pattern t :

Mappings: building block for the semantics

Definition

A mapping is a partial function:

$$
\mu: V \longrightarrow(U \cup L \cup B)
$$

Given a mapping μ and a triple pattern t :

- $\mu(t)$: triple obtained from t replacing variables according to μ

Mappings: building block for the semantics

Definition

A mapping is a partial function:

$$
\mu: V \longrightarrow(U \cup L \cup B)
$$

Given a mapping μ and a triple pattern t :

- $\mu(t)$: triple obtained from t replacing variables according to μ

Example

Mappings: building block for the semantics

Definition

A mapping is a partial function:

$$
\mu: V \longrightarrow(U \cup L \cup B)
$$

Given a mapping μ and a triple pattern t :

- $\mu(t)$: triple obtained from t replacing variables according to μ

Example

$$
\mu=\left\{? X \rightarrow R_{1}, ? Y \rightarrow R_{2}, ? Z \rightarrow \text { john }\right\}
$$

Mappings: building block for the semantics

Definition

A mapping is a partial function:

$$
\mu: V \longrightarrow(U \cup L \cup B)
$$

Given a mapping μ and a triple pattern t :

- $\mu(t)$: triple obtained from t replacing variables according to μ

Example

$$
\begin{gathered}
\mu=\left\{? X \rightarrow R_{1}, ? Y \rightarrow R_{2}, ? Z \rightarrow \text { john }\right\} \\
t=(? X, \text { name, ? } Z)
\end{gathered}
$$

Mappings: building block for the semantics

Definition

A mapping is a partial function:

$$
\mu: V \longrightarrow(U \cup L \cup B)
$$

Given a mapping μ and a triple pattern t :

- $\mu(t)$: triple obtained from t replacing variables according to μ

Example

$$
\begin{gathered}
\mu=\left\{? X \rightarrow R_{1}, ? Y \rightarrow R_{2}, ? Z \rightarrow \text { john }\right\} \\
t=(? X, \text { name, ?Z }) \\
\mu(t)=\left(R_{1}, \text { name, john }\right)
\end{gathered}
$$

The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G, denoted by $\llbracket t \rrbracket_{G}$, is the set of all mappings μ such that:

The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G, denoted by $\llbracket t \rrbracket_{G}$, is the set of all mappings μ such that:

- $\operatorname{dom}(\mu)$ is exactly the set of variables occurring in t

The semantics of triple patterns

Definition

The evaluation of triple pattern t over a graph G, denoted by $\llbracket t \rrbracket_{G}$, is the set of all mappings μ such that:

- $\operatorname{dom}(\mu)$ is exactly the set of variables occurring in t
- $\mu(t) \in G$

Example

$$
\begin{gathered}
G \\
\left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right) \\
\left(R_{2}, \text { name, paul }\right) \\
\llbracket(? X, \text { name, ? } N) \rrbracket_{G}
\end{gathered}
$$

Example

$$
\begin{aligned}
& G \\
&\left(R_{1}, \text { name, john }\right) \\
&\left(R_{1}, \text { email, J@ed.ex }\right) \\
&\left(R_{2}, \text { name, paul }\right) \\
& \llbracket(? X, \text { name, ?N }) \rrbracket_{G} \\
&\left\{\begin{array}{l}
\mu_{1}= \\
\mu_{2}= \\
\left.\mu_{2} ? X \rightarrow X \rightarrow R_{1}, ? N \rightarrow \text { john }\right\} \\
\{? N \rightarrow \text { paul }\}
\end{array}\right\}
\end{aligned}
$$

Example

$$
\left.\begin{array}{rl}
& G \\
& \left(R_{1}, \text { name, john }\right) \\
& \left(R_{1}, \text { email, J@ed.ex }\right) \\
& \left(R_{2}, \text { name, paul }\right)
\end{array}\right\} \begin{aligned}
& \llbracket(? X, \text { name, ?N }) \rrbracket_{G} \\
& \left\{\begin{array}{l}
\mu_{1}= \\
\mu_{2}= \\
\left\{? X \rightarrow X \rightarrow R_{1}, ? N \rightarrow \text { john }\right\} \\
\{? X \rightarrow \text { paul }\}
\end{array}\right\} \\
& \\
& \llbracket\left(? X, \text { email, ?E)} \rrbracket_{G}\right.
\end{aligned}
$$

Example

$$
\begin{gathered}
G \\
\left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right) \\
\left(R_{2}, \text { name, paul }\right) \\
\\
\llbracket(? X, \text { name, ?N }) \rrbracket_{G} \\
\left\{\begin{array}{l}
\mu_{1}= \\
\mu_{2}= \\
\left\{? X \rightarrow X \rightarrow R_{1}, ? N \rightarrow \text { john }\right\} \\
\{? N \rightarrow \text { paul }\}
\end{array}\right\} \\
\\
\left\{\left(? X, \text { email, ?E)} \rrbracket_{G}\right.\right. \\
\left\{\mu=\left\{? X \rightarrow R_{1}, ? E \rightarrow \text { J@ed.ex }\right\}\right\}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \text { (} \left.R_{1}, \text { name, john }\right) \\
& \left(R_{1}, \text { email, J@ed.ex }\right) \\
& \left(R_{2}, \text { name, paul }\right) \\
& \llbracket(? X, \text { name, ?N }) \rrbracket_{G} \\
& \begin{array}{|c|c|}
\hline ? X & ? N \\
\hline \mu_{1} \\
\mu_{2} & \text { john } \\
R_{2} & \text { paul } \\
\cline { 2 - 3 }
\end{array} \\
& \llbracket\left(? X, \text { email, ?E) } \rrbracket_{G}\right. \\
& \begin{array}{|l|c|}
\hline ? X & ? E \\
\hline R_{1} & \text { J@ed.ex } \\
\hline
\end{array}
\end{aligned}
$$

Example

$$
\begin{gathered}
G \\
\left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right) \\
\left(R_{2}, \text { name, paul }\right)
\end{gathered}
$$

$\llbracket\left(R_{1}\right.$, webPage,$\left.? W\right) \rrbracket_{G}$
$\llbracket\left(R_{3}\right.$, name, ringo $) \rrbracket_{G}$
$\llbracket\left(R_{2}\right.$, name, paul $) \rrbracket_{G}$

Example

$$
\begin{gathered}
G \\
\left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right) \\
\left(R_{2}, \text { name, paul }\right)
\end{gathered}
$$

$\llbracket\left(R_{1}\right.$, webPage, $\left.? W\right) \rrbracket_{G}$

$$
\}
$$

$\llbracket\left(R_{3}\right.$, name, ringo $) \rrbracket_{G}$
$\llbracket\left(R_{2}\right.$, name, paul $) \rrbracket_{\sigma}$

Example

$$
\begin{gathered}
G \\
\left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right) \\
\left(R_{2}, \text { name, paul }\right)
\end{gathered}
$$

$\llbracket\left(R_{1}\right.$, webPage, $\left.? W\right) \rrbracket_{G}$

$$
\}
$$

$\llbracket\left(R_{3}\right.$, name, ringo $) \rrbracket$
$\llbracket\left(R_{2}\right.$, name, paul $) \rrbracket_{G}$
\{ \}

Example

$$
\begin{gathered}
G \\
\left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right) \\
\left(R_{2}, \text { name, paul }\right)
\end{gathered}
$$

$\llbracket\left(R_{1}\right.$, webPage, $\left.? W\right) \rrbracket_{G}$

$$
\}
$$

$\llbracket\left(R_{3}\right.$, name, ringo $) \rrbracket$
$\llbracket\left(R_{2}\right.$, name, paul $) \rrbracket_{G}$
\{ \}
$\left\{\mu_{\emptyset}=\{ \}\right\}$

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

- $\operatorname{var}(P)$: set of variables mentioned in P

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

- $\operatorname{var}(P)$: set of variables mentioned in P

Given a mapping μ such that $\operatorname{var}(P) \subseteq \operatorname{dom}(\mu)$:

$$
\mu(P)=\{\mu(t) \mid t \in P\}
$$

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

- $\operatorname{var}(P)$: set of variables mentioned in P

Given a mapping μ such that $\operatorname{var}(P) \subseteq \operatorname{dom}(\mu)$:

$$
\mu(P)=\{\mu(t) \mid t \in P\}
$$

Definition

The evaluation of P over an RDF graph G, denoted by $\llbracket P \rrbracket_{G}$, is the set of mappings μ :

- $\operatorname{dom}(\mu)=\operatorname{var}(P)$
- $\mu(P) \subseteq G$

Semantics of basic graph patterns: An example

```
    graph
( }\mp@subsup{R}{1}{},\mathrm{ name, john)
( }\mp@subsup{R}{1}{}\mathrm{ , email, J@ed.ex)
(R2, name, paul)
```

```
bgp
```

bgp
{(?X, name, ?Y),
{(?X, name, ?Y),
(?X, email, ?Z)}
(?X, email, ?Z)}
evaluation

```

\section*{Semantics of basic graph patterns: An example}
graph
( \(R_{1}\), name, john)
( \(R_{1}\), email, J@ed.ex)
( \(R_{2}\), name, paul)
```

bgp
\{(?X, name, ? Y), (?X, email, ?Z)\}

```
```

evaluation

```

\section*{Semantics of basic graph patterns: An example}
```

 graph
 (}\mp@subsup{R}{1}{},\mathrm{ name, john)
(}\mp@subsup{R}{1}{}\mathrm{ , email, J@ed.ex)
(}\mp@subsup{R}{2}{}\mathrm{ , name, paul)

```
```

bgp

```
bgp
{(?X, name, ?Y),
{(?X, name, ?Y),
(?X, email, ?Z)}
(?X, email, ?Z)}
evaluation
```


Semantics of basic graph patterns: An example

$$
\begin{aligned}
& \text { graph } \\
& \left(R_{1}, \text { name, john }\right) \\
& \left(R_{1}, \text { email, J@ed.ex }\right) \\
& \left(R_{2}, \text { name, paul }\right)
\end{aligned}
$$

evaluation
$\{(? X$, name, ?Y), (?X, email, ?Z) $\}$

evaluation		
$\mu:$$? X$ $? Y$ $? Z$ R_{1} john J@ed.ex		

Semantics of basic graph patterns: An example

graph
(R_{1}, name, john)
(R_{1}, email, J@ed.ex)
(R_{2}, name, paul)

bgp
 $\{(? X$, name, ?Y), (?X, email, ?Z)\}

evaluation

$\mu:$| $? X$ | ? Y | $? Z$ |
| :---: | :---: | :---: |
| | R_{1} | john |
| | J@ed.ex | |

Notation

t is used to represent $\{t\}$

Compatible mappings: mappings that can be merged

Definition

Mappings μ_{1} and μ_{2} are compatible if they agree in their common variables:

$$
\text { If } ? X \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right) \text {, then } \mu_{1}(? X)=\mu_{2}(? X)
$$

Compatible mappings: mappings that can be merged

Definition

Mappings μ_{1} and μ_{2} are compatible if they agree in their common variables:

$$
\text { If } ? X \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right) \text {, then } \mu_{1}(? X)=\mu_{2}(? X)
$$

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
	$R_{2}:$	R_{1}	john	
$\mu_{3}:$			J@edu.ex P@edu.ex	R_{2}

Compatible mappings: mappings that can be merged

Definition

Mappings μ_{1} and μ_{2} are compatible if they agree in their common variables:

$$
\text { If } ? X \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right) \text {, then } \mu_{1}(? X)=\mu_{2}(? X)
$$

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
$\mu_{2}:$	R_{1}	john		R_{1}
μ_{3}	$:$		J@edu.ex P@edu.ex	R_{2}

Compatible mappings: mappings that can be merged

Definition

Mappings μ_{1} and μ_{2} are compatible if they agree in their common variables:

$$
\text { If } ? X \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right) \text {, then } \mu_{1}(? X)=\mu_{2}(? X)
$$

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
$\mu_{2}:$				
$\mu_{3}:$	R_{1}	john		
R_{1}		J@edu.ex P@edu.ex	R_{2}	
$\mu_{1} \cup \mu_{2}:$		R_{1}	john	J@edu.ex

Compatible mappings: mappings that can be merged

Definition

Mappings μ_{1} and μ_{2} are compatible if they agree in their common variables:

$$
\text { If } ? X \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right) \text {, then } \mu_{1}(? X)=\mu_{2}(? X)
$$

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
$\mu_{2}:$	R_{1}	john		
μ_{1}			J@edu.ex P@edu.ex	R_{2}
$\mu_{1} \cup \mu_{2}:$		R_{1}	john	J@edu.ex

Compatible mappings: mappings that can be merged

Definition

Mappings μ_{1} and μ_{2} are compatible if they agree in their common variables:

$$
\text { If } ? X \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right) \text {, then } \mu_{1}(? X)=\mu_{2}(? X)
$$

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
$\mu_{2}:$	R_{1}	john		
$\mu_{1}:$		J@edu.ex P@edu.ex	R_{2}	
$\mu_{1} \cup \mu_{2}:$				
$\mu_{1} \cup \mu_{3}:$			R_{1}	john
R_{1}	J@edu.ex			
john	P@edu.ex	R_{2}		

Compatible mappings: mappings that can be merged

Definition

Mappings μ_{1} and μ_{2} are compatible if they agree in their common variables:

$$
\text { If } ? X \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right) \text {, then } \mu_{1}(? X)=\mu_{2}(? X)
$$

Example

$\mu_{1}:$	$? X$	$? Y$	$? Z$	$? V$
$\mu_{2}:$	R_{1}	john		
$\mu_{3}:$		J@edu.ex P@edu.ex	R_{2}	
$\mu_{1} \cup \mu_{2}:$				
$\mu_{1} \cup \mu_{3}:$				
	R_{1}	john	J@edu.ex	
R_{1}	john	P@edu.ex	R_{2}	

- μ_{2} and μ_{3} are not compatible

Sets of mappings and operations

Let Ω_{1} and Ω_{2} be sets of mappings:

Definition

Join: $\Omega_{1} \bowtie \Omega_{2}$

- $\left\{\mu_{1} \cup \mu_{2} \mid \mu_{1} \in \Omega_{1}, \mu_{2} \in \Omega_{2}\right.$, and μ_{1}, μ_{2} are compatibles $\}$
- extending mappings in Ω_{1} with compatible mappings in Ω_{2}
will be used to define AND

Sets of mappings and operations

Let Ω_{1} and Ω_{2} be sets of mappings:

Definition

Join: $\Omega_{1} \bowtie \Omega_{2}$

- $\left\{\mu_{1} \cup \mu_{2} \mid \mu_{1} \in \Omega_{1}, \mu_{2} \in \Omega_{2}\right.$, and μ_{1}, μ_{2} are compatibles $\}$
- extending mappings in Ω_{1} with compatible mappings in Ω_{2}
will be used to define AND

Definition

Union: $\Omega_{1} \cup \Omega_{2}$

- $\left\{\mu \mid \mu \in \Omega_{1}\right.$ or $\left.\mu \in \Omega_{2}\right\}$
- mappings in Ω_{1} plus mappings in Ω_{2} (the usual union of sets)
will be used to define UNION

Sets of mappings and operations

Definition

Difference: $\Omega_{1} \backslash \Omega_{2}$

- $\left\{\mu \in \Omega_{1} \mid\right.$ for all $\mu^{\prime} \in \Omega_{2}, \mu$ and μ^{\prime} are not compatibles $\}$
- mappings in Ω_{1} that cannot be extended with mappings in Ω_{2}

Sets of mappings and operations

Definition

Difference: $\Omega_{1} \backslash \Omega_{2}$

- $\left\{\mu \in \Omega_{1} \mid\right.$ for all $\mu^{\prime} \in \Omega_{2}, \mu$ and μ^{\prime} are not compatibles $\}$
- mappings in Ω_{1} that cannot be extended with mappings in Ω_{2}

Definition

Left outer join: $\Omega_{1} \bowtie \Omega_{2}=\left(\Omega_{1} \bowtie \Omega_{2}\right) \cup\left(\Omega_{1} \backslash \Omega_{2}\right)$

- extension of mappings in Ω_{1} with compatible mappings in Ω_{2}
- plus the mappings in Ω_{1} that cannot be extended.
will be used to define OPT

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G
Definition
$\llbracket\left(P_{1}\right.$ AND $\left.P_{2}\right) \rrbracket_{G}=$
$\llbracket\left(P_{1}\right.$ UNION $\left.P_{2}\right) \rrbracket G=$
$\llbracket\left(P_{1}\right.$ OPT $\left.P_{2}\right) \rrbracket_{G}=$
$\llbracket(S E L E C T W P) \rrbracket_{G}=$

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G
Definition
$\llbracket\left(P_{1}\right.$ AND $\left.P_{2}\right) \rrbracket_{G} \quad=\llbracket P_{1} \rrbracket_{G} \bowtie \llbracket P_{2} \rrbracket_{G}$
$\llbracket\left(P_{1}\right.$ UNION $\left.P_{2}\right) \rrbracket G=\llbracket P_{1} \rrbracket G \cup \llbracket P_{2} \rrbracket G$
$\llbracket\left(P_{1}\right.$ OPT $\left.P_{2}\right) \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \searrow \llbracket P_{2} \rrbracket_{G}$
$\llbracket(S E L E C T W P) \rrbracket_{G}=\left\{\mu_{\mid W} \mid \mu \in \llbracket P \rrbracket_{G}\right\}$

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition

$\llbracket\left(P_{1}\right.$ AND $\left.P_{2}\right) \rrbracket G \quad=\llbracket P_{1} \rrbracket_{G} \bowtie \llbracket P_{2} \rrbracket_{G}$
$\llbracket\left(P_{1}\right.$ UNION $\left.P_{2}\right) \rrbracket G=\llbracket P_{1} \rrbracket G \cup \llbracket P_{2} \rrbracket G$
$\llbracket\left(P_{1}\right.$ OPT $\left.P_{2}\right) \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \searrow \llbracket P_{2} \rrbracket_{G}$
$\llbracket(S E L E C T W P) \rrbracket_{G}=\left\{\mu_{\mid W} \mid \mu \in \llbracket P \rrbracket_{G}\right\}$

$$
\begin{aligned}
& \operatorname{dom}\left(\mu_{\mid W}\right)=\operatorname{dom}(\mu) \cap W \text { and } \\
& \mu_{\left.\right|_{W}}(? X)=\mu(? X) \text { for every } ? X \in \operatorname{dom}\left(\mu_{\left.\right|_{W}}\right)
\end{aligned}
$$

Example (AND)

$G: \begin{array}{ll}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} \quad\left(R_{2}\right.$, name, paul $) \quad \begin{aligned} & \left(R_{3}, \text { name, ringo }\right) \\ & \\ & \end{aligned}$

$$
\llbracket\left((? X, \text { name, ?N) AND }(? X, \text { email, ?E })) \rrbracket_{G}\right.
$$

Example (AND)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} & \left(R_{2}, \text { name, paul }\right) & \begin{array}{l}\left(R_{3}, \text { name, ringo }\right) \\ \\ \end{array} \\ & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$

$$
\begin{aligned}
& \llbracket\left((? X, \text { name, ?N) AND }(? X, \text { email, ?E })) \rrbracket_{G}\right. \\
& \llbracket\left(? X , \text { name, ?N)} \rrbracket _ { G } \bowtie \llbracket \left(? X, \text { email, ?E)} \rrbracket_{G}\right.\right.
\end{aligned}
$$

Example (AND)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} \quad\left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket\left((? X\right.$, name, ?N) AND $(? X$, email, ?E $)) \rrbracket_{G}$
$\llbracket\left(? X\right.$, name, ?N)$\rrbracket_{G} \bowtie \llbracket\left(? X\right.$, email, ?E)$\rrbracket_{G}$

	$? X$	$? N$
μ_{1}	R_{1}	john
μ_{2}	R_{2}	paul
μ_{3}	R_{3}	ringo

Example (AND)

```
(R2, name, paul) ( }\begin{array}{ll}{\mp@subsup{R}{3}{},\mathrm{ name, ringo) }}\\{}&{(\mp@subsup{R}{3}{},\mathrm{ email, R@ed.ex)}}
( }\mp@subsup{R}{3}{}\mathrm{ , webPage, www.ringo.com)
```

$\llbracket((? X$, name, ?N $)$ AND $(? X$, email, ? $E)) \rrbracket_{G}$
$\llbracket(? X$, name, ? $N) \rrbracket_{G} \bowtie \llbracket(? X$, email, ?E $) \rrbracket_{G}$

	$? X$	$? N$
μ_{1}	R_{1}	john
μ_{2}	R_{2}	paul
μ_{3}	R_{3}	ringo

		$? X$
μ_{4}	$? E$	
	R_{1}	J@ed.ex
	μ_{5}	R_{3}
	R@ed.ex	

Example (AND)

```
(R2, name, paul) ( }\begin{array}{ll}{\mp@subsup{R}{3}{},\mathrm{ name, ringo) }}\\{}&{(\mp@subsup{R}{3}{},\mathrm{ email, R@ed.ex)}}
    ( }\mp@subsup{R}{3}{}\mathrm{ , webPage, www.ringo.com)
```

$\llbracket((? X$, name, ?N $)$ AND $(? X$, email, ? $E)) \rrbracket_{G}$ $\llbracket(? X$, name, ? $N) \rrbracket_{G} \bowtie \llbracket(? X$, email, ?E $) \rrbracket_{G}$

	$? X$	$? N$
μ_{1}	R_{1}	john
μ_{2}	R_{2}	paul
μ_{3}	R_{3}	ringo

	$? X$	$? E$
μ_{4}	R_{1}	J@ed.ex
μ_{5}	R_{3}	R@ed.ex

Example (AND)

```
    ( }\mp@subsup{R}{1}{}\mathrm{ , name, john) ( }\mp@subsup{R}{2}{}\mathrm{ , name, paul) ( }\mp@subsup{R}{3}{}\mathrm{ , name, ringo)
G: (R1, email, J@ed.ex) (R3, email, R@ed.ex)
(R3},\mathrm{ webPage, www.ringo.com)
```

$\llbracket((? X$, name, ?N $)$ AND $(? X$, email, ? $E)) \rrbracket_{G}$
$\llbracket(? X$, name, ? $N) \rrbracket_{G} \bowtie \llbracket(? X$, email, ? $E) \rrbracket_{G}$

	$? X$	$? N$	$? E$
$\mu_{1} \cup \mu_{4}$	R_{1}	john	J@ed.ex
	$\mu_{3} \cup \mu_{5}$	R_{3}	ringo
	R@ed.ex		

Example (OPT)

$G: \begin{array}{ll}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} \quad\left(R_{2}\right.$, name, paul $) \quad \begin{aligned} & \left(R_{3}, \text { name, ringo }\right) \\ & \\ & \\ & \\ & \\ & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{aligned}$

$$
\llbracket((? X, \text { name, ?N) OPT }(? X, \text { email, ?E })) \rrbracket G
$$

Example (OPT)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} \quad\left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket\left((? X\right.$, name, ?N) OPT $(? X$, email, ?E $)) \rrbracket_{G}$
$\llbracket\left(? X\right.$, name, ?N)$\rrbracket_{G} \rrbracket \llbracket\left(? X\right.$, email, ?E)$\rrbracket_{G}$

Example (OPT)

$$
G: \begin{array}{lll}
& \left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right)
\end{array} \quad\left(R_{2}, \text { name, paul }\right) \quad \begin{aligned}
& \left(R_{3}, \text { name, ringo }\right) \\
&
\end{aligned} \quad \begin{aligned}
& \left(R_{3}, \text { email, R@ed.ex }\right) \\
& \\
& \\
& \\
& \\
& \left.\hline R_{3}, \text { webPage, www.ringo.com }\right)
\end{aligned}
$$

$\llbracket\left((? X\right.$, name, ?N) OPT $(? X$, email, ?E $)) \rrbracket_{G}$
$\llbracket\left(? X\right.$, name, ?N)$\rrbracket_{G} \rrbracket \llbracket(? X$, email, ?E $) \rrbracket_{G}$

	$? X$	$? N$
μ_{1}	R_{1}	john
μ_{2}	R_{2}	paul
	R_{3}	ringo

Example (OPT)

$$
\begin{array}{lll}
G: \begin{array}{l}
\left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right)
\end{array} \quad\left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\
& & \left(R_{3}, \text { email, R@ed.ex }\right) \\
& \left(R_{3}, \text { webPage, www.ringo.com }\right)
\end{array}
$$

> $\llbracket\left(\left(? X\right.\right.$, name, ?N) OPT $(? X$, email, ?E) $) \rrbracket_{G}$
> $\llbracket(? X$, name, $? N) \rrbracket_{G} \rrbracket \llbracket(? X$, email, ?E $) \rrbracket_{G}$

	$? X$	$? N$
μ_{1}	R_{1}	john
μ_{2}	R_{2}	paul
μ_{3}	R_{3}	ringo

μ_{4}	$? X$	$? E$
	R_{1}	J@ed.ex
μ_{5}	R_{3}	R@ed.ex

Example (OPT)

$$
\begin{array}{lll}
G: \begin{array}{l}
\left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right)
\end{array} \quad\left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\
& & \left(R_{3}, \text { email, R@ed.ex }\right) \\
& \left(R_{3}, \text { webPage, www.ringo.com }\right)
\end{array}
$$

> $\llbracket\left((? X\right.$, name, ?N) OPT $(? X$, email, ?E $)) \rrbracket_{G}$
> $\llbracket(? X$, name, $? N) \rrbracket_{G} \rrbracket \llbracket(? X$, email, ?E $) \rrbracket_{G}$

	$? X$	$? N$
μ_{1}	R_{1}	john
μ_{2}	R_{2}	paul
μ_{3}	R_{3}	ringo

μ_{4}	$? X$	$? E$
	R_{1}	J@ed.ex
μ_{5}	R_{3}	R@ed.ex

Example (OPT)

$$
\begin{array}{lll}
G: \begin{array}{l}
\left(R_{1}, \text { name, john }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right)
\end{array} \quad\left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\
& & \left(R_{3}, \text { email, R@ed.ex }\right) \\
& \left(R_{3}, \text { webPage, www.ringo.com }\right)
\end{array}
$$

$\llbracket((? X$, name, ?N) OPT $(? X$, email, ? $E)) \rrbracket G$
$\llbracket(? X$, name, ? $N) \rrbracket_{G} \rrbracket \llbracket(? X$, email, ? $E) \rrbracket_{G}$

$\begin{aligned} & \mu_{1} \\ & \mu_{2} \end{aligned}$? X	?N	\triangle	$\mu_{4}$$\mu_{5}$? X	
	R_{1}	john			? \times	? E
	R_{2}	paul			R_{1}	J@ed.ex
μ_{3}	R_{3}	ringo			R_{3}	R@ed.ex

	$? X$	$? N$	$? E$
$\mu_{1} \cup \mu_{4}$	R_{1}	john	J@ed.ex
$\mu_{3} \cup \mu_{5}$	R_{3}	ringo	R@ed.ex
	R_{2}	paul	

Example (OPT)

$$
\begin{aligned}
& \text { (} R_{1} \text {, name, john) (} R_{2} \text {, name, paul) (} R_{3} \text {, name, ringo) } \\
& G:\left(R_{1} \text {, email, J@ed.ex) (} R_{3}\right. \text {, email, R@ed.ex) } \\
& \text { (} R_{3} \text {, webPage, www.ringo.com) }
\end{aligned}
$$

$\llbracket\left(\left(? X\right.\right.$, name, ?N) OPT $(? X$, email, ?E) $) \rrbracket_{G}$
$\llbracket(? X$, name, ? $N) \rrbracket_{G} \rrbracket \llbracket(? X$, email, ? $E) \rrbracket_{G}$

$\begin{aligned} & \mu_{1} \\ & \mu_{2} \end{aligned}$? X	?N	\triangle	$\mu_{4}$$\mu_{5}$? X	
	R_{1}	john			? \times	? E
	R_{2}	paul			R_{1}	J@ed.ex
μ_{3}	R_{3}	ringo			R_{3}	R@ed.ex

	$? X$	$? N$	$? E$
$\mu_{1} \cup \mu_{4}$	R_{1}	john	J@ed.ex
$\mu_{3} \cup \mu_{5}$	R_{3}	ringo	R@ed.ex
	R_{2}	paul	

Example (UNION)

$\begin{array}{lll} & \left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} \quad\left(R_{2}\right.$, name, paul $) \begin{aligned} & \left(R_{3}, \text { name, ringo }\right) \\ & \\ & \end{aligned}$
$\llbracket\left((? X\right.$, email, ? Info) UNION $(? X$, webPage, ? Info $)) \rrbracket_{G}$

Example (UNION)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} & \left(R_{2}, \text { name, paul }\right) & \begin{array}{l}\left(R_{3}, \text { name, ringo }\right) \\ \\ \end{array} \\ & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket\left((? X\right.$, email, ?Info) UNION $(? X$, webPage, ?Info $)) \rrbracket_{G}$ $\llbracket(? X$, email, ?Info $) \rrbracket_{G} \cup \llbracket(? X$, webPage, ?Info $) \rrbracket_{G}$

Example (UNION)

$\begin{array}{lll} & \left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} \quad\left(R_{2}\right.$, name, paul $) \begin{aligned} & \left(R_{3}, \text { name, ringo }\right) \\ & \\ & \end{aligned}$
$\llbracket\left((? X\right.$, email, ?Info) UNION $(? X$, webPage, ?Info $)) \rrbracket_{G}$
$\llbracket(? X$, email, ?Info $) \rrbracket_{G} \cup \llbracket(? X$, webPage, ?Info $) \rrbracket_{G}$

	?X	?Info
μ_{1}	R_{1}	J@ed.ex
μ_{2}	R_{3}	R@ed.ex

Example (UNION)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} \quad\left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket\left((? X\right.$, email, ?Info) UNION $(? X$, webPage, ?Info $)) \rrbracket_{G}$ $\llbracket(? X$, email, ?Info $) \rrbracket_{G} \cup \llbracket(? X$, webPage, ?Info $) \rrbracket_{G}$

	?X	?Info
μ_{1}	R_{1}	J@ed.ex
μ_{2}	R_{3}	R@ed.ex

μ_{3} ?	? Info
	R_{3}
www.ringo.com	

Example (UNION)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} \quad\left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket\left((? X\right.$, email, ?Info) UNION $(? X$, webPage, ?Info $)) \rrbracket_{G}$ $\llbracket(? X$, email, ?Info $) \rrbracket_{G} \cup \llbracket(? X$, webPage, ?Info $) \rrbracket_{G}$

	?X	?Info
μ_{1}	R_{1}	J@ed.ex
μ_{2}	R_{3}	R@ed.ex

μ_{3} ?	? Info
	R_{3}
www.ringo.com	

Example (UNION)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} \quad\left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket\left((? X\right.$, email, ?Info) UNION $(? X$, webPage, ?Info $)) \rrbracket_{G}$
$\llbracket(? X$, email, ?Info $) \rrbracket_{G} \cup \llbracket(? X$, webPage, ?Info $) \rrbracket_{G}$

	?X	?Info
μ_{1}	R_{1}	J@ed.ex
μ_{2}	R_{3}	R@ed.ex

μ_{3} ? X	? Info
	R_{3}
www.ringo.com	

	?X	?Info
μ_{1}	R_{1}	J@ed.ex
μ_{2}	R_{3}	R@ed.ex
μ_{3}	R_{3}	www.ringo.com

Example (SELECT)
$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} & \left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket(S E L E C T\{? N, ? E\}((? X$, name, ?N $)$ AND $(? X$, email, ? $E))) \rrbracket_{G}$

Example (SELECT)

$$
\begin{array}{lll}
\left(R_{1}, \text { name, john }\right) & \left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right) & & \left(R_{3}, \text { email, R@ed.ex }\right) \\
& & \left(R_{3}, \text { webPage, www.ringo.com }\right)
\end{array}
$$

$\llbracket\left(S E L E C T\{? N, ? E\}((? X\right.$, name, ?N) AND $(? X$, email, ?E $))) \rrbracket_{G}$ SELECT\{?N, ?E\}

μ_{1}	$? X$	$? N$	$? E$
	R_{1}	john	J@ed.ex
	R_{3}	ringo	R@ed.ex

Example (SELECT)

$\begin{array}{lll} \\ G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} & \left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket\left(\right.$ SELECT $\{? N, ? E\}\left((? X\right.$, name, ?N) AND $(? X$, email, ?E) $)) \rrbracket_{G}$

SELECT\{?N, ?E\}

μ_{1}	$? X$	$? N$	$? E$
	R_{1}	john	J@ed.ex
	R_{3}	ringo	R@ed.ex

	? N	?E
μ_{1}	john	JQed.ex
$\mu_{\left.2\right\|_{\{? N, ? E\}}}$	ringo	R@ed.ex

Filter expressions (value constraints)

Filter expression: (P FILTER R)

- P is a graph pattern
- R is a built-in condition

We consider in R :

- equality = among variables and RDF terms
- unary predicate bound
- boolean combinations (\wedge, \vee, \neg)

Satisfaction of value constraints

A mapping μ satisfies a condition $R(\mu \models R)$ if:

Satisfaction of value constraints

A mapping μ satisfies a condition $R(\mu \models R)$ if:

- R is $? X=c, ? X \in \operatorname{dom}(\mu)$ and $\mu(? X)=c$
$-R$ is $? X=? Y, ? X, ? Y \in \operatorname{dom}(\mu)$ and $\mu(? X)=\mu(? Y)$
- R is bound(? $X)$ and $? X \in \operatorname{dom}(\mu)$

Satisfaction of value constraints

A mapping μ satisfies a condition $R(\mu \models R)$ if:

- R is $? X=c, ? X \in \operatorname{dom}(\mu)$ and $\mu(? X)=c$
$-R$ is $? X=? Y, ? X, ? Y \in \operatorname{dom}(\mu)$ and $\mu(? X)=\mu(? Y)$
- R is bound $(? X)$ and $? X \in \operatorname{dom}(\mu)$
- usual rules for Boolean connectives

Satisfaction of value constraints

A mapping μ satisfies a condition $R(\mu \models R)$ if:

- R is $? X=c, ? X \in \operatorname{dom}(\mu)$ and $\mu(? X)=c$
$-R$ is $? X=? Y, ? X, ? Y \in \operatorname{dom}(\mu)$ and $\mu(? X)=\mu(? Y)$
- R is bound $(? X)$ and $? X \in \operatorname{dom}(\mu)$
- usual rules for Boolean connectives

Definition

FILTER : selects mappings that satisfy a condition
$\llbracket(P$ FILTER $R) \rrbracket_{G}=\left\{\mu \in \llbracket P \rrbracket_{G} \mid \mu \models R\right\}$

Example (FILTER)

$\begin{array}{lll} & \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} & \left(R_{2}, \text { name, paul }\right)\end{array} \begin{aligned} & \left(R_{3}, \text { name, ringo }\right) \\ & \\ & \end{aligned}$
$\llbracket((? X$, name, ? $N)$ FILTER $(? N=$ ringo $\vee ? N=$ paul $)) \rrbracket_{G}$

Example (FILTER)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} & \left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket((? X$, name, ? $N)$ FILTER $(? N=$ ringo $\vee ? N=$ paul $)) \rrbracket_{G}$

	$? X$	$? N$
μ_{1}	R_{1}	john
μ_{2}	R_{2}	paul
	R_{3}	ringo

Example (FILTER)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} & \left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket((? X$, name, ? $N)$ FILTER $(? N=$ ringo $\vee ? N=$ paul $)) \rrbracket_{G}$

	$? X$	$? N$
μ_{1}	R_{1}	john
μ_{2}	R_{2}	paul
	R_{3}	ringo

$$
? N=\text { ringo } \vee ? N=\text { paul }
$$

Example (FILTER)

$\begin{array}{lll}G: \begin{array}{l}\left(R_{1}, \text { name, john }\right) \\ \left(R_{1}, \text { email, J@ed.ex }\right)\end{array} & \left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\ & & \left(R_{3}, \text { email, R@ed.ex }\right) \\ & \left(R_{3}, \text { webPage, www.ringo.com }\right)\end{array}$
$\llbracket((? X$, name, $? N)$ FILTER $(? N=$ ringo $\vee ? N=$ paul $)) \rrbracket_{G}$

	$? X$	$? N$
μ_{1}	R_{1}	john
μ_{2}	R_{2}	paul
		$? N=$ ringo \vee
μ_{3}		$? N=$ paul

μ_{2}	$? X$	$? N$
	R_{2}	paul
	R_{3}	ringo

Example (FILTER)

$$
\begin{array}{lll}
\left(R_{1}, \text { name, john }\right) & \left(R_{2}, \text { name, paul }\right) & \left(R_{3}, \text { name, ringo }\right) \\
\left(R_{1}, \text { email, J@ed.ex }\right) & & \left(R_{3}, \text { email, R@ed.ex }\right) \\
& & \left(R_{3}, \text { webPage, www.ringo.com }\right)
\end{array}
$$

$\llbracket\left(\left((? X\right.\right.$, name, ?N) OPT $(? X$, email, ?E) $)$ FILTER \neg bound(?E) $) \rrbracket_{G}$

Example (FILTER)

```
    ( }\mp@subsup{R}{1}{}\mathrm{ , name, john) ( }\mp@subsup{R}{2}{}\mathrm{ , name, paul) ( }\mp@subsup{R}{3}{}\mathrm{ , name, ringo)
( }\mp@subsup{R}{3}{}\mathrm{ , email, R@ed.ex)
( }\mp@subsup{R}{3}{}\mathrm{ , webPage, www.ringo.com)
```

$\llbracket\left(((? X\right.$, name, ?N) OPT $(? X$, email, ?E $))$ FILTER \neg bound(?E) $) \rrbracket_{G}$

	$? X$	$? N$	$? E$
$\mu_{1} \cup \mu_{4}$	R_{1}	john	J@ed.ex
$\mu_{3} \cup \mu_{5}$	R_{3}	ringo	R@ed.ex
	R_{2}	paul	

Example (FILTER)

```
( }\mp@subsup{R}{3}{}\mathrm{ , name, ringo)
( }\mp@subsup{R}{3}{}\mathrm{ , email, R@ed.ex)
(R3},\mathrm{ webPage, www.ringo.com)
```

$\llbracket(((? X$, name, ?N $)$ OPT $(? X$, email, ? $E))$ FILTER \neg bound $(? E)) \rrbracket_{G}$

$\begin{aligned} & \mu_{1} \cup \mu_{4} \\ & \mu_{3} \cup \mu_{5} \end{aligned}$? X	? N	? E
	R_{1}	john	J@ed.ex
	R_{3}	ringo	R@ed.ex
μ_{2}	R_{2}	paul	

Example (FILTER)

```
( }\mp@subsup{R}{3}{}\mathrm{ , name, ringo)
( }\mp@subsup{R}{3}{}\mathrm{ , email, R@ed.ex)
(R3, webPage, www.ringo.com)
```

$\llbracket(((? X$, name, ?N $)$ OPT $(? X$, email, ? $E))$ FILTER \neg bound $(? E)) \rrbracket_{G}$

$\begin{gathered} \mu_{1} \cup \mu_{4} \\ \mu_{3} \cup \mu_{5} \\ \mu_{2} \end{gathered}$? X	? N	? E	
	R_{1}	john	J@ed.ex	
	R_{3}	ringo	R@ed.ex	
	R_{2}	paul		
			X	? N
		μ_{2}	R_{2}	paul

SPARQL 1.1

(and some research issues)

SPARQL 1.1

A new version of SPARQL was recently released (March 2013): SPARQL 1.1

Some new features in SPARQL 1.1:

- Entailment regimes for RDFS and OWL
- Navigational capabilities: Property paths
- An operator (SERVICE) to distribute the execution of a query

Also in this version: Nesting of SELECT expressions, aggregates and some forms of negation (NOT EXISTS, MINUS)

To remember: Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf (rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range (rdf:range), type (rdf:type).

To remember: Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf (rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range (rdf:range), type (rdf:type).

How do we evaluate a query over RDFS data?

A simple SPARQL query: (Messi, rdf:type, person)

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when answering queries over RDF.

- For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined as for first-order logic.

This notion can also be characterized by a set of inference rules.

An inference system for RDFS

Sub-property : $\frac{(\mathcal{A}, \text { rdf }: s p, \mathcal{B})(\mathcal{B}, \text { rdf:sp, } \mathcal{C})}{(\mathcal{A}, r d f: s p, \mathcal{C})}$
$\frac{(\mathcal{A}, \text { rdf }: \mathrm{sp}, \mathcal{B})(\mathcal{X}, \mathcal{A}, \mathcal{Y})}{(\mathcal{X}, \mathcal{B}, \mathcal{Y})}$
Subclass : $\frac{(\mathcal{A}, r d f: s c, \mathcal{B})(\mathcal{B}, \text { rdf:sc } \mathcal{C})}{(\mathcal{A}, r d f: s c, \mathcal{C})}$

$$
\frac{(\mathcal{A}, \text { rdf:sc }, \mathcal{B})(\mathcal{X}, \text { rdf:type, } \mathcal{A})}{(\mathcal{X}, \text { rdf:type }, \mathcal{B})}
$$

Typing

$$
\begin{aligned}
& \frac{(\mathcal{A}, \text { rdf }: \operatorname{dom}, \mathcal{B})(\mathcal{X}, \mathcal{A}, \mathcal{Y})}{(\mathcal{X}, \text { rdf:type, } \mathcal{B})} \\
& \frac{(\mathcal{A}, \text { rdf }: \text { range }, \mathcal{B})(\mathcal{X}, \mathcal{A}, \mathcal{Y})}{(\mathcal{Y}, \text { rdf:type }, \mathcal{B})}
\end{aligned}
$$

Entailment in RDFS

Theorem (H03,MPG09,GHM11)
The previous system of inference rules characterize the notion of entailment in RDFS (without blank nodes).

Thus, a triple t can be deduced from an RDF graph $G(G \models t)$ iff t can be deduced from G by applying the inference rules a finite number of times.

An entailment regime for RDFS in SPARQL 1.1

Basic graph patterns are evaluated by considering RDFS entailment.

Definition

The evaluation of a bgp P over an RDF graph G, denoted by $\llbracket P \rrbracket_{G}$, is the set of mappings μ :

- $\operatorname{dom}(\mu)=\operatorname{var}(P)$
- For every $t \in P: G \models \mu(t)$

An entailment regime for RDFS in SPARQL 1.1

Basic graph patterns are evaluated by considering RDFS entailment.

Definition

The evaluation of a bgp P over an RDF graph G, denoted by $\llbracket P \rrbracket_{G}$, is the set of mappings μ :

- $\operatorname{dom}(\mu)=\operatorname{var}(P)$
- For every $t \in P: G \models \mu(t)$

The semantics of AND, UNION, OPT, FILTER and SELECT are defined as before.

- RDFS entailment is only used at the level of bgps

Example 1: What is the answer to

 (?X, rdf:type, person)?

Example 2: What is the answer to (Messi, rdf:type, person)?

Example 3: What is the answer to

 $\{($ Messi, rdf:type, ?Y), (?Y, rdf:sc, person)\}?

Entailment regimes in SPARQL 1.1: Some observations

SPARQL 1.1 can be used to query not only data but also schema information

- For example: (?X, rdf:sc, person)

Entailment regimes in SPARQL 1.1: Some observations (cont'd)

Web Ontology Language (OWL): A more general ontology language for the Semantic Web

- Users can define their own axioms

For example: every Chilean has a RUT number

Entailment regimes in SPARQL 1.1: Some observations (cont'd)

Web Ontology Language (OWL): A more general ontology language for the Semantic Web

- Users can define their own axioms

For example: every Chilean has a RUT number

Basic graph patterns can also be evaluated by considering OWL entailment.

- $G \models \mu(t)$ has to be defined according to the semantics of OWL

Entailment regimes in SPARQL 1.1: Some observations (cont'd)

- What are the consequences of considering entailment only at the level bgps?

Example

Let G be a graph consisting of (john, rdf:type, student) together with:

$$
\left.\begin{array}{l}
\text { (student, rdf: sc, } u \text {) } \\
(u, \text { owl:union, } / \text {) } \\
(l, \text { rdf:first, undergrad) } \\
(l, \text { rdf:rest, } r) \\
(r, \text { rdf:first, grad) } \\
(r, \text { rdf:rest, rdf:nil) }
\end{array}\right\} \text { axiom student } \sqsubseteq \text { (undergrad } \sqcup \text { grad) }
$$

Entailment regimes in SPARQL 1.1: Some observations (cont'd)

- What are the consequences of considering entailment only at the level bgps?

Example

Let G be a graph consisting of (john, rdf:type, student) together with:

$$
\left.\begin{array}{l}
\text { (student, rdf: sc, } u) \\
(u, \text { owl:union, } / \text {) } \\
(I, \text { rdf:first, undergrad }) \\
(l, \text { rdf:rest, } r) \\
(r, \text { rdf:first, grad) } \\
(r, \text { rdf:rest, rdf:nil) }
\end{array}\right\} \text { axiom student } \sqsubseteq \text { (undergrad } \sqcup \text { grad) }
$$

What should be the answer to
$P=((? X$, rdf : type, undergrad) UNION $(? X$, rdf:type, grad $)) ?$

Entailment regimes in SPARQL 1.1: Some observations (cont'd)

- What are the consequences of considering entailment only at the level bgps?

Example

Let G be a graph consisting of (john, rdf:type, student) together with:

$$
\left.\begin{array}{l}
\text { (student, rdf :sc, } u \text {) } \\
(u, \text { owl:union, } / \text {) } \\
(l, \text { rdf:first, undergrad) } \\
(l, \text { rdf:rest, } r) \\
(r, \text { rdf:first, grad) } \\
(r, \text { rdf:rest, rdf:nil) }
\end{array}\right\} \text { axiom student } \sqsubseteq \text { (undergrad } \sqcup \text { grad) }
$$

What should be the answer to
$P=((? X$, rdf:type, undergrad) UNION $(? X$, rdf:type, grad $)) ?$

- Under the current semantics: $\llbracket P \rrbracket_{G}=\emptyset$

Entailment regimes in SPARQL 1.1: Some observations (cont'd)

It is possible to define a certain-answers semantics for SPARQL 1.1.

- Previous example shows that this semantics does not coincide with the official semantics of SPARQL 1.1

Entailment regimes in SPARQL 1.1: Some observations (cont'd)

It is possible to define a certain-answers semantics for SPARQL 1.1.

- Previous example shows that this semantics does not coincide with the official semantics of SPARQL 1.1

Open issues

- How natural is the semantics of SPARQL 1.1? Is it a good semantics? Why?
- Under which (natural) restrictions these two semantics coincide?

SPARQL provides limited navigational capabilities

SPARQL provides limited navigational capabilities

(SELECT ?X ((?X, friendOf, ?Y) AND (?Y, name, George)))

SPARQL provides limited navigational capabilities

(SELECT ?X ((?X, friendOf, ?Y) AND (?Y, name, George)))

SPARQL provides limited navigational capabilities

(SELECT ?X ((?X, friendOf, ?Y) AND (?Y, name, George)))

A possible solution: Property paths

A possible solution: Property paths

(SELECT ?X ((?X, (friendOf)*, ?Y) AND (?Y, name, George)))

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

$$
\exp :=a|\exp / \exp | \exp |\exp | \exp ^{*}
$$

where $a \in U$

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:

$$
\exp :=a|\exp / \exp | \exp |\exp | \exp ^{*}
$$

where $a \in U$

Other expressions are allowed:
$\begin{array}{ll}\wedge \exp & : \quad \text { inverse path } \\ !\left(a_{1}|\ldots| a_{n}\right) & : \quad \text { a URI which is not one of } a_{i}(1 \leq i \leq n)\end{array}$

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined as follows:

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined as follows:

$$
\llbracket a \rrbracket_{G}=\{(x, y) \mid(x, a, y) \in G\}
$$

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined as follows:

$$
\begin{aligned}
\llbracket a \rrbracket_{G} & =\{(x, y) \mid(x, a, y) \in G\} \\
\llbracket \exp _{1} / \exp _{2} \rrbracket_{G}= & \left\{(x, y) \mid \exists z(x, z) \in \llbracket \exp _{1} \rrbracket_{G}\right. \text { and } \\
& \left.(z, y) \in \llbracket \exp _{2} \rrbracket_{G}\right\}
\end{aligned}
$$

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined as follows:

$$
\begin{aligned}
& \llbracket a \rrbracket_{G}=\{(x, y) \mid(x, a, y) \in G\} \\
& \llbracket \exp _{1} / \exp _{2} \rrbracket_{G}=\left\{(x, y) \mid \exists z(x, z) \in \llbracket \exp _{1} \rrbracket_{G}\right. \text { and } \\
&\left.\quad(z, y) \in \llbracket \exp _{2} \rrbracket_{G}\right\} \\
& \llbracket \exp _{1} \mid \exp _{2} \rrbracket_{G}=\llbracket \exp _{1} \rrbracket_{G} \cup \llbracket \exp _{2} \rrbracket_{G}
\end{aligned}
$$

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined as follows:

$$
\begin{aligned}
& \llbracket a \rrbracket_{G}=\{(x, y) \mid(x, a, y) \in G\} \\
& \llbracket \exp _{1} / \exp _{2} \rrbracket_{G}=\left\{(x, y) \mid \exists z(x, z) \in \llbracket \exp _{1} \rrbracket_{G}\right. \text { and } \\
&\left.(z, y) \in \llbracket \exp _{2} \rrbracket_{G}\right\} \\
& \llbracket \exp _{1} \mid \exp _{2} \rrbracket_{G}= \llbracket \exp _{1} \rrbracket_{G} \cup \llbracket \exp _{2} \rrbracket_{G} \\
& \llbracket \exp ^{*} \rrbracket_{G}=\{(a, a) \mid a \text { is a URI in } G\} \cup \llbracket \exp \rrbracket_{G} \cup \\
& \llbracket \exp / \exp \rrbracket_{G} \cup \llbracket \exp / \exp / \exp \rrbracket_{G} \cup \cdots
\end{aligned}
$$

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, \exp , y)

- exp is a property path
- x (resp. y) is either an element from U or a variable

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, \exp , y)

- exp is a property path
- x (resp. y) is either an element from U or a variable

Example

- (?X, (friendOf)*, ?Y): Verifies whether there exists a path of friends of arbitrary length from ? X to ? Y

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, \exp , y)

- exp is a property path
- x (resp. y) is either an element from U or a variable

Example

- (?X, (friendOf)*, ?Y): Verifies whether there exists a path of friends of arbitrary length from ? X to ? Y
- (? $X,(r d f: s c)^{*}$, person): Verifies whether the value stored in ? X is a subclass of person

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, \exp , y)

- exp is a property path
- x (resp. y) is either an element from U or a variable

Example

- (?X, (friendOf)*, ?Y): Verifies whether there exists a path of friends of arbitrary length from ? X to ? Y
- (? $X,(r d f: s c)^{*}$, person): Verifies whether the value stored in ? X is a subclass of person
- (?X, (rdf:sp)*, ?Y): Verifies whether the value stored in ? X is a subproperty of the value stored in ?Y

Semantics of property paths

Evaluation of $t=(? X, \exp , ? Y)$ over an RDF graph G is the set of mappings μ such that:

Semantics of property paths

Evaluation of $t=(? X, \exp , ? Y)$ over an RDF graph G is the set of mappings μ such that:

- $\operatorname{dom}(\mu)=\{? X, ? Y\}$

Semantics of property paths

Evaluation of $t=(? X, \exp , ? Y)$ over an RDF graph G is the set of mappings μ such that:

- $\operatorname{dom}(\mu)=\{? X, ? Y\}$
- $(\mu(? X), \mu(? Y)) \in \llbracket \exp \rrbracket_{G}$

Semantics of property paths

Evaluation of $t=(? X, \exp , ? Y)$ over an RDF graph G is the set of mappings μ such that:

- $\operatorname{dom}(\mu)=\{? X, ? Y\}$
- $(\mu(? X), \mu(? Y)) \in \llbracket \exp \rrbracket_{G}$

Other cases are defined analogously.

Semantics of property paths

Evaluation of $t=(? X, \exp , ? Y)$ over an RDF graph G is the set of mappings μ such that:

- $\operatorname{dom}(\mu)=\{? X, ? Y\}$
- $(\mu(? X), \mu(? Y)) \in \llbracket \exp \rrbracket_{G}$

Other cases are defined analogously.

Example

- $\left(\left(? X, \mathrm{KLM} /(\mathrm{KLM})^{*}, ? Y\right)\right.$ FILTER $\neg(? X=$? $\left.Y)\right)$: It is possible to go from ? X to ? Y by using the airline KLM, where ? X, ? Y are different cities

SPARQL 1.1: Entailment regimes and property paths

List the pairs a, b of cities such that there is a way to travel from a to b.

SPARQL 1.1: Entailment regimes and property paths

List the pairs a, b of cities such that there is a way to travel from a to b.

In SPARQL 1.1: (?X, transportation_service*, ? Y)

Navigational capabilities in SPARQL 1.1: Some observations

Previous query can be expressed in SPARQL 1.1 as the intermediate form of navigation involves RDFS vocabulary.

Navigational capabilities in SPARQL 1.1: Some observations

Previous query can be expressed in SPARQL 1.1 as the intermediate form of navigation involves RDFS vocabulary.

Not expressible: List pairs a, b of persons that are connected through a path of nodes certified by certifying_agency [RK13]:

Navigational capabilities in SPARQL 1.1: Some observations (cont'd)

- Some proposals solve the aforementioned issues: nSPARQL [PAG10], nested monadically defined queries [RK13], triple algebra [LRV13]
- RDFS entailment can be handled in these proposals by using navigational capabilities

Navigational capabilities in SPARQL 1.1: Some observations (cont'd)

- Some proposals solve the aforementioned issues: nSPARQL [PAG10], nested monadically defined queries [RK13], triple algebra [LRV13]
- RDFS entailment can be handled in these proposals by using navigational capabilities

Open issues

- How can OWL entailment be handled in these proposals?
- What navigational capabilities should be added to SPARQL 1.1?
- There is a need for query languages that can return paths

RFD graphs can be interconnected

Querying interconnected RDF graphs

Retrieve the authors that have published in PODS and were born in Oklahoma:

```
SELECT ?Author
WHERE
{
\begin{tabular}{lll} 
?Paper & dc:creator & ?Author . \\
?Paper & dct:PartOf & ?Conf . \\
?Conf & swrc:series & conf:pods.
\end{tabular}
    SERVICE <http://dbpedia.org/sparql> {
    ?Person owl:sameAs ?Author.
    ?Person dbo:birthPlace dbpedia:Oklahoma . }
}
```


Federation in SPARQL 1.1

New rule to generate graph patterns:

- If P is a graph pattern and $c \in(U \cup V)$, then (SERVICE $c P$) is a graph pattern.

Federation in SPARQL 1.1

New rule to generate graph patterns:

- If P is a graph pattern and $c \in(U \cup V)$, then (SERVICE $c P$) is a graph pattern.

We will define the semantics of this new operator.

- This corresponds with the official semantics for (SERVICE c P) with $c \in U$
- (SERVICE ? $\times P$) is allowed in the official specification of SPARQL 1.1, but its semantics is not defined

Semantics of SERVICE

$\mathrm{ep}(\cdot)$: Partial function from U to the set of all RDF graphs

- If $c \in \operatorname{dom}(\mathrm{ep})$, then $\mathrm{ep}(c)$ is the RDF graph associated with the endpoint accessible via c

Semantics of SERVICE

$\mathrm{ep}(\cdot)$: Partial function from U to the set of all RDF graphs

- If $c \in \operatorname{dom}(\mathrm{ep})$, then $\mathrm{ep}(c)$ is the RDF graph associated with the endpoint accessible via c

Definition [BACP13]

The evaluation of $P=\left(\right.$ SERVICE $\left.c P_{1}\right)$ over an RDF graph G is defined as:

- if $c \in \operatorname{dom}(\mathrm{ep})$, then $\llbracket P \rrbracket_{G}=\llbracket P_{1} \rrbracket_{\mathrm{ep}(c)}$
- if $c \in U \backslash \operatorname{dom}(\mathrm{ep})$, then $\llbracket P \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}$ (where μ_{\emptyset} is the mapping with empty domain)
- if $c \in V$, then

$$
\llbracket P \rrbracket_{G}=\bigcup_{a \in \operatorname{dom}(\mathrm{ep})}\left(\llbracket P_{1} \rrbracket_{\operatorname{ep}(a)} \bowtie\{c \rightarrow a\}\right),
$$

Are variables useful in SERVICE queries?

Consider the query:
(?X, service_address, ?Y) AND (SERVICE ?Y (?N, email, ?E))

Are variables useful in SERVICE queries?

Consider the query:
(?X, service_address, ?Y) AND (SERVICE ?Y (?N, email, ?E))

There is a simple strategy to compute the answer to this query.

- Can this strategy be generalized?

How can we evaluate SERVICE queries?

We need some notion of boundedness

- A variable ? X is bound in a graph pattern P if for every RDF graph G and every $\mu \in \llbracket P \rrbracket G$, it holds that $? X \in \operatorname{dom}(\mu)$ and $\mu(? X) \in U$

First attempt: Graph pattern P can be evaluated if for every sub-pattern (SERVICE ? $X P_{1}$) of P, it holds that ? X is bound in P

- ? Y is bound in
(?X, service_address, ?Y) AND (SERVICE ?Y (?N, email, ?E))

The first attempt: Too restrictive

Consider the query:
(?X, service_description, ?Z) UNION $((? X$, service_address, ?Y) AND (SERVICE ?Y (?N, email, ?E)))
? Y is not bound in this query, but there is a simple strategy to evaluate it.

The first attempt: Not appropriate for nested SERVICE operators

Consider the query:
(? U_{1}, related_with, ? U_{2}) AND

$$
\begin{aligned}
& {\left[\text { SERVICE ? } U_{1}((? N, \text { email, ?E) OPT }\right.} \\
& \\
& \left.\left(\text { SERVICE ? } U_{2}(? N, \text { phone, ?F) })\right)\right]
\end{aligned}
$$

Solving the problems ...

Notation: $\mathcal{T}(P)$ is the parse tree of P, in which every node corresponds to a sub-pattern of P

Parse tree of $(? Y, a, ? Z)$ UNION $((? X, b, c)$ AND (SERVICE ?X $(? Y, a, ? Z)))$:

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

Examples:

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

Examples:

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

Examples:

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

Examples:

$$
(? Y, a, ? Z)
$$

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

Examples:

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

Examples:

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

Examples:

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

Examples:

A more appropriate notion of boundedness

Definition [BACP13]

A graph pattern P is service-bound if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X$ is bound in P_{2}
- P_{1} is service-bound

Examples:

A more appropriate notion of boundedness (cont'd)

But we still have a problem:

Proposition (BACP13)

The problem of verifying, given a graph pattern P, whether P is service-bound is undecidable.

We consider a (syntactic) sufficient condition for service-boundedness.

An appropriate notion: Service-safeness

The set of strongly bound variables in P, denoted by $\mathrm{SB}(P)$, is recursively defined as follows:

- if P is a bgp, then $\mathrm{SB}(P)=\operatorname{var}(P)$
- if $P=\left(P_{1}\right.$ AND $\left.P_{2}\right)$, then $\mathrm{SB}(P)=\mathrm{SB}\left(P_{1}\right) \cup \mathrm{SB}\left(P_{2}\right)$
- if $P=\left(P_{1}\right.$ UNION $\left.P_{2}\right)$, then $\mathrm{SB}(P)=\mathrm{SB}\left(P_{1}\right) \cap \mathrm{SB}\left(P_{2}\right)$
- if $P=\left(P_{1}\right.$ OPT $\left.P_{2}\right)$, then $\mathrm{SB}(P)=\mathrm{SB}\left(P_{1}\right)$
- if $P=\left(P_{1}\right.$ FILTER $\left.R\right)$, then $\mathrm{SB}(P)=\mathrm{SB}\left(P_{1}\right)$
- if $P=\left(\right.$ SERVICE $\left.\subset P_{1}\right)$, then $\mathrm{SB}(P)=\emptyset$

An appropriate notion: Service-safeness (cont'd)

Definition [BACP13]

A graph pattern P is service-safe if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:
there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X \in \operatorname{SB}\left(P_{2}\right)$

- P_{1} is service-safe

If P is service-safe, then there is a strategy to evaluate P without considering all possible SPARQL endpoints.

An appropriate notion: Service-safeness (cont'd)

Definition [BACP13]

A graph pattern P is service-safe if for every node u of $\mathcal{T}(P)$ with label (SERVICE ? $X P_{1}$), it holds that:

- there exists a node v of $\mathcal{T}(P)$ with label P_{2} such that v is an ancestor of u in $\mathcal{T}(P)$ and $? X \in \operatorname{SB}\left(P_{2}\right)$
- P_{1} is service-safe

If P is service-safe, then there is a strategy to evaluate P without considering all possible SPARQL endpoints.

Open issue

Is service-safeness the right condition to ensure that a query containing the SERVICE operator can be executed? Why?

Take-home message

- RDF is the framework proposed by the W3C to represent information in the Web
- SPARQL is the W3C recommendation query language for RDF (January 2008)
- SPARLQ 1.1 is the new version of SPARQL (March 2013)
- SPARQL 1.1 includes some interesting and useful new features
- Entailment regimes for RDFS and OWL, navigational capabilities and an operator to distribute the execution of a query
- There are some interesting open issues about these features

Thank you!

Bibliography

[BACP13] C. Buil-Aranda, M. Arenas, O. Corcho, A. Polleres: Federating queries in SPARQL 1.1: Syntax, semantics and evaluation. J. Web Sem. 18(1): 1-17 (2013)
[GHM11] C. Gutierrez, C. A. Hurtado, A. O. Mendelzon, J. Pérez: Foundations of Semantic Web databases. J. Comput. Syst. Sci. 77(3): 520-541 (2011)
[H04] P. Hayes: RDF Semantics. W3C Recommendation 10 February 2004

Bibliography (cont'd)

[LRV13] L. Libkin, J. L. Reutter, D. Vrgoc: Trial for RDF: adapting graph query languages for RDF data. PODS 2013: 201-212
[MPG09] S. Muñoz, J. Pérez, C. Gutierrez: Simple and Efficient Minimal RDFS. J. Web Sem. 7(3): 220-234 (2009)
[PAG10] J. Pérez, M. Arenas, C. Gutierrez: nSPARQL: A navigational language for RDF. J. Web Sem. 8(4): 255-270 (2010)
[RK13] S. Rudolph, M. Krötzsch: Flag \& check: data access with monadically defined queries. PODS 2013: 151-162

