
21

Designing a Query Language for RDF: Marrying Open

and Closed Worlds

MARCELO ARENAS, Pontificia Universidad Católica de Chile & Center for Semantic Web Research

MARTIN UGARTE, Université Libre de Bruxelles

When querying an Resource Description Framework (RDF) graph, a prominent feature is the possibility of ex-
tending the answer to a query with optional information. However, the definition of this feature in SPARQL—
the standard RDF query language—has raised some important issues. Most notably, the use of this feature
increases the complexity of the evaluation problem, and its closed-world semantics is in conflict with the un-
derlying open-world semantics of RDF. Many approaches for fixing such problems have been proposed, the
most prominent being the introduction of the semantic notion of weakly monotone SPARQL query. Weakly
monotone SPARQL queries have shaped the class of queries that conform to the open-world semantics of RDF.
Unfortunately, finding an effective way of restricting SPARQL to the fragment of weakly monotone queries
has proven to be an elusive problem. In practice, the most widely adopted fragment for writing SPARQL
queries is based on the syntactic notion of well designedness. This notion has proven to be a good approach
for writing SPARQL queries, but its expressive power has yet to be fully understood.

The starting point of this article is to understand the relation between well-designed queries and the
semantic notion of weak monotonicity. It is known that every well-designed SPARQL query is weakly mono-
tone; as our first contribution we prove that the converse does not hold, even if an extension of this notion
based on the use of disjunction is considered. Given this negative result, we embark on the task of defin-
ing syntactic fragments that are weakly monotone and have higher expressive power than the fragment of
well-designed queries. To this end, we move to a more general scenario where infinite RDF graphs are also
allowed, so interpolation techniques studied for first-order logic can be applied. With the use of these tech-
niques, we are able to define a new operator for SPARQL that gives rise to a query language with the desired
properties (over finite and infinite RDF graphs). It should be noticed that every query in this fragment is
weakly monotone if we restrict the semantics to finite RDF graphs. Moreover, we use this result to provide a
simple characterization of the class of monotone CONSTRUCT queries, that is, the class of SPARQL queries
that produce RDF graphs as output. Finally, we pinpoint the complexity of the evaluation problem for the
query languages identified in the article.

CCS Concepts: • Information systems → Query languages for non-relational engines; Resource De-

scription Framework (RDF); • Theory of computation → Database query languages (principles); Logic

and databases;

M. Arenas was funded by the Millennium Nucleus Center for Semantic Web Research under Grant NC120004, and M.
Ugarte was partially funded by the scholarship CONICYT-PCHA-21120368, the Millennium Nucleus Center for Semantic
Web Research under Grant NC120004, the SPICES research project funded by Innoviris, and the Brussels Institute for
Research and Innovation under the Bridge strategic platform program.
Authors’ addresses: Vicuna Mackenna 4860, Edificio San Agustin, 4to piso, Macul 7820436, Santiago, Chile; email:
marenas@ing.uc.cl; M. Ugarte, Universite Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 165/15, Ixelles, 1050 Bruxelles,
Belgium; email: mugartec@ulb.ac.be.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM 0362-5915/2017/10-ART21 $15.00
https://doi.org/10.1145/3129247

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

mailto:permissions@acm.org
https://doi.org/10.1145/3129247

21:2 M. Arenas and M. Ugarte

Additional Key Words and Phrases: Query languages, SPARQL, RDF, semantic Web, open-world assumption,
monotonicity

ACM Reference format:

Marcelo Arenas and Martin Ugarte. 2017. Designing a Query Language for RDF: Marrying Open and Closed
Worlds. ACM Trans. Database Syst. 42, 4, Article 21 (October 2017), 46 pages.
https://doi.org/10.1145/3129247

1 INTRODUCTION

In the last 15 years, the Semantic Web initiative has received a lot of attention. From its initial steps,
the goal of this initiative has been to build a World Wide Web with machine-understandable infor-
mation (Berners-Lee et al. 2001). To this end, a first step was to standardize a data model for the
information in the Web. This gave rise to RDF, a graph-based data model for specifying relation-
ships between resources in the Web (Manola and Miller 2004). By 2013, more than four million Web
domains publicly offered data stored as Resource Description Framework (RDF) graphs, creating
what is known as Linked Open Data (Guha 2013). Jointly with the release of RDF as a recommen-
dation of the World Wide Web Consortium (W3C), the natural problem of querying data in RDF
was raised. Several proposals were presented to solve this issue (Furche et al. 2006), the query lan-
guage SPARQL being the one that finally got more attention. SPARQL is an SQL-flavored query
language for RDF that became a W3C recommendation in 2008 (Prud’hommeaux and Seaborne
2008). The current version of this language, SPARQL 1.1, was issued in 2013 (Harris and Seaborne
2013).

SPARQL was originally designed by looking at each desired feature in isolation, but it turned
out to be a rather complicated language when all of these features were put together. In Pérez
et al. (2006), the authors formalized the syntax and semantics of SPARQL, presenting the first
step towards understanding its fundamental properties. This work was followed by studies about
the complexity of query evaluation (Schmidt et al. 2010; Losemann and Martens 2012; Arenas
et al. 2012; Picalausa and Vansummeren 2011), query optimisation (Letelier et al. 2013; Pichler and
Skritek 2014; Chekol et al. 2012a, 2012b), query federation (Buil-Aranda et al. 2013), expressive
power analysis (Angles and Gutierrez 2008; Polleres and Wallner 2013; Kostylev et al. 2015), and
provenance tracking (Geerts et al. 2013; Halpin and Cheney 2014). The theoretical study of SPARQL
has impacted the Semantic Web in several ways, influencing the standard definition of SPARQL
by the W3C and also the form in which users query RDF graphs.

In spite of the advance in our understanding of SPARQL, there is still a fundamental issue in the
definition of this language. The semantics of SPARQL is defined under a closed-world assumption;
in fact, there are SPARQL queries that cannot be answered without making the assumption that
some unavailable data are false. However, the information in the Web is inherently incomplete,
and, therefore, making such assumption about unavailable data contradicts the underlying open-
world semantics of RDF. To address this problem, Pérez and collaborators identify a condition that
is satisfied by those SPARQL queries that are appropriate for the open-world semantics of RDF,
namely weak monotonicity (Pérez et al. 2009).

Although weak monotonicity is important for the study of SPARQL, it is a semantic notion that
does not provide much insight on how to write well-behaved queries. In fact, this notion is not well
suited for practical applications, as the problem of verifying whether a query is weakly monotone
is undecidable. Hence, finding a fragment of the class of weakly monotone SPARQL queries with
a simple syntactic definition is a fundamental task. This problem has been addressed by defining
fragments of SPARQL based on some syntactic restrictions. Arguably, the most adopted of these
restrictions is that of well designedness (Pérez et al. 2009; Picalausa and Vansummeren 2011; Letelier

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

https://doi.org/10.1145/3129247

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:3

et al. 2013; Pichler and Skritek 2014; Ahmetaj et al. 2015; Barceló et al. 2015; Kostylev et al. 2015).
It is known that every well-designed SPARQL query is weakly monotone (Arenas and Pérez 2011),
but whether the opposite direction holds is an open problem. As a first contribution of this article
we provide a negative answer to this question. We show that there are (disjunction-free) weakly
monotone queries in SPARQL that are not equivalent to any well-designed query. Moreover, we
show that this is the case even if we extend well-designed queries with disjunction at the top-
most level.

Given these negative results, we embark on the design of an RDF query language with a sim-
ple syntactic definition and the same expressive power as the fragment of SPARQL consisting of
weakly monotone queries. To this end, we move to a more general scenario where infinite RDF
graphs are also allowed, so interpolation techniques studied for first-order logic can be applied.
Interpolation techniques have proved to be useful in establishing connections between semantic
and syntactic notions for first-order logic, so they are a natural choice in this investigation. The
application of these techniques to SPARQL is the most challenging contribution of this article, and
its consequences provide a significant improvement in our understanding of the notion of weak
monotonicity. In particular, we make use of the interpolation theorems of Lyndon (1959) and Otto
(2000) to obtain a result that establishes a form of equivalence between the fragment of weakly
monotone SPARQL queries and the fragment of SPARQL that does not use the operator OPTIONAL
(used in this query language to obtain optional information when available). This result leads to
the definition of a new and simple operator for SPARQL, the not-subsumed operator (NS), that is
used to remove redundant information from the answer to a query.

With the use of the operator NS, we proceed to introduce two novel fragments of weakly mono-
tone queries. We prove that these fragments are more expressive than the fragments based on the
notion of well designedness, and we provide precise characterizations of their expressive power.
In fact, we show that they capture classes of weakly monotone queries that are widely used in
practice. This, together with the fact that the syntactic definitions of these fragments are rather
simple, shows that these new query languages fulfill our original goal. We stress that these frag-
ments provide an interesting new approach for querying RDF graphs.

The input of a SPARQL query is an RDF graph, while its output is a set of mappings. Thus,
SPARQL queries cannot be composed in the sense that the result of a query cannot be used as
the input of another query. To overcome this limitation, the standard definition of SPARQL by
the W3C includes an operator CONSTRUCT (Prud’hommeaux and Seaborne 2008; Harris and
Seaborne 2013; Kostylev et al. 2015) that can be used to produce an RDF graph as output (in-
stead of a set of mappings). This operator is widely used in practice, so it is a relevant question
whether its use in SPARQL is appropriate for the open-world semantics of RDF.

As opposed to the previous case, in the context of the CONSTRUCT operator monotonicity is
the condition satisfied by the queries that are appropriate for the open-world semantics of RDF.
Hence, we focus on this notion, and use the results obtained from interpolation to identify a frag-
ment of the class of CONSTRUCT queries that captures monotonicity. This fragment has a simple
syntactic definition, and, somewhat surprisingly, it uses neither the operator NS nor the opera-
tor OPTIONAL. These properties make this fragment a promising query language that deserves
further investigation.

Finally, we present a thorough study of the complexity of the evaluation problem for the query
languages introduced in this article.

It is important to mention that the results in the article do not imply that every SPARQL graph
pattern that is weakly monotone in the finite case is also weakly monotone in the unrestricted
case, where infinite RDF graphs are also allowed. In fact, a simple example of a graph pattern
separating the two cases can be obtained by considering a query that is not weakly monotone in

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:4 M. Arenas and M. Ugarte

the unrestricted case, and which is based on a condition that is false for every finite RDF graph,
thus leading to a trivially weakly monotone query in the finite scenario. For instance, consider
a SPARQL query checking that an RDF graph represents a linear order without a maximum el-
ement; this query is not weakly monotone in the unrestricted case and is false for every finite
RDF graph. During the course of this investigation, the only separating examples that we found
are trivial examples as the previous one, or complex examples based on the separation between
monotonicity and the syntactic property of being positive for first-order logic (Ajtai and Gurevich
1987). It remains as a fundamental open issue whether there exist queries of practical interest that
are weakly monotone in the finite case but not in the unrestricted scenario.

Organization of the article. We give in Section 2 the basic terminology used in the article.
Then we introduce in Section 3 the notions of well designedness and weak monotonicity and prove
that there are weakly monotone queries in SPARQL that are not equivalent to any well-designed
query. We use interpolation techniques in Section 4 to show a form of equivalence between the
fragment of weakly monotone SPARQL queries and the fragment of SPARQL that does not use
the operator OPTIONAL. Inspired by this result, we define in Section 5 the operator NS. In this
section, we also introduce and study two novel fragments of weakly monotone queries. Then we
consider the CONSTRUCT operator in Section 6, where we identify a query language with a simple
syntactic definition that captures the class of monotone CONSTRUCT queries. The complexity of
the evaluation problem for the different fragments studied in the article is pinpointed in Section 7,
while some practical implications of the results of the article are discussed in Section 8. Finally, we
provide some concluding remarks and directions for future research in Section 9.

This article extends an earlier publication presented at the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems 2016 (Arenas and Ugarte 2016). Two of the fun-
damental results of this article are the proof that there exists a weakly monotone graph pattern
that is not expressible as a well-designed graph pattern and the extension of this result to the case
where the union operator is allowed. In Section 3, we provide these proofs with simpler versions
of the separating examples, which give more information to the reader about the expressiveness
of weakly monotone queries. Moreover, we include a new section in the article (Section 8) where
we discuss three practical implications of the investigation carried out in this article. Finally, we
provide proofs for all the results presented in Arenas and Ugarte (2016); in particular, we include
an appendix where we carefully show how interpolation techniques can be used to characterize
weak monotonicity (when infinite RDF graphs are allowed).

2 PRELIMINARIES

In this section, we provide the basic definitions used throughout this article concerning RDF and
SPARQL.

The RDF (Manola and Miller 2004) is based on the idea that each resource on the Web should
have an identifier. Assume that I is an infinite set of Internationalized Resource Identifiers (IRIs).
Then a triple (s,p,o) ∈ I × I × I is called an RDF triple, where s , p, and o are called the subject,
predicate, and object of the triple, respectively. Moreover, an RDF graph is defined to be a finite set
of RDF triples. It should be noticed that constant values (like numbers and strings) and existential
values (resources with unknown identifiers) are also allowed in RDF, but we disallow them here
as the results of the article are not affected by their presence. For the sake of readability, we also
assume that every string can be used as an IRI, which violates the specification of these identifiers
(Dürst and Suignard 2005).

Example 2.1. Assume that we want to store in RDF information about the founders and sup-
porters of different organizations. Then we need to state every relationship as an RDF triple; for

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:5

Fig. 1. An RDF graph with information about founders and supporters of organizations.

instance, if a person s founded an organization o, then we store the triple (s, founder,o). The fol-
lowing table stores such an RDF graph:

Subject Predicate Object

Gottfrid_Svartholm founder The_Pirate_Bay
Fredrik_Neij founder The_Pirate_Bay
Peter_Sunde founder The_Pirate_Bay

founder sub_property supporter
The_Pirate Bay stands_for sharing_rights
Carl_Lundström supporter The_Pirate_Bay

Notice that a resource mentioned in one triple as a property can also be mentioned in another
triple as the subject or predicate. As RDF triples are relations between entities, it is also natural to
represent RDF graphs as directed edge-labeled graphs, as shown in Figure 1.

2.1 The RDF Query Language SPARQL

SPARQL is essentially a pattern-matching query language for RDF graphs. To define the syntax
of SPARQL, assume there is an infinite set V of variables disjoint from I. Elements of V are distin-
guished by using ? as a prefix (e.g., ?X , ?Y , and ?Z are variables in V). Then the set of SPARQL
graph patterns is recursively defined as follows:

—A triple in (I ∪ V) × (I ∪ V) × (I ∪ V) is a graph pattern (called a triple pattern).
—If P1, P2 are graph patterns, then (P1 UNION P2), (P1 AND P2), and (P1 OPT P2) are graph

patterns.1

—If P is a graph pattern and V is a finite subset of V, then (SELECTV WHERE P) is a graph
pattern.

—If P is a graph pattern and R is a SPARQL built-in condition, then (P FILTER R) is a graph
pattern.

In the previous definition, we have used the notion of SPARQL built-in condition, which is a
propositional formula where atoms are equalities or inequalities over the set (I ∪ V) together with
some other features (Prud’hommeaux and Seaborne 2008). We restrict to the fragment of built-in
conditions presented in Pérez et al. (2009), which is formally defined as follows:

1From now on, we use the term OPT as a shorthand of the operator OPTIONAL.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:6 M. Arenas and M. Ugarte

—If ?X , ?Y ∈ V and c ∈ I, then bound(?X), ?X = c , ?X = ?Y are built in-conditions.
—If R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2) are built-in condi-

tions.

For an operatorO in the set {UNION, AND, OPT, FILTER, SELECT}, we say that a graph pattern
P isO-free ifO does not occur in P . To refer to a fragment of SPARQL in which only some operators
are allowed, we use the first letter of the these operators. For example, SPARQL[AFS] represents
the fragment of SPARQL where only the operators AND, FILTER, and SELECT are allowed.

To define the semantics of SPARQL, we need to recall some further notation. If P is a graph
pattern, then var(P) and I(P) denote the sets of all variables and IRIs occurring in P , respectively.
If R is a built-in condition, then var(R) denotes the set of all variables mentioned in R. A mapping
μ is a partial function μ : V→ I. The domain of μ is the subset of V where μ is defined and is
denoted by dom(μ). Given a mapping μ and a triple pattern t such that var(t) ⊆ dom(μ), we have
that μ (t) is the result of replacing every variable ?X ∈ var(t) by μ (?X). A mapping μ1 is said to
be compatible with a mapping μ2, denoted by μ1 ∼ μ2, if for every ?X ∈ dom(μ1) ∩ dom(μ2) it is
the case that μ1 (?X) = μ2 (?X). In this case, μ1 ∪ μ2 denotes the extension of μ1 to the variables in
dom(μ2) \ dom(μ1) defined according to μ2. If two mappings μ1 and μ2 are not compatible, then
we write μ1 � μ2.

Let Ω1 and Ω2 be two sets of mappings. Then the join of, union of, difference between, and
left-outer join of Ω1 and Ω2 are defined, respectively, as follows (Pérez et al. 2009):

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 and μ1 ∼ μ2}
Ω1 ∪ Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2}
Ω1 \ Ω2 = {μ ∈ Ω1 | for all μ ′ ∈ Ω2 : μ � μ ′}

Ω1 �� Ω2 = (Ω1 �� Ω2) ∪ (Ω1 \ Ω2).

Finally, given a mapping μ and a set V ⊆ V, the expression μ |V represents the mapping that
results from restricting μ to dom(μ) ∩V .

We have now the necessary terminology to define the semantics of SPARQL. Given a mapping
μ and a built-in condition R, we say that μ satisfies R, denoted by μ |= R if one of the following
conditions hold (omitting the usual rules for Boolean connectives):

—R is bound(?X) and ?X ∈ dom(μ);
—R is ?X = c , ?X ∈ dom(μ) and μ (?X) = c;
—R is ?X =?Y , ?X ∈ dom(μ), ?Y ∈ dom(μ) and μ (?X) = μ (?Y).

Moreover, given an RDF graph G and a SPARQL graph pattern P , the evaluation of P over G,
denoted by �P�G , is recursively defined as follows:

—if P is a triple pattern, then �P�G = {μ | dom(μ) = var(t) and μ (t) ∈ G};
—if P is (P1 AND P2), then �P�G = �P1�G �� �P2�G ;
—if P is (P1 OPT P2), then �P�G = �P1�G �� �P2�G ;
—if P is (P1 UNION P2), then �P�G = �P1�G ∪ �P2�G ;
—if P is (SELECTV WHERE P ′), then �P�G = {μ |V | μ ∈ �P ′�G };
—if P is (P ′ FILTER R), then �P�G = {μ | μ ∈ �P ′�G and μ |= R}.

The following example illustrates the syntax and semantics of SPARQL.

Example 2.2. Let G be the RDF graph shown in Figure 1. Assume we want to retrieve the
founders and supporters of organizations that stand for sharing rights, and their emails if they are
provided. This is achieved by a graph pattern P = (SELECT {?p} WHERE P1) OPT (?p, email, ?e),

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:7

where P1 is defined as

P1 = (?o, stands_for, sharing_rights) AND ((?p, founder, ?o) UNION (?p, supporter, ?o))

The evaluation of P over G is performed in a bottom-up fashion. We first evaluate the triple pat-
terns, obtaining the following sets of mappings:

�(?o, stands_for, sharing_rights)�G =
?o

The_Pirate_Bay

�(?p, founder, ?o)�G =

?p ?o
Gottfrid_Svartholm The_Pirate_Bay

Fredrik_Neij The_Pirate_Bay
Peter_Sunde The_Pirate_Bay

�(?p, supporter, ?o)�G =
?p ?o

Carl_Lundström The_Pirate_Bay

�(?p, email, ?e)�G =
?p ?e

Gottfrid_Svartholm gottfrid@tpb.org

Now we evaluate the UNION pattern by combining both tables with founders and supporters:

�(?p, founder, ?o) UNION (?p, supporter, ?o)�G =

?p ?o
Gottfrid_Svartholm The_Pirate_Bay

Fredrik_Neij The_Pirate_Bay
Peter_Sunde The_Pirate_Bay

Carl_Lundström The_Pirate_Bay

The mappings presented in this latter table are combined with the only mapping in the first table
through the operator AND. Notice that all of the mappings to be combined are compatible, which
implies that �P1�G = �(?p, founder, ?o) UNION (?p, supporter, ?o)�G . Next, the SELECT operator
is used to keep only the values in the variable ?p, thus generating the corresponding list of people:

�(SELECT {?p} WHERE P1)�G =

?p
Gottfrid_Svartholm

Fredrik_Neij
Peter_Sunde

Carl_Lundström

Finally, these results will be optionally extended with the rows in �(?p, email, ?e)�G , producing
the final result:

�P�G =

?p ?e
Gottfrid_Svartholm gottfrid@tpb.org

Fredrik_Neij
Peter_Sunde

Carl_Lundström

Note here that the OPT operator allows for people without an email to be part of the answer.

In the previous example, we use a tabular notation for the result of a SPARQL query. In
particular, a mapping μ with dom(μ) = {?X1, . . . , ?Xn } is represented as a row in a table with
columns ?X1, . . . , ?Xn . In what follows, we also refer to such mapping μ by using the notation
[?X1 → μ (?X1), . . ., ?Xn → μ (?Xn)].

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:8 M. Arenas and M. Ugarte

Fig. 2. Two RDF graphs G1 and G2 such that G1 ⊆ G2.

Finally, two graph patterns P1 and P2 are said to be equivalent, denoted by P1 ≡ P2, if for every
RDF graphG, it holds that �P1�G = �P2�G . We use this notion of equivalence to compare fragments
of SPARQL. In particular, we say that two such fragments F1 and F2 have the same expressive
power if (1) for every graph pattern P1 ∈ F1, there exists a graph pattern P2 ∈ F2 such that P1 ≡ P2,
and (2) for every graph pattern P2 ∈ F2, there exists a graph pattern P1 ∈ F1 such that P2 ≡ P1.
Moreover, we say F1 is strictly less expressive than F2 if (1) for every graph pattern P1 ∈ F1, there
exists a graph pattern P2 ∈ F2 such that P1 ≡ P2, and (2) there exists a graph pattern P2 ∈ F2, for
which there is no graph pattern P1 ∈ F1 such that P2 ≡ P1.

3 WEAK MONOTONICITY VERSUS WELL DESIGNEDNESS

In this section, we formally introduce the notions of weak monotonicity and well designedness
and discuss their role in identifying fragments of SPARQL that are appropriate for the open-world
semantics of RDF. Moreover, we show that there exist weakly monotone graph patterns that are
not expressible as well-designed graph patterns, thus giving a negative answer to the question of
whether these two notions are equivalent.

3.1 The Notion of Weak Monotonicity

Intuitively, a query language is said to conform to the open-world assumption if its semantics is
defined in a way such that no assumption is made about the information that is not present when
evaluating a query. This is particularly important when considering Web data, as in general we
cannot make any assumption about the information that is not available. In fact, the semantics
of RDF is based on an open-world assumption (Manola and Miller 2004). A notion that captures
this idea for relational query languages is that of monotonicity. A query is said to be monotone if
whenever it outputs an answer over a database, it outputs that same answer over all extensions of
that database.

The notion of monotonicity is defined as follows for the case of SPARQL: A graph pattern P
is said to be monotone if for every two RDF graphs G1 and G2 such that G1 ⊆ G2, it holds that
�P�G1 ⊆ �P�G2 . Contrary to what one could expect, monotonicity is not the right property when
trying to capture the idea of a query that is appropriate for the open-world semantics of RDF. This
occurs because SPARQL graph patterns allow for optional information, and hence one answer
(mapping) to a query can contain more information than another answer to the same query.

Example 3.1. Consider the graph pattern P = (?X ,was_born_in,Chile) OPT (?X , email, ?Y),
and let G1 and G2 be the RDF graphs shown in Figure 2. On the one hand, the answer to P
over G1 contains only the mapping μ1 = [?X → juan], as (?X , email, ?Y) does not match any
triple in G1. On the other hand, the evaluation of P over G2 contains only μ2 = [?X → juan, ?Y →
juan@puc.cl]. Thus, we have that �P�G1 � �P�G2 as μ1 is not present in the answer to P over G2,
from which we conclude that P is not monotone as G1 ⊆ G2. However, in this case we can safely
say that no information is lost when evaluating P over G2, as every piece of information in μ1 can
be retrieved from the information in μ2.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:9

Arenas and Pérez address the issue mentioned in the previous example by introducing a weaker
notion of monotonicity that is appropriate for the semantics of SPARQL and, in particular, for
the semantics of the OPT operator (Arenas and Pérez 2011). To define this concept, we need to
introduce some terminology. Given two mappings μ1 and μ2, the mapping μ1 is said to be subsumed
by μ2, denoted by μ1 � μ2, if dom(μ1) ⊆ dom(μ2) and μ1 (?X) = μ2 (?X) for every ?X ∈ dom(μ1).
Moreover, μ1 is said to be properly subsumed by μ2, denoted by μ1 ≺ μ2, if μ1 � μ2 and μ1 � μ2.
Finally, given two sets of mappings Ω1 and Ω2, we have that Ω1 is subsumed by Ω2, denoted by
Ω1 � Ω2, if for every mapping μ1 ∈ Ω1, there is a mapping μ2 ∈ Ω2 such that μ1 � μ2. With this
notation we have the following:

Definition 3.2 (Arenas and Pérez 2011). A graph pattern P is said to be weakly monotone if for
every two RDF graphs G1 and G2 such that G1 ⊆ G2, it is the case that �P�G1 � �P�G2 .

Weak monotonicity overcomes the issues with monotonicity when capturing the idea of making
no assumptions about unknown information in the evaluation of a SPARQL query. In fact, if a graph
pattern P is weakly monotone and the evaluation of P over an RDF graph G produces a mapping
μ, then the evaluation of P over any extension of G produces a mapping that contains at least as
much information as μ. As an example of this, notice that the graph pattern in Example 3.1 is not
monotone but weakly monotone.

3.2 The Notion of Well Designedness

The operators in SPARQL are all positive in nature; in fact, neither a difference operator nor a
general form of negation were included in the first version of this language (Prud’hommeaux and
Seaborne 2008). However, as opposed to the intuition behind the OPT operator, there exist SPARQL
graph patterns that are not weakly monotone.

Example 3.3. Let P be the graph pattern defined by:

P = (?X ,was_born_in,Chile) AND ((?Y ,was_born_in,Chile) OPT (?Y , email, ?X))

and assume that G1 and G2 are the RDF graphs depicted in Figure 2. In the evaluation of P over
G1, we can see that (?X ,was_born_in,Chile) and (?Y ,was_born_in,Chile) match the RDF triple
(Juan,was_born_in,Chile). Thus, given that the triple pattern (?Y , email, ?X) does not match any
triple in G1, we obtain that �P�G1 = {[?X → Juan, ?Y → Juan]}. On the other hand, if we eval-
uate P over G2, we obtain the same results for the triple patterns (?X ,was_born_in,Chile) and
(?Y ,was_born_in,Chile). Nevertheless, in this case the triple (?Y , email, ?X) matches (Juan, email,
juan@puc.cl), from which we conclude that

�(?Y ,was_born_in,Chile) OPT (?Y , email, ?X)�G2 = {[?Y → Juan, ?X → juan@puc.cl]}.

Hence, given that �(?X ,was_born_in,Chile)�G2 = {[?X → Juan]}, the mappings coming from the
two sides of the AND operator are not compatible. We conclude that �P�G2 = ∅ and, therefore, P
is not weakly monotone as G1 ⊆ G2 and �P�G1 � �P�G2 .

Arguably, the graph pattern P in the previous example is unnatural. In fact, the triple pattern
(?Y , email, ?X) offers optional information to (?Y ,was_born_in,Chile), but at the same time is
intended to match the results of the triple pattern (?X ,was_born_in,Chile). To avoid such patterns,
the notion of well designedness was introduced in Pérez et al. (2009), with the specific goal in mind
of disallowing the odd use of variables shown in the previous example.

Definition 3.4 (Pérez et al. 2009). Let P be a graph pattern in SPARQL[AOF]. Then P is said to be
well designed if it satisfies the following conditions:

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:10 M. Arenas and M. Ugarte

—for every sub-pattern of P of the form (P1 FILTER R), it is the case that var(R) ⊆ var(P1);
and

—for every sub-pattern of P of the form (P1 OPT P2) and every variable ?X ∈ var(P2), if ?X
occurs in P outside (P1 OPT P2), then ?X ∈ var(P1).

For instance, the graph pattern P given in Example 3.3 is not well designed. To see why this
is the case, consider the sub-pattern (P1 OPT P2) of P with P1 = (?Y ,was_born_in,Chile) and
P2 = (?Y , email, ?X). We have that ?X ∈ var(P2), and also that ?X occurs in P outside (P1 OPT P2)
in the triple pattern (?X ,was_born_in,Chile). However, ?X � var(P1), thus violating the second
condition in the definition of well designedness. On the other hand, the graph pattern shown in
Example 3.1 is well designed.

3.3 On the Relationship between Weak Monotonicity and Well Designedness

It is well known that well-designed patterns are weakly monotone, and thus they are appropriate
for the open-world semantics of RDF (Arenas and Pérez 2011; Pérez et al. 2009). However, the
rather syntactic definition of well designedness does not shed light on how close this notion is
to weak monotonicity. In fact, the question of whether every weakly monotone graph pattern in
SPARQL[AOF] is equivalent to a well-designed graph pattern is still open. The first contribution
of this article is to give a negative answer to this question.

Theorem 3.5. There is a weakly monotone graph pattern in SPARQL[AOF] that is not equivalent

to any well-designed graph pattern in SPARQL[AOF].

To prove this theorem, we use the following two results:

Proposition 3.6 (Pérez et al. 2009). Every well-designed graph pattern in SPARQL[AOF] is

equivalent to a well-designed graph pattern in SPARQL[AOF] that has the form

(· · · ((P1 OPT P2) OPT P3) · · · OPT Pn),

where P1 is in SPARQL[AF] and for each i ∈ {2, . . . ,n} Pi is in SPARQL[AOF].

Proposition 3.7 (Pérez et al. 2009). Let P be a well-designed graph pattern in SPARQL[AF]. For

every RDF graph G and every mapping μ ∈ �P�G , it is the case that dom(μ) = var(P).

Proof of Theorem 3.5. Define the graph pattern P as

P = [((a,b, c) OPT (?X ,d, e)) OPT (?Y , f ,д)] FILTER (bound(?X) ∨ bound(?Y)).

For the sake of simplicity, we refer to the left-hand side of the FILTER as POPT. Now we show that P
is weakly monotone, but it is not equivalent to any well-designed graph pattern in SPARQL[AOF].
Let G1 and G2 be two RDF graphs such that G1 ⊆ G2, and let μ ∈ �P�G1 . By the semantics of FIL-
TER, we have that μ ∈ �POPT�G1 . Since POPT is well designed, it is also weakly monotone and,
therefore, there exists μ ′ ∈ �POPT�G2 such that μ � μ ′. As μ |= (bound(?X) ∨ bound(?Y)), we have
that μ ′ |= (bound(?X) ∨ bound(?Y)) and, therefore, μ ′ ∈ �P�G2 . Thus, we conclude that there ex-
ists μ ′ ∈ �P�G2 such that μ � μ ′ and, hence, P is weakly monotone as μ is an arbitrary map-
ping in �P�G1 . Now we show that P is not equivalent to any well-designed graph pattern in
SPARQL[AOF]. For the sake of contradiction assume that Q is a well-designed graph pattern in
SPARQL[AOF] such that P ≡ Q . From Proposition 3.6 we can assume without loss of generality
thatQ = (· · · ((Q1 OPT Q2) OPT Q3) · · · OPT Qn),whereQ1 is in SPARQL[AF]. Let � be an IRI not
mentioned inQ1, and defineG1 andG2 as the RDF graphs {(a,b, c), (�,d, e)} and {(a,b, c), (�, f ,д)},
respectively. It is easy to see that �P�G1 = [?X → �] and �P�G2 = [?Y → �]. By Proposition 3.7, this
implies that the variables ?X and ?Y cannot be mentioned in Q1, as otherwise they would both be

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:11

present in the evaluation of Q over every RDF graph, which given that P ≡ Q would imply that
?X and ?Y occur in the evaluation of P over every RDF graph. Moreover, it is possible to conclude
that Q1 does not mention any variable by using the same argument. Now define the RDF graph
G = {(a,b, c)}. Since Q1 does not mention �, it is clear that �Q1�G = �Q1�G1 as no variable occurs
in Q1. Given that �Q�G1 = �P�G1 and �P�G1 � ∅, we have that �Q�G1 � ∅ and, hence, �Q1�G1 � ∅
as Q = (· · · ((Q1 OPT Q2) OPT Q3) · · · OPT Qn). Thus, we conclude that �Q1�G � ∅ as �Q1�G =
�Q1�G1 . But this implies that �Q�G � ∅ as Q = (· · · ((Q1 OPT Q2) OPT Q3) · · · OPT Qn), which
leads to a contradiction, since �P�G = ∅ and we assume that P ≡ Q . �

It is interesting to see that the SPARQL graph pattern used in the proof of Theorem 3.5 can be
expressed in the syntactic fragment of SPARQL studied in Kaminski and Kostylev (2016). Although
not every query in this fragment is weakly monotone, it is an interesting open issue whether every
weakly monotone query can be expressed in this fragment.

The notion of well designedness was defined in Pérez et al. (2009) without considering the
UNION operator. Thus, it is natural to ask whether the lack of disjunction is the reason behind
Theorem 3.5. To show that this is not the case, consider the following extension of the notion of
well designedness. A graph pattern in SPARQL[AUOF] is said to be well designed if it is of the
form

P1 UNION P2 UNION · · · UNION Pn ,

where every disjunct Pi (1 ≤ i ≤ n) is a well-designed graph pattern in SPARQL[AOF]. It is im-
portant to notice that every graph pattern in this class is weakly monotone, and also that this
class has been widely adopted as a good practice for writing SPARQL queries (see, e.g., Pichler
and Skritek (2014)). However, the following result shows that this fragment of SPARQL is not
expressive enough to capture weak monotonicity.

Theorem 3.8. There exists a weakly monotone graph pattern in SPARQL[AUOF] that is not equiv-

alent to any well-designed graph pattern in SPARQL[AUOF].

To prove this theorem, we use the following result:

Proposition 3.9 (Pérez et al. 2009). Let P be a graph pattern in SPARQL[AOF] and G an RDF

graph. Then, for every two distinct mappings μ1, μ2 ∈ �P�G , it is the case that μ1 � μ2.

In simple words, this proposition states that a graph pattern in SPARQL[AOF] cannot output
two distinct compatible mappings.

Proof of Theorem 3.8. Let P be the graph pattern defined as

P = (?X ,a,b) OPT ((?X , c, ?Y) UNION (?X ,d, ?Z)).

Since in P both sides of the operator OPT are (strictly) monotone, we can directly conclude that P
is weakly monotone. Now we prove that P is not equivalent to any well-designed graph pattern
in SPARQL[AUOF]. Consider the following four RDF graphs:

G1 = {(1,a,b)} G2 = {(1,a,b), (1, c, 2)}
G3 = {(1,a,b), (1,d, 3)} G4 = {(1,a,b), (1, c, 2), (1,d, 3)}.

Evaluating P over these graphs, we obtain:

�P�G1 = {[?X → 1]} �P�G2 = {[?X → 1, ?Y → 2]}
�P�G3 = {[?X → 1, ?Z → 3]} �P�G4 = {[?X → 1, ?Y → 2], [?X → 1, ?Z → 3]}.
Assume for the sake of contradiction that P is equivalent to the SPARQL[AUOF] well-designed
graph pattern P ′ = P1 UNION P2 UNION · · · UNION Pn . By semantics of UNION, there must be
an i for which �Pi �G1 = {[?X → 1]}. Without loss of generality we can assume i = 1. SinceG1 ⊆ G2

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:12 M. Arenas and M. Ugarte

and P1 is weakly monotone , we have that �P1�G1 � �P1�G2 . Thus, given that �P1�G1 = {[?X → 1]},
there exists μ2 ∈ �P1�G2 such that [?X → 1] � μ2. But then given that �P�G2 = {[?X → 1, ?Y →
2]}, �P�G2 = �P

′�G2 , and �P1�G2 ⊆ �P ′�G2 , we conclude that μ2 = [?X → 1, ?Y → 2] and �P1�G2 =

{[?X → 1, ?Y → 2]}. Analogously, as �P�G3 = {[?X → 1, ?Z → 3]} andG1 ⊆ G3, it is the case that
�P1�G3 = {[?X → 1, ?Z → 3]}.

Since G2 ⊆ G4 and P1 is weakly monotone, we have that �P1�G2 � �P1�G4 . Thus, given that
�P�G2 = {[?X → 1, ?Y → 2]}, there exists μ4 ∈ �P1�G4 such that [?X → 1, ?Y → 2] � μ4. But
then given that �P�G4 = {[?X → 1, ?Y → 2], [?X → 1, ?Z → 3]}, �P�G4 = �P

′�G4 , and �P1�G4 ⊆
�P ′�G4 , we conclude that μ4 = [?X → 1, ?Y → 2]. Hence, we have that [?X → 1, ?Y → 2] ∈
�P1�G4 . The same analysis overG3 and the mapping [?X → 1, ?Z → 3] shows that [?X → 1, ?Z →
3] ∈ �P1�G4 .

We conclude that {[?X → 1, ?Y → 2], [?X → 1, ?Z → 3]} ⊆ �P1�G4 , showing that P1 returns
two distinct compatible mappings when evaluated over G4. This contradicts Proposition 3.9 and
therefore P and P ′ cannot be equivalent, which was to be shown. �

The previous theorems present an important improvement in understanding the expressive power
of well-designed graph patterns and also motivate the search for more expressive weakly mono-
tone fragments of SPARQL with simple syntactic definitions.

4 CAPTURING WEAK MONOTONICITY UNDER SUBSUMPTION EQUIVALENCE

Interpolation techniques have proved to be useful in establishing connections between semantic
and syntactic notions for first-order logic (FO); an example of this is the use of Lyndon’s interpo-
lation theorem (Lyndon 1959) to show that the semantic notion of monotonicity for FO is char-
acterized by the syntactic notion of being positive. Interpolation techniques have also proved to
be useful in the database area, for instance, to generate plans for answering queries over physical
repositories (Toman and Weddell 2011) or with restricted access to some data sources (Benedikt
et al. 2014, 2016a). Thus, they are a natural choice to address the issue of defining an RDF query lan-
guage that captures the fragment of weakly monotone SPARQL queries, which is the motivation
of this section.

It is important to notice that interpolation techniques are known to fail when restricted to finite
models (Ajtai and Gurevich 1987; Libkin 2004), so infinite database instances are considered in
the investigations that use these techniques for relational databases (Toman and Weddell 2011;
Benedikt et al. 2014). By following the same idea, we consider in this article both finite and infinite
RDF graphs, and we define an unrestricted RDF graph as a (possibly infinite) subset of I × I × I. It is
also important to notice that in this new setting, the semantics of SPARQL is defined in the same
way as for the finite case. Moreover, the notions of weak monotonicity and equivalence of graph
patterns are also defined as for the finite case; but to avoid confusion we say that a graph pattern
P is unrestricted weakly monotone if for every pair G1,G2 of unrestricted RDF graphs such that
G1 ⊆ G2, it holds that �P�G1 � �P�G2 , and we use notation P1 ≡inf P2 if for every unrestricted RDF
graphG, it holds that �P1�G = �P2�G . It should be observed that if a graph pattern is unrestricted
weakly monotone, then it is also weakly monotone. Therefore, any query language obtained by
using the results of this section is appropriate for the open-world semantics of RDF, as every graph
pattern in it would be weakly monotone (in the sense defined in the previous section).

Before stating the main result of this section, we need to dig deeper into the notion of equiva-
lence for SPARQL graph patterns. So far we have considered the usual definition of equivalence
for graph patterns P1 and P2, which imposes the condition that the set of mappings �P1�G and
�P2�G contain exactly the same elements for every (unrestricted) RDF graph G. But we have ar-
gued in Section 3 that if a mapping μ1 is subsumed by a mapping μ2, then μ2 contains at least as

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:13

much information as μ1, so if �P1�G � �P2�G and �P2�G � �P1�G , then we can claim that the set
of mappings �P1�G and �P2�G are equally informative. Hence, it is also natural to consider a no-
tion of equivalence of SPARQL graph patterns based on subsumption. More precisely, two graph
patterns P1 and P2 are said to be subsumption-equivalent (Ahmetaj et al. 2015; Barceló et al. 2015),
denoted by P1 ≡s P2 (respectively, P1 ≡inf

s P2), if for every RDF graph G (resp., unrestricted RDF
graph G), it holds that �P1�G � �P2�G and �P2�G � �P1�G . This notion is central to our article
and has received a lot of attention since the early 2010s (Letelier et al. 2013; Pichler and Skritek
2014; Ahmetaj et al. 2015; Barceló et al. 2015). We are now ready to present the main result of this
article.

Theorem 4.1. For every unrestricted weakly monotone graph pattern P , there exists a graph pattern

Q in SPARQL[AUFS] such that P ≡inf
s Q .

The proof of this theorem is rather involved. Since interpolation theorems are proved for FO, we
first need to provide a translation from SPARQL to FO, then apply the theorems in FO, and, finally,
translate the results back to SPARQL. As there are many definitions and intermediate propositions
involved, we leave the full proof for Appendix A. However, we present in the next section a sketch
of the proof that sheds lights on how interpolation theorems are applied to SPARQL.

As a corollary of Theorem 4.1 and the fact that every graph pattern in SPARQL[AUFS] is unre-
stricted weakly monotone (in fact, monotone), we obtain the following result that shows that the
query language SPARQL[AUFS] captures the fragment of unrestricted weakly monotone SPARQL
queries under subsumption equivalence.

Corollary 4.2. A SPARQL graph pattern P is unrestricted weakly monotone if and only if there

exists a graph pattern Q in SPARQL[AUFS] such that P ≡inf
s Q .

4.1 Sketch of the Proof of Theorem 4.1

The theorem is obtained by applying the interpolation theorems of Lyndon (1959) and Otto (2000).
We first need to provide a translation from RDF and SPARQL to a setting in FO. This transformation
is inspired by the translations given in Angles and Gutierrez (2008), Polleres and Wallner (2013),
and Kostylev et al. (2015), but with some modifications needed to apply interpolation techniques.

Let P be a graph pattern. Define LP
RDF as the vocabulary that contains a ternary relation symbol

T, a unary relation symbol Dom, a constant symbol ci for each i ∈ I(P), and a constant symbol n.
We say that an LP

RDF-structure A = 〈D, TA,DomA, {cAi }i ∈I ,n
A〉 corresponds to an unrestricted RDF

graph G if

—D is a set of IRIs plus an additional element N ;
—G = TA ∩ (DomA × DomA × DomA);
—for every i ∈ I(G), it is the case that cAi = i; and
—nA = N and N occurs neither in DomA nor in TA .

For every graph pattern P and unrestricted RDF graph G, there is an infinite set of LP
RDF-

structures that correspond to G. We denote this set by AP
G . At this stage, the constant n and the

unary relation Dom might seem unnecessary; their importance will become clear later.
Now we need to define a relation between mappings and tuples. To this end, assume an

arbitrary order ≤ on the set of variables V. Assume ?X1, . . . , ?X� are the variables in P or-
dered under ≤. Given a mapping μ : var(P) → I, we define the extension of μ to var(P) as
the function μP : var(P) → I such that μP (?X) = μ (?X) for every ?X ∈ dom(μ), and μP (?X) =
N for ?X ∈ var(P) \ dom(μ). Using this function, we define the tuple corresponding to μ as
tP

μ = (μP (?X1), . . . , μP (?X�)). We extend the notion of subsumption to tuples: Given two tuples

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:14 M. Arenas and M. Ugarte

ā = (a1, . . . ,a�) and b̄ = (b1, . . . ,b�), we define ā � b̄ as

ā � b̄ =
∧

i ∈[1..�]

ai = bi ∨ ai = N .

With the above FO setting, we embark on the task of defining an FO formula φP (x̄) that is equiv-
alent to P in the following sense: For every mapping μ, unrestricted RDF graph G, and LP

RDF-
structure A ∈ AG , it is the case that μ ∈ �P�G if and only if A |= φP (tP

μ). For the application of
Otto’s interpolation theorem, the formula φP should be quantified relative to Dom, meaning that
every quantifier in φP is either of the form ∀x (Dom(x) → ψ) or ∃x (Dom(x) ∧ψ). This condition
makes the construction of φP a particularly technical procedure; we skip the details here. A corol-
lary of this construction is that for every weakly monotone graph pattern there is an equivalent
FO formula with Dom-relativized quantification.

Now we have a formula φP that is related to P under a precise notion of equivalence and is
quantified relative to Dom. The next step is to define a formula asserting that φP corresponds to
an unrestricted weakly monotone graph pattern, for which we need to move to a new vocabulary.
Let LP2

RDF be defined as LP
RDF ∪ {T

′,Dom′}, where T ′ is a ternary relation symbol and Dom′ is a
unary relation symbol. This vocabulary is intended to define structures corresponding to a pair of
unrestricted RDF graphs. We say that an LP2

RDF-structure A corresponds to an unrestricted RDF
graph G if the restriction of A to LP

RDF corresponds to G.
Now consider the following LP2

RDF-formula2:
[
φP (T,Dom, x̄) ∧ T ⊆ T ′ ∧ Dom ⊆ Dom′

] → ∃ȳ (x̄ � ȳ ∧ φP (T ′,Dom′, ȳ)). (1)

Here φP (T ′,Dom′, ȳ) represents the formula φP (ȳ) but replacing every occurrence of T by T ′

and every occurrence of Dom by Dom′. Besides, the sentence T ⊆ T ′ indicates that T is contained
in T ′, which is expressed in FO as ∀u∀v∀w (T(u,v,w) → T ′(u,v,w)) and likewise for the formula
Dom ⊆ Dom′. It is not hard to prove that (1) is satisfied by every LP2

RDF-structure corresponding to
an RDF graph if and only if P is unrestricted weakly monotone. However, to apply interpolation,
we need a tautological implication, and we cannot assert that (1) is a tautology, since not every
LP2

RDF-structure corresponds to an unrestricted RDF graph. To overcome this problem, we define a
formula ΦRDF that is satisfied precisely by thoseLP2

RDF-structures that correspond to an unrestricted
RDF graph. Now we add ΦRDF to the left-hand side of the implication:

[ΦRDF ∧ φP (T,Dom, x̄) ∧ T ⊆ T ′ ∧ Dom ⊆ Dom′]→ ∃ȳ (x̄ � ȳ ∧ φP (T ′,Dom′, ȳ)). (2)

It is not hard to prove that if P is unrestricted weakly monotone, then this formula is a tautology.
Now we proceed to apply interpolation. Lyndon’s interpolation theorem (Lyndon 1959) asserts

that if an implication α → β is a tautology, then there is a formula θ such that α → θ and θ → β are
both tautologies, and every relational symbol occurring in θ must occur in both α and β . Moreover,
if a relation R only occurs positively in α or β , then R can only occur positively in θ . Otto extended
this result by proving that if α and β are quantified relative to a set U , then θ is also quantified
relative to U (Otto 2000). From these theorems and formula (2), we can deduce the existence of a
new formula θ (T ′,Dom′, x̄) such that the following implications hold:

[ΦRDF ∧ φP (T,Dom, x̄) ∧ T ⊆ T ′ ∧ Dom ⊆ Dom′]→ θ (T ′,Dom′, x̄), (3)

θ (T ′,Dom′, x̄) → ∃ȳ (x̄ � ȳ ∧ φP (T ′,Dom′, ȳ)). (4)

LetG be an unrestricted RDF graph. By considering an LP2
RDF-structure A that corresponds toG

such that TA = T ′A and DomA = Dom′A , and by carefully inspecting (3), we can deduce that for

2For the sake of readability, in this section we assume that free variables are universally quantified.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:15

every LP
RDF-structure A ∈ AG , if A |= φP (T,Dom, ā) for some tuple ā, then A |= θ (T,Dom, ā). Fur-

thermore, from the same structure and (4) we can deduce that for every LP
RDF-structure A ∈ AG , if

A |= θ (T,Dom, ā), then there is a tuple b̄ such that ā � b̄ and A |= φP (T,Dom, b̄). We conclude that
for every tuple ā and every structure A corresponding to an unrestricted RDF graph, it holds that
ā is a maximal tuple such that A |= φP (ā) if and only if ā is a maximal tuple such that A |= θ (ā)
(under the order �).

Now we proceed to inspect the syntax of formula θ (T ′,Dom′, x̄). From the construction of (2),
we can see that in the left-hand side of the implication the relations T ′ and Dom′ occur only
positively. Therefore, these two relations must occur positively in θ (T ′,Dom′, x̄). Moreover, every
quantifier in (2) is relativized w.r.t. either Dom or Dom′, and hence θ (T ′,Dom′, x̄) is quantified
relative to Dom′. From these two facts, we are able to prove that θ is equivalent to a UCQ with
inequalities θ ′. In summary, we have obtained a UCQ with inequalities that outputs the same set
of maximal answers as the original pattern P (under our relation between mappings and tuples).
Notice that this implies that P and θ ′ are actually subsumption-equivalent.

The final step is to define a translation from FO to SPARQL. The goal of this translation is
to transform θ ′ (a UCQ with inequalities) into a SPARQL[AUFS] graph pattern Q . Although this
translation might sound simple, it is not straightforward to define a graph pattern equivalent to
θ ′ under the same notion of equivalence used for P and φP . Therefore, we use a weaker notion of
equivalence: For every unrestricted RDF graphG and every structure A ∈ AG such that TA = G, a
mapping μ belongs to �Q�G if and only if A |= θ ′(tQ

μ). The details of the construction of the graph
pattern Q can be found in Appendix A.

Summarizing the previous procedure, given a graph pattern P we constructed an FO-formula
φP that is equivalent to P . By using interpolation techniques, we showed the existence of a new
formula θ that is equivalent in terms of the obtained maximal tuples to φP , over structures corre-
sponding to unrestricted RDF graphs. We defined a UCQ with inequalities θ ′ equivalent to θ , from
which we obtain a SPARQL[AUFS] graph patternQ that is equivalent to θ ′ under a weaker notion
of equivalence. By inspecting every performed step, it can be shown that for every unrestricted
RDF graphG, it is the case that �P�G ⊆ �Q�G and �Q�G � �P�G . This implies that P ≡inf

s Q , which
was to be shown.

Recall that we introduced in Section 3 the notion of a well-designed graph pattern, which is
a stronger condition than weak monotonicity. It is interesting to notice that Theorem 4.1 can be
proved for well-designed graph patterns using techniques similar to those presented in Kostylev
et al. (2015). However, it is not clear how to prove it over unrestricted weakly monotone graph
patterns without using a translation to FO and interpolation techniques.

In the rest of the article, we will see that Theorem 4.1 turns out to be a powerful tool for char-
acterizing and capturing semantic properties over different fragments of SPARQL. It is impor-
tant to mention that Theorem 4.1 provides, for every unrestricted weakly monotone pattern P , a
subsumption-equivalent graph patternQ that is monotone (asQ is in SPARQL[AUFS]). In the next
section, we introduce some operators that allow us to go beyond monotone graph patterns and
obtain certain equivalences with classes of unrestricted weakly monotone graph patterns.

5 CAPTURING WEAKLY MONOTONE FRAGMENTS OF SPARQL

The goal of this section is to introduce RDF query languages that capture important weakly mono-
tone fragments of SPARQL. Inspired by the results in the previous section, we start by defining
in Section 5.1 a new operator for SPARQL. Then we use this operator in Section 5.2 to define a
query language with a simple syntax and capturing the fragment of unrestricted weakly monotone

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:16 M. Arenas and M. Ugarte

SPARQL queries where subsumed answers are not allowed. Finally, we extend this result in Sec-
tion 5.3 to consider the UNION operator.

5.1 A New Operator for SPARQL

The result presented in Theorem 4.1 can be reformulated in terms of the notion of maximal answer
for a graph pattern. More precisely, given a graph pattern P and an unrestricted RDF graphG, the
set of maximal answers to P overG, denoted by �P�max

G
, is defined as the set of mappings μ ∈ �P�G

for which there is no mapping μ ′ ∈ �P�G such that μ ≺ μ ′. Then Theorem 4.1 tells that given an
unrestricted weakly monotone graph pattern P , there exists a graph pattern Q in SPARQL[AUFS]
that preserves the maximal answers to P , that is, �P�max

G
= �Q�max

G
for every unrestricted RDF

graph G.
The idea of preserving only the maximal answers, or removing the properly subsumed answers,

naturally gives rise to a “not subsumed” (NS) operator for SPARQL. Formally, let NS–SPARQL be
the result of extending SPARQL with the following rule for graph patterns:

—If P is a graph pattern, then NS(P) is a graph pattern. Moreover, given an unrestricted RDF
graph G:

�NS(P)�G = �P�max
G .

A graph pattern of the form (P1 OPT P2) is equivalent to NS(P1 UNION (P1 AND P2)). Thus,
the operator NS can be simply considered as an alternative way of obtaining optional information
in the context of incomplete data. In fact, a similar operator for obtaining maximal answers called
minimal union relation was already studied in the context of relational databases with incomplete
information (Galindo-Legaria 1994).

A first question about NS–SPARQL is whether it has the same expressive power as SPARQL, in
the sense that for every graph pattern P in NS–SPARQL, there exists a graph patternQ in SPARQL
such that P ≡ Q (the opposite direction trivially holds as NS–SPARQL is an extension of SPARQL).
We have already shown that the operator OPT can be easily simulated by using the operator NS.
But unlike that case, the simulation of the operator NS in SPARQL is not trivial. In fact, we provide
an algorithm that takes as input a graph pattern P in NS–SPARQL, and outputs a graph pattern
Q in SPARQL such that P ≡ Q and the size of Q is double exponential in the size of P . Before
providing this translation, we need to show that every graph pattern in SPARQL is equivalent
to a graph pattern in a normal form. A graph pattern P is said to be in UNION-normal-form if
P = P1 UNION P2 UNION · · · UNION Pn , where each Pi (1 ≤ i ≤ n) is UNION-free.

Proposition 5.1. Every SPARQL graph pattern is equivalent to a graph pattern in UNION-

normal-form.

Proof. Let P be a SPARQL graph pattern. We proceed by induction over the structure of P . We
only consider the case in which P = SELECTV WHERE Q , as the other cases have already been
proved for SPARQL[AUOF] in Pérez et al. (2009).

Assume P = SELECTV WHERE Q . By induction hypothesis, we can assume that Q is equiva-
lent to Q1 UNION · · · UNION Qn , where each disjunct is UNION-free. We show that

P ≡ (SELECTV WHERE Q1) UNION · · · UNION (SELECTV WHERE Qn).

Let G be an RDF graph and μ be a mapping.

—[⇒] Assume μ ∈ �P�G . Then, there is a mapping μ ′ ∈ �Q�G such that μ ′|V = μ.
This implies there is an i ∈ {1, . . . ,n} such that μ ′ ∈ �Qi �G . It follows that μ ∈
�SELECTV WHERE Qi �G .

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:17

—[⇐] Assume μ ∈ �SELECTV WHERE Qi �G for some i ∈ {1, . . . ,n}. Then, there is a map-
ping μ ′ ∈ �Qi �G such that μ ′|V = μ. It follows that μ ′ ∈ �Q�G and hence μ ∈ �P�G . �

To prove that NS–SPARQL is contained in SPARQL, we actually make use of a stronger version
of UNION-normal-form. We abuse notation by writing D ∈ P whenever P is a graph pattern in
UNION-normal-form and D one of the disjuncts in P .

Proposition 5.2. Let P be a SPARQL graph pattern. Then, there is a graph pattern P ′ in UNION-

normal-form such that P ′ ≡ P .Moreover, for every D ∈ P ′ there is a set of variablesVD ⊆ var(P) such

that for every RDF graph G and every μ ∈ �D�G , it is the case that dom(μ) = VD .

Proof. Let P be a SPARQL graph pattern. For every V ⊆ var(P), define the graph pattern

PV = P FILTER ���
∧

?X ∈V
bound(?X) ∧

∧

?X ∈var(P)\V
¬bound(?X)��� .

Notice that for every graph patternG, �PV �G is the set of mappings μ in �P�G such that dom(μ) =
V . Now, define the pattern P ′V as the transformation of PV into UNION-normal-form. It is clear that
the domain of every mapping that comes from the disjuncts of P ′V must be exactlyV . Define P ′ as
the disjunction (by means of UNION) of every P ′V (V ⊆ var(P)). We prove that P is equivalent to
P ′. LetG be an RDF graph and μ ∈ �P�G . It is clear that μ ∈ �Pdom(μ)�G , and hence μ ∈ �P ′dom(μ)

�G ,

which implies μ ∈ �P ′�G . For the converse, let μ ∈ �P ′�G . There is a set V of variables such that
μ ∈ �P ′V �G , and hence μ ∈ �PV �G , which implies μ ∈ �P�G . Finally, as P ′ is a disjunction of graph
patterns in UNION-normal-form, P ′ is also in UNION-normal-form. Moreover, the disjuncts in the
UNION-normal-form version of PV can only output mappings whose domain is preciselyV , which
concludes the proof. �

In simple words, the previous lemma allows us to distinguish the set of variables bound by the
mappings coming from each disjunct. Now we proceed to prove that NS–SPARQL is contained in
SPARQL. In the proof we use the MINUS3 operator, which is defined as

(P1 MINUS P2) = (P1 OPT (P2 AND (?x1, ?x2, ?x3))) FILTER ¬bound (?x1),

where ?x1, ?x2, ?x3 are variables occurring neither in P1 nor in P2. Given an RDF graph G, the
graph pattern (P1 MINUS P2) retrieves the mappings in �P1�G that are not compatible with any
mapping in �P2�G (Angles and Gutierrez 2008).

Theorem 5.3. The languages SPARQL and NS–SPARQL have the same expressive power.

Proof. Given that NS–SPARQL is an extension of SPARQL, we only need to prove that every
graph pattern in NS–SPARQL is equivalent to a graph pattern in SPARQL. Let P be a graph pattern
in NS–SPARQL. We proceed by induction over the structure of P . The basic case is trivial as a triple
pattern is already in SPARQL. For the inductive step assume that P = NS(Q), which is the only
nontrivial case. By hypothesis we can assumeQ is in SPARQL (notice that OPT might occur inQ).
From Proposition 5.2 we can suppose that Q is in UNION-normal-form and, moreover, that each
disjunct of Q can only output mappings binding a fixed set of variablesVQ . Let Q ′ be a disjunct of
Q , and assume Q1, . . . ,Qn are all disjuncts of Q such that VQ ′ � VQi

. Define the graph pattern

Q ′NS = Q
′ MINUS (Q1 UNION · · · UNION Qn).

3Note that this is the MINUS operator introduced in Angles and Gutierrez [2008], which is called DIFF in the SPARQL 1.1
standard [Harris and Seaborne 2013].

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:18 M. Arenas and M. Ugarte

Intuitively, this pattern outputs all mappings coming fromQ ′ that are not compatible with a map-
ping containing strictly more variables. Naturally, this coincides with obtaining the patterns com-
ing from Q ′ that are not subsumed. We show that this is true by proving that NS(Q) is equivalent
to the graph pattern R = UNION

Q ′ ∈Q
Q ′NS.

—[⇒] Let G be an RDF graph and let μ ∈ �NS(Q)�G . We have that μ ∈ �Q ′�G for some dis-
junct Q ′ of Q , and that there is no mapping μ ′ ∈ �NS(Q)�G subsuming μ. It follows that
there is no disjunct Q ′′ of Q and mapping μ ′′ ∈ �Q ′′�G such that VQ ′ � VQ ′′ and μ ∼ μ ′′,
from which we can deduce that μ ∈ �Q ′NS�G .

—[⇐] LetG be an RDF graph and let μ ∈ �R�G . We have that μ ∈ �Q ′NS�G for some disjunctQ ′

ofQ . Then, μ ∈ �Q ′�G and there is no disjunctQ ′′ ofQ and mapping μ ′′ ∈ �Q ′′�G such that
VQ ′ � VQ ′′ and μ ∼ μ ′. This obviously implies that there is no mapping in �Q�G subsuming
μ, and hence μ ∈ �NS(Q)�G .

Having that NS(Q) is equivalent to a union of NS-free patterns, we conclude that the NS operator
can be removed by introducing the operator MINUS, which is in turn defined in by means of
operator OPT. We conclude that every graph pattern in NS–SPARQL is equivalent to a SPARQL
graph pattern, which concludes the proof. �

Given that NS–SPARQL and SPARQL have the same expressive power, we have that not every
graph pattern in NS–SPARQL is weakly monotone. However, in the following sections we use the
operator NS to identify query languages with simple syntactic definitions, with good expressive
power and whose graph patterns are all weakly monotone.

5.2 Capturing Weak Monotonicity for Subsumption-Free Graph Patterns

As mentioned before, the fact that the answer to a SPARQL query can contain subsumed mappings
has given rise to two different notions of equivalence for graph patterns. We start our search
for a fragment of NS–SPARQL capturing weak monotonicity by considering a scenario where
subsumption is no longer an issue. More precisely, a graph pattern P in SPARQL is said to be
subsumption-free if for every unrestricted RDF graphG, it holds that �P�G = �P�max

G
. Notice that

for every pair P1, P2 of subsumption-free graph patterns, it holds that P1 ≡inf P2 if and only if
P1 ≡inf

s P2. It is important to mention that, in practice, subsumption-free graph patterns are the
rule and not the exception.4

As a corollary of Theorem 4.1, we obtain the following:

Corollary 5.4. Let P be a subsumption-free graph pattern. If P is unrestricted weakly monotone,

then there exists a graph pattern Q in SPARQL[AUFS] such that P ≡inf NS(Q).

This corollary motivates the introduction of the notion of simple graph pattern.

Definition 5.5. A graph pattern in NS–SPARQL is called simple if it is of the form NS(P), where
P is in SPARQL[AUFS].

Let SP–SPARQL be the RDF query language consisting of all simple graph patterns, that is,
every query in SP–SPARQL is of the form NS(P) with P in SPARQL[AUFS]. From Corollary 5.2
and the fact that every simple graph pattern is subsumption-free, we obtain the following theorem

4It should be mentioned that the problem of verifying, given a graph pattern P , whether P is subsumption-free is
undecidable. This is a corollary of the equivalence between the expressive power of SPARQL and first-order logic [An-
gles and Gutierrez 2008; Sequeda et al. 2012] and the undecidability of the finite satisfiability problem for this logic
[Trakhtenbrot 1950].

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:19

showing that SP–SPARQL is a query language appropriate for the open-world semantics of RDF,
with a simple syntactic definition and with good expressive power:

Theorem 5.6. Over unrestricted RDF graphs, SP–SPARQL has the same expressive power as the

fragment of unrestricted weakly monotone and subsumption-free SPARQL graph patterns.

Proof. From Theorem 5.3, we know that every graph pattern in SP–SPARQL is equivalent to
a SPARQL graph pattern. Thus, given that every pattern in SP–SPARQL is unrestricted weakly
monotone and subsumption-free, we conclude that every graph pattern in SP–SPARQL is equiva-
lent to an unrestricted weakly monotone and subsumption-free SPARQL graph pattern.

To prove the opposite direction, consider a subsumption-free and unrestricted weakly mono-
tone graph pattern P in SPARQL. From Theorem 4.1, we know that there is a graph pattern
P ′ ∈ SPARQL[AUFS] such that P ≡inf

s P ′. Now let G be an unrestricted RDF graph. Since P is
subsumption-free, we have that �P�G = �P�max

G
. But as P ≡inf

s P ′, it is the case that �P�max
G
=

�P ′�max
G
= �NS(P ′)�G . Therefore P and NS(P ′) are equivalent, which concludes the proof as NS(P ′)

is a simple pattern. �

Notice that in this theorem we compare the expressive power of two query languages over
unrestricted RDF graphs; thus, we use ≡inf instead of ≡ when indicating that the query languages
have the same expressive power.

We conclude this section by considering the important fragments SPARQL[AOF] and
SPARQL[AFS] of SPARQL. The latter includes the class of conjunctive queries with inequalities,
and it is widely used in practice. The former was extensively studied in Pérez et al. (2009), where
the notion of well designedness introduced in Section 3 was originally defined.

It is easy to see that every graph pattern in SPARQL[AFS] is subsumption free. Moreover, from
Proposition 3.9 we know that every graph pattern in SPARQL[AOF] is also subsumption free. Thus,
we obtain from Theorem 5.6 the following result:

Corollary 5.7. Let P be a graph pattern in SPARQL[AOF] or SPARQL[AFS]. If P is unrestricted

weakly monotone, then there exists a graph pattern in SP–SPARQL such that P ≡inf Q .

Moreover, for the case of (finite) RDF graphs, it is possible to establish the following connection
between well designedness and simple graph patterns:

Proposition 5.8. The fragment of well-designed graph patterns in SPARQL[AOF] is strictly less

expressive than SP–SPARQL.

Proof. Provided Corollary 5.7, to prove that every well-designed graph pattern in
SPARQL[AOF] is equivalent to a graph pattern in SP–SPARQL, it suffices to show that well-
designed graph patterns in SPARQL[AOF] are unrestricted weakly monotone. This follows im-
mediately from the proof that graph patterns in SPARQL[AOF] are weakly monotone ((Pérez
et al. 2009), Lemma 4.3), since that proof does not impose any restriction on the cardinal-
ity of RDF graphs. To prove that the containment is strict, consider the graph pattern P =
NS((a,b, ?X) UNION (d, e, ?Y)) and the RDF graph G = {(a,b, c), (d, e, f)}. It is clear that �P�G =
{[?X → c], [?Y → f]}. From Proposition 3.9 we know that ifQ is a well-designed graph pattern in
SPARQL[AOF], then �Q�G cannot contain two compatible mappings. Hence, P cannot be equiva-
lent to any well-designed graph pattern in SPARQL[AOF]. �.

The existence of a graph pattern in SP–SPARQL which is not equivalent to any well-designed
graph pattern in SPARQL[AOF] is not surprising, as the operator UNION is allowed in SP–SPARQL.
What is interesting from the previous result is that a well-designed graph pattern containing ar-
bitrarily nested OPT operators can always be translated into an equivalent graph pattern with a
single operator NS on the top-most level.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:20 M. Arenas and M. Ugarte

5.3 Including the UNION Operator

In Sections 4 and 5.2, we have argued that SPARQL[AUFS] and SP–SPARQL are good query lan-
guages for the open-world semantics of RDF, in particular because of their expressive power. But
these languages are incomparable, as in the former every graph pattern is monotone but not nec-
essarily subsumption-free, while in the latter every graph pattern is subsumption-free and weakly
monotone but not necessarily monotone. Thus, it is natural to ask whether there exists a query
language that contains both and where every graph pattern is still weakly monotone. This is the
motivating question for this section.

We start our search by allowing the use of disjunction in simple patterns.

Definition 5.9. A graph pattern P in NS–SPARQL is called an ns-pattern if it is of the form
(P1 UNION · · · UNION Pn), where each Pi (1 ≤ i ≤ n) is a simple pattern.

Let USP–SPARQL be an RDF query language consisting of all ns-patterns. As our first result, we
prove that USP–SPARQL is indeed more expressive than both SPARQL[AUFS] and SP–SPARQL.

Proposition 5.10. USP–SPARQL is strictly more expressive than both SPARQL[AUFS] and

SP–SPARQL.

To show that SPARQL[AUFS] is contained in USP–SPARQL, given a pattern in SPARQL[AUFS]
one can transform it into UNION-normal form (Proposition 5.1). Moreover, it is not hard to see that
each disjunct will be subsumption-free (Proposition 3.9). Therefore, this disjunction can be trivially
transformed into an equivalent pattern in USP–SPARQL. The fact that the containments are proper
holds trivially because SPARQL[AUFS] only contains monotone patterns and SP–SPARQL only
contains subsumption-free patterns.

From the fact that every simple pattern is unrestricted weakly monotone, it is easy to deduce that
every ns-pattern is also unrestricted weakly monotone. Thus, we conclude from the previous result
that USP–SPARQL is an answer to our motivating question. Moreover, we obtain the following
corollary from Theorem 4.1:

Corollary 5.11. Let P be a graph pattern in SPARQL. Then P is unrestricted weakly monotone if

and only if there exists a graph pattern Q in USP–SPARQL such that P ≡inf
s Q .

Finally, we obtain the following characterization of the expressive power of USP–SPARQL by
using Theorem 5.6:

Corollary 5.12. Over unrestricted RDF graphs, USP–SPARQL has the same expressive power as

the fragment of unions of unrestricted weakly monotone and subsumption-free SPARQL graph pat-

terns.

From the results of this section, we can conclude that USP–SPARQL is also an appropriate query
language for the open-world semantics of RDF, in particular because it is strictly more expressive
than all previously proposed weakly monotone fragments whose definition is syntactic.

6 CAPTURING CONSTRUCT QUERIES

The input of a SPARQL graph pattern is an RDF graph, while its output is a set of mappings. Thus,
SPARQL graph patterns cannot be composed in the sense that the result of a query cannot be used
as the input of another query. Besides, SPARQL queries cannot be used to define views that will
later used by other queries, a common functionality in relational database systems. To overcome
this limitation, the standard definition of SPARQL by the World Wide Web Consortium includes
an operator CONSTRUCT (Prud’hommeaux and Seaborne 2008) that can be used to produce as

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:21

Fig. 3. An RDF graph containing information about professors and universities.

output an RDF graph. This operator is widely used in practice, so it is a relevant question whether
its use in SPARQL is appropriate for the open-world semantics of RDF.

The goal of this section is to answer this question. More precisely, we provide a formal defi-
nition of the CONSTRUCT operator in Section 6.1, and then we identify in Section 6.2 a query
language with a simple syntactic definition and the same expressive power at the class of unre-
stricted monotone queries using the CONSTRUCT operator. It should be noticed that, once more,
Theorem 4.1 plays a crucial role in the proof of this latter result.

6.1 The CONSTRUCT Operator

We follow the terminology introduced in Kostylev et al. (2015) to define the CONSTRUCT operator.
Let P be a SPARQL graph pattern and H a finite set of triple patterns. Then

Q = (CONSTRUCT H WHERE P)

is a CONSTRUCT query, where H and P are called the template and the graph pattern of Q , re-
spectively. Moreover, given an RDF graph G, the evaluation of Q over G is defined as follows:

ans(Q,G) = {μ (t) | μ ∈ �P�G , t ∈ H and var(t) ⊆ dom(μ)}.

Example 6.1. Let G be the RDF graph shown in Figure 3, which stores information about
professors and universities. In this scenario, we want to construct an RDF graph that con-
tains for each professor his/her name, the universities he/she is affiliated to, and his/her email
if this information is available. We achieve this with a CONSTRUCT query Q of the form
(CONSTRUCT H WHERE P), where H = {(?n, affiliated_to, ?u), (?n, email, ?e)} and P is the fol-
lowing graph pattern:

((?p, name, ?n) AND (?p,works_at, ?u)) OPT (?p, email, ?e).

Notice that in this case the template H contains IRIs that are not mentioned in G. The evaluation
of the graph pattern of P over G results in the following set of mappings:

?p ?n ?u ?e
μ1 prof_02 Denis PUC_Chile
μ2 prof_01 Cristian U_Oxford cris@puc.cl
μ3 prof_01 Cristian PUC_Chile cris@puc.cl

Next to the table we have included names for the mappings. Now, to evaluate Q , we con-
sider each mapping in this table separately. For the mapping μ1, we have that each vari-
able in the triple pattern (?n, affiliated_to, ?u) ∈ H is contained in the domain of μ1, so the
triple (μ1 (?n), affiliated_to, μ1 (?u)) = (Denis, affiliated_to, PUC_Chile) is included in the output
ans(Q,G). On the other hand, the variable ?e is not in the domain of μ1, so no triple is produced by
this mapping and the triple pattern (?n, email, ?e) in H . The result of the evaluation process is the
RDF graph depicted in Figure 4. Notice that the triple (Cristian, email, cris@puc.cl) is generated
when considering the mapping μ2 and μ3 and the triple pattern (?n, email, ?e) inH . However, as the
semantics of the operator CONSTRUCT is defined as a set of triples, (Cristian, email, cris@puc.cl)
can occur only once in the output ans(Q,G).

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:22 M. Arenas and M. Ugarte

Fig. 4. The RDF graph obtained by evaluating the CONSTRUCT queryQ in Example 6.1 over the RDF graph

in Figure 3.

6.2 Capturing Monotone CONSTRUCT Queries

In Section 3, we concluded that the notion of monotonicity is too restrictive when trying to identify
fragments of SPARQL that are appropriate for the open-world semantics of RDF. In that section,
we also argue that the notion of weak monotonicity is appropriate for this goal, as to compare the
answers of two graph patterns one has to consider the fact that a mapping can be more informative
than another one. However, the situation is different for CONSTRUCT queries, as the answer
for such a query is a set of RDF triples (an RDF graph), and an RDF triple is an atomic piece
of information. As such, one RDF triple cannot be more informative than another one. Thus, in the
context of CONSTRUCT queries we consider the notion of monotonicity when trying to identify
which fragment of these queries is appropriate for the open-world semantics of RDF. The notion
of monotonicity is defined as follows in this context:

Definition 6.2. A CONSTRUCT query Q is monotone (respectively, unrestricted monotone) if
for every pair G1, G2 of RDF graphs (respectively, unrestricted RDF graphs) such that G1 ⊆ G2, it
holds that ans(Q,G1) ⊆ ans(Q,G2).

Notice that in this definition we also considered unrestricted RDF graphs, for which the se-
mantics of the CONSTRUCT operator is defined in the same way as for the case of (finite) RDF
graphs.

Exactly as in the case of weak monotonicity for graph patterns, Definition 6.2 provides no in-
sight about how to find a syntactic characterization of monotone CONSTRUCT queries, which is
aggravated by the fact that the problem of verifying whether a CONSTRUCT query is monotone is
undecidable.5 Nevertheless, we can address this issue by focusing on unrestricted RDF graphs (as
it is done in Sections 4 and 5) and considering some specific properties of CONSTRUCT queries.
The key observation here is that when evaluating the graph pattern of a CONSTRUCT query, it
suffices to look only at the non-subsumed graph patterns. This observation can be formalized by
using the operator NS introduced in Section 5:

Lemma 6.3. For every pattern P and template H , it holds that:

(CONSTRUCT H WHERE P) ≡inf (CONSTRUCT H WHERE NS(P)).

Proof. Let G be an unrestricted RDF graph and define the queries Q =
(CONSTRUCT H WHERE P) and Q ′ = (CONSTRUCT H WHERE NS(P)). Since �NS(P)�G ⊆
�P�G , it is trivial to show that ans(Q ′,G) ⊆ ans(Q,G). It remains to show that ans(Q,G) ⊆
ans(Q ′,G). Let t ∈ ans(Q,G). By definition, there is a mapping μ ∈ �P�G and a triple pattern
T ∈ H such that var(T) ⊆ dom(μ) and μ (T) = t . From the definition of NS there is a mapping
μ ′ ∈ �NS(P)�G such that μ � μ ′, and therefore var(T) ⊆ dom(μ ′). Then, the triple μ ′(T) belongs

5This is a corollary of the equivalence between the expressive power of SPARQL and first-order logic [Angles and Gutierrez
2008; Sequeda et al. 2012], and the fact that the problem of verifying whether a first-order logic formula is monotone is
undecidable. In turn, the latter result about monotonicity for first-order logic is a corollary of the undecidability of the
finite satisfiability problem for this logic [Trakhtenbrot 1950].

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:23

to ans(Q ′,G). But since μ � μ ′ and var(T) ⊆ dom(μ), we have that μ ′(T) = μ (T) = t . We conclude
that t ∈ ans(Q ′,G). �

Lemma 6.3 has a strong consequence in the characterization of monotone queries. Consider a
CONSTRUCT query Q = (CONSTRUCT H WHERE P) in which P is unrestricted weakly mono-
tone. From Theorem 4.1, we have that there exists a graph pattern P� in SPARQL[AUFS] such that
P� ≡inf

s P . Thus, given that the condition P� ≡inf
s P holds if and only if the condition NS(P�) ≡inf

NS(P) holds, we obtain the following by applying Lemma 6.3:

Q = (CONSTRUCT H WHEREP)
≡inf (CONSTRUCT H WHERE NS(P))
≡inf (CONSTRUCT H WHERE NS(P�))
≡inf (CONSTRUCT H WHEREP�)

Hence, we obtain the following corollary.

Corollary 6.4. Let Q = (CONSTRUCT H WHERE P) be a CONSTRUCT query in which P is

unrestricted weakly monotone. Then there exists a graph pattern P� in SPARQL[AUFS] such that

Q ≡inf (CONSTRUCT H WHERE P�).

It is easy to prove that if the graph pattern of a CONSTRUCT query is weakly monotone, then
the CONSTRUCT query is monotone. However, the opposite direction is not true, as there exist
CONSTRUCT queries that are monotone but whose graph patterns are not weakly monotone.
This prevents the previous corollary from establishing a general characterization of monotone
CONSTRUCT queries. However, we overcome this limitation with the following lemma.

Lemma 6.5. Let Q be an unrestricted monotone CONSTRUCT query. Then, there exists a

template H and an unrestricted weakly monotone SPARQL graph pattern P such that Q ≡inf

(CONSTRUCT H WHERE P).

Proof. Let Q = (CONSTRUCT H WHERE P) be an unrestricted monotone CONSTRUCT
query. We can assume without loss of generality that var(H) ⊆ var(P), as every triple in H men-
tioning a variable not occuring in P can be safely removed. For every triple pattern t ∈ H define a
renaming function σt : V→ V such that:

—For every t , s ∈ H and every v1,v2 ∈ var(P), it is the case that σt (v1) � σs (v2).
—For every t ∈ H and every v ∈ var(P), σt (v) � var(P).

Given a mapping μ and a triple t ∈ H , define σt [μ] as the mapping that results from replacing
the domain of μ by its image under σt . For every t ∈ H let Adom(t) be the conjunction (by means of
AND) of Adom(?X) for each variable ?X in var(t). If t has no variables, then Adom(t) is considered
to be a tautology.

For every t ∈ H define the pattern P t as the result of replacing in P every occurrence of a vari-
able ?X by σt (?X). For every two triples t = (t1, t2, t3) and s = (s1, s2, s3) in H define Rt,s as the
filter condition (t1 = σs (s1) ∧ t2 = σs (s2) ∧ t3 = σs (s3)), assuming, for the sake of simplicity, that
σs (a) = a for every a ∈ I. Now we define the set of graph patterns that will serve as a basis for our
construction. For each t ∈ H , define Pt as

Pt = SELECT var(t) WHERE ��
[
P UNION UNION

s ∈H \{t }
[(Ps AND Adom(t)) FILTER Rt,s]

]
FILTER (bound (var(t)))��, (5)

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:24 M. Arenas and M. Ugarte

where Adom(t) states that the variables of t can be assigned any value in the active domain. For-
mally Adom(?X) is defined as

Adom(?X) = SELECT {?X } WHERE [(?X , ?Y , ?Z) UNION (?Y , ?X , ?Z) UNION (?Y , ?Z , ?X)]

and Adom(t) is the conjunction of Adom(?W) for each variable ?W ∈ var(t).
Now we prove that the following three properties hold for every t ∈ H :

(1) For every RDF graph G and every mapping μ ∈ �P�G , if μ (t) ∈ ans(Q,G), then μ (t) ∈
ans(CONSTRUCT t WHERE Pt ,G).

(2) For every graph G, ans(CONSTRUCT t WHERE Pt ,G) ⊆ ans(Q,G).
(3) Pt is unrestricted weakly monotone.

The first property immediately follows from the fact that P is one of the disjuncts of Pt , because
if μ (t) ∈ ans(Q,G), then the variables in t are bounded by μ. Now we proceed with (2). LetG be an
RDF graph and let μ be a mapping in �Pt �G such that μ (t) ∈ ans(CONSTRUCT t WHERE Pt ,G).
Hence, μ must come from one of the disjuncts in Pt . If that disjunct is P , then we have that μ is the
projection over var(t) of a mapping in �P�G , and hence μ (t) ∈ ans(Q,G). If not, then there is an
s ∈ H such that μ is subsumed by a mapping μ ′ ∈ �(Ps AND Adom(t)) FILTER Rt,s �G . Then μ ′ is
the join between two mappings. Let μs be the mapping in �Ps �G of such join. Since Ps equals P by
a renaming of all variables, the mapping σ−1

s [μs] belongs to �P�G . Moreover, by the filter condition
Rt,s , we know that σ−1

s [μs] must bind all variables in var(s), and hence σ−1
s [μs](s) ∈ ans(Q,G). But

from the filter condition we know that σ−1
s [μs](s) equals μ (t), and hence μ (t) belongs to ans(Q,G),

which was to be shown.
Finally, we prove that Pt is unrestricted weakly monotone. Let G be an unrestricted RDF

graph and μ ∈ �Pt �G . We know that dom(μ) = var(t), and hence μ (t) ∈ ans(CONSTRUCT t
WHERE Pt ,G). By property 2, this implies that μ (t) ∈ ans(Q,G). Let G ′ be an RDF graph
such that G ⊆ G ′. Since Q is unrestricted monotone, there must be a triple s ∈ H and a map-
ping μs ∈ �P�G′ such that μs (s) = μ (t). Hence σs [μs] ∈ �Ps �G′ . Moreover, since μs (s) = μ (t),
we have that σs [μs] �� μ satisfies Rt,s . Hence, σs [μs] �� μ belongs to �Ps AND Adom(t)
FILTER Rt,s �G′ , and thus μ ∈ �Pt �G′ . This actually tells us that Pt is unrestricted monotone and
therefore unrestricted weakly monotone.

Having defined the patterns Pt and proved the three properties above, we proceed with the
main result, namely that Q can be rewritten as a CONSTRUCT query in which the graph pat-
tern is unrestricted weakly monotone. First, define for each t ∈ H the CONSTRUCT query Qt as
(CONSTRUCT t ′ WHERE P ′t), where t ′ and P ′t are the result of renaming the variables in t and Pt ,
respectively, in a consistent manner. Without loss of generality we can assume that for t , s ∈ H ,
the queriesQt andQs have pairwise disjoint sets of variables. Notice, however, that for every t ∈ H
the query Qt is equivalent to CONSTRUCT t WHERE Pt and hence satisfies the three properties
mentioned above. Finally, define H ′ and P ′ as:

H ′ = {t ′ | t ∈ H } P ′ = UNION
t ∈H

P ′t .

Let Q ′ = (CONSTRUCT H ′ WHERE P ′). We prove that Q and Q ′ are equivalent. LetG be an RDF
graph.

—[⇒] Let μ ∈ �P�G and t ∈ H such that μ (t) ∈ ans(Q,G). By the first property proved above,
we know that μ (t) is in the answer to CONSTRUCT t WHERE Pt over G, which implies
that μ (t) ∈ ans(CONSTRUCT t ′ WHERE P ′t ,G). Since P ′t is one of the disjuncts of P ′ and
t ′ ∈ H ′, we have that μ (t) ∈ ans(Q ′,G).

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:25

—[⇐] Let μ ∈ �P ′�G and t ∈ H ′ such that μ (t) ∈ ans(Q ′,G). We know that μ ∈ �P ′s �G for
some s ′ ∈ H ′. If var(t) � ∅, then such s ′ must be t ′ as P ′t and P ′s do not share vari-
ables. In this case, μ (t) ∈ ans(CONSTRUCT t ′ WHERE P ′t ,G), which implies that μ (t) ∈
ans(CONSTRUCT t WHERE Pt ,G). By the second property, this implies μ (t) ∈ ans(Q,G).
On the other hand, if t has no variables, then we still know that μ ∈ �P ′s �G for some s ′ ∈ H ′.
This entails there is a mapping in �Ps �G . Hence, there is either a mapping μ ′ in �P�G or in
�Ph�G for some h ∈ H . Since Ph is a renaming of P , in any case there must be a mapping
μ ′ ∈ �P�G . Finally, as t has no variables, μ ′(t) = μ (t) = t ∈ �P�G .

We proved that Q is equivalent to Q ′ = (CONSTRUCT H ′ WHERE P ′). Since P ′ is a disjunc-
tion between unrestricted weakly monotone graph patterns, we know that P ′ is also unrestricted
weakly monotone, concluding the proof. �

From Lemma 6.5 and Corollary 6.4, we can finally obtain a syntactic characterization of unre-
stricted monotonicity for CONSTRUCT queries. To simplify notation, given a set of SPARQL
operators O , we denote by CONSTRUCT[O] the set of CONSTRUCT queries of the form
(CONSTRUCT H WHERE P) such that P is a graph pattern in SPARQL[O].

Corollary 6.6. Over unrestricted RDF graphs, the class of unrestricted monotone CONSTRUCT

queries has the same expressive power as CONSTRUCT[AUFS].

Next we strengthen this result by proving that the SELECT operator can be removed from the
fragment CONSTRUCT[AUFS]. To prove this proposition, we define an effective procedure for re-
moving the SELECT operator from a CONSTRUCT query. This procedure is given by the following
recursive definition:

Definition 6.7. Let P be an NS–SPARQL graph pattern. The SELECT-free version of P , denoted
by Psf , is recursively defined as follows:

—If P is a triple pattern, then Psf = P .
—If P = (SELECTV WHERE P ′), then Psf is the result of replacing in P ′

sf
every variable in

var(P ′) \V by a fresh variable. Notice that the operator SELECT is removed.
—If P is (P1 ◦ P2), where ◦ is one of {AND, UNION, OPT}, then Psf = (P1

sf
◦ P2

sf
), where the

sets of variables var(P1
sf

) \ var(P) and var(P2
sf

) \ var(P) are disjoint.
—If P = NS(P ′), then Psf = NS(P ′

sf
).

—If P = (P ′ FILTER R), then P = (P ′
sf

FILTER R).

Now we need the following equivalence between a graph pattern and its SELECT-free version.

Lemma 6.8. Let P be a graph pattern. For every RDF graph G, a mapping μ ∈ �P�G if and only if

there is a mapping μ ′ ∈ �Psf�G such that μ � μ ′ and dom(μ) = dom(μ ′) ∩ var(P).

Proof. We proceed by induction on the structure of P . Assume G is an RDF graph and let μ be
a mapping.

—If P is a triple pattern, then the result immediately follows.
—If P is (P1 UNION P2), then μ ∈ �P�G if and only if μ ∈ �P1�G ∪ �P2�G . Assume without

loss of generality that μ ∈ �P1�G . By hypothesis, this occurs if and only if there is a mapping
μ ′ ∈ �P1

sf
�G such that μ � μ ′ and dom(μ) = dom(μ ′) ∩ var(P1). From the definition of Psf ,

we know that dom(μ ′) \ dom(μ) does not contain any variables occurring in P2 or P2
sf

. We
obtain that μ � μ ′ and dom(μ) = dom(μ ′) ∩ var(P), concluding this case as μ ′ is clearly in
�Psf�G .

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:26 M. Arenas and M. Ugarte

—Let P = (P1 AND P2). In this case, μ is in �P�G if and only if there are two compat-
ible mappings μ1 ∈ �P1�G and μ2 ∈ �P2�G such that μ = μ1 ∪ μ2. By hypothesis, this
occurs if and only if there are two mappings μ ′1 ∈ �P1

sf
�G and μ ′2 ∈ �P2

sf
�G such that

μ1 � μ ′1, μ2 � μ ′2, dom(μ1) = dom(μ ′1) ∩ var(P1) and dom(μ2) = dom(μ ′2) ∩ var(P2). But as
the sets of variables var(P1

sf
) \ var(P) and var(P2

sf
) \ var(P) are disjoint, we have that

dom(μ1) ∩ dom(μ2) = dom(μ ′1) ∩ dom(μ ′2). Then, μ ′1 and μ ′2 are compatible and μ ′1 ∪ μ ′2 ∈
�Psf�G . Now we show that dom(μ) = dom(μ ′) ∩ var(P). Notice that the variables in
dom(μ ′1) \ var(P1) are fresh variables, so they cannot occur in var(P2). This implies that
dom(μ ′1) ∩ var(P1) = dom(μ ′1) ∩ var(P), and the corresponding analysis over μ ′2 and P2

yields dom(μ ′2) ∩ var(P2) = dom(μ ′2) ∩ var(P). The equality is then obtained as follows:

dom(μ) = dom(μ1) ∪ dom(μ2) = (dom(μ ′1) ∩ var(P1)) ∪ (dom(μ ′2) ∩ var(P2))

= (dom(μ ′1) ∩ var(P)) ∪ (dom(μ ′2) ∩ var(P)) = (dom(μ ′1) ∪ dom(μ ′2)) ∩ var(P)

= dom(μ ′) ∩ var(P).

—Let P = (P1 OPT P2). We know that μ ∈ �P�G if and only if μ ∈ �(P1 MINUS P2)�G or μ ∈
�(P1 AND P2)�G . It suffices show that μ ∈ �(P1 MINUS P2)�G if and only if there is a μ ′ ∈
�P1

sf
MINUS P2

sf
�G such that μ � μ ′ and dom(μ) = dom(μ ′) ∩ var(P), since the AND case

was already provided. By definition, μ ∈ �(P1 MINUS P2)�G if and only if μ ∈ �P1�G and
there is no μ ′ ∈ �P2�G compatible with μ. By hypothesis, the former condition occurs if and
only if there is a mapping μ1 ∈ �P1

sf
�G such that μ � μ1 and dom(μ) = dom(μ1) ∩ var(P1).

We can easily see by contradiction, then, that there cannot be a μ2 ∈ �P2
sf
�G compatible

with μ1, as if such μ2 existed, then μ1 ∪ μ2 would belong to �P1
sf

AND P2
sf
�G . Thus, by the

AND case this would imply the existence of a mapping in �P1 AND P2�G extending μ,
contradicting the fact that μ ∈ �(P1 MINUS P2)�G . We finally need to show that dom(μ) =
dom(μ1) ∩ var(P), but in this case this is trivial, since we have dom(μ) = dom(μ1) ∩ var(P1),
and by construction the variables in dom(μ1) \ var(P1) cannot occur in P2.

—Let P = (P ′ FILTER R). Then μ ∈ �P�G if and only if μ ∈ �P ′�G and μ |= R. By hypothesis,
we have that μ ∈ �P ′�G if and only if there is a mapping μ ′ ∈ �P ′

sf
�G such that μ � μ ′ and

dom(μ) = dom(μ ′) ∩ var(P). As the variables in dom(μ ′) \ dom(μ) are not mentioned in
var(P), they cannot occur in R. Hence μ |= R if and only if μ ′ |= R, concluding the proof.

—If P = NS(P ′), then a mapping μ is in �P�G if and only if μ is a maximal mapping in �P ′�G .
By hypothesis, this occurs if and only if there is a mapping μ ′ in �P ′

sf
�G such that μ � μ ′ and

dom(μ) = dom(μ ′) ∩ var(P). Such a μ ′ exists if and only if there is a μ ′′ that is maximal in
�P ′

sf
�G satisfying μ ′ � μ ′′. Notice that this implies dom(μ) = dom(μ ′′) ∩ var(P) as μ, μ ′, and

μ ′′must agree in all variables mentioned in P . This concludes the NS case, since μ � μ ′ � μ ′′.
—Let P = SELECTV WHERE P ′. By definition of SELECT, we have that μ ∈ �P�G if and only

if there is a mapping μ ′ ∈ �P ′�G such that μ = μ ′|V . From our hypothesis, this occurs if and
only if there is a mapping μ ′′ ∈ �P ′

sf
�G such that μ ′ � μ ′′ and dom(μ ′) = dom(μ ′′) ∩ var(P ′).

As Psf is simply the result of renaming in P ′ the variables not occurring inV , there must be
a mapping μ ′′ ∈ �Psf�G that is equivalent to the same renaming over μ ′. Since μ = μ ′|V , we
know that dom(μ) = dom(μ ′) ∩V . As μ ′′ is a renaming of μ ′ in which all variables not in
V are replaced by fresh variables (not in P), we also have that dom(μ) = dom(μ ′′) ∩ var(P).
Moreover, as μ ′ and μ ′′ agree on all variables in V and μ � μ ′, we have μ � μ ′′, concluding
the proof. �

Finally, we are ready to prove our main proposition.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:27

Proposition 6.9. Over unrestricted RDF graphs, CONSTRUCT[AUFS] and CONSTRUCT[AUF]
have the same expressive power.

Proof. We only need to show that every query in CONSTRUCT[AUFS] is equivalent to a query
in CONSTRUCT[AUF]. LetQ = (CONSTRUCT H WHERE P) be a query in CONSTRUCT[AUFS].
We can assume w.l.o.g that var(H) ⊆ var(P). We prove that Q ≡ (CONSTRUCT H WHERE Psf).
Let G be an RDF graph.

—[⇒] Assume μ (t) ∈ ans(Q,G), where μ ∈ �P�G and t ∈ H . Then, there is a
mapping μ ′ in �Psf�G such that μ � μ ′. This implies that μ ′(t) is a triple in
ans((CONSTRUCT H WHERE Psf),G). As μ � μ ′, we obtain that μ ′(t) = μ (t), concluding
this direction.

—[⇐] Assume μ ′(t) ∈ ans((CONSTRUCT H WHERE Psf),G), where μ ′ ∈ �Psf�G and t ∈ H .
Then, there is a mapping μ in �P�G such that μ � μ ′ and dom(μ) = dom(μ ′) ∩ var(P). Since
var(t) ⊆ var(P) and var(t) ⊆ dom(μ ′), we obtain that var(t) ⊆ dom(μ). Therefore, we have
that μ (t) ∈ ans(Q,G). �

This result finally gives a simpler characterization of the class of monotone CONSTRUCT queries.

Corollary 6.10. Over unrestricted RDF graphs, the class of unrestricted monotone CONSTRUCT

queries has the same expressive power as CONSTRUCT[AUF].

This result culminates our study of CONSTRUCT queries. We have presented a clean and sim-
ple syntactic characterization of the class of unrestricted monotone CONSTRUCT queries. It is
interesting to notice that the only allowed operators in this characterization are FILTER, AND,
and UNION. We think this provides evidence to place CONSTRUCT[AUF] as an interesting query
language for RDF that should be further investigated.

7 THE COMPLEXITY OF THE EVALUATION PROBLEM

We have introduced a new operator and several syntactic fragments with good properties in terms
of expressive power. At this point, it is natural to study the complexity of the evaluation problem
for these fragments and see whether this complexity is lower than for some well-known fragments
of SPARQL. In this section, we study the combined complexity (Vardi 1982) of the evaluation prob-
lem. More precisely, we pinpoint the exact complexity of this problem for simple patterns and
ns-patterns in Section 7.2 and for queries in CONSTRUCT[AUF] in Section 7.3.

7.1 A Bit of Background on Computational Complexity

We use complexity classes that might not be familiar to the reader, and hence we briefly recall
their definitions. In particular, we present the Boolean Hierarchy and the complexity class PNP

| | .
The Boolean Hierarchy is an infinite family of complexity classes based on Boolean combina-

tions of languages in NP (Wechsung 1985). The most popular class in this hierarchy is DP, which
consists of all languages that can be expressed as L1 ∩ L2 with L1 ∈ NP and L2 ∈ coNP. The levels
of the Boolean hierarchy are denoted by {BHi }i ∈N and are recursively defined as follows:

—BH1 is the complexity class NP.
—BH2k contains all languages that can be expressed as L1 ∩ L2, where L1 ∈ BH2k−1 and L2 ∈

coNP.
—BH2k+1 consists of all languages that can be expressed as L1 ∪ L2, where L1 ∈ BH2k and
L2 ∈ NP.

Notice that DP = BH2. The complexity class PNP
| | (Hemachandra 1989) contains all problems that

can be solved in polynomial time by a Turing machine that can query a polynomial number of times

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:28 M. Arenas and M. Ugarte

(in terms of the input’s length) an NP oracle, with the restriction that all of these queries need to be
issued in parallel. The parallel access to the NP oracle prevents the queries to depend on previous
oracle answers. The class PNP

| | is equivalent to ΔP
2 [logn], the complexity class of all problems that

can be solved in polynomial time by a Turing machine that can make O (logn) queries to an NP
oracle, not necessarily in parallel (Buss and Hay 1991).

7.2 The Evaluation Problem for Simple Patterns and NS-Patterns

Consider a fragment F of NS–SPARQL. The evaluation problem for F is defined as follows:

Problem : Eval(F)
Input : An RDF graphG, a graph pattern P ∈ F and

a mapping μ
Question : Is μ ∈ �P�G ?

As usual, we only consider inputs of finite length and, therefore, we do not consider in this sec-
tion unrestricted RDF graphs. Our complexity results are built on several studies of the complexity
of evaluating SPARQL graph patterns (Arenas and Pérez 2011; Letelier et al. 2012; Pérez et al. 2009;
Pichler and Skritek 2014; Schmidt et al. 2010). In particular, the key ideas rely on the fact that the
evaluation problem is NP-complete for SPARQL[AUFS] (Schmidt et al. 2010) and is coNP-complete
for well-designed graph patterns in SPARQL[AOF] (Pérez et al. 2006).

We start by considering the evaluation problem for simple graph patterns. To prove this theorem,
we make use of the following two lemmas.

Lemma 7.1 ((Pérez et al. 2009), Theorem 3.2). There is a polynomial-time algorithm that, given

a propositional formula φ, generates a mapping μφ , a graph pattern Pφ in SPARQL[AUF] and an RDF

graph Gφ , such that:

(1) dom(μφ) = var(Pφ) and I(Pφ) = I(Gφ);
(2) every triple pattern in Pφ mentions both variables and IRIs;

(3) if φ is satisfiable, then �P�Gφ
= {μφ }; and

(4) if φ is unsatisfiable, then �P�Gφ
= ∅.

Lemma 7.2. Let G1 and G2 be two RDF graphs such that I(G1) ∩ I(G2) = ∅, and let P be a

graph pattern in NS–SPARQL. If P is free from variable-only triple patterns and I(P) ⊆ I(G1), then

�P�G1∪G2 = �P�G1 .

Proof. Proceed by induction over the structure of P . If P is a triple pattern, then it must mention
some IRI in that is in I(G1)\I(G2). Hence, P can only match triples inG1 and �P�G1∪G2 = �P�G1 . The
remaining cases are proven directly from the inductive definition of graph patterns, and therefore
we omit them. �

We are finally ready to pinpoint the exact complexity of Eval(SP–SPARQL).

Theorem 7.3. Eval(SP–SPARQL) is DP-complete.

Proof. According to the definition, the evaluation problem for simple graph patterns corre-
sponds to the language of all triples (G, P , μ) such that μ ∈ �P�G , where P = NS(P ′) is a simple
pattern. This language is in DP, since it can be expressed as the intersection of the following two
languages.

{(G, P , μ) | P = NS(P ′) is a simple pattern and μ ∈ �P ′�G }, (6)

{(G, P , μ) | P = NS(P ′) is a simple pattern and there is no μ ′ ∈ �P ′�G s.t. μ ≺ μ ′}. (7)

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:29

Language (6) is trivially reducible to Eval(SPARQL[AUFS]), which is in NP (Schmidt et al. 2010).
The second language is in coNP as its complement consists of the triples (G,NS(P), μ) where
P = NS (P ′) (which is polynomially verifiable) and there is a mapping μ ′ ∈ �P ′�G such that μ ≺ μ ′.
This is also in NP as μ ′ can be guessed nondeterministically before evaluating P ′ (which is in
SPARQL[AUFS]).

Now we show that the evaluation problem for simple patterns is DP-hard. We provide a re-
duction from the well-known DP-complete problem SAT-UNSAT (Papadimitriou and Yannakakis
1982). This is the problem of deciding, given a pair of propositional formulas (φ,ψ), whether φ
is satisfiable and ψ is unsatisfiable. Let (φ,ψ) be a pair of propositional formulas. Let μφ , Pφ ,
Gφ and μψ , Pψ , Gψ be the elements provided by Lemma 7.1 corresponding to φ and ψ , respec-
tively. By renaming variables and IRIs, we can assume w.l.o.g. that the IRIs and variables men-
tioned in μφ , Pφ , Gφ are disjoint from those mentioned in μψ , Pψ , Gψ . Consider now the graph
pattern P = NS(Pφ UNION (Pφ AND Pψ)). We show that μφ ∈ �P�Gφ∪Gψ

if and only if (φ,ψ) ∈
SAT-UNSAT. Notice that by Lemma 7.2 we have that μφ ∈ �Pφ�G if and only if μφ ∈ �Pφ�Gφ

and
that μψ ∈ �Pψ �G if and only if μφ ∈ �Pψ �Gψ

.

—[⇒] Suppose for the sake of contradiction that μφ ∈ �NS(Pφ UNION (Pφ AND Pψ))�G and
that φ is unsatisfiable orψ is satisfiable. We analyze these cases separately.
—If φ is not satisfiable, then we know by Lemma 7.1 that �Pφ�G = ∅, which implies that
�NS(Pφ UNION (Pφ AND Pψ))�G = ∅.

—If ψ is satisfiable, then we have by Lemma 7.1 that μψ ∈ �Pψ �G . Since var(Pφ) ∩
var(Pψ) = ∅ and �Pψ �G � ∅, every mapping in �Pφ�G is subsumed by some mapping
in �Pφ AND Pψ �G . Hence, we obtain that

�NS(Pφ AND Pψ)�G ≡ �NS(Pφ UNION (Pφ AND Pψ))�G .

We know by Lemma 7.1 that the empty mapping does not belong to �Pψ �G , and
therefore every mapping in �Pφ AND Pψ �G mentions some variable in var(Pψ). As
var(μφ) ∩ var(Pψ) = ∅, we conclude that μφ � �Pφ AND Pψ �G . Thus, μφ is not in
�NS(Pφ UNION (Pφ AND Pψ))�G , which contradicts our initial assumption.

—[⇐] Assume φ is satisfiable andψ is unsatisfiable. By Lemma 7.1, this implies that �Pψ �G =
∅. Hence, in this case we have that �NS(Pφ UNION (Pφ AND Pψ))�G is the same as
�NS(Pφ)�G . From Lemma 7.1, we have that �Pφ�G = {μφ } and, therefore, μφ ∈ �NS(Pφ)�G ,
concluding the proof. �

It is interesting to notice that the complexity of evaluating simple patterns is already higher than
that of evaluating well-designed graph patterns in SPARQL[AOF], which is coNP-complete. This
is to be expected as the former fragment is more expressive than the latter (see Proposition 5.8).

We continue our study by considering the evaluation problem for ns-patterns. As an ns-pattern
is of the form (P1 UNION · · · UNION Pk) with each Pi being a simple pattern, an important pa-
rameter for the evaluation problem in this context is the maximum number of disjunct in these
patterns. Let USP–SPARQLk be the fragment of USP–SPARQL consisting of all ns-patterns hav-
ing at most k disjuncts each. To study the complexity of USP–SPARQLk , we need to prove the
following lemma.

Lemma 7.4. Let n ∈ N, and for every i ∈ {1, . . . ,n} let μi , Gi and Pi be a mapping, an RDF graph

and a graph pattern, respectively. If the following conditions hold, then

—for every i, j ∈ {1, . . . ,n} with i � j, the variables and IRIs mentioned in (μi , Pi ,Gi) are disjoint

from the variables and IRIs mentioned in (μ j , Pj ,G j);

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:30 M. Arenas and M. Ugarte

—for every i ∈ {1, . . . ,n}, it is the case that Pi is a simple pattern which does not mention

variable-only triple patterns,

then there is a mapping μ, an ns-pattern P and an RDF graphG such that μ ∈ �P�G if and only

if μi ∈ �Pi �Gi
for some i ∈ {1, . . . ,n}. Moreover, μ, P , and G can be computed in polynomial

time.

Proof. Let n ∈ N, and for every i ∈ {1, . . . ,n} let μi , Gi and Pi be a mapping, an RDF graph,
and a graph pattern, respectively. First, define the mapping μ as μ1 ∪ μ2 ∪ · · · ∪ μn . This mapping
is correctly defined, since var(μi) ∩ var(μ j) = ∅ for every i, j ∈ {1, . . . ,n} with i � j.

Now define the RDF graph G as

G = ���
⋃

i ∈{1, ...,n }
Gi

��� ∪
���
⋃

?X ∈dom(μ)

(μ (?X), c?X ,d?X)��� ,
where c?X and d?X are distinct fresh IRIs for every ?X ∈ dom(μ). Adding the new IRIs and their
corresponding triples allows us to trivially match the graph to include the assignment ?X → μ (?X)
in any mapping not mentioning ?X . Based on this intuition, we proceed to create the ns-pattern P .
Let i ∈ {1, . . . ,n}, and assume that dom(μ)\dom(μi) = {?X1, . . . , ?X� }. Assuming that Pi = NS (Qi),
define the pattern P ′i as

P ′i = NS
(
Qi AND (?X1, c

?X1 ,d?X1) AND · · · AND (?X�, c
?X� ,d?X�)

)
.

Finally, define the graph pattern P by

P = P ′1 UNION P ′2 UNION · · · UNION P ′n .

It is clear that the above elements μ, P , and G can be computed in polynomial time. Notice that
if μi ∈ �Pi �Gi

, then μi will appear in the answer to Qi over G, as Gi ⊆ G and Qi is monotone.
Moreover, for every ?X ∈ dom(μ) \ dom(μi) the triple pattern (?X , c?X ,d?X) will trivially match
the RDF triple (μ (?X), c?X ,d?X).

Now that we have defined μ, P , and G, we formally prove that μ is in �P�G if and only if μi ∈
�Pi �Gi

for some i ∈ {1, . . . ,n}. Since P = P ′1 UNION P ′2 UNION · · · UNION P ′n , we know that μ ∈
�P�G if and only if μ ∈ �P ′i �G for some i ∈ {1, . . . ,n}. Thus, it is sufficient to show that for each
i ∈ {1, . . . ,n} it is the case that

μi ∈ �Pi �Gi
if and only if μ ∈ �P ′i �G . (8)

Let i ∈ {1, . . . ,n}. Define the mapping μ−i as μ restricted to dom(μ) \ dom(μi). Assume dom(μ−i) =
{?X1, . . . , ?X� }. We have

P ′i = NS
(
Qi AND (?X1, c

?X1 ,d?X1) AND · · · AND (?X�, c
?X� ,d?X�)

)
.

Since G contains every triple of the form (μ (?X), c?X ,d?X), and the IRIs c?X and d?X are not men-
tioned anywhere else in G, we know that

�(?X1, c
?X1 ,d?X1) AND · · · AND (?X�, c

?X� ,d?X�)�G = {μ−i }. (9)

We make use of this fact to prove both directions of (8).

—[⇒] Assume μi ∈ �Pi �Gi
. By semantics of NS, it is the case that μi ∈ �Qi �Gi

. Since Qi is
monotone and Gi ⊆ G, we have μi ∈ �Qi �G . As μi and μ−i are compatible, by Equation (9)
we obtain that

μi ∪ μ−i ∈ �Qi AND (?X1, c
?X1 ,d?X1) AND · · · AND (?X�, c

?X� ,d?X�)�G .

Finally, as μi ∪ μ−i = μ and dom(μ) = var(P ′i), we have μ ∈ �P ′i �G .

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:31

—[⇐] Assume μ ∈ �P ′i �G . By the semantics of the NS operator, we know that

μ ∈ �Qi AND (?X1, c
?X1 ,d?X1) AND · · · AND (?X�, c

?X� ,d?X�)�G .

Provided that �(?X1, c
?X1 ,d?X1) AND · · · AND (?X�, c

?X� ,d?X�)�G = {μ−i }, we have that
�Qi �G must contain a mapping subsuming μi . This mapping must be exactly μi , as
dom(μi) = var(Qi). We conclude that μi ∈ �NS(Qi)�G = �Pi �G . From Lemma 7.2, we know
that �Pi �G = �Pi �Gi

, concluding the proof. �

We are now ready to pinpoint the exact complexity of Eval(USP–SPARQLk).

Theorem 7.5. For every k > 0, it holds that Eval(USP–SPARQLk) is BH2k -complete.

Proof. We start by showing by induction that Eval(USP–SPARQLk) ∈ BH2k . For k = 1, we
have the evaluation problem for simple patterns, which we know is complete for DP = BH2 (The-
orem 7.3). For the inductive case let, k > 0 and assume Eval(USP–SPARQLk) ∈ BH2k . We want to
show that Eval(USP–SPARQLk+1) ∈ BH2(k+1) . Consider the following two languages:

L1 = {(G, P1 UNION · · · UNION Pj , μ) | j ≤ k + 1, for each i ∈ [1, j], Pi

is a simple pattern, and μ ∈ �Pi �G for some i ∈ [1,k }

L2 = {(G, P1 UNION · · · UNION Pk+1, μ) | foreach i ∈ [1,k + 1], Pi

is a simple pattern, and μ ∈ �Pk+1�G }

Since Eval(USP–SPARQLk) is in BH2k , it is trivial to prove that L1 ∈ BH2k . Moreover, since
Eval(SP–SPARQL) is in DP , it is trivial to show that L2 is also in DP . By simply inspecting L1

and L2, we can see that L1 ∪ L2 = USP–SPARQLk+1. We obtain that Evalk+1 is the union between
a problem in BH2k and a problem in DP . It is known that such a union belongs to BH2k+2 (Wagner
1987) which concludes the containment part.

Let k > 0. To prove that Eval(USP–SPARQLk) is BH2k -hard, we make a reduction from the
problem of knowing if a graph has chromatic number in the set Mk = {6k + 1, 6k + 3 . . . , 8k − 1}.
This problem is known as Exact-Mk -Colorability and is BH2k -complete (Riege and Rothe 2006).
We will create a function that takes a graph H as input and generates an RDF graphG, a mapping
μ and an ns-pattern P = P1 UNION · · · UNION Pk , such that the chromatic number of G is in
Mk if and only if μ ∈ �P�G . Let H be a graph. Denote by {m1, . . . ,mk } the elements in Mk . We
know that the problem of verifying if a graph has chromatic number m is in DP for every m in
Mk (Riege and Rothe 2006). Since the evaluation problem for simple patterns is DP-complete, for
every i ∈ {1, . . . ,k } we can generate in polynomial time an RDF graph Gi , a mapping μi , and a
simple pattern Pi , such that μi ∈ �Pi �Gi

if and only if H has chromatic number mi . Moreover, we
can assume w.l.o.g. that for i � j, the variables and IRIs mentioned in μi , Gi , and Pi are disjoint
from those mentioned in μ j , G j , and Pj . Hence, by Lemma 7.4, we can construct in polynomial
time a mapping μ, an ns-pattern P with k disjuncts, and an RDF graph G such that μ ∈ �P�G if
and only if μi ∈ �Pi �Gi

for some i ∈ {1, . . . ,k }. But as mentioned before, this occurs if and only if
H has chromatic number in Mk . This implies that μ ∈ �P�G if and only if the chromatic number
of H is in Mk , concluding the proof. �

Finally, we study the combined complexity of ns-patterns when the number of disjuncts is un-
bounded.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:32 M. Arenas and M. Ugarte

Theorem 7.6. Eval(USP–SPARQL) is PNP
| | -complete.

Proof. Let P = P1 UNION P2 UNION · · · UNION Pn be a graph pattern where every Pi (1 ≤
i ≤ n) is a simple pattern. Let G be an RDF graph and μ be a mapping. Since for every i the prob-
lem of deciding if μ ∈ �Pi �G belongs to DP, it can be solved by two parallel calls to an NP ora-
cle. Thus, by making 2n calls in parallel to the NP oracle, one can decide whether μ belongs to
�Pi �G for some i ∈ {1, . . . ,n}. Therefore, deciding whether μ belongs to �P�G can be achieved by
a polynomial-time Turing machine that asks 2n queries to an NP oracle in parallel. We conclude
that Eval(USP–SPARQL) ∈ PNP

| | .

Now we prove the problem is PNP
| | -hard by providing a reduction from the problem MAX-

ODD-SAT. This is the problem of deciding, given a propositional formula φ, whether the truth-
assignment that assigns true to the largest number of variables while satisfying φ, assigns true to
an odd number of variables. This problem is shown to be PNP

| | -complete in Spakowski (2005).
Let φ be a propositional formula with m variables. We can assume without loss of generality

thatm is even (if not, consider the formula φ ∧ ¬r for a fresh variable r). We want to create an ns-
pattern P , an RDF graphG, and a mapping μ such that μ belongs to �P�G if and only if φ belongs to
MAX-ODD-SAT. It is easy to see that given a number k between 1 andm, the problem of deciding
whether there is a truth assignment that satisfies φ and assigns true to at least k variables is in
NP. Thus, by Cook’s theorem, we can create a propositional formula φk such that φk is satisfiable
if and only if there is a truth assignment that satisfies φ and assigns true to at least k variables.
Hence, φ belongs to MAX-ODD-SAT if and only if (φk ,φk+1) belongs to SAT-UNSAT for some
odd k between 1 and m − 1. By Theorem 7.3, for every such k , we can create a simple pattern Pk ,
a mapping μk , and an RDF graph Gk such that μk belongs to �Pk �Gk

if and only if (φk ,φk+1) ∈
SAT-UNSAT. We can assume without loss of generality that for every j,k ∈ {1, 3, . . . ,m − 1} with
j � k , it is the case that (dom(μ j) ∪ var(Pj)) ∩ (dom(μk) ∪ var(Pk)) = ∅ and (range(μ j) ∪ I(Pj) ∪
I(G j)) ∩ (range(μk) ∪ I(Pk) ∪ I(Gk)) = ∅. Hence, by Lemma 7.4, we can construct in polynomial
time a mapping μ, an ns-pattern P , and an RDF graph G such that μ ∈ �P�G if and only if μi ∈
�Pi �Gi

for some i ∈ {1, 3, . . . ,m − 1}. As mentioned before, this occurs if and only if φ belongs to
MAX-ODD-SAT, concluding the proof. �

It is important to mention that, although the evaluation problem for well-designed graph pat-
terns in SPARQL[AOF] is coNP-complete, these patterns do not allow for projection. If projection
is allowed only on the top-most level, then the evaluation problem for well-designed graph pat-
terns already increases to Σ

p
2 -complete (Letelier et al. 2013), which is higher than the complexity

of the evaluation problem for USP–SPARQL (unless the polynomial-time hierarchy (Stockmeyer
1976) collapses to its second level as PNP

| | ⊆ ΔP
2 ⊆ ΣP

2).

7.3 The Evaluation Problem for CONSTRUCT Queries

Consider a class G of CONSTRUCT queries. Then the evaluation problem for G is defined as
follows:

Problem : Eval(G)
Input : An RDF graph G, a CONSTRUCT query Q ∈

G and a tripe t
Question : Is t ∈ ans(Q,G)?

As mentioned before, the fragment CONSTRUCT[AUF] is one of the most important fragments
defined in this article, as it captures the class of CONSTRUCT queries that are monotone. It should

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:33

be noticed that establishing the combined complexity of CONSTRUCT[AUF] is straightforward,
as we rely on the fact that the evaluation problem for SPARQL[AUF] is NP-complete.

Theorem 7.7. Eval(CONSTRUCT[AUF]) is NP-complete.

Proof. Let Q = (CONSTRUCT H WHERE P) and let G and t be an RDF graph and an RDF
triple, respectively. To decide if t is in ans(Q,G) in polynomial time with a nondeterministic Turing
machine, it suffices to guess a triple h ∈ H and a mapping μ ∈ �P�G such that μ (h) = t . It is clear
that this can be done in NP, since Eval(SPARQL[AUF]) is in NP. Now, to show NP-hardness,
we provide a simple reduction from SAT. Let φ be a propositional formula. We want to define a
construct query Q , an RDF graph G, and an RDF triple t such that t ∈ ans(Q,G) if and only if φ is
satisfiable. From Lemma 7.1, we know that there is a graph pattern P and an RDF graphG such that
�P�G is empty if and only if φ is unsatisfiable. Now define Q as CONSTRUCT (a,a,a) WHERE P .
It is then trivial to show that the triple (a,a,a) belongs to ans(Q,G) if and only if φ is satisfiable.
Moreover, from Lemma 7.1 we know that the previous steps can be performed in polynomial time,
which concludes our proof. �

This concludes our study of the complexity of the evaluation problem for the query languages
introduced in this article. As a final remark, it is important to mention that the results of this
section provide more evidence in favor of CONSTRUCT[AUF] as an appropriate query language
for RDF, as this language not only captures the notion of monotonicity for CONSTRUCT queries
(over unrestricted RDF graphs) but also has an evaluation problem with a lower complexity than
for well-designed graph patterns with projection on top (Σp

2 -complete) and general CONSTRUCT
queries (PSPACE-complete).

8 PRACTICAL IMPLICATIONS

In this section, we discuss three practical implications of the results of this article.

8.1 Recursion in SPARQL

A first natural application of the characterization of monotone CONSTRUCT queries is an exten-
sion of SPARQL to support recursion. This topic has been previously studied in Reutter et al. (2015),
where a recursive SPARQL query is defined as

WITH RECURSIVE д AS Q1 Q2, (10)

where д is the identifier of an RDF graph, Q1 a CONSTRUCT query, and Q2 either a graph pattern,
a CONSTRUCT query, or a recursive SPARQL query. In the following example, we illustrate how
the semantics of such query is defined.

Example 8.1. Assume that we want to compute the transitive closure over the flight relation
of an airline. Suppose this relation is encoded in triples of the form (a,flight,b), indicating that
there is a direct flight from location a to location b. Assume also that the graph that is computed
recursively has as identifier дtmp. Then the transitive closure of flight is computed by the query:

Q = WITH RECURSIVE дtmp AS Q1 Q2,

where Q1 and Q2 are defined as follows:

Q1 = CONSTRUCT (?x , route, ?z) WHERE [(?x , flight, ?z) UNION

(GRAPH дtmp ((?x , route, ?y) AND (?y, route, ?z)))]

Q2 = SELECT {?x , ?y}WHERE (GRAPH дtmp (?x , route, ?y)).

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:34 M. Arenas and M. Ugarte

Notice that inQ1 the second disjunct of the WHERE clause uses the GRAPH operator of SPARQL.
The syntax of this operator is (GRAPH д P), where д is the identifier of an RDF graph and P is a
graph pattern. The result of evaluating the expression (GRAPH д P) is �P�H assuming that H is
the RDF graph identified by д.

Assume that we want to evaluate Q over an RDF graph G. Then we first need to evaluate
Q1 recursively until we obtain a fixed point, which is an RDF graph Gtmp with identifier дtmp.
In the computation of such fixed point, the graph pattern (?x , f liдht , ?z) is evaluated over G,
while ((?x , route, ?y) AND (?y, route, ?z)) is evaluated over the current version of Gtmp, since the
GRAPH operator is used. InitiallyGtmp is assumed to be empty. Then at the end of the first iteration
for computing the fixed point, Gtmp contains one triple (a, route,b) for each triple (a,flight,b) in
G. Moreover, at the end of the second iteration Gtmp contains one triple (a, route,b) for each pair
a, b of locations that are at distance at most two in G. Finally, the fixed point is reached when no
new triples are added to Gtmp, in which case Gtmp contains the transitive closure of the relation
flight in G. Once this fixed point has been reached, the query Q2 is evaluated over G and Gtmp if
the GRAPH operator indicates so. In fact, in this example the output of Q2 is computed just by
considering Gtmp, and it consists of all pairs (a,b) of locations for which there is a route from a to
b.

The evaluation of a recursive query ends if the fixed point exists, which corresponds to the least
fixed point given the evaluation procedure just described. As noticed in Reutter et al. (2015), it
follows from the Knaster-Tarski Theorem (Libkin 2004) that such a least fixed point exists if the
query Q1 is monotone. However, no practical (or decidable) characterization of monotone queries
existed when this recursive language was introduced, and therefore the authors of Reutter et al.
(2015) simply decided to remove all forms of negation by disallowing the operator OPT. Our work
provides a solid argument for this decision and, moreover, show that the fragment proposed con-
tains an exhaustive syntax for unrestricted monotone queries. Indeed, from Corollary 6.4 it readily
follows that by disallowing the operator OPT one obtains precisely the fragment of unrestricted
monotone CONSTRUCT queries.

It should be noticed that SPARQL 1.1 allows the use of regular expressions (called property
paths) to express navigation patterns on RDF graphs (Harris and Seaborne 2013). The use of such
expressions provides a form of recursion; in fact, the query in Example 8.1 can be expressed in
SPARQL 1.1. However, there exist natural queries that cannot be expressed in SPARQL 1.1 (Libkin
et al. 2013; Rudolph and Krötzsch 2013) and that require the more general recursion mechanism
proposed in Reutter et al. (2015).

8.2 Query Reformulation

The idea of reformulating queries is motivated by scenarios in which an original query refers to
datasets that are partially or entirely not accessible, due to physical restrictions or logical con-
straints, and therefore it makes sense to re-write the query to only use a particular set of datasets
or views (if possible). It turns out that this problem is closely related to interpolation (Segoufin and
Vianu 2005; Nash et al. 2010; Benedikt et al. 2014); in fact, recent research in reformulation of rela-
tional queries has been driven by techniques similar to the ones used in the proof of Theorem 4.1
(Benedikt et al. 2014, 2016a, 2016b).

In the context of SPARQL, the notion of restricted access does not carry over directly from re-
lational databases, as most translations from SPARQL to FO result in a single table containing
all triples. However, by the very nature of RDF one expects that datasets are distributed between
different locations, and therefore there are several situations in which one would prefer to avoid
querying certain datasets (e.g., to reduce network or server loads). Formally, this can be formulated

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:35

in terms of the SPARQL operator GRAPH, with which queries can mention different RDF graphs
where sub-queries have to be evaluated.6

Carrying reformulation techniques from the relational setting to SPARQL requires several steps.
First, it is necessary to define an FO setting that allows for multiple RDF graphs. Then, given
a SPARQL query mentioning the GRAPH operator and multiple RDF graphs, an equivalent FO
formula over this new setting must be constructed. The resulting formula can be reformulated
using interpolation techniques to only mention the desired RDF graphs. Finally, the reformulated
formula needs to be translated back to SPARQL. For the sake of simplicity, the constructions per-
formed in the proof of Theorem 4.1 do not consider the GRAPH operator. However, they can be
extended to a more general setting in which RDF datasets consist of a set of RDF graphs. This
setting can be translated to FO by considering a relation of arity 4, in which the first element of a
tuple is the name of a graph, and the other three elements form an RDF triple in that graph (see
Kostylev et al. (2015) for details). In this way, the interpolation techniques developed in this article
can be used in a setting that allows for multiple RDF graphs and, in particular, could be of help for
solving the query reformulation problem for SPARQL.

8.3 Evaluation of Weakly Monotone Graph Patterns

As already mentioned, the complexity of evaluating SPARQL graph patterns has been widely stud-
ied in the literature. However, the lack of a characterization of weakly monotone graph patterns has
prevented the development of efficient algorithms for their evaluation. More precisely, the com-
bined complexity of the evaluation problem for weakly monotone graph patterns is only known
to be in PSPACE, which is not surprising as the evaluation of full SPARQL is already in PSPACE.

Contrary to weakly monotone graph patterns, other fragments of SPARQL have been proven to
have lower complexity. For example, the complexity of evaluating disjunctions of well-designed
graph patterns is complete for coNP (Pérez et al. 2009). Moreover, disjunctions of well-designed
graph patterns can be efficiently recognized. These two facts already provide an optimization to
the evaluation of SPARQL graph patterns. However, we know from Theorem 3.8 that this will not
be an optimization for all weakly monotone queries.

On the other hand, the characterization presented in Corollary 5.12 tells that every union of
unrestricted weakly monotone and subsumption-free SPARQL graph patterns can be written as
an ns-pattern, which in turn can be evaluated more efficiently than an arbitrary SPARQL query.
The evaluation problem for ns-patterns is PNP

| | -complete, while for arbitrary SPARQL queries it is
PSPACE-complete. In particular, ns-patterns can be evaluated by solving a linear amount of NP
problems in parallel, and then performing a polynomial number of steps.

9 CONCLUDING REMARKS AND FUTURE WORK

We have presented a thorough study of the relationship between different fragments of SPARQL
and the notion of weak monotonicity. We showed that one of the most adopted fragments of
SPARQL, namely the class of unions of well-designed graph patterns, has lower expressive power
than the fragment of weakly monotone graph patterns. Further, we proved that this also holds
if disjunction is disallowed in both fragments. Given these negative results, we moved to a new
setting in which RDF graphs can also be infinite. In this setting, we developed a framework for
applying interpolation techniques from first-order logic to SPARQL, which resulted in a theorem
relating the fragment of weakly monotone graph patterns with SPARQL[AUFS]. This theorem

6This could also be formulated in terms of the SPARQL operator SERVICE, which allows to evaluate some sub-queries of
a given query in remote datasets. However, from a theoretical point of view the effect of using GRAPH would be the same
as the effect of using SERVICE.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:36 M. Arenas and M. Ugarte

suggested the definition of the operator NS, which is a natural replacement for the operator OP-
TIONAL. Using the operator NS, we defined the weakly monotone fragments of simple patterns
and ns-patterns and proved that they have higher expressive power than the fragments defined
in terms of well designedness. Then we focused on the fragment of CONSTRUCT queries. We ap-
plied the results obtained from the use of interpolation techniques, from which we proved that
the fragment of CONSTRUCT queries restricted to CONSTRUCT, AND, FILTER, and UNION pre-
cisely characterizes the notion of monotonicity. We provided a thorough study of the combined
complexity of the evaluation problem for the query languages introduced in the article and, finally,
discussed potential applications of the main contributions of this article.

An issue that we did not address in this article is the role of the different operators in our results.
For example, the FILTER and UNION operators are heavily used in our proofs. A natural question
then is whether the notion of well-designedness captures weak-monotonicity for the fragment
SPARQL[AO], which is still open.

Our results open new research possibilities, starting by the search for useful extensions of the
identified query languages. For example, allowing for projection on top of simple and ns-patterns
preserves weak monotonicity, and hence this extension could lead to the definition of new weakly
monotone fragments with higher expressive power.

Finally, the focus of this article has been mostly theoretical. Therefore, the development of more
practical studies of the proposed query languages is a promising direction for future research.
For instance, it is important to understand the practical consequences of replacing the operator
OPTIONAL by the operator NS and whether the fragment of monotone CONSTRUCT queries
covers the needs of real-world applications. Moreover, these new lines of research are open to the
development of implementations and optimizations, potentially leading to real-world applications
of the techniques developed in this article.

APPENDIX

A PROOF OF THEOREM 4.1

In this appendix, we provide the complete proof of Theorem 4.1, that is, we show that for every
unrestricted weakly monotone graph pattern P , there exists a graph pattern Q in SPARQL[AUFS]
such that P ≡inf

s Q .
As discussed in the article, the poof of this theorem is based on the interpolation theorems of

Lyndon (1959) and Otto (2000). We start by presenting a translation from graph patterns to first-
order formulas that will further allow us to apply these results over SPARQL in the unrestricted
RDF setting.

Given a graph pattern P , define LP
RDF as the vocabulary that contains a ternary relation symbol

T, a unary relation symbol Dom, a constant symbol ci for each i ∈ I(P), and a constant symbol n.
We say that an LP

RDF-structure A = 〈D, TA,DomA, {cAi }i ∈I (P),n
A〉 corresponds to an unrestricted

RDF graph G if

—D is a set of IRIs plus an additional element N ;
—G = TA ∩ (DomA × DomA × DomA);
—for every i ∈ I(P), it is the case that cAi = i; and
—nA = N and N occurs neither in DomA nor in TA .

For every graph pattern P and unrestricted RDF graph G, there is an infinite set of LP
RDF-

structures that corresponds toG. We denote this set byAP
G , and when P is clear from the context,

we simply writeAG . At this stage, the constant n and the unary relation Dom might seem unnec-
essary; their importance will become clear later.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:37

Now we need to define a relation between mappings and tuples. To this end, assume an arbitrary
order ≤ over the set of variables V. Let X = {?X1, . . . , ?X� } be a set of variables ordered under ≤.
Given a mapping μ, we define the extension of μ to X as the function μX : dom(μ) ∪ X → I such
that μX (?X) = μ (?X) for every ?X ∈ dom(μ), and μX (?X) = N for ?X ∈ X \ dom(μ). Using this
function we define the tuple corresponding to μ under X as tX

μ = (μX (?X1), . . . , μX (?X�)). Given

a graph pattern P , and a mapping μ, we define tP
μ as tvar(P)

μ . Moreover, we simplify notation by

writing tμ instead of tdom(μ)
μ . Finally, if φ (x1, . . . ,xn) is a first-order formula and t = (i1, . . . , in) is

a tuple of IRIs, then we abuse notation and write φ (t) to represent φ (ci1 , . . . , cin).
Having defined the previous FO setting, we embark on the task of defining an FO formula φP (x̄)

that is equivalent to P in the following sense: For every mapping μ, unrestricted RDF graphG, and
LP

RDF-structure A ∈ AG , it is the case that μ ∈ �P�G if and only if A |= φP (tP
μ). To this end, we

need to take an intermediate step: We create one formula for each subset of var(P). Intuitively, the
formula corresponding to a subset X of var(P) will generate the tuples corresponding to mappings
that bind exactly X . We abuse notation by treating FO and SPARQL variables indistinctly. We also
abuse notation by extending every mapping μ to dom(μ) ∪ I, where μ (i) = i for every i ∈ I.

Lemma A.1. For every SPARQL graph pattern P , there is a set {φP
X (X̄)}X ⊆var(P) of formulas in

LP
RDF satisfying the following condition: Given a mapping μ, an unrestricted RDF graphG and a LP

RDF

structure A ∈ AG , it is the case that μ ∈ �P�G if and only if A |= φP
dom(μ)

(tμ).

Proof. Let P be a SPARQL graph pattern. We proceed by induction on the structure of P .

—Let P = (t1, t2, t3) be a triple pattern and let A ∈ AG for some unrestricted RDF graph G.
Since for every RDF graph G and mapping μ ∈ �P�G we have var(P) = dom(μ), define
φP

X (X̄) as a contradiction for every X � var(P). For X = var(P), define

φP
X (X̄) = T(t1, t2, t3) ∧ Dom(t1) ∧ Dom(t2) ∧ Dom(t3).

A mapping μ belongs to �P�G if and only if (μ (t1), μ (t2), μ (t3)) belongs to G, which occurs
if and only if μ (t1), μ (t2), μ (t3) ∈ DomA and (μ (t1), μ (t2), μ (t3)) ∈ TA , concluding this case.

—Let P = P1 UNION P2 and let A ∈ AG for some unrestricted RDF graph G. For every X ⊆
var(P), define φP

X (X̄) as

φP
X (X̄) = φP1

X
(X̄) ∨ φP2

X
(X̄).

Let μ be a mapping and X = dom(μ). By semantics of UNION, μ ∈ �P�G if and only if μ ∈
�P1�G ∪ �P2�G . Hence, by hypothesis we have μ ∈ �P�G if and only if A |= φP1

X
(tμ) or A |=

φP2
X

(tμ), which is the semantic definition of A |= φP1
X

(tμ) ∨ φP2
X

(tμ).
—Let P = P1 AND P2 and let A ∈ AG for some unrestricted RDF graph G. For every X ⊆

var(P) define the formula φP
X (X̄) as

φP
X (X̄) =

∨

X1∪X2=X

[
φP1

X1
(X̄1) ∧ φP2

X2
(X̄2)

]
.

Let μ be a mapping and letX = dom(μ). If μ belongs to �P�G , then there are two compatible
mappings μ1 ∈ �P1�G and μ2 ∈ �P2�G such that μ = μ1 ∪ μ2. Let X1 = dom(μ1) and X2 =

dom(μ2). By hypothesis, we know that A |= φP1
X1

(tμ1) and A |= φP2
X2

(tμ2), which is equivalent

to A |= φP1
X1

(tμ1) ∧ φP2
X2

(tμ2). As X1 ∪ X2 = X , we have A |= φP
X (tμ).

For the converse, ifA |= φP
dom(μ)

(tμ), then there are two setsX1 andX2 such thatX1 ∪ X2 =

X and bothA |= φP1
X1

(tX1
μ) andA |= φP1

X2
(tX2

μ) hold. Define μi as μ restricted toXi (i ∈ {1, 2}). It
follows from the hypothesis that μ1 ∈ �P1�G and μ2 ∈ �P2�G . Since μ1 and μ2 are compatible

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:38 M. Arenas and M. Ugarte

(they are both restrictions of μ) and μ = μ1 ∪ μ2, this implies μ ∈ �P�G , which was to be
shown.

—Let P = P1 OPT P2, and let A ∈ AG for some unrestricted RDF graph G. For every X ⊆
var(P) define the formula φP

X (X̄) as

φP
X (X̄) = φP1 AND P2

X
(X̄) ∨ φP

MINUS X (X̄),

where φP
MINUS X

(X̄) is defined as

φP1
X

(X̄) ∧ ¬
∨

X ′ ⊆var(P2)

∃X ′ \ X ��
∧

x ′ ∈X ′
Dom(x ′) ∧ φP2

X ′ (X̄
′)�� .

Here the notation ∃S for a set S = {s1, . . . , sn } stands for ∃s1 · · · ∃sn . Let now μ be a mapping,
and let X = dom(μ). Notice that μ belongs to �P1 AND P2�G or to �P1�G \ �P2�G . In the
first case, we know thatA |= φP1 AND P2

X
(tμ). It remains show that if μ ∈ �P1�G \ �P2�G , then

A |= φP
MINUS ,X (tμ). As μ ∈ �P1�G , we knowA |= φP1

X
(tμ), so we only need to prove that there

is no set X ′ ⊆ var(P2) such that A |= φP2
X ′ (tμ′) for some mapping μ ′ compatible with μ. But

if this was the case, then, by hypothesis, we would have μ ′ ∈ �P2�G . This contradicts the
fact that μ ∈ �P1�G \ �P2�G as μ ′ and μ are obviously compatible.

For the converse, assume A |= φP
X (tμ), where X = dom(μ). If A |= φP1 AND P2

X
(tμ), then we

know by the AND case that μ ∈ �P1 AND P2�G and hence μ ∈ �P�G . The remaining case
is when A |= φP

MINUS X
(tμ). If this is the case, then by hypothesis it readily follows that

μ ∈ �P1�G . Now we have to prove that μ is not compatible with any mapping in �P2�G .
Proceed by contradiction. Assume there is a mapping μ ′ ∈ �P2�G compatible with μ. We
know A |= φP2

X ′ (tμ′) where X ′ = dom(μ ′). Since μ and μ ′ are compatible, μ ′ can be obtained
by extending the assignments in μ, and thus A would not satisfy φP

MINUS X
(tμ), which leads

to a contradiction.
—Let P = SELECTV WHERE Q , and let A ∈ AG for some unrestricted RDF graph G. For

every X ⊆ var(P) such that X � V , the formula φP
X (X̄) is defined as a contradiction. It is

immediate to show that this satisfies the equivalence, as P cannot output variables not men-
tioned in V . Now, for every X ⊆ var(P) ∩V define the formula φP

X (X̄) as

φP
X (X̄) =

∨

X ⊆Y ⊆var(P)

∃Y \ X ���
∧

y∈Y
Dom(y) ∧ φQ

Y
(Ȳ)��� .

Let μ be a mapping and let X = dom(μ). If μ belongs to �P�G , then there is a mapping
μ ′ ∈ �Q�G such that μ ′|X = μ. Let Y = dom(μ ′). We have by hypothesis that A |= φ

Q
Y

(tμ′),
where Y = dom(μ ′). Since tμ′ is a tuple extending tμ , by replacing the free variables in X

according to tμ , we obtain that A |= ∃(Y \ X)φ
Q
Y

(tμ′). It readily follows that A |= φP
X (tμ).

For the converse, if A |= φP
dom(μ)

(tμ), then there must be a tuple ā that extends tμ and a

set of variables Y with X ⊆ Y ⊆ var(P), such that A |= φ
Q
Y

(ā). Let μ ′ be the mapping such
that tμ′ = ā. By hypothesis, we have that μ ′ ∈ �Q�G . But since μ ′ corresponds to ā and ā
extends tμ , we have that μ ′|X = μ. We conclude that μ ∈ �SELECTV WHERE Q�G .

—Let P = P1 FILTER R and let A ∈ AG for some unrestricted RDF graph G. For every X ⊆
var(P), define φP

X (X̄) as

φP
X (X̄) = φP1

X
(X̄) ∧ φR (X̄),

where φR (X̄) is inductively defined as follows:

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:39

—If R is an equality and var(R) � X , then φR = False.
—If R is an equality and var(R) ⊆ X , then φR = R.
—If R = bound (x) and x � X , then φR = False.
—If R = bound (x) and x ∈ X , then φR = True.
—If R is of the form ¬R1, R1 ∧ R2, or R1 ∨ R2 for filter conditions R1 and R2, then φR is the

corresponding Boolean combination of φR1 and φR2 .
Let μ be a mapping and let X = dom(μ). It is easy to see from the definition of φR that A |=
φR (tμ) if and only if μ |= R. By hypothesis, we have μ ∈ �P1�G if and only ifA |= φP1

dom(μ)
(tμ),

and hence it readily follows that A |= φP1

dom(μ)
(tμ) ∧ φR (X̄) if and only if μ ∈ �P1�G and μ |=

R, which was to be shown. �

Given a SPARQL graph pattern, the previous lemma allows us to construct a set of formulas
that together, in a sense, are equivalent to P . We now need to transform such set into one single
formula. As it can be foreseen, the main issue in this transformation is that mappings do not bind
every variable in var(P), while in an FO formula the set of free variables is fixed and output tuples
must bind all free variables.

Lemma A.2. For every SPARQL graph pattern P there is a first-order formula φP in LP
RDF that is

equivalent to P .

Proof. Let P be a SPARQL graph pattern, and let {φP
X (X̄)}X ⊆var(P) be the set of formulas ob-

tained from applying Lemma A.1 to P . Let Y = var(P) and define the first-order formula φP (Y) as
follows:

φP (Y) =
∨

X ⊆Y

⎡⎢⎢⎢⎢⎢⎣φP
X (X) ∧

∧

z∈Y \X
z = n

⎤⎥⎥⎥⎥⎥⎦ .
We show that P and φP are equivalent. Let A ∈ AG for some unrestricted RDF graph G.

—[⇒] Let μ ∈ �P�G and letX = dom(μ). By definition, tP
μ assigns n to all variables in var(P) \

X . It follows that A satisfies y = n for every y ∈ var(P) \ X when variables are assigned
according to tP

μ . Also, we know from Lemma A.1 that A |= φP
X (tμ). Hence we have that

A |= φP (tP
μ), concluding this direction.

—[⇐] Let μ be a mapping such that A |= φp (μP
t). Since the variables equal to n in tP

μ are
precisely those not in dom(μ), the only disjunct that can be satisfied is that in which X =
dom(μ). Hence, we know that A |= φP

dom(μ)
(tμ). From Lemma A.1, this directly implies μ ∈

�P�G , concluding the proof. �

It is important to mention that the previous transformation creates an FO formula with the
same set of free variables as in the original graph pattern. Having a transformation from SPARQL
to FO, we can now apply the previously mentioned interpolation techniques. Notice that the for-
mula resulting from a graph pattern can have equalities, and hence we use the version of Otto’s
interpolation theorem in which equalities are allowed.

Next, we need to write a formula expressing weak monotonicity in our FO setting. Given two
tuples x̄ = (x1, . . . ,xn) and ȳ = (y1, . . . ,yn) of the same length, define the formula x̄ � ȳ by

x̄ � ȳ =
n∧

i=1

(xi = yi ∨ xi = n).

It can be seen that given two mappings μ1 and μ2, it is the case that μ1 is subsumed by μ2 if and
only if tV

μ1
� tV

μ2
for every setV of variables. Define now the extended vocabulary LP2

RDF as LP
RDF ∪

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:40 M. Arenas and M. Ugarte

{T ′,Dom′}, where T ′ is a ternary predicate symbol and Dom′ is a unary predicate symbol. We say
that anLP2

RDF-structureA corresponds to a graphG if the restriction ofA toLP
RDF corresponds toG.

Let P be a SPARQL graph pattern and let be the LP
RDF-formula obtained from applying Lemma A.2

to a SPARQL graph pattern φP . Consider the following LP2
RDF-formula:

[
φP (T,Dom, x̄) ∧ T ⊆ T ′ ∧ Dom ⊆ Dom′

] → ∃ȳ (x̄ � ȳ ∧ φP (T ′,Dom′, ȳ)). (11)

The idea behind this formula is to state that P is a weakly monotone graph pattern. Indeed, it is
not hard to see that if P is a weakly monotone graph pattern, then Equation (11) is satisfied by
structures that represent RDF graphs. However, there are structures that do not correspond to any
RDF graph, and therefore we cannot assert that the previous formula is a tautology. As we will
see later, interpolation techniques can only be applied over tautologies. To overcome this problem,
we define a sentence for stating that the structure corresponds to an RDF graph. This sentence is
defined as

ΣRDF =
∧

i ∈I

ci � n ∧
∧

i�j

ci � c j ∧ ¬Dom(n).

It is easy to see that an LP2
RDF-structure satisfies ΣRDF if and only if it corresponds to some RDF

graph. By including ΣRDF in the left-hand side of the implication we obtain a proper tautology:
[
ΣRDF ∧ φP (T,Dom, x̄) ∧ T ⊆ T ′ ∧ Dom ⊆ Dom′

] → ∃ȳ (x̄ � ȳ ∧ φP (T ′,Dom′, ȳ)). (12)

Assume now that P is weakly monotone. Since φP is equivalent to P (which is weakly mono-
tone), we know that the above implication is a tautology. Therefore, we can obtain an interpolant
θ (T ′,Dom′, x̄), satisfying the conditions from Ottos’s interpolation theorem. Unfortunately, and
as opposed to the applications of interpolation in FO, this interpolant is not necessarily equivalent
to φP . In particular, we will see that the interpolant is not only weakly monotone but also mono-
tone. However, there is a strong connection between φP and θ , which is again stated in terms of
subsumption equivalence.

Definition A.3. Let φ (x̄) and ψ (x̄) be two FO formulas. We say that φ and ψ are subsumption-
equivalent under RDF graphs if for every structure A corresponding to an RDF graph and every
tuple ā, if A |= φ (ā), then there is a tuple b̄ such that A |= ψ (b̄) and a � b and vice versa.

Now we are ready to prove the main result obtained from translating SPARQL to FO and apply-
ing interpolation.

Theorem A.4. Let P be a weakly monotone graph pattern. Then there are two LP
RDF-formulas φ

and ψ such that φ is equivalent to P , ψ is subsumption-equivalent to φ under RDF graphs, and ψ is

positive existential.

Proof. Let P be a weakly monotone graph pattern and let φP be the LP
RDF-formula obtained

from Theorem A.2. Since φP is equivalent to P , which is weakly monotone, we know that formula
(12) is a tautology. Then, there is an interpolant θ that satisfies the following conditions:

(1) [ΣRDF ∧ φP (T,Dom, x̄) ∧ T ⊆ T ′ ∧ Dom ⊆ Dom′]→ θ (T ′,Dom′, x̄) is a tautology,
(2) θ (T ′,Dom′, x̄) → ∃ȳ (x̄ � ȳ ∧ φP (T ′,Dom′, ȳ)) is a tautology,
(3) θ only mentions the predicates T ′ and Dom′,
(4) θ is positive in both T ′ and Dom′.

As φP and ΣRDF are {Dom,Dom′}-relativized and Dom is not mentioned in θ , we can deduce that
θ is {Dom′}-relativized. Moreover, Dom′ is mentioned positively in θ from which we conclude that
θ is an existential formula. Now it only remains to show that φP and θ are subsumption-equivalent
under RDF graphs. Let A be an LP

RDF-structure corresponding to an RDF graphG. Define A′ as the
structure that results from extending A with T ′ = T and Dom′ = Dom.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:41

—[⇒] For this direction we prove a stronger result: every answer to φP (T,Dom) is also an
answer to θ (T,Dom). Let ā be a tuple such that A |= φP (T,Dom, ā). Since φP (T,Dom, x̄)
does not mention T ′ nor Dom′, we know that A′ |= φP (T,Dom, ā). We also know that both
T ⊆ T ′ and Dom ⊆ Dom′ hold in A, so by condition (1) we have that A′ |= θ (T ′,Dom′, ā). It
immediately follows that A′ |= θ (T,Dom, ā).

—[⇐] Let ā be a tuple such that A |= θ (T,Dom, ā). Since θ (T,Dom, x̄) mentions neither T ′

nor Dom′, and in A′ we have T = T ′ and Dom = Dom′, we know that A′ |= θ (T ′,Dom′, ā).
By condition (2), there must be a tuple b̄ such that ā � b̄ and A′ |= φP (T ′,Dom′, b̄). Since
T = T ′ and Dom = Dom′, we conclude that φP (T,Dom, b̄).

We have that θ is a positive existential formula that is subsumption-equivalent under RDF
graphs to φP , which is equivalent to P , concluding the proof. �

The previous theorem establishes what we obtain from applying interpolation to formulas re-
lated to weakly monotone SPARQL graph patterns. We now know that given a weakly monotone
SPARQL graph pattern P , there is a positive existential formula φP that is subsumption-equivalent
under RDF graphs to a formula that is equivalent to P . To simplify notation, whenever this is the
case we say that φP is subsumption-equivalent to P , and write φP ≡s P . Next we discuss how to
transform such formula φP back into SPARQL, and what is the syntactic form of the obtained
graph pattern. In this transformation, we do not need the equivalence for all structures that corre-
spond to RDF graphs. Instead, we use a weaker notion of equivalence in which the correspondence
between the formula and the graph pattern only holds in very specific structures.

Definition A.5. LetG be an unrestricted RDF graph and let P be a graph pattern. The first-order
structure that representsG for P is denoted byGP

FO and is defined as the only LP
RDF-structure with

domain I(G) ∪ {N } that corresponds to G.

Notice that in a structure representing an unrestricted RDF graphG, Dom is interpreted as I(G)
and T corresponds precisely to the triples in G. Now we define the notion of equivalence that will
hold when transforming a first-order positive existential formula into a SPARQL graph pattern.

Definition A.6. Given an LP
RDF-formula φP and a graph pattern P , we say that P and φP are

equivalent in RDF structures, denoted by P ≡RDF φ, if for every mapping μ and RDF graph G, it is
the case that μ ∈ �P�G if and only if GP

FO |= φ (tP
μ).

We also use the relation ≡RDF between two FO formulas to assert that they coincide in ev-
ery structure representing an RDF graph for some pattern. Now we proceed to define the
aforementioned transformation: Given a positive existential formula φP , we construct a graph
pattern P such that φ ≡RDF P . To this end, we first transform our formula into a union of con-
junctive queries (UCQ) with inequalities. A UCQ with inequalities is a formula of the form
φP (x̄) = ∃ȳ1φ1 (ȳ1, x̄) ∨ · · · ∨ ∃ȳnφn (ȳn , x̄), where for every i ∈ {1, . . . ,n}:

—φi is a conjunction of equalities, inequalities, and positive occurrences of predicates, and
—the set of free variables in φi is precisely the set of free variables in φP .

Denote by UCQ� the set of all UCQs with inequalities. Before proceeding with our translation,
we need to prove that positive existential formulas can be translated to UCQs with inequalities
under certain conditions.

Lemma A.7. Let G be an unrestricted RDF graph and let P be a graph pattern. Let φP be a positive

existential LP
RDF-formula that is subsumption-equivalent to P . There is an LP

RDF-formula γ in UCQ�

such that

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:42 M. Arenas and M. Ugarte

—The predicate Dom does not occur in γ ,

—Every equality and inequality in γ contains at least one variable,

—φP ≡RDF γ .

Proof. Let φP be a positive existential formula in LP
RDF. Define

Adom(x) = ∃y∃z (T(x ,y, z) ∨ T(y,x , z) ∨ T(y, z,x)),

and let φT be the result of replacing in φP every occurrence of Dom by Adom. It is clear that φT is
also a positive existential formula and that it does not mention the predicate Dom. It is also clear
that φT ≡RDF φP , since in every structure representing an RDF graph Dom and Adom are equiv-
alent. Since φT is positive existential, we can assume w.l.o.g. that φT (x̄) = ∃ȳ1φ1 (ȳ1, x̄1) ∨ · · · ∨
∃ȳnφn (ȳn , x̄n), where each φi is a conjunction of equalities, inequalities, and positive occurrences
of predicates (Abiteboul et al. 1995) . Notice, however, that the free variables in the disjuncts are
not necessarily x̄ . Letψ be the result of applying the next procedure over φT:

(1) remove every equality between two equal constants,
(2) remove every disjunct with an occurrence of T mentioning the constant n,
(3) remove every disjunct with an equality between two distinct constants.

Since equalities between equal constants are tautologies, the first operation does not alter the
formula. In a structure corresponding to an RDF graph, the element associated with the constant n
does not appear in any occurrence of the predicate T, so the second operation preserves the equiva-
lence ≡RDF. Moreover, in structures corresponding to RDF graphs every two constants have differ-
ent interpretation, and hence the third operation also preserves the equivalence in these structures.
It follows that φT ≡RDF ψ . Finally, we transform ψ into a formula γ such that every disjunct of γ
has the same free variables as ψ . Assume that ψ (x̄) = ∃ȳ1ψ1 (ȳ1, x̄1) ∨ · · · ∨ ∃ȳnψn (ȳn , x̄n), where
x̄ is the set of free variables inψ and x̄i is the set of free variables inψi . For i ∈ {1, . . . ,n}, define

γi (x̄) =
∨

X ⊆x̄\x̄i

∃ȳi
���ψi (x̄i , ȳi) ∧

∧

x ∈X
Adom(x) ∧

∧

x ∈x̄\(x̄i∪X)

x = n��� .
Finally, let γ (x̄) = γ1 (x̄) ∨ · · · ∨ γn (x̄). We show that γ (x̄) ≡RDF ψ (x̄).

—Let G be an RDF graph and let ā be a tuple such that GP
FO |= γ (ā). Hence, GP

FO |= γi (ā) for
some i ∈ {1, . . . ,n}. This implies thatGP

FO |= ∃ȳi (ψ (āi , ȳi)), where āi is the tuple that results
from restricting ā to x̄i . By the definition ofψ , this implies that GP

FO |= ψ (ā).
—Let G be an RDF graph and let ā be a tuple such that GP

FO |= ψ (ā). Hence, GP
FO |=

∃ȳi (ψ (āi , ȳi)) for some i ∈ {1, . . . ,n}, where ai is the tuple that results from restricting ā to

x̄i . Let X be the set of variables in ā \ āi that are assigned to elements mentioned in TGP
FO .

Since the only element not mentioned in TGP
FO is N , and N is assigned to the constant n, it

is clear that

GP
FO |= ∃ȳi

���ψ (x̄i , ȳi) ∧
∧

x ∈X
Adom(x) ∧

∧

x ∈x̄\(x̄i∪X)

x = n���
and hence GP

FO |= γ (ā).

We have that γ satisfies the desired conditions. In particular, the set of free variables in every
disjunct of γ is x̄ . This concludes the proof, since φP ≡RDF φT ≡RDF ψ ≡RDF γ . �

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:43

Having this equivalence, we can now present the main transformation from positive existential
formulas to SPARQL. As previously mentioned, we are particularly interested in the syntactic form
of the resulting graph pattern.

Theorem A.8. Let φP be a positive existential formula. There is a graph pattern P in

SPARQL[AUFS] such that φ ≡RDF P .

Proof. By Lemma A.7 we can assume w.l.o.g. that (1)φP is in UCQ�, (2) inφP the predicate Dom

is not mentioned, (3) the constant n is not present in any occurrence of T, and (4) every equality
and inequality mentions at least one variable. We proceed by transforming the disjuncts of φP into
SPARQL graph patterns. Suppose that φP is the following formula:

φ (x̄) = ∃ȳ1φ1 (ȳ1, x̄) ∨ · · · ∨ ∃ȳjφ j (ȳj , x̄).

Fix k ∈ {1, . . . , j} and assume

φk = T(u1,v1,w1) ∧ · · · ∧ T(un ,vn ,wn) ∧ a1 = b1 ∧ · · · ∧ am = bm ∧ c1 � d1 ∧ · · · ∧ c� � d�,
Where ui , vi , and wi are either variables or IRIs, and ai , bi , ci , and di are variables, IRIs, or the
constant n (for i in the suitable intervals). For every equality ai = bi , define the filter condition Ri

piecewise as ¬bound(?X) if {ai ,bi } = {n, ?X } and ai = bi otherwise. For every inequality ci � di ,
define the filter condition Si piecewise as bound(?X) if {ci ,di } = {n, ?X } and ci � di otherwise.
Define the graph pattern Qk as

Qk = ((u1,v1,w1) AND · · · AND (un ,vn ,wn)) FILTER (R1 ∧ · · · ∧ Rm ∧ S1 ∧ · · · ∧ S�) .

By the conditions of Lemma A.7, this graph pattern is well defined, and the free variables in φk

and Qk are exactly x̄ . We now need to prove that φk ≡RDF Qk .

—[⇒] Let G be an RDF graph and μ ∈ �Qk �G . This implies that μ ((ui ,vi ,wi)) ∈ G. By the
definition ofGP

FO and tQk
μ , we haveGP

FO |= T(ui ,vi ,wi) for each i ∈ {1, . . . ,n}when replacing

variables according to t
Qk
μ . Now let i ∈ {1, . . . ,n}. Recall from the definition of tQk

μ that

variables that are not bound in μ are assigned to N in t
Qk
μ . Hence, as μ |= Ri and μ |= Si , it

is easy to see that GP
FO |= (ai = bi) and GP

FO |= (ci � di) when replacing variables according

to t
Qk
μ . We conclude that GP

FO satisfies each conjunct of φk when variables are replaced

according to μ, and therefore GP
FO |= φk (t

Qk
μ).

—[⇐] Let G be an RDF graph and let μ be a mapping such that GP
FO |= φk (t

Qk
μ). We have that

GP
FO |= T(ui ,vi ,wi) when replacing variables according to tQk

μ , and hence μ ((ui ,vi ,wi)) ∈ G
for each i ∈ {1, . . . ,n}. Again, the variables assigned to N by t

Qk
μ are precisely those vari-

ables not bound by μ. Hence, as GP
FO |= (ai = bi) and GP

FO |= (ci � di) when replacing vari-

ables according to t
Qk
μ , it is easy to see that μ |= Ri and μ |= Si . By the semantics of AND

and FILTER, we conclude that μ ∈ �Qk �G .

We have transformed the conjunctive part of each disjunct of φP into a first-order formula. Now
we need to include in our transformation the existential quantification. This is achieved by means
of SELECT.

Define the pattern Pk as SELECT x̄ WHERE Qk . We show that Pk ≡RDF ∃ȳkφk (ȳk , x̄). Let G be
an RDF graph.

—[⇒] Let μ ∈ �Pk �G . By the semantics of SELECT, there must be a mapping μ ′ ∈ �Qk �G such
that μ ′|x̄ = μ. Since Qk ≡RDF φk , this implies that GP

FO |= φk (t
x̄∪ȳk

μ′). Since the projection of

t
x̄∪ȳk

μ′ to x̄ is precisely t x̄
μ , we have that GP

FO |= ∃ȳkφk (ȳk , t
x̄
μ), concluding the first direction.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

21:44 M. Arenas and M. Ugarte

—[⇐] Let μ be a mapping such thatGP
FO |= ∃ȳkφk (ȳk , t

x̄
μ). Then, there is a tuple a that extends

t x̄
μ by assigning an IRI or the value N to each variable in ȳk . Hence, a corresponds to t

x̄∪ȳk

μ′

for some mapping μ ′. Since GP
FO |= φk (t

x̄∪ȳk

μ′) and φk ≡RDF Qk , this means that μ ′ ∈ �Pk �G .
As the restriction of μ ′ to x̄ is μ, we have that μ ∈ �SELECT x̄ WHERE Pk �G .

Having for each disjunct φP an equivalent graph pattern, we finally proceed to create a graph
pattern that is equivalent to φP . This graph pattern is defined, as expected, as the disjunction
between the previously constructed patterns. Let P = P1 UNION · · · UNION Pj . It is immediate to
prove that P ≡RDF φ: Let G be an RDF graph. A mapping μ belongs to �P�G if an only if there is
a k ∈ {1, . . . , j} such that μ ∈ �Pk �G . We already proved this is the case if and only if there is a
k ∈ {1, . . . , j} such that GP

FO |= ∃ȳkφk (ȳk , t
x̄
μ), concluding the proof. �

At this point, we have one transformation from SPARQL to FO and one transformation from
FO to graph patterns in SPARQL[AUFS]. The composition of these two transformations does not
preserve all the answers but only the maximal ones. Notice that this is expected, as it is well known
that graph patterns in SPARQL[AUFS] are not only weakly monotone but also monotone. We are
finally ready to prove Theorem 4.1, that is, to show that for every unrestricted weakly monotone
graph pattern P , there exists a graph pattern Q in SPARQL[AUFS] such that P ≡inf

s Q .

Proof of Theorem 4.1. Let P be an unrestricted weakly monotone SPARQL graph pattern. Let
φP be the existential first-order formula such that P ≡s φP obtained from applying Lemma A.1
and Theorem A.4. Denote by ψ the UCQ with inequalities equivalent to φP constructed by ap-
plying Lemma A.7. Now let Q be the graph pattern such that Q ≡RDF ψ obtained from applying
Theorem A.8. We prove that Q is equivalent in maximal answers to P .

—[⇒] LetG be an unrestricted RDF graph and let μ be a mapping in �P�G . Then, we know that
GP

FO |= φ (tP
μ), and hence there is a tuple ā such that tP

μ � ā and GP
FO |= ψ (ā). Let μā be the

mapping corresponding to ā. It is easy to see that μ � μā . Moreover, from the equivalence
betweenψ and Q , we obtain that μā ∈ �Q�G .

—[⇐] LetG be an RDF graph and let μ be a mapping in �Q�G . This implies thatGP
FO |= ψ (tP

μ).

Since ψ and φ are subsumption-equivalent, there is a tuple ā such that tP
μ � ā and GP

FO |=
φ (ā). Let μā be the mapping corresponding to ā. It is easy to see that μ � μā . Moreover,
since φ and P are equivalent, we conclude that μā ∈ �P�G . �

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their careful reading of the paper and for providing
many helpful comments.

REFERENCES

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Vol. 8. Addison-Wesley, Reading.
Shqiponja Ahmetaj, Wolfgang Fischl, Reinhard Pichler, Mantas Simkus, and Sebastian Skritek. 2015. Towards reconciling

SPARQL and certain answers. In Proceedings of the 24th International Conference on World Wide Web. 23–33.
Miklos Ajtai and Yuri Gurevich. 1987. Monotone versus positive. J. ACM 34, 4 (1987), 1004–1015.
Renzo Angles and Claudio Gutierrez. 2008. The expressive power of SPARQL. In Proceedings of the 7th International Semantic

Web Conference. 114–129.
Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting beyond a yottabyte, or how SPARQL 1.1 property paths

will prevent adoption of the standard. In Proceedings of the 21st International Conference on World Wide Web. 629–638.
Marcelo Arenas and Jorge Pérez. 2011. Querying semantic web data with SPARQL. In Proceedings of the 30th ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems. ACM, 305–316.
Marcelo Arenas and Martín Ugarte. 2016. Designing a query language for RDF: Marrying open and closed worlds. In

Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS’16). 225–236.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

Designing a Query Language for RDF: Marrying Open and Closed Worlds 21:45

Pablo Barceló, Reinhard Pichler, and Sebastian Skritek. 2015. Efficient evaluation and approximation of well-designed pat-
tern trees. In Proceedings of the 34th ACM Symposium on Principles of Database Systems (PODS’15). 131–144.

Michael Benedikt, Julien Leblay, Balder ten Cate, and Efthymia Tsamoura. 2016a. Generating Plans from Proofs: The

Interpolation-based Approach to Query Reformulation. Morgan & Claypool Publishers.
Michael Benedikt, Balder ten Cate, and Efthymia Tsamoura. 2014. Generating low-cost plans from proofs. In Proceedings

of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’14). 200–211.
Michael Benedikt, Balder Ten Cate, and Efthymia Tsamoura. 2016b. Generating plans from proofs. ACM Trans. Database

Syst. 40, 4, Article 22 (2016), 45 pages.
Tim Berners-Lee, James Hendler, and Ora Lassila. 2001. The semantic web. Sci. Am. 284, 5 (2001), 28–37.
Carlos Buil-Aranda, Marcelo Arenas, Óscar Corcho, and Axel Polleres. 2013. Federating queries in SPARQL 1.1: Syntax,

semantics and evaluation. J. Web Sem. 18, 1 (2013), 1–17.
Samuel R. Buss and Louise Hay. 1991. On truth-table reducibility to SAT. Inf. Comput. 91, 1 (1991), 86–102.
Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès, and Nabil Layaïda. 2012a. SPARQL Query containment under
SHI axioms. In Proceedings of the 26th AAAI Conference on Artificial Intelligence.

Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès, and Nabil Layaïda. 2012b. SPARQL Query containment under
RDFS entailment regime. In Proceedings of the 6th International Joint Conference on Automated Reasoning. 134–148.

M. Dürst and M. Suignard. 2005. Rfc 3987, Internationalized Resource Identifiers (IRIs). Retrieved from http://www.ietf.org/
rfc/rfc3987.txt.

Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis, and Georg Gottlob. 2006. RDF querying: Language con-
structs and evaluation methods compared. In Reasoning Web. Springer, 1–52.

César A. Galindo-Legaria. 1994. Outerjoins as disjunctions. SIGMOD Rec. 23, 2 (May 1994), 348–358.
F. Geerts, G. Karvounarakis, V. Christophides, and I. Fundulaki. 2013. Algebraic structures for capturing the provenance of

SPARQL queries. In Proceedings of the 16th International Conference on Database Theory. 153–164.
Ramanathan V. Guha. 2013. Light at the end of the tunnel. In Proceedings of the12th International Semantic Web Conference.
Harry Halpin and James Cheney. 2014. Dynamic provenance for SPARQL updates. In Proceedings of the 13th International

Semantic Web Conference. 425–440.
Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 query language. Retrieved from https://www.w3.org/TR/

sparql11-query/.
Lane A. Hemachandra. 1989. The strong exponential hierarchy collapses. J. Comput. System Sci. 39, 3 (1989), 299–322.
Mark Kaminski and Egor V. Kostylev. 2016. Beyond well-designed SPARQL. In Proceedings of the 19th International Confer-

ence on Database Theory. 5:1–5:18.
Egor V. Kostylev, Juan L. Reutter, and Martín Ugarte. 2015. CONSTRUCT queries in SPARQL. In Proceedings of the 18th

International Conference on Database Theory. 212–229.
Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. 2012. Static analysis and optimization of semantic

web queries. In Proceedings of the 31st Symposium on Principles of Database Systems. 89–100.
Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. 2013. Static analysis and optimization of semantic

web queries. ACM Trans. Database Syst. 38, 4 (2013), 25.
Leonid Libkin. 2004. Elements of Finite Model Theory. Springer.
Leonid Libkin, Juan Reutter, and Domagoj Vrgoč. 2013. TriAL for RDF: Adapting graph query languages for RDF data. In

Proceedings of the 32nd symposium on Principles of database systems. ACM, 201–212.
Katja Losemann and Wim Martens. 2012. The complexity of evaluating path expressions in SPARQL. In Proceedings of the

31st Symposium on Principles of Database Systems. ACM, 101–112.
Roger C. Lyndon. 1959. An interpolation theorem in the predicate calculus. Pacific J. Math. 9, 1 (1959), 129–142.
Frank Manola and Eric Miller. 2004. RDF Primer. W3C Recommendation. Retrieved from http://www.w3.org/TR/2004/

REC-rdf-primer-20040210/.
Alan Nash, Luc Segoufin, and Victor Vianu. 2010. Views and queries: Determinacy and rewriting. ACM Trans. Database

Syst. 35, 3, Article 21 (July 2010), 41 pages.
Martin Otto. 2000. An interpolation theorem. Bull. Symbol. Logic 6, 4 (2000), 447–462.
C. H. Papadimitriou and M. Yannakakis. 1982. The complexity of facets (and some facets of complexity). In Proceedings of

the 14th Annual ACM Symposium on Theory of Computing. 255–260.
Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2006. Semantics and complexity of SPARQL. In Proceedings of the 5th

International Semantic Web Conference. 30–43.
Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and complexity of SPARQL. ACM Trans. Database

Syst. 34, 3 (2009).
François Picalausa and Stijn Vansummeren. 2011. What are real SPARQL queries like? In Proceedings of the International

Workshop on Semantic Web Information Management.

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

http://www.ietf.org/rfc/rfc3987.txt
https://www.w3.org/TR/penalty -@M sparql11-query/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

21:46 M. Arenas and M. Ugarte

Reinhard Pichler and Sebastian Skritek. 2014. Containment and equivalence of well-designed SPARQL. In Proceedings of

the 33rd ACM Symposium on Principles of Database Systems. 39–50.
Axel Polleres and Johannes Peter Wallner. 2013. On the relation between SPARQL1.1 and answer set programming. J. Appl.

Non-Class. Logics 23, 1–2 (2013), 159–212.
Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL Query Language for RDF. W3C Recommendation. Retrieved from

http://www.w3.org/TR/rdf-sparql-query/.
Juan L. Reutter, Adrián Soto, and Domagoj Vrgoč. 2015. Recursion in SPARQL. In Proceedings of the 14th International

Conference on the Semantic Web. 19–35.
Tobias Riege and Jörg Rothe. 2006. Completeness in the boolean hierarchy: Exact-four-colorability, minimal graph uncol-

orability, and exact domatic number problems—A survey. The Journal of Universal Computer Science 12, 5 (May 2006),
551–578.

Sebastian Rudolph and Markus Krötzsch. 2013. Flag & check: Data access with monadically defined queries. In Proceedings

of the 32nd ACM Symposium on Principles of Database Systems. 151–162.
Michael Schmidt, Michael Meier, and Georg Lausen. 2010. Foundations of SPARQL query optimization. In Proceedings of

the 13th International Conference on Database Theory. 4–33.
Luc Segoufin and Victor Vianu. 2005. Views and queries: Determinacy and rewriting. In Proceedings of the Twenty-fourth

ACM Symposium on Principles of Database Systems. 49–60.
Juan Sequeda, Marcelo Arenas, and Daniel P. Miranker. 2012. On directly mapping relational databases to RDF and OWL.

In Proceedings of the 21st World Wide Web Conference 2012. 649–658.
Holger Spakowski. 2005. Completeness for Parallel Access to NP and Counting Class Separations. Ph.D. Thesis.
Larry J. Stockmeyer. 1976. The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1 (1976), 1–22.
David Toman and Grant E. Weddell. 2011. Fundamentals of Physical Design and Query Compilation. Morgan & Claypool

Publishers.
Boris Trakhtenbrot. 1950. The impossibility of an algorithm for the decidability problem on finite classes. Proc. USSR Acad.

Sci. 70, 4 (1950), 569–572. [in Russian]
Moshe Y. Vardi. 1982. The complexity of relational query languages. In Proceedings of the 14th Annual ACM Symposium on

Theory of Computing. ACM, 137–146.
K. W. Wagner. 1987. More complicated questions about maxima and minima, and some closures of NP. Theor. Comput. Sci.

51, 1–2 (March 1987), 53–80.
Gerd Wechsung. 1985. On the boolean closure of NP. In Fundamentals of Computation Theory. Springer, 485–493.

Received December 2016; revised May 2017; accepted July 2017

ACM Transactions on Database Systems, Vol. 42, No. 4, Article 21. Publication date: October 2017.

http://www.w3.org/TR/rdf-sparql-query/

