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ABSTRACT

Mapping relational databases to RDF is a fundamental problem

for the development of the Semantic Web. We present a solution,

inspired by draft methods defined by the W3C where relational

databases are directly mapped to RDF and OWL. Given a relational

database schema and its integrity constraints, this direct mapping

produces an OWL ontology, which, provides the basis for generat-

ing RDF instances. The semantics of this mapping is defined using

Datalog. Two fundamental properties are information preservation

and query preservation. We prove that our mapping satisfies both

conditions, even for relational databases that contain null values.

We also consider two desirable properties: monotonicity and se-

mantics preservation. We prove that our mapping is monotone and

also prove that no monotone mapping, including ours, is semantic

preserving. We realize that monotonicity is an obstacle for seman-

tic preservation and thus present a non-monotone direct mapping

that is semantics preserving.

Categories and Subject Descriptors

H.2.5 [Heterogeneous Databases]: Data translation; H.3.5 [Online

Information Services]: Web-based services

Keywords

Relational Databases, Semantic Web, Direct Mapping, RDB2RDF,

SQL, SPARQL, RDF, OWL

1. INTRODUCTION
In this paper, we study the problem of directly mapping a relational

database to an RDF graph with OWL vocabulary. A direct mapping

is a default and automatic way of translating a relational database

to RDF. One report suggests that Internet accessible databases con-

tained up to 500 times more data compared to the static Web and

roughly 70% of websites are backed by relational databases, mak-

ing automatic translation of relational database to RDF central to

the success of the Semantic Web [13].

We build on an existing direct mapping of relational database

schema to OWL DL [23] and the current draft of the W3C Direct

Mapping standard [5]. We study two properties that are fundamen-

tal to a direct mapping: information preservation and query preser-

vation. Additionally we study two desirable properties: monotonic-

ity and semantics preservation. To the best of our knowledge, we

are presenting the first direct mapping from a relational database
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to an RDF graph with OWL vocabulary that has been thoroughly

studied with respect to these fundamental and desirable properties.

Information preservation speaks to the ability of reconstructing

the original database from the result of the direct mapping. Query

preservation means that every query over a relational database can

be translated into an equivalent query over the result of the direct

mapping. Monotonicity is a desired property because it assures

that a re-computation of the entire mapping is not needed after any

updates to the database. Finally, a direct mapping is semantics pre-

serving if the satisfaction of a set of integrity constraints are en-

coded in the mapping result.

Our proposed direct mapping is monotone, information preserv-

ing and query preserving even in the general and practical scenario

where relational databases contain null values. However, given a

database that violates an integrity constraint, our direct mapping

generates a consistent RDF graph, hence, it is not semantics pre-

serving.

We analyze why our direct mapping is not semantics preserving

and realize that monotonicity is an obstacle. We first show that

if we only consider primary keys, we can still have a monotone

direct mapping that is semantics preserving. However this result is

not sufficient because it dismisses foreign keys. Unfortunately, we

prove that no monotone direct mapping is semantics preserving if

foreign keys are considered, essentially because the only form of

constraint checking in OWL is satisfiability testing. This result has

an important implication in real world applications: if you migrate

your relational database to the Semantic Web using a monotone

direct mapping, be prepared to experience consistency when what

one would expect is inconsistency.

Finally, we present a non-monotone direct mapping that over-

comes the aforementioned limitation. We foresee the existence of

monotone direct mappings if OWL is extended with the epistemic

operator. Due to lack of space, the paper does not include the proofs

of the results. We refer the reader to [19] for these proofs.

2. PRELIMINARIES
In this section, we define the basic terminology used in the paper.

2.1 Relational databases
Assume, a countably infinite domain D and a reserved symbol

NULL that is not in D. A schema R is a finite set of relation names,

where for each R ∈ R, att(R) denotes the nonempty finite set of

attributes names associated to R. An instance I of R assigns to

each relation symbol R ∈ R a finite set RI = {t1, . . . , tℓ} of tu-

ples, where each tuple tj (1 ≤ j ≤ ℓ) is a function that assigns

to each attribute in att(R) a value from (D ∪ {NULL}). We use

notation t.A to refer to the value of a tuple t in an attribute A.

Relational algebra: To define some of the concept studied in this



paper, we use relational algebra as a query language for relational

databases. Given that we consider relational databases containing

null values, we present in detail the syntax and semantics of a ver-

sion of relational algebra that formalizes the way nulls are treated

in practice in database systems. Formally, assume that R is a rela-

tional schema. Then a relational algebra expression ϕ over R and

its set of attributes att(ϕ) are recursively defined as follows:

1. If ϕ = R with R ∈ R, then ϕ is a relational algebra expression

over R such that att(ϕ) = att(R).

2. If ϕ = NULLA, where A is an attribute, then ϕ is a relational

algebra expression over R such that att(ϕ) = {A}.

3. If ψ is a relational algebra expression over R, A ∈ att(ψ),

a ∈ D and ϕ is any of the expressions σA=a(ψ), σA 6=a(ψ),

σIsNull(A)(ψ) or σIsNotNull(A)(ψ), then ϕ is a relational alge-

bra expression over R such that att(ϕ) = att(ψ).

4. If ψ is a relational algebra expression over R, U ⊆ att(ψ) and

ϕ = πU (ψ), then ϕ is a relational algebra expression over R

such that att(ϕ) = U .

5. If ψ is a relational algebra expression over R, A ∈ att(ψ), B
is an attribute such that B 6∈ att(ψ) and ϕ = δA→B(ψ), then

ϕ is a relational algebra expression over R such that att(ϕ) =
(att(ψ) r {A}) ∪ {B}.

6. If ψ1, ψ2 are relational algebra expressions over R and ϕ =
(ψ1 ⊲⊳ ψ2), then ϕ is a relational algebra expression over R

such that att(ϕ) = (att(ψ1) ∪ att(ψ2)).

7. If ψ1, ψ2 are relational algebra expressions over R such that

att(ψ1) = att(ψ2) and ϕ is either (ψ1∪ψ2) or (ψ1 rψ2), then

ϕ is a relational algebra expression over R such that att(ϕ) =
att(ψ1).

Let R be a relational schema, I an instance of R and ϕ a relational

algebra expression over R. The evaluation of ϕ over I , denoted by

JϕKI , is defined recursively as follows:

1. If ϕ = R with R ∈ R, then JϕKI = RI .

2. If ϕ = NULLA, where A is an attribute, then JϕKI = {t}, where

t : {A} → (D ∪ {NULL}) is a tuple such that t.A = NULL.

3. Let ψ be a relational algebra expression over R, A ∈ att(ψ)
and a ∈ D. If ϕ = σA=a(ψ), then JϕKI = {t ∈ JψKI |
t.A = a}. If ϕ = σA 6=a(ψ), then JϕKI = {t ∈ JψKI | t.A 6=
NULL and t.A 6= a}. If ϕ = σIsNull(A)(ψ), then JϕKI = {t ∈
JψKI | t.A = NULL}. If ϕ = σIsNotNull(A)(ψ), then JϕKI =
{t ∈ JψKI | t.A 6= NULL}.

4. If ψ is a relational algebra expression over R, U ⊆ att(ψ) and

ϕ = πU (ψ), then JϕKI = {t : U → (D ∪ {NULL}) | there

exists t′ ∈ JψKI such that for every A ∈ U : t.A = t′.A}.

5. If ψ is a relational algebra expression over R, A ∈ att(ψ), B
is an attribute such that B 6∈ att(ψ) and ϕ = δA→B(ψ), then

JϕKI = {t : att(ϕ) → (D ∪ {NULL}) | there exists t′ ∈ JψKI

such that t.B = t′.A and for every C ∈ (att(ϕ)r{B}): t.C =
t′.C}.

6. If ψ1, ψ2 are relational algebra expressions over R and ϕ =
(ψ1 ⊲⊳ ψ2), then JϕKI = {t : att(ϕ) → (D ∪ {NULL}) |
there exist t1 ∈ Jψ1KI and t2 ∈ Jψ2KI such that for every A ∈
(att(ψ1) ∩ att(ψ2)): t.A = t1.A = t2.A 6= NULL, for every

A ∈ (att(ψ1) r att(ψ2)): t.A = t1.A, and for every A ∈
(att(ψ2) r att(ψ1)): t.A = t2.A}.

7. Let ψ1, ψ2 be relational algebra expressions over R such that

att(ψ1) = att(ψ2). If ϕ = (ψ1 ∪ ψ2), then JϕKI = Jψ1KI ∪
Jψ2KI . If ϕ = (ψ1 r ψ2), then JϕKI = Jψ1KI r Jψ2KI .

It is important to notice that the operators left-outer join, right-outer

join and full-outer join are all expressible with the previous opera-

tors. For more details, we refer the reader to [19].

Integrity constraints: We consider two types of integrity con-

straints: keys and foreign keys. Let R be a relational schema. A

key ϕ over R is an expression of the form R[A1, . . . , Am], where

R ∈ R and ∅ ( {A1, . . . , Am} ⊆ att(R). Given an instance I of

R, I satisfies key ϕ, denoted by I |= ϕ, if: (1) for every t ∈ RI

and k ∈ {1, . . . , m}, it holds that t.Ak 6= NULL, and (2) for ev-

ery t1, t2 ∈ RI , if t1.Ak = t2.Ak for every k ∈ {1, . . . , m},

then t1 = t2. A foreign key over R is an expression of the form

R[A1, . . . , Am] ⊆FK S[B1, . . . , Bm], where R, S ∈ R, ∅ (

{A1, . . . , Am} ⊆ att(R) and ∅ ( {B1, . . . , Bm} ⊆ att(S).

Given an instance I of R, I satisfies foreign key ϕ, denoted by

I |= ϕ, if I |= S[B1, . . . , Bm] and for every tuple t in RI : ei-

ther (1) there exists k ∈ {1, . . . , m} such that t.Ak = NULL, or

(2) there exists a tuple s in SI such that t.Ak = s.Bk for every

k ∈ {1, . . . , m}.

Given a relational schema R, a set Σ of keys and foreign keys

is said to be a set of primary keys (PKs) and foreign keys (FKs)

over R if: (1) for every ϕ ∈ Σ, it holds that ϕ is either a key or a

foreign key over R, and (2) there are no two distinct keys in Σ of

the form R[A1, . . . , Am] and R[B1, . . . , Bn] (that is, that mention

the same relation name R). Moreover, an instance I of R satisfies

Σ, denoted by I |= Σ, if for every ϕ ∈ Σ, it holds that I |= ϕ.

2.2 RDF and OWL
Assume there are pairwise disjoint infinite sets I (IRIs), B (blank

nodes) and L (literals). A tuple (s, p, o) ∈ (I∪B)×I×(I∪B∪L)
is called an RDF triple, where s is the subject, p is the predicate and

o is the object. A finite set of RDF triples is called an RDF graph.

Moreover, assume the existence of an infinite set V of variables

disjoint from the above sets, and assume that every element in V

starts with the symbol ?.

In this paper, we consider RDF graphs with OWL vocabulary [1],

which is the W3C standard ontology language based on description

logics, without datatypes. In particular, we say that an RDF graph

G is consistent under OWL semantics if a model of G with respect

to the OWL vocabulary exists (see [1] for a precise definition of the

notion of model and the semantics of OWL).

2.3 SPARQL
In this paper, we use SPARQL as a query language for RDF

graphs. The official syntax of SPARQL [17, 12] considers oper-

ators OPTIONAL, UNION, FILTER, SELECT, AS and concatena-

tion via a point symbol (.), to construct graph pattern expressions.

The syntax of the language also considers { } to group patterns,

and some implicit rules of precedence and association. In order

to avoid ambiguities in the parsing, we follow the approach pro-

posed in [16], and we present the syntax of SPARQL graph patterns

in a more traditional algebraic formalism, using operators AND
(.), UNION (UNION), OPT (OPTIONAL), MINUS (MINUS),

FILTER (FILTER), SELECT (SELECT) and AS (AS). More

precisely, a SPARQL graph pattern expression is defined recur-

sively as follows.

1. { } is a graph pattern (the empty graph pattern).

2. A tuple from (I ∪ L ∪V) × (I ∪V) × (I ∪ L ∪V) is a graph

pattern (a triple pattern).

3. If P1 and P2 are graph patterns, then expressions (P1 AND P2),

(P1 OPT P2), (P1 UNION P2) and (P1 MINUS P2) are

graph patterns.



4. If P is a graph pattern and R is a SPARQL built-in condition,

then the expression (P FILTER R) is a graph pattern.

5. If P is a graph pattern and ?A1, . . ., ?Am, ?B1, . . ., ?Bm, ?C1,
. . ., ?Cn is a sequence of pairwise distinct elements from V

(m ≥ 0 and n ≥ 0) such that none of the variables ?Bi (1 ≤
i ≤ m) is mentioned in P , then

(SELECT {?A1 AS ?B1, . . . , ?Am AS ?Bm, ?C1, . . . , ?Cn} P )

is a graph pattern.

A SPARQL built-in condition is constructed using elements of the

set (I∪V) and constants, logical connectives (¬, ∧, ∨), inequality

symbols (<, ≤, ≥, >), the equality symbol (=), unary predicates

such as bound, isBlank, and isIRI (see [17, 12] for a complete

list). In this paper, we restrict to the fragment where the built-in

condition is a Boolean combination of terms constructed by us-

ing = and bound, that is: (1) if ?X, ?Y ∈ V and c ∈ I, then

bound(?X), ?X = c and ?X =?Y are built-in conditions, and

(2) if R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2)
and (R1 ∧ R2) are built-in conditions.

The version of SPARQL used in this paper includes the follow-

ing SPARQL 1.1 features: the operator MINUS, the possibility of

nesting the SELECT operator and the operator AS [12].

The answer of a SPARQL query P over an RDF graph G is a

finite set of mappings, where a mapping µ is a partial function from

the set V of variables to (I ∪ L ∪ B). We define the semantics of

SPARQL as a function J · KG that, given an RDF graph G, takes a

graph pattern expression and returns a set of mappings. We refer

the reader to [19] for more detail.

3. DIRECT MAPPINGS: DEFINITION AND

PROPERTIES
A direct mapping is a default way to translate relational databases

into RDF (without any input from the user on how the relational

data should be translated). The input of a direct mapping M is a

relational schema R, a set Σ of PKs and FKs over R and an in-

stance I of R. The output is an RDF graph with OWL vocabulary.

Assume G is the set of all RDF graphs and RC is the set of all

triples of the form (R, Σ, I) such that R is a relational schema, Σ
is a set of PKs and FKs over R and I is an instance of R.

Definition 1 (Direct mapping) A direct mapping M is a total func-

tion from RC to G.

We now introduce two fundamental properties of direct mappings:

information preservation and query preservation; and two desirable

properties of these mappings: monotonicity and semantic preserva-

tion. Information preservation is a fundamental property because it

guarantees that the mapping does not lose information, which is

fundamental in an Extract-Transform-Load process. Query preser-

vation is also a fundamental property because it guarantees that

everything that can be extracted from the relational database by a

relational algebra query, can also be extracted from the resulting

RDF graph by a SPARQL query. This property is fundamental for

workloads that involve translating SPARQL to SQL. Monotonic-

ity is a desirable property because it would avoid recalculating the

mapping for the entire database after inserting new data. In ad-

dition to practical considerations when translating relational data

to RDF graphs, we must deal with the closed-world database se-

mantics and open world RDF/OWL semantics. Understanding the

expressive power of a mapping and, its ability to properly deal with

integrity constraints is important. Thus our choice of examining

semantics preservation.

3.1 Fundamental properties
Information preservation: A direct mapping is information pre-

serving if it does not lose any information about the relational in-

stance being translated, that is, if there exists a way to recover the

original database instance from the RDF graph resulting from the

translation process. Formally, assuming that I is the set of all pos-

sible relational instances, we have that:

Definition 2 (Information preservation) A direct mapping M is

information preserving if there is a computable mapping N : G →
I such that for every relational schema R, set Σ of PKs and FKs

over R, and instance I of R satisfying Σ: N (M(R, Σ, I)) = I .

Recall that a mapping N : G → I is computable if there exists an

algorithm that, given G ∈ G, computes N (G).

Query preservation: A direct mapping is query preserving if ev-

ery query over a relational database can be translated into an equiv-

alent query over the RDF graph resulting from the mapping. That

is, query preservation ensures that every relational query can be

evaluated using the mapped RDF data.

To formally define query preservation, we focus on relational

queries that can be expressed in relational algebra [3] and RDF

queries that can be expressed in SPARQL [17, 16]. In Section 2.1,

we introduced a version of relational algebra that formalizes the

semantics of null values in practice. In Section 2.3, we introduce

an algebraic version of SPARQL that follows the approach pro-

posed in [16]. Given the mismatch in the formats of these query

languages, we introduce a function tr that converts tuples returned

by relational algebra queries into mappings returned by SPARQL.

Formally, given a relational schema R, a relation name R ∈ R,

an instance I of R and a tuple t ∈ RI , define tr(t) as the map-

ping µ such that: (1) the domain of µ is {?A | A ∈ att(R)
and t.A 6= NULL}, and (2) µ(?A) = t.A for every A in the do-

main of µ.

Example 1 Assume that a relational schema contains a relation

name STUDENT and attributes ID, NAME and AGE. Moreover, as-

sume that t is a tuple in this relation such that t.ID = 1, t.NAME =
John and t.AGE = NULL. Then, tr(t) = µ, where the domain of µ
is {?ID, ?NAME}, µ(?ID) = 1 and µ(?NAME) = John.

Definition 3 (Query preservation) A direct mapping M is query

preserving if for every relational schema R, set Σ of PKs and

FKs over R and relational algebra query Q over R, there exists

a SPARQL query Q⋆ such that for every instance I of R satisfying

Σ: tr(JQKI) = JQ⋆KM(R,Σ,I).

It is important to notice that information preservation and query

preservation are incomparable properties in our setting. On one

side, if a direct mapping M is information preserving, this does

not guarantee that every relational algebra query Q can be rewritten

into an equivalent SPARQL query over the translated data, as M
could transform source relational databases in such a way that a

more expressive query language is needed to express Q over the

generated RDF graphs. On the other side, a mapping M can be

query preserving and not information preserving if the information

about the schema of the relational database being translated is not

stored. For example, we define in Section 4 a direct mapping DM
that includes information about these relational schemas. It will

become clear in Sections 4 and 5 that if such information is not

stored, then DM would be query preserving but not information

preserving.

3.2 Desirable properties
Monotonicity: Given two database instances I1 and I2 over a rela-

tional schema R, instance I1 is said to be contained in instance I2,



denoted by I1 ⊆ I2, if for every R ∈ R, it holds that RI1 ⊆ RI2 .

A direct mapping M is considered monotone if for any such pair of

instances, the result of mapping I2 contains the result of mapping

I1. In other words, if we insert new data to the database, then the

elements of the mapping that are already computed are unaltered.

Definition 4 (Monotonicity) A direct mapping M is monotone if

for every relational schema R, set Σ of PKs and FKs over R,

and instances I1, I2 of R such that I1 ⊆ I2: M(R, Σ, I1) ⊆
M(R, Σ, I2).

Semantics preservation: A direct mapping is semantics preserv-

ing if the satisfaction of a set of PKs and FKs by a relational database

is encoded in the translation process. More precisely, given a rela-

tional schema R, a set Σ of PKs and FKs over R and an instance

I of R, a semantics preserving mapping should generate from I a

consistent RDF graph if I |= Σ, and it should generate an incon-

sistent RDF graph otherwise.

Definition 5 (Semantics preservation) A direct mapping M is se-

mantics preserving if for every relation schema R, set Σ of PKs

and FKs over R and instance I of R: I |= Σ iff M(R, Σ, I) is

consistent under OWL semantics.

4. THE DIRECT MAPPING DM

We introduce a direct mapping DM, that integrates and extends

the functionalities of the direct mappings proposed in [23, 5]. DM
is defined as a set of Datalog rules1, which are divided in two parts:

translate relational schemas and translate relational instances.

In Section 4.1, we present the predicates that are used to store a

relational database, the input of DM. In Section 4.2, we present

predicates that are used to store an ontology and Datalog rules to

generate an ontology from the relational schema and the set of PKs

and FKs. In Section 4.3, we present the Datalog rules that generate

the OWL vocabulary from the ontology that was derived from the

relational schema and a set of PKs and FKs. Finally, we present

in Section 4.4 the Datalog rules that generates RDF triples from a

relational instance.

Throughout this section, we use the following running example.

Consider a relational database for a university. The schema

of this database consists of tables STUDENT(SID,NAME),

COURSE(CID,TITLE,CODE), DEPT(DID,NAME) and

ENROLLED(SID,CID). Moreover, we have the following

constraints about the schema of the university: SID is the primary

key of STUDENT, CID is the primary key of COURSE, DID is

the primary key of DEPT, (SID,CID) is the primary key of

ENROLLED, CODE is a foreign key in COURSE that references

attribute DID in DEPT, SID is a foreign key in ENROLLED that

references attribute SID in STUDENT, and CID is a foreign key in

ENROLLED that references attribute CID in COURSE.

4.1 Storing relational databases
Given that the direct mapping DM is specified by a set of Datalog

rules, its input (R, Σ, I) has to be encoded as a set of relations.

We define the predicates that are used to store the triples of the

form (R, Σ, I). More precisely, the following predicates are used

to store a relational schema R and a set Σ of PKs and FKs over R.

• REL(r): Indicates that r is a relation name in R; e.g.

REL("STUDENT") indicates that STUDENT is a relation name.2

1We refer the reader to [3] for the syntax and semantics of Datalog.
2As is customary, we use double quotes to delimit strings.

• ATTR(a, r): Indicates that a is an attribute in the relation r in

R; e.g. ATTR("NAME", "STUDENT") holds.

• PKn(a1, . . . , an, r): Indicates that r[a1, . . . , an] is a primary

key in Σ; e.g. PK1("SID","STUDENT") holds.

• FKn(a1, . . . , an, r, b1, . . . , bn, s): Indicates that

r[a1, . . . , an] ⊆FK s[b1, . . . , bn] is a foreign key in Σ;

e.g. FK1("CODE","COURSE","DID","DEPT") holds.

Moreover, the following predicate is used to store the tuples in an

relational instance I of a relational schema R.

• VALUE(v, a, t, r): Indicates that v is the value of an at-

tribute a in a tuple with identifier t in a relation r (that be-

longs to R); e.g. a tuple t1 of table STUDENT such that

t1.SID = "1" and t1.NAME = NULL is stored by us-

ing the facts VALUE("1","SID","id1","STUDENT") and

VALUE(NULL,"NAME","id1", "STUDENT"), assuming that

id1 is the identifier of tuple t1.

4.2 Storing an ontology
In order to translate a relational database into an RDF graph with

OWL vocabulary, we first extract an ontology from the relational

schema and the set of PKs and FKs given as input. In particular, we

classify each relation name in the schema as a class or a binary re-

lation (which is used to represent a many-to-many relationship be-

tween entities in an ER/UML diagram), we represent foreign keys

as object properties and attributes of relations as data type proper-

ties. More specifically, the following predicates are used to store

the extracted ontology:

• CLASS(c): Indicates that c is a class.

• OPn(p1, . . . , pn, d, r): Indicates that p1, . . . , pn (n ≥ 1) form

an object property with domain d and range r.

• DTP(p, d): Indicates that p is a data type property with domain

d.

The above predicates are defined by the Datalog rules described in

the following sections.

Identifying binary relations: We define auxiliary predicates that

identify binary relations to facilitate identifying classes, object prop-

erties and data type properties. Informally, a relation R is a binary

relation between two relations S and T if (1) both S and T are

different from R, (2) R has exactly two attributes A and B, which

form a primary key of R, (3) A is the attribute of a foreign key in

R that points to S, (4) B is the attribute of a foreign key in R that

points to T , (5) A is not the attribute of two distinct foreign keys in

R, (6) B is not the attribute of two distinct foreign keys in R, (7)

A and B are not the attributes of a composite foreign key in R, and

(8) relation R does not have incoming foreign keys. In Datalog this

becomes:

BINREL(R, A, B, S, C, T, D) ←

PK2(A, B, R),¬THREEATTR(R),

FK1(A, R, C, S), R 6= S, FK1(B, R, D, T ), R 6= T,

¬TWOFK(A, R),¬TWOFK(B, R), (1)

¬ONEFK(A, B, R),¬FKTO(R).

In a Datalog rule, negation is represented with the symbol ¬ and
upper case letters are used to denote variables. Thus, the previous
rule states that the relation R is a binary relation between two rela-
tions S and T if the following conditions are satisfied. (a) Expres-
sion PK2(A, B, R) in (1) indicates that attributes A and B form a
primary key of R. (b) Predicate THREEATTR checks whether a re-
lation has at least three attributes, and it is defined as follows from
the base predicate ATTR:

THREEATTR(R) ← ATTR(X, R), ATTR(Y, R),

ATTR(Z, R), X 6= Y, X 6= Z, Y 6= Z.



Thus, expression ¬THREEATTR(R) in (1) indicates that R has at

least two attributes. Notice that by combining this expression with

PK2(A, B, R), we conclude that A, B are exactly the attributes of

R. (c) Expressions FK1(A, R, C, S) and FK1(B, R, D, T ) in (1)

indicate that A is the attribute of a foreign key in R that points to

S and B is the attribute of a foreign key in R that points to T , re-

spectively. (d) Expressions R 6= S and R 6= T in (1) indicate that

both S and T are different from relation R. (e) Predicate TWOFK

checks whether an attribute of a relation is the attribute of two dis-

tinct foreign keys in that relation, and it is defined as follows from

the base predicate FK1:

TWOFK(X, Y ) ← FK1(X, Y, U1, V1), FK1(X, Y, U2, V2),

U1 6= U2

TWOFK(X, Y ) ← FK1(X, Y, U1, V1), FK1(X, Y, U2, V2),

V1 6= V2

Thus, expressions ¬TWOFK(A, R) and ¬TWOFK(B, R) in (1)

indicate that attribute A is not the attribute of two distinct foreign

keys in R and B is not the attribute of two distinct foreign keys

in R, respectively. (f) Predicate ONEFK checks whether a pair of

attributes of a relation are the attributes of a composite foreign key

in that relation:

ONEFK(X, Y, Z) ← FK2(X, Y, Z, U, V, W )

ONEFK(X, Y, Z) ← FK2(Y, X, Z, U, V, W )

Thus, expression ¬ONEFK(A, B, R) in (1) indicates that attributes

A, B of R are not the attributes of a composite foreign key in R.

(g) Finally, predicate FKTO checks whether a relation with two

attributes has incoming foreign keys:

FKTO(X) ← FK1(U1, Y, V, X)

FKTO(X) ← FK2(U1, U2, Y, V1, V2, X)

Thus, expression ¬FKTO(R) in (1) indicates that relation R does

not have incoming foreign keys.

For instance, BINREL("ENROLLED", "SID", "CID",

"STUDENT", "SID", "COURSE", "CID") holds in our exam-

ple. Note that there is no condition in the rule (1) that requires

S and T to be different, allowing binary relations that have their

domain equal to their range. Also note that, for simplicity, we

assume in the rule (1) that a binary relation R consists of only two

attributes A and B. However, this rule can be easily extended to

deal with binary relations generated from many-to-many relation-

ships between entities in an ER/UML diagram that have more than

two attributes.

Identifying classes: In our context, a class is any relation that is

not a binary relation. That is, predicate CLASS is defined by the

following Datalog rules:

CLASS(X) ← REL(X),¬ISBINREL(X)

ISBINREL(X) ← BINREL(X, A, B, S, C, T, D)

In our example, CLASS("DEPT"), CLASS("STUDENT") and

CLASS("COURSE") hold.

Identifying object properties: For every n ≥ 1, the following
rule is used for identifying object properties that are generated from

foreign keys: 3

OP2n(X1, . . . , Xn, Y1, . . . , Yn, S, T ) ←

FKn(X1, . . . , Xn, S, Y1, . . . , Yn, T ),¬ISBINREL(S)

3Notice that although we consider an infinite number of rules in
the definition of DM, for every concrete relational database we
will need only a finite number of these rules.

This rule states that a foreign key represents an object property

from the entity containing the foreign key (domain) to the refer-

enced entity (range). It should be noticed that this rule excludes

the case of binary relations, as there is a special rule for this type

of relations (see rule (1)). In our example, OP2("CODE", "DID",

"COURSE", "DEPT") holds as CODE is a foreign key in the table

COURSE that references attribute DID in the table DEPT.

Identifying data type properties: Every attribute in a non-binary
relation is mapped to a data type property:

DTP(A, R) ← ATTR(A, R),¬ISBINREL(R)

For instance, we have that DTP("NAME", "STUDENT") holds in

our example, while DTP("SID","ENROLLED") does not hold as

ENROLLED is a binary relation.

4.3 Translating a relational schema into OWL
We now define the rules that translates a relational database schema

into an OWL vocabulary.

4.3.1 Generating IRIs for classes, object properties
and data type properties

We introduce a family of rules that produce IRIs for classes, bi-

nary relations, object properties and data type properties identi-

fied by the mapping (which are stored in the predicates CLASS,

BINREL, OPn and DTP, respectively). Note that the IRIs

generated can be later on replaced or mapped to existing IRIs

available in the Semantic Web. Assume given a base IRI

base for the relational database to be translated (for example,

"http://example.edu/db/"), and assume given a family of

built-in predicates CONCATn (n ≥ 2) such that CONCATn has n+1
arguments and CONCATn(x1, . . . , xn, y) holds if y is the concate-

nation of the strings x1, . . ., xn. Then by following the approach

proposed in [5], DM uses the following Datalog rules to produce

IRIs for classes and data type properties:

CLASSIRI(R, X) ← CLASS(R), CONCAT2(base, R, X)

DTP_IRI(A, R, X) ← DTP(A, R), CONCAT4(base, R,"#", A, X)

For instance, http://example.edu/db/STUDENT is

the IRI for the STUDENT relation in our example, and

http://example.edu/db/STUDENT#NAME is the IRI

for attribute NAME in the STUDENT relation (recall that

DTP("NAME", "STUDENT") holds in our example). More-

over, DM uses the following family of Datalog rules to generate

IRIs for object properties. First, for object properties generated

from binary relations, the following rules is used:

OP_IRI1(R, A, B, S, C, T, D, X) ←

BINREL(R, A, B, S, C, T, D),

CONCAT10(base, R,"#", A,",", B,",", C,",", D, X)

Thus, http://example.edu/db/ENROLLED#SID,CID,SID,CID

is the IRI for binary relation ENROLLED in our example. Second,

for object properties generated from a foreign key consisting of n
attributes (n ≥ 1), the following rule is used:

OP_IRI2n(X1, . . . , Xn, Y1, . . . , Yn, S, T, X) ←

OP2n(X1, . . . , Xn, Y1, . . . , Yn, S, T ),

CONCAT4n+4(base, S,",", T,"#", X1,",", . . . , Xn−1,",",

Xn,",", Y1,",", . . . , Yn−1,",", Yn, X)

Thus, given that OP2("CODE", "DID",

"COURSE", "DEPT") holds in our example, IRI

http://example.edu/db/COURSE,DEPT#CODE,DID is

generated to represented the fact that CODE is a foreign key in the

table COURSE that references attribute DID in the table DEPT.



4.3.2 Translating relational schemas

The following Datalog rules are used to generate the RDF repre-

sentation of the OWL vocabulary. First, a rule is used to collect all

the classes:

TRIPLE(U,"rdf:type","owl:Class") ←

CLASS(R), CLASSIRI(R, U)

Predicate TRIPLE is used to collect all the triples of the RDF graph

generated by the direct mapping DM. Second, the following fam-

ily of rules is used to collect all the object properties (n ≥ 1):

TRIPLE(U,"rdf:type","owl:ObjectProperty") ←

OPn(X1, . . . , Xn, S, T ), OP_IRIn(X1, . . . , Xn, S, T, U)

Third, the following rule is used to collect the domains of the object

properties (n ≥ 1):

TRIPLE(U,"rdfs:domain", W ) ← OPn(X1, . . . , Xn, S, T ),

OP_IRIn(X1, . . . , Xn, S, T, U), CLASSIRI(S, W )

Fourth, the following rule is used to collect the ranges of the object

properties (n ≥ 1):

TRIPLE(U,"rdfs:range", W ) ← OPn(X1, . . . , Xn, S, T ),

OP_IRIn(X1, . . . , Xn, S, T, U), CLASSIRI(T, W )

Fifth, the following rule is used to collect all the data type proper-

ties:

TRIPLE(U,"rdf:type","owl:DatatypeProperty") ←

DTP(A, R), DTP_IRI(A, R, U)

Finally, the following rule is used to collect the domains of the data

type properties:

TRIPLE(U,"rdfs:domain", W ) ←

DTP(A, R), DTP_IRI(A, R, U), CLASSIRI(R, W )

4.4 Translating a database instance into RDF
We now define the rules that map a relational database instance

into RDF. More specifically, we first introduce a series of rules for

generating IRIs, and then we present the Datalog rules that generate

RDF.

4.4.1 Generating IRIs for tuples

We introduce a family of predicates that produce IRIs for

the tuples being translated, where we assume a given a

base IRI base for the relational database (for example,

"http://example.edu/db/"). First, DM uses the follow-

ing Datalog rule to produce IRIs for the tuples of the relations hav-

ing a primary key:

ROWIRIn(V1, V2, . . . , Vn, A1, A2, . . . , An, T, R, X) ←

PKn(A1, A2, . . . , An, R), VALUE(V1, A1, T, R),

VALUE(V2, A2, T, R), . . . , VALUE(Vn, An, T, R),

CONCAT4n+2(base, R,"#", A1,"=", V1,",",

A2,"=", V2,",", . . . ,",", An,"=", Vn, X)

Thus, given that the facts PK1("SID","STUDENT") and

VALUE("1","SID","id1","STUDENT") hold in our example,

the IRI http://example.edu/db/STUDENT#SID=1 is the

identifier for the tuple in table STUDENT with value 1 in the pri-

mary key. Moreover, DM uses the following rule to generate blank

nodes for the tuples of the relations not having a primary key:

BLANKNODE(T, R, X) ←

VALUE(V, A, T, R), CONCAT3("_:", R, T, X)

4.4.2 Translating relational instances

The direct mapping DM generates three types of triples when

translating a relational instance: Table triples, reference triples and

literal triples [5]. Following are the Datalog rules for each one of

these cases.

For table triples, DM produces for each tuple t in a relation R, a

triple indicating that t is of type r. To construct these tuples, DM
uses the following auxiliary rules:

TUPLEID(T, R,X) ←

CLASS(R), PKn(A1, . . . , An, R),

VALUE(V1, A1, T, R), . . . , VALUE(Vn, An, T, R),

ROWIRIn(V1, . . . , Vn, A1, . . . , An, T, R, X)

TUPLEID(T, R,X) ←

CLASS(R),¬HASPKn(R),

VALUE(V, A, T, R), BLANKNODE(T, R, X)

That is, TUPLEID(T, R, X) generates the identifier X of a tuple

T of a relation R, which is an IRI if R has a primary key or a

blank node otherwise. Notice that in the preceding rules, predicate

HASPKn is used to check whether a table R with n attributes has

a primary key (thus, ¬HASPKn(R) indicates that R does not have

a primary key). Predicate HASPKn is defined by the following n
rules:

HASPKn(X) ← PKi(A1, . . . , Ai, X) i ∈ {1, . . . , n}

The following rule generates the table triples:

TRIPLE(U,"rdf:type", W ) ←

VALUE(V, A, T, R), TUPLEID(T, R, U), CLASSIRI(R, W )

For example, the following is a table triple in our example:

TRIPLE("http://example.edu/db/STUDENT#SID=1",

"rdf:type",

"http://example.edu/db/STUDENT")

For reference triples, DM generates triples that store the references

generated by binary relations and foreign keys. More precisely,

the following Datalog rule is used to construct reference triples for

object properties that are generated from binary relations:

TRIPLE(U, V, W ) ← BINREL(R, A, B, S, C, T, D),

VALUE(V1, A, T1, R), VALUE(V1, C, T2, S),

VALUE(V2, B, T1, R), VALUE(V2, D, T3, T ),

TUPLEID(T2, S, U),

OP_IRI1(R, A, B, S, C, T, D, V ),

TUPLEID(T3, T, W )

Moreover, the following Datalog rule is used to construct reference

triples for object properties that are generated from foreign keys

(n ≥ 1):

TRIPLE(U, V,W ) ←

OP2n(A1, . . . , An, B1, . . . , Bn, S, T ),

VALUE(V1, A1, T1, S), . . . , VALUE(Vn, An, T1, S),

VALUE(V1, B1, T2, T ), . . . , VALUE(Vn, Bn, T2, T ),

TUPLEID(T1, S, U), TUPLEID(T2, T, W ),

OP_IRI2n(A1, . . . , An, B1, . . . , Bn, S, T, V )

Finally, DM produces for every tuple t in a relation R and for

every attribute A of R, a triple storing the value of t in A, which is

called a literal triple. The following Datalog rule is used to generate

such triples:



TRIPLE(U, V, W ) ← DTP(A, R), VALUE(W, A, T, R),

W 6= NULL, TUPLEID(T, R, U), DTP_IRI(A, R, V )

Notice that in the above rule, we use the condition W 6= NULL to

check that the value of the attribute A in a tuple T in a relation R is

not null. Thus, literal triples are generated only for non-null values.

The following is an example of a literal triple:

TRIPLE("http://example.edu/db/STUDENT#SID=1",

"http://example.edu/db/STUDENT#NAME","John")

5. PROPERTIES OF DM

We now study our direct mapping DM with respect to the two fun-

damental properties (information preservation and query preserva-

tion) and the two desirable properties (monotonicity and semantics

preservation) defined in Section 3.

5.1 Information preservation of DM

First, we show that DM does not lose any piece of information in

the relational instance being translated:

Theorem 1 The direct mapping DM is information preserving.

The proof of this theorem is straightforward, and it involves provid-

ing a computable mapping N : G → I that satisfies the condition

in Definition 2, that is, a computable mapping N that can recon-

struct the initial relational instance from the generated RDF graph.

5.2 Query preservation of DM

Second, we show that the way DM maps relational data into RDF

allows one to answer a query over a relational instance by translat-

ing it into an equivalent query over the generated RDF graph.

Theorem 2 The direct mapping DM is query preserving.

In [4], it was proved that SPARQL has the same expressive power

as relational algebra. Thus, one may be tempted to think that this

result could be used to prove Theorem 2. However, the version of

relational algebra considered in [4] does not include the null value

NULL, and hence cannot be used to prove our result. In addition to

this, other researchers have addressed the issue of querying answer-

ing on DL ontologies with relational databases [21]. Our work is

similar in the sense that we address the issue of query preservation

between a database and an ontology. However, the main difference

is that rather than a domain ontology, the ontology we use is syn-

thesized in a standard way from the database schema. Therefore,

their results cannot be directly applied to our setting.

We present an outline of the proof of this theorem, and refer the

reader to [19] for the details. Assume given a relational schema R

and a set Σ of PKs and FKs over R. Then we have to show that for

every relational algebra query Q over R, there exists a SPARQL

query Q⋆ such that for every instance I of R (possibly including

null values) satisfying Σ:

tr(JQKI) = JQ⋆KDM(R,Σ,I). (2)

Interestingly, the proof that the previous condition holds is by in-

duction on the structure of Q, and thus it gives us a bottom-up

algorithm for translating Q into an equivalent SPARQL query Q⋆,

that is, a query Q⋆ satisfying condition (2). In what follows, we

consider the database used as example in Section 4 and the re-

lational algebra query σName=Juan(STUDENT) ⊲⊳ ENROLLED,

which we will use as a running example and translate it step by

step to SPARQL, showing how the translation algorithm works.

For the sake of readability, we introduce a function ν that re-

trieves the IRI for a given relation R, denoted by ν(R), and the IRI

for a given attribute A in a relation R, denoted by ν(A, R). The

inductive proof starts by considering the two base relational alge-

bra queries: the identity query R, where R is a relation name in

the relational schema R, and the query NULLA. These two base

queries give rise to the following three base cases for the inductive

proof.

Non-binary relations: Assume that Q is the identity rela-

tional algebra query R, where R ∈ R is a non-binary relation

(that is, ISBINREL(R) does not hold). Moreover, assume that

att(R) = {A1, . . . , Aℓ}, with the corresponding IRIs ν(R) =
r, ν(A1, R) = a1, . . . , ν(Aℓ, R) = aℓ. Then a SPARQL query

Q⋆ satisfying (2) is constructed as follows:

SELECT {?A1, . . . , ?Aℓ}

»

· · ·

„„„

(?X,"rdf:type", r)

OPT (?X, a1, ?A1)

«

OPT (?X, a2, ?A2)

«

OPT (?X, a3, ?A3)

«

· · · OPT (?X, aℓ, ?Aℓ)

–

.

Notice that in order to not lose information, the operator OPT
is used (instead of AND) because the direct mapping DM does

not translate NULL values. In our example, the relation name

STUDENT is a non-binary relation. Therefore the following equiv-

alent SPARQL query is generated with input STUDENT:

SELECT {?SID,?NAME}

»„

(?X,"rdf:type",:STUDENT)

OPT (?X,:STUDENT#SID,?SID)

«

OPT (?X,:STUDENT#NAME,?NAME)

–

It should be noticed that in the previous query, the symbol : has to

be replaced by the base IRI used when generating IRIs for relations

and attributes in a relation (see Section 4.3.1) 4.

Binary relations: Assume that Q is the identity relational algebra

query R, where R ∈ R is a binary relation (that is, ISBINREL(R)
holds). Moreover, assume that att(R) = {A1, A2}, where A1 is

a foreign key referencing the attribute B of a relation S, and A2 is

a foreign key referencing the attribute C of a relation T . Finally,

assume that ν(R) = r, ν(B, S) = b and ν(C, T ) = c, Then a

SPARQL query Q⋆ satisfying (2) is defined as follows:

SELECT {?A1, ?A2} ((?T1, r, ?T2) AND

(?T1, b, ?A1) AND (?T2, c, ?A2)).

Given that a binary relation is mapped to an object property, the val-

ues of a binary relation can be retrieved by querying the datatype

properties of the referenced attributes. In our example, the rela-

tional name ENROLLED is a binary relation. Therefore the follow-

ing equivalent SPARQL query is generated with input ENROLLED:

SELECT {?SID,?CID}(

(?T1,:ENROLLED#SID,CID,SID,CID, ?T2) AND

(?T1,:STUDENT#SID,?SID) AND

(?T2,:COURSE#CID,?CID)).

4In SPARQL terminology, we have included the following prefix
in the query: @prefix : <http://example.edu/db/>, if
the base IRI is <http://example.edu/db/>.



Empty relation: Assume that Q = NULLA, and define Q⋆ as

the empty graph pattern { }. Then we have that condition (2) holds

because of the definition of the function tr, which does not translate

NULL values to mappings.

We now present the inductive step in the proof of Theorem 2.

Assume that the theorem holds for relational algebra queries Q1

and Q2. That is, there exists SPARQL queries Q⋆
1 and Q⋆

2 such

that:

tr(JQ1KI) = JQ⋆
1KDM(R,Σ,I), (3)

tr(JQ2KI) = JQ⋆
2KDM(R,Σ,I). (4)

The proof continues by presenting equivalent SPARQL queries for

the following relational algebra operators: selection (σ), projection

(π), rename (δ), join (⊲⊳), union (∪) and difference (r). It is im-

portant to notice that the operators left-outer join, right-outer join

and full-outer join are all expressible with the previous operators,

hence we do not present cases for these operators.

Selection: We need to consider four cases to define query Q⋆ sat-

isfying condition (2). In all these cases, we use the already estab-

lished equivalence (3).

1. If Q is σA1=a(Q1), then

Q
⋆ = (Q⋆

1 FILTER (?A1 = a)).

2. If Q is σA1 6=a(Q1), then

Q
⋆ = (Q⋆

1 FILTER (¬(?A1 = a) ∧ bound(?A1))).

3. If Q is σIsNull(A1)(Q1), then

Q
⋆ = (Q⋆

1 FILTER (¬ bound(?A1))).

4. If Q is σIsNotNull(A1)(Q1), then

Q
⋆ = (Q⋆

1 FILTER (bound(?A1))).

These equivalences are straightforward. However, it is important

to note the use of bound(·) in the second case; as the semantics

of relational algebra states that if Q is the query σA1 6=a(Q1), then

JQKI = {t ∈ JQ1KI | t.A1 6= NULL and t.A1 6= a}, we have

that the variable ?A1 has to be bound because the values in the

attribute A1 in the answer to σA1 6=a(Q1) are different from NULL.

Following our example, we have that the following SPARQL query

is generated with input σName=Juan(STUDENT):
„

SELECT {?SID,?NAME}

»„

(?X,"rdf:type",:STUDENT)

OPT (?X,:STUDENT#SID,?SID)

«

OPT (?X,:STUDENT#NAME,?NAME)

–«

FILTER (?NAME = Juan)

Projection: Assume that Q = π{A1,...,Aℓ}(Q1).

Then query Q⋆ satisfying condition (2) is defined as

(SELECT {?A1, . . . , ?Aℓ} Q⋆
1). It is important to notice

that we use nested SELECT queries to deal with projection, as

well as in two of the base cases, which is a functionality specific to

SPARQL 1.1 [12].

Rename: Assume that Q = δA1→B1
(Q1) and att(Q) = {A1,

. . ., Aℓ}. Then query Q⋆ satisfying condition (2) is defined as

(SELECT {?A1 AS ?B1, ?A2, . . . , ?Aℓ} Q⋆
1). Notice that this

equivalence holds because the rename operator in relational algebra

renames one attribute to another and projects all attributes of Q.

Join: Assume that Q = (Q1 ⊲⊳ Q2), where (att(Q1)∩att(Q2)) =
{A1, . . . , Aℓ}. Then query Q⋆ satisfying condition (2) is defined

as follows:

»„

Q
⋆
1 FILTER (bound(?A1) ∧ · · · ∧ bound(?Aℓ))

«

AND

„

Q
⋆
2 FILTER (bound(?A1) ∧ · · · ∧ bound(?Aℓ))

«–

.

Note the use of bound(·) which is necessary in the SPARQL

query in order to guarantee that the variables that are being joined

on are not null. Following our example, Figure 1 shows the

SPARQL query generated with input σName=Juan(STUDENT) ⊲⊳
ENROLLED.

Union: Assume that Q = (Q1 ∪ Q2). Then query Q⋆ satisfying

condition (2) is simply defined as (Q⋆
1 UNION Q⋆

2). Notice that

in this case we are using the already established equivalences (3)

and (4).

Difference: We conclude our proof by assuming that Q = (Q1 r

Q2). In this case, it is also possible to define a SPARQL query Q⋆

satisfying condition (2). Due to the lack of space and the complex

structure of this query, we refer the reader to [19] for its complete

description.

5.3 Monotonicity and semantics preservation
of DM

Finally, we consider the two desirable properties identified in Sec-

tion 3.2. First, it is straightforward to see that DM is monotone,

because all the negative atoms in the Datalog rules defining DM
refer to the schema, the PKs and the FKs of the database, and

these elements are kept fixed when checking monotonicity. Unfor-

tunately, the situation is completely different for the case of seman-

tics preservation, as the following example shows that the direct

mapping DM does not satisfy this property.

Example 2 Assume that a relational schema contains a relation

with name STUDENT and attributes SID, NAME, and assume that

the attribute SID is the primary key. Moreover, assume that this re-

lation has two tuples, t1 and t2 such that t1.SID = 1, t1.NAME =
John and t2.SID = 1, t2.NAME = Peter. It is clear that the primary

key is violated, therefore the database is inconsistent. However, it

is not difficult to see that after applying DM, the resulting RDF

graph is consistent.

In fact, the result in Example 2 can be generalized as it is possible

to show that the direct mapping DM always generates a consistent

RDF graph, hence, it cannot be semantics preserving.

Proposition 1 The direct mapping DM is not semantics preserv-

ing.

Does this mean that our direct mapping is incorrect? What could

we do to create a direct mapping that is semantics preserving?

These problems are studied in depth in the following section.

6. SEMANTICS PRESERVATION OF

DIRECT MAPPINGS
We now study the problem of generating a semantics-preserving

direct mapping. Specifically, we show in Section 6.1 that a simple

extension of the direct mapping DM can deal with primary keys.

Then we show in Section 6.2 that dealing with foreign keys is more

difficult, as any direct mapping that satisfies the condition of being

monotone cannot be semantics preserving. Finally, we present two

possible ways of overcoming this limitation.



»„„

SELECT {?SID,?NAME}

»„

(?X,"rdf:type",:STUDENT) OPT (?X,:STUDENT#SID,?SID)

«

OPT

(?X,:STUDENT#NAME,?NAME)

–«

FILTER (?NAME = Juan)

«

FILTER (bound(?SID))

–

AND
»„

SELECT {?SID,?CID}

„

(?T1,:ENROLLED#SID,CID,SID,CID, ?T2) AND (?T1,:STUDENT#SID,?SID) AND

(?T2,:COURSE#CID,?CID)

««

FILTER (bound(?SID))

–

Figure 1: SPARQL translation of the relational algebra query σName=Juan(STUDENT) ⊲⊳ ENROLLED.

6.1 A semantics preserving direct mapping for
primary keys

Recall that a primary key can be violated if there are repeated values

or null values. At a first glance, one would assume that owl:hasKey

could be used to create a semantics preserving direct mapping for

primary keys. If we consider a database without null values, a vi-

olation of the primary key would generate an inconsistency with

owl:hasKey and the unique name assumption (UNA). However, if

we consider a database with null values, then owl:hasKey with the

UNA does not generate an inconsistency because it is trivially satis-

fied for a class expression that does not have a value for the datatype

expression. Therefore, we must consider a different approach.

Consider a new direct mapping DMpk that extends DM as fol-

lows. A Datalog rule is used to determine if the value of a primary

key attribute is repeated, and a family of Datalog rules are used to

determine if there is a value NULL in a column corresponding to

a primary key. If some of these violations are found, then an arti-

ficial triple is generated that would produce an inconsistency. For

example, the following rules are used to map a primary key with

two attributes:

TRIPLE(a,"owl:differentFrom", a) ← PK2(X1, X2, R),

VALUE(V1, X1, T1, R), VALUE(V1, X1, T2, R),

VALUE(V2, X2, T1, R), VALUE(V2, X2, T2, R), T1 6= T2

TRIPLE(a,"owl:differentFrom", a) ← PK2(X1, X2, R),

VALUE(V, X1, T, R), V = NULL

TRIPLE(a,"owl:differentFrom", a) ← PK2(X1, X2, R),

VALUE(V, X2, T, R), V = NULL

In the previous rules, a is any valid IRI. If we apply DMpk to the

database of Example 2, it is straightforward to see that starting from

an inconsistent relational database, one obtains an RDF graph that

is also inconsistent. In fact, we have that:

Proposition 2 The direct mapping DMpk is information preserv-

ing, query preserving, monotone, and semantics preserving if one

considers only PKs. That is, for every relational schema R, set

Σ of (only) PKs over R and instance I of R: I |= Σ iff

DMpk(R, Σ, I) is consistent under OWL semantics.

Information preservation, query preservation and monotonicity of

DMpk are corollaries of the fact that these properties hold for DM,

and of the fact that the Datalog rules introduced to handle primary

keys are monotone.

A natural question at this point is whether DMpk can also deal

with foreign keys. Unfortunately, it is easy to construct an example

that shows that this is not the case. Does this mean that we cannot

have a direct mapping that is semantics preserving and considers

foreign keys? We show in the following section that monotonicity

has been one of the obstacles to obtain such a mapping.

6.2 Semantics preserving direct mappings for
primary keys and foreign keys

The following theorem shows that the desirable condition of be-

ing monotone is, unfortunately, an obstacle to obtain a semantics

preserving direct mapping.

Theorem 3 No monotone direct mapping is semantics preserving.

It is important to understand the reasons why we have not been

able to create a semantics preserving direct mapping. The issue

is with two characteristics of OWL: (1) it adopts the Open World

Assumption (OWA), where a statement cannot be inferred to be

false on the basis of failing to prove it, and (2) it does not adopt the

Unique Name Assumption (UNA), where two different names can

identify the same thing. On the other hand, a relational database

adopts the Closed World Assumption (CWA), where a statement is

inferred to be false if it is not known to be true. In other words,

what causes an inconsistency in a relational database, can cause an

inference of new knowledge in OWL.

In order to preserve the semantics of the relational database, we

need to ensure that whatever causes an inconsistency in a rela-

tional database, is going to cause an inconsistency in OWL. Fol-

lowing this idea, we now present a non-monotone direct mapping,

DMpk+fk, which extends DMpk by introducing rules for verify-

ing beforehand if there is a violation of a foreign key constraint. If

such a violation exists, then an artificial RDF triple is created which

will generate an inconsistency with respect to the OWL semantics.

More precisely, the following family of Datalog rules are used in

DMpk+fk to detect an inconsistency in a relational database:

VIOLATION(S) ←

FKn(X1, . . . , Xn, S, Y1, . . . , Yn, T ),

VALUEn(V1, X1, T, S), . . . , VALUE(Vn, Xn, T, S),

V1 6= NULL, . . . , Vn 6= NULL,

¬ISVALUEn(V1, . . . , Vn, Y1, . . . , Yn, T )

In the preceding rule, the predicate ISVALUEn is used to check

whether a tuple in a relation has values for some given attributes.

The predicate ISVALUEn is defined by the following rule:

ISVALUEn(V1, . . . , Vn, B1, . . . , Bn, S) ←

VALUE(V1, B1, T, S), . . . , VALUE(Vn, Bn, T, S)

Finally, the following Datalog rule is used to obtain an inconsis-

tency in the generated RDF graph:

TRIPLE(a,"owl:differentFrom", a) ← VIOLATION(S)

In the previous rule, a is any valid IRI. It should be noticed that

DMpk+fk is non-monotone because if new data in the database is

added which now satisfies the FK constraint, then the artificial RDF

triple needs to be retracted.



Theorem 4 The direct mapping DMpk+fk is information preserv-

ing, query preserving and semantics preserving.

Information preservation and query preservation of DMpk+fk are

corollaries of the fact that these properties hold for DM and DMpk.

A direct mapping that satisfies the four properties can be ob-

tained by considering an alternative semantics of OWL that ex-

presses integrity constraints. Because OWL is based on Description

Logic, we would need a version of DL that supports integrity con-

straints, which is not a new idea. Integrity constraints are epistemic

in nature and are about “what the knowledge base knows” [18].

Extending DL with the epistemic operator K has been studied [7,

9, 10]. Grimm et al. proposed to extend the semantics of OWL

to support the epistemic operator [11]. Motik et al. proposed to

write integrity constraints as standard OWL axioms but interpreted

with different semantics for data validation purposes [15]. Tao et

al. showed that integrity constraint validation can be reduced to

SPARQL query answering [22]. Recently, Mehdi et al. introduced

a way to answer epistemic queries to restricted OWL ontologies

[14]. Thus, it is possible to extend DMpk to create an information

preserving, query preserving and monotone direct mapping that is

also semantics preserving, but it is based on a non-standard version

of OWL including the epistemic operator K.

7. CONCLUDING REMARKS
In this paper, we study how to directly map relational databases to

an RDF graph with OWL vocabulary based on two fundamental

properties (information preservation and query preservation) and

two desirable properties (monotonicity and semantics preservation).

We first present a monotone, information preserving and query pre-

serving direct mapping considering databases that have null values.

Then we prove that the combination of monotonicity with the OWL

semantics is an obstacle to generating a semantics preserving direct

mapping. Finally, we overcome this obstacle by presenting a non-

monotone direct mapping that is semantics preserving, and also by

discussing the possibility of generating a monotone mapping that

assumes an extension of OWL with the epistemic operator.

Related Work: Several approaches directly map relational schemas

to RDFS and OWL. We refer the reader to the following survey

[20]. D2R Server has an option that directly maps the relational

database into RDF, however this process is not documented [2].

RDBToOnto presents a direct mapping that mines the content of

the relational databases in order to learn ontologies with deeper

taxonomies [8]. Currently, the W3C RDB2RDF Working Group

is developing a direct mapping standard that focuses on translating

relational database instances to RDF [5, 6].

Future Work: We would like to extend our direct mapping to con-

sider datatypes, relational databases under bag semantics and eval-

uate this rule based approach on large relational databases. The ex-

tension of our direct mapping to bag semantics is straightforward.

In our setting each tuple has its own identifier, which is represented

in the VALUE predicate. Thus, even if repeated tuples exist, each

tuple will still have its unique identifier and, therefore, exactly the

same rules can be used to map relational data under bag semantics.
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