
Semantic Web: Query Languages for RDF and
RDFS

Marcelo Arenas

Pontificia Universidad Católica de Chile
Centro de Investigación de la Web

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 1 / 65

Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific Goals:

◮ Build a description language with standard semantics

◮ Make semantics machine-processable and understandable

◮ Incorporate logical infrastructure to reason about resources

◮ W3C Proposal: Resource Description Framework (RDF)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 2 / 65

RDF in a nutshell

◮ RDF is the W3C proposal framework for representing
information in the Web

◮ Abstract syntax based on directed labeled graph

◮ Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties)

◮ Extensible URI-based vocabulary

◮ Formal semantics

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 3 / 65

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 4 / 65

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 4 / 65

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 4 / 65

RDF formal model

Proviso

In this talk, we do distinguish between URIs and literals.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 5 / 65

RDF formal model

Proviso

In this talk, we do distinguish between URIs and literals.

◮ (s, p, o) ∈ (U ∪ B)× U × (U ∪ B) is called an RDF triple.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 5 / 65

RDF formal model

Proviso

In this talk, we do distinguish between URIs and literals.

◮ (s, p, o) ∈ (U ∪ B)× U × (U ∪ B) is called an RDF triple.

◮ The inclusion of L does not change any of the results
presented in this talk.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 5 / 65

RDF: An example

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 6 / 65

Why is RDF interesting from a database point of view?

Some new challenges:

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 7 / 65

Why is RDF interesting from a database point of view?

Some new challenges:

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

Why are database technologies interesting from an RDF point of
view?

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 7 / 65

Why is RDF interesting from a database point of view?

Some new challenges:

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

Why are database technologies interesting from an RDF point of
view?

◮ RDF data processing can take advantage of database
techniques: Query processing, storing, indexing, . . .

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 7 / 65

Previous example: A better representation

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 8 / 65

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 8 / 65

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 8 / 65

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 8 / 65

First part: Ground RDF without RDFS vocabulary

SPARQL: A query language for RDF

◮ Syntax and formal semantics

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 9 / 65

Querying RDF: SPARQL

◮ SPARQL is the W3C recommendation query language for
RDF (January 2008).

◮ SPARQL is a recursive acronym that stands for SPARQL

Protocol and RDF Query Language.

◮ SPARQL is a graph-matching query language.

◮ A SPARQL query consists of three parts:

◮ Pattern matching: optional, union, nesting, filtering.
◮ Solution modifiers: projection, distinct, order, limit, offset.
◮ Output part: construction of new triples,

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 10 / 65

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 11 / 65

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 11 / 65

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 11 / 65

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 11 / 65

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ←

◮ Head: processing of some variables.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 11 / 65

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ← P

◮ Head: processing of some variables.

◮ Body: pattern matching expression.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 11 / 65

SPARQL in a nutshell

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

In general, in a query we have:

H ← P

◮ Head: processing of some variables.

◮ Body: pattern matching expression.

We focus on P .

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 11 / 65

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ P1

P2 }

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 12 / 65

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2 }

{ P3

P4 }

}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 12 / 65

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7 } }

}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 12 / 65

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 12 / 65

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9 }

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 12 / 65

But things can become more complex ...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

{ { P1

P2

OPTIONAL { P5 } }

{ P3

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 12 / 65

A formal study of SPARQL

Why is this needed?

◮ Clarifying corner cases

◮ Eliminating ambiguities

◮ Helping in the implementation process
◮ Understanding the resources (time/space) needed to

implement SPARQL

◮ Understanding what can/cannot be expressed
◮ Discovering what needs to be added (aggregation, navigational

capabilities, recursion, . . .)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 13 / 65

A standard algebraic syntax

◮ Triple patterns: just triples + variables, without blanks

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

{ P1 P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

{ P1 FILTER (R) } (P1 FILTER R)

original SPARQL syntax algebraic syntax

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 14 / 65

A standard algebraic syntax

◮ Explicit precedence/association

Example

{ t1

t2

OPTIONAL { t3 }

OPTIONAL { t4 }

t5

}

((((t1 AND t2) OPT t3) OPT t4) AND t5)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 15 / 65

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

µ : Variables −→ U

The evaluation of a pattern results in a set of mappings.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 16 / 65

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

µ : Variables −→ U

The evaluation of a pattern results in a set of mappings.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 16 / 65

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 17 / 65

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 17 / 65

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

◮ makes t to match the graph: µ(t) ∈ G

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 17 / 65

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

◮ makes t to match the graph: µ(t) ∈ G

Example

graph triple evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 17 / 65

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

◮ makes t to match the graph: µ(t) ∈ G

Example

graph triple evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 17 / 65

The semantics of triple patterns

Given an RDF graph G and a triple pattern t.

Definition

The evaluation of t over G is the set of mappings µ that:

◮ has as domain the variables in t: dom(µ) = var(t)

◮ makes t to match the graph: µ(t) ∈ G

Example

graph triple evaluation
(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 17 / 65

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 18 / 65

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 18 / 65

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 18 / 65

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 18 / 65

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 18 / 65

Compatible mappings

Definition

Mappings µ1 and µ2 are compatible if they agree in their common
variables:

If ?X ∈ dom(µ1) ∩ dom(µ2), then µ1(?X) = µ2(?X).

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

◮ µ2 and µ3 are not compatible

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 18 / 65

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings.

Definition

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 19 / 65

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings.

Definition

Join: extends mappings in Ω1 with compatible mappings in Ω2

◮ Ω1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are
compatible}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 19 / 65

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings.

Definition

Join: extends mappings in Ω1 with compatible mappings in Ω2

◮ Ω1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are
compatible}

Difference: selects mappings in Ω1 that cannot be extended with
mappings in Ω2

◮ Ω1 r Ω2 = {µ1 ∈ Ω1 | there is no mapping in Ω2 compatible
with µ1}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 19 / 65

Sets of mappings and operations

Definition

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 20 / 65

Sets of mappings and operations

Definition

Union: includes mappings in Ω1 and in Ω2

◮ Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 20 / 65

Sets of mappings and operations

Definition

Union: includes mappings in Ω1 and in Ω2

◮ Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}

Left Outer Join: extends mappings in Ω1 with compatible
mappings in Ω2 if possible

◮ Ω1 Ω2 = (Ω1 Ω2) ∪ (Ω1 r Ω2)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 20 / 65

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG =

JP1 AND P2KG =

JP1 UNION P2KG =

JP1 OPT P2KG =

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 21 / 65

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

JP1 AND P2KG =

JP1 UNION P2KG =

JP1 OPT P2KG =

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 21 / 65

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG =

JP1 OPT P2KG =

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 21 / 65

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG = JP1KG ∪ JP2KG

JP1 OPT P2KG =

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 21 / 65

Semantics of SPARQL

Given an RDF graph G .

Definition

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}

JP1 AND P2KG = JP1KG JP2KG

JP1 UNION P2KG = JP1KG ∪ JP2KG

JP1 OPT P2KG = JP1KG JP2KG

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 21 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?E
R1 J@ed.ex

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Join

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Difference

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Semantics of SPARQL: An example

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

((?X , name, ?Y) OPT (?X , email, ?E))

?X ?Y
R1 john
R2 paul

?X ?Y ?E
R1 john J@ed.ex
R2 paul

?X ?E
R1 J@ed.ex

◮ from the Union

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 22 / 65

Filter expressions (value constraints)

Filter expression: P FILTER R

◮ P is a graph pattern

◮ R is a built-in condition

We consider in R :

◮ equality = among variables and RDF terms

◮ unary predicate bound

◮ boolean combinations (∧, ∨, ¬)

We impose a safety condition: var(R) ⊆ var(P)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 23 / 65

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 24 / 65

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 24 / 65

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 24 / 65

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 24 / 65

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 24 / 65

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

◮ R is R1 ∨ R2, and µ |= R1 or µ |= R2;

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 24 / 65

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

◮ R is R1 ∨ R2, and µ |= R1 or µ |= R2;

◮ R is R1 ∧ R2, µ |= R1 and µ |= R2.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 24 / 65

Satisfaction of value constraints

A mapping µ satisfies a condition R (µ |= R) if:

◮ R is ?X = c , ?X ∈ dom(µ) and µ(?X) = c ;

◮ R is ?X =?Y , ?X , ?Y ∈ dom(µ) and µ(?X) = µ(?Y);

◮ R is bound(?X) and ?X ∈ dom(µ);

◮ R is ¬R1 and µ 6|= R1;

◮ R is R1 ∨ R2, and µ |= R1 or µ |= R2;

◮ R is R1 ∧ R2, µ |= R1 and µ |= R2.

Definition

FILTER : selects mappings that satisfy a condition

JP FILTER RKG = {µ ∈ JPKG | µ |= R}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 24 / 65

Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 25 / 65

Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 26 / 65

Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 27 / 65

Syntax of RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

How can one query RDFS data?

◮ Evaluating queries which involve this vocabulary is
challenging.

◮ There is not yet consensus in the Semantic Web community
on how to define a query language for RDFS.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 27 / 65

A simple SPARQL query: (Messi, rdf:type, person)

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 28 / 65

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
answering queries over RDF.

◮ For the case of RDFS, we need to check whether t is implied by G .

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 29 / 65

An inference system for RDFS

Inference rule:
R
R ′

◮ R and R ′ are sequences of RDF triples including symbols A,
X , . . ., to be replaced by elements from U.

Instantiation of a rule:
σ(R)
σ(R ′)

◮ σ : {A,X , . . .} → U

Application of a rule
R
R ′

to an RDF graph G :

◮ Select an assignment σ : {A,X , . . .} → U.

◮ if σ(R) ⊆ G , then obtain G ∪ σ(R ′)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 30 / 65

An inference system for RDFS

Sub-property :
(A,rdf:sp,B) (B,rdf:sp,C)

(A,rdf:sp,C)

(A,rdf:sp,B) (X ,A,Y)
(X ,B,Y)

Subclass :
(A,rdf:sc,B) (B,rdf:sc,C)

(A,rdf:sc,C)

(A,rdf:sc,B) (X ,rdf:type,A)
(X ,rdf:type,B)

Typing :
(A,rdf:dom,B) (X ,A,Y)

(X ,rdf:type,B)

(A,rdf:range,B) (X ,A,Y)
(Y,rdf:type,B)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 31 / 65

Entailment in RDFS

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of

entailment in ground RDFS.

Thus, a triple t can be deduced from an RDF graph G (G |= t) if
there exists an RDF G ′ such that:

◮ t ∈ G ′

◮ G ′ can be obtained from G by successively applying the rules
in the previous system.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 32 / 65

Entailment in RDFS: Closure of a graph

Definition

The closure of an RDFS graph G (cl(G)) is the graph obtained by
adding to G all the triples that are implied by G .

A basic property of the closure:

◮ G |= t iff t ∈ cl(G)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 33 / 65

Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 34 / 65

Querying RDFS data

Basic step for answering queries over RDFS:

◮ Checking whether a triple t is in cl(G).

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 35 / 65

Querying RDFS data

Basic step for answering queries over RDFS:

◮ Checking whether a triple t is in cl(G).

Definition

The RDFS-evaluation of a graph pattern P over an RDFS graph G

is defined as the evaluation of P over cl(G):

JPKrdfs
G = JPKcl(G)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 35 / 65

Example: (Messi, rdf:type, person) over the closure

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

rdf:type

rdf:sc

rdf:type

Spain

lives in

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 36 / 65

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 37 / 65

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 37 / 65

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 37 / 65

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

◮ Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 37 / 65

Answering SPARQL queries over RDFS

A simple approach for answering a SPARQL query P over an
RDFS graph G :

◮ Compute cl(G), and then evaluate P over cl(G) as for RDF.

This approach has some drawbacks:

◮ The size of the closure of G can be quadratic in the size of G .

◮ Once the closure has been computed, all the queries are evaluated
over a graph which can be much larger than the original graph.

◮ The approach is not goal-oriented.

When evaluating (a, rdf:sc, b), a goal-oriented approach should
not compute cl(G):

◮ It should just verify whether there exists a path from a to b in
G where every edge has label rdf:sc.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 37 / 65

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 38 / 65

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 38 / 65

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G

(cl(G) is not computed).

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 38 / 65

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G

(cl(G) is not computed).

This approach has some advantages:

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 38 / 65

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G

(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 38 / 65

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G

(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

◮ It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 38 / 65

Extending SPARQL with navigational capabilities

The example (a, rdf:sc, b) suggests that a query language with
navigational capabilities could be appropriate for RDFS.

Possible approach: Extend SPARQL with navigational capabilities.

◮ A query P over an RDFS graph G is answered by navigating G

(cl(G) is not computed).

This approach has some advantages:

◮ It is goal-oriented.

◮ It has been used to design query languages for XML (e.g., XPath
and XQuery). The results for these languages can be used here.

◮ Navigational operators allow to express natural queries that are not
expressible in SPARQL over RDFS.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 38 / 65

Navigational axes

Forward axes for an RDF triple (a, p, b):

next

ba

p

edge node

Backward axes for an RDF triple (a, p, b):

p

a b

next-1

node-1edge-1

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 39 / 65

A first attempt: rSPARQL

Syntax of navigational expressions:

exp := self | self::a | axis |

axis::a | exp/exp | exp|exp | exp∗

where a ∈ U and axis ∈ {next, next-1, edge, edge-1, node,
node-1}.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 40 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Given an RDFS graph G , the semantics of navigational expressions
is defined as follows:

JselfKG = {(x , x) | x is in G}
JnextKG = {(x , y) | ∃z ∈ U (x , z , y) ∈ G}
JedgeKG = {(x , y) | ∃z ∈ U (x , y , z) ∈ G}

Jself::aKG = {(a, a)}
Jnext::aKG = {(x , y) | (x , a, y) ∈ G}
Jedge::aKG = {(x , y) | (x , y , a) ∈ G}

Jexp1/exp2KG = {(x , y) | ∃z (x , z) ∈ Jexp1KG and
(z , y) ∈ Jexp2KG}

Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Jexp∗KG = JselfKG ∪ JexpKG ∪ Jexp/expKG ∪
Jexp/exp/expKG ∪ · · ·

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 41 / 65

A first attempt: rSPARQL

Syntax of rSPARQL:

◮ Basic component: A triple of the form (x , exp, y)

◮ exp is a navigational expression
◮ x (resp. y) is either an element from U or a variable

◮ Operators: AND, FILTER, UNION and OPT

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 42 / 65

A first attempt: rSPARQL

Syntax of rSPARQL:

◮ Basic component: A triple of the form (x , exp, y)

◮ exp is a navigational expression
◮ x (resp. y) is either an element from U or a variable

◮ Operators: AND, FILTER, UNION and OPT

Triple (?X , ?Y , ?Z) is not allowed.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 42 / 65

A first attempt: rSPARQL

Syntax of rSPARQL:

◮ Basic component: A triple of the form (x , exp, y)

◮ exp is a navigational expression
◮ x (resp. y) is either an element from U or a variable

◮ Operators: AND, FILTER, UNION and OPT

Triple (?X , ?Y , ?Z) is not allowed.

◮ It computes the closure!

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 42 / 65

rSPARQL: What can we express?

Example

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 43 / 65

rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 43 / 65

rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

◮ (?X , edge::a, ?Y): Equivalent to SPARQL pattern
(?X , ?Y , a)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 43 / 65

rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

◮ (?X , edge::a, ?Y): Equivalent to SPARQL pattern
(?X , ?Y , a)

◮ (?X , node::a, ?Y): Equivalent to SPARQL pattern
(a, ?X , ?Y)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 43 / 65

rSPARQL: What can we express?

Example

◮ (Messi, next::lives in, Spain): Equivalent to SPARQL
pattern (Messi, lives in, Spain)

◮ (?X , edge::a, ?Y): Equivalent to SPARQL pattern
(?X , ?Y , a)

◮ (?X , node::a, ?Y): Equivalent to SPARQL pattern
(a, ?X , ?Y)

◮ (?X , (next::(rdf:sc))+, ?Y): Verifies whether ?X is a
subclass of ?Y .

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 43 / 65

A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y) over an
RDF graph G is the set of mappings µ such that:

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 44 / 65

A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y) over an
RDF graph G is the set of mappings µ such that:

◮ The domain of µ is {?X , ?Y }, and

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 44 / 65

A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y) over an
RDF graph G is the set of mappings µ such that:

◮ The domain of µ is {?X , ?Y }, and

◮ (µ(?X), µ(?Y)) ∈ JexpKG

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 44 / 65

A first attempt: rSPARQL

Semantics of rSPARQL: Evaluation of t = (?X , exp, ?Y) over an
RDF graph G is the set of mappings µ such that:

◮ The domain of µ is {?X , ?Y }, and

◮ (µ(?X), µ(?Y)) ∈ JexpKG

Example

What does (?X , (next::KLM | next::AirFrance)+, ?Y) represent?

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 44 / 65

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 45 / 65

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a rSPARQL pattern Q such that:

JPKrdfs
G = JQKG

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 45 / 65

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a rSPARQL pattern Q such that:

JPKrdfs
G = JQKG

But we trivially fail because of triple (?X , ?Y , ?Z).

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 45 / 65

Is rSPARQL a good language for RDFS?

How do we test whether a language is appropriate for RDFS?

◮ Can we capture SPARQL over RDFS?

For every RDFS graph G and SPARQL pattern P , we would like to
find a rSPARQL pattern Q such that:

JPKrdfs
G = JQKG

But we trivially fail because of triple (?X , ?Y , ?Z).

◮ We need to use a fragment of SPARQL.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 45 / 65

A good fragment of SPARQL for our study

T : Set of triples (x , y , z) where x ∈ U or y ∈ U or z ∈ U.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 46 / 65

A good fragment of SPARQL for our study

T : Set of triples (x , y , z) where x ∈ U or y ∈ U or z ∈ U.

◮ (?X , a, b), (?X , a, ?Y) and (?X , ?Y , a)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 46 / 65

A good fragment of SPARQL for our study

T : Set of triples (x , y , z) where x ∈ U or y ∈ U or z ∈ U.

◮ (?X , a, b), (?X , a, ?Y) and (?X , ?Y , a)

T -SPARQL: Fragment of SPARQL where triple patterns are taken
from T .

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 46 / 65

Is rSPARQL a good language for RDFS?

Theorem (PAG08)

There exists a T -SPARQL pattern P for which there is no

rSPARQL pattern Q such that JPKrdfs
G = JQKG for every RDF

graph G.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 47 / 65

Is rSPARQL a good language for RDFS?

Theorem (PAG08)

There exists a T -SPARQL pattern P for which there is no

rSPARQL pattern Q such that JPKrdfs
G = JQKG for every RDF

graph G.

The previous theorem holds even for P = (?X , a, ?Y):

?Y

a
rdf:sp rdf:sp rdf:sp

?X

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 47 / 65

A successful attempt: Adding nesting

How can we capture T -SPARQL over RDFS?

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 48 / 65

A successful attempt: Adding nesting

How can we capture T -SPARQL over RDFS?

◮ We adopt the notion of branching from XPath.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 48 / 65

A successful attempt: Adding nesting

How can we capture T -SPARQL over RDFS?

◮ We adopt the notion of branching from XPath.

Syntax of nested regular expressions:

exp := self | self::a | axis | axis::a |

self::[exp] | axis::[exp] | exp/exp | exp|exp | exp∗

where a ∈ U and axis ∈ {next, next-1, edge, edge-1, node,
node-1}.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 48 / 65

A successful attempt: Adding nesting

Given an RDFS graph G , the semantics of nested regular
expressions is defined as follows:

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 49 / 65

A successful attempt: Adding nesting

Given an RDFS graph G , the semantics of nested regular
expressions is defined as follows:

Jnext::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , z , y) ∈ G and
(z ,w) ∈ JexpKG}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 49 / 65

A successful attempt: Adding nesting

Given an RDFS graph G , the semantics of nested regular
expressions is defined as follows:

Jnext::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , z , y) ∈ G and
(z ,w) ∈ JexpKG}

Jedge::[exp]KG = {(x , y) | ∃z ,w ∈ U (x , y , z) ∈ G and
(z ,w) ∈ JexpKG}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 49 / 65

Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 50 / 65

Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example

RDFS evaluation of (?X , a, ?Y) can be obtained by using nSPARQL:

(?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 50 / 65

Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example

RDFS evaluation of (?X , a, ?Y) can be obtained by using nSPARQL:

(?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y)

a
rdf:sp rdf:sp rdf:sp

?X

?Y

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 50 / 65

Capturing T -SPARQL over RDFS

nSPARQL: Defined as rSPARQL but replacing navigational
expressions by nested regular expressions.

Example

RDFS evaluation of (?X , a, ?Y) can be obtained by using nSPARQL:

(?X , next::[(next::(rdf:sp))∗/(self::a)], ?Y)

?Y

a
rdf:sp rdf:sp rdf:sp

?X

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 50 / 65

Second part: Ground RDF with RDFS vocabulary

◮ Syntax and formal semantics

◮ Querying RDFS data

◮ nSPARQL: A navigational query language for RDFS

◮ Expressiveness

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 51 / 65

nSPARQL captures T -SPARQL over RDFS

Theorem (PAG08)

For every T -SPARQL pattern P, there exists an nSPARQL pattern

Q such that JPKrdfs
G = JQKG for every RDF graph G.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 52 / 65

nSPARQL captures T -SPARQL over RDFS

Theorem (PAG08)

For every T -SPARQL pattern P, there exists an nSPARQL pattern

Q such that JPKrdfs
G = JQKG for every RDF graph G.

Proof sketch

Replace (?X , a, ?Y) by (?X , trans(a), ?Y), where:

trans(rdf:dom) = next::(rdf:dom)
trans(rdf:range) = next::(rdf:range)
trans(rdf:sc) = (next::(rdf:sc))+

trans(rdf:sp) = (next::(rdf:sp))+

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 52 / 65

nSPARQL: Capturing SPARQL over RDFS

trans(rdf:type) =

next::(rdf:type)/(next::(rdf:sc))∗ |

edge/(next::(rdf:sp))∗/next::(rdf:dom)/(next::(rdf:sc))∗ |

node-1/(next::(rdf:sp))∗/next::(rdf:range)/(next::(rdf:sc))∗

trans(p) = next::[(next::(rdf:sp))∗/self::p]

for p /∈ {rdf:sc, rdf:sp, rdf:range, rdf:dom, rdf:type}

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 53 / 65

The extra expressive power of nSPARQL

A

CalaisParis Dover London

B C

train ferry

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

transport

bus

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 54 / 65

The extra expressive power of nSPARQL

A

CalaisParis Dover London

B C

train ferry

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

transport

bus

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 54 / 65

The extra expressive power of nSPARQL

transport

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 54 / 65

The extra expressive power of nSPARQL

transport

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sp rdf:sprdf:sp

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 54 / 65

The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B travel CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 54 / 65

The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 54 / 65

The extra expressive power of nSPARQL

rdf:sp

CalaisParis Dover London

B CA

train ferry bus

rdf:sp rdf:sp rdf:sp

rdf:sprdf:sp

transport

A natural query: (?X , (next::[(next::(rdf:sp))∗/(self::travel)])+, ?Y)

◮ This query cannot be expressed in SPARQL over RDFS.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 54 / 65

Third part: RDF with RDFS vocabulary

◮ Formal semantics

◮ A little bit about complexity

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 55 / 65

Does the blank node add some information?

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 56 / 65

What about now?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

lives in

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 57 / 65

A fundamental notion: homomorphism

Definition

h : U ∪ B → U ∪ B is a homomorphism from G1 to G2 if:

◮ h(c) = c for every c ∈ U;

◮ for every (a, b, c) ∈ G1, (h(a), h(b), h(c)) ∈ G2

Notation: G1 → G2

Example

a

b

B
p

p

a

b

p

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 58 / 65

Homomorphism and the notion of entailment

Example

In this case: G1 6→ G2 and G2 → G1

G1

a

b

B
p

p

p

a

b

p

G2

Intuitively: G1 contains more information than G2

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 59 / 65

A general notion of entailment

In this general scenario, entailment can also be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of RDFS graphs without blank nodes

This notion can also be characterized by a set of inference rules.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 60 / 65

A general system of inference rules

Existential rule :

Subproperty rules :

Subclass rules :

Typing rules :

Implicit typing :

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 61 / 65

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :

Subclass rules :

Typing rules :

Implicit typing :

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 61 / 65

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :

Typing rules :

Implicit typing :

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 61 / 65

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :
(a, rdf:sc, b) (b, rdf:sc, c)

(a, rdf:sc, c)

Typing rules :

Implicit typing :

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 61 / 65

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :
(a, rdf:sc, b) (b, rdf:sc, c)

(a, rdf:sc, c)

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 61 / 65

A general system of inference rules

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :
(a, rdf:sc, b) (b, rdf:sc, c)

(a, rdf:sc, c)

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :
(q, rdf:dom, a) (p, rdf:sp, q) (b, p, c)

(b, rdf:type, a)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 61 / 65

A general system of inference rules

Existential rule :

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :
(q, rdf:dom, a) (p, rdf:sp, q) (b, p, c)

(b, rdf:type, a)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 61 / 65

A general system of inference rules

Existential rule :

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :
(B, rdf:dom, a) (p, rdf:sp, B) (b, p, c)

(b, rdf:type, a)

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 61 / 65

RDFS Entailment

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of

entailment in RDFS.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 62 / 65

RDFS Entailment

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of

entailment in RDFS.

This system can be used to define cl(G).

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 62 / 65

RDFS Entailment

Theorem (H03,GHM04,MPG07)

The previous system of inference rules characterize the notion of

entailment in RDFS.

This system can be used to define cl(G).

◮ This can be used to define the semantics of a query language
over RDFS data.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 62 / 65

Third part: RDF with RDFS vocabulary

◮ Formal semantics

◮ A bit about complexity

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 63 / 65

A little about complexity

Complexity (GHM04)

RDFS entailment is NP-complete.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 64 / 65

A little about complexity

Complexity (GHM04)

RDFS entailment is NP-complete.

Proof sketch

Membership in NP: If G |= t, then there exists a polynomial-size
proof of this fact.

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 64 / 65

Thank you!

Marcelo Arenas – Semantic Web: Query Languages for RDF and RDFS 65 / 65

