
22

Online Appendix to:
The Recovery of a Schema Mapping:
Bringing Exchanged Data Back

MARCELO ARENAS and JORGE PÉREZ

Pontificia Universidad Católica de Chile

and

CRISTIAN RIVEROS

Oxford University

A. PROOFS OF SECTION 7

A.1 Proof of Lemma 7.2

To prove the lemma, we provide an algorithm that given an st-mapping M =
(S, T, �) such that � is a set of FO-TO-CQ dependencies, and a conjunctive query
Q over schema T, computes a query Q ′ that is a rewriting of Q over the source
schema S.

We first introduce the terminology used in the algorithm. The basic no-
tion used in the algorithm is that of existential replacement. In an existen-
tial replacement of a formula β, we are allowed to existentially quantify some
of the positions of the free variables of β. For example, if β(x1, x2, x3) =
P (x1, x2) ∧ R(x2, x3), then two existential replacements of β(x1, x2, x3) are
γ1(x2) = ∃u∃v (P (u, x2) ∧ R(x2, v)) and γ2(x1, x2, x3) = ∃z (P (x1, z) ∧ R(x2, x3)).
We note that both γ1 and γ2 are implied by β. In an existential replacement,
we are also allowed to use the same quantifier for different positions. For ex-
ample, γ3(x2) = ∃w (P (w, x2) ∧ R(x2, w)) is also an existential replacement of β.
We note that γ3 is implied by β if x1 and x3 have the same value, that is,
β(x1, x2, x3) ∧ x1 = x3 implies γ3. In an existential replacement, these equali-
ties are also included. Formally, given a formula β(x̄), where x̄ = (x1, . . . , xk)
is a tuple of distinct variables, an existential replacement of β(x̄) is a pair of
formulas (∃z̄ γ (x̄ ′, z̄), θ (x̄ ′′)), where: (1) ∃z̄ γ (x̄ ′, z̄) is obtained from β(x̄) by ex-
istentially quantifying some of the positions of the free variables of β(x̄), and
z̄ is the tuple of fresh variables used in these quantifications, (2) θ (x̄ ′′) is a
conjunction of equalities such that xi = x j is in θ (1 ≤ i, j ≤ k and i �= j)
if we replace a position with variable xi and a position with variable x j by
the same variable z from z̄, and (3) x̄ ′ and x̄ ′′ are the tuples of free variables of
∃z̄ γ (x̄ ′, z̄) and θ (x̄ ′′), respectively. Notice that ∃z̄ γ (x̄ ′, z̄) is a logical consequence
of β(x̄) ∧ θ (x̄ ′′). For example, the following are existential replacements of the

C© 2009 ACM 0362-5915/2009/12-ART22 $10.00

DOI 10.1145/1620585.1620589 http://doi.acm.org/10.1145/1620585.1620589

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-2 • M. Arenas et al.

formula β(x1, x2, x3) = ∃ y1 (R(x1, x2, y1) ∧ T (y1, x3, x2)):(∃ y1 (R(x1, x2, y1) ∧ T (y1, x3, x2)), true
)
,(∃z1∃z2∃ y1 (R(z1, x2, y1) ∧ T (y1, x3, z2)), true

)
,(∃z1∃z2∃ y1 (R(z1, z1, y1) ∧ T (y1, z2, z2)), x1 = x2 ∧ x3 = x2

)
.

In the first existential replacement, we replaced no position, thus obtaining
the initial formula β(x1, x2, x3) and sentence true (this is a valid existential re-
placement). In the second existential replacement, although we replaced some
positions of free variables by existentially quantified variables z1 and z2, we
include sentence true since no positions with distinct variables are replaced by
the same variable from (z1, z2).

In the algorithm, we use the following terminology for tuples of variables:
x̄ ⊆ ȳ indicates that every variable in x̄ is also mentioned in ȳ , (x̄, ȳ) is a tuple
of variables obtained by placing the variables of x̄ followed by the variables of
ȳ , f : x̄ → ȳ is a substitution that replaces every variable of x̄ by a variable
of ȳ (f is not necessarily a one-to-one function), f (x̄) is a tuple of variables
obtained by replacing every variable x in x̄ by f (x), and if x̄ = (x1, . . . , xk) and
ȳ = (y1, . . . , yk); we use formula x̄ = ȳ as a shorthand for x1 = y1∧· · ·∧xk = yk .

Algorithm QUERYREWRITING(M, Q)

Input: An st-mapping M = (S, T, �) where � is a set of FO-TO-CQ dependencies, and a
conjunctive query Q over T.
Output: An FO query Q ′ that is a rewriting of Q over the source schema S.

(1) Assume that Q is given by the formula ∃ ȳψ(x̄, ȳ).

(2) Create a set Cψ of FO queries as follows. Start with Cψ = ∅ and let m be the number
of atoms in ψ(x̄, ȳ). Then for every p ∈ {1, . . . , m} and tuple ((σ1, k1), . . . , (σp, kp)) ∈
(� × {1, . . . , m})p such that k1 + · · · + kp = m, do the following.
(a) Let (ξ1, . . . , ξp) be a tuple obtained from (σ1, . . . , σp) by renaming the variables of

the formulas σ1, . . . , σp in such a way that the sets of variables of the formulas
ξ1, . . . , ξp are pairwise disjoint.

(b) Assume that ξi is equal to ϕi(ūi) → ∃v̄i ψi(ūi , v̄i), where ūi and v̄i are tuples of
distinct variables.

(c) For every tuple (χ1(w̄1, z̄1), . . . , χp(w̄p, z̄ p)), where χi(w̄i , z̄i) is a conjunction of ki
(not necessarily distinct) atoms from ψi(ūi , v̄i), w̄i ⊆ ūi , z̄i ⊆ v̄i , and such that w̄i
and z̄i are tuples of distinct variables, do the following.
i. Let ∃z̄ χ (w̄, z̄) be the formula ∃z̄1 · · · ∃z̄ p(χ1(w̄1, z̄1)∧· · ·∧χp(w̄p, z̄ p)) with w̄ =

(w̄1, . . . , w̄p) and z̄ = (z̄1, . . . , z̄ p).
ii. Then for every existential replacement (∃s̄∃z̄ γ (w̄′, z̄, s̄), θ (w̄′′)) of ∃z̄ χ (w̄, z̄)

(up to renaming of variables in s̄), and for every pair of variable substitutions
f : x̄ → x̄ and g : w̄′ → x̄, check whether there exists a variable substitution
h : ȳ → (z̄, s̄) such that ψ(f (x̄), h(ȳ)) and γ (g (w̄′), z̄, s̄) are syntactically equal
(up to reordering of atoms). If this is the case, then add to Cψ the following
formula:

∃ū1 · · · ∃ūp

(p∧
i=1

ϕi(ūi) ∧ θ (w̄′′) ∧ x̄ = f (x̄) ∧ w̄′ = g (w̄′)
)

. (2)

(3) If Cψ is nonempty, then let α(x̄) be the FO formula constructed as the disjunction of
all the formulas in Cψ . Otherwise, let α(x̄) be false, that is an arbitrary unsatisfiable
formula (with x̄ as its tuple of free variables).

(4) Return the query Q ′ given by α(x̄).

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-3

Notice that in the algorithm, tuple x̄ is the set of free variables of For-
mula (2) since both w̄′ and w̄′′ are subsets of (ū1, . . . , ūp). Also notice that since
ψ(f (x̄), h(ȳ)) and γ (g (w̄′), z̄, s̄) are identical (up to reordering of atoms), f is
a function from x̄ to x̄, g is a function from w̄′ to x̄, and h is a function from
ȳ to (z̄, s̄), we have that every variable x in x̄ is equal to some variable u in
(ū1, . . . , ūp), since x̄ = f (x̄) ∧ w̄′ = g (w̄′) is a subformula of (2). This implies
that formula (2) is domain independent since each formula ϕi(ūi) is assumed
to be domain independent. Thus, we also have that α(x̄) and Q ′ are domain
independent.

Example A.1. Assume that � is given by dependency σ :

ϕ(x1, x2) → R(x1, x1, x2), (3)

where ϕ(x1, x2) is an FO formula over the source schema, and that Q(x1, x2, x3)
is the conjunctive query ∃ y1 ψ(x1, x2, x3, y1), where ψ(x1, x2, x3, y1) =
R(x1, x2, y1) ∧ R(y1, x3, x3). Given that ψ(x1, x2, x3, y1) has two atoms, the al-
gorithm considers the tuples (σ1, 2) from (� × {1, 2})1 and ((σ1, 1), (σ2, 1)) from
(� × {1, 2})2, where σ1 = σ2 = σ , to construct a source rewriting of query
Q(x1, x2, x3). We show here how tuple ((σ1, 1), (σ2, 1)) is processed.

First, the algorithm generates a tuple (ξ1, ξ2) from (σ1, σ2) by renaming the
variables of σ1 and σ2 (in such a way that the sets of variables of ξ1 and ξ2

are disjoint). Assume that ξ1 is equal to ϕ(u1, u2) → R(u1, u1, u2) and ξ2 equal
to ϕ(u3, u4) → R(u3, u3, u4). The algorithm continues by considering all the
tuples (χ1(u1, u2), χ2(u3, u4)) such that χ1(u1, u2) and χ2(u3, u4) are nonempty
conjunctions of atoms from the consequents of ξ1 and ξ2, respectively. In this
case, the algorithm only needs to consider tuple (R(u1, u1, u2), R(u3, u3, u4)).
The algorithm uses this tuple to construct formula χ (u1, u2, u3, u4) =
R(u1, u1, u2) ∧ R(u3, u3, u4), and then looks for all the existential replacements
of χ (u1, u2, u3, u4) that can be made identical to ∃ y1 ψ(x1, x2, x3, y1) by substi-
tuting some variables. For instance, (∃s1 (R(u1, u1, s1) ∧ R(s1, u3, u4)), u2 = u3)
is one of these existential replacements: R(g (u1), g (u1), s1)∧ R(s1, g (u3), g (u4))
is syntactically equal to ψ(f (x1), f (x2), f (x3), h(y1)), where f (x1) = f (x2) =
x1, f (x3) = x3, g (u1) = x1, g (u3) = g (u4) = x3 and h(y1) = s1. The algorithm
uses functions f , g , and condition u2 = u3 from the existential replacement
to generate the following formula β(x1, x2, x3) (omitting trivial equalities like
x1 = x1):

∃u1∃u2∃u3∃u4 (ϕ(u1, u2) ∧ ϕ(u3, u4) ∧
u2 = u3 ∧ x2 = x1 ∧ u1 = x1 ∧ u3 = x3 ∧ u4 = x3).

Formula β(x1, x2, x3) is added to Cψ . It is important to notice that β(x1, x2, x3)
represents a way to deduce ∃ y1 ψ(x1, x2, x3, y1) from ϕ(x1, x2), that is,
β(x1, x2, x3) → ∃ y1 ψ(x1, x2, x3, y1) is a logical consequence of formula (3).

In the last step of the algorithm, an FO formula α(x1, x2, x3) is generated
by taking the disjunction of all the formulas in Cψ . In particular, formula
β(x1, x2, x3) above is one of these disjuncts. The algorithm returns α(x1, x2, x3),
which is a rewriting over the source of conjunctive query Q(x1, x2, x3).

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-4 • M. Arenas et al.

Let M = (S, T, �) be an st-mapping with � a set of FO-TO-CQ dependencies,
Q a conjunctive query over T, and Q ′ the output of QUERYREWRITING(M, Q). It
is straightforward to prove that the algorithm runs in exponential time in the
size of M and Q , and that the size of Q ′ is exponential in the size of M and Q .
We now prove the correctness of the rewriting algorithm. We need to show that
for every instance I of S, it holds that:

Q ′(I) = certainM(Q , I).

In this proof, we assume that Q is given by the formula ∃ ȳψ(x̄, ȳ), and that Q ′

is given by the formula α(x̄) (that could be false).
We first show that Q ′(I) ⊆ certainM(Q , I). The proof relies in the following

claim.

CLAIM A.2. The formula ∀x̄(α(x̄) → ∃ ȳψ(x̄, ȳ)) is a logical consequence
of �.

PROOF. If α(x̄) is false, the property trivially holds. Now, assume that α(x̄)
is the disjunction of the formulas in the set Cψ constructed after step 2 of the
algorithm. We show that for every β(x̄) ∈ Cψ it holds that ∀x̄(β(x̄) → ∃ ȳψ(x̄, ȳ))
is a logical consequence of �, which implies that ∀x̄(α(x̄) → ∃ ȳψ(x̄, ȳ)) is a
logical consequence of �. Assume that β(x̄) is equal to:

∃ū1 · · · ∃ūp

(p∧
i=1

ϕi(ūi) ∧ θ (w̄′′) ∧ x̄ = f (x̄) ∧ w̄′ = g (w̄′)
)

,

where for every i ∈ {1, . . . , p}, it holds that ϕi(ūi) → ∃v̄i ψi(ūi, v̄i) is a depen-
dency in �. In step 2(c)i of the algorithm, formula ∃z̄χ (w̄, z̄) is defined as
∃z̄1 · · · ∃z̄ p(χ1(w̄1, z̄1)∧· · ·∧χp(w̄p, z̄ p)), where χi(w̄i, z̄i) is a conjunction of atoms
from ψi(ūi, v̄i), with w̄i ⊆ ūi and z̄i ⊆ v̄i. Thus, we have that sentence �:

∀x̄ (β(x̄) → ∃w̄ (∃z̄ χ (w̄, z̄) ∧ θ (w̄′′) ∧ x̄ = f (x̄) ∧ w̄′ = g (w̄′)))

is a logical consequence of �. Given that (∃s̄∃z̄ γ (w̄′, z̄, s̄), θ (w̄′′)) is an exis-
tential replacement of ∃z̄ χ (w̄, z̄), we know that ∃z̄ χ (w̄, z̄) ∧ θ (w̄′′) implies
∃s̄∃z̄ γ (w̄′, z̄, s̄). Thus, we have that � implies:

∀x̄(β(x̄) → ∃w̄′(∃s̄∃z̄γ (w̄′, z̄, s̄) ∧ x̄ = f (x̄) ∧ w̄′ = g (w̄′))).

Now, we can safely replace w̄′ by g (w̄′), and drop the conjunction w̄′ = g (w̄′)
and the existential quantification over w̄′. Then we obtain that sentence:

∀x̄(β(x̄) → ∃s̄∃z̄ γ (g (w̄′), z̄, s̄) ∧ x̄ = f (x̄))

is a logical consequence of �. Thus, given that γ (g (w̄′), z̄, s̄) is syntactically
equal to ψ(f (x̄), h(ȳ)), we know that ∀x̄(β(x̄) → ∃s̄∃z̄ ψ(f (x̄), h(ȳ)) ∧ x̄ = f (x̄))
is also a consequence of �. In this last formula, we can replace f (x̄) by x̄ and
drop the conjunction x̄ = f (x̄), obtaining ∀x̄(β(x̄) → ∃s̄∃z̄ ψ(x̄, h(ȳ))). Since
h is a function from ȳ to (z̄, s̄), we have that ∃z̄∃s̄ ψ(x̄, h(ȳ)) logically implies
formula ∃ ȳ ψ(x̄, ȳ) (because the variables in ȳ are all distinct). We have shown
that ∀x̄(β(x̄) → ∃ ȳ ψ(x̄, ȳ)) is a logical consequence of � and, therefore, it is a
logical consequence of �. This concludes the proof of the claim.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-5

We prove now that Q ′(I) ⊆ certainM(Q , I) for every instance I ∈ Inst(S),
by using this claim. Let I be an arbitrary instance, and assume that ā is a
tuple of constant values such that ā ∈ Q ′(I). We need to show that for every
J ∈ SolM(I), it holds that ā ∈ Q(J). Since ā ∈ Q ′(I), we know that I |= α(ā).
Now let J ∈ SolM(I). From Claim A.2 we know that ∀x̄(α(x̄) → ∃ ȳψ(x̄, ȳ)) is
a logical consequence of �. Then since (I, J) |= � and I |= α(ā), it holds that
J |= ∃ ȳψ(ā, ȳ), which implies that ā ∈ Q(J). Thus we have that for every
J ∈ SolM(I), it holds that ā ∈ Q(J). This was to be shown.

We now prove that certainM(Q , I) ⊆ Q ′(I) for every instance I . We first
recall the notion of chase (introduced in the proof of Theorem 7.3). Let I be an
instance of S. Then chase�(I) is an instance of T constructed with the following
procedure. For every dependency σ ∈ � of the form ϕ(x̄) → ∃ ȳ ν(x̄, ȳ), with
x̄ = (x1, . . . , xm), ȳ = (y1, . . . , y�) tuples of distinct variables, and for every m-
tuple ā of elements from dom(I) such that I |= ϕ(ā), do the following. Choose an
�-tuple n̄ of distinct fresh values from N, and include all the conjuncts of ν(ā, n̄)
in chase�(I). We say that the conjuncts of ψ(a1, . . . , am, n1, . . . , n�) included in
chase�(I) are generated (or justified) by σ .

We also make use of the notion of N-connected instances introduced in Sec-
tion 9 when proving Proposition 9.1. Recall that an instance I of S is N-
connected if the following holds. Let GI = (VI , EI) be a graph such that VI

is composed by all the tuples t ∈ R I for R ∈ S, and there is an edge in EI

between tuples t1 and t2 if there exists a value n ∈ N that is mentioned both
in t1 and t2. Then I is N-connected if the graph GI is connected. An instance
I1 is an N-connected sub-instance of I , if I1 is a sub-instance of I and I1 is N-
connected. Finally, I1 is an N-connected component of I , if I1 is an N-connected
sub-instance of I and there is no N-connected sub-instance I2 of I , such that I1

is a proper sub-instance of I2. We extend these definitions for formulas that are
conjunctions of atoms. Let ϕ(x̄) be a conjunction of atoms, and ā a tuple of values
in C ∪ N. We say that ϕ(ā) is N-connected, if the instance that contains exactly
the atoms of ϕ(ā) is N-connected. The definition of N-connected components of
a conjunction of atoms ψ(ā), is defined as for the case of instances. Notice that
if I is such that dom(I) ⊆ C, then every atom in an N-connected sub-instance
of chase�(I) is generated by a single dependency in �.

We are now ready to prove that certainM(Q , I) ⊆ Q ′(I) for every instance I in
S. Let I be an arbitrary instance of S. We use the following property of chase�(I).
Since Q is a conjunctive query, from Fagin et al. [2005a] (Proposition 4.2) we
know that certainM(Q , I) = Q(chase�(I))↓, where Q(chase�(I))↓ denotes the
set of tuples in Q(chase�(I)) composed only by constant values. Thus, in order
to prove that certainM(Q , I) ⊆ Q ′(I), it is enough to prove that Q(chase�(I))↓ ⊆
Q ′(I). Next we show this last property.

Recall that Q is defined by formula ∃ ȳψ(x̄, ȳ) and Q ′ by α(x̄). Assume that x̄
is the tuple of distinct variables (x1, . . . , xr) and let ā = (a1, . . . , ar) be a tuple of
constant values such that ā ∈ Q(chase�(I))↓. Then we know that chase�(I) |=
∃ ȳψ(ā, ȳ). We need to show that ā ∈ Q ′(I), that is we need to show that I |=
α(ā). In order to prove this last fact, we show that after Step 2 of the algorithm,
there exists a formula β(x̄) ∈ Cψ such that I |= β(ā).

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-6 • M. Arenas et al.

Assume that in formula ψ(x̄, ȳ), ȳ is the tuple of distinct variables
(y1, . . . , y�). Since chase�(I) |= ∃ ȳψ(ā, ȳ), we know that there exists a tuple
b̄ = (b1, . . . , b�) composed by constant and null values, such that chase�(I) |=
ψ(ā, b̄). Let ρ1(ā1, b̄1), . . . , ρp(āp, b̄p) be the N-connected components of ψ(ā, b̄),
and assume that ρi(āi, b̄i) is a conjunction of ki (not necessarily distinct) atoms.
Notice that if ψ(x̄, ȳ) has m atoms, then k1 + · · · + kp = m. Without loss of gen-
erality, we can assume that ψ(ā, b̄) = ρ1(ā1, b̄1) ∧ . . . ∧ ρp(āp, b̄p) (otherwise we
can always reorder the atoms in ψ(ā, b̄)). Since chase�(I) |= ψ(ā, b̄), we know
that for every i ∈ {1, . . . , p}, the conjuncts of ρi(āi, b̄i) are included in the same
N-connected sub-instance of chase�(I). Furthermore, as we have noted before,
for every set of facts J that forms an N-connected sub-instance of chase�(I),
there exists a sentence in � that justifies J . Then there exist p (not necessar-
ily distinct) sentences (σ1, . . . , σp) ∈ � p, such that the atoms in ρi(āi, b̄i) are
generated by σi. Let (ξ1, . . . , ξp) be a tuple of dependencies obtained by renam-
ing the variables of (σ1, . . . , σp) in such a way that the set of variables of the
formulas ξ1, . . . , ξp are pairwise disjoint. Assume that every ξi is of the form
ϕi(ūi) → ∃v̄iψi(ūi, v̄i). Since σi generates all the atoms in ρi(āi, b̄i), we know
that for every i ∈ {1, . . . , p}, there exists a formula χi(w̄i, z̄i), and tuples c̄i and
n̄i of values in C and N, respectively, such that χi(w̄i, z̄i) is a conjunction of
ki (not necessarily distinct) atoms from ψi(ūi, v̄i) with w̄i ⊆ ūi and z̄i ⊆ v̄i,
and such that χi(c̄i, n̄i) is syntactically equal to ρi(āi, b̄i), up to reordering of
atoms. Without loss of generality we can assume that χi(c̄i, n̄i) = ρi(āi, b̄i). Let
χ (w̄, z̄) = χ1(w̄1, z̄1) ∧ · · · ∧ χp(w̄p, z̄ p), with w̄ = (w̄1, . . . , w̄p) = (w1, . . . , wd)
and z̄ = (z̄1, . . . , z̄ p) = (z1, . . . , ze) tuples of distinct variables. Then we have
that χ (c̄, n̄) = ψ(ā, b̄), where c̄ = (c̄1, . . . , c̄p) is a tuple of values in C, and
n̄ = (n̄1, . . . , n̄p) is a tuple of values in N. Given that the conjuncts of ρi(āi, b̄i)
are facts in chase�(I), and each ρi(āi, b̄i) = χi(c̄i, n̄i) is an N-connected compo-
nent of ψ(ā, b̄), we have that n̄ is a tuple of distinct values in N (since tuples
n̄i and n̄ j do not share any values, for every i �= j). Through the rest of the
proof, we assume that c̄ = (c1, . . . , cd) and n̄ = (n1, . . . , ne), that is, for every
i ∈ {1, . . . , d }, ci is the value assigned to variable wi, and for every i ∈ {1, . . . , e},
ni is the value assigned to zi.

Focus now on the positions of ψ(x̄, ȳ). For every i ∈ {1, . . . , r}, we call xi-
position to a position in ψ(x̄, ȳ) where variable xi occurs. Similarly, for every
i ∈ {1, . . . , �}, a yi-position is a position in ψ(x̄, ȳ) where variable yi occurs. Since
ψ(ā, b̄) and χ (c̄, n̄) are syntactically equal, there is a one-to-one correspondence
between the positions in ψ(x̄, ȳ) and the positions in χ (w̄, z̄). Then we can talk
about xi- or yi-positions in general when referring to positions in ψ(x̄, ȳ) or
in χ (w̄, z̄). We use this correspondence of positions and the fact that ψ(ā, b̄)
= χ (c̄, n̄), to create an existential replacement, and functions f , g , and h, as in
step 2(c)ii of the algorithm.

We know that ā is a tuple of constant values. Then from ψ(ā, b̄) = χ (c̄, n̄), we
obtain that every element of n̄ is equal to an element of b̄. Furthermore, this last
fact implies that every variable of z̄ occurs in a yi-position of χ (w̄, z̄), otherwise
it could not be the case that ψ(ā, b̄) = χ (c̄, n̄). Consider now the variables yi such
that a variable of w̄ occurs in a yi-position of χ (w̄, z̄). Construct an existential
replacement of ∃z̄χ (w̄, z̄) where, for every such variable yi, all the yi-positions

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-7

are replaced by an existentially quantified variable si. Let (∃s̄∃z̄γ (w̄′, z̄, s̄), θ (w̄′′))
be such a replacement of ∃z̄χ (w̄, z̄). Notice that in the formula γ (w̄′, z̄, s̄), every
variable of w̄′ occurs in an xi-position. We now define function h as follows. Let
h : ȳ → (z̄, s̄) be a function such that, h(yi) = z j if z j occurs in a yi-position,
and h(yi) = si otherwise. Notice that h is well defined, since if variable z j

occurs in a yi-position, then z j occurs in every yi-position (given that n̄ is a
tuple of distinct values of N, c̄ is a tuple of values of C, and χ (c̄, n̄) = ψ(ā, b̄)).
We now define functions f : x̄ → x̄ and g : w̄′ → x̄. For that purpose, we first
construct a partition of the set of variables of (x̄, w̄′), and then, we let f and
g assign to every variable a representative of its equivalent class. Consider
then, for every value a in ā, the set Va of all the variables xi of x̄ such that
xi is assigned value a (that is, ai = a), plus all the variables wj of w̄′ such
that wj is assigned value a (that is, c j = a). Note that, since χ (c̄, n̄) = ψ(ā, b̄)
and every variable of w̄′ occurs in an xi-position, sets Va do form a partition
of (x̄, w̄′). Choose as a representative of every equivalent class, the variable xi

with minimum index in the equivalent class. Then let f and g be such that
f (xi) = x j if x j is the representative of Vai , and similarly g (wi) = x j if x j is the
representative of Vci . By the definition of the existential replacement, and the
definitions of functions f , g , and h, and since ψ(ā, b̄) = χ (c̄, n̄), we have that
ψ(f (x̄), h(ȳ)) and γ (g (w̄′), z̄, s̄) are syntactically equal (they coincide in every
xi- and yi-position). Then we know that the formula:

β(x̄) = ∃ū1 · · · ∃ūp

(p∧
i=1

ϕi(ūi) ∧ θ (w̄′′) ∧ x̄ = f (x̄) ∧ w̄′ = g (w̄′)
)

,

is added to Cψ after step 2 of the algorithm. We claim that I |= β(ā).
Next we show that I |= ϕ1(c̄�

1) ∧ · · · ∧ ϕp(c̄�
p) ∧ θ (c̄′′) ∧ ā = f (ā) ∧ c̄′ = g (c̄′),

where c̄�
i is a tuple of elements in C that contains c̄i, c̄′ is the tuple obtained by

restricting c̄ to the variables of w̄′, and c̄′′ is the tuple obtained by restricting c̄
to the variables of w̄′′. Notice that an equality wj = wk appears in the formula
θ (w̄′′) if j �= k and both wj and wk occur in a yi-position. Then since ψ(ā, b̄) =
χ (c̄, n̄), we know that bi (the value assigned to yi) is equal to both c j and ck , and
thus, c j = ck holds. We conclude that θ (c̄′′) holds. Consider now equality ā =
f (ā). We know by the definition of f that f (xi) = x j , if x j is the representative
of Vai . Thus, we have that ai = aj , which implies that ā = f (ā) holds. Next
consider equality c̄′ = g (c̄′). We know by the definition of g that g (wi) = x j , if
x j is the representative of Vci . Thus, we have that ci = aj , which implies that
c̄′ = g (c̄′) holds. Finally, given that for every i ∈ {1, . . . , p}, formula ψi(āi, b̄i) =
χi(c̄i, n̄i) is justified by dependency ϕi(ūi) → ∃v̄iψi(v̄i, w̄i), there exists a tuple c̄�

i
that contains the elements in c̄i, and such that I |= ϕi(c̄�

i). We have shown that
I |= ϕ1(c̄�

1) ∧ · · · ∧ ϕp(c̄�
p) ∧ θ (c̄′′) ∧ ā = f (ā) ∧ c̄′ = g (c̄′), and hence, I |= β(ā).

We have shown that if chase�(I) |= ∃ ȳψ(ā, ȳ) for a tuple ā of constants,
then there exists a formula β(x̄) ∈ Cψ such that I |= β(ā). Thus, since α(x̄)
is the disjunctions of the formulas in Cψ , we have that I |= α(ā). Recall that
∃ ȳψ(x̄, ȳ) defined query Q and α(x̄) defines query Q ′. Therefore, if a tuple ā
of constants is such that ā ∈ Q(chase�(I)) then we have that ā ∈ Q ′(I), which
implies that Q(chase�(I))↓ ⊆ Q ′(I) and then certainM(Q , I) ⊆ Q ′(I) which is

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-8 • M. Arenas et al.

the property that we wanted to obtain. This completes the proof of correctness
of the algorithm.

A.2 Proof of Lemma 7.6

The following algorithm computes a rewriting of a conjunctive query given by
a single atom without existential quantifiers.

Algorithm QUERYREWRITINGATOM(M, Q)

Input: An st-mapping M = (S, T, �) where � is a set of FO-TO-CQ dependencies, and a
conjunctive query Q given by a single atom over T without existential quantifiers.
Output: An FO query Q ′ that is a rewriting of Q over the source schema S.

(1) Construct a set �′ of dependencies as follows. Start with �′ = ∅. For every depen-
dency σ ∈ � of the form ϕ(ū) → ∃v̄ψ(ū, v̄) do the following.
(a) For every atom P (ū′) that is a conjunct in ψ(ū, v̄) such that ū′ ⊆ ū, add depen-

dency ϕ′(ū′) → P (ū′) to �′, where ϕ′(ū′) = ∃ū′′ϕ(ū) with ū′′ the tuple of variables
in ū that are not mentioned in ū′.

(2) Rename the variables of the dependencies in �′ in such a way that the obtained
dependencies have pairwise disjoint sets of variables.

(3) Assume that Q is given by the atom R(x̄), where x̄ is a tuple of not necessarily
distinct variables that are not mentioned in the dependencies of �′.

(4) Create a set CR of FO queries as follows. Start with CR = ∅. Then for every depen-
dency ϕ(z̄) → R(z̄) in �′, add formula ∃z̄(ϕ(z̄) ∧ z̄ = x̄) to CR .

(5) If CR is nonempty, then let α(x̄) be the FO formula constructed as the disjunction of
all the formulas in CR . Otherwise, let α(x̄) be false, that is, an arbitrary unsatisfiable
formula (with x̄ as its tuple of free variables).

(6) Return the query Q ′ given by α(x̄).

It is straightforward to see that the algorithm runs in time O(‖�‖2) in the
general case, and in time O(‖�‖) if � is a set of full FO-TO-CQ dependencies,
each dependency with a single atom in its conclusion. Just notice that in the
latter case, the set �′ constructed in Step 1 of the algorithm is of size linear
in the size of �. The proof of correctness follows directly from the correctness
of algorithm QUERYREWRITING of Lemma 7.2. Just observe that if the input of
the algorithm QUERYREWRITING is a query Q given by the single atom R(x̄) with
no existentially quantified variables, then in the Step 2 of the algorithm the
parameter m is equal to 1. Also notice that an atom with existentially quantified
variables cannot be transformed into R(x̄) by applying existential replacements
and variable substitutions.

B. PROOFS OF SECTION 8

B.1 Proof of Proposition 8.1

Let S = {P (·), R(·)}, T = {T (·)} and � be the following set of st-tgds:

P (x) → ∃ yT (y),

R(x) → T (x).

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-9

Assume that M′ is a recovery of M that is specified by a set of FO-sentences
over S ∪ T. Next we show that M′ is not a maximum recovery of M.

On the contrary, assume that M′ is a maximum recovery of M. Let I be an
instance of S such that P I = {a} and R I = ∅, where a is an arbitrary element
of C. Since M′ is a recovery of M, there exists an instance J of T such that
(I, J) ∈ M and (J, I) ∈ M′. We consider two cases.

—First, assume that J mentions an element b ∈ C, that is not necessarily
distinct from a. Then we have that (I ′, J) ∈ M, where I ′ is an instance of S
such that P I ′ = ∅ and R I ′ = {b}. Thus, given that (J, I) ∈ M′, we have that
(I ′, I) ∈ M ◦ M′, which implies that ∅ � SolM(I) ⊆ SolM(I ′) by Proposition
3.8. Let J ′ be an instance of T defined as T J ′ = {n}, where n is an arbitrary
element of N. We have that (I, J ′) ∈ M and (I ′, J ′) �∈ M, which contradicts
the fact that SolM(I) ⊆ SolM(I ′).

—Second, assume that J does not mention any element from C. Assume that
dom(J) = {n1, . . . , nk}, and let f be a function defined as f (ni) = bi, where
each bi is an element of C that is distinct from a and bi �= bj for i �= j . Let J �

be the target instance that results from replacing every value ni by bi. It is
easy to see that (I, J �) ∈ M. Let g be a function with domain {a, n1, . . . , nk}
defined as g (a) = a and g (ni) = f (ni). We have that g is an isomorphism
from (J, I) to (J �, I) when we consider these instances as structures over
S ∪ T.1 Thus, given that M′ is specified by a set of FO-sentences over S ∪ T,
we conclude that (J �, I) ∈ M′. Therefore, there exists an instance J � of T
such that (I, J �) ∈ M, (J �, I) ∈ M′ and J � mentions elements of C. This
leads to a contradiction, as we show in the previous case. This concludes the
proof of the proposition.

B.2 Proof of Proposition 8.2

Let S = {S(·, ·)}, T = {T (·)} and M = (S, T, �) be an st-mapping specified by
the following set � of CQ�=-TO-CQ dependencies:

S(x, y) ∧ x �= y → T (x).

Next we show that M has no maximum recovery specified by a set of
FOC-TO-UCQ dependencies.

For the sake of contradiction, assume that M� = (T, S, ��) is a maximum
recovery of M, where �� is a set of FOC-TO-UCQ dependencies. Let I1 be a
source instance such that SI1 = {(a, b)}, where a, b are arbitrary elements of C
and a �= b. Given that M� is a recovery of M, there exists a target instance J1

such that (I1, J1) ∈ M and (J1, I1) ∈ M�.
Since M� is a maximum recovery of M, there exists at least one dependency

ϕ(x̄) → ψ(x̄) ∈ �� such that J1 |= ϕ(c̄), where c̄ is a nonempty tuple of elements
from C. On the contrary, assume that this is not the case. Then given that
(J1, I1) |= �� and �� is a set of FOC-TO-UCQ dependencies, we conclude that
either (J1, I∅) |= ��, where I∅ is the empty source instance, or (J1, I2) |= ��,

1Notice that if we consider (J, I) and (J�, I) as structures over S ∪ T ∪ {C(·)}, then g is not an

isomorphism from (J, I) to (J�, I).

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-10 • M. Arenas et al.

where I2 is a source instance such that SI2 = {(c, c)} (c ∈ C, c �= a, c �= b). The
former case contradicts Proposition 3.8 since (I1, I∅) ∈ M ◦ M� and SolM(I∅) �⊆
SolM(I1), while the latter case contradicts the same proposition since (I1, I2) ∈
M ◦ M� and SolM(I2) �⊆ SolM(I1).

Given that there exists at least one dependency ϕ(x̄) → ψ(x̄) ∈ �� such
that J1 |= ϕ(c̄), where c̄ is a nonempty tuple of elements from C, and given that
SI1 = {(a, b)}, we have that dom(J1)∩C = {a}. On the contrary, assume that this
is not the case. First, suppose that a �∈ dom(J1) ∩ C. Then given that J1 |= ϕ(c̄)
and dom(I1) = {a, b}, we conclude that every element of c̄ is equal to b. Thus,
since (J1, I1) |= ��, SI1 = {(a, b)} and �� is a set of FOC-TO-UCQ dependencies,
we conclude that (J1, I3) |= ��, where I3 is a source instance such that SI3 =
{(b, b)}. Therefore, given that (I1, J1) ∈ M, we have that (I1, I3) ∈ M◦M�, which
implies by Proposition 3.8 that SolM(I3) ⊆ SolM(I1). But if J∅ is the empty target
instance, then J∅ ∈ SolM(I3) and J∅ �∈ SolM(I1), which leads to a contradiction.
Second, suppose that b ∈ dom(J1) ∩ C. Given that J1 |= ϕ(c̄), a ∈ dom(J1) ∩ C
and dom(I1) = {a, b}, we have that every element of c̄ is equal to either a or b.
Let c̄′ be a tuple generated from c̄ by replacing a by b and b by a. Given that a
and b are indistinguishable in J1, we conclude that J1 |= ϕ(c̄′), which implies
that {(a, b)} � SI1 and, thus, contradicts the definition of I1. Third, assume
that b �∈ dom(J1) ∩ C. Then there exists d ∈ dom(J1) ∩ C such that d �= a and
d �= b. Thus, given that J1 |= ϕ(c̄), a ∈ dom(J1) ∩ C and dom(I1) = {a, b}, we
have that every element of c̄ is equal to a. Let c̄′′ be a tuple generated from c̄ by
replacing a by d . Given that a and d are indistinguishable in J1, we conclude
that J1 |= ϕ(c̄′′), which implies that {(a, b)} � SI1 , and thus, contradicts the
definition of I1.

Given that dom(J1) ∩ C = {a}, (J1, I1) |= �� and �� is a set of FOC-TO-UCQ
dependencies , we conclude that (J1, I4) |= ��, where I4 is a source instance such
that SI4 = {(a, a)}. Thus, given that (I1, J1) ∈ M, we have that (I1, I4) ∈ M◦M�,
which implies by Proposition 3.8 that SolM(I4) ⊆ SolM(I1). But if J∅ is the
empty target instance, then J∅ ∈ SolM(I4) and J∅ �∈ SolM(I1), which leads to a
contradiction. This concludes the proof of the proposition.

B.3 Proof of Theorem 8.3

Assume that there exists a nontrivial sentence � in L that is not expressible
in L′, and let S be the schema of �. We define an st-mapping M = (S, T, �) as
follows. We let P be a fresh relation name, T = {P (·)} and

� = {� → ∃x P (x)}.

For the sake of contradiction, assume that there exists a maximum recovery
M� = (T, S, ��) of M, where �� is a nonempty set of CQ-TO-L′ dependencies
from {P (·), C(·)} to S. Furthermore, assume that �� contains the following de-
pendencies:

αi → βi 1 ≤ i ≤ �,

γ j (x j ,1, . . . , x j ,nj) → δ j (x j ,1, . . . , x j ,nj) 1 ≤ j ≤ m and 1 ≤ nj

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-11

To prove the theorem, we consider two cases. In both cases, we denote by J∅ the
empty instance for target schema T.

(1) Assume that there exist instances I1 of S and J1 of T such that I1 |= �,
(I1, J1) ∈ M, (J1, I1) ∈ M� and dom(J1) ⊆ N.
Let S be the set of indexes {i | 1 ≤ i ≤ � and J1 |= αi}. We note that S �= ∅.
On the contrary, assume that S = ∅, and let I2 be an instance of S such that
I2 �|= � (such an instance exists since � is a nontrivial sentence). Given that
(J1, I1) |= �� and dom(J1) ⊆ N, we have J1 �|= ∃xi,1 · · · ∃xi,ni γi(xi,1, . . . , xi,ni)
for every i ∈ {1, . . . , m}. Thus, given that S = ∅, we conclude that (J1, I2) ∈
M� (in fact, (J1, I) ∈ M� for every instance I of S). Therefore, since (I1, J1) ∈
M, we have that (I1, I2) ∈ M ◦ M�. Thus, we have by Lemma 3.11 that
SolM(I2) ⊆ SolM(I1) since M� is a maximum recovery of M. But J∅ ∈
SolM(I2) since I2 �|= �, and J∅ �∈ SolM(I1) since I1 |= �, which leads to a
contradiction.
Let � be the following sentence: ∧

i∈S

βi.

We note that this sentence is well defined since S �= ∅. Next we show that
� is equivalent to �. First we assume that I is an instance of S such that
I |= �, and we prove that I |= �. Given that M� is a recovery of M, there
exists an instance J of T such that (I, J) ∈ M and (J, I) ∈ M�. Given that
P J �= ∅ and dom(J1) ⊆ N, we know that there exists a homomorphism from
J1 to J . Thus, for every i ∈ S, we have that J |= αi since αi is a conjunctive
query. We conclude that for every i ∈ S, it is the case that I |= βi (since
(J, I) ∈ M�). Therefore, we have that I |= �. Second, we assume that I
is an instance of S such that I |= �, and we prove that I |= �. On the
contrary, assume that I �|= �. Given that I |= �, we have that (J1, I) ∈ M�,
and therefore, (I1, I) ∈ M◦M�. We conclude by Lemma 3.11 that SolM(I) ⊆
SolM(I1) since M� is a maximum recovery of M. But J∅ ∈ SolM(I) since
I �|= �, and J∅ �∈ SolM(I1) since I1 |= �, which leads to a contradiction.
From the previous paragraph, we have that � is equivalent to �. But this
contradicts the fact that � is not expressible in L′, since each βi (1 ≤ i ≤ �)
is an L′-sentence and L′ is closed under conjunction.

(2) Assume that for every instance I1 of S, if J1 is an instance of T such that
I1 |= �, (I1, J1) ∈ M and (J1, I1) ∈ M�, then dom(J1) ∩ C �= ∅. In this case,
we consider two subcases.

(2.1) Assume that m = 0, that is, �� = {αi → βi | 1 ≤ i ≤ �}, and let � be the
following sentence:

�∧
i=1

βi.

Next we show that � is equivalent to �. First, we assume that I is an
instance of S such that I |= �, and we prove that I |= �. Given thatM� is
a recovery of M, there exists an instance J of T such that (I, J) ∈ M and
(J, I) ∈ M�. From the hypothesis, we have that dom(J) ∩ C �= ∅. Thus,
given that each αi (1 ≤ i ≤ �) is a conjunctive query over the vocabulary

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-12 • M. Arenas et al.

{P (·), C(·)}, we conclude that J |= αi for every i ∈ {1, . . . , �}. Therefore,
for every i ∈ {1, . . . , �}, it is the case that I |= βi (since (J, I) ∈ M�) and,
hence, I |= �. Second, we assume that I is an instance of S such that
I |= �, and we prove that I |= �. On the contrary, assume that I �|= �,
and let I1 be an instance of S such that I1 |= � (such an instance exists
since � is a nontrivial sentence). Given that M� is a recovery of M,
there exists an instance J1 of T such that (I1, J1) ∈ M and (J1, I1) ∈ M�.
Thus, given that I |= �, we have that (J1, I) ∈ M�, and therefore,
(I1, I) ∈ M ◦ M�. We conclude by Lemma 3.11 that SolM(I) ⊆ SolM(I1)
since M� is a maximum recovery of M. But J∅ ∈ SolM(I) since I �|= �,
and J∅ �∈ SolM(I1) since I1 |= �, which leads to a contradiction.
From the previous paragraph, we have that � is equivalent to �. But
this contradicts the fact that � is not expressible in L′, since each βi

(1 ≤ i ≤ �) is an L′-sentence and L′ is closed under conjunction.
(2.2) Assume that m > 0, and let � be the following sentence:(�∧

i=1

βi

)
∧

(m∧
j=1

∃x δ j (x, . . . , x︸ ︷︷ ︸
nj times

)

)
.

Next we show that � is equivalent to �. First, we assume that I is an
instance of S such that I |= �, and we prove that I |= �. Given thatM� is
a recovery of M, there exists an instance J of T such that (I, J) ∈ M and
(J, I) ∈ M�. From the hypothesis, we have that dom(J) ∩ C �= ∅. Thus,
given that each αi (1 ≤ i ≤ �) is a conjunctive query over the vocabulary
{P (·), C(·)}, we conclude that J |= αi for every i ∈ {1, . . . , �}. Furthermore,
given that each γ j (1 ≤ j ≤ m) is a conjunctive query over the vocabulary
{P (·), C(·)}, we conclude that for every a ∈ dom(J)∩C and j ∈ {1, . . . , m}:

J |= γ j (a, . . . , a︸ ︷︷ ︸
nj times

).

Therefore, given that (J, I) ∈ M�, we have that for every i ∈ {1, . . . , �},
it is the case that I |= βi, and for every j ∈ {1, . . . , m}, it is the case that

I |= ∃x δ j (x, . . . , x︸ ︷︷ ︸
nj times

).

Thus, we have that I |= �. Second, we assume that I is an instance of
S such that I |= �, and we prove that I |= �. On the contrary, assume
that I �|= �, and let I1 be an instance of S such that I1 |= � (such an
instance exists, since � is a nontrivial sentence). Given that I |= �,
there exists an element a ∈ dom(I) such that for every j ∈ {1, . . . , m}:

I |= δ j (a, . . . , a︸ ︷︷ ︸
nj times

).

Thus, if Ja is an instance of T such that P Ja = {a}, then (Ja, I) ∈ M�,
and therefore, (I1, I) ∈ M ◦ M� since (I1, Ja) |= �. From Lemma 3.11,
we have that SolM(I) ⊆ SolM(I1) since M� is a maximum recovery of M.
But J∅ ∈ SolM(I) since I �|= �, and J∅ �∈ SolM(I1) since I1 |= �, which
leads to a contradiction.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-13

From the previous paragraph, we have that � is equivalent to �. But
this contradicts the fact that � is not expressible in L′, since each
βi (1 ≤ i ≤ �) is an L′-sentence and L′ is closed under conjunction,
existential quantification, and free-variable substitution. This concludes
the proof of the theorem.

B.4 Proof of Proposition 8.4

To prove the proposition, we need to introduce the notion of the Ehrenfeucht-
Fraı̈ssé game, which characterizes elementary equivalence in FO (see Libkin
[2004]). Let R be a relational schema. For every pair I1, I2 of instances of R,
tuples ā = (a1, . . . , am) ∈ dom(I1)m and b̄ = (b1, . . . , bm) ∈ dom(I2)m define a
partial isomorphism from I1 to I2 if the following hold:

—For every i, j ≤ m, ai = aj if and only if bi = bj .

—For every k-ary relation symbol R ∈ R and every sequence [i1, . . . , ik] of not
necessarily distinct numbers from {1, . . . , m}, it holds that (ai1 , . . . , aik) ∈ R I1

if and only if (bi1 , . . . , bik) ∈ R I2 .

—For every i ≤ m, ai ∈ C if and only if bi ∈ C.

The Ehrenfeucht-Fraı̈ssé game is played by two players, called the spoiler and
the duplicator, on two instances I1, I2 of R. In each round i, the spoiler se-
lects either a point ai ∈ dom(I1), or bi ∈ dom(I2), and the duplicator responds
by selecting bi ∈ dom(I2), or ai ∈ dom(I1), respectively. The duplicator wins
after m rounds if the tuples (a1, . . . , am) and (b1, . . . , bm) define a partial isomor-
phism from I1 to I2, otherwise the spoiler wins. We use notation I1 ≡k I2 to
indicate that the duplicator has a winning strategy in the k-round game on I1

and I2.
The quantifier rank of an FO formula is the maximum depth of quantifier

nesting in it. It is well known that if I1 ≡k I2, then I1 and I2 agree on all FO
sentences over R ∪ {C(·)} of quantifier rank k [Libkin 2004].

We now have what is necessary to continue with the proof of Proposition 8.4.
In the proof of part (1), we use the following terminology. We say that an instance
I of a schema R is the disjoint union of two instances I1 and I2 if dom(I1) ∩
dom(I2) = ∅ and R I = R I1 ∪ R I2 for every R ∈ R. Furthermore, we say that
I ′ ⊆ I is a connected component of I if: (a) for every a, b ∈ dom(I ′), there
exist tuples t1 ∈ R I ′

1 , . . . , tm ∈ R I ′
m and elements a1, . . . , am−1, such that a is

mentioned in t1, b is mentioned in tm, and ai is mentioned in ti and ti+1, for every
i ∈ {1, . . . , m − 1}; and (b) for every I ′′ ⊆ I such that I ′ ⊆ I ′′ and I ′′ satisfies
condition (a), it holds that I ′ = I ′′.

Let S = {P (·, ·)}, T = {R(·, ·), S(·, ·)},

� = {P (x, y) → ∃z1∃z2∃z3 (R(x, z1) ∧ R(y , z2) ∧ S(z1, z3) ∧ S(z2, z3))},
� = {R(x, y) ∧ R(x, z) → y = z,

S(x, y) → x = y ,

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-14 • M. Arenas et al.

R(x, y) ∧ R(y , z) ∧ R(y ′, z) → y = y ′,
S(x, y) ∧ R(y , z) ∧ R(y ′, z) → y = y ′,
S(y , x) ∧ R(y , z) ∧ R(y ′, z) → y = y ′,
R(x, y) ∧ R(x ′, y) ∧ R(y , z) → x = x ′},

and M = (S, T, �, �). For the sake of contradiction, assume that M� = (T, S, ϕ)
is a maximum recovery ofM that is specified by an FO sentence ϕ over signature
{P (·, ·), R(·, ·), S(·, ·), C(·)}.

For every k ≥ 2, let Ik be an instance of S such that P Ik = {(a1, a2),
. . . , (ak−1, ak)} and Ck an instance of S such that PCk = {(a1, a2), . . . , (ak−1, ak),
(ak , a1)}, where ai �= aj (1 < i < j ≤ k).

CLAIM B.1. Let J be an instance of T such that R J = {(a1, c), . . . , (ak , c)}
and SJ = {(c, c)}, where c �= ai for every i ∈ {1, . . . , k}. Then J is a solution for
both Ik and Ck.

We conclude that every instance Ik is in the domain of M. Thus, given that
M� is a maximum recovery of M, we have by Lemma 3.11 that for every k ≥ 2,
there exists an instance Jk of T such that (Ik , Jk) ∈ M, (Jk , Ik) ∈ M� and Jk is
a witness for Ik under M.

CLAIM B.2. For every k ≥ 2, if J is a solution for Ik, then J is the disjoint
union of two instances J1 and J2, where J2 could be the empty target instance
and (a) dom(J1) = {a1, . . . , ak , b1, . . . , b�, c}, (b) ai �= c (1 ≤ i ≤ k), bi �= c
(1 ≤ i ≤ �), ai �= bj (1 ≤ i ≤ k and 1 ≤ j ≤ �), bi �= bj (1 ≤ i < j ≤ �), (c)
R J1 = {(a1, c), . . . , (ak , c), (b1, c), . . . , (b�, c)} and SJ1 = {(c, c)}.

To prove the claim, assume that (Ik , J) |= �. Then we have that J contains
at least all the tuples shown in the following figure:

Given that J satisfies dependency R(x, y)∧ R(x, z) → y = z, in the previous
figure c2 = c3, c4 = c5, . . . , c2k−4 = c2k−3. Thus, since J also satisfies dependency
S(x, y) → x = y , we have that c1 = c2 = · · · = c2k−2 = d1 = · · · = dk−1. We
use c to denote all these elements. We conclude that J contains at least all the
tuples shown in the following figure:

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-15

Let J1 be a connected component of J that contains the tuples shown in the
figure, and let d be an arbitrary element in this component (d may be equal c
or aj , 1 ≤ j ≤ k). Then we have that:

—If (ai, d) ∈ R J1 , then d = c since J satisfies dependency R(x, y) ∧ R(x, z) →
y = z.

—It could not be the case that (d , ai) ∈ R J1 , since J satisfies dependency
R(x, y) ∧ R(y , z) ∧ R(y ′, z) → y = y ′, k ≥ 2, and ai �= aj for every j �= i.

—It could not be the case that (ai, d) ∈ SJ1 , since J satisfies dependency
S(y , x) ∧ R(y , z) ∧ R(y ′, z) → y = y ′, k ≥ 2, and ai �= aj for every j �= i.

—It could not be the case that (d , ai) ∈ SJ1 , since J satisfies dependency
S(x, y) ∧ R(y , z) ∧ R(y ′, z) → y = y ′, k ≥ 2, and ai �= aj for every j �= i.

—If (c, d) ∈ SJ1 or (d , c) ∈ SJ1 , then c = d , since J satisfies dependency
S(x, y) → x = y .

—It could not be the case that (c, d) ∈ R J1 , since J satisfies dependency
R(x, y) ∧ R(x ′, y) ∧ R(y , z) → x = x ′, k ≥ 2, and ai �= aj for every j �= i.

From these six conditions, we conclude that there exist elements b1, . . . , b�

such that (a) dom(J1) = {a1, . . . , ak , b1, . . . , b�, c}, (b) ai �= c (1 ≤ i ≤ k), bi �= c
(1 ≤ i ≤ �), ai �= bj (1 ≤ i ≤ k, and 1 ≤ j ≤ �), bi �= bj (1 ≤ i < j ≤ �), (c)
R J1 = {(a1, c), . . . , (ak , c), (b1, c), . . . , (b�, c)}, and SJ1 = {(c, c)}. To conclude the
proof, we let J2 be the disjoint union of the remaining connected components of
J . Notice that J2 could be the empty target instance. This concludes the proof
of the claim.

Now, for every k ≥ 2, let I �
k be an instance of S such that:

P I �
k = {(a1, a2), . . . , (a� k

2
�−1, a� k

2
�)} ∪ {(a� k

2
�+1, a� k

2
�+2), . . . , (ak−1, ak), (ak , a� k

2
�+1)}.

By using Claim B.2, it is straightforward to prove the following result.

CLAIM B.3. There exists a constant s0 > 0 such that, for every k > s0, it holds
that (Ik , Jk) ≡k (I �

k , Jk).

Now we have all the necessary ingredients to prove the first part of the proposi-
tion. Assume that the quantifier rank of ϕ is k0, and let s > max{k0, s0}. Next we
show that (Is, I �

s) ∈ M ◦ M�. Given that M� is specified by ϕ and (Js, Is) ∈ M�,
we have that (Js, Is) |= ϕ. Thus, given that s > k0 and (Js, Is) ≡s (Js, I �

s) (by
Claim B.3), we have that (Js, I �

s) |= ϕ. We conclude that (Js, I �
s) ∈ M�, which

implies that (Is, I �
s) ∈ M ◦ M�.

Given that M� is a maximum recovery of M and (Is, I �
s) ∈ M ◦M�, we know

by Proposition 3.8 that SolM(I �
s) ⊆ SolM(Is). Let J � be an instance of T defined

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-16 • M. Arenas et al.

as:

R J � = {(a1, c1), . . . , (a� s
2
�, c1)} ∪ {(a� s

2
�+1, c2), . . . , (as, c2)},

SJ � = {(c1, c1), (c2, c2)},
where c1 �= ai (1 ≤ i ≤ s), c2 �= ai (1 ≤ i ≤ s), and c1 �= c2. Then by definition of
M and Claim B.1, we have that J � ∈ SolM(I �

s). Furthermore, we have that J � �∈
SolM(Is), which contradicts the fact that SolM(I �

s) ⊆ SolM(Is). This concludes
the proof of the first part of the proposition.

To prove part (2), let S = {P (·, ·)}, T = {R(·, ·)},
� = {P (x, y) → R(x, y)},
� = {R(x, y) ∧ R(y , z) → R(x, z)},

and M = (S, T, �, �). For the sake of contradiction, assume that M� = (T, S, ϕ)
is a maximum recovery ofM that is specified by an FO sentence ϕ over signature
{P (·, ·), R(·, ·), C(·)}. Given that M� is a maximum recovery of M, we know from
Lemma 3.11 that for every instance I of S, there exists an instance JI of T such
that (I, JI) ∈ M, (JI , I) ∈ M�, and JI is a witness for I under M. Since
(I, JI) ∈ M, we have that JI satisfies set � of target tgds. Given an instance I
of S, define TrCl(I) as the transitive closure of I . Then we have that:

CLAIM B.4. For every source instance I, R JI = PTrCl(I) ∪ NI , where PTrCl(I)

and NI are disjoint, and for every (a, b) ∈ NI , it holds that a ∈ N or b ∈ N.

We now prove the claim. Given that JI is a solution for I under M, we
have that PTrCl(I) ⊆ R JI , and hence R JI = PTrCl(I) ∪ NI , where PTrCl(I) and
NI are disjoint. For the sake of contradiction, assume that there exists a tuple
(a, b) ∈ NI such that a and b are both elements of C.

Let I ′ be an instance of S defined as P I ′ = P I ∪{(a, b)}. Given that JI satisfies
�, we have that JI ∈ SolM(I ′), and therefore, SolM(I) ⊆ SolM(I ′), since JI is
a witness for I under M. Let J ′ be an instance of T defined as R J ′ = PTrCl(I).
We have that J ′ ∈ SolM(I), and given that PTrCl(I) and NI are disjoint, we
have that (a, b) �∈ PTrCl(I), and thus J ′ �∈ SolM(I ′). This contradicts the fact that
SolM(I) ⊆ SolM(I ′), and concludes the proof of the claim.

To prove the proposition, we need to introduce some terminology. Let k0 be
the quantifier rank of ϕ. An instance (I, J) of S ∪ T is M-cyclic if dom(I) =
{a1, . . . , am}, dom(J) = {a1, . . . , am} ∪ {d1, . . . , dn}, P I = {(ai, ai+1) | 1 ≤ i ≤
m − 1} ∪ {(am, a1)} and R J = {(ai, aj) | 1 ≤ i, j ≤ m} ∪ X , where X satisfies
the following conditions: (1) if (u, v) ∈ X , then u ∈ N or v ∈ N; and (2) if
(ai, d j) ∈ X , then (ak , d j) ∈ X for every k ∈ {1, . . . , m}, and if (d j , ai) ∈ X ,
then (d j , ak) ∈ X for every k ∈ {1, . . . , m}. For an M-cyclic instance (I, J) as
above, we say that an instance (I ′, J ′) of S ∪ T is an amplification of (I, J) if
dom(I ′) = {b1, . . . , b2m}, dom(J ′) = {b1, . . . , b2m} ∪ {d1, . . . , dn}, P I ′ = {(bi, bi+1) |
1 ≤ i ≤ m − 1} ∪ {(bm, b1)} ∪ {(bm+i, bm+i+1) | 1 ≤ i ≤ m − 1} ∪ {(b2m, bm+1)}, and
R J ′ = {(bi, bj) | 1 ≤ i, j ≤ 2m} ∪ Y , where Y satisfies the following conditions:
(1) if (u, v) ∈ Y , then u ∈ N or v ∈ N; (2) X ∩ ({d1, . . . , dn} × {d1, . . . , dn}) =
Y ∩ ({d1, . . . , dn} × {d1, . . . , dn}); (3) if (bi, d j) ∈ Y , then (bk , d j) ∈ Y for every
k ∈ {1, . . . , 2m}, and if (d j , bi) ∈ Y , then (d j , bk) ∈ Y for every k ∈ {1, . . . , 2m}.
ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-17

CLAIM B.5. There exists a constant m0 > 0 such that, if the domain of an
M-cyclic instance (I, J) contains at least m0 elements, and (I ′, J ′) is an ampli-
fication of (I, J), then (I, J) ≡k0

(I ′, J ′).

Now we have all the necessary ingredients to prove part (2) of the proposition.
Let m > m0 and I1, I2 be instances of S defined as:

P I1 = {(bi, bi+1) | 1 ≤ i ≤ m − 1} ∪
{(bm, b1)} ∪ {(bm+i, bm+i+1) | 1 ≤ i ≤ m − 1} ∪ {(b2m, bm+1)},

P I2 = {(bi, bi+1) | 1 ≤ i ≤ m − 1} ∪ {(bm, b1)} ∪
{(bm+i, bm+i+1) | 1 ≤ i ≤ m − 1} ∪ {(b2m, bm+1)} ∪ {(bm, bm+1)}.

Next we show that (I2, I1) ∈ M ◦ M�. Let I be an instance of S, defined as
P I = {(ai, ai+1) | 1 ≤ i ≤ m − 1} ∪ {(am, a1)}. Given that TrCl(I) = {(ai, aj) |
1 ≤ i, j ≤ m}, we have that (I, JI) is M-cyclic by Claim B.4 and the fact that
JI satisfies �. Thus, by Claim B.5, we have that if (I ′, J ′) is an amplification of
(I, JI), then (I, JI) ≡k0

(I ′, J ′).
It is straightforward to prove that there is an amplification (I ′, J ′) of (I, JI)

such that I ′ = I1 and J ′ ∈ SolM(I2). Thus, given that M� is specified by FO-
sentence ϕ, the quantifier rank of ϕ is k0 and (I, JI) ≡k0

(I1, J ′), we conclude
that (J ′, I1) ∈ M�. Hence, (I2, I1) ∈ M◦M� since (I2, J ′) ∈ M and (J ′, I1) ∈ M�.

Given thatM� is a maximum recovery ofM and (I2, I1) ∈ M◦M�, we know by
Proposition 3.8 that SolM(I1) ⊆ SolM(I2). But let J be an instance of T defined
as R J = TrCl(I1). Then we have that J ∈ SolM(I1) and J �∈ SolM(I2) since
(bm, bm+1) ∈ P I2 and (bm, bm+1) �∈ R J . This contradicts the fact that SolM(I1) ⊆
SolM(I2), and concludes the proof of the proposition.

C. PROOFS OF SECTION 9

C.1 Proof of Lemma 9.2

(⇒) Trivial.
(⇐) Assume that M′ is a recovery of M. We must show that (I1, I2) ∈ M◦M′

if and only if I1 ⊆ I2. By hypothesis, it holds that if (I1, I2) ∈ M ◦ M′ then
I1 ⊆ I2. Now, assume that I1 ⊆ I2. Since M′ is a recovery of M, we know
that (I2, I2) ∈ M ◦ M′ and then, there exists a target instance J such that
(I2, J) ∈ M and (J, I2) ∈ M′. Now, given that M is specified by a set of st-tgds,
M is closed-down on the left and then (I1, J) ∈ M. We have that (I1, J) ∈ M
and (J, I2) ∈ M′, which implies that (I1, I2) ∈ M ◦ M′. This was to be shown.

C.2 Proof of Lemma 9.3

(⇒) From Fagin et al. [2005], we know that M◦M′ can be specified by a set of st-
tgds. Now, from Fagin [2007] (Proposition 7.2) we know that chase�′ (chase�(I))
is a universal solution for I under M ◦M′, and then (I, I) ∈ M ◦M′ if and only
if there exists a homomorphism from chase�′ (chase�(I)) to I that is the identity
on C. The (⇒) direction of the proposition follows from the latter condition.

(⇐) Without loss of generality, assume that each st-tgd in � has a single
atom in its right-hand side. For the sake of contradiction, suppose that M′ is

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-18 • M. Arenas et al.

not a recovery of M and for every source instance I such that |I | ≤ k� · k�′ and
N-connected component K of chase�′ (chase�(I)), there exists a homomorphism
from K to I that is the identity on C.

Given that M′ is not a recovery of M, there exists an instance I1 of S such
that (I1, I1) �∈ M ◦M′. Let I be an instance of S. Given that chase�(I) is a uni-
versal solution for I under M and chase�′ (chase�(I)) is a universal solution for
chase�(I) under M′, it is straightforward to prove that if (I, I ′) ∈ M ◦M′, then
there exists a homomorphism from chase�′ (chase�(I)) to I ′ that is the identity
on C. Furthermore, if there exists a homomorphism from chase�′ (chase�(I))
to an instance I ′, then one can conclude that (chase�(I), I ′) ∈ M′ since
(chase�(I), chase�′ (chase�(I))) ∈ M′ and chase�(I) does not mention any null
values as � is a set of full st-tgds. Thus we have that if there exists a homo-
morphism from chase�′ (chase�(I)) to an instance I ′, then (I, I ′) ∈ M ◦ M′. In
particular, from the previous properties, we conclude that (I, I) ∈ M ◦ M′ if
and only if there exists a homomorphism from chase�′ (chase�(I)) to I that is
the identity on C. Thus given that (I1, I1) �∈ M ◦ M′, there is no homomor-
phism from chase�′ (chase�(I1)) to I1 that is the identity on C, which implies
that there exists an N-connected component K1 of chase�′ (chase�(I1)) such that
there is no homomorphism from K1 to I1 that is the identity on C. Given that
K1 is an N-connected component and � is a set of full st-tgds, there exists a
dependency α(x̄) → ∃ ȳ β(x̄, ȳ) in �′ and a tuple ā of elements from C such
that chase�(I1) |= α(ā) and K1 is generated from ∃ ȳ β(ā, ȳ) when computing
chase�′ (chase�(I1)). Assume that α(ā) is equal to T1(ā1) ∧ · · · ∧ Tn(ān). Then for
every i ∈ {1, . . . , n}, there exists a full st-tgd γi(x̄i) → Ti(x̄i) such that I1 |= γi(āi).
Let I2 be a subinstance of I1 given by the union of all the tuples in the formulas
γi(āi) (i ∈ {1, . . . , n}). Then we have that K1 is an N-connected component of
chase�′ (chase�(I2)) and there is no homomorphism from K1 to I2 that is the
identity on C. But by definition of I2, we know that |I2| ≤ k� · k�′ , which con-
tradicts our initial assumption.

C.3 Proof of Theorem 9.4

To prove this theorem, we reduce the problem of verifying whether a determin-
istic Turing Machine (DTM) accepts the empty string to the complement of the
problem of verifying whether a schema mapping M′ is a recovery of a schema
mapping M.

Let M = (Q , �, q0, δ, q f) be a DTM, where Q , �, q0, δ and q f are the finite set
of states, tape alphabet, initial state, transition function, and final state of M .
For the sake of simplicity, we assume that q0 �= q f , the input alphabet is {0, 1},
and the tape alphabet � is {0, 1, B}, where B is the blank symbol. Furthermore,
we assume that the tape of M is infinite to the right and that in each step of M
the head has to move either to the right (R) or to the left (L), that is δ is a total
function from (Q \ {q f }) × � to Q × � × {L, R}. Notice that we also assume that
no transitions are defined for the final state q f .

Next we define data exchange settings M = (S, T, �) and M′ = (T, S, �′) in
such a way that M accepts the empty string if and only if M′ is not a recovery

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-19

of M. Relational schemas S and T are defined as follows:

S := {D(·, ·), T (·)},
T := {D′(·, ·), T ′(·), Z (·), O(·), E(·, ·, ·), L(·, ·, ·), P (·, ·), U (·, ·), S(·, ·, ·), H(·, ·, ·),

T0(·, ·, ·), T1(·, ·, ·), TB(·, ·, ·)} ∪ {Sq(·, ·) | q ∈ Q}.
Before defining sets � and �′ of tgds, we give the intended interpretations of
the predicates of S and T. As is customary when doing a logical encoding of a
Turing Machine, we have a predicate L to store a linear order. Since negation
is not allowed in tgds, predicate L is ternary and its third argument is used
to indicate whether the first argument is or is not less than the second one.
Predicate Z in T is used to store elements that represent the truth value false
(or zero), while predicate O in T is used to store elements that represent the
truth value true (or one). Thus, for example, if we want to say that a is less than
b according to linear order L, then we add a tuple (a, b, c) to L, where c belongs
to O.

As it is also customary when doing a logical encoding of a Turing Machine,
we have predicates P and U to store the first and last elements of linear order
L, a predicate S to store the successor relation associated with L, a predicate
H to store the position of the head of DTM M , predicates Sq (q ∈ Q) to store
the state of M , and predicates T0, T1, TB to indicate for each cell of the tape of
M whether its value is either 0 or 1 or B, respectively. As for the case of linear
order L, all these predicates have an extra argument that is used to indicate
whether the predicate is true or false for a particular tuple. Since the equality
symbol = is not allowed in st-tgds, we also have an equality predicate E, which
is ternary, as in the previous cases.

To explain the intended interpretations of predicates T of S and T ′ of T, we
need to show some of the dependencies in � and �′. Set � contains st-tgds:

D(x, y) → D′(x, y),

T (x) → T ′(x)

and �′ contains ts-tgds:

D′(x, y) → D(x, y),

T ′(x) → T (x),

Z (x) → T (x),

O(x) → T (x).

Thus, if I is an instance of S and J is a solution for I under M◦M′, then I ⊆ J .
After giving the definitions of � and �′, we prove that DTM M accepts the empty
string if and only if there exists an instance I of S such that (I, I) �∈ M ◦ M′,
and thus, we conclude that M accepts the empty string if and only if M′ is not
a recovery of M.

Let I be an instance of S, and dom(DI) the set of all elements mentioned
in DI . Each element in dom(DI) is used to denote a position in the tape of
M as well as a point of time in the execution of this DTM. Thus, some of the
dependencies of � should be used to guess a linear order L on dom(DI). More

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-20 • M. Arenas et al.

precisely, if domD(x) is defined as ∃ y D(x, y)∨∃z D(z, x), then we should include
in �, an axiom of the form domD(x) ∧ domD(y) → ∃u L(x, y , u) stating that for
every pair of elements x and y in D, there is a truth value associated with the
statement “x is less than y according to L,” but with the additional restriction
that u belongs to either Z or O. We cannot impose this restriction by using
an axiom of the form domD(x) ∧ domD(y) → ∃u (L(x, y , u) ∧ Z (u)) because we
will be explicitly saying that x is not less than y according to L, and the same
happens with axiom domD(x) ∧ domD(y) → ∃u (L(x, y , u) ∧ O(u)). To overcome
this problem, we use the fact that T ′ is a copy of T and all the elements of
Z and O belong to T ′ (since Z (x) → T (x) and O(x) → T (x) are in �′), and
we replace the previous axiom by domD(x) ∧ domD(y) → ∃u (L(x, y , u) ∧ T ′(u)),
which indeed says that u is a truth value, but without explicitly stating whether
this value is true or false.

In the definition of L, we would also like to say that L is defined only for
the elements in dom(DI), thus avoiding extra elements that are not in D and
can behave inadequately. The problem with this is that we cannot include in
�′ an axiom of the form L(x, y , z) → domD(x) ∧ domD(y), where domD(x) =
∃ y D(x, y) ∨ ∃z D(z, x), because this disjunctive sentence is not equivalent to
any set of tgds, unlike domD(x) ∧ domD(y) → ∃u (L(x, y , u) ∧ T ′(u)), which is
equivalent to a set of four tgds. To overcome this problem, we simply replace
disjunction by conjunction in the definitions of domD(x) and domD(y), and thus
we replace the previous dependency by:

μ(x) ∧ μ(y) → ∃u (L(x, y , u) ∧ T ′(u)),

L(x, y , z) → μ(x) ∧ μ(y),

where μ(x) = ∃ y D(x, y) ∧∃z D(z, x). Hence, predicate L is only defined for the
elements that appear in both columns of D.

In order to properly define L, we also need to include the axioms that define
L as a linear order. In particular, we need to say that L is connected, that is for
every pair of distinct elements x and y , we have that x is less than y or y is less
than x, according to L. Since the equality symbol is not allowed in st-tgds, we
use the equality predicate E to express this axiom. Thus � also has to include
some dependencies defining E. In particular, we include in � an axiom of the
form D(x, y) → ∃u (E(x, y , u) ∧ Z (u)), saying that for every tuple (x, y) in D,
we have that x and y are distinct elements. Thus we also use D to store an
inequality relation.

A natural question at this point is what happens if some of our implicit
assumptions are not satisfied. For example, what happens if D or T is empty,
or if D contains a tuple of the form (x, x), or if Z and O share some values
(which implies that some facts could be both true and false), or if T ′ contains a
value that is neither in Z nor in O, or if there is no element a in D satisfying
μ? After defining � and �′, we make these assumptions explicit, and we show
that some of the conditions in � and �′ ensure that if a source instance I
does not satisfy any of these assumptions, then (I, I) ∈ M ◦ M′. Thus when
checking whether M′ is a recovery of M, we only need to take into account
source instances satisfying these assumptions.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-21

Now we are ready to define sets � and �′ of tgds. For the sake of complete-
ness, we also include some of the dependencies already mentioned.

Copying axioms. � contains copying st-tgds:

D(x, y) → D′(x, y),

T (x) → T ′(x),

and �′ contains copying ts-tgds:

D′(x, y) → D(x, y),

T ′(x) → T (x).

Definition of predicates Z and O. Let

λ := ∃x∃ y (D(x, y) ∧ T (x) ∧ T (y)).

To define predicates Z and O, we include the following st-tgd in �:

λ → ∃u O(u) ∧ ∃v Z (v).

This dependency says that if a source instance I satisfies λ, then for every so-
lution J for I , both Z J and O J are not empty. Sentence λ is included in this
dependency to deal with source instances not satisfying some of the assump-
tions mentioned above (this will be formalized in Lemmas C.1, C.2 and C.3).

To complete the definition of Z and O, we include the following ts-tgds in �′:

Z (x) → T (x),

O(x) → T (x),

Z (x) ∧ O(y) → D(x, y).

Definition of equality predicate E. Let

μ(x) := ∃ y D(x, y) ∧ ∃z D(z, x).

To define the equality predicate E, we include the following st-tgds in �:

λ ∧ μ(x) ∧ μ(y) → ∃u (E(x, y , u) ∧ T ′(u)),

λ ∧ μ(x) ∧ μ(y) ∧ D(x, y) → ∃u (E(x, y , u) ∧ Z (u)).

The first dependency says that for every pair of elements x, y , satisfying μ,
either x is equal to y or x is not equal to y according to E. The second st-
tgd says that for every tuple (x, y) in D, we have that x is different from y
(according to E). We also need to state that E is an equivalence relation, which
is done by including the following dependencies in �′:

E(x, y , u1) ∧ Z (u1) ∧ E(x, y , u2) ∧ O(u2) → ∃v D(v, v),

E(x, x, u) ∧ Z (u) → ∃v D(v, v),

E(x, y , u1) ∧ O(u1) ∧ E(y , x, u2) ∧ Z (u2) → ∃v D(v, v),

E(x, y , u1) ∧ O(u1) ∧ E(y , z, u2) ∧ O(u2) ∧ E(x, z, u3) ∧ Z (u3) → ∃v D(v, v).

The first ts-tgd says that unless there is a tuple (a, a) in D, it could not be the
case that x is equal to y and x is not equal to y , according to E. The remaining

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-22 • M. Arenas et al.

three dependencies define E as an equivalent relation, provided that D does
not contain a tuple (a, a).

Finally, we also include in �′ the following ts-tgd:

E(x, y , z) → μ(x) ∧ μ(y),

stating that E is only defined for the elements that satisfy μ.

Definition of linear order L. We include the following st-tgd in �:

λ ∧ μ(x) ∧ μ(y) → ∃u (L(x, y , u) ∧ T ′(u)),

and we include the following ts-tgds in �′:

L(x, x, u) ∧ O(u) → ∃v D(v, v),

L(x, y , u1) ∧ O(u1) ∧ L(y , z, u2) ∧ O(u2) ∧ L(x, z, u3) ∧ Z (u3) → ∃v D(v, v),

E(x, y , u1) ∧ Z (u1) ∧ L(x, y , u2) ∧ Z (u2) ∧ L(y , x, u3) ∧ Z (u3) → ∃v D(v, v).

The first dependency says that L is irreflexive, the second says that L is tran-
sitive and the third says that L is connected (unless there is a tuple (a, a) in
D). To complete the definition of L, we include in �′ the following ts-tgd:

L(x, y , z) → μ(x) ∧ μ(y),

stating that L is only defined for the elements that satisfy μ, and we also include
in �′ an axiom that states that L is consistent with E (that is, E is a congruence
relation for L):

L(x, y , u1) ∧ O(u1) ∧ E(x, x1, u2) ∧ O(u2) ∧
E(y , y1, u3) ∧ O(u3) ∧ L(x1, y1, u4) ∧ Z (u4) → ∃v D(v, v).

This dependency says that unless there is a tuple (a, a) in D, if x is equal to x1

and y is equal to y1 according to E, then x is less than y according to L if and
only if x1 is less than y1 according to L.

Definition of predicate P. This predicate is used to store the first element of L.
To define this predicate, we include in � the following st-tgd:

λ ∧ μ(x) → ∃u1∃u2 (P (u1, u2) ∧ O(u2)).

This st-tgd says that if there exists at least one element satisfying formula μ,
and also formula λ is satisfied, then there is a first element for linear order L.
Moreover, we also include the following ts-tgds in �′:

P (x, u1) ∧ O(u1) ∧ L(y , x, u2) ∧ O(u2) → ∃v D(v, v),

P (x, u1) ∧ O(u1) ∧ E(x, y , u2) ∧ O(u2) ∧ P (y , u3) ∧ Z (u3) → ∃v D(v, v),

P (x, y) → μ(x).

The first dependency says that the first element of L does not have a predeces-
sor according to L, while the second says that unless there is a tuple (a, a) in
D, if x is equal to y according to E, then x is the first element of L if and only if
y is the first element of L (that is, E is a congruence relation for P). Moreover,

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-23

the last dependency states that P is only defined for the elements that
satisfy μ.

Definition of predicate U. This predicate is used to store the last element of L.
To define this predicate, we include the following st-tgd in �:

λ ∧ μ(x) → ∃u1∃u2 (U (u1, u2) ∧ O(u2)).

and we include the following ts-tgds in �′:

U (x, u1) ∧ O(u1) ∧ L(x, y , u2) ∧ O(u2) → ∃v D(v, v),

U (x, u1) ∧ O(u1) ∧ E(x, y , u2) ∧ O(u2) ∧ U (y , u3) ∧ Z (u3) → ∃v D(v, v),

U (x, y) → μ(x).

Definition of successor predicate S. We include the following st-tgds in �:

λ ∧ μ(x) ∧ μ(y) → ∃u (S(x, y , u) ∧ T ′(u)),

λ ∧ μ(x) → ∃ y∃u (S(x, y , u) ∧ O(u)).

As for the case of linear order L, the first st-tgd is used to indicate that for every
pair of elements x, y , satisfying formula μ, there is a truth value associated
with the statement “ y is a successor of x according to S.” The second st-tgd is
used to indicate that every element satisfying μ has a successor element. We
note that this dependency states that even the last element of linear order L
has a successor. This does not create any problems, as we do not impose any
restrictions on the successor of the last element (for example, we do not say that
it should be greater than the last element), and we do not use this successor
when coding Turing Machine M .

To indicate that S is the successor relation associated with L, we include the
following ts-tgds in �′:

S(x, y , u1) ∧ O(u1) ∧ U (x, u2) ∧ Z (u2) ∧ L(x, y , u3) ∧ Z (u3) → ∃v D(v, v),

S(x, y , u1) ∧ O(u1) ∧ U (x, u2) ∧ Z (u2) ∧
L(x, z, u3) ∧ O(u3) ∧ L(z, y , u4) ∧ O(z4) → ∃vD(v, v),

S(x, y , z) → μ(x) ∧ μ(y).

The first dependency says that if y is a successor of x according to S, and x is
not the last element of L, then x is less than y , according to L (unless there
is a tuple (a, a) in D). As we mentioned, this dependency does not impose any
restrictions on the successor of the last element. The second ts-tgd says that
there are no elements in between x and y if y is a successor of x and x is not
the last element. The third dependency says that S is only defined for elements
satisfying μ, which in particular implies that the successor of an element must
satisfy μ. As for the case of predicates L, P , and U , we also need to include an
axiom saying that S is consistent with the equality predicate E:

S(x, y , u1) ∧ O(u1) ∧ E(x, x1, u2) ∧ O(u2) ∧
E(y , y1, u3) ∧ O(u3) ∧ S(x1, y1, u4) ∧ Z (u4) → ∃v D(v, v).

Encoding of DTM M. Now we are ready to present the dependencies that code
DTM M . As for the case of predicates E, L, P , U and S, we include an extra

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-24 • M. Arenas et al.

λ ∧ μ(x) ∧ μ(y) → ∃u (H(x, y , u) ∧ T ′(u))
λ ∧ μ(x) ∧ μ(y) → ∃u (Ta(x, y , u) ∧ T ′(u)) for a ∈ {0, 1, B}

λ ∧ μ(x) → ∃u (Sq(x, u) ∧ T ′(u)) for q ∈ Q

Fig. 1. Target-to-source dependencies coding transition δ(q, a) = (q′, b, L).

argument in predicates H, T0, T1, TB and Sq (q ∈ Q) to indicate whether a
particular tuple is or is not in these predicates. Thus, for example, if u is an
element of O (and thus represents value true), then H(x, y , u) says that the
head of M is in position y at time x, T0(x, y , u) says that the cell of the tape
of M in position y has symbol 0 at time x, and likewise for symbols 1 and B,
Sq(x, u) says that M is in state q at time x.

First, we include the following st-tgds in �:

Sq(x, u1) ∧ O(u1) ∧ H(x, y , u2) ∧ O(u2) ∧ Ta(x, y , u3) ∧ O(u3) ∧
U (x, u4) ∧ Z (u4) ∧ S(x, u, u5) ∧ O(u5) ∧ Sq′ (u, u6) ∧ Z (u6) → ∃v D(v, v),

Sq(x, u1) ∧ O(u1) ∧ H(x, y , u2) ∧ O(u2) ∧ Ta(x, y , u3) ∧
O(u3) ∧ U (x, u4) ∧ Z (u4) ∧ S(x, u, u5) ∧ O(u5) ∧

S(w, y , u6) ∧ O(u6) ∧ H(u, w, u7) ∧ Z (u7) → ∃v D(v, v),

Sq(x, u1) ∧ O(u1) ∧ H(x, y , u2) ∧ O(u2) ∧ Ta(x, y , u3) ∧ O(u3) ∧
U (x, u4)∧Z (u4)∧S(x, u, u5) ∧ O(u5) ∧ Tb(u, y , u6) ∧ Z (u6) →∃v D(v, v).

We note that the first st-tgd says that for every pair of elements x, y satisfying
formula μ, there is a truth value associated with the statement “the head of M
is in position y at time x.” We also observe that the second st-tgd is defined for
every a ∈ {0, 1, B}, while the last one is defined for every q ∈ Q .

Second, we include the following ts-tgds in �′:

H(x, y , z) → μ(x) ∧ μ(y)
Ta(x, y , z) → μ(x) ∧ μ(y) for a ∈ {0, 1, B},

Sq(x, y) → μ(x) for q ∈ Q .

These dependencies state that H, T0, T1, TB, and Sq (q ∈ Q) are only defined
for elements satisfying μ.

Third, we include ts-tgds in �′, saying that predicates H, T0, T1, TB, and
Sq (q ∈ Q) are consistent with the equality predicate E. Since all these de-
pendencies are similarly defined, we only include here the ts-tgd for predicate
H:

H(x, y , u1) ∧ O(u1) ∧ E(x, x1, u2) ∧ O(u2) ∧
E(y , y1, u3) ∧ O(u3) ∧ H(x1, y1, u4) ∧ Z (u4) → ∃v D(v, v).

Notice that this ts-tgd says that unless there is a tuple (a, a) in D, if x is equal
to x1 and y is equal to y1 according to E, then according to H, the head of M is
in position y at time x if and only if the head of M is in position y1 at time x1.

Fourth, to state that each cell of the tape of M contains exactly one symbol
at each moment, we include a ts-tgd in �′ saying that it could not be the case
that the cell of the tape of M in position y at time x contains neither symbol 0

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-25

nor 1 nor B (unless there is a tuple (a, a) in D):

T0(x, y , u1) ∧ Z (u1) ∧ T1(x, y , u2) ∧ Z (u2) ∧ TB(x, y , u3) ∧ Z (u3) → ∃v D(v, v).

Furthermore, for every pair of distinct symbols a and b in {0, 1, B}, we include
a ts-tgd in �′ saying that it could not be the case that the cell of the tape of M
in position y at time x contains both a and b:

Ta(x, y , u1) ∧ O(u1) ∧ Tb(x, y , u2) ∧ O(u2) → ∃v D(v, v).

Fifth, we include the following ts-tgd in �′ stating that the head of M is in at
most one position at each moment:

H(x, y1, u1) ∧ O(u1)∧H(x, y2, u2)∧O(u2)∧E(y1, y2, u3) ∧ Z (u3) → ∃v D(v, v).

We observe that this dependency, together with the dependencies defining tran-
sition function δ (defined in the following) enforce that the head of M is in ex-
actly one position at each moment. To state that M is in exactly one state at
each moment, we include a ts-tgd in �′ saying that it could not be the case that
M is not in any state q ∈ Q at time x:(∧

q∈Q

(Sq(x, uq) ∧ Z (uq))

)
→ ∃v D(v, v).

Furthermore, for every pair of distinct states q1 and q2 in Q , we include a ts-tgd
in �′, saying that it could not be the case that M is in both states q1 and q2

(unless there is a tuple (a, a) in D):

Sq1
(x, u1) ∧ O(u1) ∧ Sq2

(x, u2) ∧ O(u2) → ∃v D(v, v).

Sixth, we include the following ts-tgds in �′ to define the initial configuration:
the state of M is q0, the head of M is in the first position of the tape of M , and
each position of this tape contains the blank symbol.

P (x, u1) ∧ O(u1) ∧ Sq0
(x, u2) ∧ Z (u2) → ∃v D(v, v),

P (x, u1) ∧ O(u1) ∧ H(x, x, u2) ∧ Z (u2) → ∃v D(v, v),

P (x, u1) ∧ O(u1) ∧ TB(x, y , u2) ∧ Z (u2) → ∃v D(v, v).

Finally, we include some ts-tgds in �′ to code the transition function of M . Let
(q, a) ∈ (Q \ {q f }) × �. If δ(q, a) = (q′, b, L), then we include in �′ the ts-tgds
shown in Figure 1, and if δ(q, a) = (q′, b, R), then we include similar ts-tgds, but
where the head of M is moved to the right. Moreover, for every a ∈ {0, 1, B} we
include the following “frame axiom” in �′:

H(x, y , u1) ∧ Z (u1) ∧ Ta(x, y , u2) ∧ O(u2) ∧
U (x, u3) ∧ Z (u3) ∧ S(x, u, u4) ∧ O(u4) ∧ Ta(u, y , u5) ∧ Z (u5) → ∃v D(v, v),

which says that unless there exists a tuple (a, a) in D, if the head of M is not
in position y at time x, then the symbol in this position is the same at time u,
where u is the successor of x.
Accepting condition for DTM M. To conclude the reduction, we include in �′

the following ts-tgd:

Sq f (x, y) ∧ O(y) → ∃v D(v, v).

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-26 • M. Arenas et al.

This dependency says that if at time x the state of the DTM M is q f (the final
state), then there exists an element a such that (a, a) is in D.

We have concluded the definitions of � and �′. We now proceed to prove
that M accepts the empty string if and only if M′ is not a recovery of M. But
first we need to prove some intermediate lemmas.

LEMMA C.1. Let I be an instance of S. If {(a, b) ∈ DI | a ∈ T I and b ∈ T I } =
∅, then (I, I) ∈ M ◦ M′.

PROOF. Assume that {(a, b) ∈ DI | a ∈ T I and b ∈ T I } = ∅. Then I does not
satisfy formula λ = ∃x∃ y (D(x, y) ∧ T (x) ∧ T (y)). Thus, given that λ is in the
left-hand side of every st-tgd in � except for the axioms D(x, y) → D′(x, y) and
T (x) → T ′(x), we conclude that the following instance J of T is a solution for
I under M: D′J = DI , T ′J = T I and X J = ∅, for every X ∈ T \ {D′, T ′}. By
simply inspecting the set �′, it is possible to conclude that (J, I) |= �′ (since
X J = ∅ for every X ∈ T \ {D′, T ′}, we only need to show that (J, I) satisfies
dependencies D′(x, y) → D(x, y) and T ′(x) → T (x), which is clearly the case).
Thus, we have that (I, I) ∈ M ◦ M′.

LEMMA C.2. Let I be an instance of S. If {a ∈ dom(DI) | I |= μ(a)} = ∅,
then (I, I) ∈ M ◦ M′.

PROOF. Analogous to the proof of the Lemma C.1.

LEMMA C.3. Let I be an instance of S. If there is a tuple (a, a) ∈ DI , then
(I, I) ∈ M ◦ M′.

PROOF. Assume that there is a tuple (a, a) ∈ DI . Furthermore, assume that
for (a0, b0) ∈ DI , we have that a0 ∈ T I and b0 ∈ T I (if there is no such a tuple in
DI , then by Lemma C.1 we conclude that (I, I) ∈ M ◦ M′). Let J be a solution
for I such that D′J = DI , T ′J = T I , Z J = {a0} and O J = {b0}. Given that there
is a tuple (a, a) ∈ DI , we have that (J, I) satisfies every dependency in �′ that
has formula ∃v D(v, v) as its conclusion. Thus, to prove that (J, I) satisfies �′,
we only need to show that this instance satisfies ts-tgds: D′(x, y) → D(x, y),
T ′(x) → T (x), Z (x) → T (x), O(x) → T (x) and Z (x) ∧ O(y) → D(x, y), which
is clearly the case. We conclude that (I, I) ∈ M ◦ M′.

We have all the necessary ingredients to prove that M accepts the empty
string if and only if M′ is not a recovery of M.

PROOF OF THEOREM 9.4. (⇒) Assume that M accepts the empty string, that is
assume that from the empty tape, M reaches the final state q f in k steps, where
k ≥ 2, since the initial state of M is different from q f . Then define IM as the
following instance of S:

DIM = {(n, m) | n, m ∈ {1, . . . , k} and n �= m} ∪ {(f , t)},
T IM = { f , t}.

Next we show that IM is not a solution for IM under M ◦ M′. For the sake of
contradiction, assume (IM , IM) ∈ M ◦ M′. Then there exists an instance J of

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

The Recovery of a Schema Mapping: Bringing Exchanged Data Back • App-27

T such that (IM , J) |= � and (J, IM) |= �′. Since (IM , J) satisfies D(x, y) →
D′(x, y) and (J, IM) satisfies D′(x, y) → D(x, y), we conclude that D′J = DIM ,
and given that (IM , J) satisfies T (x) → T ′(x) and (J, IM) satisfies T ′(x) → T (x),
we conclude that T ′J = T IM . Moreover, given that (f , t) ∈ DIM and T IM = { f , t},
we have that IM satisfies λ. Thus, given that (I, J) satisfies λ → ∃u Z (u) ∧
∃v O(v) and (J, IM) satisfies Z (x) → T (x), O(x) → T (x) and Z (x) ∧ O(y) →
D(x, y), we conclude that Z J = { f } and O J = {t}.

Since IM �|= ∃v D(v, v) and (J, IM) |= �′, we have that (J, IM) does not satisfy
the left-hand side of any dependency in �′ having ∃v D(v, v) in its right-hand
side. Furthermore, given that k ≥ 2, we have that {a ∈ dom(DIM) | IM |= μ(a)}
is not empty. Thus, by considering the dependencies in � and �′ that define
predicates E, L, P , U , S, H, T0, T1, TB, and Sq (q ∈ Q), we conclude that these
predicates encode k steps of the run of M on the empty string. Given that M
accepts the empty string, we have that (n, t) ∈ SJ

q f
for some n ∈ {1, . . . , k} (note

that linear order L does not necessarily coincide with the usual linear order
1 < 2 < · · · < k). Thus, given that t ∈ O J and (J, IM) satisfies dependency
Sq f (x, y)∧ O(y) → ∃v D(v, v), we have that there is a tuple (a, a) in DIM , which
contradicts the definition of instance IM .

(⇐) Assume that M does not accept the empty string. Thus given that we
assume that the transition function δ of M is a total function with domain
(Q \ {q f }) × {0, 1, B}, we have that for every k ≥ 1, DTM M reaches some state
q ∈ (Q \ {q f }) in k steps from the initial empty tape. We use this fact to show
that M′ is a recovery of M.

Let I be an instance of S. We need to show that (I, I) ∈ M ◦ M′. If {(a, b) ∈
DI | a ∈ T I and b ∈ T I } = ∅ or {a ∈ dom(DI) | I |= μ(a)} = ∅ or there is
a tuple (a, a) ∈ DI , then (I, I) ∈ M ◦ M′ by Lemmas C.1, C.2, and C.3. Thus
we assume that I does not satisfy any of these conditions, and without loss of
generality, we assume that dom(DI) = {0, . . . , n} (n ≥ 1), (0, 1) ∈ DI , 0 ∈ T I and
1 ∈ T I .

To prove that I is a solution for I under M ◦ M′, we construct a solution J
for I under M, such that (J, I) |= �′. More precisely, we define J , as follows:
D′J = DI , T ′J = T I , Z J = {0}, O J = {1}, and

E J := {(i, i, 1) | i ∈ {0, . . . , n}} ∪ {(i, j , 0) | i, j ∈ {0, . . . , n} and i �= j },
LJ := {(i, j , 1) | i, j ∈ {0, . . . , n} and i < j } ∪ {(i, j , 0)|i, j ∈ {0, . . . , n} and i≥ j },
SJ := {(i, i + 1, 1) | i ∈ {0, . . . , n − 1}} ∪

{(n, 1, 1)} ∪ {(i, j , 0) | i, j∈{0, . . . , n}, j �= i + 1 and (i, j) �= (n, 1)},
P J := {(0, 1)} ∪ {(i, 0) | i∈{1, . . . , n}},
U J := {(n, 1)} ∪ {(i, 0) | i ∈ {0, . . . , n − 1}}.
Furthermore, relations H J , T J

0 , T J
1 , T J

B , and SJ
q (q ∈ Q) are defined in such a

way that they represent n + 1 steps of the run of M on the empty string. Since
M does not accept the empty string, we conclude that (i, 1) �∈ SJ

q f
for every

i ∈ {0, . . . , n}, and therefore, (J, I) trivially satisfies dependency Sq f (x, y) ∧
O(y) → ∃v D(v, v) since O J = {1}. Furthermore, (J, I) satisfies all the other
ts-tgds in �′ having ∃v D(v, v) in their right-hand sides, since H J , T J

0 , T J
1 , T J

B ,

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

App-28 • M. Arenas et al.

and SJ
q (q ∈ Q) code n + 1 steps of the run of M on the empty string. Thus,

to prove that (J, I) |= �′, we only need to show that this instance satisfies
dependencies D′(x, y) → D(x, y), T ′(x) → T (x), Z (x) → T (x), O(x) → T (x),
and Z (x)∧O(y) → D(x, y). It is straightforward to prove that (J, I) satisfies the
previous ts-tgds. Thus, we conclude that (J, I) |= �′ and hence, (I, I) ∈ M◦M′.
This concludes the proof of the theorem.

C.4 Proof of Corollary 9.5

Let M = (S, T, �) and M′ = (T, S, �′) be the mappings used in the proof of
Theorem 9.4. Recall that � is a set of st-tgds from S to T and �′ is a set of
ts-tgds from T to S, where

S := {D(·, ·), T (·)},
T := {D′(·, ·), T ′(·), Z (·), O(·), E(·, ·, ·), L(·, ·, ·), P (·, ·), U (·, ·), S(·, ·, ·), H(·, ·, ·),

T0(·, ·, ·), T1(·, ·, ·), TB(·, ·, ·)} ∪ {Sq(·, ·) | q ∈ Q}.
Given that � includes dependencies D(x, y) → D′(x, y) and T (x) → T ′(x), and
�′ includes dependencies D′(x, y) → D(x, y) and T ′(x) → T (x), we have that
if (I1, I2) ∈ M ◦ M′, then I1 ⊆ I2. Thus, from Lemma 9.2, we have that M′ is
a recovery of M if and only if M′ is an inverse of M. Hence, from the proof of
Theorem 9.4, we conclude that the problem of verifying, given schema mappings
M1 andM2 specified by a set of st-tgds and a set of ts-tgds respectively, whether
M2 is an inverse of M1, is undecidable.

A careful inspection of the set of dependencies � reveals that mapping M
is invertible. In fact, ts-mapping specified by dependencies D′(x, y) → D(x, y)
and T ′(x) → T (x), is an inverse of M. Thus, from Theorem 6.3, we conclude
that M′ is a maximum recovery of M if and only if M′ is an inverse of M.
Therefore, from the proof of Theorem 9.4, we have that the problem of verifying,
given schema mappings M1 and M2 specified by a set of st-tgds and a set of
ts-tgds respectively, whether M2 is a maximum recovery of M1, is undecidable.
Furthermore, from Proposition 3.24 in Fagin et al. [2008], we conclude that M′

is an inverse ofM if and only ifM′ is a quasi-inverse ofM. Hence, from the proof
of Theorem 9.4, we have that the problem of verifying, given schema mappings
M1 andM2 specified by a set of st-tgds and a set of ts-tgds respectively, whether
M2 is a quasi-inverse of M1, is undecidable.

ACM Transactions on Database Systems, Vol. 34, No. 4, Article 22, Publication date: December 2009.

