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Abstract The class of unions of conjunctive queries (UCQ) has been shown to be
particularly well-behaved for data exchange; its certain answers can be computed in
polynomial time (in terms of data complexity). However, this is not the only class
with this property; the certain answers to any DATALOG program can also can be
computed in polynomial time. The problem is that both UCQ and DATALOG do not
allow negated atoms, as adding an unrestricted form of negation to these languages
yields to intractability.

In this paper, we propose a language called DATALOGC(�=) that extends DATALOG

with a restricted form of negation, and study some of its fundamental properties.
In particular, we show that the certain answers to a DATALOGC(�=) program can be
computed in polynomial time (in terms of data complexity), and that every union of
conjunctive queries with at most one inequality or negated relational atom per dis-
junct, can be efficiently rewritten as a DATALOGC(�=) program in the context of data
exchange. Furthermore, we show that this is also the case for a syntactic restriction of
the class of unions of conjunctive queries with at most two inequalities per disjunct.
This syntactic restriction is given by two conditions that are optimal, in the sense that
computing certain answers becomes intractable if one removes any of them. Finally,
we provide a thorough analysis of the combined complexity of computing certain an-
swers to DATALOGC(�=) programs and other related query languages. In particular, we
show that this problem is EXPTIME-complete for DATALOGC(�=), even if one restricts
to conjunctive queries with single inequalities, which is a fragment of DATALOGC(�=)
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by the result mentioned above. Furthermore, we show that the combined complexity
is CONEXPTIME-complete for the case of conjunctive queries with k inequalities, for
every k ≥ 2.

Keywords Data exchange · Certain answers · Query languages · Datalog ·
Combined complexity

1 Introduction

Data exchange is the problem of computing an instance of a target schema, given an
instance of a source schema and a specification of the relationship between source
and target data. Although data exchange is considered to be an old database problem,
its theoretical foundations have only been laid out very recently by the seminal work
of Fagin, Kolaitis, Miller and Popa [9]. Both the study of data exchange and schema
mappings have become an active area of research during the last years in the database
community (see e.g. [4, 8–10, 13, 14, 18, 19]).

In formal terms, a data exchange setting is a triple M = (S, T, �st ), where S
is a source schema, T is a target schema, and �st is a mapping defined as a set of
source-to-target dependencies of the form ∀x̄(φS(x̄) → ∃ȳψT(x̄, ȳ)), where φS and
ψT are conjunctions of relational atoms over S and T, respectively (some studies
have also included target constraints, but here we focus on data exchange settings
without dependencies over T). Given a source instance I , the goal in data exchange
is to materialize a target instance J that is a solution for I , that is, J together with I

must conform to the mapping �st .
An important issue in data exchange is that the existing specification languages

usually do not completely determine the relationship between source and target data
and, thus, there may be many solutions for a given source instance. This immediately
raises the question of which solution should be materialized. Initial work on data
exchange [9] has identified a class of “good” solutions, called universal solutions.
In formal terms, a solution is universal if it can be homomorphically embedded into
every other solution. It was proved in [9] that for the class of data exchange settings
studied in this paper, a particular universal solution—called the canonical universal
solution—can be computed in polynomial time. It is important to notice that in this
result the complexity is measured in terms of the size of the source instance, and the
data exchange specification �st is assumed to be fixed. Thus, this result is stated in
terms of data complexity [22].

A second important issue in data exchange is query answering. Queries in the data
exchange context are posed over the target schema, and—given that there may be
many solutions for a source instance—there is a general agreement in the literature
that their semantics should be defined in terms of certain answers [1, 9, 15, 16].
More formally, given a data exchange setting M = (S,T,�st ) and a query Q over
T, a tuple t̄ is said to be a certain answer to Q over I under M, if t̄ belongs to the
evaluation of Q over every possible solution J for I under M.

The definition of certain answers is highly non-effective, as it involves computing
the intersection of (potentially) infinitely many sets. Thus, it becomes particularly
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important to understand for which classes of relevant queries, the certain answers
can be computed efficiently. In particular, it becomes relevant to understand whether
it is possible to compute the certain answers to any of these classes by using some
materialized solution. Fagin, Kolaitis, Miller, and Popa [9] have shown that this is
the case for the class of union of conjunctive queries (UCQ); the certain answers to
each union of conjunctive queries Q over a source instance I can be computed in
polynomial time by directly posing Q over the canonical universal solution for I .
Again, it is important to notice that this result is stated in terms of data complexity,
that is, the complexity is measured in terms of the size of the source instance, and
both the data exchange specification �st and the query Q are assumed to be fixed.

The good properties of UCQ for data exchange can be completely explained by
the fact that unions of conjunctive queries are preserved under homomorphisms.
But this is not the only language that satisfies this condition, as queries definable
in DATALOG, the recursive extension of UCQ, are also preserved under homomor-
phisms. Thus, DATALOG retains several of the good properties of UCQs for data
exchange purposes. In particular, the certain answers to a DATALOG program � over
a source instance I , can be computed efficiently by first materializing the canonical
universal solution J for I , and then evaluating � over J (since the data complexity
of a DATALOG program is polynomial).

Unfortunately, both UCQ and DATALOG keeps us in the realm of the positive,
while most database query languages are equipped with negation. Thus, the first goal
of this paper is to investigate what forms of negation can be added to DATALOG

while keeping all the good properties of DATALOG, and UCQ, for data exchange.
It should be noticed that this is not a trivial problem, as there is a trade-off between
expressiveness and complexity in this context. On the one hand, one would like to
have a query language expressive enough to be able to pose interesting queries in
the data exchange context. But, on the other hand, it has been shown that adding an
unrestricted form of negation to DATALOG (or even to conjunctive queries) yields to
intractability of the problem of computing certain answers [1, 9]. In this respect, the
following are our main contributions.

• We introduce a query language called DATALOGC(�=) that extends DATALOG with a
restricted form of negation, and that has the same good properties for data exchange
as DATALOG. In particular, we prove that the certain answers to a DATALOGC(�=)

program � over a source instance I can be computed by evaluating � over the
canonical universal solution for I . As a corollary, we obtain that computing certain
answers to a DATALOGC(�=) program can be done in polynomial time (in terms of
data complexity).

• To show that DATALOGC(�=) can be used to express interesting queries in the data
exchange context, we prove that every union of conjunctive queries with at most
one inequality or negated relational atom per disjunct, can be efficiently expressed
as a DATALOGC(�=) program in the context of data exchange.

• It follows from the previous result that the certain answers to every union of con-
junctive queries with at most one inequality or negated relational atom per dis-
junct, can be computed in polynomial time (in terms of data complexity). Al-
though this corollary is not new (it is a simple extension of a result in [9]), the
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use of DATALOGC(�=) in the context of data exchange opens the possibility of find-
ing new tractable classes of query languages with negation. In fact, we also use
DATALOGC(�=) to find a tractable fragment of the class of conjunctive queries with
two inequalities.

It is known that for the class of conjunctive queries with inequalities, the prob-
lem of computing certain answers is CONP-complete [1, 9] (in terms of data com-
plexity). In fact, it has been shown that the intractability holds even for the case
of two inequalities [20]. However, very little is known about tractable fragments
of these classes. In this paper, we provide a syntactic restriction for the class of
unions of conjunctive queries with at most two inequalities per disjunct, and prove
that every query conforming to it can be expressed as a DATALOGC(�=) program in
the context of data exchange. It immediately follows that the data complexity of
computing certain answers to a query conforming to this restriction is polynomial.

The syntactic restriction mentioned above is given by two conditions. We con-
clude this part of the investigation by showing that these conditions are optimal
for tractability, in the sense that computing certain answers becomes intractable if
one removes any of them. It should be noticed that this gives a new proof of the
fact that the problem of computing certain answer to a conjunctive query with two
inequalities is CONP-complete.

The study of the complexity of computing certain answers to DATALOGC(�=) pro-
grams will not be complete if one does not consider the notion of combined com-
plexity. Although the notion of data complexity has shown to be very useful in un-
derstanding the complexity of evaluating a query language, one should also study the
complexity of this problem when none of its parameters is considered to be fixed.
This corresponds to the notion of combined complexity introduced in [22], and it
means the following in the context of data exchange. Given a data exchange setting
M, a query Q over the target and a source instance I , one considers I as well as Q

and M as part of the input when computing the certain answers to Q over I under
M. In this paper, we study this problem and establish the following results.

• We show that the combined complexity of the problem of computing certain an-
swers to DATALOGC(�=) programs is EXPTIME-complete, even if one restricts to
the class of conjunctive queries with single inequalities (which is a fragment of
DATALOGC(�=) by the result mentioned above). This refines a result in [14] that
shows that the combined complexity of the problem of computing certain an-
swers to unions of conjunctive queries with at most one inequality per disjunct
is EXPTIME-complete.

• We also consider the class of conjunctive queries with an arbitrary number of in-
equalities per disjunct. More specifically, we show that the combined complexity
of the problem of computing certain answers is CONEXPTIME-complete for the
case of conjunctive queries with k inequalities, for every k ≥ 2.

• One of the reasons for the high combined complexity of the previous problems
is the fact that if data exchange settings are not considered to be fixed, then one
has to deal with canonical universal solutions of exponential size. A natural way
to reduce the size of these solutions is to focus on the class of LAV data exchange
settings [16], which are frequently used in practice.
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For the case of DATALOGC(�=) programs, the combined complexity is inherently
exponential, and thus focusing on LAV settings does not reduce the complexity of
computing certain answers. However, we show in the paper that if one focuses on
LAV settings, then the combined complexity is considerably lower for the class
of conjunctive queries with inequalities. More specifically, we show that the com-
bined complexity goes down to NP-complete for the case of conjunctive queries
with single inequalities, and to �

p

2 -complete for the case of conjunctive queries
with k inequalities, for every k ≥ 2.

Proviso. As we mentioned above, target dependencies are usually considered in
the data exchange literature in addition to source-to-target dependencies. Those tar-
get dependencies represent the usual database constraints that exchanged data must
satisfy. We decided not to include target dependencies in this work for the sake of
readability, but we certainly think that this is a class that deserves attention. In fact,
we are currently working on extending the setting presented in this paper to take into
account usual target constraints studied in the data exchange literature (e.g. equality-
generating dependencies and tuple-generating dependencies).

Organization of the paper. In Sect. 2, we introduce the terminology used in the
paper. In Sect. 3, we define the syntax and semantics of DATALOGC(�=) programs.
In Sect. 4, we study some of the fundamental properties of DATALOGC(�=) programs
concerning complexity and expressiveness. In Sect. 5, we study a syntactic restriction
that leads to tractability of the problem of computing certain answers for unions of
conjunctive queries with two inequalities. In Sect. 6, we provide a thorough analysis
of the combined complexity of computing certain answers to DATALOGC(�=) pro-
grams and other related query languages. Concluding remarks are in Sect. 7.

2 Background

A schema R is a finite set {R1, . . . ,Rk} of relation symbols, with each Ri having a
fixed arity ni > 0. Let D be a countably infinite domain. An instance I of R assigns to
each relation symbol Ri of R a finite ni -ary relation RI

i ⊆ Dni . The domain dom(I )

of instance I is the set of all elements that occur in any of the relations RI
i . We often

define instances by simply listing the tuples attached to the corresponding relation
symbols.

We assume familiarity with first-order logic (FO) and DATALOG. In this paper,
CQ is the class of conjunctive queries and UCQ is the class of unions of conjunctive
queries. If we extend these classes by allowing inequalities or negation (of relational
atoms), then we use superscripts �= and ¬, respectively. Thus, for example, CQ �= is
the class of conjunctive queries with inequalities, and UCQ¬ is the class of unions
of conjunctive queries with negated relational atoms but no inequalities. As usual in
the database literature, we assume that every query Q in UCQ �=,¬ is safe: (1) if Q1
and Q2 are disjuncts of Q, then Q1 and Q2 have the same free variables, (2) if Q1
is a disjunct of Q and x �= y is a conjunct of Q1, then x and y appear in some non-
negated relational atoms of Q1, (3) if Q1 is a disjunct of Q and ¬R(x̄) is a conjunct
of Q1, then every variable in x̄ appears in a non-negated relational atom of Q1.
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2.1 Data Exchange Settings and Solutions

As is customary in the data exchange literature, we consider instances with two types
of values: constants and nulls [9, 10]. More precisely, let C and N be infinite and
disjoint sets of constants and nulls, respectively, and assume that D = C ∪ N. If we
refer to a schema S as a source schema, then whenever we consider an instance I of
S, we will assume that dom(I ) ⊆ C. On the other hand, if we refer to a schema T as a
target schema, then for every instance J of T, it holds that dom(J ) ⊆ C ∪ N. Slightly
abusing notation, we also use C to denote a built-in unary predicate such that C(a)

holds if and only if a is a constant, that is a ∈ C refer to a source schema and T to
A data exchange setting is a tuple M = (S,T,�st ), where S is a source schema,

T is a target schema, S and T do not have predicate symbols in common and �st is
a set of FO-dependencies over S ∪ T (in [9] and [10] a more general class of data
exchange settings is presented, that also includes target dependencies). As usual in
the data exchange literature (e.g., [9, 10]), we restrict the study to data exchange
settings in which �st consists of a set of source-to-target tuple-generating dependen-
cies. A source-to-target tuple-generating dependency (st-tgd) is an FO-sentence of the
form ∀x̄ (φ(x̄) → ∃ȳ ψ(x̄, ȳ)), where φ(x̄) is a conjunction of relational atoms over
S and ψ(x̄, ȳ) is a conjunction of relational atoms over T.1 A source (resp. target)
instance K for M is an instance of S (resp. T). We usually denote source instances
by I, I ′, I1, . . . , and target instances by J,J ′, J1, . . . .

The class of data exchange settings considered in this paper is usually called GLAV

(global-&-local-as-view) in the database literature [16]. One of the restricted forms
of this class that has been extensively studied for data integration and exchange is the
class of LAV settings. Formally, a LAV setting (local-as-view) [16] is a data exchange
setting M = (S,T,�st ), in which every st-tgd in �st is of the form ∀x̄ (S(x̄) →
ψ(x̄)), for some S ∈ S (it is important to notice that variables of tuple x̄ are not
assumed to be pairwise distinct).

An instance J of T is said to be a solution for an instance I under M =
(S,T,�st ), if the instance K = (I, J ) of S ∪ T satisfies �st , where SK = SI for
every S ∈ S and T K = T J for every T ∈ T. If M is clear from the context, we shall
say that J is a solution for I .

Example 2.1 Let M = (S,T,�st ) be a data exchange setting. Assume that S con-
sists of one binary relation symbol P , and T consists of two binary relation sym-
bols Q and R. Further, assume that �st consists of st-tgds P(x, y) → Q(x,y) and
P(x, y) → ∃zR(x, z). Then M is also a LAV setting.

Let I = {P(a, b), P(a, c)} be a source instance. Then J1 = {Q(a,b), Q(a, c),

R(a, b)} and J2 = {Q(a,b), Q(a, c), R(a,n)}, where n ∈ N, are solutions for I . In
fact, I has infinitely many solutions.

1We usually omit universal quantification in front of st-tgds and express them simply as φ(x̄) →
∃ȳ ψ(x̄, ȳ).
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2.2 Universal Solutions and Canonical Universal Solution

It has been argued in [9] that the preferred solutions in data exchange are the uni-
versal solutions. In order to define this notion, we first have to revise the concept of
homomorphism in data exchange. Let K1 and K2 be instances of the same schema R.
A homomorphism h from K1 to K2 is a function h : dom(K1) → dom(K2) such that:
(1) h(c) = c for every c ∈ C ∩ dom(K1), and (2) for every R ∈ R and every tuple
ā = (a1, . . . , ak) ∈ RK1 , it holds that h(ā) = (h(a1), . . . , h(ak)) ∈ RK2 . Notice that
this definition of homomorphism slightly differs from the usual one, as the additional
constraint that homomorphisms are the identity on the constants is imposed.

Let M be a data exchange setting, I a source instance and J a solution for I under
M. Then J is a universal solution for I under M, if for every solution J ′ for I under
M, there exists a homomorphism from J to J ′.

Example 2.2 (Example 2.1 continued) Solution J2 is a universal solution for I , while
J1 is not since there is no homomorphism from J1 to J2.

It follows from [9] that for the class of data exchange settings studied in this paper,
every source instance has universal solutions. In particular, one of these solutions—
called the canonical universal solution—can be constructed in polynomial time from
the given source instance (assuming the setting to be fixed), using the chase proce-
dure [5]. We shall define canonical universal solutions directly as in [4, 18].

In what follows, we show how to compute the canonical universal solution of a
source instance I in a data exchange setting (S,T,�st ). For each st-tgd in �st of the
form:

φ(x̄, ȳ) → ∃w̄ (T1(x̄1, w̄1) ∧ · · · ∧ Tk(x̄k, w̄k)),

where x̄ = x̄1 ∪ · · · ∪ x̄k and w̄ = w̄1 ∪ · · · ∪ w̄k , and for each tuple ā from dom(I ) of
length |x̄|, find all tuples b̄1, . . . , b̄m such that I |= φ(ā, b̄i), i ∈ [1,m]. Then choose
m tuples n̄1, . . . , n̄m of length |w̄| of fresh distinct null values over N. Relation Ti

(i ∈ [1, k]) in the canonical universal solution for I contains tuples (πx̄i
(ā),πw̄i

(n̄j )),
for each j ∈ [1,m], where πx̄i

(ā) refers to the components of ā that occur in the
positions of x̄i . Furthermore, relation Ti in the canonical universal solution for I only
contains tuples that are obtained by applying this algorithm.

Notice that the algorithm for constructing the canonical universal solution, as de-
fined above, corresponds to what is known as the naïve chase applied to the st-tgds
in the setting. In the naïve chase all dependencies are fired in parallel. Our definition
differs from the one given in [9], where a canonical universal solution is obtained by
using the standard chase procedure. The standard chase procedure fires st-tgds one
by one, but only populates the target instance J with new facts T (t̄) such that T (t̄)

cannot be deduced from J itself. The problem with using the standard chase in data
exchange is that its result is not necessarily unique (it depends on the order in which
the chase steps are applied), and thus, there may be multiple non-isomorphic canoni-
cal universal solutions. Clearly, under our definition, the canonical universal solution
is unique up to isomorphism and can be computed in polynomial time from I . For a
fixed data exchange setting M = (S,T,�st ), we denote by CAN the transformation
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from source instances to target instances, such that CAN(I ) is the canonical universal
solution for I under M.

2.3 Certain Answers

Queries in a data exchange setting M = (S,T,�st ) are posed over the target
schema T. Given that there may be (even infinitely) many solutions for a given source
instance I with respect to M, the standard approach in the data exchange literature
is to define the semantics of the query based on the notion of certain answers [1, 9,
15, 16].

Let I be a source instance. For a query Q of arity n ≥ 0, in any of our logical
formalisms, we denote by certainM(Q, I) the set of certain answers of Q over I

under M, that is, the set of n-tuples t̄ such that t̄ ∈ Q(J), for every J that is a solution
for I under M. If n = 0, then we say that Q is Boolean, and certainM(Q, I) = true
iff Q holds for every J that is a solution for I under M. We write certainM(Q, I) =
false if it is not the case that certainM(Q, I) = true.

Let M = (S,T,�st ) be a data exchange setting and Q a query over T. The main
problem studied in this paper is:

PROBLEM : CERTAIN-ANSWERS(M, Q).
INPUT : A source instance I and a tuple t̄ of constants from I .
QUESTION : Is t̄ ∈ certainM(Q, I)?

Since in the above definition both the setting and the query are fixed, it corre-
sponds (in terms of Vardi’s taxonomy [22]) to the data complexity of the problem of
computing certain answers. Later, in Sect. 6, we also study the combined complexity
of this problem.

3 Extending Query Languages for Data Exchange: DATALOGC(�=) Programs

The class of unions of conjunctive queries is particularly well-behaved for data ex-
change; the certain answers of each union of conjunctive queries Q can be computed
by directly posing Q over an arbitrary universal solution [9]. More formally, given a
data exchange setting M, a source instance I , a universal solution J for I under M,
and a tuple t̄ of constants, t̄ ∈ certainM(Q, I) if and only if t̄ ∈ Q(J). This implies
that for each data exchange setting M, the problem CERTAIN-ANSWERS(M,Q)

can be solved in polynomial time if Q is a union of conjunctive queries (because the
canonical universal solution for I can be computed in polynomial time and Q has
polynomial time data complexity).

The fact that the certain answers of a union of conjunctive queries Q can be com-
puted by posing Q over a universal solution, can be fully explained by the fact that
Q is preserved under homomorphisms, that is, for every pair of instances J,J ′,
homomorphism h from J to J ′, and tuple ā of elements in J , if ā ∈ Q(J), then
h(ā) ∈ Q(J ′). But UCQ is not the only class of queries that is preserved under ho-
momorphisms; also DATALOG, the recursive extension of the class UCQ, has this
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property. Since DATALOG has polynomial time data complexity, we have that the
certain answers of each DATALOG query Q can be obtained efficiently by first com-
puting a universal solution J , and then evaluating Q over J . Thus, DATALOG pre-
serves all the good properties of UCQ for data exchange.

Unfortunately, both UCQ and DATALOG keep us in the realm of the positive (i.e.
negated atoms are not allowed in queries), while most database query languages are
equipped with negation. It seems then natural to extend UCQ (or DATALOG) in the
context of data exchange with some form of negation. Indeed, query languages with
different forms of negation have been considered in the data exchange context [3, 7],
as they can be used to express interesting queries. Next, we show an example of this
fact.

Example 3.1 Consider a data exchange setting with S = {E(·, ·),A(·),B(·)}, T =
{G(·, ·),P (·),R(·)} and

�st = {E(x,y) → G(x,y),A(x) → P(x),B(x) → R(x)}.
Notice that if I is a source instance, then the canonical universal solution CAN(I ) for
I is such that EI = GCAN(I ), AI = P CAN(I ) and BI = RCAN(I ).

Let Q(x) be the following UCQ¬ query over T:

∃x∃y(P (x) ∧ R(y) ∧ G(x,y)) ∨ ∃x∃y∃z(G(x, z) ∧ G(z, y) ∧ ¬G(x,y)).

It is not hard to prove that for every source instance I , certainM(Q, I) = true iff
there exist elements a, b ∈ dom(CAN(I )) such that a belongs to P CAN(I ), b belongs
to RCAN(I ) and (a, b) belongs to the transitive closure of the relation GCAN(I ). That is,
certainM(Q, I) = true iff there exist elements a, b ∈ dom(I ) such that a belongs
to AI , b belongs to BI and (a, b) belongs to the transitive closure of the relation EI .

It is well-known (see e.g. [17]) that there is no union of conjunctive queries (in-
deed, not even an FO-query) that defines the transitive closure of a graph. Thus, if Q

and M are as in the previous example, then there is no union of conjunctive queries
Q′ such that Q′(CAN(I )) = certainM(Q′, I ) = certainM(Q, I), for every source in-
stance I . It immediately follows that negated relational atoms add expressive power
to the class UCQ in the context of data exchange (see also [4]). And not only that, it
follows from [9] that inequalities also add expressive power to UCQ in the context
of data exchange.

In this section, we propose a language that can be used to pose queries with nega-
tion, and that has all the good properties of UCQ for data exchange.

3.1 DATALOGC(�=) Programs

Unfortunately, adding an unrestricted form of negation to DATALOG (or even
to CQ) not only destroys preservation under homomorphisms, but also easily
yields to intractability of the problem of computing certain answers [1, 9]. More
precisely, there is a setting M and a query Q in CQ �= such that the problem
CERTAIN-ANSWERS(M,Q) cannot be solved in polynomial time (unless PTIME =
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NP). In particular, the set of certain answers of Q cannot be computed by evaluating
Q over a polynomial-time computable universal solution. Next we show that there is
a natural way of adding negation to DATALOG while keeping all of the good proper-
ties of this language for data exchange. In Sect. 4, we show that such a restricted form
of negation can be used to express many relevant queries (some including negation)
for data exchange.

Definition 3.2 (DATALOGC(�=) programs) A constant-inequality Datalog rule is a
rule of the form:

S(x̄) ← S1(x̄1), . . . , S�(x̄�),C(y1), . . . ,C(ym),u1 �= v1, . . . , un �= vn,

where

(a) S, S1, . . . , S� are (non necessarily distinct) predicate symbols,
(b) every variable in x̄ is mentioned in some tuple x̄i (i ∈ [1, �]),
(c) every variable yj (j ∈ [1,m]) is mentioned in some tuple x̄i (i ∈ [1, �]), and
(d) every variable uj (j ∈ [1, n]), and every variable vj , is equal to some variable yi

(i ∈ [1,m]).
Moreover, a constant-inequality Datalog program (DATALOGC(�=) program) � is a
finite set of constant-inequality Datalog rules.

For example, the following is a constant-inequality Datalog program:

R(x, y) ← T (x, z), S(z, y),C(x),C(z), x �= z,

S(x) ← U(x,u, v,w),C(x),C(u),C(v),C(w),u �= v,u �= w.

For a rule of the form (3.2), we say that S(x̄) is its head. The set of predicates of
a DATALOGC(�=) program �, denoted by Pred(�), is the set of predicate symbols
mentioned in �, while the set of intensional predicates of �, denoted by IPred(�),
is the set of predicates symbols R ∈ Pred(�) such that R(x̄) appears as the head of
some rule of �.

Fix a DATALOGC(�=) program � and let I be a database instance of the rela-
tional schema Pred(�). Then T (I ) is an instance of Pred(�) such that for every
R ∈ Pred(�) and every tuple t̄ , it holds that t̄ ∈ RT (I ) if and only if there exists a
rule R(x̄) ← R1(x̄1), . . . ,R�(x̄�),C(y1), . . . ,C(ym),u1 �= v1, . . . , un �= vn in � and
a variable assignment σ such that (a) σ(x̄) = t̄ , (b) σ(x̄i) ∈ RI

i , for every i ∈ [1, �], (c)
σ(yi) is a constant, for every i ∈ [1,m], and (d) σ(ui) �= σ(vi), for every i ∈ [1, n].
Operator T is used to define the semantics of constant-inequality Datalog programs.
More precisely, define T 0

�(I) to be I and T n+1
� (I) to be T (T n

�(I))∪ T n
�(I), for every

n ≥ 0. Then the evaluation of � over I is defined as T ∞
� (I) = ⋃

n≥0 T n
�(I).

A constant-inequality Datalog program � is said to be defined over a relational
schema R if R = Pred(�) � IPred(�) and ANSWER ∈ IPred(�). Given an instance
I of R and a tuple t̄ in dom(I )n, where n is the arity of ANSWER, we say that t̄ ∈ �(I)

if t̄ ∈ ANSWERT ∞
� (I0), where I0 is an extension of I defined as: RI0 = RI for R ∈ R

and RI0 = ∅ for R ∈ IPred(�).
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As we mentioned before, the homomorphisms in data exchange are not arbi-
trary; they are the identity on the constants. Thus, given that inequalities are wit-
nessed by constants in DATALOGC(�=) programs, we have that these programs are
preserved under homomorphisms. From this we conclude that the certain answers
to a DATALOGC(�=) program � can be computed by directly evaluating � over a
universal solution.

Proposition 3.3 Let M = (S,T,�st ) be a data exchange setting, I a source in-
stance, J a universal solution for I under M, and � a DATALOGC(�=) program over
T. Then for every tuple t̄ of constants, t̄ ∈ certainM(�, I) iff t̄ ∈ �(J).

This proposition will be used in Sect. 4 to show that DATALOGC(�=) programs
preserve the good properties of conjunctive queries for data exchange.

4 On the Complexity and Expressiveness of DATALOGC(�=) Programs

We start this section by studying the expressive power of DATALOGC(�=) programs. In
particular, we show that these programs are expressive enough to capture the class of
unions of conjunctive queries with at most one negated atom per disjunct. This class
has proved to be relevant for data exchange, as its restriction with inequalities (that
is the class of queries in UCQ �= with at most one inequality per disjunct) not only
can express relevant queries but also is one of the few known extensions of the class
UCQ for which the problem of computing certain answers is tractable [9]. Indeed,
as it is shown in [9], this class remains tractable even in the presence of restricted
classes of target dependencies.

Theorem 4.1 Let Q be a UCQ �=,¬ query over a schema T, with at most one in-
equality or negated relational atom per disjunct. Then there exists a DATALOGC(�=)

program �Q over T such that for every data exchange setting M = (S,T,�st ) and
instance I of S, certainM(Q, I) = certainM(�Q, I). Moreover, �Q can be effec-
tively constructed from Q in polynomial time.

Before presenting the proof of Theorem 4.1, we sketch the proof by means of an
example.

Example 4.2 Let M be a data exchange setting such that S = {E(·, ·),A(·)}, T =
{G(·, ·),P (·)} and

�st = {E(x,y) → ∃z(G(x, z) ∧ G(z, y)),A(x) → P(x)}.
Also, let Q(x) be the following query in UCQ �=,¬:

(P (x) ∧ G(x,x)) ∨ ∃y(G(x, y) ∧ x �= y) ∨ ∃y∃z(G(x, z) ∧ G(z, y) ∧ ¬G(x,y)).

We construct a DATALOGC(�=) program �Q such that certainM(Q, I) =
certainM(�Q, I). The set of intensional predicates of the DATALOGC(�=) program
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�Q is {U1(·, ·, ·), U2(·, ·), dom(·), EQUAL(·, ·, ·), ANSWER(·)}. The program �Q

over T is defined as follows.

• First, the program collects in dom(x) all the elements that belong to the active
domain of the instance of T where �Q is evaluated:

dom(x) ← G(x, z), (1)

dom(x) ← G(z, x), (2)

dom(x) ← P(x). (3)

• Second, the program �Q includes the following rules that formalize the idea that
EQUAL(x, y, z) holds if x and y are the same elements:

EQUAL(x, x, z) ← dom(x),dom(z), (4)

EQUAL(x, y, z) ← EQUAL(y, x, z), (5)

EQUAL(x, y, z) ← EQUAL(x,w, z), EQUAL(w,y, z). (6)

Predicate EQUAL includes an extra argument that keeps track of the element z

where the query is being evaluated. Notice that we cannot simply use the rule
EQUAL(x, x, z) ← to say that EQUAL is reflexive, as DATALOGC(�=) programs are
safe, i.e. every variable that appears in the head of a rule also has to appear in its
body.

• Third, �Q includes the rules:

U1(x, y, z) ← G(x,y),dom(z), (7)

U2(x, z) ← P(x),dom(z), (8)

U1(x, y, z) ← U1(u, v, z), EQUAL(u, x, z), EQUAL(v, y, z), (9)

U2(x, z) ← U2(u, z), EQUAL(u, x, z). (10)

Intuitively, the first two rules create in U1 and U2 a copy of G and P , respec-
tively, but again with an extra argument for keeping track of the element where
�Q is being evaluated. The last two rules allow to replace equal elements in the
interpretation of U1 and U2.

• Fourth, �Q includes the following rule for the third disjunct of Q(x):

U1(x, y, x) ← U1(x, z, x),U1(z, y, x). (11)

Intuitively, this rule expresses that if a is an element that does not belong to the
set of certain answers to Q(x), then for every pair of elements b and c such that
(a, b) and (b, c) belong to the interpretation of G, it must be the case that (a, c)

also belongs to it.
• Fifth, �Q includes the following rule for the second disjunct of Q(x):

EQUAL(x, y, x) ← U1(x, y, x). (12)



Theory Comput Syst

Intuitively, this rule expresses that if a is an element that does not belong to the
set of certain answers to Q(x), then for every element b such that the pair (a, b)

belongs to the interpretation of G, it must be the case that a = b.
• Finally, �Q includes two rules for collecting the certain answers to Q(x):

ANSWER(x) ← U2(x, x),U1(x, x, x),C(x), (13)

ANSWER(x) ← EQUAL(y, z, x),C(y),C(z), y �= z. (14)

Intuitively, rule (13) says that if a constant a belongs to the interpretation of P

and (a, a) belongs to the interpretation of G, then a belongs to the set of certain
answers to Q(x). Indeed, this means that if J is an arbitrary solution where the
program is being evaluated, then a belongs to the evaluation of the first disjunct of
Q(x) over J .

Rule (14) says that if in the process of evaluating �Q with parameter a, two
distinct constants b and c are declared to be equal (EQUAL(b, c, a) holds), then a

belongs to the set of certain answers to Q(x). We show the application of this
rule with an example. Let I be a source instance, and assume that (a,n) and
(n, b) belong to G in the canonical universal solution for I , where n is a null
value. By applying rule (1), we have that dom(a) holds in CAN(I ). Thus, we con-
clude by applying rule (7) that U1(a,n, a) and U1(n, b, a) hold in CAN(I ) and,
therefore, we obtain by using rule (12) that EQUAL(a,n, a) holds in CAN(I ). No-
tice that this rule is trying to prove that a is not in the certain answers to Q(x)

and, hence, it forces n to be equal to a. Now by using rule (5), we obtain that
EQUAL(n, a, a) holds in CAN(I ). But we also have that EQUAL(b, b, a) holds in
CAN(I ) (by applying rules (2) and (4)). Thus, by applying rule (9), we obtain that
U1(a, b, a) holds in CAN(I ). Therefore, by applying rule (12) again, we obtain
that EQUAL(a, b, a) holds in CAN(I ). This time, rule (12) tries to prove that a is
not in the certain answers to Q(x) by forcing constants a and b to be the same
value. But this cannot be the case since a and b are distinct constants and, thus,
rule (14) is used to conclude that a is in the certain answers to Q(x). It is important
to notice that this conclusion is correct. If J is an arbitrary solution for I , then we
have that there exists a homomorphism h : CAN(I ) → J . Given that a and b are
distinct constants, we have that a �= h(n) or b �= h(n). It follows that there is an
element c in J such that a �= c and the pair (a, c) belongs to the interpretation of
G. Thus, we conclude that a belongs to the evaluation of the second disjunct of
Q(x) over J .

It is now an easy exercise to show that the set of certain answers to Q(x) coincide
with the set of certain answers to �Q, for every source instance I .

We now present the proof of Theorem 4.1.

Proof Assume that T = {T1, . . . , Tk}, where each Ti has arity ni > 0, and that
Q(x̄) = Q1(x̄) ∨ · · · ∨ Q�(x̄), where x̄ = (x1, . . . , xm) and each Qi(x̄) is a conjunc-
tive query with at most one inequality or negated relational atom. Then the set of
intensional predicates of DATALOGC(�=) program �Q is

{U1, . . . ,Uk, DOM, EQUAL, ANSWER},
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where each Ui (i ∈ [1, k]) has arity ni + m, DOM has arity 1, EQUAL has arity 2 + m

and ANSWER has arity m. Moreover, the set of rules of �Q is defined as follows.

• For every predicate Ti ∈ T, �Q includes the following k rules:

DOM(x) ← Ti(x, y2, y3, . . . , yni−1, yni
),

DOM(x) ← Ti(y1, x, y3, . . . , yni−1, yni
),

· · ·
DOM(x) ← Ti(y1, y2, y3, . . . , yni−1, x).

• �Q includes the following rules for predicate EQUAL:

EQUAL(x, x, z1, . . . , zm) ← DOM(x), DOM(z1), . . . , DOM(zm),

EQUAL(x, y, z1, . . . , zm) ← EQUAL(y, x, z1, . . . , zm),

EQUAL(x, y, z1, . . . , zm) ← EQUAL(x,w, z1, . . . , zm),

EQUAL(w,y, z1, . . . , zm).

• For every predicate Ui , �Q includes the following rules:

Ui(y1, . . . , yni
, z1, . . . , zm) ← Ti(y1, . . . , yni

), DOM(z1), . . . , DOM(zm),

Ui(y1, . . . , yni
, z1, . . . , zm) ← Ui(w1, . . . ,wni

, z1, . . . , zm),

EQUAL(w1, y1, z1, . . . , zm), . . . ,

EQUAL(wni
, yni

, z1, . . . , zm).

• Let i ∈ [1, �]. First, assume that Qi(x̄) does not contain any negated atom. Then
Qi(x̄) is equal to ∃ū(Tp1(ū1)∧· · ·∧Tpn(ūn)), where pj ∈ [1, k] and every variable
in ūj is mentioned in either ū or x̄, for every j ∈ [1, n]. In this case, program �Q

includes the following rule:

ANSWER(x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄),C(x1), . . . ,C(xm). (15)

Notice that this rule is well defined since the set x̄ is the set of free variables of
∃ū(Tp1(ū1) ∧ · · · ∧ Tpn(ūn)). Second, assume that Qi(x̄) contains a negated rela-
tional atom. Then Qi(x̄) is equal to ∃ū(Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ ¬Tpn+1(ūn+1)),
where pj ∈ [1, k] and every variable in ūj is mentioned in either ū or x̄, for every
j ∈ [1, n + 1]. In this case, program �Q includes the following rule:

Upn+1(ūn+1, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄). (16)

This rule is well defined since ∃ū(Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ ¬Tpn+1(ūn+1)) is a
safe query. Finally, assume that Qi(x̄) contains an inequality. Then Qi(x̄) is equal
to ∃ū(Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ v1 �= v2), where pj ∈ [1, k] and every variable in
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ūj is mentioned in either ū or x̄, for every j ∈ [1, n], and v1, v2 are mentioned in
ū or x̄. In this case, program �Q includes the following rules:

EQUAL(v1, v2, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄), (17a)

ANSWER(x̄) ← EQUAL(u, v, x̄),C(u),C(v), u �= v,

C(x1), . . . ,C(xm). (17b)

We note that the first rule above is well defined since ∃ū(Tp1(ū1)∧· · ·∧Tpn(ūn)∧
v1 �= v2) is a safe query.

Let ā be a tuple of elements from the domain of a source instance I . Each predicate
Ui in �Q is used as a copy of Ti but with m extra arguments that store tuple ā.
These predicates are used when testing whether ā is a certain answer for Q over I .
More specifically, the rules of �Q try to construct from CAN(I ) a solution J for I

such that ā �∈ Q(J). Thus, if in a solution J for I , it holds that ā ∈ Q(J) because
ā ∈ Qi(J ), where Qi(x̄) is equal to ∃ū(Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ ¬Tpn+1(ūn+1)),
then �Q uses rule (16) to create a new solution where the negative atom of Qi does
not hold. In the same way, if in a solution J for I , it holds that ā ∈ Q(J) because
ā ∈ Qi(J ), where Qi(x̄) is equal to ∃ū(Tp1(ū1) ∧ · · · ∧ Tpn(ūn) ∧ v1 �= v2), then �Q

uses rule (17a) to create a new solution where the values assigned to v1 and v2 are
equal (predicate EQUAL is used to store this fact). If v1 or v2 is assigned a null value,
then it is possible to create a solution where the values assigned to these variables are
the same. But this is not possible if both v1 and v2 are assigned constant values. In
fact, it follows from [9] that this implies that it is not possible to find a solution J ′ for
I where ā �∈ Q(J ′), and in this case rule (17b) is used to indicate that ā is a certain
answer for Q over I .

By using the above observations, it is not difficult to prove that for every data
exchange setting M = (S,T,�st ) and for every instance I of S, it is the case that
certainM(Q, I) = certainM(�Q, I). This concludes the proof of the theorem. �

At this point, a natural question about DATALOGC(�=) programs is whether the
different components of this language are really needed, that is, whether inequalities
and recursion are essential for this language. Next, we show that this is indeed the
case and, in particular, we conclude that both inequalities and recursion are essential
for Theorem 4.1.

It was shown in [9] that there exist a data exchange setting M and a conjunc-
tive query Q with one inequality for which there is no first-order query Q	 such
that certainM(Q, I) = Q	(CAN(I )) holds, for every source instance I . Thus, given
that a non-recursive DATALOGC(�=) program is equivalent to a first-order query, we
conclude from Proposition 3.3 that recursion is necessary for capturing the class of
unions of conjunctive queries with at most one negated atom per disjunct.

Proposition 4.3 ([9]) There exist a data exchange setting M and a Boolean conjunc-
tive query Q with a single inequality such that for every non-recursive DATALOGC(�=)

program �, it holds that certainM(Q, I) �= certainM(�, I) for some source in-
stance I .



Theory Comput Syst

In the following proposition, we show that the use of inequalities is also neces-
sary for capturing the class of unions of conjunctive queries with at most one negated
atom per disjunct. We note that this cannot be obtained from the result in [9] men-
tioned above, as there are DATALOGC(�=) programs without inequalities that are not
expressible in first-order logic. The proof of this proposition follows from the fact that
DATALOGC(�=) programs without inequalities are preserved under homomorphisms,
while conjunctive queries with inequalities are only preserved under one-to-one ho-
momorphisms.

Proposition 4.4 There exist a data exchange setting M and a Boolean conjunctive
query Q with a single inequality such that for every DATALOGC(�=) program � with-
out inequalities, certainM(Q, I) �= certainM(�, I) for some source instance I .

Proof Let M = (S,T,�st ) be a data exchange setting defined as follows:

• The source schema S consists of one binary relation symbol M , and the target
schema consists of one binary relation symbol N ; and

• the set �st of source-to-target dependencies consists only of the single std
M(x,y) → N(x,y).

Moreover, let Q be the query ∃x∃y(N(x, y) ∧ x �= y). We show that for every
DATALOGC(�=) program � without inequalities, certainM(Q, I) �= certainM(�, I)

for some instance I of S.
For the sake of contradiction, assume that there exists a DATALOGC(�=) program

�0 without inequalities such that for every source instance I , certainM(Q, I) =
certainM(�0, I ) holds, and let I1 = {M(a,b)} and I2 = {M(c, c)}. It is not hard to
see that certainM(Q, I1) = true and certainM(Q, I2) = false.

Let J1 = {N(a,b)} and J2 = {N(c, c)} be target instances. It is easy to see
that J1 and J2 are universal solutions for I1 and I2, respectively. Given that
certainM(Q, I1) = true, we have that �0(J1) = true. Let h be a function from
dom(J1) to dom(J2) defined as h(a) = h(b) = c. Since �0 is a DATALOGC(�=) pro-
gram without inequalities, it must be preserved under h (because h maps constants to
constants, and maps the pair (a, b) ∈ NJ1 into the pair (h(a),h(b)) = (c, c) ∈ NJ2 ).
We conclude that �0(J2) = true. Hence, given that J2 is a universal solution for I2,
we conclude from Proposition 3.3 that certainM(�0, I2) = true. But we assume
that certainM(Q, I2) = certainM(�0, I2) and, therefore, we obtain a contradiction
since certainM(Q, I2) = false. �

Notice that as a corollary of Proposition 4.4 and Theorem 4.1, we obtain that
DATALOGC(�=) programs are strictly more expressive than DATALOGC(�=) programs
without inequalities.

We conclude this section by studying the complexity of the problem of computing
certain answers to DATALOGC(�=) programs. It was shown in Proposition 3.3 that
the certain answers of a DATALOGC(�=) program � can be computed by directly
posing � over CAN(I ). This implies that for each data exchange setting M, the
problem CERTAIN-ANSWERS(M,�) can be solved in polynomial time if � is a
DATALOGC(�=) program (since CAN(I ) can be computed in polynomial time and �

has polynomial time data complexity).
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Proposition 4.5 The problem CERTAIN-ANSWERS(M,�) can be solved in polyno-
mial time, for every data exchange setting M and DATALOGC(�=) program �.

From the previous proposition and Theorem 4.1, we conclude that the certain an-
swers to a union of conjunctive queries with at most one negated atom per disjunct
can also be computed in polynomial time. We note that this slightly generalizes one of
the polynomial time results in [9], which is stated for the class of unions of conjunc-
tive queries with at most one inequality per disjunct. The proof of the result in [9]
uses different techniques, based on the chase procedure. In Sect. 5, we show that
DATALOGC(�=) programs can also be used to express (some) unions of conjunctive
queries with two inequalities per disjunct.

A natural question at this point is whether the problem CERTAIN-ANSWERS(M,

�) is PTIME-complete for some data exchange setting M and DATALOGC(�=) pro-
gram �. It is easy to see that this is the case given that the data complexity of the
evaluation problem for DATALOG programs is PTIME-complete. But more interest-
ingly, from Theorem 4.1 we have that this result is also a corollary of a stronger result
for UCQ �= queries, namely that there exist a data exchange setting M and a conjunc-
tive query Q with one inequality such that the problem CERTAIN-ANSWERS(M,Q)

is PTIME-complete.

Proposition 4.6 There exist a LAV data exchange setting M and a Boolean conjunc-
tive query Q with one inequality such that CERTAIN-ANSWERS(M,Q) is PTIME-
complete, under LOGSPACE reductions.

Proof Let M = (S,T,�st ) be a data exchange setting defined as follows. Source
schema S consists of a unary relation V , a binary relation S, and a 4-ary relation
P . Target schema T consists of a binary relation T and a 4-ary relation R. Set �st

consists of the following source-to-target dependencies:

V (x) → ∃yT (x, y), (18)

S(x, y) → T (x, y), (19)

P(x, y,w, z) → R(x, y,w, z). (20)

Furthermore, Boolean query Q over T is defined as:

∃x∃y∃w∃z∃x′(R(x, y,w, z) ∧ T (x, x′) ∧ T (y, y) ∧ T (w,w) ∧ T (z, z) ∧ x �= x′).

Next we show that CERTAIN-ANSWERS(M,Q) is PTIME-complete under
LOGSPACE reductions.

Membership of CERTAIN-ANSWERS(M,Q) in PTIME follows from [9]. PTIME-
hardness is established from a LOGSPACE reduction from Horn-3CNF to the comple-
ment of CERTAIN-ANSWERS(M,Q), where Horn-3CNF is the satisfiability prob-
lem for propositional formulas in CNF with at most 3 literals per clause, and with at
most one positive literal per clause. This problem is known to be PTIME-complete
(see, e.g., [12]). More precisely, for every Horn-3CNF formula φ, we construct



Theory Comput Syst

in logarithmic space an instance Iφ of S such that φ is satisfiable if and only if
certainM(Q, Iφ) = false.

Without loss of generality, assume that formula φ = C1 ∧ · · · ∧ Ck , where each Ci

(i ∈ {1, . . . , k}) is a clause of the form either p ∨ ¬q ∨ ¬r or p or ¬p ∨ ¬q ∨ ¬r ,
being p, q and r arbitrary propositional variables. Then instance Iφ is defined as
follows:

• The interpretation of unary relation V in Iφ is the set of propositional variables
mentioned in φ.

• The interpretation of binary relation S in Iφ is the set of tuples {(b,b), (h,f)},
where b, h and f are fresh constants (not mentioned as propositional variables
in φ).

• For every clause Ci in Iφ (i ∈ {1, . . . , k}), the interpretation of 4-ary relation P in
Iφ contains the following tuple:
– (p, q, r,b) if Ci = p ∨ ¬q ∨ ¬r ,
– (p,b,b,b) if Ci = p, and
– (h,p, q, r) if Ci = ¬p ∨ ¬q ∨ ¬r .

Clearly, Iφ can be constructed in logarithmic space from φ.
Next, we show that certainM(Q, Iφ) = false if and only if φ is satisfiable.
(⇒) Assume first that certainM(Q, Iφ) = false.
In the setting M, the canonical universal solution CAN(Iφ) for Iφ is as follows.

Assume that ⊥q is the null generated by applying rule (19) to each atom V (q) in Iφ .
Then the interpretation of R in CAN(I ) is equal to the interpretation of P in I , and
the interpretation of T in CAN(I ) contains tuples (b,b), (h,f) and (q,⊥q) for every
propositional variable q mentioned in φ.

Given that certainM(Q, Iφ) = false, there exists a solution J for I such that
Q(J) = false. Let h : CAN(I ) → J be an homomorphism from CAN(I ) into J ,
and let σ be the following truth assignment for the propositional variables mentioned
in φ: σ(q) = 1 iff h(⊥q) = q . Next we show that σ satisfies φ. More precisely, we
prove that σ(Ci) = 1, for every i ∈ {1, . . . , k}. We consider three cases:

• Assume that Ci = p. Since R(p,b,b,b) belongs to J , and also T (b,b) belongs
to J , it must be the case that h(⊥p) = p since Q(J) = false and (p,⊥p) be-
longs to the interpretation of T in CAN(I ). We conclude that σ(p) = 1 and, hence,
σ(Ci) = 1.

• Assume that Ci = p ∨ ¬q ∨ ¬r and σ(q) = σ(r) = 1. Then by definition of h, we
have that h(⊥q) = q and h(⊥r ) = r and, therefore, (q, q) and (r, r) belong to the
interpretation of T in J . Thus, given that R(p,q, r,b) and T (b,b) belong to J , it
must be the case that h(⊥p) = p since Q(J) = false and (p,⊥p) belongs to the
interpretation of T in CAN(I ). We conclude that σ(p) = 1 and, hence, σ(Ci) = 1.

• Assume that Ci = ¬p ∨ ¬q ∨ ¬r . For the sake of contradiction, assume that
σ(p) = σ(q) = σ(r) = 1. Then by definition of h, we have that h(⊥p) = p,
h(⊥q) = q and h(⊥r ) = r and, therefore, (p,p), (q, q) and (r, r) belong to the
interpretation of T in J . Thus, given that R(h,p, q, r), T (h,f) belong to J and
h �= f holds, we conclude that Q(J) = true, which contradicts our initial as-
sumption. We conclude that σ(p) = 0 or σ(q) = 0 or σ(r) = 0, which implies that
σ(Ci) = 1.
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(⇐) Assume that φ is satisfiable, and let σ be a truth assignment for the propo-
sitional variables in φ such that σ(φ) = 1. Furthermore, assume that CAN(Iφ)

is constructed as above. From σ , define a function f from dom(CAN(Iφ)) into
dom(CAN(Iφ)) as follows:

f (v) =
{

q v = ⊥q and σ(q) = 1,

v otherwise.

Let J 	 be a solution for Iφ under M obtained from CAN(Iφ) by replacing each
occurrence of an element v with f (v). Next we show that Q(J 	) = false and,
thus, we conclude that certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J 	) = true. Then, there ex-
ists a function h : {x, y,w, z, x′} → dom(J 	) such that R(h(x),h(y),h(w),h(z)),
T (h(x),h(x′)), T (h(y),h(y)), T (h(w),h(w)) and T (h(z),h(z)) are all tuples in J 	,
and h(x) �= h(x′). To prove that this leads to a contradiction, we consider three cases.

• Assume that h(x) = p, where p is a propositional variable, and h(y) = h(w) =
h(z) = b. Then by definition of M and Iφ , we have that p is a clause in φ. But
given that h(x) = p, h(x) �= h(x′) and T (h(x),h(x′)) is a tuple in J 	, it is the case
that h(x′) = ⊥p . Thus, given that ⊥p is an element of J 	, it holds that σ(p) = 0
since f (⊥p) = ⊥p . We conclude that σ(φ) = 0 since σ(p) = 0, which contradicts
our initial assumption.

• Assume that h(x) = p, h(y) = q and h(w) = r , where p, q and r are propositional
variables, and h(z) = b. Then by definition of M and Iφ , we have that p∨¬q ∨¬r

is a clause in φ. But given that h(x) = p, h(x) �= h(x′) and T (h(x),h(x′)) is a
tuple in J 	, it is the case that h(x′) = ⊥p . Thus, given that ⊥p is an element of J 	,
it holds that σ(p) = 0 since f (⊥p) = ⊥p . Moreover, given that T (h(y),h(y))

and T (h(w),h(w)) are tuples in J 	, it holds that T (q, q) and T (r, r) are tuples
in J 	. Thus, f (⊥q) = q and f (⊥r ) = r and, hence σ(q) = σ(r) = 1. We conclude
that σ(φ) = 0 since σ(p) = 0 and σ(q) = σ(r) = 1, which contradicts our initial
assumption.

• Assume that h(x) = h, h(y) = p, h(w) = q and h(z) = r , where p, q and
r are propositional variables. Then by definition of M and Iφ , we have that
¬p ∨ ¬q ∨ ¬r is a clause in φ. But given that T (h(y),h(y)), T (h(w),h(w)) and
T (h(z),h(z)) are all tuples in J 	, it holds that T (p,p), T (q, q) and T (r, r) are
all tuples in J 	. Thus, f (⊥p) = p, f (⊥q) = q and f (⊥r ) = r and, hence σ(p) =
σ(q) = σ(r) = 1. We conclude that σ(φ) = 0 since σ(p) = σ(q) = σ(r) = 1,
which contradicts our initial assumption.

This concludes the proof of the proposition. �

It is worth mentioning that it follows from Proposition 3.1 in [14] that there ex-
ists a data exchange setting M containing some target dependencies and a conjunc-
tive query Q with one inequality such that CERTAIN-ANSWERS(M,Q) is PTIME-
complete. Proposition 4.6 shows that this result holds even when no target dependen-
cies are provided.
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5 Conjunctive Queries with Two Inequalities

As we mentioned before, computing certain answers to conjunctive queries with
more than just one inequality is an intractable problem. Indeed, there is a LAV set-
ting M and a Boolean conjunctive query Q with two inequalities such that the
problem CERTAIN-ANSWERS(M,Q) is CONP-complete [20]. Therefore, unless
PTIME = NP, Theorem 4.1 is no longer valid if we remove the restriction that every
disjunct of Q must contain at most one inequality.

The intractability for conjunctive queries with two inequalities is tightly related
with the use of null values when joining relations and checking inequalities. In this
section, we investigate this relationship, and provide a syntactic condition on the type
of joins and inequalities allowed in queries. This restriction leads to tractability of
the problem of computing certain answers. Indeed, this tractability is a corollary of a
stronger result, namely that for every conjunctive query Q with two inequalities, if Q

satisfies the syntactic condition, then one can construct a DATALOGC(�=) program �Q

such that certainM(Q, I) = certainM(�Q, I) for every source instance I . It should
be noticed that in this case DATALOGC(�=) programs are used as a tool for finding a
tractable class of queries for the problem of computing certain answers.

To define the syntactic restriction mentioned above, we need to introduce some
terminology. Let M = (S,T,�st ) be a data exchange setting. Then for every n-ary
relation symbol T in T, we say that the i-th attribute of T (1 ≤ i ≤ n) can be nullified
under M, if there is an st-tgd α in �st such that the i-th attribute of T is existentially
quantified in the right hand side of α. Notice that for each setting M and source
instance I , if the i-th attribute of T cannot be nullified under M, then for every tuple
(c1, . . . , cn) that belongs to T in the canonical universal solution for I , it holds that ci

is a constant. Moreover, if Q is a UCQ �= query over T and x is a variable in Q, then
we say that x can be nullified under Q and M, if x appears in Q as the i-th attribute
of a target relation T , and the i-th attribute of T can be nullified under M.

Let M be a data exchange setting and Q a conjunctive query with two inequal-
ities, and assume that if x appears as a variable in the inequalities of Q, then x

cannot be nullified under Q and M. In this case, it is straightforward to prove that
CERTAIN-ANSWERS(M,Q) is tractable. Indeed, the previous condition implies that
for every source instance I , if Q holds in CAN(I ), then all the witnesses for Q in
CAN(I ) make comparisons of the form c �= c′, where c and c′ are constants. Thus,
we have that certainM(Q, I) can be computed by simply evaluating Q over CAN(I ).
Here we are interested in finding less obvious conditions that lead to tractability. In
particular, we would like to find queries that do not restrict the use of null values in
such a strict way.

Let Q be a conjunctive query with two inequalities over a target schema T. As-
sume that the quantifier free part of Q is of the form φ(x1, . . . , xm) ∧ u1 �= v1 ∧ u2 �=
v2, where φ is a conjunction of relational atoms over T and u1, v1, u2 and v2 are
all mentioned in the set of variables x1, . . . , xm (Q is a safe query [2]). We are now
ready to define the two components of the syntactic restriction that leads to tractabil-
ity of the problem of computing certain answers. We say that Q has almost constant
inequalities under M, if u1 or v1 cannot be nullified under Q and M, and u2 or v2
cannot be nullified under Q and M. Intuitively, this means that to satisfy Q in the



Theory Comput Syst

canonical universal solution of a source instance, one can only make comparisons of
the form c �= ⊥ and c �= c′, where c, c′ are constants and ⊥ is a null value. Moreover,
we say that Q has constant joins under M, if for every variable x that appears at
least twice in φ, x cannot be nullified under Q and M. Intuitively, this means that to
satisfy Q in the canonical universal solution of a source instance, one can only use
constant values when joining relations.

Example 5.1 Let M be a data exchange setting specified by st-tgds:

P(x, y) → T (x, y),

P (x, y) → ∃zU(x, z).

The first and second attribute of T , as well as the first attribute of U , cannot be
nullified under M. On the other hand, the second attribute of U can be nullified
under M.

Let Q(x) be query ∃y∃z(T (y, x) ∧ U(z, x) ∧ x �= y ∧ x �= z). Then we have that
Q has almost constant inequalities under M because variables y and z cannot be
nullified under Q and M, but Q does not have constant joins because variable x

appears twice in T (y, x) ∧ U(z, x) and it can be nullified under Q and M. On the
other hand, query U(x,y) ∧ U(x, z) ∧ x �= z ∧ y �= z has constant joins but does not
have almost constant inequalities, and query U(x,y) ∧ T (x, z) ∧ x �= z ∧ y �= z has
both constant joins and almost constant inequalities.

Although the notions of constant joins and almost constant inequalities were de-
fined for CQ �= queries with two inequalities, they can be easily extended to the case
of conjunctive queries with an arbitrary number of inequalities. In fact, the notion
of constant joins does not change in the case of an arbitrary number of inequalities,
while to define the notion of almost constant inequalities in the general case, one has
to say that each inequality x �= y in a query satisfies the condition that x or y cannot
be nullified. With this extension, we have all the necessary ingredients for the main
result of this section.

Theorem 5.2 Let M = (S,T,�st ) be a data exchange setting and Q a UCQ �= query
over T such that each disjunct of Q either (1) has at most one inequality and con-
stant joins under M, or (2) has two inequalities, constant joins and almost constant
inequalities under M. Then there exists a DATALOGC(�=) program �Q over T such
that for every instance I of S, certainM(Q, I) = certainM(�Q, I). Moreover, �Q

can be effectively constructed from Q and M in polynomial time.

Proof Let M and Q be as in the statement of the theorem. Assume that Q(x̄) is
of the form Q1(x̄) ∨ · · · ∨ Q�(x̄), where x̄ = (x1, . . . , xm), m ≥ 0. In order to prove
the theorem we need to introduce some extra terminology and an intermediate result
(Lemma 5.3).

Let I be an arbitrary source instance. In what follows, we use J instead of CAN(I )

to denote the canonical universal solution for I under M. Let then t̄ = (t1, . . . , tm)

be a tuple of constants from I that also belong to J .
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Although the proof of this theorem is rather long and technical, the intuitive
idea that underlies it is simple to explain. Our goal is to construct an implica-
tion graph H(Q,J, t̄)—as in the standard algorithms for 2SAT—such that t̄ ∈
certainM(Q, I) iff H(Q,J, t̄) contains a conflict. We now show how to construct
the graph H(Q,J, t̄) from Q, J and t̄ . The set of nodes of H(Q,J, t̄) consists of all
pairs of distinct elements of J plus two fresh elements μ and ν that do not appear
in J . The edges of H(Q,J, t̄) are labeled over the alphabet {blue,red,green} as
follows:

• There is an edge labeled red between two nodes in H(Q,J, t̄) iff these two nodes
share a null value;

• there is an edge labeled blue between nodes μ and ν in H(Q,J, t̄) iff for some
1 ≤ i ≤ �, Qi(x̄) is of the form ∃ȳφ(x̄, ȳ), where φ(x̄, ȳ) is a conjunction of rela-
tional atoms over T, and J |= Qi(t̄);

• there is an edge labeled blue between nodes (p1,p2) and (p3,p4) in H(Q,J, t̄)

iff for some 1 ≤ i ≤ �, (1) Qi(x̄) is of the form ∃ȳ(φ(x̄, ȳ) ∧ u1 �= u2 ∧ v1 �=
v2), where φ(x̄, ȳ) is a conjunction of relational atoms over T and u1, u2, v1, v2 ∈
{x̄, ȳ}, and (2) there is an assignment σ : {x̄, ȳ} → dom(J ), such that σ(x̄) = t̄ ,
(J, σ ) |= φ(x̄, ȳ) ∧ u1 �= u2 ∧ v1 �= v2, σ(u1) = p1, σ(u2) = p2, σ(v1) = p3, and
σ(v2) = p4; and

• there is a loop labeled green on the node (p1,p2) iff for some 1 ≤ i ≤ �, (1)
Qi(x̄) is of the form ∃ȳ(φ(x̄, ȳ) ∧ u1 �= u2), where φ(x̄, ȳ) is a conjunction of
relational atoms over T and u1, u2 ∈ {x̄, ȳ}, and (2) there is an assignment σ :
{x̄, ȳ} → dom(J ), such that σ(x̄) = t̄ , (J, σ ) |= φ(x̄, ȳ) ∧ u1 �= u2, σ(u1) = p1,
σ(u2) = p2.

A node q in H(Q,J, t̄) is open if both of its components are nulls, and it is semi-
open if one of its components is a constant and the other one is a null. The node q is
openly-reachable from a node q ′ if there is a path q ′q1 · · ·qkq in H(Q,J, t̄), k ≥ 0,
such that:

• Every node qi is red-adjacent to qi+1, 1 ≤ i < k, q ′ is red-adjacent to q1 and qk

is red-adjacent to q;
• every node qi , 1 ≤ i ≤ k, is open; and
• every node qi , 1 ≤ i ≤ k, has a green-labeled loop.

Finally, we say that q has a contradiction path (c-path) in H(Q,J, t̄) if either
the components of q are distinct constants or there is a path q = q1q2 · · ·q2k+1 in
H(Q,J, t̄), k ≥ 0, that satisfies the following:

• Every node qi , 1 ≤ i ≤ 2k, is semi-open;
• every node of the form q2i+2, 0 ≤ i ≤ k − 1, is openly-reachable from q2i+1, but

the constant components in q2i+1 and q2i+2 are different;
• every node of the form q2i , 0 < i ≤ k, is either blue-adjacent to q2i+1 or q2i =

q2i+1 and q2i has a green-labeled loop; and
• either q2k has a green-labeled loop, or q2k+1 has two different constant compo-

nents, or for some 1 ≤ i ≤ k it is the case that the node q2k+1 is openly-reachable
from q2i−1 and the constant components of q2i−1 and q2k+1 are different.
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The following lemma is a key component in the proof of the theorem. It confirms
our intuitive idea that H(Q,J, t̄) is an implication graph, over which one can check
whether t̄ ∈ certainM(Q, I) by simply looking for conflicts. Those conflicts can be
identified by detecting the presence of specific paths in the graph. The proof of this
lemma is rather technical and left to Appendix A.1.

Lemma 5.3 Let Q and M be as defined above. For every source instance I with
canonical universal solution J , and tuple t̄ of constants from J , it is the case that
t̄ ∈ certainM(Q, I) iff μ and ν are blue-adjacent in H(Q,J, t̄), or there are two
nodes q and q ′ in H(Q,J, t̄) such that q and q ′ are blue-adjacent and both q and
q ′ have c-paths in H(Q,J, t̄), or there is a node q in H(Q,J, t̄) that has a green-
labeled loop and a c-path in H(Q,J, t̄).

Before we continue with the proof of Theorem 5.2, we sketch the proof by means
of an example. In what follows, given a data exchange setting M = (S,T,�st ) and
a conjunctive query Q with two inequalities that satisfies the restrictions of Theo-
rem 5.2, we construct a DATALOGC(�=) program �Q such that, when evaluated over
the canonical universal solution J for some instance I , it computes all the tuples t̄

for which the graph H(Q,J, t̄) satisfies the conditions stated in Lemma 5.3.

Example 5.4 Let M be a data exchange setting such that S = {D(·, ·, ·),E(·, ·, ·)},
T = {P(·, ·, ·),R(·, ·, ·)} and

�st = {D(x,y, z) → ∃n(P (x, y,n) ∧ P(x, z,n)),

E(x, y, z) → ∃n(R(x, y,n) ∧ R(x, z,n))}.
Also, let Q(x) be the following conjunctive query with two inequalities, constant
joins and almost constant inequalities:

∃y∃z∃w(P (x, y, z) ∧ R(x, y,w) ∧ y �= z ∧ y �= w).

We construct a DATALOGC(�=) program �Q such that certainM(Q, I) =
certainM(�Q, I), for every source instance I . The set of intensional predicates
of �Q is {U1(·, ·, ·, ·), {U2(·, ·, ·, ·), DOM(·), EQUALleft,1(·, ·, ·, ·, ·, ·), EQUALright,1

(·, ·, ·, ·, ·, ·), ANSWERleft,1(·, ·, ·, ·), ANSWERright,1(·, ·, ·, ·), ANSWER(·)}. The pro-
gram �Q over T is defined as follows.

• First, the program collects in dom(x) all the elements that belong to the active
domain of the instance of T where �Q is evaluated:

DOM(z) ← P(x, y, z), (1)

DOM(z) ← P(x, z, y), (2)

DOM(z) ← P(z, x, y), (3)

DOM(z) ← R(x, y, z), (4)

DOM(z) ← R(x, z, y), (5)

DOM(z) ← R(z, x, y). (6)
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• We also add a rule that creates in U1 and U2 a copy of P and R respectively,
but with an extra argument for keeping track of the element where �Q is being
evaluated:

U1(x, y, z, t) ← P(x, y, z), DOM(t), (7)

U2(x, y, z, t) ← R(x, y, z), DOM(t). (8)

• If an element a does not belong to the set of certain answers to Q(x), then for
every tuple of the form (a, b, c, d) such that (a, b, c) belongs to the interpretation
of P and (a, b, d) belongs to the interpretation of R, it is the case that b = c or
b = d . This is expressed by means of the following rules:

EQUALleft(y, z, y, z,w,x) ← U1(x, y, z, x),U2(x, y,w,x), (9)

EQUALright(y,w,y, z,w,x) ← U1(x, y, z, x),U2(x, y,w,x). (10)

Intuitively, predicate EQUALleft (resp., EQUALright) keeps track that it is the first
(resp., second) inequality of Q that is falsified. For reasons that will become clear
later, predicates EQUALleft and EQUALright not only need to keep track of the
element where the query is being evaluated, but also of the elements that witness
the existential quantifiers of the query. This is handled by means of the last four
arguments of the predicates EQUALleft and EQUALright.

• Since EQUALleft(x, y, ·, ·, ·, ·) (resp. EQUALleft(x, y, ·, ·, ·, ·)) holds if x and y are
the same elements, the program �Q must include the following rules,

EQUALleft(v, v, x, y, z, t) ← DOM(v), DOM(x), DOM(y), DOM(z),

DOM(t), (11)

EQUALleft(u, v, x, y, z, t) ← EQUALleft(v,u, x, y, z, t), (12)

EQUALleft(v,u, x, y, z, t) ← EQUALleft(v,w,x, y, z, t),

EQUALleft(w,u, x, y, z, t), (13)

EQUALright(v, v, x, y, z, t) ← DOM(v), DOM(x), DOM(y), DOM(z),

DOM(t), (14)

EQUALright(u, v, x, y, z, t) ← EQUALright(v,u, x, y, z, t), (15)

EQUALright(v,u, x, y, z, t) ← EQUALright(v,w,x, y, z, t),

EQUALright(w,u, x, y, z, t). (16)

• Lemma 5.3 shows that in order to check whether a belongs to the certain answers
to Q(x), it suffices to show that there exists a pair (q, q ′) of blue-adjacent nodes
in H(Q,J, a) that have c-paths. In order to guide the search for a c-path from a
node that witnesses the first (i.e. left) inequality of Q, we use the following set of
rules:

EQUALleft(y,w, t, u, v, x) ← U1(x, y, z, x),U2(x, y,w,x),C(y),

EQUALleft(z, s, t, u, v, x),C(s), y �= s, (17)
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EQUALleft(y,w, t, u, v, x) ← U1(x, y, z, x),U2(x, y,w,x),C(z),

EQUALleft(y, s, t, u, v, x),C(s), z �= s, (18)

EQUALleft(y, z, t, u, v, x) ← U1(x, y, z, x),U2(x, y,w,x),C(y),

EQUALleft(w, s, t, u, v, x),C(s), y �= s, (19)

EQUALleft(y, z, t, u, v, x) ← U1(x, y, z, x),U2(x, y,w,x),C(w),

EQUALleft(y, s, t, u, v, x),C(s),w �= s. (20)

• Intuitively, the first of these rules expresses the following. If an element a does
not belong to the set of certain answers to Q(x), then for every tuple of the form
(a, b, c, d) such that (a, b, c) belongs to the interpretation of P and (a, b, d) be-
longs to the interpretation of R, if b is a constant and c is set to be equal to the
constant e such that b �= e, then it must be the case that b = d . The intuition behind
the rest of the rules is analogous.

Equivalently, in order to guide the search for a c-path from a node that witnesses
the second (i.e. right) inequality of Q, we use the following set of rules:

EQUALright(y,w, t, u, v, x) ← U1(x, y, z, x),U2(x, y,w,x),C(y),

EQUALright(z, s, t, u, v, x),C(s), y �= s, (21)

EQUALright(y,w, t, u, v, x) ← U1(x, y, z, x),U2(x, y,w,x),C(z),

EQUALright(y, s, t, u, v, x),C(s), z �= s, (22)

EQUALright(y, z, t, u, v, x) ← U1(x, y, z, x),U2(x, y,w,x),C(y),

EQUALright(w, s, t, u, v, x)),C(s), y �= s, (23)

EQUALright(y, z, t, u, v, x) ← U1(x, y, z, x),U2(x, y,w,x),C(w),

EQUALright(y, s, t, u, v, x),C(s),w �= s. (24)

• The program �Q also includes the following rules:

ANSWERleft(y, z,w,x) ← EQUALleft(u, v, y, z,w,x),C(u),

C(v), u �= v, (25)

ANSWERright(y, z,w,x) ← EQUALright(u, v, y, z,w,x),C(u),

C(v), u �= v. (26)

Intuitively, these rules collect in ANSWERleft (resp. ANSWERright) all those nodes
q that witness the first (resp. second) inequality of Q and that have a c-path.

• Finally, the program includes the following rule that collects certain answers:

ANSWER(x) ← ANSWERleft(y, z,w,x),

ANSWERright(y, z,w,x),C(x). (27)
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Intuitively, this says that if there are blue-adjacent nodes q and q ′ in H(Q,J, a)

such that both q and q ′ have c-paths, then a belongs to the certain answers to Q(x).
Notice that it has been necessary to keep track until this last stage not only of
the argument where the query is being evaluated, but also of the whole tuple that
determines the blue-adjacency of q and q ′. This is done by using the last four
arguments in the predicates EQUALleft and EQUALright.

We now show the application of the program with an example. Let I = {D(a,a, b),

D(a, c, d),E(a, b, c),E(a, b, d),E(a, a, c)} be a source instance. Then the canoni-
cal universal solution J for I is as follows:

• The interpretation of the relation P in J is {(a, a,⊥1), (a, b,⊥1), (a, c,⊥3),

(a, d,⊥3)}.
• The interpretation of the relation R in J is {(a, b,⊥2), (a, c,⊥2), (a, b,⊥4),

(a, d,⊥4), (a, a,⊥5), (a, c,⊥5)}.
By applying rules (1) to (6) we first collect all the elements of J in DOM. From rules
(7) and (8) we obtain that U1(a, a,⊥1, a) and U2(a, a,⊥5, a) hold. Then we use rule
(9) to show that EQUALleft(a,⊥1, a,⊥1,⊥5, a) holds. Now we use rule (12) to obtain
that EQUALleft(⊥1, a, a,⊥1,⊥5, a) holds.

Next, we apply rules (7) and (8) to obtain that U1(a, b,⊥1, a) and U2(a, b,⊥2, a)

hold. Further, since C(a) and C(b) hold (a and b are constants) and b �= a, we obtain
from rule (17) that EQUALleft(b,⊥2, a,⊥1,⊥5, a) holds, and by using rule (12) we
show that EQUALleft(⊥2, b, a,⊥1,⊥5, a) holds.

We use again rules (7) and (8) to obtain that U1(a, c,⊥3, a) and U2(a, c,⊥2, a)

hold. Since c and b are different constants, we can apply rule (19) and ob-
tain that EQUALleft(c,⊥3, a,⊥1,⊥5, a) holds. We then use rule (12) to show that
EQUALleft(⊥3, c, a,⊥1,⊥5, a) also holds in J . Rules (7) and (8) are applied one
more time to obtain that U1(a, d,⊥3, a) and U2(a, d,⊥4, a) hold. Then, since c

and d are different constant values, we can use rule (17) for a second time to show
that EQUALleft(d,⊥4, a,⊥1,⊥5, a) holds, and next rule (12) is used to show that
EQUALleft(⊥4, d, a,⊥1,⊥5, a) holds.

Rule (8) is used for the last time to obtain that U2(a, b,⊥4, a) holds. Further, we
use rule (19) to show that EQUALleft(b,⊥1, a,⊥1,⊥5, a) holds. Finally, by applying
rule (13) we conclude that EQUALleft,1(a, b, a,⊥1,⊥5, a) holds in J , and then we
use rule (25) to show that ANSWERleft,1(a,⊥1,⊥5, a) belongs to J .

Using a procedure very similar to the preceding paragraphs, it can be shown that
ANSWERright,1(a,⊥1,⊥5, a) also holds in J , and then, since a is a constant, from
rule (27) we obtain that a belongs to the certain answers of Q for I under M.

We now continue with the proof of Theorem 5.2. Assume that T = {T1, . . . , Tk},
where each Ti has arity ni > 0, and that Q(x̄) = Q1(x̄) ∨ · · · ∨ Q�(x̄), where
x̄ = (x1, . . . , xm) and each Qi(x̄) is either (1) a conjunctive query, with at most
one inequality and with constant joins, or (2) a conjunctive query with two inequal-
ities but with constant joins and almost constant inequalities. Further, assume that
W ⊆ {1, . . . , �} is the set of all indexes j such that Qj(x̄) contains two inequali-
ties, and that pj is the number of existentially quantified variables in Qj . The set of
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intensional predicates of the program �Q is

{U1, , . . . ,Uk, DOM, EQUAL, (EQUALleft,j )j∈W, (EQUALright,j )j∈W,

ANSWER, (ANSWERleft,j )j∈W, (ANSWERright,j )j∈W },
and the arity of each predicate is defined as follows:

• each Ui , for i ∈ [1, k], has arity ni + m;
• DOM has arity 1;
• EQUAL has arity 2 + m;
• each predicate of the form EQUALleft,j or EQUALright,j , for j ∈ W , has arity 2 +

pj + m;
• ANSWER has arity m; and
• each predicate of the form ANSWERleft,j or ANSWERright,j , for j ∈ W , has arity

pj + m.

The set of rules of �Q is defined as follows (if ȳ = (y1, . . . , yn), we use DOM(ȳ) as
a shortening for DOM(y1), . . . , DOM(yn)).

• For every predicate Ti ∈ T, �Q includes the following ni rules:

DOM(x) ← Ti(x, y2, y3, . . . , yni−1, yni
),

DOM(x) ← Ti(y1, x, y3, . . . , yni−1, yni
),

· · ·
DOM(x) ← Ti(y1, y2, y3, . . . , yni−1, x).

Intuitively, predicate DOM collects the elements that belong to the domain of the
extensional instance.

• �Q includes the following rules for predicate EQUAL:

EQUAL(x, x, z̄) ← DOM(x), DOM(z̄),

EQUAL(x, y, z̄) ← EQUAL(y, x, z̄),

EQUAL(x, y, z̄) ← EQUAL(x,w, z̄), EQUAL(w,y, z̄).

• �Q includes the following rules for predicate EQUALleft,j , for each j ∈ W , where
ū is a tuple of pj fresh variables:

EQUALleft,j (x, x, ū, z̄) ← DOM(x), DOM(ū), DOM(z̄),

EQUALleft,j (x, y, ū, z̄) ← EQUALleft,j (y, x, ū, z̄),

EQUALleft,j (x, y, ū, z̄) ← EQUALleft,j (x,w, ū, z̄), EQUALleft,j (w,y, ū, z̄).

• �Q includes the following rules for predicate EQUALright,j , for each j ∈ W , where
ū is a tuple of pj fresh variables:

EQUALright,j (x, x, ū, z̄) ← DOM(x), DOM(ū), DOM(z̄),

EQUALright,j (x, y, ū, z̄) ← EQUALright,j (y, x, ū, z̄),
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EQUALright,j (x, y, ū, z̄) ← EQUALright,j (x,w, ū, z̄),

EQUALright,j (w,y, ū, z̄).

• For every predicate Ui , i ∈ [1, k], the program �Q includes the following rules,
where ȳ = (y1, . . . , yni

), and z̄ = (z1, . . . , zm) are tuples of fresh variables:

Ui(ȳ, z̄) ← Ti(ȳ), DOM(z̄).

• Let i ∈ [1, �]. First, assume that Qi(x̄) does not contain any inequality. Then Qi(x̄)

is equal to ∃ū(Ts1(ū1)∧· · ·∧Tsn(ūn)), where sj ∈ [1, k] and every variable in ūj is
mentioned in either ū or x̄, for every j ∈ [1, n]. In this case, program �Q includes
the following rule:

ANSWER(x̄) ← Us1(ū1, x̄), . . . ,Usn(ūn, x̄),C(x1), . . . ,C(xm).

Notice that this rule is well defined since the set x̄ is the set of free variables of
∃ū(Ts1(ū1) ∧· · · ∧Tsn(ūn)). Second, assume that Qi(x̄) contains an inequality.
Then Qi(x̄) is equal to the formula ∃ū(Ts1(ū1) ∧ · · · ∧ Tsn(ūn) ∧ v1 �= v2), where
si ∈ [1, k] and every variable in ūi is mentioned in either ū or x̄, for every i ∈ [1, n],
and v1, v2 are mentioned in ū or x̄. In this case, program �Q includes the following
rules:

EQUAL(v1, v2, x̄) ← Us1(ū1, x̄), . . . ,Usn(ūn, x̄),

ANSWER(x̄) ← EQUAL(u, v, x̄),C(u),C(v), u �= v,C(x1), . . . ,C(xm).

We note that the first rule above is well defined since the query ∃ū(Ts1(ū1) ∧· · ·∧
Tsn(ūn) ∧ v1 �= v2) is a safe query. Further, in this case �Q also contains the fol-
lowing rules for each j ∈ W , assuming ȳ is a tuple of pj fresh variables:

EQUALleft,j (v1, v2, ȳ, x̄) ← Us1(ū1, x̄), . . . ,Usn(ūn, x̄), DOM(ȳ),

EQUALright,j (v1, v2, ȳ, x̄) ← Us1(ū1, x̄), . . . ,Usn(ūn, x̄), DOM(ȳ).

We note that the rules above are also well defined since ∃ū(Ts1(ū1) ∧· · ·∧
Tsn(ūn)∧v1 �= v2) is a safe query. Finally, assume that Qi(x̄) contains two inequal-
ities, and Qi has constant joins and almost constant inequalities. Further, assume
that Qi(x̄) is equal to the formula ∃ū(Ts1(ū1)∧· · ·∧Tsn(ūn)∧v1 �= v2 ∧v3 �= v4),
where each sj ∈ [1, k] and every variable in ūj is mentioned in either ū or x̄, for
every j ∈ [1, n], and v1, v2, v3, and v4 are mentioned in ū or x̄. In this case, pro-
gram �Q includes the following rules:

EQUALleft,i (v1, v2, ū, x̄) ← Us1(ū1, x̄), . . . ,Usn(ūn, x̄),

EQUALright,i (v3, v4, ū, x̄) ← Us1(ū1, x̄), . . . ,Usn(ūn, x̄).

Further, in this case �Q also contains the following rules for each j ∈ W , assuming
ȳ is a tuple of pj fresh variables:

EQUALleft,j (v3, v4, ȳ, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄),C(v1),

EQUALleft,j (v2,w, ȳ, x̄),C(w), v1 �= w,
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EQUALleft,j (v3, v4, ȳ, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄),C(v2),

EQUALleft,j (v1,w, ȳ, x̄),C(w), v2 �= w,

EQUALleft,j (v1, v2, ȳ, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄),C(v3),

EQUALleft,j (v4,w, ȳ, x̄),C(w), v3 �= w,

EQUALleft,j (v1, v2, ȳ, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄),C(v4),

EQUALleft,j (v3,w, ȳ, x̄),C(w), v4 �= w,

EQUALright,j (v3, v4, ȳ, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄),C(v1),

EQUALright,j (v2,w, ȳ, x̄),C(w), v1 �= w,

EQUALright,j (v3, v4, ȳ, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄),C(v2),

EQUALright,j (v1,w, ȳ, x̄),C(w), v2 �= w,

EQUALright,j (v1, v2, ȳ, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄),C(v3),

EQUALright,j (v4,w, ȳ, x̄),C(w), v3 �= w,

EQUALright,j (v1, v2, ȳ, x̄) ← Up1(ū1, x̄), . . . ,Upn(ūn, x̄),C(v4),

EQUALright,j (v3,w, ȳ, x̄),C(w), v4 �= w.

Finally, the program �Q also includes the following rules for each j ∈ W , assum-
ing ȳ is a tuple of pj fresh variables:

ANSWERleft,j (ȳ, x̄) ← EQUALleft,j (u, v, ȳ, x̄),C(u),C(v), u �= v,

ANSWERright,j (ȳ, x̄) ← EQUALright,j (u, v, ȳ, x̄),C(u),C(v), u �= v,

ANSWER(x̄) ← ANSWERleft,j (ȳ, x̄),

ANSWERright,j (ȳ, x̄),C(x1), . . . ,C(xm).

Using Lemma 5.3, it is a tedious but not difficult task to prove that for every
data exchange setting M = (S,T,�st ) and instance I of S, certainM(Q, I) =
certainM(�Q, I). This can be done with the help of the intuition provided in Ex-
ample 5.4. �

It immediately follows from Proposition 4.5 that if a data exchange setting M
and a UCQ �= query Q satisfy the conditions mentioned in Theorem 5.2, then
CERTAIN-ANSWERS(M,Q) is in PTIME. Furthermore, it can also be shown that
the properties of having constant joins and almost constant inequalities are helpful
in reducing the complexity of computing certain answers to unions of conjunctive
queries with at most one inequality per disjunct.

Proposition 5.5 Let Q be a UCQ �= query with at most one inequality per dis-
junct. Then (1) if every disjunct of Q has constant joins under a setting M, then
CERTAIN-ANSWERS(M,Q) is in NLOGSPACE, and (2) if in addition every disjunct
of Q has almost constant inequalities under M, then CERTAIN-ANSWERS(M,Q)

is in LOGSPACE.
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Proof Before proving the proposition, we mention a couple of remarks that will be
useful in the proof. First, it is immediate from the definition of canonical univer-
sal solution that CAN(I ) can be computed not only in polynomial time, but also
in LOGSPACE for each source instance I . Second, if tuple T (p1, . . . , pn) belongs
to CAN(I ) for an arbitrary source instance I under M, and the i-th attribute of T

(1 ≤ i ≤ n) is not existentially quantified in M, then pi has to be a constant.
We now prove the proposition, and start with part (1). Let M = (S,T,�st ) be a

data exchange setting and Q a query that is the union of conjunctive queries, with
at most one inequality per disjunct and without negated relational atoms, and such
that each disjunct of Q has constant joins. We prove next that there exists a query
Q′, such that the data complexity of Q′ is in NLOGSPACE and certainM(Q, I) =
Q′(CAN(I )), for every source instance I . From this it immediately follows that
CERTAIN-ANSWERS(M,Q) is in NLOGSPACE. Indeed an NLOGSPACE procedure
can be constructed by composing two NLOGSPACE procedures; the first one that con-
structs CAN(I ) from I and the second one that evaluates Q′ over CAN(I ). The result
then follows from the fact that the class NLOGSPACE is closed under compositions
(c.f. [21]).

The query Q′ will be defined in transitive closure logic (for a precise definition
of this logic, see e.g. Chap. 10.6 in [17]). In order to do so, need to introduce some
terminology and an intermediate result (Lemma 5.6).

Assume that Q is Q1(x̄) ∨ · · · ∨ Q�(x̄), where x̄ = (x1, . . . , xm), m ≥ 0. Let I

be an arbitrary source instance and t̄ = (t1, . . . , tm) a tuple of constants from I . We
construct an undirected graph G(Q,I, t̄) as follows:

• The nodes of G(Q,I, t̄) are the elements in CAN(I ) plus two fresh elements μ

and ν, i.e. neither μ nor ν belongs to CAN(I );
• there exists an edge between elements p and p′ in G(Q,I, t̄) iff for some i ∈ [1, �],

(1) Qi(x̄) is of the form ∃ȳ(φ(x̄, ȳ) ∧ u �= v), where φ(x̄, ȳ) is a conjunction
of relational atoms over T, and u,v ∈ {x̄, ȳ}, and (2) there is an assignment
σ : {x̄, ȳ} → dom(CAN(I )), such that σ(x̄) = t̄ , (CAN(I ), σ ) |= φ(x̄, ȳ) ∧ u �= v,
σ(u) = p and σ(v) = p′; and

• there exists an edge between μ and ν in G(Q,I, t̄) iff for some i ∈ [1, �], Qi(x̄) is
of the form ∃ȳφ(x̄, ȳ), where φ(x̄, ȳ) is a conjunction of relational atoms over T,
and CAN(I ) |= Qi(t̄).

We say that G(Q,I, t̄) has a contradiction path (or c-path), if there is a path
in G(Q,I, t̄) from a constant c ∈ dom(CAN(I )) to a different constant c′ ∈
dom(CAN(I )), or an edge between μ and ν. Notice that this construction is a sim-
plified version of the graph used in the proof of Theorem 5.2. As for the case of
Lemma 5.3 in Theorem 5.2, we present a key lemma that characterizes certain an-
swers in terms of c-paths in the graph G(Q,I, t̄). This can be proved using techniques
along the lines of those used in the proof of Lemma 5.3.

Lemma 5.6 Let Q be as defined above. For every source instance I and tuple t̄ of
constants from I , it is the case that

t̄ ∈ certainM(Q, I) ⇔ G(Q,I, t̄) has a c-path.
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We define the query Q′ in three steps. Assume, without loss of generality, that for
each 1 ≤ i ≤ s ≤ �, Qi(x̄) is of the form ∃ȳi (φi(x̄, ȳi ) ∧ ui �= vi), where φi(x̄, ȳi) is
a conjunction of relational atoms over T, and ui, vi ∈ {x̄, ȳi}, and for each s < j ≤ �,
Qj(x̄) is of the form ∃ȳj φj (x̄, ȳj ), where φj (x̄, ȳj ) is a conjunction of relational
atoms over T. Then:

1. Define a formula A(z1, z2, x̄) as follows, where z1 and z2 are fresh variables, i.e.
z1 and z2 are not mentioned in Q(x̄):

A(z1, z2, x̄) ≡
∨

1≤i≤s

∃ȳi (φi(x̄, ȳi ) ∧ z1 �= z2 ∧ z1 = ui ∧ z2 = vi).

Intuitively, the formula A(z1, z2, x̄) defines the adjacency in the graph G(Q,I, x̄),
with respect to elements in CAN(I );

2. define a formula α(x̄) as follows,

α(x̄) ≡
∨

s<j≤�

∃ȳj φj (x̄, ȳj ).

Intuitively α(x̄) checks whether there is an edge between μ and ν in G(Q,I, x̄);
and

3. finally, the query Q′(x̄) is defined as:

(α(x̄) ∨ ∃w1∃w2(C(w1) ∧ C(w2) ∧ w1 �= w2 ∧ (w1,w2) ∈ TrCl.A(u, v, x̄)))

∧C(x1) ∧ . . .C(xm)

where (w1,w2) ∈ TrCl.A(u, v, x̄) expresses that the pair (w1,w2) belongs to the
transitive closure of the adjacency relation defined by the pairs (u, v) that satisfy
A parameterized by x̄.

It immediately follows from Lemma 5.6 that for every source instance I ,
certainM(Q, I) = Q′(CAN(I )). Further, it is well-known that the data complexity
of any formula in transitive closure logic is in NLOGSPACE (see e.g. Chap. 10.6
in [17]). This concludes the first part of the proposition.

Now we prove part (2). Let Q be as in the first part of the proof, but with the ad-
dition that each disjunct of Q has almost constant inequalities. Lemma 5.6 continues
being the case in this setting, but notice that now if there is a c-path in G(Q,I, t̄)

then there is a c-path of length at most 2. Thus, in this case Q′(x̄) can be expressed as
the FO formula that checks whether there is an edge between μ and ν in G(Q,I, t̄),
or a c-path of length at most 2 in G(Q,I, t̄). Since the data complexity of any FO
formula is in LOGSPACE (see e.g. Chap. 6 in [17]), we conclude that the problem of
computing certain answers for this class of queries and settings is in LOGSPACE. �

An obvious question at this point is how natural the conditions used in Theo-
rem 5.2 are. Although we cannot settle this subjective question, we are at least able to
show that these conditions are optimal in the sense that removing any of them leads
to intractability for the class of UCQ �= queries with two inequalities.
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Theorem 5.7

(1) There exist a LAV data exchange setting M and a query Q such that Q is the
union of a Boolean conjunctive query and a Boolean conjunctive query with two
inequalities that has both constant joins and almost constant inequalities under
M, and such that CERTAIN-ANSWERS(M,Q) is CONP-complete.

(2) There exist a LAV data exchange setting M and a Boolean conjunctive query
Q with two inequalities, such that Q has constant joins under M, Q does not
have almost constant inequalities under M and CERTAIN-ANSWERS(M,Q) is
CONP-complete.

(3) There exist a LAV data exchange setting M and a Boolean conjunctive query
Q with two inequalities, such that Q has almost constant inequalities under M,
Q does not have constant joins under M and CERTAIN-ANSWERS(M,Q) is
CONP-complete.

Proof We only present here the proof of the first part of the theorem. For the details
of the second and third part see Appendix A.2. The proof for (1) is as follows: The
LAV setting M = (S,T,�st ) is defined as follows. The source schema S consists
of two relations: A binary relation P and a ternary relation R. The target schema T
consists of three relations: Two binary relations T and S, and a ternary relation U .
Further, �st is the following set of source-to-target dependencies:

P(x, y) → ∃z(T (x, z) ∧ T (y, z) ∧ S(x, y)),

R(x, y, z) → U(x,y, z).

Furthermore, Boolean query Q is defined as:

∃x∃y∃z(U(x, y, z) ∧ T (x, x) ∧ T (y, y) ∧ T (z, z))

∨∃x∃y∃w∃z(T (x, y) ∧ T (w, z) ∧ S(x,w) ∧ x �= y ∧ w �= z).

We denote the first disjunct of Q by Q1 and the second by Q2. Clearly, Q2 has
constant joins and almost constant inequalities in M. On the other hand, Q1 does
not have constant joins. Next we show that CERTAIN-ANSWERS(M,Q) is CONP-
complete.

Membership of CERTAIN-ANSWERS(M,Q) in CONP follows from [9]. The
CONP-hardness is established from a reduction from 3SAT to the complement of
CERTAIN-ANSWERS(M,Q). More precisely, for every 3CNF propositional formula
φ, we construct in polynomial time an instance Iφ of S such that φ is satisfiable iff
certainM(Q, Iφ) = false.

Given a propositional formula φ ≡ ∧
1≤j≤m Cj in 3CNF, where each Cj is a

clause, let Iφ be the following source instance:

• The interpretation of P in Iφ contains the pair (q,¬q), for each propositional
variable q mentioned in φ; and

• the interpretation of R in Iφ contains all tuples (α,β, γ ) such that for some 1 ≤
j ≤ m, Cj = (α ∨ β ∨ γ ).

Clearly, Iφ can be constructed in polynomial time from φ. The canonical universal
solution J for Iφ is as follows, where we denote by ⊥q (or ⊥¬q ) the null generated
by applying the std P(x, y) → ∃z(T (x, z) ∧ T (y, z) ∧ S(x, y)) to P(q,¬q):
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• The interpretation of the relation T in J contains the tuples (q,⊥q) and (¬q,⊥q),
for each propositional variable q mentioned in φ;

• the interpretation of the relation S in J is just a copy of the interpretation of the
relation P in Iφ ; and

• the interpretation of the relation U in J is just a copy of the interpretation of the
relation R in Iφ .

We prove now that φ is satisfiable iff certainM(Q, Iφ) = false.

(⇒) Assume that φ is satisfiable, and let κ be a truth assignment for the propositional
variables of φ such that κ(φ) = 1. From κ , define a function f from J into J

as follows:

f (v) =

⎧
⎪⎨

⎪⎩

¬q v = ⊥q and κ(q) = 1,

q v = ⊥q and κ(q) = 0,

v otherwise.

Let J ∗ be the solution for Iφ obtained from J by replacing each occurrence of
an element v in J by f (v). We show next that Q(J ∗) = false, and, thus, that
certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J ∗) = true. Then Q1(J
∗) =

true or Q2(J
∗) = true. Assume first that the latter holds. Then there is a

function h : {x, y, z,w} → dom(J ∗) such that T (h(x),h(y)), T (h(z),h(w)),
and S(h(x),h(z)) are all tuples in J ∗, and h(x) �= h(y) and h(z) �= h(w).
Since S(h(x),h(z)) belongs to J ∗, it follows that for some propositional vari-
able q mentioned in φ, h(x) = q and h(z) = ¬q . Further, since T (h(x),h(y))

and T (h(z),h(w)) belong to J ∗, we have that h(y) = f (⊥q) = h(w). But
then f (⊥q) �= q and f (⊥q) �= ¬q , which contradicts the definition of J ∗. As-
sume, on the other hand, that Q1(J

∗) = true. Then there is a function h :
{x, y, z} → dom(J ∗) such that the tuples U(h(x),h(y),h(z)), T (h(x),h(x)),
T (h(y),h(y)), and T (h(z),h(z)) are all tuples in J ∗. Then by definition of M
and Iφ , there exists a clause (α ∨ β ∨ γ ) in φ such that h(x) = α, h(y) = β ,
and h(z) = γ . Since L(h(x),h(x)) = L(α,α) belongs to J ∗, it follows that
f (⊥α) = α, and thus, that κ(α) = 0. Similarly, κ(β) = 0 and κ(γ ) = 0. But this
is a contradiction, since κ(φ) = 1, and thus, κ(α) = 1 or κ(β) = 1 or κ(γ ) = 1.

(⇐) Assume that certainM(Q, Iφ) = false. Then there exists a solution J ′ such
that Q(J ′) = false. Let h : J → J ′ be an homomorphism from J into J ′,
and let κ be the following truth assignment for the propositional variables men-
tioned in φ: κ(q) = 1 iff h(⊥q) = ¬q . We show next that κ(Cj ) = 1, for each
1 ≤ j ≤ m, and, thus, that φ is satisfiable.

Consider an arbitrary j ∈ [1,m], and assume that Cj = (α ∨ β ∨ γ ). Then,
since U(α,β, γ ), T (α,h(⊥α)), T (β,h(⊥β)), and T (γ,h(⊥γ )) belong to J ′,
it must be the case that α �= h(⊥α) or β �= h(⊥β) or γ �= h(⊥γ ). Further,
since either S(α,¬α) or S(¬α,α) belongs to J ′, and both T (α,h(⊥α)) and
T (¬α,h(⊥α)) belong to J ′, we conclude from the fact that Q2(J

′) = false
that h(⊥α) = α or h(⊥α) = ¬α. Similarly, h(⊥β) = β or h(⊥β) = ¬β , and
h(⊥γ ) = γ or h(⊥γ ) = ¬γ . Thus, h(⊥α) = ¬α or h(⊥β) = ¬β or h(⊥γ ) =
¬γ , and, therefore, that κ(α) = 1 or κ(β) = 1 or κ(γ ) = 1. We conclude that
κ(Cj ) = 1.
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This concludes the proof of the first part of the theorem. �

It is important to notice that although the problem of computing certain answers
to UCQ �= queries has been considered in the literature, none of the results of Theo-
rem 5.7 directly follows from any of the known results for this problem. In particular,
Fagin et al. showed in [9] a similar result to (1), namely that the problem of com-
puting certain answers is CONP-complete even for the union of two queries, the first
of which is a conjunctive query and the second of which is a conjunctive query with
two inequalities. The difficulty in our case is that the second query is restricted to
have constant joins and almost constant inequalities, while Fagin et al. considered a
query that does not satisfy any of these conditions. Moreover, Ma̧dry proved in [20] a
similar result to (2) and (3), namely that the problem of computing certain answers is
CONP-complete for conjunctive queries with two inequalities. The difficulty in our
case is that we consider a query that has constant joins in (2) and a query that has
almost constant inequalities in (3), while Ma̧dry considered a query that does not sat-
isfy any of these conditions. In fact, we provide in (2) and (3) two new proofs of the
fact that the problem of computing certain answer to a conjunctive query with two
inequalities is CONP-complete.

We conclude this section with a remark about the possibility of using the con-
ditions defined in this section to obtain tractability for UCQ �=. As we mentioned
above, the notions of constant joins and almost constant inequalities can be extended
to UCQ �= queries with an arbitrary number of inequalities. Thus, one may wonder
whether these conditions lead to tractability in this general scenario. Unfortunately,
the following proposition shows that this is not the case, even for the class of UCQ �=
queries with three inequalities.

Proposition 5.8 There exist a LAV data exchange setting M and a Boolean con-
junctive query Q with three inequalities, such that Q has both constant joins and al-
most constant inequalities under M, but the problem CERTAIN-ANSWERS(M,Q)

is CONP-complete.

Proof The LAV setting M = (S,T,�st ) is as follows. The source schema S consists
of two relations: A binary relation P and a ternary relation R. The target schema T
also consists of two relations: A binary relation T and a ternary relation S. Further,
�st is the following set of source-to-target dependencies:

P(x, y) → ∃z(T (x, z) ∧ T (y, z)),

R(x, y, z) → S(x, y, z).

Furthermore, Boolean query Q is defined as:

∃x1∃y1∃x2∃y2∃x3∃y3(S(x1, x2, x3) ∧ T (x1, y1) ∧ T (x2, y2) ∧ T (x3, y3)

∧x1 �= y1 ∧ x2 �= y2 ∧ x3 �= y3).

Clearly, Q has almost constant inequalities and constant joins in M. Next we show
that the problem CERTAIN-ANSWERS(M,Q) is CONP-complete.



Theory Comput Syst

Membership of CERTAIN-ANSWERS(M,Q) in CONP follows from [9]. The
CONP-hardness is established from a reduction from 3SAT to the complement of
CERTAIN-ANSWERS(M,Q). More precisely, for every 3CNF propositional formula
φ, we construct in polynomial time an instance Iφ of S such that φ is satisfiable iff
certainM(Q, Iφ) = false.

Given a propositional formula φ ≡ ∧
1≤j≤m Cj in 3CNF, where each Cj is a

clause, let Iφ be the following source instance:

• The interpretation of P in Iφ contains the pair (q,¬q), for each propositional
variable q mentioned in φ; and

• the interpretation of R in Iφ contains all tuples (α,β, γ ) such that for some 1 ≤
j ≤ m, Cj = (α ∨ β ∨ γ ).

Clearly, Iφ can be constructed in polynomial time from φ.
The canonical universal solution J for Iφ is as follows, where we denote by ⊥q

(or ⊥¬q ) the null generated by applying the std P(x, y) → ∃z(T (x, z) ∧ T (y, z)) to
P(q,¬q):

• The interpretation of the relation T in J contains the tuples (q,⊥q) and (¬q,⊥q),
for each propositional variable q mentioned in φ; and

• the interpretation of the relation S in J is just a copy of the interpretation of the
relation R in Iφ .

We prove now that φ is satisfiable iff certainM(Q, Iφ) = false.

(⇒) Assume that φ is satisfiable, and let κ be a truth assignment for the propositional
variables of φ such that κ(φ) = 1. From κ , define a function f from J into J

as follows:

f (v) =

⎧
⎪⎨

⎪⎩

q v = ⊥q and κ(q) = 1,

¬q v = ⊥q and κ(q) = 0,

v otherwise.

Let J ∗ be the solution for Iφ obtained from J by replacing each occurrence of
an element v in J by f (v). We show next that Q(J ∗) = false, and, thus, that
certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J ∗) = true. Then there is a
function h : {x1, x2, x3, y1, y2, y3} → dom(J ∗) such that S(h(x1), h(x2), h(x3)),
T (h(x1), h(y1)), T (h(x2), h(y2)), T (h(x3), h(y3)) are all tuples in J ∗, and
h(x1) �= h(y1), h(x2) �= h(y2), and h(x3) �= h(y3). Then by definition of M
and Iφ , there exists a clause (α ∨ β ∨ γ ) in φ such that h(x1) = α, h(x2) = β ,
and h(x3) = γ . Since L(h(x1), h(y1)) = L(α,f (⊥α)) belongs to J ∗, and
α = h(x1) �= h(y1) = f (⊥α), it follows that κ(α) = 0. Similarly, κ(β) = 0
and κ(γ ) = 0. But this is a contradiction, since κ(φ) = 1, and thus, κ(α) = 1,
κ(β) = 1, or κ(γ ) = 1.

(⇐) Assume that certainM(Q, Iφ) = false. Then there exists a solution J ′ such
that Q(J ′) = false. Let h : J → J ′ be an homomorphism from J into J ′,
and let κ be the following truth assignment for the propositional variables men-
tioned in φ: κ(q) = 1 iff h(⊥q) = q . We show next that κ(Cj ) = 1, for each
1 ≤ j ≤ m, and, thus, that φ is satisfiable.
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Consider an arbitrary j ∈ [1,m], and assume that Cj = (α ∨ β ∨ γ ). Then,
since S(α,β, γ ), T (α,h(⊥α)), T (β,h(⊥β)), and T (γ,h(⊥γ )) belong to J ′, it
must be the case that α = h(⊥α) or β = h(⊥β) or γ = h(⊥γ ). It follows that
κ(α) = 1 or κ(β) = 1 or κ(γ ) = 1, and, thus, κ(Cj ) = 1.

This concludes the proof of the proposition. �

6 The Combined Complexity of Query Answering

Beyond the usual data complexity analysis, it is natural to ask for the combined com-
plexity of the problem of computing certain answers: What is the complexity if data
exchange settings and queries are not considered to be fixed? To state this problem,
we shall extend the notation defined in Sect. 2. Let DE be a class of data exchange
settings and C a class of queries. In this section, we study the following problem:

PROBLEM: CERTAIN-ANSWERS(DE, C).
INPUT: A data exchange setting M = (S, T, �st ) ∈ DE, a source

instance I , a query Q ∈ C and a tuple t̄ of constants from I .
QUESTION: Is t̄ ∈ certainM(Q, I)?

It is worth mentioning that a related study appeared in [14]. Even though the focus
of that paper was the combined complexity of the existence of solutions problem,
some of the results in [14] can be extended to the certain answers problem. In par-
ticular, some complexity bounds for unions of conjunctive queries with inequalities
can be proved by using these results. Nevertheless, in this section we prove stronger
lower bounds that consider single conjunctive queries with inequalities, and which
cannot be directly proved by using the results of [14].

We start by stating the complexity for the case of DATALOGC(�=) queries. The
study continues by considering some restrictions of DATALOGC(�=) that lead to
lower combined complexity, and which are expressed in the form of conjunctive
queries with single inequalities. We conclude this study by examining unrestricted
CQ �= queries, which are not rewritable in DATALOGC(�=) (under the assumption that
PTIME �= NP). The results of this section are summarized in Table 1, where we let
k-CQ �= be the class of CQ �= queries with at most k inequalities.

6.1 Combined Complexity of DATALOGC(�=) Queries

We showed in Proposition 3.3 that the certain answers of a DATALOGC(�=) program
can be computed by directly posing the query over the canonical universal solu-
tion. It can be shown that such an approach can compute the certain answers to a
DATALOGC(�=) program in exponential time, although canonical universal solutions
can be of exponential size if data exchange settings are not considered to be fixed.
And not only that, it can be proved that this is a tight bound.

Theorem 6.1 CERTAIN-ANSWERS(GLAV, DATALOGC(�=)) is EXPTIME-complete.
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Proof The EXPTIME-hardness follows directly from Theorems 4.1 and 6.3. More
precisely, the problem of computing certain answers is shown in Theorem 6.3 to
be EXPTIME-hard for the class of conjunctive queries with single inequalities, and
it follows from Theorem 4.1 that for each query Q in this class, one can con-
struct in polynomial time a DATALOGC(�=) program �Q such that certainM(Q, I) =
certainM(�Q, I), for every source instance I .

To show that CERTAIN-ANSWERS(GLAV, DATALOGC(�=)) is in EXPTIME, as-
sume that � is a DATALOGC(�=) program, I is a source instance and �st is a set
of st-tgds. In Sect. 3, it is proved that to compute the certain answers of � over I

under �st , it suffices to evaluate � over CAN(I ). Thus, given that CAN(I ) can be
computed in exponential time and is of size O(‖I‖‖�st‖), where ‖I‖ and ‖�st‖ rep-
resent the size of I and �st , respectively, we conclude that the certain answers to
� over I under �st can be computed in time O(‖I‖‖�st‖·‖�‖), where ‖�‖ repre-
sents the size of �, since � can be evaluated over an instance D in time O(‖D‖‖�‖)
[2, 22].

Note that the above problem has to deal with canonical universal solutions of
exponential size. Then restricting these solutions to be of polynomial size would be a
natural approach to reduce the complexity of the problem. There are at least two ways
to do this. The obvious one would be to fix the data exchange settings, and leave only
queries and source instances as input.2 The less obvious but more interesting case is
to restrict the class of data exchange settings to be LAV settings. However, for the
case of DATALOGC(�=) programs, the combined complexity is inherently exponential,
and thus reducing the size of canonical universal solutions does not help in improving
the upper bound. �

Proposition 6.2 CERTAIN-ANSWERS(LAV, DATALOGC(�=)) is EXPTIME-complete.

Proof The membership in EXPTIME follows from Theorem 6.1. For the EXPTIME-
hardness, we show a reduction from the problem of checking whether a tuple t̄ be-
longs to the evaluation of a DATALOG program � over an instance I . This problem
is well known to be EXPTIME-hard (see e.g. [2, 22]). Let � be a DATALOG pro-
gram defined over a schema S, I an instance of S and t̄ a tuple of elements from I .
Next we show how to construct a LAV data exchange setting M = (S,T,�st ) and
a DATALOGC(�=) program �′ such that t̄ ∈ �(I) if and only if t̄ ∈ certainM(�′, I ),
which shows that there exists a polynomial time reduction from the problem men-
tioned above to our problem. Define T as a schema that contains a relation symbol
R̂ of the same arity of R, for every relation symbol R in S. Moreover, define �′ as
a copy of � where every predicate R from S is replaced by predicate R̂, and define
�st to include a dependency R(x̄) → R̂(x̄), for every predicate symbol R in S. Then
we have that t̄ ∈ �(I) if and only if t̄ ∈ �′(CAN(I )), which implies that t̄ ∈ �(I) if
and only if t̄ ∈ certainM(�′, I ) by the results in Sect. 3.

It was shown in Theorem 4.1 that every conjunctive query with one inequality can
be efficiently translated into a DATALOGC(�=) program. Hence, the class of 1-CQ �=

2Indeed, for obtaining a canonical solution of polynomial size it would be enough to fix the maximum
arity of a relation symbol in the target schema.
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Table 1 Combined complexity of computing certain answers

Query GLAV setting LAV setting

DATALOGC(�=) EXPTIME-complete EXPTIME-complete

1-CQ �= EXPTIME-complete NP-complete

k-CQ �=, k ≥ 2 CONEXPTIME-complete �
p
2 -complete

CQ �= CONEXPTIME-complete �
p
2 -complete

queries form a subclass of the class of DATALOGC(�=) programs. Thus, it is natural to
ask whether the EXPTIME lower bounds proved in this section carry over this class,
and whether the LAV restriction could be useful in this case. These are the motivating
questions for the next section. �

6.2 Combined Complexity of CQ �=

We leave the DATALOGC(�=) queries to concentrate on the analysis of CQ �= queries in
data exchange. We first study the class 1-CQ �=, that is, the class of conjunctive queries
with only one inequality. It is worth mentioning that an EXPTIME lower bound can
be obtained from [14] for the case of unions of 1-CQ �= queries. We refine this result
to the case of 1-CQ �= queries, and therefore present a stronger lower bound.

Theorem 6.3 CERTAIN-ANSWERS(GLAV,1-CQ �=) is EXPTIME-complete.

Proof Membership in EXPTIME is a corollary of Theorems 4.1 and 6.1. The proof of
EXPTIME-hardness is a refinement of a proof given in [14], where it was essentially
shown that the problem of computing certain answers is EXPTIME-hard for a union of
two CQ �= queries. The EXPTIME-hardness is established from a reduction from the
Single Rule Datalog Problem [11], which is the following problem: given a DATALOG

program � consisting of only one rule and some of facts with only constants, is
it the case that a tuple t̄ belongs to the evaluation of � over the empty instance?
That is, we ask whether t̄ ∈ �(∅). We shall call these programs Single Rule Datalog
Programs (sirup). It is important to notice that each of these programs contains a
single intensional predicate A, and it may include some facts with only constants
about this predicate, that is, some facts of the form A(c̄). These facts are needed
when the only rule of the program is recursive, as otherwise the evaluation of the
program would be empty. The combined complexity of the aforementioned problem
was shown to be EXPTIME-complete by Gottlob and Papadimitriou [11].

As in [14], let � be a program containing some facts with only constants and a sin-
gle rule of the form A(x̄) ← Q1(x̄1), . . . ,Qn(x̄n), where each symbol Qi (1 ≤ i ≤ n)
either represents an extensional database predicate or the only intensional predi-
cate A. Furthermore, we assume that t̄ = (c1, . . . , ck) and we say that t̄ belongs to
the evaluation of � over the empty instance if and only if t̄ ∈ AT ∞

� (∅).
The idea of the reduction in [14] is to precompute all the possible tuples that

can be returned from the sirup rule into the canonical universal solution of the source
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instance, and then simulate the sirup rule with a CQ �= query. A second query is used to
check whether t̄ ∈ �(∅). The difficulty in our case is to show that the bound remains
the same even for a single CQ �= query with one inequality.

We now define a data exchange setting M = (S,T,�st ), a query Q and an in-
stance I of S such that t̄ ∈ �(∅) if and only if certainM(Q, I) = true.

• The source schema S consists of four unary relations T , V , F , S plus all the exten-
sional predicate symbols R1, . . . ,Rm of �, and two additional relation symbols A

and W . The arity of the relations Ri (1 ≤ i ≤ m) is the same as the corresponding
arity in �, denoted by li , the arity of the relation A is k and the arity of the relation
W is k + 1.

• The target schema T consists of relations R′
1, . . . ,R

′
m, T ′ and A′. The arity of

relation R′
i is li + 3 (1 ≤ i ≤ m), T ′ is unary, and A′ has arity k + 3.

• Source instance I is defined as follows:
– The interpretation of predicate Ri (1 ≤ 1 ≤ m) in I is the same as in �. Further-

more, the interpretation of predicate A in I consists of all the tuples c̄ such that
A(c̄) is a fact in �.

– The relation W only contains one tuple, based on t̄ : W(c1, . . . , ck, d), where d

is a fresh value not occurring elsewhere in I .
– We create a single tuple for each relation T , F and S using constants c, 1, 2,

also not used elsewhere in I : T (c), F(1) and S(2).
– Finally, we populate the unary relation V with all distinct values from � and t̄ .
Intuitively, the constants 1 and 2 will allow us to use the same query for both simu-
lating the sirup rule and checking whether t̄ ∈ �(∅); the relations containing value
1 will be used for the simulation of the sirup rule, while the relations containing
value 2 will be used when checking whether t̄ ∈ �(∅).

• The set �st of dependencies is defined as follows. We create a copy of the relation
T in T ′:

T (x) → T ′(x).

For every i ∈ {1, . . . ,m}, we create a copy of the facts about Ri in the program �,
so that they can be used when simulating the sirup rule:

F(z) ∧ T (y) ∧ Ri(x1, . . . , xli ) → R′
i (x1, . . . , xli , y, z, z).

Notice that we use the value z in F to indicate that these tuples will be used for the
simulation of the sirup rule. Next, for every i ∈ {1, . . . ,m}, we populate R′

i in the
target with a series of tuples built using every possible constant value in the source:

S(z) ∧ T (y) ∧ V (x1) ∧ · · · ∧ V (xli ) → R′
i (x1, . . . , xli , y, z, z).

It is important to notice that in this case, we use the value z in S to indicate that
these tuples will be used when checking whether t̄ ∈ �(∅). We then copy the re-
lation A into A′, to indicate that every fact in � also holds in every solution for I

under M:

F(z) ∧ S(w) ∧ T (y) ∧ A(x1, . . . , xk) → A′(x1, . . . , xk, y, z,w). (28)



Theory Comput Syst

In this rule, the value c in the position k + 1 of A′ indicate that tuple (x1, . . . , xk)

belongs to the interpretation of A in �. Moreover, we also add to A′ every possible
tuple that could be generated with the values in � and t̄ :

F(z) ∧ S(w) ∧ V (x1) ∧ · · · ∧ V (xk) → ∃nA′(x1, . . . , xk, n, z,w). (29)

Notice that in this rule, a null value is placed in the position k + 1 of A′ to indicate
that tuple (x1, . . . , xk) has not yet been shown to belong to the interpretation of A

in �. As in the previous cases, relations F and S are used in the preceding two
rules to ensure that the procedures are run in the correct order, that is, the query
must first compute the tuples, and then check whether t̄ ∈ �(∅). Finally, we need
some extra tuples for the simulation of the sirup rule. We copy the relation W into
A′ and add again every possible tuple to the relation A′, but considering a different
order of predicates S, F and T :

S(z) ∧ F(y) ∧ W(x1, . . . , xk, u) → A′(x1, . . . , xk, u, z, y), (30)

S(z) ∧ T (y) ∧ V (x1) ∧ · · · ∧ V (xk) → A′(x1, . . . , xk, y, z, y). (31)

When showing that the reduction is correct, it will become clear why we need to
use different orders of predicate F , S and T in the preceding rules.

• To define query Q, recall that we are considering a sirup rule of the form A(x̄) ←
Q1(x̄1), . . . ,Qn(x̄n), where each Qi can be either one of the extensional databases
predicates Rj or the predicate A. Assume that x̄′ is a tuple containing all the vari-
ables in the body of the sirup rule that are not mentioned in x̄. Then query Q is
defined as follows:

Q = ∃u∃v∃w∃w1 · · · ∃wn∃x1 · · · ∃xk∃y∃z∃x̄′
[

A′(x1, . . . , xk, z, u,w)

∧ T ′(y) ∧ A′(x1, . . . , xk, y,w,v) ∧ z �= y ∧
∧

1≤i≤n

Q′
i (x̄i , y, u,wi)

]

.

Before proving that the reduction works properly, we describe the canonical universal
solution for I , and give some intuition about the definitions of M and Q. For every
i ∈ {1, . . . ,m}, relation R′

i contains tuples of the form (ā, c,1,1), for every tuple ā

that belongs to the interpretation of Ri in I , and also the tuples of the form (b̄, c,2,2),
for all the possible tuples b̄ generated by using the elements in V I (which correspond
to all the tuples generated from the values mentioned in � and t̄). The relation T ′
is a copy of the relation T in I . The tuples in the relation A′ result from the last
four dependencies. First, due to the mapping (28), we copy every tuple in A from
I into A′, and add the constants c,1,2 in its last three positions. Second, for every
possible tuple b̄ generated by using the elements in V I , mapping (29) includes in A′
a tuple of the form (b̄,⊥,1,2), where ⊥ is a fresh null value. We shall generically
describe the null values added by (29) as ⊥. Third, mapping (30) copies the relation
W and adds the constants 2,1 to each of the tuples in W . Finally, for every possible
tuple b̄ generated by using the elements in V I , mapping (31) includes in A′ the tuple
(b̄, c,2, c).
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Let us now give some intuition about the definitions of M and Q. To show that
Q does not hold in every possible solution for I under M, one can compute the
canonical universal solution J for I under M, and then try to replace some of the
nulls of J in order to generate a solution for I where Q does not hold. Each one of
these replacements represents either an application of the sirup rule to add a tuple to
the predicate A or a test of whether t̄ ∈ �(∅). More precisely, assume that one has
found an assignment ρ for the variables of Q that satisfies the body of this query.
By examining the set of possible tuples of A′ in J , we know that ρ(u) is either 1
or 2. The former case represents an application of the sirup rule, while the latter is
used to test whether t̄ ∈ �(∅). In particular, if ρ(u) = 1, then given that ρ(y) = c

(since T ′(y) is a conjunct of Q) and ρ(y) �= ρ(z) (since y �= z is a conjunct of Q),
we conclude that ρ(z) is a null value and ρ(w) = 2 by examining the set of possible
tuples of A′ in J having 1 as their k + 2 argument. Thus, in this case we have to
replace ρ(z) by value c in order to construct a solution for I under M where Q

does not hold. But in our reduction, the fact that tuple (ρ(x1), . . . , ρ(xk), c,1,2) is
added to A′ indicates that tuple (ρ(x1), . . . , ρ(xk)) is included in A when computing
�(∅). It is important to notice that this represents a correct application of sirup rule
A(x̄) ← Q1(x̄1), . . . ,Qn(x̄n), as from the fact that

∧

1≤i≤n

Q′
i (ρ(x̄i), c,1, ρ(wi))

holds and the definitions of I and M, one can conclude that every atom Qi(ρ(x̄i))

holds in �(∅) (in particular, if Q′
i = R′

j , then by examining the tuples of R′
j in

J having 1 in its penultimate argument, one concludes that Qi(ρ(x̄i)) belongs to
�). On the other hand, if ρ(u) = 2, then by examining the set of possible tuples
of A′ in J and given that ρ(y) = c, we conclude that ρ(w) = 1 and ρ(z) = d .
Thus, it is not possible to replace by ρ(z) by ρ(y) in this case, and one concludes
that certainM(Q, I) = true (as formally shown below). But this corresponds with
our intention of checking whether t̄ ∈ �(∅). In fact, given that the only tuple in
A′ having d in its k + 1 argument is generated from tuple W(c1, . . . , ck, d), we
have that ρ(xi) = ci , for every i ∈ {1, . . . , k}. Thus, by considering the conjunct
A′(x1, . . . , xk, y,w,v) of Q, we conclude that A′(c1, . . . , ck, c,1, ρ(v)) holds, which
means by the manner value 1 is used in our reduction (described above) that tuple
(c1, . . . , ck) belongs to �(∅).

Next, we formally show that certainM(Q, I) = true if and only if t̄ ∈ �(∅).
(⇒) If certainM(Q, I) = true, then Q holds in all the possible solutions for I

under M. We use this condition to define the following sequence J0, . . . , Ji, . . . of
solutions for I .

• J0 is the canonical universal solution for I under M.
• Assume that there exists a tuple t̄i such that t̄i witnesses the satisfaction of the body

of Q in Ji and z is assigned a null value ⊥ in t̄i . Then Ji+1 is generated from Ji

by replacing ⊥ by the value assigned to y in t̄i .

We note that for every tuple t̄i used to generate the sequence J0, . . . , Ji, . . . , the
value assigned to y in t̄i is constant c. Thus, we have that the sequence J0, . . . , Ji, . . .

is finite, and we let Jm be its last element. By definition of M, and given that Jm is a
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solution for I and certainM(Q, I) = true, we have that there exists a tuple t̄m such
that t̄m witnesses the satisfaction of the body of Q in Jm, z is assigned value d in
t̄m and y is assigned value c in t̄m. Furthermore, we also have that A′(t̄ , d,2,1) and
A′(t̄ , c,1,2) are both tuples in Jm.

For every i ∈ {0, . . . ,m} and tuple t̄i , let āi be the restriction of t̄i to the variables
x1, . . . , xk . In particular, we have that ām = t̄ . By induction on i, next we show that
A(āi) ∈ T i+1

� (∅).

• Base case: For every j ∈ {1, . . . , n}, let b̄j be the restriction of ā0 to the tuple of
variables x̄j . By definition of J0 and t̄0, we have that for every j ∈ {1, . . . , n}, if
Q′

j = R′
p , for some p ∈ {1, . . . ,m}, then R′

p(b̄j , c,1,1) holds in J0, and if Q′
j =

A′, then A′(b̄j , c,1,2) holds in J0. Thus, from the definition of J0, we have that for
every j ∈ {1, . . . , n}, if Q′

j = R′
p , for some p ∈ {1, . . . ,m}, then Rp(b̄j ) is a fact

in �, and if Q′
j = A′, then A(b̄j ) is a fact in �. Therefore, by definition of t̄0, we

conclude that A(ā0) can be deduced from the facts of � and, thus, A(ā0) ∈ T 1
�(∅).

• Inductive step: Assume that for every q < i, it holds that A(āq) ∈ T q+1
� (∅), and

let b̄j be the restriction of āi to the tuple of variables x̄j , for every j ∈ {1, . . . , n}.
By definition of Ji and t̄i , we have that for every j ∈ {1, . . . , n}, if Q′

j = R′
p , for

some p ∈ {1, . . . ,m}, then R′
p(b̄j , c,1,1) holds in Ji and, thus, Rp(b̄j ) is a fact in

� by definition of the sequence J0, . . . , Jm. On the other hand, if Q′
j = A′, then

A′(b̄j , c,1,2) holds in Ji . Let q ≤ i be the smallest index such that A′(b̄j , c,1,2)

holds in Jq . If q = 0, then A(b̄j ) is a fact in � and, therefore, A(b̄j ) ∈ T q+1
� (∅). If

q > 0, then A′(b̄j , c,1,2) was included in Jq when replacing the z-value of t̄q−1

by the y-value of this tuple. Thus, by induction hypothesis, we have that A(b̄j ) ∈
T q+1

� (∅). Therefore, for every j ∈ {1, . . . , n}, we have that Qj(b̄j ) ∈ T i
�(∅), which

implies that A(āi) ∈ T i+1
� (∅) by the definition of t̄i and āi .

Hence, we have that A(ām) ∈ T m+1
� (∅) and, therefore, t̄ ∈ �(∅) since ām = t̄ . This

concludes the first part of the proof.
(⇐) Assume that t̄ ∈ �(∅) and, for the sake of contradiction, assume that

certainM(Q, I) = false. Moreover, let Q̂(u, v,w,w1, . . . ,wn, x1, . . . , xk, y, z, x̄′)
be a query obtained by removing the existential quantifiers from Q:

A′(x1, . . . , xk, z, u,w) ∧ T ′(y) ∧ A′(x1, . . . , xk, y,w,v) ∧ z

�= y ∧
∧

1≤i≤n

Q′
i (x̄i , y, u,wi).

To obtain a contradiction, we define a sequence of solutions J0, . . . , Ji, . . . and a
corresponding sequence of sets of tuples T0, . . . , Ti, . . . as follows.

• Let J0 be the canonical universal solution for I under M, and T0 = Q̂(J0), that is,
the evaluation of Q̂ over J0.

• For every i ≥ 0, let Ji+1 be obtained from Ji by replacing every null value ⊥ in
a tuple of Ti by the constant c, if ⊥ witnesses the inequality of Q̂. Moreover, let
Ti+1 = Q̂(Ji+1).
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Given that J0 has finite number of null values, we have that the sequence J0, . . . , Ji,

. . . is finite, and we let Jm be its last element. Next we show that from the assumption
that certainM(Q, I) = false, one can deduce that Q(Jm) = false. Let ψ be the
following dependency:

∀u∀v∀w∀w1 · · · ∀wn∀x1 · · · ∀xk∀y∀z∀x̄′
[

(A′(x1, . . . , xk, z, u,w)

∧ T ′(y) ∧ A′(x1, . . . , xk, y,w,v) ∧
∧

1≤i≤n

Q′
i (x̄i , y, u,wi)) → (z = y)

]

.

It is easy to see that solution Jm can be obtained from J0 as the result of repeatedly
chasing J0 with ψ [9]. Thus, it follows from [9] that certainM(Q, I) = false if
and only if Q(Jm) = false. Therefore, we conclude that Q(Jm) = false.

We now show that the fact that Q(Jm) = false leads to a contradiction. Consider
the program evaluation sequence T 0

�(∅), . . . , T m
� (∅).

Claim 6.4 For every i ∈ {0, . . . ,m}, if A(ā) holds in T i
�(∅), then tuple A′(ā, c,1,2)

holds in Ji .

Proof By induction on i ∈ {0, . . . ,m}.
• Base case: Assume that A(ā) holds in T 0

�(∅). Then A(ā) is a fact in � and, thus,
given that J0 is the canonical universal solution for I under M, we conclude that
A′(ā, c,1,2) holds in J0.

• Inductive step: Assume that the property holds for every j < i and that A(ā)

holds in T i
�(∅). If A′(ā, c,1,2) holds in Ji−1, then by definition of the sequence

J0, . . . , Jm, we have that A′(ā, c,1,2) holds in Ji . Thus, assume that A′(ā, c,1,2)

does not hold in Ji−1, and notice this implies that A′(ā,⊥,1,2) holds in Ji−1,
where ⊥ is a null value, and that A(ā) does not hold in T i−1

� (∅) (otherwise
by induction hypothesis we obtain that A′(ā, c,1,2) holds in Ji−1). But then
we have that A(ā) can be deduced from T i−1

� (∅) by using the only rule in �.
Thus, there exists an instantiation A(ā) ← Q1(ā1), . . . ,Qn(ān) of the rule of �

such that Q1(ā1), . . . ,Qn(ān) belong to T i−1
� (∅). Thus, by induction hypothe-

sis and the definition of the sequence J0, . . . , Jm, we conclude that for every
p ∈ {1, . . . , n}, if Q′

p = Rq for some q ∈ {1, . . . ,m}, then Rq(āp, c,1,1) holds in
Ji−1, and if Q′

p = A′, then A′(āp, c,1,2) holds in Ji−1. Therefore, given that both
A′(ā,⊥,1,2) and A′(ā, c,2, c) hold in Ji−1, we conclude that one of the tuples
of Ti−1 has ⊥ as a witness for the inequality of Q̂. This implies that A′(ā, c,1,2)

holds in Ji since ⊥ is replaced by c to obtain Ji from Ji−1. �

By Claim 6.4 and the definitions of sequence J0, . . . , Jm and data exchange set-
ting M, we conclude that T m

� (∅) = T m+1
� (∅). Thus, given that t̄ ∈ �(∅), we have

that A(t̄) holds in T m
� (∅). Therefore, by Claim 6.4, we have that A′(t̄ , c,1,2) holds

in Jm. But this implies that Q(Jm) = true since (1) A′(t̄ , d,2,1) holds in Jm,
(2) A′(b̄, c,2, c) holds in Jm for every k-tuple b̄ of elements from V I , and (3)
Ri(b̄i , c,2,2) holds in Jm for every li -tuple b̄i of elements from V I (i ∈ {1, . . . ,m}).
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But this contradicts our initial assumption. This concludes the proof of the theo-
rem. �

It is natural to ask what happens in the case of unrestricted queries and, more
specifically, for queries with two inequalities. It was noted that the data complexity
becomes higher when dealing with two inequalities, and a similar behavior should be
expected for the combined complexity. Indeed, we have that:

Theorem 6.5 For every k ≥ 2, CERTAIN-ANSWERS(GLAV, k-CQ �=) is
CONEXPTIME-complete.

For the sake of readability, we just give here a brief sketch of the proof of Theo-
rem 6.5, and we leave the rather technical proof of this theorem for Appendix A.3.

Proof sketch First, we prove the membership in CONEXPTIME. In [9], it was
proved that given a UCQ �= query Q and a data exchange setting M, the prob-
lem CERTAIN-ANSWERS(M,Q) is in CONP. An inspection of this proof reveals
that if M and Q are not assumed to be fixed, then the same proof shows that
CERTAIN-ANSWERS(GLAV, UCQ �=) is in CONEXPTIME. Thus, we conclude that
CERTAIN-ANSWERS(GLAV, k-CQ �=) is in CONEXPTIME.

The CONEXPTIME-hardness is established by a reduction from the satisfiability
problem for the Bernays-Schönfinkel class of FO sentences to the complement of
CERTAIN-ANSWERS(GLAV,2-CQ �=). Formally, the Bernays-Schönfinkel class of
FO sentences is defined as the class of all FO formulas of the form ∃x̄∀ȳψ(x̄, ȳ),
where ψ(x̄, ȳ) is quantifier-free and mentions neither any function symbol nor the
equality symbol. Then the satisfiability problem for the Bernays-Schönfinkel class is
the problem of verifying, given a formula ∃x̄∀ȳψ(x̄, ȳ) in this class, whether there ex-
ists a structure that satisfies ∃x̄∀ȳψ(x̄, ȳ). This problem is known to be NEXPTIME-
complete (see, e.g., [6]). �

As we mentioned in the previous section, if data exchange settings are not con-
sidered to be fixed, then one has to deal with canonical universal solutions of expo-
nential size when computing certain answers. A natural way to avoid this problem
is by restricting the class of data exchange settings to be LAV settings. For the case
of DATALOGC(�=) programs, this restriction does not help in reducing the complexity
of computing certain answers. However, the evaluation of CQ �= queries is not inher-
ently exponential and, thus, we are able to considerably reduce the complexity by
considering LAV settings, as we show in the following proposition.

Proposition 6.6 CERTAIN-ANSWERS(LAV,1-CQ �=) is NP-complete, and
CERTAIN-ANSWERS(LAV, k-CQ �=) is �

p

2 -complete for every k ≥ 2.

Proof That the problem CERTAIN-ANSWERS(LAV,1-CQ �=) is NP-complete can
be proved using techniques in [9] for membership, and in [14] for hardness. Fur-
thermore, the membership of CERTAIN-ANSWERS(LAV, k-CQ �=) in �

p

2 follows
from [1]. Thus, we only need show that CERTAIN-ANSWERS(LAV, k-CQ �=) is �

p

2 -
hard.
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The �
p

2 -hardness is established by a reduction from ∀∃ 3-SAT, which is the prob-
lem of verifying, given a Boolean formula ψ in 3-CNF with variables partitioned into
sets x̄ and z̄, whether it is true that for every truth assignment of the variables in x̄,
there exists a truth assignment of the variables in z̄ so that ψ is satisfied with the
overall assignment. This problem is known to be �

p

2 -complete.
Let φ be a formula of the form ∀x̄∃z̄

∧
1≤k≤� ψk , where each ψk (1 ≤ k ≤ �) is

a clause containing exactly three literals. Let x̄ = (x1, . . . , xn) and z̄ = (z1, . . . , zm).
Based on φ, we show how to construct in polynomial time a LAV data exchange
setting M = (S,T,�st ), a query Q and an instance I such that certainM(Q, I) =
true if and only if φ is satisfiable. More precisely, the LAV setting (S,T,�st ) and
the source instance I are defined as follows:

• The source schema S consists of � ternary relations C1, . . . ,C�, and a relation A

of arity four.
• The target schema T consists of two unary relations U ′, O ′, n unary relations

X′
1, . . . ,X

′
n, m unary relations Z′

1, . . . ,Z
′
m, two binary relations R′ and T ′ and

� ternary relations C′
1, . . . ,C

′
�, that are intended to be copies of the relations

C1, . . . ,C�.
• The elements of the source instance I are the constants 1,0, a, d . The interpretation

of the relation A in I contains the single tuple (0,1, a, d). For each k ∈ {1, . . . , �},
the interpretation of the relation Ck in I contains the tuple (d, d, d), plus seven
tuples of the form (u, v,w), where u,v,w represent the values of the satisfying
assignments for ψk . For example, if ψk ≡ (x1 ∨ ¬x2 ∨ z1), then CI

k consists of the
following tuples: (d, d, d), (0,0,0), (0,0,1), (0,1,1), (1,0,0), (1,0,1), (1,1,0)

and (1,1,1). Notice that tuple (0,1,0) is not included in CI
k as it does not represent

a satisfying assignment for ψk .
• The set �st of source-to-target dependencies is defined as follows:

– First, we create the tuples O ′(0) and U ′(1) in CAN(I ):

A(x,y, z,w) → O ′(x), (32)

A(x,y, z,w) → U ′(y). (33)

– Next, for every i ∈ {1, . . . , n}, we add a rule that is intended to create the follow-
ing tuples in CAN(I ) (where ⊥i is a fresh null value): X′

i (⊥i ), X′
i (d), T ′(⊥i ),

R′(a,⊥i ) and R′(⊥i , d):

A(x,y, z,w) → ∃n
(
X′

i (n) ∧ X′
i (w) ∧ T ′(n) ∧ R′(z, n) ∧ R′(n,w)

)
. (34)

– For every j ∈ {1, . . . ,m}, we also add the following st-tgd:

A(x,y, z,w) → Z′
j (x) ∧ Z′

j (y) ∧ Z′
j (w). (35)

The purpose of this set of dependencies is to add the following tuples to CAN(I ):
Z′

j (0), Z′
j (1) and Z′

j (d), for every j ∈ {1, . . . ,m}.
– Next, we add to CAN(I ) the tuples R′(a,0), R′(a,1) and T ′(a):

A(x,y, z,w) → T ′(z) ∧ R′(z, x) ∧ R′(z, y). (36)
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– Finally, for every k ∈ {1, . . . , n}, we add a rule that creates a copy of the relation
Ck in CAN(I ):

Ck(x, y, z) → C′
k(x, y, z). (37)

Furthermore, the query Q is defined as follows:

Q = ∃b∃e∃g∃v1 · · · ∃vn∃w1 · · · ∃wm
[( ∧

1≤i≤n

X′
i (vi) ∧ R′(g, vi)

)

∧
( ∧

1≤j≤m

Z′
j (wj ) ∧ R′(g,wj )

)

∧ α(v1, . . . , vn,w1, . . . ,wm) ∧ U ′(e) ∧ O ′(b) ∧ T ′(g) ∧ g �= b ∧ g �= e

]

,

where α(v1, . . . , vn,w1, . . . ,wm) is defined as follows. For every k ∈ [1, �], let
uk

1, u
k
2, u

k
3 be the propositional variables of ψk . Further, let χ be a function such

that χ(xi) = vi and χ(zj ) = wj , for every i ∈ [1, n] and j ∈ [1,m]. Then

α(v1, . . . , vn,w1, . . . ,wm) =
∧

1≤k≤�

C′
k(χ(uk

1),χ(uk
2),χ(uk

3)).

For example, if φ is the formula ∀x1∀x2∃z1∃z2∃z3((x1 ∨ x2 ∨ z1) ∧ (¬x1 ∨
z2 ∨ ¬z3)), then α is defined as α(v1, v2,w1,w2,w3) = C′

1(v1, v2,w1) ∧ C′
2(v1,

w2,w3).

Before we continue with the proof, we give some intuition about the reduction. For
every i ∈ [1, n], the relation X′

i is intended to store the truth value of the variable xi in
φ, and for every j ∈ [1,m], the relation Z′

j is intended to store the truth value for the
variable zj in φ. As previously shown, for each variable in zj ∈ z̄, the tuples Z′

j (0)

and Z′
j (1) belong to CAN(I ), while for each variable xi ∈ x̄, only the tuple X′

i (⊥i )

belongs to the canonical universal solution for I . We are interested in those solutions
in which every null ⊥i in CAN(I ) (1 ≤ i ≤ n) has been replaced with an element 0
or 1. Each one of these solutions represents a particular valuation for the variables in
x̄: For every i ∈ {1, . . . , n}, the valuation assigns the value 1 to the variable xi if and
only if the null ⊥i in the tuple X′

i (⊥i ) in CAN(I ) is replaced with the element 1.
Intuitively, the first task of the query Q is to select only those solutions in which

every null has been replaced with the element either 0 or 1. Roughly speaking, if J is
an arbitrary solution in which there is a null that has not been replaced with either 0
or 1, then the evaluation of Q over J must be true. This is done with the help of the
relation T ′. Let ⊥ be the aforementioned null of J . Then one can always construct a
satisfying assignment ρ for the variables of Q as follows: ρ assigns the element d to
every variable except for g, b and e, that are assigned the values ⊥, 0 and 1, respec-
tively. The second task of Q is to verify whether for every valuation of the universally
quantified variables of φ, there exists a valuation of the existentially quantified vari-
ables that satisfy φ. Recall that every solution J in which the nulls of CAN(I ) have
been replaced with the element 0 or 1 represents a particular valuation σx̄ for the
variables in x̄. Further, notice that, since for every j ∈ [1,m], CAN(I ) contains the
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tuples Z′
j (1) and Z′

j (0), every solution J for I contains essentially every possible
valuation for the variables in z̄. Then the query Q will choose a specific valuation
σz̄ for the existentially quantified variables such that φ is satisfied by the valuations
(σx̄, σz̄). Intuitively, the satisfying valuation for the existentially quantified variables
comes from the tuples in J that witness the predicates Z′

1(w1), . . . ,Z
′
m(wm) of the

body of Q. More precisely, it can be shown that the evaluation of Q over one of the
selected solutions J is true if and only if there exists a valuation σz̄ for the variables
in z̄ such that φ is satisfied by the valuation (σx̄, σz̄). Finally, to compute the certain
answers of Q for I one must check if Q holds in every solution for I under M.
Intuitively, by doing this we are verifying whether for every possible valuation of the
variables in x̄, there exists a valuation for the variables of z̄ such that φ holds under
those valuations.

We now prove that certainM(Q, I) = true if and only if φ is satisfiable. In fact,
it is more convenient to show that certainM(Q, I) = false if and only if φ is not
satisfiable.

(⇐) Assume that φ is not satisfiable, that is, there exists a valuation σx̄ of the uni-
versally quantified variables such that φ does not hold under any possible valuation
of the existentially quantified variables. Define a function h from CAN(I ) to CAN(I )

as follows:

• h(y) = 1 if y = ⊥i , there is a tuple X′
i (⊥i ) in CAN(I ) and σx̄(xi) = 1;

• h(y) = 0 if y = ⊥i , there is a tuple X′
i (⊥i ) in CAN(I ), and σx̄(xi) = 0; and

• h(y) = y otherwise.

Let J 	 be the solution obtained from the canonical solution CAN(I ) by replacing
each element y in CAN(I ) with h(y). We now show that Q(J 	) = false and, thus,
certainM(Q, I) = false. Assume, for the sake of contradiction, that J 	 satisfies
Q. Then there must exist an assignment ρ of the variables of Q that satisfy the body
of the query. Depending on the value of ρ(g), we have two cases:

• Assume first that ρ(g) = h(⊥i ) for some i ∈ [1, n], where ⊥i is the null value in
the tuple X′

i (⊥i ) in the canonical solution for I . Notice that the only tuples in the
interpretation of the relations O ′ and U ′ in J 	 are O ′(0) and U ′(1), respectively.
Thus, ρ(b) = 0 and ρ(e) = 1. From the definition of Q, it must be the case that
h(⊥i ) �= 0 and h(⊥i ) �= 1, but this contradicts the definition of h.

• Assume now that ρ(g) = a. Then, for every vi , it must be the case that ρ(vi) =
h(⊥i ), or, in other words, ρ(vi) = σx̄(xi). Choose a valuation σz̄ such that for every
j ∈ {1, . . . ,m}, σz̄(zj ) = 1 if ρ assigns the element 1 to the variable wj in Q, and
σz̄(zj ) = 0 if ρ assigns the element 0 to wj . Then given that for every k ∈ [1, �], the
interpretation of the relation C′

k in J 	 contains all the tuples corresponding to the
satisfying assignments of ψk , it is easy to see that the valuation (σx̄, σz̄) satisfies all
the clauses in φ. More precisely, for every k ∈ {1, . . . , �}, truth assignment (σx̄, σz̄)

assigns the values ρ(χ(uk
1)), ρ(χ(uk

2)) and ρ(χ(uk
3)) to the propositional variables

uk
1, uk

2 and uk
3, respectively. Since (ρ(χ(uk

1)), ρ(χ(uk
2)), ρ(χ(uk

3))) is a satisfying
assignment for ψk , it must be the case that ψk holds under (σx̄, σz̄). This also leads
to a contradiction, since we assumed that φ is not satisfiable.

(⇒) Assume that certainM(Q, I) = false. Then there is a solution J 	 where Q

does not hold. Let h be an homomorphism from CAN(I ) to J 	. We first claim that
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for every null ⊥ in CAN(I ), it must be the case that h(⊥) = 0 or h(⊥) = 1. Assume,
for the sake of contradiction, that for some i ∈ [1, n], the tuple X′

i (h(⊥i )) in J 	 is
such that h(⊥i ) �= 0 and h(⊥i ) �= 1. But then, given that all the tuples T ′(h(⊥i )),
R′(h(⊥i ), d), X′

i (d) (1 ≤ i ≤ n), Z′
j (d) (1 ≤ j ≤ m) and C′

k(d, d, d) (1 ≤ k ≤ �) be-
long to J 	, we obtain that Q(J 	) = true, which contradicts our initial assumption.

Next, to prove that φ is not satisfiable, we provide a truth assignment σx̄ for the
universally quantified variables of φ, and then prove that under this assignment, the
evaluation of φ is false under every valuation of the existentially quantified variables
of φ. The valuation σx̄ is defined as follows:

• σx̄(xi) = 1 if ⊥i is a null value such that the tuple X′
i (⊥i ) belongs to CAN(I ) and

h(⊥i ) = 1; and
• σx̄(xi) = 0 if ⊥i is a null value such that the tuple X′

i (⊥i ) belongs to CAN(I ) and
h(⊥i ) = 0.

Notice that this valuation is well defined since, as shown above, h assigns value either
0 or 1 to every null in CAN(I ). Assume, for the sake of contradiction, that φ is
satisfiable. In particular, there must exist a valuation σz̄ such that the valuation σ =
(σx̄ , σz̄) satisfies φ. We know that for each k ∈ [1, �], the interpretation of the relation
C′

k in J 	 contains the seven tuples that represent a satisfying valuation for the k-th
clause of φ. Then it is clear that for every k ∈ [1, �], it holds that J 	 contains the tuples
C′

k(σ (uk
1), σ (uk

2), σ (uk
3)), where uk

1, u
k
2, u

k
3 are the propositional variables of ψk . We

also know that J 	 contains the tuples Z′
j (σ (zj )) and R′(a, σ (zj )), for every j ∈

[1,m]. Moreover, by the definition of σx̄ , we have that the tuples X′
i (σ (xi)) and

R′(a, σ (xi)) also belong to J 	, for every i ∈ [1, n]. It follows that Q(J 	) = true,
which is again a contradiction. This proves that φ is not satisfiable, and concludes the
proof of the theorem. �

A natural question at this point is what happens with the complexity of the certain
answers problem if one considers the entire class CQ �=. In the following theorem, we
show that the same complexity bounds as in Theorem 6.5 and Proposition 6.6 hold
in this case. Notice that the lower bounds in the following theorem follow from the
lower bounds in these results.

Theorem 6.7 CERTAIN-ANSWERS(GLAV, CQ �=) is CONEXPTIME-complete and
CERTAIN-ANSWERS(LAV, CQ �=) is �

p

2 -complete.

We conclude this section by pointing out that all the complexity bounds presented
in this section remain the same if one allows unions of conjunctive queries with in-
equalities; if k-UCQ �= is the class of unions of k-CQ �= queries, then

Proposition 6.8

(1) CERTAIN-ANSWERS(GLAV,1-UCQ �=) is EXPTIME-complete, CERTAIN-
ANSWERS(LAV,1-UCQ �=) is NP-complete.

(2) CERTAIN-ANSWERS(GLAV, k-UCQ �=) is CONEXPTIME-complete, and
CERTAIN-ANSWERS(LAV, k-UCQ �=) is �

p

2 -complete for every k ≥ 2.
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(3) CERTAIN-ANSWERS(GLAV, UCQ �=) is CONEXPTIME-complete, and CERTAIN-
ANSWERS(LAV, UCQ �=) is �

p

2 -complete.

7 Concluding Remarks

In this paper, we proposed the language DATALOGC(�=) that extends DATALOG with
a restricted form of negation, and studied some of its fundamental properties. In par-
ticular, we showed that the certain answers to a DATALOGC(�=) program can be com-
puted in polynomial time (in terms of data complexity), and we used this property to
find tractable fragments of the class of unions of conjunctive queries with inequal-
ities. In the paper, we also studied the combined complexity of computing certain
answers to DATALOGC(�=) programs and other related query languages.

Many problems related to DATALOGC(�=) programs remain open. In particular, it
would be interesting to know if it is decidable whether the certain answers to a query
Q in UCQ �= can be computed as the certain answers to a DATALOGC(�=) program
�Q, and whether there exist a setting M and a query Q in UCQ �= such that the
problem CERTAIN-ANSWERS(M,Q) is in PTIME, but the certain answers to Q can-
not be computed as the certain answers to a DATALOGC(�=) program �Q.
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Appendix: Proofs and Intermediate Results

A.1 Proof of Lemma 5.3

We first prove a technical result that relates query answering and open-reachability.

Claim A.1 Let Q and M be as defined above. Let I be an arbitrary source instance
with canonical universal solution J , and let t̄ = (t1, . . . , tm) be a tuple of constants
from I that also belong to J . Let q = (p1,p2) and q ′ = (p′

1,p
′
2) be two semi-open

nodes in H(Q,J, t̄) such that the constant components of q and q ′ are different, and
that q ′ is openly-reachable from q . Then, for every solution J ∗ of I and homomor-
phism h from J to J ∗, if h(p1) = h(p2) and h(p′

1) = h(p′
2), then J ∗ |= Q(t̄).

Proof Assume that Q(x̄) = Q1(x̄) ∨ · · · ∨ Ql(x̄), where x̄ = x1, . . . , xm. Let q =
(p1,p2) and q ′ = (p′

1,p
′
2) be two semi-open nodes in H(Q,J, t̄) such that q and q ′

have different constant components, and that q ′ is openly-reachable from q . Let us
fix a solution J ∗ for I and assume there is a homomorphism h from J to J ∗ such that
h(p1) = h(p2) and h(p′

1) = h(p′
2). Since q and q ′ are openly-reachable, there exists

a path qq1 · · ·qkq
′ in H(Q,J, t̄) such that every node qi , 1 ≤ i ≤ k, is open and has

a green-labeled loop. Notice that in this particular case there must be at least one
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extra node in the path, that is, k ≥ 1. Assume otherwise. Then q and q ′ are red-
adjacent (share its null value) and have different constant components. It follows that
either h(p1) �= h(p2) or h(p′

1) �= h(p′
2), which is a contradiction.

Notice also that there must be at least one node qj = (p
j

1 ,p
j

2), 1 ≤ j ≤ k, such

that h(p
j

1) �= h(p
j

2 ). This can be proved using a similar argument to the one in the
previous paragraph. From the definition, qj has a green-labeled loop, that is, there
exists some 1 ≤ i ≤ l such that Qi(x̄) is a conjunctive query with one inequality
of the form ∃ȳ(φ(x̄, ȳ) ∧ u1 �= u2), and an assignment σ : {x̄, ȳ} → dom(J ), such
that σ(x̄) = t̄ , (J, σ ) |= φ(x̄, ȳ) ∧ u1 �= u2, σ(u1) = p

j

1 , σ(u2) = p
j

2 . We obtain that
(J ∗, σ ) |= φ(x̄, ȳ) ∧ u1 �= u2 from the fact that conjunctive queries are preserved
under homomorphisms, and that h(p

j

1) �= h(p
j

2). Thus, we obtain that J |= Qi(t̄),
and therefore J ∗ |= Q(t̄). �

We now continue with the proof of Lemma 5.3. We first prove the ‘if’ direction.
Let J ∗ be an arbitrary solution for I , and h a homomorphism from J to J ∗. In par-
ticular, h(t̄) = t̄ . Assume first that μ and ν are blue-adjacent in H(Q,J, t̄). Then
for some i ∈ [1, �], Qi(x̄) is of the form ∃ȳφ(x̄, ȳ), where φ(x̄, ȳ) is a conjunction
of relational atoms over T, and J |= Qi(t̄). It follows that J ∗ |= Qi(h(t̄)), since con-
junctive queries are preserved under homomorphisms, and, thus, that J ∗ |= Qi(t̄),
because h(t̄) = t̄ . Therefore, J ∗ |= Q(t̄), and t̄ ∈ certainM(Q, I), because J ∗ was
arbitrarily chosen.

Assume now that μ and ν are not blue-adjacent in H(Q,J, t̄), but that there are
two nodes q = (p1,p2) and q ′ = (p3,p4) in H(Q,J, t̄) such that q and q ′ are blue-
adjacent and both q and q ′ have c-paths in H(Q,J, t̄). Since q and q ′ are blue ad-
jacent, for some 1 ≤ i ≤ �, (1) Qi(x̄) is of the form ∃ȳ(φ(x̄, ȳ)∧u1 �= u2 ∧ v1 �= v2),
where φ(x̄, ȳ) is a conjunction of relational atoms over T, and u1, u2, v1, v2 ∈ {x̄, ȳ},
and (2) there is an assignment σ : {x̄, ȳ} → dom(J ), such that σ(x̄) = t̄ , (J, σ ) |=
φ(x̄, ȳ) ∧ u1 �= u2 ∧ v1 �= v2, σ(u1) = p1, σ(u2) = p2, σ(v1) = p3, and σ(v2) = p4.

Notice that if h(σ (u1)) �= h(σ (u2)) and h(σ (v1)) �= h(σ (v2)), then J ∗ |= Qi(t̄)

(because conjunctive queries are preserved under homomorphisms), and, therefore,
J ∗ |= Q(t̄) and t̄ ∈ certainM(Q, I) (because J ∗ was arbitrarily chosen). So, assume
otherwise that h(σ (u1)) = h(σ (u2)) (the case when h(σ (v1)) = h(σ (v2)) is com-
pletely symmetrical). Let q = q1q2 · · ·q2k+1 be a c-path in H(Q,J, t̄), k ≥ 0. There
are two cases to consider:

• For some 0 < j ≤ k − 1, q2j+1 = (p
2j+1
1 ,p

2j+1
2 ) is such that h(p

2j+1
1 ) �=

h(p
2j+1
2 ): Assume without loss of generality that for every 0 ≤ j ′ < j , q2j ′+1 =

(p
2j ′+1
1 ,p

2j ′+1
2 ) is such that h(p

2j ′+1
1 ) = h(p

2j ′+1
2 ). Since for every 0 < s ≤ j it

is the case that q2s = (p2s
1 ,p2s

2 ) is openly-reachable from q2s−1 = (p2s−1
1 ,p2s−1

2 ),
and the constant components of q2s and q2s−1 are different, if for some 0 < s ≤ j

it holds that h(p2s
1 ) = h(p2s

2 ), then from Claim A.1 we obtain that J ∗ |= Q(t̄) (and
thus t̄ ∈ certainM(Q, I) because J ∗ was arbitrarily chosen). Thus, assume that
h(p2s

1 ) �= h(p2s
2 ) for every 0 < s ≤ j . In particular, h(p

2j

1 ) �= h(p
2j

2 ).
Assume first that q2j has a green-labeled loop (the case when q2j+1 has a

green-labeled loop is completely symmetrical). Then, it must be the case that for
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some 1 ≤ i′ ≤ �, (1) Qi(x̄) is of the form ∃z̄(ψ(x̄, z̄)∧w1 �= w2), where ψ(x̄, z̄) is
a conjunction of relational atoms over T, and w1,w2 ∈ {x̄, z̄}, and (2) there is an as-
signment σ ′ : {x̄, z̄} → dom(J ), such that σ ′(x̄) = t̄ , (J, σ ) |= φ(x̄, z̄) ∧ w1 �= w2,
σ(w1) = p

2j

1 , σ(w2) = p
2j

2 . Because (1) conjunctive queries are preserved un-

der homomorphisms, (2) h(σ ′(w1)) = h(p
2j

1 ) �= h(p
2j

2 ) = h(σ ′(w2)), it is the
case J ∗ |= ψ(h(t̄), h(σ ′(z̄))) ∧ h(σ ′(w1)) �= h(σ ′(w2)). It follows that J ∗ |=
∃z̄(ψ(t̄, z̄) ∧ w1 �= w2), because h(t̄) = t̄ . We conclude that J ∗ |= Q(t̄), and thus
that t̄ ∈ certainM(Q, I), since J ∗ was arbitrarily chosen.

Assume now that q2j does not have a green-labeled loop. Thus, q2j and
q2j+1 are blue-adjacent. Therefore, it must be the case that for some i′ ∈ [1, �],
(1) Qi′(x̄) is of the form ∃z̄(ψ(x̄, z̄) ∧ w1 �= w2 ∧ w3 �= w4), where ψ(x̄, z̄)

is a conjunction of relational atoms over T, and w1,w2,w3,w4 ∈ {x̄, z̄}, and
(2) there is an assignment σ ′ : {x̄, z̄} → dom(J ), such that σ ′(x̄) = t̄ , (J, σ ′) |=
ψ(x̄, z̄)∧w1 �= w2 ∧w3 �= w4, σ ′(w1) = p

2j

1 , σ ′(w2) = p
2j

2 , σ ′(w3) = p
2j+1
1 , and

σ ′(w4) = p
2j+1
2 . Because (1) conjunctive queries are preserved under homomor-

phisms, (2) h(σ ′(w1)) = h(p
2j

1 ) �= h(p
2j

2 ) = h(σ ′(w2)), and (3) h(σ ′(w3)) =
h(p

2j+1
1 ) �= h(p

2j+1
2 ) = h(σ ′(w4)), it is the case J ∗ |= ψ(h(t̄), h(σ ′(z̄))) ∧

h(σ ′(w1)) �= h(σ ′(w2)) ∧ h(σ ′(w3)) �= h(σ ′(w4)). It follows that J ∗ |=
∃z̄(ψ(t̄, z̄) ∧ w1 �= w2 ∧ w3 �= w4), because h(t̄) = t̄ . We conclude that J |= Q(t̄),
and, thus, that t̄ ∈ certainM(Q, I), since J ∗ was arbitrarily chosen.

• For every 0 ≤ j ≤ k − 1, q2j+1 = (p
2j+1
1 ,p

2j+1
2 ) is such that h(p

2j+1
1 ) =

h(p
2j+1
2 ): Since for every 0 < s ≤ k, it is the case that q2s = (p2s

1 ,p2s
2 ) is

openly-reachable from q2s−1 = (p2s−1
1 ,p2s−1

2 ), and the constant components of
q2s and q2s−1 are different, from Claim A.1 if for some 0 < s ≤ k it holds that
h(p2s

1 ) = h(p2s
2 ), then J ∗ |= Q(t̄), and, since J ∗ was arbitrarily chosen, we prove

that t̄ ∈ certainM(Q, I). Thus, assume that h(p2k
1 ) �= h(p2k

2 ).
Suppose first that q2k+1 has two constant components. Then by definition

of c-path it contains two different constants, and thus, it must be the case that
h(p2k+1

1 ) �= h(p2k+1
2 ). Since either q2k = q2k+1 and q2k has a green-labeled loop

or q2k+1 and q2k are blue-adjacent in H(Q,J, t̄), h(p2k+1
1 ) �= h(p2k+1

2 ). One can
then follow the same reasoning than in the previous item, and show that J ∗ |= Q(t̄),
and, thus, that t̄ ∈ certainM(Q, I).

Suppose, on the other hand, that q2k+1 = (p2k+1
1 ,p2k+2

1 ) is semi-open. By defi-

nition of c-path, q2k+1 is openly-reachable from q2j−1 = (p
2j−1
1 ,p

2j−1
2 ), for some

1 ≤ j ≤ k. Since h(p
2j−1
1 ) = h(p

2j−1
2 ) and the constant components of q2k+1

and q2j−1 are different, we assume again that h(p2k+1
1 ) �= h(p2k+1

2 ). If not, by
Claim A.1, we obtain that J ∗ |= Q(t̄), and thus t̄ ∈ certainM(Q, I), because J ∗
was arbitrarily chosen. The rest of the proof follows using the same kind of rea-
soning than in the previous item.

Finally, assume that there is a node q = (p1,p2) in H(Q,J, t̄) such that q

has a green-labeled loop and a c-path in H(Q,J, t̄). Thus, for some 1 ≤ i ≤ �,
(1) Qi(x̄) is of the form ∃ȳ(φ(x̄, ȳ) ∧ u1 �= u2), where φ(x̄, ȳ) is a conjunction
of relational atoms over T, and u1, u2 ∈ {x̄, ȳ}, and (2) there is an assignment
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σ : {x̄, ȳ} → dom(J ), such that σ(x̄) = t̄ , (J, σ ) |= φ(x̄, ȳ) ∧ u1 �= u2, σ(u1) = p1,
σ(u2) = p2.

Notice that if h(σ (u1)) �= h(σ (u2)), then J ∗ |= Qi(t̄) (because conjunctive
queries are preserved under homomorphisms), and, since J ∗ was arbitrarily chosen,
it follows that t̄ ∈ certainM(Q, I). So we assume that h(σ (u1)) �= h(σ (u2)). Since q

is marked and has a c-path, using the same argument that in the previous paragraphs
it is possible to show that J ∗ |= Q(t̄), and, thus, that t̄ ∈ certainM(Q, I).

Now we prove the ‘only if’ direction. Let I be an arbitrary source instance and J

its canonical universal solution. We prove that if there is no blue edge between μ

and ν in H(Q,J, t̄), there is no node q with a green-labeled loop that has a c-path,
and there are no blue-adjacent nodes q and q ′ such that both q and q ′ have c-paths
in H(Q,J, t̄), then t̄ �∈ certainM(Q, I). We prove this by building a solution J ′ of I

such that J ′ �|= Q(t̄).
Let us say that a node has a red-blue-path in H(Q,J, t̄), if it has a c-path but

without the restriction on the last element of the path. That is, we say that the node
q has a red-blue path (rb-path) in H(Q,J, t̄) if there is a path q = q1q2 · · ·q2k+1 in
H(Q,J, t̄), k ≥ 0, that satisfies the following:

• Every node qi , 1 ≤ i ≤ 2k, is semi-open;
• every node of the form q2i+1, 0 ≤ i ≤ k − 1, is openly-reachable from q2i+2, but

the constant components in q2i+1 and q2i+2 are different; and
• every node of the form q2i , 0 < i ≤ k, either is blue-adjacent to q2i+1 or q2i =

q2i+1 and q2i has a green-labeled loop.

Further, we say that a node q has an open-null path (on-path), if q is openly-reachable
from an open node q ′ in H(Q,J, t̄).

We define a procedure that does the following. Let

T = {(p1
0,p

2
0,p

3
0,p

4
0), (p

1
1,p

2
1,p

3
1,p

4
1), . . . , (p

1
n,p

2
n,p

3
n,p

4
n)}

be the maximal set of tuples (of length 4) of elements in J that satisfies the following:
For each tuple (p1

j ,p
2
j ,p

3
j ,p

4
j ) ∈ T , 0 ≤ j ≤ n,

• there exists i ∈ [1, �] such that (1) Qi(x̄) is of the form ∃ȳ(φ(x̄, ȳ) ∧ u1 �=
u2 ∧ v1 �= v2), where φ(x̄, ȳ) is a conjunction of relational atoms over T, and
u1, u2, v1, v2 ∈ {x̄, ȳ}, and (2) there is an assignment σ : {x̄, ȳ} → dom(J ), such
that σ(x̄) = t̄ , σ(u1) = p1

j , σ(u2) = p2
j , σ(v1) = p3

j , σ(v2) = p4
j , and

(J, σ ) |= φ(x̄, ȳ) ∧ u1 �= u2 ∧ v1 �= v2,

or
• it is the case that t1

j = t3
j , and t2

j = t4
j , and there exists i ∈ [1, �] such that (1) Qi(x̄)

is of the form ∃ȳ(φ(x̄, ȳ) ∧ u1 �= u2), where φ(x̄, ȳ) is a conjunction of relational
atoms over T, and u1, u2 ∈ {x̄, ȳ}, and (2) there is an assignment σ : {x̄, ȳ} →
dom(J ), such that σ(x̄) = t̄ , σ(u1) = p1

j , σ(u2) = p2
j , and

(J, σ ) |= φ(x̄, ȳ) ∧ u1 �= u2,

and (3) t1
j or t2

j is a constant.
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In any of these cases, we say that the tuple (p1
j ,p

2
j ,p

3
j ,p

4
j ), 0 ≤ j ≤ n, witnesses the

adjacency of the nodes (p1
j ,p

2
j ) and (p3

j ,p
4
j ) in H(Q,J, t̄). Notice that it is possible

that two different tuples in T witness the adjacency of the same pair of nodes.
The procedure first defines an arbitrary linear order over T , and then repeat the

following step until all tuples in T have been marked: It first takes the least tuple in
the order that has not yet been marked, let us say (p1

j ,p
2
j ,p

3
j ,p

4
j ), 0 ≤ j ≤ n. Then

chooses (nondeterministically) a node q ∈ H(Q,J, t̄) that does not have a c-path,
and whose adjacency to some node q ′ ∈ H(Q,J, t̄) is witnessed by (p1

j ,p
2
j ,p

3
j ,p

4
j ).

This node exists because, by hypothesis, it cannot be the case that both (p1
j ,p

2
j ) and

(p3
j ,p

4
j ) have c-paths in H(Q,J, t̄), since either (p1

j ,p
2
j ) has a green-labeled loop

or (p1
j ,p

2
j ) and (p3

j ,p
4
j ) are blue-adjacent in H(Q,J, t̄). Further, notice that by

definition, q has to be semi-open. The procedure then marks (p1
j ,p

2
j ,p

3
j ,p

4
j ) and

does the following for each rb-path q = q1q2 · · ·q2k+1 in H(Q,J, t̄):

(i) For every i ∈ [0, k], if the node q2i+1 contains the null ⊥2i+1 and the constant
c2i+1, it assigns to ⊥2i+1 the value c2i+1. It also assigns the value c2i+1 to every
component of every node that belongs to an on-path starting from q2i+1; and

(ii) for every i ∈ [1, k], the procedure marks each tuple (p1
r ,p

2
r ,p

3
r ,p

4
r ), 1 ≤ r ≤ n,

that witnesses the adjacency of the nodes q2i and q2i+1 in H(Q,J, t̄).

In this case we say that the tuple (p1
j ,p

2
j ,p

3
j ,p

4
j ) and the node q initialize this step

of the procedure.

Claim A.2 The procedure described above assigns at most one constant to each null
⊥ in J .

Proof First, it cannot be the case that a null ⊥ is assigned different constants in steps
i and j of the algorithm with i < j . Assume otherwise, and let q be the node that
initializes step i of the procedure, and let (p1

r ,p
2
r ,p

3
r ,p

4
r ), 0 ≤ r ≤ n, and q ′ be the

tuple and node, respectively, that initialize step j of the procedure. Then either:

a. There are rb-paths q · · ·qt and q ′ · · ·q ′
t such that both qt and q ′

t have null ⊥
as a component, but qt and q ′

t have different constant components. Notice that
q ′ cannot have a green-labeled loop; otherwise, q · · ·qtq

′
t · · ·q ′q ′ would be a

c-path, and therefore q could not have initialized step i of the algorithm. As-
sume, thus, that there is a node q ′′ in H(Q,J, t̄), that is blue-adjacent to q ′,
and that the blue-adjacency of q ′ to q ′′ is witnessed by (p1

r ,p
2
r ,p

3
r ,p

4
r ). But

then q · · ·qtq
′
t · · ·q ′q ′′ is also an rb-path in H(Q,J, t̄), and, therefore, the tuple

(p1
r ,p

2
r ,p

3
r ,p

4
r ) would have been marked in step i of the procedure, which is a

contradiction; or
b. there are rb-paths q · · ·q2k+1 and q ′ · · ·q ′

2k′+1, and on-paths q2j+1 · · ·qs and
q ′

2j ′+1 · · ·qt , 0 ≤ j ≤ k and 0 ≤ j ′ ≤ k′, such that both qs and qt have null ⊥
as a component and the constant components of q2j+1 and q ′

2j ′+1 are different.
But then q2j+1 is openly-reachable from q ′

2j ′+1, and, thus, either q ′ has a green-
labeled loop and q · · ·q2j+1q

′
2j ′+1 · · ·q ′q ′ is a c-path, or there is a node q ′′ that is

blue adjacent to q ′ and such that q · · ·q2j+1q
′
2j ′+1 · · ·q ′q ′′ is an rb-path. Follow-

ing the same reasoning that in the last item one can see that this is a contradiction.
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We now prove that each step i of the algorithm makes at most one assignment to each
null ⊥ in J . Assume otherwise, and let q be the node of H(Q,J, t̄) that initializes
step i. Then either:

a. There are rb-paths q · · ·qt and qq1 · · ·q ′′
t q ′

t , where both qt and q ′
t have null ⊥

as a component, but qt and q ′
t have different constant components. But then

q · · ·qtq
′
t q

′′
t · · ·q1 is also an rb-path in H(Q,J, t̄), and both q and q1 have

the same null component but a different constant component. This shows that
q · · ·qtq

′
t q

′′
t · · ·q1 is a c-path in H(Q,J, t̄), which is a contradiction; or

b. there are rb-paths q · · ·q2k+1 and qq ′
1 · · ·q ′

2k′+1, and on-paths q2j+1 · · ·qs and
q ′

2j ′+1 · · ·qt , 0 ≤ j ≤ k and 0 ≤ j ′ ≤ k′, such that both qs and qt have null ⊥ as
a component and the constant components of q2j+1 and q ′

2j ′+1 are different. But
then q2j+1 is openly-reachable from q ′

2j ′+1, and, thus, q · · ·q2j+1q
′
2j ′+1 · · ·q ′

1 is
also an rb-path in H(q,J, t̄), and both q and q ′

1 have the same null component
but a different constant component. We conclude that q · · ·q2j+1q

′
2j ′+1 · · ·q ′

1 is a
c-path in H(Q,J, t̄), which is a contradiction.

This finishes the proof of the claim. �

Clearly, the procedure finishes after a finite number of steps and marks every tuple
in T . Further, for every tuple (p1

r ,p
2
r ,p

3
r ,p

4
r ) in T , 0 ≤ r ≤ n, it is the case that at

least one of the nodes (p1
r ,p

2
r ) and (p3

r ,p
4
r ) is semi-open and the procedure assigns

the constant component of such node to the null component.
We construct a solution J ′ from J as follows: Take the canonical solution J .

For each null ⊥ of J , if the procedure assigns the constant c to ⊥, then replace
all appearances of ⊥ in J by c. Next, choose a fresh constant value c′ that has not
been used in J , and replace every null value ⊥′ that is not assigned a constant by the
procedure by the fresh constant c′. In the following we show that J ′ �|= Q(t̄), and,
thus, that t̄ �∈ certainM(Q, I).

Assume otherwise. Then there exists i ∈ [1, �] such that J ′ |= Qi(t̄). We analyze
three cases.

(1) Assume first that Qi is of the form ∃ȳ1, . . . , ȳs(T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s , ȳs) ∧
u1 �= u2 ∧v1 �= v2), where {T1, . . . , Ts} ⊆ T, x̄ = {x̄1}∪· · ·∪{x̄s}, and u1, u2, v1, v2 ∈
{x̄, ȳ1, . . . , ȳs}. Thus, there exist tuples p̄1, . . . , p̄s of elements in J ′ and an assign-
ment σ : {x̄} ∪ {ȳ1} ∪ · · · ∪ {ȳs} → dom(J ′) defined by σ(x̄) = t̄ and σ(ȳj ) = p̄j , for
every 1 ≤ j ≤ s, such that

(J ′, σ ) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s , ȳs) ∧ u1 �= u2 ∧ v1 �= v2.

In particular, σ(u1) �= σ(u2) and σ(v1) �= σ(v2).
For every j ∈ [1, s], let us denote by t̄j the value of σ(x̄j ). By definition of J ′,

every tuple (t̄j , p̄j ) ∈ T J ′
j (1 ≤ j ≤ s) is obtained from a tuple (t̄j , r̄j ) ∈ T J

j by re-
placing each null value ⊥ ∈ r̄j with the constant c, if the procedure assigned c to
⊥, and every other null value ⊥′ with the fresh constant c′. Let us define an assign-
ment σ ′ : {x̄} ∪ {ȳ1} ∪ · · · ∪ {ȳs} → dom(J ) as follows: σ ′(x̄) = t̄ and σ ′(ȳj ) = r̄j ,
for each 1 ≤ j ≤ s. We show that σ ′ is well-defined. Assume that z is a variable that
appears in at least two different positions in (ȳ1, . . . , ȳs). We show that σ ′ assigns
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the same value to each appearance of z. Indeed, that z appears in two different posi-
tions in (ȳ1, . . . , ȳs) implies that z is a join variable in T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s , ȳs).
By hypothesis, z cannot be nullified under Qi and M. Thus, σ(z) is a constant and
σ(z) = σ ′(z) (because all the witnesses for z in J must be constants). It immediately
follows that every appearance of z in (ȳ1, . . . , ȳs) is assigned the same value by σ ′.

Therefore, (J, σ ′) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s , ȳs). If σ ′(u1) = σ ′(u2) or σ ′(v1) =
σ ′(v2), then σ(u1) = σ(u2) or σ(v1) = σ(v2), which is a contradiction. Assume then
that σ ′(u1) �= σ ′(u2) and σ ′(v1) �= σ ′(v2). Therefore,

(J, σ ′) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s, ȳs) ∧ u1 �= u2 ∧ v1 �= v2.

Then the tuple (σ ′(u1), σ
′(u2), σ

′(v1), σ
′(v2)) belongs to T , and since at least one

of the nodes (σ ′(u1), σ
′(u2)) and (σ ′(v1), σ

′(v2)) is semi-open and the procedure
assigns the constant component of such node to the null component, it must be the
case that σ ′(u1) = σ ′(u2) or σ ′(v1) = σ ′(v2). This is a contradiction.

(2) Assume second that Qi is of the form ∃ȳ1, . . . , ȳs(T1(x̄1, ȳ1) ∧ · · · ∧
Ts(x̄s, ȳs) ∧ u1 �= u2), where {T1, . . . , Ts} ⊆ T, x̄ = {x̄1} ∪ · · · ∪ {x̄s}, and u1, u2 ∈
{x̄, ȳ1, . . . , ȳs}. Thus, there exist tuples p̄1, . . . , p̄s of elements in J ′ and an assign-
ment σ : {x̄} ∪ {ȳ1} ∪ · · · ∪ {ȳs} → dom(J ′) defined by σ(x̄) = t̄ and σ(ȳj ) = p̄j , for
every 1 ≤ j ≤ s, such that

(J ′, σ ) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s , ȳs) ∧ u1 �= u2.

In particular, σ(u1) �= σ(u2).
Following the same reasoning it is possible to prove that (J, σ ′) |= T1(x̄1, ȳ1) ∧

· · · ∧ Ts(x̄s, ȳs). If σ ′(u1) = σ ′(u2), then σ(u1) = σ(u2), which is a contradiction.
Assume then that σ ′(u1) �= σ ′(u2). As for the previous case, we obtain that

(J, σ ′) |= T1(x̄1, ȳ1) ∧ · · · ∧ Ts(x̄s, ȳs) ∧ u1 �= u2.

From the construction of H(Q,J, t̄), it must then be the case that the node
(σ ′(u1), σ

′(u2)) has a green-labeled loop. Further, the node (σ ′(u1), σ
′(u2)) must

be semi-open. Assume otherwise. Clearly (σ ′(u1), σ
′(u2)) cannot consists of two

distinct constants, as otherwise there would exist a c-path starting on this node. Thus,
it must consist of two null values. If the procedure assigns a constant neither to σ ′(u1)

nor to σ ′(u2), then σ(u1) = σ(u2), which is a contradiction. Then, it must be the case
that the procedure assigns the constant c to at least one of σ ′(u1) or σ ′(u2). But then
the node (σ ′(u1), σ

′(u2)) is part of an on-path, and therefore both σ ′(u1) and σ ′(u2)

must have been assigned the same constant, and thus σ(u1) = σ(u2), which is a con-
tradiction. We conclude that (σ ′(u1), σ

′(u2), σ
′(u1), σ

′(u2)) belongs to T , and, thus,
the procedure assigns the constant component of such node to the null component.
Therefore, it must be the case that σ ′(u1) = σ ′(u2), which is a contradiction.

(3) Assume finally that Qi is of the form ∃ȳ1, . . . , ȳn(T1(x̄1, ȳ1)∧· · ·∧Tn(x̄n, ȳn)),
where {T1, . . . , Tn} ⊆ T and x̄ = {x̄1} ∪ · · · ∪ {x̄n}. Following the same reasoning it
is possible to show that (J, σ ′) |= T1(x̄1, ȳ1) ∧ · · · ∧ Tn(x̄n, ȳn). Thus, J |= Qi(t̄),
which implies that there is an edge between μ and ν in G(Q,J, t̄). This is again a
contradiction.
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A.2 Proof of Theorem 5.7

We now present the proof for the second and third assertions of Theorem 5.7.
We first prove part (2). That is, we prove that there is a LAV data exchange

setting M and a conjunctive query Q with two inequalities, such that Q has
constant joins but does not have almost constant inequalities under M, and
CERTAIN-ANSWERS(M,Q) is CONP-complete.

The LAV setting M = (S,T,�st ) is as follows. The source schema S consists of
one ternary relation symbol M , one binary relation symbol N , and one unary rela-
tion symbol U . The target schema T consists of three relation symbols: One ternary
relation P , and two binary relations R and S. Further, �st is the following set of
source-to-target dependencies:

M(x,y, z) → P(x, y, z),

N(x, y) → ∃z∃u(R(x, z) ∧ R(y,u) ∧ S(x,u)),

U(x) → S(x, x).

The Boolean query Q is as follows:

∃x1∃y1∃x2∃y2∃x3∃y3(P (x1, x2, x3) ∧ R(x1, y1) ∧ S(x2, y2) ∧ R(x3, y3)

∧y1 �= y2 ∧ y2 �= y3).

Clearly, Q has constant joins, but does not have constant inequalities in M. We prove
next that the problem CERTAIN-ANSWERS(M,Q) is CONP-complete.

Membership in CONP follows from [9]. The CONP-hardness is established from
a reduction from POSITIVE-NOT-ALL-EQUAL-3SAT, which is the following deci-
sion problem: Given a propositional formula φ in 3CNF consisting entirely of positive
clauses (p ∨ q ∨ r), is there a valuation to the propositional variables of φ such that
for every clause of φ at least one variable is assigned value 1 and at least one variable
is assigned value 0? This problem is known to be NP-hard (see e.g. the proof of The-
orem 5.11 in [9]). More precisely, for every 3CNF propositional formula φ consisting
entirely of positive clauses, we construct in polynomial time an instance Iφ of S such
that φ is NOT-ALL-EQUAL-satisfiable iff certainM(Q, Iφ) = false.

Given a propositional formula φ ≡ ∧
1≤j≤m Cj in 3CNF, where each Cj is a

clause consisting entirely of positive literals, let Iφ be the following source instance,
where 1 and 0 are constants not mentioned in φ:

• The interpretation of M in Iφ contains the tuples (q,1, q̂) and (q,0, q̂), for each
propositional variable q mentioned in φ, and contains the tuple (p, q, r) if for some
j ∈ [1,m], Cj = (p ∨ q ∨ r);

• the interpretation of N in Iφ contains the tuple (q, q̂), for each propositional vari-
able mentioned in φ; and

• the interpretation of U in Iφ contains the elements 0 and 1.

Clearly, Iφ can be constructed in polynomial from φ.
The canonical universal solution J of Iφ is as follows, where we denote by ⊥q

and #q the nulls that are generated in order to witness variables z and u, respectively,
when applying the std N(x,y) → ∃z∃u(R(x, z) ∧ R(y,u) ∧ S(x,u)) to N(q, q̂):
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• The interpretation of the relation P in J is just a copy of the interpretation of the
relation M in Iφ ;

• the interpretation of the relation R in J contains the pairs (q,⊥q) and (q̂,#q), for
each propositional variable q mentioned in φ; and

• the interpretation of the relation S in J contains the pair (q,#q), for each proposi-
tional variable q mentioned in φ, and also contains the pairs (1,1) and (0,0).

We prove next that φ is NOT-ALL-EQUAL satisfiable iff certainM(Q, Iφ) =
false.

(⇒) Assume first that φ is NOT-ALL-EQUAL-satisfiable, and let κ be a truth as-
signment for the propositional variables mentioned in φ, such that for every
clause (p ∨ q ∨ r) in φ, it is the case that κ(p) = 1 or κ(q) = 1 or κ(r) = 1,
and κ(p) = 0 or κ(q) = 0 or κ(r) = 0. From κ we construct a function f from
dom(J ) into dom(J ) as follows:

f (v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 v = ⊥q and κ(q) = 1,

0 v = ⊥q and κ(q) = 0,

1 v = #q and κ(q) = 0,

0 v = #q and κ(q) = 1,

v otherwise.

Let J ∗ be the solution for Iφ obtained from J by replacing each occurrence of
an element v in J by f (v). We show next that Q(J ∗) = false, and, thus, that
certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J ∗) = true. Then there is
a function h : {x1, x2, x3, y1, y2, y3} → dom(J ∗) such that P(h(x1), h(x2),

h(x3)), R(h(x1), h(y1)), S(h(x2), h(y2)), as well as R(h(x3), h(y3)) belong
to J ∗, and h(y1) �= h(y2) and h(y2) �= h(y3). Since P(h(x1), h(x2), h(x3) be-
longs to J ∗, we only have to consider three cases for the value of h(x2):

1. First, h(x2) = 1. Then it must be the case that h(x1) = q and h(x3) = q̂ ,
for some propositional variable q mentioned in φ. Further, h(y1) = f (⊥q),
h(y2) = 1, and h(y3) = f (#q). It follows that f (⊥q) �= 1 and f (#q) �= 1,
which contradicts the definition of the function f .

2. Second, h(x2) = 0. This case is similar to the previous one.
3. Finally, h(x2) = q , for some propositional variable q mentioned in φ. Then

there is a clause (p ∨q ∨ r) in φ such that h(x1) = p and h(x3) = r . Further,
h(y1) = f (⊥p), h(y2) = f (#q), and h(y3) = f (⊥r ), and f (⊥p) �= f (#q)

and f (#q) �= f (⊥r ). It follows from the definition of f that f (⊥p) =
f (⊥q) = f (⊥r ), and, thus, that κ(p) = κ(q) = κ(r). This is a contradic-
tion because κ is NOT-ALL-EQUAL.

(⇐) Assume, on the other hand, that certainM(Q, Iφ) = false. That is, there ex-
ists a solution J ′ such that Q(J ′) = false. Let h : J → J ′ be a homomor-
phism from J to J ′. Let us define a valuation κ for the propositional variables
in φ as follows: κ(q) = 1 iff h(⊥q) = 1.
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We show next that for each 1 ≤ j ≤ m, if Cj = (p ∨ q ∨ r) then κ(Cj ) = 1,
but it is not the case that κ(p) = κ(q) = κ(r) = 1. This will show that φ is
NOT-ALL-EQUAL satisfiable. In order to do so, we first show that h(⊥q) = 1
or h(#q) = 1, and that h(⊥q) = 0 or h(#q) = 0, for every propositional variable
q mentioned in φ.

Assume first, for the sake of contradiction, that h(⊥q) = 0 and h(#q) = 0,
for some propositional variable q mentioned in φ. Consider the function
f : {x1, y1, x2, y2, x3, y3} → dom(J ′), such that f (x1) = q , f (y1) = h(⊥q),
f (x2) = f (y2) = 1, f (x3) = q̂ , and f (y3) = h(#q). Then P(f (x1), f (x2),

f (x3)), R(f (x1), f (y1)), S(f (x2), f (y2)), as well as Q(f (x3), f (y3)) belong
to J ′, and f (y1) �= f (y2) and f (y2) �= f (y3). Then Q(J ′) = true, which is a
contradiction.

In the same way we can prove that h(⊥q) = 0 or h(#q) = 0, for every propo-
sitional variable q mentioned in φ.

Consider now an arbitrary j ∈ [1,m], and assume that Cj = (p∨q∨r). Con-
sider the function f : {x1, y1, x2, y2, x3, y3} → dom(J ′), such that f (x1) = p,
f (y1) = h(⊥p), f (x2) = q , f (y2) = h(#q), f (x3) = r , and f (y3) = h(⊥r ).
Then P(f (x1), f (x2), f (x3)), R(f (x1), f (y1)), S(f (x2), f (y2)), as well as
R(f (x3), f (y3)) belong to J ′. Therefore, since Q(J ′) = false, it must be
the case that h(⊥p) = h(#q) or h(#q) = h(⊥r ). From the previous remark, ei-
ther κ(p) = 1 − κ(q) or κ(q) = 1 − κ(r). In any case, κ(Cj ) = 1, and it is not
the case that κ(p) = κ(q) = κ(r) = 1.

This concludes the proof of the second part of the theorem.
We now prove part (3). That is, that there is a LAV data exchange setting M and a

conjunctive query Q with two inequalities, such that Q has almost constant inequal-
ities but does not have constant joins under M, and CERTAIN-ANSWERS(M,Q) is
CONP-complete.

The LAV setting M = (S,T,�st ) is as follows. The source schema S consists of
two binary relations M and N , one ternary relation P , and one 4-ary relation R. The
target schema T consists of two binary relations S and T , one ternary relation U , and
one 4-ary relation V . The set �st of source-to-target dependencies is:

M(x,y) → ∃z(S(x, y) ∧ S(y, x) ∧ V (x, y, z, z) ∧ U(z, z, z) ∧ S(z, z)),

R(x, y, v,w) → ∃z(T (x, z) ∧ T (y, z) ∧ V (v,w,x, z) ∧ V (v,w,y, z)),

P (x, y, z) → U(x,y, z),

N(x, y) → T (x, y).

The Boolean query Q over T is as follows:

∃x∃x′∃y∃y′∃z∃z′∃x1∃y1∃x2∃y2(T (x1, y1) ∧ T (x2, y2)

∧ U(x,y, z) ∧ S(x, x′) ∧ S(y, y′) ∧ S(z, z′)

∧ V (x1, x2, x
′, x′) ∧ V (x1, x2, y

′, y′) ∧ V (x1, x2, z
′, z′) ∧ x1 �= y1 ∧ x2 �= y2).

Clearly, Q has almost constant inequalities in M, but does not have constant joins
in M. We prove next that CERTAIN-ANSWERS(M,Q) is CONP-complete.
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Membership in CONPfollows from [9]. The CONP-hardness is established
from a reduction from 3SAT to the complement of the problem studied, namely
CERTAIN-ANSWERS(M,Q). More precisely, for every 3CNF propositional formula
φ, we construct in polynomial time an instance Iφ of S such that φ is satisfiable iff
certainM(Q, Iφ) = false.

Given a propositional formula φ ≡ ∧
1≤j≤m Cj in 3CNF, where each Cj is a

clause, let Iφ be the following source instance:

• The interpretation of the binary relation M in Iφ contains the pair (q,¬q), for each
propositional variable q mentioned in φ;

• the interpretation of the binary relation N in Iφ contains the pairs (a,b) and (c,d),
where a, b, c and d are fresh constants (not mentioned as propositional variables
in φ);

• the interpretation of the ternary relation P in Iφ contains all triples (α,β, γ ) such
that for some 1 ≤ j ≤ m, (α ∨ β ∨ γ ) = Cj ; and

• the interpretation of the 4-ary relation R in Iφ contains the tuple (q,¬q,a,c), for
each propositional variable q mentioned in φ.

Clearly, Iφ can be constructed in polynomial time from φ.
Let #q be the null obtained from the application of the std M(x,y) → ∃z(S(x, y)∧

S(y, x) ∧ V (x, y, z, z) ∧ U(z, z, z) ∧ S(z, z)) to the tuple M(q,¬q), and let ⊥q

(or ⊥¬q ) be the null obtained from the application of the std R(x, y, v,w) →
∃z(T (x, z) ∧ T (y, z) ∧ R(v,w,x, z) ∧ R(v,w,y, z)) to the tuple (q,¬q,a,c). The
canonical universal solution J for Iφ is as follows:

• The interpretation of S in J contains the pairs (q,¬q), (¬q, q), and (#q,#q), for
each propositional variable q mentioned in φ;

• the interpretation of T in J contains a copy of the interpretation of N in Iφ and the
pairs (q,⊥q), (¬q,⊥q), for each propositional variable q mentioned in φ;

• the interpretation of U in J contains a copy of the interpretation of P in Iφ and the
tuple (#q,#q,#q), for each propositional variable q mentioned in φ; and

• the interpretation of V in J contains the tuples (q,¬q,#q,#q), (a, c, q,⊥q), and
(a, c,¬q,⊥q), for each propositional variable q mentioned in φ.

We prove next that certainM(Q, Iφ) = false iff φ is satisfiable.

(⇐) Assume that φ is satisfiable, and let κ be a truth assignment for the propositional
variables mentioned in φ such that κ(φ) = 1. Define a function f from dom(J )

into dom(J ) as follows:

f (v) =

⎧
⎪⎨

⎪⎩

q v = ⊥q and κ(q) = 1,

¬q v = ⊥q and κ(q) = 0,

v otherwise.

Let J ∗ be the solution for Iφ obtained from J by replacing each occurrence of
an element v in J by f (v). We show next that Q(J ∗) = false, and, thus, that
certainM(Q, Iφ) = false.

Assume, for the sake of contradiction, that Q(J ∗) = true. Then there is
a function h : {x, x′, y, y′, z, z′, x1, y1, x2, y2} → dom(J ∗), such that T (h(x1),
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h(y1)), T (h(x2), h(y2)), U(h(x),h(y),h(z)), S(h(x),h(x′)), S(h(y),h(y′)),
S(h(z), h(z′)), V (h(x1), h(x2), h(x′), h(x′)), V (h(x1), h(x2), h(y′), h(y′)),
and V (h(x1), h(x2), h(z′), h(z′)) belong to J ∗, and, furthermore, h(x1) �=
h(y1) and h(x2) �= h(y2). Since V (h(x1), h(x2), h(x′), h(x′)) belongs to J ∗,
there are only two cases to consider with respect to the values h(x1) and h(x2):

1. The first case is that h(x1) = q and h(x2) = ¬q , for some propositional
variable q mentioned in φ. But then h(y1) = h(y2) = f (⊥q), because
T (h(x1), h(y1) and T (h(x2), h(y2)) belong to J ∗ . It follows that f (⊥q) �= q

and f (⊥q) �= ¬q , which is in contradiction with the definition of the func-
tion f .

2. The second case is that h(x1) = a and h(x2) = c. But then h(x′) = q

or h(x′) = ¬q , for some propositional variable q mentioned in φ. Since
S(h(x),h(x′)) belongs to J ∗, it must be the case that for some clause
(α ∨ β ∨ γ ) in φ, h(x) = α, h(y) = β and h(z) = γ . Furthermore, h(x′) =
¬α. Since κ(φ) = 1, it must be the case that κ(α) = 1 or κ(β) = 1 or
κ(γ ) = 1. Assume that κ(α) = 1. Since V (h(x1), h(x2), h(x′), h(x′)) =
V (a, c,¬α,¬α) belongs to J ∗, it follows that f (⊥α) = ¬α. But then
κ(α) = 0, which contradicts our previous assumption. The cases κ(β) = 1
or κ(γ ) = 1 are identical.

(⇒) Assume, on the other hand, that certainM(Q, I) = false. Then there exists
a solution J ′ for Iφ such that Q(J ′) = false. Let h be a homomorphism
from J to J ′. Let us define a truth assignment κ for the propositional variables
mentioned in φ as follows: κ(q) = 1 iff h(⊥q) = q . We prove next that for each
1 ≤ j ≤ m, κ(Cj ) = 1, and, therefore, that φ is satisfiable.

Let clause Cj be (α ∨ β ∨ γ ) (j ∈ [1,m]). We prove first that h(⊥α) �=
¬α or h(⊥β) �= ¬β or h(⊥γ ) �= ¬γ . Assume otherwise. Then the func-
tion f : {x, x′, y, y′, z, z′, x1, y1, x2, y2} → dom(J ′) defined as f (x1) = a,
f (y1) = b, f (x2) = c, f (y2) = d, f (x) = α, f (x′) = ¬α, f (y) = β , f (y′) =
¬β , f (z) = γ , f (z′) = ¬γ satisfies that T (f (x1), f (y1)), T (f (x2), f (y2)),
U(f (x), f (y), f (z)), S(f (x), f (x′)), S(f (y), f (y′)), S(f (z), f (z′)),
V (f (x1), f (x2), f (x′), f (x′)), V (f (x1), f (x2), f (y′), f (y′)), V (f (x1),

f (x2), f (z′), f (z′)) belong to J ′. Further, f (x1) �= f (y1) and f (x2) �= f (y2).
Then Q(J ′) = true, which is a contradiction.

We prove second that for each propositional variable q mentioned in
φ, h(⊥q) = q or h(⊥q) = ¬q . Assume otherwise. Then the function f :
{x, x′, y, y′, z, z′, x1, y1, x2, y2} → dom(J ′) defined as f (x1) = q , f (y1) =
h(⊥q), f (x2) = ¬q , f (y2) = h(⊥q), f (x) = f (x′) = f (y) = f (y′) = f (z) =
f (z′) = #q , satisfies that T (f (x1), f (y1)), T (f (x2), f (y2)), U(f (x), f (y),

f (z)), S(f (x), f (x′)), S(f (y), f (y′)), S(f (z), f (z′)), V (f (x1), f (x2), f (x′),
f (x′)), and also satisfies V (f (x1), f (x2), f (y′), f (y′)) and V (f (x1), f (x2),

f (z′), f (z′)) belong to J ′. Further, f (x1) �= f (y1) and f (x2) �= f (y2). Then
Q(J ′) = true, which is a contradiction.

We finally prove that κ(Cj ) = 1. Assume first that h(⊥α) �= ¬α. Then
h(⊥α) = α, and, thus, κ(α) = κ(Cj ) = 1. The cases when h(⊥β) �= ¬β and
h(⊥γ ) �= ¬γ are identical.

This concludes the proof of the theorem.
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A.3 Proof of Theorem 6.5

Fix an FO sentence φ ≡ ∃x1 · · · ∃xp∀y1 · · · ∀ymψ in the Bernays-Schönfinkel class.
Thus, we have that the vocabulary of φ is constant-free, and that ψ mentions neither
any function symbol nor the equality symbol. Also, let {R1, . . . ,Rn} be the set of all
relation symbols mentioned in ψ . For each relation Ri , 1 ≤ i ≤ n, we let ri denote
the arity of Ri . Along the proof we heavily use the following property of φ: Either φ

is unsatisfiable, or it has a model with at most p elements (see, e.g., [6]). Finally, let
S1, . . . , S� be an enumeration of all the subformulas of ψ , and assume, without loss
of generality that S1 = ψ .

To give the intuition behind our reduction, we start by showing a weaker result,
namely that CERTAIN-ANSWERS(GLAV,2-UCQ �=) is CONEXPTIME-hard, where
2-UCQ �= is the class of unions of conjunctive queries with at most two inequal-
ities per disjunct. This result is proved by a polynomial-time reduction from the
satisfiability problem for the Bernays-Schönfinkel class, that is, we start by show-
ing how to construct in polynomial time from φ a GLAV data exchange setting
M = (S,T,�st ), a 2-UCQ �= query Q, and an instance I of S, such that φ is sat-
isfiable iff certainM(Q, I) = false. Although this is still not sufficient to prove
the theorem, because Q belongs to 2-UCQ �=, the construction helps obtaining in-
tuition for the second part of the proof, which is technically more involved. Sec-
ond, using a refinement of the techniques in the first part of the proof, we show
how to construct in polynomial time from φ another GLAV data exchange setting
M′ = (S′,T′,�′

st ), a conjunctive query Q′ with two inequalities, and an instance I ′
of S′, such that φ is satisfiable iff certainM′(Q′, I ′) = false, and, thus, we conclude
that CERTAIN-ANSWERS(GLAV,2-CQ �=) is CONEXPTIME-hard.

The intuition of the first part of the reduction is the following. We construct a
source instance I such that dom(I ) includes p elements a1, . . . , ap . This is justified
by the fact, mentioned above, that if φ is satisfiable then it has a model of size at
most p. We then construct a set �st of st-tgds such that for each tuple ā of ri ele-
ments of dom(I ) (i ∈ [1, n]), R′

i (ā,⊥) belongs to CAN(I ), where ⊥ is a fresh null
value. The target schema T will also contain one relation Fj of arity m + 1 for each
subformula Sj of ψ (j ∈ [1, �]), such that for each tuple b̄ = (b1, . . . , bm) of m ele-
ments of dom(I ), Fj (b̄,⊥) belongs to CAN(I ). We are interested in those solutions
for I in which each of these null values is replaced by the element either 0 or 1.
With each such solution J , we naturally identify a structure AJ over the vocabulary
{R1, . . . ,Rk} as follows: ā belongs to the interpretation of the symbol Ri in AJ if
and only if R′

i (ā,1) ∈ J . Moreover, from those solutions J that define a structure,
we are interested in the ones that assign truth values to each subformula of ψ in a
consistent way. That is, we are interested in those solutions J such that for every
j ∈ [1, �], it holds that Fj (b̄,1) ∈ J , where b̄ = (b1, . . . , bm), if and only if AJ satis-
fies subformula Sj with each variable yi replaced by bi and each variable xi replaced
by ai . Then the 2-UCQ �= query Q constructed in this first reduction is used to ver-
ify whether there exists an assignment for the variables y1, . . . , ym such that F1 does
not hold. Thus, given that subformula S1 = ψ , if Q is evaluated over a solution J

that represents a structure AJ , then Q holds in J if AJ does not satisfy the formula
∀y1 · · · ∀ymψ with each variable xi replaced by value ai (1 ≤ i ≤ p). Hence, given
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that for every structure A with at most p elements, there exists a solution J for I un-
der M such that AJ is isomorphic to A (notice that we are no assuming that ai and
aj represent distinct elements if i �= j , although they are distinct constant symbols in
our reduction), we have that φ is satisfiable if and only if there exists a solution J for
I under M where Q does not hold, that is, if and only if certainM(Q, I) = false.

We now present the first reduction.

• The source schema S consists of three unary relations B , O and U , a set of unary
relations {V1, . . . , Vp} (recall that p is the number of existentially quantified vari-
ables in φ), two ternary relations C and D, and one binary relation E.

• The target schema T consists of a relation R′
i of arity ri +1, for each i ∈ [1, n], a set

{V ′
1, . . . , V

′
p} of unary relations, two other unary relations O ′ and U ′, two ternary

relations C′ and D′, a binary relation E′, and an extra set of relations {F1, . . . ,F�}
each with arity m + 1 (recall that � is the number of subformulas of ψ , and that m

is the number of universally quantified variables of φ).
• The instance I is as follows. The domain of I contains the elements a1, . . . , ap ,

plus two different constants not used elsewhere in the instance, 1 and 0. The inter-
pretation in I of each symbol of S is as follows:

BI = {a1, . . . , ap},
OI = {0},
UI = {1},
CI = {(1,1,1), (1,0,0), (0,1,0), (0,0,0)},
DI = {(1,1,1), (1,0,1), (0,1,1), (0,0,0)},
EI = {(0,1), (1,0)},
V I

i = {ai}, for each i ∈ [1,p].
• The set �st of source-to-target dependencies is as follows:

– For each i ∈ {1, . . . , n} we create a copy of every relation Vi into V ′
i :

Vi(x) → V ′
i (x).

We also create a copy of O , U , C, D and E into O ′, U ′, C′, D′ and E′,
respectively:

O(x) → O ′(x),

U(x) → U ′(x),

C(x, y, z) → C′(x, y, z),

D(x, y, z) → D′(x, y, z),

E(x, y) → E′(x, y).

– For each i ∈ {1, . . . , n}, we populate each R′
i (of arity ri + 1) with every tuple

of arity ri that can be constructed from the constants in B , and create a new null
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value associated with each such tuple:

B(x1) ∧ · · · ∧ B(xri ) → ∃zR′
i (x1, . . . , xri , z).

As we mentioned before, we are interested in those solutions for I that re-
place each such null value with either 0 or 1, as with each such solution J , we
associate a structure AJ over vocabulary {R1, . . . ,Rn} as follows: ā belongs to
the interpretation of Ri in AJ iff R′

i (ā,1) ∈ J .
– We do the same for each symbol Fj . That is, for every j ∈ {1, . . . , �}, we popu-

late each Fj (of arity m + 1) with every tuple of arity m that can be constructed
from the constants in B , and create a new null value associated with each such
tuple:

B(x1) ∧ · · · ∧ B(xm) → ∃zFj (x1, . . . , xm, z).

We are interested in those solutions that replace each such null value with
0 or 1. Informally, Fj (ai1, . . . , aim,1) belongs to one of these solutions J iff
the subformula Sj of ψ holds in AJ , whenever we assign to the universally
quantified variables y1, . . . , ym the elements ai1, . . . , aim and to the existentially
quantified variables x1, . . . , xp the elements a1, . . . , ap .
It is clear at this point what the canonical universal solution CAN(I ) for I is.

Before presenting the query Q, we give an intuition of what Q does: In order
to verify that the formula φ is satisfiable, one must show a structure A such that
A |= φ. Intuitively, the query Q will first nondeterministically choose a structure A
from the set of all possible structures that can be built using p elements. Once the
structure is chosen, Q will verify that such structure indeed satisfies the formula φ.
To that extent, first, Q has to nondeterministically guess an interpretation of each
relation in {R′

1, . . . ,R
′
k}. It does so by assigning either a value 1 or a value 0 to

every null ⊥ that belongs to a tuple of the form R′
i (ā,⊥) in CAN(I ). Intuitively, if

the value 1 is assigned to the null ⊥ in the tuple R′
i (ā,⊥), then the interpretation

of the relation Ri in A will contain the tuple ā. Second, Q will proceed in the same
way for each relation in {F1, . . . ,F�}, where the assignment of the value 1 to a null
⊥ that belongs to the tuple Fj (b̄,⊥) in CAN(I ), where b̄ = (b1, . . . , bm), repre-
sents that the j -th subformula of ψ (denoted by Sj ) holds in A when we assign
the elements b1, . . . , bm to the variables y1, . . . , ym and the elements a1, . . . , ap to
the variables x1, . . . , xp , respectively. Afterwards, Q must verify that the assigned
null values represent a consistent valuation of the subformulas in A.

Finally, the query will ask if for some c̄ there is a tuple F1(c̄,⊥) in CAN(I ) such
that the null ⊥ has been assigned the value 0, which intuitively means that A does
not satisfy ∀y1 · · · ∀ymψ with each variable xi replaced by value ai (1 ≤ i ≤ p).

Formally, the query Q is defined as Qα ∨ Qβ ∨ Qγ ∨ Qδ , where

– Qα is (
∨

i∈[1,n] Qi
α1

) ∨ (
∨

j∈[1,�] Q
j
α2), where each Qi

α1
is defined as follows:

∃z1 · · · ∃zri ∃n∃v∃w(R′
i (z1, . . . , zri , n) ∧ O ′(v) ∧ U ′(w) ∧ n �= v ∧ n �= w).

and each Q
j
α2 is defined as:

∃z1 · · · ∃zm∃n∃v∃w(Fi(z1, . . . , zm,n) ∧ O ′(v) ∧ U ′(w) ∧ n �= v ∧ n �= w).
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Consider an arbitrary solution J for I . Notice that if for some 1 ≤ i ≤ n the eval-
uation of Qi

α1
over J is false, then all tuples in the interpretation of the relation

R′
i over J must be of form R′

i (ā,0) or R′
i (ā,1). Likewise, if for some 1 ≤ j ≤ �

the evaluation of Q
j
α2 over J is false, then all tuples in the interpretation of the

relation Fj over J must be of form Fj (ā,0) or Fj (ā,1). Hence, if a solution J

is such that qα(J ) = false, then all the tuples in the relations R′
1, . . . ,R

′
n and

F1, . . . ,F� in J must contain a 0 or a 1 in its last argument.
– Let � ⊆ {1, . . . , �} be the set of all indexes j such that Sj is an atomic for-

mula. The query Qβ is defined as
∨

j∈� Q
j
β , where for each j such that

Sj = Ri(x̄, ȳ), x̄ is a tuple of variables in {x1, . . . , xp} and ȳ is a tuple of vari-

ables in {y1, . . . , ym}, the query Q
j
β is as follows:

∃y1 · · · ∃ym∃n∃v∃x̄

(

Fj (y1, . . . , ym,n) ∧ R′
i (x̄, ȳ,w)

∧
∧

xk∈x̄

V ′
k(xk) ∧ n �= w

)

. (38)

Consider now a solution J that does not satisfy Qα , and consider the as-
sociated structure AJ . Assume that Sj holds (resp., does not hold) in AJ

when we assign elements ai1, . . . , aim to variables y1, . . . , ym and elements
a1, . . . , ap to variables x1, . . . , xp . Since the tuple Fj (ai1, . . . , aim,⊥) be-

longs to CAN(I ), then J does not satisfy Q
j
β only if J contains the tuple

Fj (ai1, . . . , aim,1) (resp. Fj (ai1, . . . , aim,0)), and J contains no other tuple of
the form Fj (ai1 , . . . , aim, v), with v �= 1 (resp. v �= 0). Intuitively, every solution

J that satisfies neither Qα nor Q
j
β is such that a tuple ā is in the interpretation of

the relation Ri in AJ iff the subformula Sj holds under an assignment g of the
variables in φ, such that g assigns the elements a1, . . . , ap to the existentially
quantified variables x1, . . . , xp , and g(x̄, ȳ) = ā.

It is important to notice that predicate V ′
k is included in (38) to ensure that

variable xk in x̄ is assigned value ak , as V ′
k in CAN(I ) is a copy of the interpre-

tation of Vk in I , and V I
k = {ak}.

– Let � be as above. Then Qγ is defined as
∨

k∈({1,...,�}��) Q
k
γ , where each query

Qk
γ is defined as follows:

– If Sk = (Sg ∨ Sh), then

Qk
γ = ∃y1 · · · ∃ym∃n∃v∃w∃z(Fk(y1, . . . , ym,n) ∧ Fg(y1, . . . , ym, v)

∧ Fh(y1, . . . , ym,w) ∧ D′(v,w, z) ∧ n �= z).

– If Sk = (Sg ∧ Sh), then

Qk
γ = ∃y1 · · · ∃ym∃n∃v∃w∃z(Fk(y1, . . . , ym,n) ∧ Fg(y1, . . . , ym, v)

∧ Fh(y1, . . . , ym,w) ∧ C′(v,w, z) ∧ n �= z).
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– If Sk = (¬Sg), then

Qk
γ = ∃y1 · · · ∃ym∃n∃v∃z(Fk(y1, . . . , ym,n)

∧ Fg(y1, . . . , ym, v) ∧ E′(v, z) ∧ n �= z).

The purpose of this query is similar to Qβ , but here we ensure the correct in-
terpretation of the subformulas of ψ that are Boolean combinations of other
subformulas. For this reason, the tuples in relations C′, D′ and E′ encode the
truth tables of ∧, ∨ and ¬, respectively. For example, if Sk = (Sg ∧Sh), and a so-
lution J that satisfies neither Qα nor Qβ is such that it contains tuples Fg(ā,1)

and Fh(ā,1), then J does not satisfy Qk
γ only if Fk(ā,1) is the only tuple of the

form Fk(ā, v) in J .
– Finally, Qδ is defined to be ∃y1 · · · ∃ym∃v(F1(y1, . . . , ym, v) ∧ O ′(v)). This

query asks for a tuple of the form F1(b̄,0). That is, this query will not hold
in a solution J if and only if none of the tuples in the interpretation of F1 in J

contains a 0 in its last argument.

At this point, it is instructive to show an example of the reduction, to get the idea
of the construction.

Example A.3 Let φ be the formula ∃x1∃x2∀y1(R1(x1, y1) ∨ (¬R1(x2, y1))). Recall
that the source schema S consists of relations B , O , U , C, D, E as described above,
plus extra relations V1 and V2. The target schema T consists of relations O ′, U ′,
C′, D′, E′, R′

1, F1, F2, F3 and F4 (because (R1(x1, y1) ∨ (¬R1(x2, y1))) has 4 sub-
formulas). The enumeration of the subformulas of (R1(x1, y1) ∨ (¬R1(x2, y1))) is
as follows: S1 = (R1(x1, y1) ∨ (¬R1(x2, y1))), S2 = (¬R1(x2, y2)), S3 = R1(x1, y1)

and S4 = R1(x2, y1). Then the source-to-target dependencies are:

V1(x) → V ′
1(x),

V2(x) → V ′
2(x),

O(x) → O ′(x),

U(x) → U ′(x),

C(x, y, z) → C′(x, y, z),

D(x, y, z) → D′(x, y, z),

E(x, y) → E′(x, y),

B(x1) ∧ B(x2) → ∃zR′
1(x1, x2, z),

B(x1) → ∃zF1(x1, z),

B(x1) → ∃zF2(x1, z),

B(x1) → ∃zF3(x1, z),

B(x1) → ∃zF4(x1, z).
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The instance I of S is constructed as follows: BI = {a1, a2}, 0I = {0} and UI = {1}.
Furthermore, CI = {(1,1,1), (1,0,0), (0,1,0), (0,0,0)}, DI = {(1,1,1), (1,0,1),

(0,1,1), (0,0,0)}, and EI = {(0,1), (1,0)}. Finally, V I
1 = {a1} and V I

2 = {a2}. In
this case, CAN(I ) contains the following interpretations of the symbols R′

1, F1, F2,
F3 and F4 (all the other relations are simple copies of the respective relations in I ).
The interpretation of R′

1 in CAN(I ) contains the tuples (a1, a1,⊥1), (a2, a2,⊥2),
(a1, a2,⊥3), and (a2, a1,⊥4). The interpretation of the relations F1 in CAN(I ) con-
tains the tuples (a1,⊥5) and (a2,⊥6); the interpretation of the relations F2 in CAN(I )

contains the tuples (a1,⊥7) and (a2,⊥8); the interpretation of the relations F3 in
CAN(I ) contains the tuples (a1,⊥9) and (a2,⊥10); and interpretation of the rela-
tions F4 in CAN(I ) contains the tuples (a1,⊥11) and (a2,⊥12). Finally, the queries
Qα , Qβ , Qγ and Qδ are as follows in this case:

• Qα is the union of the following queries:

Q1
α1

= ∃x1∃x2∃n∃v∃w(R′
1(x1, x2, n) ∧ O ′(v) ∧ U ′(w) ∧ n �= v ∧ n �= w),

Q1
α2

= ∃x1∃n∃v∃w(F1(x1, n) ∧ O ′(v) ∧ U ′(w) ∧ n �= v ∧ n �= w),

Q2
α2

= ∃x1∃n∃v∃w(F2(x1, n) ∧ O ′(v) ∧ U ′(w) ∧ n �= v ∧ n �= w),

Q3
α2

= ∃x1∃n∃v∃w(F3(x1, n) ∧ O ′(v) ∧ U ′(w) ∧ n �= v ∧ n �= w),

Q4
α2

= ∃x1∃n∃v∃w(F4(x1, n) ∧ O ′(v) ∧ U ′(w) ∧ n �= v ∧ n �= w).

• Qβ is the union of Q3
β and Q4

β , where:

Q3
β = ∃y1∃n∃v∃x1(F3(y1, n) ∧ R′

1(x1, y1,w) ∧ V ′
1(x1) ∧ n �= w),

Q4
β = ∃y1∃n∃v∃x2(F4(y1, n) ∧ R′

1(x2, y1,w) ∧ V ′
2(x2) ∧ n �= w).

• Qγ is the union of Q1
γ and Q2

γ , where:

Q1
γ = ∃y1∃n∃v∃w∃z(F1(y1, n) ∧ F3(y1, v) ∧ F2(y1,w) ∧ D′(v,w, z) ∧ n �= z),

Q2
γ = ∃y1∃n∃v∃z(F2(y1, n) ∧ F4(y1, v) ∧ E′(v, z) ∧ n �= z).

• Qδ = ∃y1∃v(F1(y1, v) ∧ O ′(v)).

This concludes the example.

From the definitions of data exchange setting M, source instance I and query
Q, it is straightforward but lengthy to prove that φ is satisfiable if and only if
certainM(Q, I) = false, which concludes the proof of the fact that CERTAIN-
ANSWERS(GLAV,2-UCQ �=) is CONEXPTIME-hard.

We now continue with the second part of the reduction. As we mentioned before,
the problem with the previous query Q is that it is a union of conjunctive queries with
at most two inequalities per disjunct. Fix a FO formula φ that belongs to the Bernays-
Schönfinkel class. Next, based on the previous reduction, we construct for φ a second
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data exchange setting M′ = (S′,T′,�′
st ), an instance I ′ of S′ and a conjunctive query

Q′ with two inequalities, and then provide a complete proof that φ is satisfiable iff
certainM′(Q′, I ′) = false.

First, let us explain some of the techniques used in the second reduction. Re-
call that in the previous reduction the target schema contained the relation symbols
R1, . . . ,Rn and F1, . . . ,F�. The idea of the second reduction is to use a single relation
symbol R′ to code the same information stored in the relation symbols R1, . . . ,Rn

of the first reduction. In order to do this, we use the first position in R′ to store the
particular relation Ri , 1 ≤ i ≤ n of φ that is being represented. Notice that we do
not assume that the relations are of the same arity; instead we choose the arity of R′
depending on the maximum arity of all relations in the vocabulary of φ. We will also
code the information that was previously stored in the relation symbols F1, . . . ,F�

by using again a single relation symbol F ′ and an extra element to store which sub-
formula Sj , 1 ≤ j ≤ � is being represented.

We need some additional notation. Let again � be the number of subformulas of
φ, and � ⊆ {1, . . . , �} be the set of all indexes j such that Sj is an atomic formula.
Let |�| be the size of �, that is, the number of atomic subformulas of φ. We assume
that � is ordered, and we use a function τ : � → {1, . . . , |�|} such that τ(j) = m if
j is the m-th element of �.

Now we show the data exchange setting M′:
• The source schema S′ consists of eight unary relations Ea , Eb , Ef , D, B , C, O and

U , a set {Q1, . . . ,Qn} of unary relations (one for each relation Ri ), another set of
unary relations {V1, . . . , Vp} (recall that p is the number of existentially quantified
variables in φ), a relation Z of arity 4, and a relation A of arity equal to |�| + 5.

• The target schema T′ consists of a relation R′ with arity maxi∈[1,n] ri +2, a relation
Z′ of arity 4, a relation A′ with the same arity than A, a relation F ′ of arity m + 2
(recall m is the number of universally quantified variables in φ), and a set of binary
relations {V ′

1, . . . , V
′
p}.

• The instance I ′ is as follows. The domain of I ′ contains the elements a1, . . . , ap ,
s1, . . . , s�, c1, . . . , cn, plus the elements sf , sa, sb , 1, 0, and d . The interpretation
of each symbol in S in I ′ is as follows:
– BI ′ = {a1, . . . , ap}.
– OI ′ = {0}, UI ′ = {1} and DI ′ = {d}.
– EI ′

a = {sa}, EI ′
b = {sb} and EI ′

f = {sf }.
– CI ′ = {s1, . . . , s�}.
– QI ′

k = {ck} for every k ∈ [1, n].
– V I ′

i = {ai} for every i ∈ [1,p].
– AI ′

is as follows:
– It contains a tuple with only ds, except for a sf in its first position and ele-

ments s1, 0 in the last two positions. For example, if the arity of A is 8, we
would create the following tuple: A(sf , d, d, d, d, d, s1,0).

– For each i ∈ [1, n], AI ′
will contain a tuple in which every position contains

the element d , except for the first position that contains the element s0, the
second position that contains the element ci , and the last position that contains
the element 1. For example, if the arity of A is 8, we would create a tuple
A(sa, ci, d, d, d, d, d,1) for each 1 ≤ i ≤ n.
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– For each j ∈ [1, �], AI ′
will contain a tuple in which every position contains

the element d , except for the first position that contains the element sb , the
second position that contains the element sj , and the last position that contains
the element 1. For example, if the arity of A is 8, we would create a tuple
A(sb, sj , d, d, d, d, d,1) for each 1 ≤ j ≤ �.

– For each subformula Sj of ψ such that j ∈ �, assume that Sj = Ri(z̄), AI ′

contains two tuples with only d’s, except for an element sj in the first position,
a ci in the (τ (j) + 2)th position and either the element 0 or the element
1 in the last position. For example, if the arity of A is 8, for S2 ≡ R2 and
such that τ(2) = 1, we would create the tuples: A(s2, d, c2, d, d, d, d,0) and
A(s2, d, c2, d, d, d, d,1).

– Then for each subformula Sj , j �∈ �, such that Sj ≡ (Sg ∧ Sh) or Sj ≡ (Sg ∨
Sh), AI ′

contains two tuples, both with only d’s except for an element sj in
the first position, and elements sg , sh, and either the element 0 or the element
1 in the last three positions. Continuing with the example, if the arity of A is
8 and if S1 ≡ (S2 ∧ S3) then we create tuples A(s1, d, d, d, d, s2, s3,0) and
A(s1, d, d, d, d, s2, s3,1).

– For each subformula Sj , j �∈ �, such that Sj ≡ (¬Sg), AI ′
contains two tu-

ples, both with only d’s except for the element sj in the first position, and
elements sg and either the element 0 or the element 1 in the last two posi-
tions. Continuing with the example, if the arity of A is 8 and if S1 ≡ (¬S2)

then we create tuples A(s1, d, d, d, d, d, s2,0) and A(s1, d, d, d, d, d, s2,1).
– Finally, we construct ZI ′

as follows:
– The tuple (sf ,0,0,1) belongs to ZI ′

.
– For each subformula Sj , j ∈ �, the following tuples belong to ZI ′

:
(sj ,0,0,1) and (sj ,0,0,0).

– For each subformula Sj , j �∈ �, such that Sj ≡ Sg ∨ Sh, the following tuples
belong to ZI ′

: (sj ,1,1,1), (sj ,0,1,1),(sj ,1,0,1) and (sj ,0,0,0).
– For each subformula Sj , j �∈ �, such that Sj ≡ Sg ∧ Sh, the following tuples

belong to ZI ′
: (sj ,1,1,1), (sj ,0,1,0), (sj ,1,0,0) and (sj ,0,0,0).

– For each subformula Sj , j �∈ �, such that Sj ≡ ¬Sg , the following tuples
belong to ZI ′

: (sj ,0,1,0) and (sj ,0,0,1).
This finishes the definition of I ′.

• The set �′
st of source-to-target dependencies is as follows:

– We create a copy of A and Z into A′ and Z′, respectively:

A(x̄) → A′(x̄), (39)

Z(x, y, z,w) → Z′(x, y, z,w). (40)

– For each i ∈ [1,p], we copy every pair of the form (sk, ai), k ∈ [1, �], into V ′
i :

Vi(x) ∧ C(y) → V ′
i (y, x). (41)

– For each i ∈ [1,p], we copy every pair of the form (aj , sa), (aj , sb) and (aj , sf ),
j ∈ [1,p], into V ′

i :

B(x) ∧ Ea(z) → V ′
i (z, x), (42)
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B(x) ∧ Eb(z) → V ′
i (z, x), (43)

B(x) ∧ Ef (z) → V ′
i (z, x). (44)

– Let rmax be maxi∈[1,n] ri . For each i ∈ [1, n] we add the following st-tgds to �′
st :

Qi(y) ∧ Ea(z) ∧ D(w) ∧ O(v) ∧ B(xi) ∧ · · · ∧ B(xri )

∧D(xri+1) ∧ · · · ∧ D(xrmax)

→ ∃n
(
R′(y, x1, . . . , xrmax , n) ∧ R′(w,x1, . . . , x1, n)

∧ F ′(y, x1, . . . , x1, n) ∧ Z′(z, v, v,n)
)
. (45)

The main idea of this dependency is to populate the relation R with each pos-
sible tuple that can be constructed using an element from c1, . . . , cn in the first
position and elements from a1, . . . , ap in the next rmax positions. As mentioned
before, this tuple will encode all of the tuples in the relations R1, . . . ,Rn of
the previous reduction. The problem is that the arity of these relations may
not be the same. For that reason, for each i ∈ [1, n], the tuples starting with
ci are only populated with combinations of length ri . The remaining positions
of the tuples are filled with the element d . More precisely, for each i ∈ [1, n]
and tuple aj1, . . . , ajri

of elements in {a1, . . . , ap}, we add the following tu-
ples to the interpretation of R′ in CAN(I ′): (ci, aj1, . . . , ajri

, d, . . . , d,⊥) and
(d, aj1, . . . , aj1, aj1, . . . , aj1,⊥), where ⊥ is a fresh null value. In such case, we
also add the tuple (sa,0,0,⊥) to the interpretation of Z′ in CAN(I ′), and the
tuple (ci, aj1, . . . , aj1,⊥) to the interpretation of F ′ in CAN(I ′).

– We also add the following st-tgd to �′
st :

C(y) ∧ Eb(z) ∧ D(w) ∧ O(v) ∧ B(x1) ∧ · · · ∧ B(xm)

→ ∃n
(
F ′(y, x1, . . . , xm,n) ∧ Z′(z, v, v,n) ∧ R′(y, x1, . . . , x1, n)

∧ R′(w,x1, . . . , x1, n)
)
. (46)

The idea is that the interpretation of F ′ in CAN(I ′) contains for every
j ∈ [1, �] and every tuple ai1, . . . , aim of elements in {a1, . . . , ap}, the tuple
(sj , ai1, . . . , aim,⊥), where ⊥ is a fresh null value. In such case, we also add
the tuples (sj , ai1, . . . , ai1,⊥) and (d, ai1, . . . , ai1,⊥) to the interpretation of R′,
and the tuple (sb,0,0,⊥) to the interpretation of Z′ in CAN(I ′).

– The following are also in �′
st :

D(y) ∧ O(z) ∧ B(x1) ∧ · · · ∧ B(xrmax) → R′(y, x1, . . . , xrmax , z), (47)

D(y) ∧ U(z) ∧ B(x1) ∧ · · · ∧ B(xrmax) → R′(y, x1, . . . , xrmax , z). (48)

That is, every tuple of the form (d, ai1, . . . , airmax
,0) and (d, ai1, . . . , airmax

,1),
where ai1, . . . , airmax

is a tuple of elements in {a1, . . . , ap}, belongs to the inter-
pretation of R′ in CAN(I ′).

– Finally, we also add the following st-tgds to �′
st :

D(y) ∧ O(z) ∧ B(x1) ∧ · · · ∧ B(xm) → F ′(y, x1, . . . , xm, z), (49)
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D(y) ∧ U(z) ∧ B(x1) ∧ · · · ∧ B(xm) → F ′(y, x1, . . . , xm, z), (50)

Ea(y) ∧ O(z) ∧ B(x1) ∧ · · · ∧ B(xm) → F ′(y, x1, . . . , xm, z), (51)

Eb(y) ∧ O(z) ∧ B(x1) ∧ · · · ∧ B(xm) → F ′(y, x1, . . . , xm, z), (52)

Ef (y) ∧ O(z) ∧ B(x1) ∧ · · · ∧ B(xm) → F ′(y, x1, . . . , xm, z). (53)

That is, every tuple of the form (d, ai1, . . . , aim,0) and (d, ai1, . . . , aim,1),
where ai1, . . . , aim is a tuple of elements in {a1, . . . , ap}, belongs to the in-
terpretation of F ′ in CAN(I ′). Also, every tuple of form (sa, ai1, . . . , aim,0),
(sb, ai1, . . . , aim,0) or (sf , ai1, . . . , aim,0), where ai1, . . . , aim are elements in
{a1, . . . , ap}, belongs to the interpretation of F ′ in CAN(I ′).

This finishes the definition of �′
st .

We now show the Boolean CQ query Q′ with two inequalities. We first define a
function κ : � → {1, . . . , n} such that κ(j) = i iff the atomic formula Sj mentions
the relation Ri . Moreover, for every j ∈ �, we assume that every Sj is of the form
Sj = Rτ(j)(x̄j , ȳj ). The query Q′ is as follows:

Q′ ≡ ∃x1 · · · ∃xp∃y1 · · · ∃ym∃t0∃t1 · · · ∃t|�|∃za
1 · · · ∃za

rmax
∃zb

1 · · · ∃zb
m

∃q∃r∃k∃k′∃u∃v∃w∃w′∃h1 · · · ∃h|�|
[

A′(q, t0, t1, . . . , t|�|, k, k′, u) ∧ R′(t0, za
1, . . . , za

rmax
, v)

∧ F(t0, z
b
1, . . . , z

b
m, v) ∧

∧

j∈�

(
R′(tτ(j), x̄j , ȳj , h̄τ (j), v)

) ∧
∧

i∈[1,p]
V ′

i (q, xi)

∧ F ′(q, y1, . . . , ym,n) ∧ F ′(k, y1, . . . , ym,w) ∧ F ′(k′, y1, . . . , ym,w′)

∧ Z′(q,w,w′, v) ∧ n �= v ∧ u �= v

]

where each tuple h̄τ (j), for j ∈ �, is a tuple of variables hτ(j) such that, if Sj = Ri

then rmax = ri + |h̄τ (j)|.
Before we continue with the proof, we explain the intuition behind the query Q′.

As opposed to the query of the first part of this proof, the query Q′ is a single conjunc-
tive query with two inequalities. Thus, the second reduction must correctly simulate
the queries Qα,Qβ,Qγ and Qδ that where used in the first part of the reduction us-
ing a single query. To this extent, we use the relation Z′ to code the values previously
stored in the relations C′, D′ and E′. We also use the relation A′ as a controller for
the query. The intuition behind the relation A can be explained as follows: as for the
first part of the reduction, we are interested in those solutions for I in which each of
the null values in the relations R′ and F ′ in CAN(I ) are replaced by the element 0
or 1. Assume that Q′ holds in one of these solutions J , and let ρ be an assignment
for the variables of Q′ that satisfy the body of the query. By taking a closer look at
the possible tuples of A′ in CAN(I ) we find several possible assignments for ρ(q).
Each of these possible assignments represent which part of Qα,Qβ,Qγ or Qδ is Q′
simulating. More precisely, when ρ(q) = sa or ρ(q) = sb , the query Q′ will represent
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Qα1 and Qα2 , respectively. Further, if ρ(q) = sj for some j ∈ �, then Q′ will work
as Qβ . On the other hand, if ρ(q) = sj for some j �∈ �, the query Q′ will simulate
the query Qγ . Finally, the query Qδ is simulated by Q′ when ρ(q) = sf .

We also make considerable use of tuples that contain the element d . Intuitively,
this element is used as a special wildcard element by Q′. For example, let again J

be a solution build by replacing the nulls in CAN(I ) by the element 0 or 1, assume
that Q′ holds in J , and let ρ again be a satisfying assignment for the variables of Q′.
Assume also that ρ(q) = sa . In this case, since the query Q′ is intuitively simulating
the query Qα1 , one would expect no use for any predicate in Q′ using the relation F .
Nevertheless, query Q′ contains, for example, the predicate F ′(k, y1, . . . , ym,w). By
looking at the relation A′ in CAN(I ), one obtains that if ρ(q) = sa , then ρ must
assign the element d to k. Further, we know from the applications of st-tgds (49) and
(50) that the solution J must contain tuples of the form F ′(d, c̄,0) and F ′(d, c̄,1) for
every combination c̄ of elements in {a1, . . . , ap}. This ensures in particular that there
will always be a witness for the predicate F ′(k, y1, . . . , ym,w) of Q′ in J when the
assignment ρ assigns the element sa to the variable q in Q′.

We now show that φ is satisfiable is and only if certainM′(Q′, I ′) = false.
(⇐) Assume first that φ is satisfiable. Then, it is satisfiable by a structure of cardi-

nality at most p. Let A be such structure, and assume without loss of generality that
the elements of A are {a1, . . . , ap} and that A satisfies ∀y1 · · · ∀ym ψ when we assign
to each free variable xi in ψ the corresponding element ai in A, i ∈ [1,p]. Define a
function h from CAN(I ′) to CAN(I ′) as follows:

• If v is a constant, then h(v) = v;
• h(v) = 1, if v is the null value ⊥ such that the tuple R′(ci, ai1, . . . , airi

, d, . . . , d,⊥)

belongs to CAN(I ′) and the interpretation of the relation Ri in A contains the tuple
(ai1, . . . , airi

), ail ∈ {a1, . . . , ap}, l ∈ [1, ri];
• h(v) = 1, if v is a null value ⊥ such that the tuple F(sj , aj1, . . . , ajm,⊥) belongs to

CAN(I ′) and the subformula Sj holds in A when we assign to the universally quan-
tifies variables y1, . . . , ym the elements aj1, . . . , ajm , bjl

∈ {a1, . . . , ap}, l ∈ [1,m],
and to the existentially quantifies variables x1, . . . , xb the elements a1, . . . , ap; and

• otherwise, h(v) = 0.

Let J ∗ be the solution obtained by replacing each element v in CAN(I ′) for h(v).
Notice also that the function h assigns to each null in CAN(I ′) an element in {0,1}.
We now show that the evaluation of Q′ over J ∗ is false, and thus certainM′(Q′, I ′) =
false.

Assume for the sake of contradiction that Q′(J ∗) = true. Then, there is a func-
tion f : {x1, . . . , xp, y1, . . . , ym, t0, t1, . . . , t|�|, za

1, . . . za
rmax

, zb
1, . . . , z

b
m, q, r, k, k′, u,

v,w,w′, h1, . . . , h�} → dom(J ∗), such that for every conjunct P(x̄) of Q′ it is the
case that f (P (x̄)) belongs to J ∗, and that f (v) �= f (u) and f (v) �= f (n).

From the construction of J ∗, it is easy to see that f must map the variable q in
the query Q′ to an element in {sa, sb, sf , s1, . . . , s�}. Thus, depending of the value of
f (q), we have several cases:

• Assume first that f (q) = sa . Notice that the only tuples in the interpretation
of A′ in J ∗ that contain the element sa in their first position are of the form
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A′(sa, ci, d, . . . , d,1), for some 1 ≤ i ≤ n. Further, the only tuple in the inter-
pretation of the relation F in J ∗ with the element sa in it’s first position is
F(sa, d, . . . , d,0). Thus, we obtain that f (u) = 1 and f (n) = 0. However, we
know that f is a function such that f (v) �= f (u) and f (v) �= f (n). It then must
be the case that f (v) �= 1 and f (v) �= 0. This is a contradiction: we know that
f (t0) = ci for some 1 ≤ i ≤ n. Further, every tuple in the interpretation of R′ in
CAN(I ′) that contains an element ci , 1 ≤ i ≤ n, in it’s first position has a null
value in it’s last position. Thus, from the construction of h, it must be the case that
f (v) = 1 or f (v) = 0.

• Assume that f (q) = sb . Then, using the same argument that in the previous para-
graph we obtain that f (u) = 1. Further, since the only tuple in the interpretation of
the relation F ′ in J ∗ with the element sb in it’s first position is F ′(sb, d, . . . , d,0),
it must be the case that f (n) = 0. Again, f is such that f (v) �= f (u) and
f (v) �= f (n), and thus we obtain that f (v) �= 1 and f (v) �= 0. Using the argu-
ments shown in the previous paragraph it can be shown that this is a contradiction:
all tuples in the interpretation of A′ over J ∗ that start with the element sb contain an
element in s1, . . . , s� in their second position. Thus, f (t0) ∈ {s1, . . . , sj }, and thus,
since the only tuples in the interpretation of F ′ in J ∗ that start with an element sj
contain a null in their last position, we conclude that f (n) = 1 or f (n) = 1.

• Assume now that f (q) = sj for some j ∈ � such that Sj = Ri(x̄j , ȳj ) for some
1 ≤ i ≤ n, and where x̄j is a tuple of variables in {x1, . . . , xp} and ȳj is a tuple
of variables in {y1, . . . , ym}. Notice that, since f (q) = sj , from the construction of
the interpretation of the relation A in I ′ it must be the case that f (tτ(j)) = ci , and
that f (tτ(k)) = d for every other k ∈ [1, |�|], k �= j . Assume now that f (u) = 1
(the case when f (u) = 0 is completely symmetrical). Then, since we know that
f (v) �= f (u) and f (v) �= f (n), it must be that f (v) = 0, and thus f (n) �= 0.

Let ⊥ be the null value such that the tuple F ′(sj , f (y1), . . . , f (ym),⊥) belongs
to CAN(I ′). Then, F ′(sj , f (y1), . . . , f (ym),h(⊥)) belongs to J ∗, and so it must
be the case that f (n) = h(⊥). Since h assigns the value 0 or 1 to every null in
CAN(I ′), and since f (n) �= 0. It must be the case that f (n) = 1, and thus h(⊥) = 1.
Then, from the construction of h, the structure A satisfies Sj when we assign the
elements a1, . . . , ap to the variables x1, . . . , xp and the elements f (y1), . . . , f (ym)

to the universally quantified variables y1, . . . , ym in φ. However, since f (v) = 0,
J ∗ must contain the tuple R′(ci, f (x̄j ), f (ȳj ), f (h̄j ),0). Let now ⊥ be the null
value such that the tuple R′(ci, f (x̄j ), f (ȳj ), f (h̄j ),⊥) belongs to CAN(I ′). It
then must be the case that h(⊥) = 0. Further, from the construction of the relation
V ′ we obtain that f assigns the element ak to each variable xk in Q′, that is,
f (xk) = ak , for every 1 ≤ k ≤ p. We then conclude from the construction of h

that Ri(x̄j , ȳj ) does not hold in A when we assign the elements a1, . . . , ap to the
existentially quantifies variables x1, . . . , xp and the elements f (y1), . . . , f (ym) to
the universally quantified variables y1, . . . , ym in φ. This is a contradiction.

• Next, assume that f (q) = sj for some J /∈ �, such that Sj = Sj1 ∨ Sj2 (the other
two cases are completely symmetrical). Further, assume that f (u) = 1 (the case
when f (u) = 0 is also symmetrical). Then, since f is such that f (v) �= f (u)

and f (v) �= f (n), we obtain that f (v) must be different from 1. A close in-
spection to the interpretation Z′ in J ∗ reveals that f (v) must be the element 0,
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and then, correspondingly, f (n) �= 0. Let ⊥ be the null value such that the tu-
ple F ′(sj , f (y1), . . . , f (ym),⊥) belongs to CAN(I ′). Notice that h(⊥) = 1 (oth-
erwise f (n) = 0), and then from the construction of h, we obtain that A sat-
isfies Sj when we assign the elements a1, . . . , ap to the existentially quantifies
variables x1, . . . , xp and the elements f (y1), . . . , f (ym) to the universally quan-
tified variables y1, . . . , ym in φ. Let also ⊥j1 and ⊥j2 be null values such that
the tuples F(sj1 , f (y1), . . . , f (ym),⊥j1) and F(sj2 , f (y1), . . . , f (ym),⊥j2) be-
long to CAN(I ′). From the construction of the relation Z in I , the only tuple
in the interpretation of the relation Z′ in CAN(I ′) (and thus in J ∗) with the el-
ement sj in it’s first position and the element 0 in it’s last position is the tuple
(sj ,0,0,0). Then, it must be the case that f (w) = f (w′) = 0. We conclude then
that h(⊥j1) = h(⊥j2) = 0, which means that A does not satisfy neither Sj1 nor
Sj2 when we assign the elements a1, . . . , ap to the existentially quantifies vari-
ables x1, . . . , xp and the elements f (y1), . . . , f (ym) to the universally quantified
variables y1, . . . , ym. This is a contradiction.

• Finally, assume that f (q) = sf . Since the only tuple in the interpretation of A′ in
CAN(I ′) with the element sf in it’s first position is (sf , d, . . . , d, s1,0), it must
be that f (k′) = s1 and f (u) = 0. Let ⊥ be the null value such that the tuple
F ′(s1, f (y1), . . . , f (ym),⊥) belongs to CAN(I ′). From the construction of Z in
I , it must also be the case that f (v) = 1 and f (w′) = 0, in other words, it must
also be that h(⊥) = 0, and then A does not satisfy S1 when we assign the ele-
ments a1, . . . , ap to the existentially quantifies variables x1, . . . , xp and the ele-
ments f (y1), . . . , f (ym) to the universally quantified variables y1, . . . , ym. This is
a contradiction, because we assumed that φ is satisfiable under this valuation.

(⇒) Assume that certainM′(Q′, I ′) = false. Then there exists a solution J ∗
such that Q′(J ∗) = false. Construct from J ∗ a structure A as follows: The do-
main of A is {a1, . . . , ap}. The interpretation of the relation Ri , i ∈ [1, n] is the
following: The tuple ai1, . . . , airi

belongs to the interpretation of Ri in A iff the
tuple R′(ci, ai1, . . . , airi

, d, . . . , d,1) belongs to J . To prove that A satisfies φ, we
will prove the following: for every j ∈ [1, �], if the tuple F ′(sj , aj1 , . . . , ajm,1) be-
longs to J ∗, then A satisfies the subformula Sj whenever we assign aj1, . . . , ajm to
y1, . . . , ym, and a1, . . . , ap to x1, . . . , xp . We prove this by induction on the structure
of the subformulas of ψ .

Let h be an homomorphism from CAN(I ′) to J ∗. We first prove that for every null
value ⊥ in CAN(I ′), since Q(J ∗) = false, it must be the case that h(⊥) = 1 or
h(⊥) = 0. Assume that there is a null value ⊥ in CAN(I ′) such that h(⊥) �= 1 and
h(⊥) �= 0.

• Assume first that ⊥ belongs to a tuple of the form R′(ci, ai1, . . . , airmax
,⊥) in

CAN(I ′). From the construction of I ′ and M′, the following tuples are in CAN(I ′)
– A′(sa, ci, d, . . . , d,1).
– F ′(ci, a1, . . . , a1,⊥), obtained with (45).
– R′(d, a1, . . . , a1,⊥), obtained with (45).
– V ′

k(sa, a1), for every 1 ≤ k ≤ p, obtained with (41).
– F ′(sa, a1, . . . , a1,0), obtained with (51).
– Z′(sa,0,0,⊥), obtained with (45).
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It is easy to see that if h(⊥) �= 1 and h(⊥) �= 0, then Q(J ∗) = true.
• Assume now that ⊥ belongs to a tuple of the form F ′(sj , aj1, . . . , ajm,⊥) in

CAN(I ′). From the construction of I ′ and M′, the following tuples are in CAN(I ′)
– A′(sb, sj , d, . . . , d,1).
– R′(sj , a1, . . . , a1,⊥), obtained with (46).
– R′(d, a1, . . . , a1,⊥), obtained with (46).
– V ′

k(sb, a1), for every 1 ≤ k ≤ p, obtained with (41).
– F ′(sb, a1, . . . , a1,0), obtained with (52).
– Z′(sb,0,0,⊥), obtained with (46).

It is easy to see that if h(⊥) �= 1 and h(⊥) �= 0, then Q(J ∗) = true.

We now continue with the proof of the induction.

• For the base case, assume that Sj = Ri(x̄j , ȳj ), where x̄j is a tuple of variables
in {x1, . . . , xp}, and ȳj is a tuple of variables in {y1, . . . , ym}. Further, assume that
the tuple F ′(sj , aj1, . . . , ajm,1) belongs to J ∗. Let g : {x1, . . . , xp, y1, . . . , ym} →
dom(J ′) be a function such that g(xi) = ai for each i ∈ [1,p], and g(yi) = aji

for each i ∈ [1,m]. From the construction of I ′ and M′, CAN(I ′) contains the
following tuples (where ⊥ is a null value):
– A′(sj , d, . . . , d, ci, d, . . . , d,1).
– Z′(sj ,0,0,0).
– F ′(d, aj1, . . . , ajm,1), obtained with (50).
– F ′(d, aj1, . . . , ajm,0), obtained with (49).
– V ′

k(sj , ak) for every 1 ≤ k ≤ p), obtained with (41).
– F ′(d, a1, . . . , a1,0), obtained with (49).
– R′(d, a1, . . . , a1,0), obtained with (47).
– R′(ci, g(x̄i), g(ȳi), d, . . . , d⊥), obtained with (45).
– R′(d, c1, . . . , cri′ , d, . . . , d,0), for every combination of elements in {a1, . . . , ap}

and for every i′ �= i, obtained with (47).
We know that h(⊥) = 0 or h(⊥) = 1. It is easy to see that if h(⊥) = 0 then

the evaluation of Q′ over J ∗ is true. Then, since Q(J ∗) = false, it must be the
case that h(⊥) = 1. It follows that R′(ci, g(x̄j ), g(ȳj ),1) belongs to J ∗, and, by
the definition of A, A satisfies Sj when we assign a1, . . . , ap to x1, . . . , xp and
aj1, . . . , ajm to y1, . . . , ym.

• For the inductive case, assume that Sj ≡ Sj1 ∧ Sj2 (The cases where Sj ≡
Sj1 ∧ Sj2 or Sj ≡ ¬Sj1 are completely symmetrical). Further, assume that
F ′(sj , ai1, . . . , aim,1) belongs to J ∗. We also know there are tuples F ′(sj1 , ai1, . . . ,

aim,⊥j1) and F ′(sj2 , ai1, . . . , aim,⊥j2) in CAN(I ′). Therefore, J ∗ contains the tu-
ples F ′(sj1 , ai1, . . . , aim, h(⊥j1)) and F ′(sj2 , ai1, . . . , aim, h(⊥j2)). We claim that
h(⊥j1) = h(⊥j2) = 1. Assume for the sake of contradiction that h(⊥j1) = 0 (the
case when h(⊥j2) = 0 is completely symmetrical). From the construction of I ′
and M′, we also know that the following tuples belong to CAN(I ′), an thus be-
long to J ∗:
– A′(sj , d, . . . , d, sj1, sj2 ,1).
– Z′(sj ,0,1,0) and Z′(sj ,0,0,0).
– V ′

k(sj , ak) for every 1 ≤ k ≤ p) , obtained with (41).
– F ′(d, a1, . . . , a1,0) , obtained with (49).
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– R′(d, a1, . . . , a1,0) , obtained with (47).
– R′(d, c1, . . . , cri′ , d, . . . , d,0), for every combination of elements in {a1, . . . , ap}

and for every i′ ∈ [1, n], obtained with (47).
It is now easy to see that Q′(J ∗) = true. Then, it must be that h(⊥j1) =

h(⊥j2) = 1. Then, by the inductive hypothesis, A satisfies Sj1 and Sj2 when we
assign a1, . . . , ap to x1, . . . , xp and aj1, . . . , ajm to y1, . . . , ym. It follows that A
satisfies Sj when we assign a1, . . . , ap to x1, . . . , xp and aj1, . . . , ajm to y1, . . . , ym.
This finishes the induction.

All that is left to prove is that for every tuple c1, . . . , cm of elements in
{a1, . . . , ap}, the tuple F ′(s1, c1, . . . , cm,1) belongs to J ′. Notice that, from the pre-
vious induction, this implies that A satisfies S1 for every assignment of the variables
y1, . . . , ym when we assign a1, . . . , ap to x1, . . . , xp , and thus that A is a satisfies φ.

We now prove that for every tuple c1, . . . , cm of elements in {a1, . . . , ap}, the
tuple F ′(s1, c1, . . . , cm,1) belongs to J ′. Assume for the sake of contradiction that
there exists elements ai1, . . . , aim , aik ∈ {a1, . . . , ap} for every 1 ≤ k ≤ m, such that
F ′(s1, ai1, . . . , aim,1) does not belong to J ∗. We know that there exists a null ⊥ such
that the tuple F ′(s1, ai1, . . . , aim,⊥) belongs to CAN(I ′). Then, it must be the case
that h(⊥) = 0, and thus he tuple F ′(s1, ai1, . . . , aim,0) must belong to J ∗. We also
know that the following tuples belong to J ∗:

• A′(sf , d, . . . , d, s1,0)

• Z′(sf ,0,0,1)

• V ′
i (sf , ak) for every 1 ≤ k ≤ p and every 1 ≤ i ≤ p , obtained with (41).

• F ′(d, a1, . . . , a1,1) , obtained with (50).
• R′(d, a1, . . . , a1,1) , obtained with (48).
• R′(d, c1, . . . , cri′ , d, . . . , d,0), for every combination of elements in {a1, . . . , ap}

and for every i′ ∈ [1, n], obtained with (47).
• F ′(d, ai1, . . . , aim,0) , obtained with (49).

It is easy to see that Q(J ∗) = true, which is a contradiction. This concludes the
proof of the theorem.
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