
Design Principles for XML Data

by

Marcelo Arenas

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2005 by Marcelo Arenas

Abstract

Design Principles for XML Data

Marcelo Arenas

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2005

In this dissertation, we take a first step towards the design and normalization theory for

XML documents. We start by noticing that while in the relational world the criteria

for being well designed are very intuitive, they become more obscure when one moves

to XML. Thus, our first contribution is to provide a tool for testing when a condition

on a database design, specified as a normal form, corresponds to a good design. We use

techniques of information theory, and define a measure of information content of elements

in a database with respect to a set of constraints. This measure can be used in different

data models, in particular, we use it in the relational model to provide information-

theoretic justification for well-known normal forms and for normalization algorithms.

As our second contribution we introduce languages for XML data dependencies, that

will be used later as the source of semantic information in the design of XML databases.

Since inconsistent XML specifications may arise in practice because of the interaction be-

tween these dependencies and the constraint imposed by XML schemas (DTDs), our next

contribution is to pinpoint the complexity of checking consistency of XML specifications.

We then show that XML documents may contain redundant information, and may

be prone to update anomalies. Thus, our final contribution is to define an XML normal

form, XNF, that avoids update anomalies and redundancies. We study its properties, and

show that it generalizes BCNF and that it can be justified by our information-theoretic

measure. We present an algorithm for converting any XML schema into an equivalent

one in XNF, and we use our information-theoretic measure to justify this algorithm.

Para Vanny y Magdalena

iii

Acknowledgements

I would especially like to thank the following people.

• First and foremost, I would like to thank my supervisor, Professor Leonid Libkin,

for his extraordinary support in all aspects of my graduate life. I do not know of

any other supervisor who spends so much time with his students. To meet with him

I just had to drop by his office, and then I could spend hours talking about research

and life. His encouragement, enthusiasm and single malts have made working with

him a great pleasure.

• A Vanny, quien decidió embarcarse conmigo en esta aventura. Gracias por com-

partir conmigo este sueño. Te amo!

• A Magdalena, por esperarme todos los d́ıas, por hacerme reir tanto y por dejarme

dormir poco.

• I would like to thank the members of my thesis committee, Professors Renee Miller,

Mariano Consens and Hector Levesque, for reading my thesis and providing so many

useful suggestions.

• I would like to thank Professor Alberto Mendelzon, who was part of my thesis

committee but unfortunately passed away before this work was finished. Alberto

was an exceptional human being and, in particular, because of him I applied for a

Ph.D at the University of Toronto and joined the database group.

• I would like to thank the external member of my thesis committee, Professor Moshe

Vardi, for taking the time to read my thesis and for providing useful comments. I

feel honored to have had him on my thesis committee.

• A mis padres, por todo el apoyo durante todos estos años. No creo que ellos sepan

todo lo agradecido que estoy por su dedicación.

• A mi suegra, quien también nos ayudo mucho en todo el proceso. Tampoco creo

que ella sepa todo lo agradecido que estoy por esto.

• I would like to thank my good friend Tasos Kementsietsidis. After sharing an office

with him for two years, staying awake the whole night writting a paper, drinking

iv

some vodka mandarin and visiting him in his new home in Edinburgh, I finally

came to the conclusion that Greeks do not know how to play soccer.

• I would like to thank Ramona Truta for being such a good friend and for helping me

every time I needed something. But mostly, I would like to thank her for cooking

the best sarmale in the world.

• A Pablo Barceló por mantenerme informado de toda la actualidad nacional.

• I would also like to thank my personal trainer Jorge Baier for keeping me in good

shape (sure!).

v

Contents

1 Introduction 1

1.1 Contributions . 3

2 Relational and Nested Relational Databases 6

2.1 Relational Databases . 6

2.1.1 Basic Notions . 6

2.1.2 Data Dependencies in Relational Databases 9

2.1.3 Relational Databases Design . 24

2.1.4 Why are Normalized Databases Good? 40

2.2 Nested Relational Databases . 43

2.2.1 Data Dependencies in Nested Relational Databases 44

2.2.2 Nested Relational Databases Design 48

3 An Information-Theoretic Approach to Normal Forms 57

3.1 Introduction . 58

3.2 Notations . 59

3.2.1 Schemas and Instances . 59

3.2.2 Basics of Information Theory . 60

3.3 Information Theory and Normal Forms: an Appetizer 61

3.4 A General Definition of Well-Designed Data 63

3.4.1 Basic Properties . 68

3.4.2 Justification of Relational Normal Forms 76

3.5 Normalization algorithms . 81

4 XML Databases 85

4.1 Introduction . 85

vi

4.2 XML Documents and DTDs . 88

4.2.1 Simple DTDs . 92

4.2.2 Paths in XML Documents and DTDs 93

4.3 Keys and Foreign Keys for XML Databases 94

4.3.1 Absolute keys and foreign keys 95

4.3.2 Relative keys and foreign keys . 97

4.3.3 Related Work . 99

5 Consistency of XML Databases 103

5.1 Introduction . 104

5.2 Known Results about the Consistency Problem 107

5.3 Absolute Integrity Constraints . 109

5.3.1 Consistency of Multi-attribute Keys 110

5.3.2 Consistency of Regular Expression Constraints 111

5.3.3 Summary . 114

5.4 Relative integrity constraints . 114

5.4.1 Undecidability of consistency . 115

5.4.2 A linear time decidable case . 115

5.4.3 Summary . 116

5.5 Two Applications . 116

5.5.1 Consistency of Real-Life DTDs 116

5.5.2 Consistency of XML Schema Specifications 117

5.6 Conclusions . 122

6 Functional Dependencies for XML 124

6.1 Tree Tuples . 124

6.2 Functional Dependencies . 132

6.3 The Implication Problem for XML Functional Dependencies 134

6.3.1 The General Case . 134

6.3.2 Simple regular expressions . 134

6.3.3 Small number of disjunctions . 135

6.3.4 Relational DTDs . 137

6.3.5 Nonaxiomatizability of XML functional dependencies 139

6.4 The Consistency Problem for XML Functional Dependencies 141

vii

6.5 Related Work . 143

7 XNF: A Normal Form for XML Documents 144

7.1 Introduction . 144

7.2 XNF: An XML Normal Form . 150

7.2.1 BCNF and XNF . 152

7.2.2 NNF-96 and XNF . 153

7.3 The complexity of testing XNF . 157

7.4 Justifying XNF . 158

7.5 Normalization Algorithms . 162

7.5.1 The Decomposition Algorithm . 163

7.5.2 Lossless Decomposition . 170

7.5.3 Justifying the Decomposition Algorithm 174

7.5.4 Eliminating additional assumptions 176

7.6 A Third Normal Form for XML . 177

7.7 Related Work . 178

8 Conclusions 179

9 Future Work 181

Bibliography 183

A Proofs from Chapter 3 198

A.1 Proof of Lemma 3.4.4 . 198

A.2 Proof of Lemma 3.5.2 . 200

B Proofs from Chapter 5 203

B.1 Proof of Theorem 5.3.1 . 203

B.2 Proof of Theorem 5.3.5 . 214

B.3 Proof of Theorem 5.4.1 . 230

B.4 Proof of Theorem 5.5.7 . 235

C Proofs from Chapter 6 238

C.1 Proof of Theorem 6.3.1 . 238

C.2 Proof of Theorem 6.3.2 . 240

viii

C.3 Proof of Theorem 6.3.3 . 244

C.4 The Implication Problem for Relational DTDs is in coNP 247

ix

List of Tables

5.1 Complexity of the consistency problem for absolute constraints 114

5.2 Complexity of the consistency problem for relative constraints 116

5.3 Complexity of the consistency problem for simple DTDs. 117

5.4 Lower bounds for the complexity of the consistency problem for XML

Schema. 122

x

List of Figures

2.1 Relation Course. 7

2.2 An algorithm for computing the closure of a set of attributes X, given a

set of functional dependencies Σ. 10

2.3 Relation Movie. 12

2.4 Algorithm for computing dep(X). 14

2.5 Relation MovieDirector. 15

2.6 Hypergraphs of two join dependencies. 20

2.7 A database instance storing information about employees and their man-

agers. 22

2.8 A database prone to update anomalies. 25

2.9 An algorithm for synthesizing 3NF schemas. 29

2.10 A 3NF relation prone to an update anomaly. 30

2.11 An algorithm for generating BCNF schemas [AHV95]. 31

2.12 A new type of insertion anomaly. 33

2.13 A 4NF decomposition algorithm. 35

2.14 An instance of the relation schema (Book(ISBN, Title, Author), {ISBN →

Title}). 41

2.15 A nested relation. 43

2.16 Total unnesting of nested relation shown in Figure 2.15. 45

2.17 Labeled trees representing nested relations. 47

2.18 Movie relation as a nested relation. 49

2.19 Schema trees of two nested schemas. 50

2.20 Three alternative representations of {Title →→ Director , Theater →→

Snack}. 52

3.1 Database instances. 61

xi

3.2 Defining Inf
k
I (p | Σ). 64

3.3 Value of conditional entropy. 68

4.1 An XML document. 86

4.2 A DTD for a university database. 87

4.3 Tree representation of an XML document. 89

4.4 Part of the Business Process Specification Schema of ebXML. 92

4.5 An XML document storing information about countries and their admin-

istrative subdivisions. 98

5.1 An XML tree for storing information about teachers. 105

5.2 An XML document for storing information about students and professors. 113

5.3 An XML document conforming to the DTD D shown in Example 5.5.6. 121

6.1 DTD generated from a formula (x1 ∨ x2) ∧ (x1 ∨ ¬x3). 139

7.1 A document containing redundant information. 146

7.2 A well-designed document. 148

7.3 Nested relation and its unnesting. 154

7.4 XNF decomposition algorithm. 170

7.5 Splitting a DTD. 176

B.1 Trees used in the proof of Theorem 5.3.1 212

B.2 An XML tree conforming to the DTD constructed from ∀x1∃x2∀x3(x1 ∨

x2 ∨ ¬x3). 229

B.3 Part of the XML tree used in the proof of Theorem 5.4.1. 234

B.4 DTD generated from (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3). 236

xii

Chapter 1

Introduction

Information is one of the most –if not the most– valuable assets of a company. Therefore,

organizations need tools to allow them to structure, query and analyze their data, and,

in particular, they need tools providing simple and fast access to their information.

During the last 30 years, relational databases have become the most popular computer

application for storing and analyzing information. The simplicity and elegance of the

relational model, where information is stored just as tables, has largely contributed to

this success.

To use a relational database, a company first has to think of its data as organized

in tables. How easy is for a user to understand this organization and use the database

depends on the design of these relations. If tables are not carefully selected, users can

spend too much time executing simple operations or may not be able to extract the

desired information.

Since the beginnings of the relational model, it was clear for the research community

that the process of designing a database is a nontrivial and time-consuming task. Even

for simple application domains, there are many possible ways of storing the data of

interest. Soon the difficulties in designing a database became clear for practitioners, and

the design problem was recognized as one of the fundamental problems for the relational

technology.

During the 70s and 80s, a lot of effort was put into developing methodologies to aid in

the process of deciding how to store data in a relational database. The most prominent

approaches developed at that time –which today are an standard part of the relational

technology– were the entity-relationship and the normalization approaches. In the former

approach, a diagram is used to specify the objects of an application domain and the rela-

1

Chapter 1. Introduction 2

tionships between them. The schema of the relational database, i.e. the set of tables and

column names, is then automatically generated from the diagram. In the normalization

approach, an already designed relational database is given as input, together with some

semantics information provided by a user in the form of relationships between different

parts of the database, called data dependencies. This semantic information is then used

to check whether the design has some desirable properties, and if this is not the case, it

can also be used to convert the poor design into an equivalent well-designed database.

The normalization approach was proposed in the early 70s by Codd. In this approach,

a normal form, defined as a syntactic condition on data dependencies, specifies a prop-

erty that a well-designed database must satisfy. Normalization as a way of producing

good relational database designs is a well-understood topic. In the 70s and 80s, normal

forms such as 3NF, BCNF, 4NF, and PJ/NF were introduced to deal with the design of

relational databases having different types of data dependencies. These normal forms,

together with normalization algorithms for converting a poorly designed database into a

well-designed database, can be found today in every database textbook.

With the development of the Web, new data models have started to play a more

prominent role. In particular, XML (eXtensible Markup Language) has emerged as the

standard data model for storing and interchanging data on the Web. As more companies

adopt XML as the primary data model for storing information, the problem of designing

XML databases is becoming more relevant. After 30 years of database development, it

is clear for both researchers and practitioners that the performance of XML databases

depends on their design.

The concepts of database design and normal forms are central in relational database

technology. In this dissertation, we extend them to XML databases. Our goal is to find

principles for good XML data design, and algorithms to produce such designs. We believe

this research is especially relevant nowadays, since a huge amount of data is being put

on the Web. Once massive Web databases are created, it is very hard to change their

organization; thus, there is a risk of having large amounts of widely accessible, but poorly

organized legacy data.

In this dissertation, we extend the normalization approach to XML databases. We

believe that in order to have tools for helping users in designing XML databases, both

the normalization and the entity-relationship approach have to be developed for XML.

In relational databases, designers typically follow the methodology of entity-relationship

design. However, the importance of the normalization approach in this data model cannot

Chapter 1. Introduction 3

be ignored. In the relational world, normalization theory established some fundamental

properties that a well-designed database should possess, and that became the target for

the entity-relationship methodology, as this approach generates relational schemas that

are in some normal form, typically 3NF or BCNF. We expect the situation to be similar

for the case of XML. In practice, the users will utilize some form of entity-relationship

diagram to design an XML database, and then an algorithm will generate a schema in

some XML normal form. In some cases, normalization algorithms will be also used to fine-

tune the resulting schema. But in the case of XML, we expect the normalization approach

to play an even more important role in identifying the properties that the generated

schemas should possess. The flexibility of XML and the rather expressive languages used

for specifying XML schemas make more difficult to identify good properties for XML

documents, and today we can find examples of proposals for XML entity-relationship

diagrams that have not been able to clearly identify what are the properties of the

generated schemas [WLLD01, EM01a, SMD03, LLD04] and, in particular, what are the

properties that they should satisfy. We expect the XML normalization approach to give

the right answers for these questions.

Designing a relational database means choosing an appropriate relational schema for

the data of interest. A relational schema consists of a set of relations, or tables, and a

set of data dependencies over these relations. Designing an XML database is similar: An

appropriate XML schema has to be chosen, which usually consists of a DTD (Document

Type Definition) and a set of data dependencies. However, the structure of XML doc-

uments, which are trees as opposed to relations, and the rather expressive constraints

imposed by DTDs make the design problem for XML databases quite challenging.

1.1 Contributions

Seeking for principles for good XML data design, and algorithms to produce such de-

signs, this dissertation addresses several problems. More specifically, we start by noticing

that while in the relational world the criteria for being well designed are usually very

intuitive and clear to state, they become more obscure when one moves to more complex

data models such as XML. Then we provide a set of tools for testing when a condition

on a database design, specified by a normal form, corresponds to a good design. We

use techniques of information theory, and define a measure of information content of el-

ements in a relational database with respect to a set of constraints. Our intention when

Chapter 1. Introduction 4

introducing this information-theoretic measure is to have a robust tool that can be used

to study normal forms in more complex data models such as XML. We use this measure

to provide information-theoretic justification for familiar relational normal forms such as

BCNF, 4NF and PJ/NF, and we also look at information-theoretic criteria for justifying

normalization algorithms for relational databases.

Once the set of tools for testing when a normal form corresponds to a good design are

developed, we address the problem of designing XML databases. We start by introducing

a formal model for XML databases, and then noticing that, as in the case of relational

databases, the design of XML databases is guided by the semantic information encoded

in data dependencies. Thus, our next step is to introduce several languages for XML

data dependencies.

We continue our work by observing that XML databases are prone to a serious design

problem: As opposed to relational databases, XML databases can be inconsistent in

the sense that there is no way of populating the database and satisfying the constraints

imposed by its schema. Since inconsistent XML databases are poorly designed, it is

desirable to have algorithms for checking consistency. Thus, our next step is to study

the problem of checking consistency for a variety of XML data dependency languages.

Unfortunately, our main conclusion in this part of the dissertation is that compile-time

verification of consistency is usually infeasible.

After dealing with the consistency of XML databases, we study the elements that we

need to introduce a normal form for XML documents. More specifically, at this point we

propose a functional dependency language for XML documents, which is the basic com-

ponent of the XML normal form proposed in this dissertation. Once the main properties

of this language have been established, we propose a normal form for XML documents.

In the final part of this dissertation, we show that, like relational databases, XML docu-

ments may contain redundant information, and may be prone to update anomalies. We

define an XML normal form, XNF, that avoids update anomalies and redundancies. We

study its properties, and show that the information-theoretic measure mentioned above

justifies XNF. We present an algorithm for converting any DTD into an equivalent one

in XNF, and we finish this dissertation by looking at information-theoretic criteria for

justifying this algorithm.

It is worth mentioning that the results of this dissertation appeared in the following

publications: the results of Chapter 3 appeared in [AL03, AL05], the results of Chapter

5 appeared in [AFL02a, AFL02b] and the results of Chapters 6 and 7 appeared in [AL02,

Chapter 1. Introduction 5

AL04].

Chapter 2

Relational and Nested Relational

Databases

In this chapter, we present normalization theory for relational and nested relational

databases. We decided to include the nested relational model because its hierarchical

structure is closely related to the hierarchical structure of XML. In fact, in Chapter 7,

we show that one of the nested normal forms introduced in this chapter is closely related

to the XML normal form proposed in this dissertation.

This chapter is divided into two sections. In the first section, we consider relational

databases, and in the second one we consider nested relational databases.

2.1 Relational Databases

To present normalization theory for relational databases, we have divided this section

into three sections. In Section 2.1.1, we present the basic notions in the relational model.

In Section 2.1.2, we introduce data dependency theory for relational databases, and we

describe in detail the results of this theory that are needed for introducing normalization

theory in Section 2.1.3.

2.1.1 Basic Notions

The relational model was introduced by Codd [Cod70] in the ’70s and today is the most

popular data model. In this simple formalism, a database is viewed as a collection of

relations or tables. For instance, a relational database storing information about courses

6

Chapter 2. Relational and Nested Relational Databases 7

in a university is shown in Figure 2.1. Each row of this table contains the number of a

course, its title, the number of one of its sections and the room where this section is held.

Number Title Section Room

CSC 258 Computer Organization 1 LP266

CSC 258 Computer Organization 2 GB258

CSC 258 Computer Organization 3 LM161

CSC 258 Computer Organization 3 GB248

CSC 434 Data Management Systems 1 GB248

Figure 2.1: Relation Course.

The relation shown in Figure 2.1 consists of a time-varying part, the data about courses,

and a part considered to be time independent, the schema of the relation. These two

parts are the main components of the relational model. Formally, a relation schema is an

expression of the form R[U], where R is the name of the relation and U = {A1, . . . , An}

is the set of its attributes. For each attribute A ∈ U , Dom(A) is used to denote its

domain. We assume that all domains are infinite1. For example, the schema of the

relation shown in Figure 2.1 is Courses[U], where U = {Number ,Title, Section,Room}

and Dom(Section) is the set of natural numbers. A U -tuple t is a function with domain U

such that for every A ∈ U , t(A) ∈ Dom(A). Thus, a tuple is a mapping that associates a

value to each attribute of U . An instance I of a relation schema R[U] is a set of U -tuples.

For example, the instance shown in Figure 2.1 contains four tuples, the first of which is

defined as: t1(Number) = CSC 258, t1(Title) = Computer Organization, t1(Section) = 1

and t1(Room) = LP266. If an order for the set of attributes is provided, then we represent

tuples by enumerating their values: Tuple t1 in the previous example is represented as

(CSC 258, Computer Organization, 1, LP266). A database schema is a set of relation

schemas S = {R1[U1], . . . , Rn[Un]}. An instance I of schema S assigns to each symbol

R[U] ∈ S a relation I(R) which is a finite set of U -tuples.

Usually, the information contained in a database must satisfy some constraints. For

example, in the relation shown in Figure 2.1 we expect that only one title is associated

to each course number. By providing the schema of a relation, we specify syntactic

constraints, the structure of a relation, but we do not specify the semantic constraints

that the instances should satisfy. To remedy this, for each relation schema it is necessary

1We defer the discussion on finite domains to Section 2.1.2.

Chapter 2. Relational and Nested Relational Databases 8

to specify separately a set of semantic restrictions. These restrictions are called data

dependencies and they are expressed by using suitable languages (see Section 2.1.2). For

the sake of simplicity, given a relation schema R[U] and a set of data dependencies Σ

over R, (R[U],Σ) is also called relation schema.

Querying Relational Databases

The most popular query language for relational databases is SQL. Practically all commer-

cial database systems used SQL as the main data manipulation language. On the theory

side, probably the most popular query language is relational algebra. This language has

been extensively studied in the database community and, particularly, it plays a central

role in the normalization theory of relational databases. Some of the most important

concepts in this theory, like information losslessness, are defined in terms of relational

algebra operators. In this section, we present the core operators of this algebra, which

are expressive enough to capture the most common SQL statements.

Relational algebra has five basic operators [AHV95]: selection, projection, join, union

and difference. The first two operators are unary and the remaining ones are binary.

These operators are defined as follows. Let R[U] be a relation schema and I an instance

of R[U]. The two primitive forms of the selection operator are σA=c and σA=B , where

A,B ∈ U and c ∈ Dom(A). These operators take as input relation I and return the

following relations:

σA=c(I) = {t ∈ I | t(A) = c}, σA=B(I) = {t ∈ I | t(A) = t(B)}.

From now on, if V ⊆ U and t is a U -tuple, then t[V] denotes a V -tuple obtained by

restricting t to V . In particular, for every attribute A ∈ U , t[A] represents the value

t(A).

The general form of the projection operator is πX , where X ⊆ U . On input I, this

operator returns relation πX(I) = {t[X] | t ∈ I}. Let R′[U ′] be a relation schema and

I ′ an instance of R′[U ′]. Assume that V = U ∪ U ′. Then, the join between I and I ′,

denoted by I ./ I ′, is defined as the following set of V -tuples:

I ./ I ′ = {u | u is a V -tuple and there exist t ∈ I and

t′ ∈ I ′ such that u[U] = t and u[U ′] = t′}.

For example, by joining the relation shown in Figure 2.1 with

Chapter 2. Relational and Nested Relational Databases 9

Room Location

AN203 95 Queen’s Park

GB258 35 St. George Street

LM161 80 St. George Street

GB248 35 St. George Street

we obtain the following relation:

Number Title Section Room Location

CSC 258 Computer Organization 2 GB258 35 St. George Street

CSC 258 Computer Organization 3 LM161 80 St. George Street

CSC 258 Computer Organization 3 GB248 35 St. George Street

CSC 434 Data Management Systems 1 GB248 35 St. George Street

Finally, union and difference operators are defined as the usual set theoretic operators. If

J is an instance of R[U], then I ∪ J = {t | t ∈ I or t ∈ J} and I − J = {t | t ∈ I and t 6∈

J}.

A relational algebra query, usually denoted by Q, is constructed by combining the

relational algebra operators. For a database instance I, Q(I) denotes the set of tuples

obtained by executing query Q on I. For example, if I is the database instance shown

in Figure 2.1, then πNumber ,Title(σRoom=GB248(I)) = {(CSC 258, Computer Organization),

(CSC 434, Data Management Systems)}.

2.1.2 Data Dependencies in Relational Databases

In this section, we present some of the most popular data dependencies for relational

databases: functional dependencies, key dependencies, multivalued dependencies, join

dependencies and domain dependencies. These constraints play a central role in normal-

ization theory for relational databases.

A common issue in every normalization algorithm (see Section 2.1.3 for a description

of the most common normalization algorithms) is the use of dependency implication.

Given a set of data dependencies Σ ∪ {σ}, Σ implies σ, denoted by Σ |= σ, if for every

database instance I that satisfy all the constraints in Σ, it is the case that I satisfies

σ. The set of all dependencies implied by Σ is denoted by Σ+. In this section, for each

of the dependencies mentioned above we present algorithms for solving the implication

problem.

Chapter 2. Relational and Nested Relational Databases 10

constraints := Σ

closure := X

repeat until no further change:

if W → Z ∈ constraints and W ⊆ closure then

closure := closure ∪ Z

constraints := constraints − {W → Z}

return closure

Figure 2.2: An algorithm for computing the closure of a set of attributes X, given a set

of functional dependencies Σ.

In this section, we also present an alternative approach to the implication problem. In

this approach, inference rules are used to construct proofs that a dependency is implied.

For a class of data dependencies C, a set of inferences rules I is said to be complete if

for every set of constraints Σ ∪ {σ} in C, if Σ |= σ then σ can be deduced from Σ by

using the set of rules I, denoted by Σ `I σ. Furthermore, I is said to be sound if Σ `I σ

implies that Σ |= σ. For each of the dependencies mentioned above, we show a finite,

sound and complete set of inference rules, if such a set exists.

Functional and Key Dependencies

A functional dependency (FD) over a relation schema R[U] is an expression of the form

X → Y , where X, Y ⊆ U . A relation I over R[U] satisfies X → Y , denoted by I |= X →

Y , if for every pair of tuples t1, t2 in I, t1[X] = t2[X] implies t1[Y] = t2[Y]. Thus, X → Y

says that if two tuples contain the same values on X, they must have the same values

on Y . For example, the relation shown in Figure 2.1 satisfies the functional dependency

Number → Title, since one title is associated to each course number. On the other hand,

this relation does not satisfy the functional dependency Number → Room, because the

first two tuples of this relation have the same value on the attribute Number and different

values on the attribute Room.

A key dependency (KD) over R[U] is a functional dependency of the form X → U . If

such a constraint exists, we say that X is a superkey. If there is no Y $ X such that Y

is a superkey, then X is a key. For instance, {Number, Section, Room} is a key for the

relation shown in Figure 2.1.

Chapter 2. Relational and Nested Relational Databases 11

Let Σ be a set of functional dependencies over R[U] and X ⊆ U . The closure of X,

denoted by X+, is defined to be the set of attributes A ∈ U such that Σ |= X → A. This

set is used to determine whether a set of FDs implies a given FD; for every set of FDs

Σ ∪ {X → Y }, Σ |= X → Y if and only if Y ⊆ X+. The closure of a set of attributes

X can be computed in quadratic time by using the algorithm shown in Figure 2.2. This

algorithm incrementally computes the closure of X given a set of FDs Σ. In each of its

iterations, at least one new attribute is added to closure, except for the last one. Thus,

in the worst case the number of iterations is |U |. In each iteration, the algorithm needs

to scan Σ and, therefore, in the worst case the algorithm runs in time O(|U | · ‖Σ‖),

where ‖Σ‖ is the size of the representation2 of Σ. Beeri and Bernstein [BB79, Ber79]

proposed a linear time algorithm for computing the closure of a set of attributes. This

algorithm is used to construct a linear time procedure for solving the implication problem

for functional dependencies [BB79].

The implication problem for FDs is axiomatizable. The following is a sound and

complete set of inference rules [Arm74]:

Reflexibility : If Y ⊆ X, then X → Y .

Augmentation : If X → Y , then XZ → Y Z,

Transitivity : If X → Y and Y → Z, then X → Z.

In these rules, we denote the union of two set of attributes X, Y by XY . Hereafter, we

adopt this terminology.

Multivalued Dependencies

A multivalued dependency (MVD) over a schema R[U] is an expression of the form X →→

Y , where X and Y are subsets of U . A database instance I of R[U] satisfies a multivalued

dependency X →→ Y , denoted by I |= X →→ Y , if for every pair of tuples t1, t2 in I(R)

such that t1[X] = t2[X], there exist a tuple t3 in I(R) such that t3[XY] = t1[XY] and

t3[XZ] = t2[XZ], where Z = U−XY . Essentially, a database instance satisfies X →→ Y

if for every value of X, the values in Y are independent of the values in Z, that is, a

database instance I satisfies X →→ Y if and only if for every pair of X,Z-values x, z

that appears in some tuple of I,

{t[Y] | t ∈ I and t[X] = x} = {t[Y] | t ∈ I, t[X] = x and t[Z] = z}.

2Observe that ‖Σ‖ is O(|U | · |Σ|), where |Σ| is the number of functional dependencies in Σ.

Chapter 2. Relational and Nested Relational Databases 12

Theater Title Snack

Bloor Cinema Bad Company coffee

Bloor Cinema Bad Company popcorn

Bloor Cinema Spider-Man coffee

Bloor Cinema Spider-Man popcorn

Paramount Bad Company coke

Paramount Bad Company popcorn

Paramount Insomnia coke

Paramount Insomnia popcorn

Paramount Spider-Man coke

Paramount Spider-Man popcorn

Figure 2.3: Relation Movie.

For example, consider a relation schema Movie(Theater ,Title, Snack) [AHV95]. A tuple

(th, ti, sn) is in this relation if theater th is showing movie ti and offering snack sn. For

a given theater, the information about titles and snacks is independent and, therefore,

this schema must satisfy the MVD Theater →→ Title. Figure 2.3 shows one instance of

the relation Movie satisfying this multivalued dependency.

To solve the implication problem for multivalued dependencies, the concepts of “de-

pendency set” and “dependency basis” were introduced by Beeri [Bee80]. Given a set of

multivalued dependencies Σ over U and X ⊆ U , the dependency set of X, denoted by

X+, is defined as {Y ⊆ U | Σ |= X →→ Y }. The dependency set is a generalization of

the closure of a set attributes given a set of functional dependencies, defined in the previ-

ous section. Moreover, this collection is closed under union, intersection and difference.

Thus, X+ contains a unique sub-collection of nonempty, pairwise disjoint sets such that

every element of X+ is a union of some elements of this sub-collection. This set is called

the dependency basis of X, denoted by dep(X).

Given a set of multivalued dependencies Σ ∪ {X →→ Y } over a set of attributes U ,

Σ |= X →→ Y if and only if Y ∈ X+, that is, if and only if Y is the union of some

elements of dep(X). Thus, an algorithm for computing dep(X) can be easily extended to

solve the implication problem for multivalued dependencies. Such an algorithm is shown

in Figure 2.4.

The algorithm shown in Figure 2.4 was proposed by Beeri [Bee80]. This algorithm

Chapter 2. Relational and Nested Relational Databases 13

incrementally stores in basis the dependency basis of X. Initially, this set contains the

set of attributes that are trivially implied by X: A, for each A ∈ X, and U −X. Given

W →→ Z ∈ Σ, the inner loop construct a set of attributes W ′ such that Σ |= X →→W ′

and W ⊆ W ′. Hence, Σ |= X →→ W ′ − Z and, therefore, if W ′ − Z, denoted by Z ′ in

the algorithm, is not empty and is not a union of some of the sets included in basis, then

it is added to the dependency set. This is done in the last step of the algorithm. This

algorithm runs in time O(‖Σ‖4) [Bee80].

The algorithm shown in Figure 2.4 constructs the dependency basis incrementally.

In each step of the loop, it chooses one multivalued dependency and tries to refine basis

by considering a subset of the right hand side of this dependency. This algorithm can

be improved by considering a different refinement rule [Gal82]. Assume that |Σ| = n,

the ith dependency in Σ is Wi →→ Zi (i ∈ [1, n]) and Y is in basis, after executing k

steps of the algorithm. If there is i ∈ [1, n] such that Wi ∩ Y = ∅, Y ∩ Zi 6= ∅ and

Y ∩ (U − Zi) 6= ∅, then Y can be replaced by Y1 = Y ∩ Zi and Y2 = Y ∩ (U − Zi), since

Σ |= X →→ Y ∩ Zi and Σ |= X →→ Y ∩ (U − Zi). The algorithm terminates when

this refinement rule cannot be applied. Notice that if the multivalued dependency i is

used to split a set Y into Y1 and Y2, then it can be used to split neither Y1 nor Y2, since

Y1 ⊆ Zi and Y2 ⊆ U − Zi. By using this idea, and a suitable data structure, an almost

linear-time algorithm for computing the dependency basis was proposed by Galil [Gal82].

This algorithms runs in time O(min(|Σ|, log |U |) · ‖Σ‖).

Usually, functional and multivalued dependencies have to be considered together in

the normalization process. None of the algorithms presented so far can be directly used to

solve the implication problem when these constraints are combined together. Fortunately,

the algorithm shown above can be extended to solve this problem. Let Σ be a set

of functional dependencies and multivalued dependencies. First, we show how to test

whether a multivalued dependency is implied by Σ. For every ϕ ∈ Σ, define M (ϕ)

as follows. If ϕ is a functional dependency of the form X → Y , then M (ϕ) is a set

of multivalued dependencies {X →→ A | A ∈ Y }. If ϕ is a multivalued dependency,

then M (ϕ) = {ϕ}. Observe that ϕ |= M(ϕ). Furthermore, define M (Σ) as the set of

multivalued dependencies
⋃

ϕ∈ΣM(ϕ). It was shown by Beeri [Bee80] that Σ can be

replaced by M (Σ) in order to test whether a multivalued dependency σ is implied by Σ,

that is, Σ |= σ if and only if M (Σ) |= σ. Hence, it can be checked whether Σ |= σ by

computing M (Σ) and then using the algorithm shown above. Second, we show how to

test if a functional dependency is implied by Σ. Let X → A be a functional dependency

Chapter 2. Relational and Nested Relational Databases 14

basis := {{A} | A ∈ X} ∪ {U −X}

change := true

while change do

change := false

for each W →→ Z ∈ Σ do

W ′ :=
⋃
{Y | Y ∈ basis and Y ∩W 6= ∅}

Z ′ := Z −W ′

if Z ′ 6= ∅ and Z ′ is not the union of some element of basis then

change := true

basis := basis of the collection of boolean combinations of sets

from basis ∪ {Z ′}

Figure 2.4: Algorithm for computing dep(X).

over U . Assume that A 6∈ X and dep(X) is the dependency basis of X with respect to

M (Σ). It was shown by Beeri [Bee80] that Σ |= X → A if and only if {A} ∈ dep(X)

and there is a nontrivial functional dependency in Σ with right hand side containing

A. Hence, it can be checked whether Σ |= X → A by computing dep(X) and checking

whether {A} ∈ dep(X) and there exists a functional dependency W → Z in Σ such that

A ∈ Z −W .

Finally, we present axiomatizations for the implication problems for MVDs alone and

MVDs combined with FDs. The following is a sound and complete set of inference rules

for multivalued dependencies [BFH77, Men79]:

Complementation : If X →→ Y , then X →→ (U − Y).

Reflexivity : If Y ⊆ X, then X →→ Y .

Augmentation : If X →→ Y , then XZ →→ Y Z.

Transitivity : If X →→ Y and Y →→ Z, then X →→ (Z − Y).

Two rules have to be added to this set in order to have a sound and complete set of

inference rules for functional and multivalued dependencies [BFH77]:

Conversion : If X → Y , then X →→ Y .

Interaction : If X →→ Y and XY → Z, then X → (Z − Y).

Chapter 2. Relational and Nested Relational Databases 15

Theater Title Director Snack

Bloor Cinema Bad Company Joel Schumacher coffee

Bloor Cinema Bad Company Joel Schumacher popcorn

Bloor Cinema Spider-Man Sam Raimi coffee

Bloor Cinema Spider-Man Sam Raimi popcorn

Paramount Bad Company Joel Schumacher coke

Paramount Bad Company Joel Schumacher popcorn

Paramount Insomnia Christopher Nolan coke

Paramount Insomnia Christopher Nolan popcorn

Paramount Spider-Man Sam Raimi coke

Paramount Spider-Man Sam Raimi popcorn

Figure 2.5: Relation MovieDirector.

Join Dependencies

A join dependency (JD) over a relation schema R[U] is an expression of the form

./[X1, . . . , Xn], where each Xi (i ∈ [1, n]) is a set of attributes and X1 ∪ · · · ∪ Xn = U .

A database instance I of R[U] satisfies ./[X1, . . . , Xn], denoted by I |= ./[X1, . . . , Xn], if

I = πX1
(I) ./ · · · ./ πXn

(I) 3.

Multivalued dependencies are a special case of join dependencies consisting of two

set of attributes; an MVD X →→ Y defined over a relation schema R[U] is equiv-

alent to ./[XY, X(U − XY)]. In general, a join dependency can have an arbi-

trary arity. For example, consider the relation schema MovieDirector(Theater , Title,

Director , Snack). A tuple (th, ti, di, sn) is in this relation if theater th is showing

movie ti and offering snack sn, and the director of ti is di. Figure 2.5 shows one

instance of the relation MovieDirector. This instance satisfies the join dependency

./[{Title,Director}, {Theater ,Title}, {Theater , Snack}].

Usually, join dependencies, multivalued dependencies and functional dependencies

are considered together in the normalization process. This gives rise to three different

implication problems depending on whether the implicant is either an FD or an MVD

or a JD. First, we show that if the implicant is an FD or an MVD then the implication

problem can be solved in quadratic time. Second, we show that if the implicant is a

3We omit parenthesis in this expression since the join operator is associative.

Chapter 2. Relational and Nested Relational Databases 16

JD then the implication problem is NP-hard. In this case, we also present a powerful

tool for testing implication that in general requires exponential time and space. Finally,

we present an efficient algorithm for testing implication for a natural subclass of join

dependencies.

Let Σ be a set of functional dependencies, multivalued dependencies and join de-

pendencies over a set of attributes U . For every ϕ ∈ Σ, defined M (ϕ) as follows. If

ϕ is either a functional dependency or a multivalued dependency, then M (ϕ) is de-

fined as in the previous section, that is, M (X → Y) = {X →→ A | A ∈ Y } and

M(X →→ Y) = {X →→ Y }. If ϕ is a join dependency of the form ./[X1, . . . , Xn], then

M (ϕ) is defined to be a set of multivalued dependencies [MSY81]:

{ TI ∩ TJ →→ TI | I, J is a partition of {1, . . . n}, TI =
⋃

i∈I

Xi and TJ =
⋃

j∈J

Xj }.

Observe that for each partition I, J of {1, . . . , n}, ϕ |= TI∩TJ →→ TI . Define M (Σ) as the

set of multivalued dependencies
⋃

ϕ∈Σ M (ϕ). As it was seen in the previous section, if Σ

contains only functional and multivalued dependencies, then M (Σ) can be used to test in

polynomial time whether Σ implies a functional dependency or a multivalued dependency.

This result was extended by Maier et al. [MSY81] for the case of join dependencies. More

precisely, it was proved by Maier et al. [MSY81] that for every multivalued dependency

σ, Σ |= σ if and only if M (Σ) |= σ, and for every nontrivial functional dependency σ of

the form X → A, Σ |= σ if and only if M (Σ) |= X →→ A and there exists a nontrivial

FD in Σ with right hand side containing A. Thus, as in the previous section, to test

whether a functional dependency or a multivalued dependency with right hand side X

is implied by Σ we only need to construct the dependency basis of X with respect to

M (Σ) and check some additional conditions. However, the dependency basis of a set of

attributes X with respect to M (Σ) cannot be directly computed by applying one of the

algorithms shown in the previous section since the size of M (Σ) is exponential in the size

of Σ. An algorithm that constructs dep(X) in time O(|U | · ‖Σ‖), without materializing

M (Σ), was proposed by Maier et al. [MSY81]. A simplified version of this algorithm is

presented next.

In Figure 2.4, we show an incremental algorithm for computing the dependency ba-

sis of a set of attributes X with respect to a set of multivalued dependencies Σ. In

each step, this algorithm takes an approximation of the dependency basis (initially

{A | A ∈ X} ∪ {U −X}) and uses a multivalued dependency to refine it. The algorithm

proposed by Maier et al. [MSY81] uses the same idea to calculate the dependency basis

Chapter 2. Relational and Nested Relational Databases 17

of X with respect to M (Σ). In each step, this algorithm refines the current version of

the dependency basis by using a multivalued dependency or a join dependency. If a mul-

tivalued dependency is chosen, then the refinement rule shown in Figure 2.4 is applied.

Otherwise, a join dependency ϕ of the form ./[X1, . . . , Xn] is chosen and the following

refinement rule is used. Let Y be a set of attributes in the last computed approximation

of the dependency basis. Then, ϕ refines Y if there exists a partition I, J of {1, . . . , n}

such that Y ∩ TI 6= ∅, Y ∩ TJ 6= ∅ and Y ∩ TI ∩ TJ = ∅. The algorithm verifies whether

ϕ refines Y as follows. Define a graph G(ϕ) = (Y,E), where (A,B) ∈ E if there ex-

ists i ∈ [1, n] such that A,B ∈ Xi. Then, ϕ refines Y if and only if G is disconnected

[MSY81]. Furthermore, the connected components Y1, . . ., Ym of G form the refinement

of Y . Thus, Y is replaced by Y1, . . ., Ym and the algorithm continues as shown in Figure

2.4.

Now, we turn our attention to the problem of verifying whether a join dependency σ

is implied by a set Σ of FDs, MVDs and JDs. It was proved by Maier et al. [MSY81]

and Fischer et al. [FT83] that this problem is NP-hard, even if either Σ contains one join

dependency and no multivalued dependencies [MSY81] or Σ contains only multivalued

dependencies [FT83]. To the best of our knowledge, the exact complexity of this problem

remains open [FV86, AHV95]. Next, we present the best known algorithm for testing

implication of join dependencies [MMS79].

The chase is a powerful tool for reasoning about dependencies. It was proposed by

Aho et al. [ABU79] for testing implication of join dependencies by a set of functional

dependencies, and it was extended by Maier et al. [MMS79] for reasoning about func-

tional dependencies, multivalued dependencies and join dependencies. This tool requires

exponential time and space for checking whether a JD is implied by a set of FDs, MVDs

and JDs, although in general it is efficient enough to be used in practice. Furthermore, it

is widely used in other problems like semantic query optimization [AHV95]. To present

this tool we have to introduce some terminology.

A tableau is a set of rows with one column for each attribute in the universe U . The

rows are composed of distinguished and non-distinguished variables. Each variable may

appear in only one column and only one distinguished variable may appear in a column.

For example, the following is a tableau for a universe with attributes A, B and C:

Chapter 2. Relational and Nested Relational Databases 18

A B C

x y x1

x2 y z

x2 y x3

In this case, x, y, z are distinguished variables and x1, x2, x3 are non-distinguished

variables.

Assume that the non-distinguished variables in a tableau T are x1, . . ., xm. The chase

of T with respect to a set Σ of functional and join dependencies is based on the successive

application of the following rules [MMS79]:

FD rule: Let σ be a functional dependency in Σ of the form X → A, where A is a

single attribute, and u, v ∈ T be such that u[X] = v[X] and u[A] 6= v[A].

The result of applying the FD σ to T is a new tableau T ′ defined as

follows. If one of the variables u[A], v[A] is distinguished, then all the

occurrences of the other one are renamed to that variable. If both are

non-distinguished, then all the occurrences of the variable with larger

subscript are renamed to the variable with smaller subscript.

JD rule: Let σ be a join dependency of the form ./[X1, . . . , Xn] and u a tuple

not in T . If there are u1, . . . , un ∈ T such that ui[Xi] = u[Xi] for every

i ∈ [1, n], then the result of applying the JD σ over T is the new tableau

T ′ = T ∪ {u}.

A chasing sequence of T by Σ is a possibly infinite sequence of tableaux T = T0, T1, T2,

. . ., such that for each i ≥ 0, Ti+1 is the result of applying some dependency in Σ to

Ti. It was proved by Maier et al. [MMS79] that a given set of FD and JD rules can be

applied to a tableau T only a finite number of times and, therefore, all these sequences

are finite. Furthermore, it was shown in [MMS79] that if T0, . . ., Tn and T ′0, . . ., T
′
m are

two terminal sequences generated from T (FD and JD rules can be applied neither to Tn

nor to T ′m), then Tn and T ′m are equal. Thus, the chase of T by Σ, denoted by ChaseΣ(T),

is defined as the result of some terminal chasing sequence of T by Σ.

Every application of either the “FD rule” or the “JD rule” naturally defines a sub-

stitution of variables by variables (in the latter, this substitution is the identity). The

substitution defined by the chase is obtained as the composition of the substitutions for

each step of the chase. This substitution enables us to map each original variable (tuple)

in T to a variable (tuple) in ChaseΣ(T)

Chapter 2. Relational and Nested Relational Databases 19

Given a set of FDs and JDs Σ∪ {σ}, it was shown by Maier et al. [MMS79] that the

chase can be used for checking whether Σ |= σ. The idea is to construct a tableau Tσ,

compute ChaseΣ(Tσ) and verify whether some condition is satisfied. If σ is a functional

dependency of the form X → A, then a tableau Tσ is constructed as follows. Tableau

Tσ has two rows. The first row contains only distinguished variables and the second one

contains distinguished variables in all the X-columns and non-distinguished variables in

the remaining columns. It was proved in [MMS79] that Σ |= σ if and only if ChaseΣ(Tσ)

has only distinguished variables in the A-column. For example, we can use the chase to

check whether {./[AB,AC], AB → C} |= A → C, which corresponds to the interaction

rule4 defined for multivalued dependencies. In this case Tσ is equal to

A B C

x y z

x x1 x2

A terminal sequence of tableaux is generated by using twice the JD ./[AB,AC] and once

the FD AB → C:

A B C

=======
./ [AB, AC]

⇒

A B C

=======
./ [AB, AC]

⇒

A B C

=====
AB → C

⇒

A B C

x y z x y z x y z x y z

x x1 x2 x x1 x2 x x1 x2 x x1 z

x y x2 x y x2

x x1 z

The result of the chasing sequence is a tableau containing only distinguished variable z

in the C-column. Therefore, {./[AB,AC], AB → C} |= A→ C.

If σ is a join dependency of the form ./[X1, . . . , Xn], then a tableau Tσ is constructed

as follows. Tableau Tσ has n rows. For every i ∈ [1, n], the ith row contains distinguished

variables in the Xi-columns and non-distinguished variables in the remaining columns.

Furthermore, every non-distinguished variable in Tσ appears exactly once. It was shown

by Maier et al. [MMS79] that Σ |= σ if and only if ChaseΣ(Tσ) has a row containing only

distinguished variables.

The chase provides an exponential time algorithm for the implication problem for

FDs, MVDs and JDs. It is desirable to find a subclass of join dependencies for which the

implication problem is solvable in polynomial time. A natural subclass of join dependency

satisfying this condition, and other desirable properties, was proposed by Fagin et al.

[FMU82]. We briefly present this subclass next.

4Notice that A →→ B is represented by using join dependency ./[AB, AC].

Chapter 2. Relational and Nested Relational Databases 20

Title Director

Theater Snack

B CA

F D

E

(a) ./[{Title,Director}, {Theater ,Title}, {Theater ,Snack}] (b) ./[ABC ,CDE ,AEF]

Figure 2.6: Hypergraphs of two join dependencies.

Every join dependency ϕ of the form ./[X1, . . . , Xn] induces a hypergraph

H(ϕ) = (U,E), where U =
⋃n
i=1Xi and E = {Xi | i ∈ [1, n]}.

For example, Figure 2.6 shows the hypergraphs induced from join dependencies

./[{Title,Director}, {Theater ,Title}, {Theater , Snack}] and ./[ABC ,CDE ,AEF]. It

was shown by Fagin et al. [FMU82] that if the hypergraph of a JD ϕ satisfies some

conditions, then ϕ can be replaced by a set of multivalued dependencies, and then the

implication problem can be solved efficiently by using a polynomial time implication

algorithm for multivalued dependencies. More precisely, it was proved by Fagin et al.

[FMU82] that H(ϕ) is acyclic if and only if ϕ is equivalent to a set if multivalued de-

pendencies. It was also shown there that if ϕ is for the form ./[X1, . . . , Xn] and H(ϕ) is

acyclic, then ϕ is equivalent to the following set of multivalued dependencies:

{Xi ∩Xj →→ G | i, j ∈ [1, n] and G is a connected component of

H(ϕ) with Xi ∩Xj deleted}

This set contains O(n3) multivalued dependencies and it can be constructed in time

O(‖ϕ‖3) by using a linear time algorithm for finding the connected components of a

hypergraph. For example, join dependency ./[ABC ,CDE ,AEF] is cyclic and, therefore,

not equivalent to any set of multivalued dependencies. On the other hand, join depen-

dency ./[{Title,Director}, {Theater ,Title}, {Theater , Snack}] is acyclic and equivalent

to the following set of multivalued dependencies, obtained by using Fagin et al.’s algo-

rithm [FMU82].

Chapter 2. Relational and Nested Relational Databases 21

{Title, Director} →→ {Theater , Snack} Title →→ Director

{Theater , Snack} →→ {Title, Director} Title →→ {Theater , Snack}

{Title,Theater} →→ Director Theater →→ {Title, Director}

{Title,Theater} →→ Snack Theater →→ Snack

∅ →→ {Title, Director , Theater , Snack}

For example, MVDs Title →→ Director and Title →→ {Theater , Snack} are obtained

by removing from the hypergraph shown in Figure 2.6 (a) the set of attributes {Title} =

{Title,Director} ∩ {Theater ,Title}:

Theater Snack

Director

and then computing the connected components of the generated hypergraph: {Director}

and {Theater , Snack}.

The set of multivalued dependencies shown above contains trivial and redundant

dependencies. The Fagin et al. result was strengthened by Beeri et al. [BFMY83], who

proved that acyclic join dependencies are equivalent to a linear-size set of multivalued

dependencies. By using their technique, it is possible to show that ./[{Title,Director},

{Theater ,Title}, {Theater , Snack}] is equivalent to {Title →→ Director , Theater →→

Snack}.

Finally, it is worth mentioning that Petrov [Pet89] proved that there is no a finite,

sound and complete system of inference rules for join dependencies.

Inclusion and Foreign Key Dependencies

An inclusion dependency (ID) over a database schema S = {R1[U1], . . ., Rn[Un]} is an

expression of the form:

Rk[A1, . . . , Am] ⊆ Rl[B1, . . . , Bm],

where k, l ∈ [1, n], {A1, . . ., Am} ⊆ Uk and {B1, . . ., Bm} ⊆ Ul. A relation I over S

satisfies this constraint if for every tuple t in I(Rk), there exists a tuple t′ in I(Rl) such

that t[Ai] = t′[Bi] for every i ∈ [1, m]. Thus, Rk[A1, . . ., Am] ⊆ Rl[B1, . . ., Bm] says

that πA1,...,Am
(I(Rk)) is contained in πB1,...,Bm

(I(Rl)). For example, Figure 2.7 shows an

Chapter 2. Relational and Nested Relational Databases 22

Employee Number Name Manager Number

99900 John Smith 99000

99901 Peter Levene 99000

99910 John Fox 99901

99920 Michael Myers 99901

99930 Steven Lockwood 99901

Figure 2.7: A database instance storing information about employees and their managers.

instance I of relation schema R[Employee Number ,Name,Manager Number] for storing

information about employees and their managers. This instance satisfies the inclusion

dependency R[Manager Number] ⊆ R[Employee Number] saying that every manager is

also an employee. We note that the CEO of the company is John Smith since he is his

own manager.

A foreign key dependency (FKD) over a database schema S = {R1[U1], . . ., Rn[Un]}

is an expression of the form:

Rk[A1, . . . , Am] ⊆FK Rl[B1, . . . , Bm],

where k, l ∈ [1, n], {A1, . . ., Am} ⊆ Uk and {B1, . . ., Bm} ⊆ Ul. A relation I over

S satisfies this constraint if I satisfies inclusion dependency Rk[A1, . . ., Am] ⊆ Rl[B1,

. . ., Bm] and B1, . . ., Bm is a superkey for I(Rl), that is, I(Rl) |= {B1, . . . , Bm} → Ul.

Thus, the foreign key dependency shown above is equivalent to an inclusion depen-

dency together with a key dependency. We note that the instance I shown in Figure

2.7 satisfies the foreign key dependency R[Manager Number] ⊆FK R[Employee Number]

since I satisfies inclusion dependency R[Manager Number] ⊆ R[Employee Number] and

Employee Number is a superkey for this instance.

Casanova et al. [CFP84] showed that the implication problem for inclusion depen-

dencies is PSPACE-complete. In this paper, the authors also showed that the following

is a sound and complete set of inference rules for the implication problem:

Chapter 2. Relational and Nested Relational Databases 23

Reflexibility : R[X] ⊆ R[X],

Projection and permutation : If R[A1, . . ., Am] ⊆ S[B1, . . ., Bm], then R[Ai1 , . . .,

Aik] ⊆ S[Bi1 , . . ., Bik] for each sequence i1, . . ., ik of

distinct integers from {1, . . . , m}.

Transitivity : If R[X] ⊆ S[Y] and S[Y] ⊆ T [Z], then R[X] ⊆ T [Z].

Mitchell and Chandra et al. [Mit83, CV85] independently showed that the implica-

tion problem for inclusion and functional dependencies taken together is undecidable.

Casanova et al. [CFP84] also proved that there is no a finite, sound and complete system

of inference rules for inclusion and functional dependencies taken together.

In light of these negative results, Cosmadakis et al. [CKV90] investigated the complex-

ity of the implication problem for some restricted classes of inclusion dependencies. More

specifically, they defined unary inclusion dependencies as IDs of the form R[A] ⊆ S[B],

that is, inclusion dependencies mentioning only one attribute in each side, and then they

proved that the implication problem for functional dependencies and unary inclusion

dependencies taken together is decidable in cubic time.

An interesting variation of the implication problem is obtained by considering only

key and foreign key dependencies. This variation has been used recently to prove the

undecidability of some problems involving XML data dependencies (see Chapter 5). To

the best of our knowledge, the undecidability of the implication problem for key and

foreign key dependencies was shown to be undecidable only recently by Fan and Siméon

[FS00]. Fan and Libkin [FL01] also considered this problem and showed an stronger

result, namely that the implication problem for key dependencies by key and foreign key

dependencies is undecidable.

Domain Dependencies

So far, we have assumed that the domain of an attribute is infinite. However, it is easy to

find examples where an attribute can take a finite set of values. For instance, the value

of an attribute Gender can be either male or female.

Database management systems allow a user, by means of the SQL statement CREATE

TABLE, to specify attributes with a finite domain. On the theory side, it is possible

to specify finite domains, and in general restrictions on the domains, by using domain

dependencies [Fag81]. A domain dependency over a database schema S is a constraint of

the form IN (A,D), where A is an attribute in S and D ⊆ Dom(A). A database instance

Chapter 2. Relational and Nested Relational Databases 24

I of S satisfies IN (A,D), denoted by I |= IN (A,D), if every value in an A-column is in

D. For example, the finite domain shown in the previous paragraph can be specified by

using the domain dependency IN (Gender , {male, female}).

All the implication algorithms presented in the previous sections become incomplete

if domain dependencies are added. For instance, in a relation schema R(A,B), from the

domain dependency IN (B, {1}) is possible to infer that A → B. The FD implication

algorithm presented in this section is not able to deduce this functional dependency.

2.1.3 Relational Databases Design

Codd [Cod72] showed that a database containing functional dependencies may exhibit

some anomalies when the information is updated. For example, consider the university

database schema Course(Number , Title, Section, Room) presented in Section 2.1.1. The

specification of this database includes functional dependency Number → Title since each

course has only one title. Figure 2.8 shows one instance of this database. This instance is

prone to three different types of anomalies. First, if the name of the course with number

CSC 258 is changed to Computer Organization I, then four distinct cells need to be

updated. If any of them is not updated, then the information in the database becomes

inconsistent. This anomaly was called an update anomaly by Codd [Cod72] and it arises

because the instance is storing redundant information. Second, if the information is

updated because a new semester is starting, and the course with number CSC 434 is not

given in that semester, then the last tuple of the instance is deleted and no information

about CSC 434 appears in the updated instance. But this has the additional effect of

deleting the title of the course, which will be the same the next time that CSC 434

is offered. This anomaly was called a deletion anomaly by Codd [Cod72] and it arises

because the relation is storing information that is not directly related: The sections of

a course vary from one term to another while its title is likely not to be changed from

one semester to the next one. This can also lead to insertion anomalies [Cod72]; if a

new course (CSC 336, Numerical Methods) is created, then it cannot be added to the

database until at least one section and one room is assigned to the course.

To avoid updates anomalies, Codd introduced two normal forms [Cod72]. Each of

these forms specifies some syntactic properties that the set of functional dependencies

in a database must satisfy. For example, the database shown in Figure 2.8 is prone to

update anomalies since the attribute Title partially depends on the key of the relation

Chapter 2. Relational and Nested Relational Databases 25

Number Title Section Room

CSC 258 Computer Organization 1 LP266

CSC 258 Computer Organization 2 GB258

CSC 258 Computer Organization 3 LM161

CSC 258 Computer Organization 3 GB248

CSC 434 Data Management Systems 1 GB248

Figure 2.8: A database prone to update anomalies.

{Number, Section, Room}. Moreover, Codd [Cod72] informally showed how to transform

a database to generate a schema satisfying these normal forms. For instance, the database

schema shown in the previous paragraph should be split into two relation schemas, namely

CourseName(Number, Title) and Course(Number, Section, Room), to avoid the anomalies

presented above.

In this section, we present the most popular normal forms: 3NF, BCNF, 4NF, PJ/NF,

5NFR and DK/NF. These normal forms were introduced to deal with functional de-

pendencies (3NF, BCNF), multivalued dependencies (4NF), join dependencies (PJ/NF,

5NFR) and data dependencies in general (DK/NF). For each of these normal forms, we

present algorithms for testing whether a given database schema satisfies a normal form

and for transforming a database schema into a new one conforming to a normal form.

The latter algorithms have been called normalization algorithms in the literature, and

they involve transformation of schemas. Two basic properties have been used to test their

correctness: information losslessness and dependency preservation. These properties are

presented in detail in the first subsection of this section.

Schema Transformation

A normalization algorithm takes as input a relation schema and generate a database

schema in some particular normal form. It is desirable that these two are as similar as

possible, that is, they should contain the same data and the same semantic information.

These properties have been called information losslessness and dependency preservation

in the literature, respectively. We introduce them next.

Let S1, S2 be two database schemas. Intuitively, two instances I1 of S1 and I2 of

S2 contain the same information if it is possible to retrieve the same information from

them, that is, for every query Q1 over I1 there exists a query Q2 over I2 such that

Chapter 2. Relational and Nested Relational Databases 26

Q1(I1) = Q2(I2), and vice versa. To formalize this notion one needs to choose a query

language. If this query language is relational algebra, then this notion is captured by the

notion of calculously dominance introduced by Hull [Hul86]. Schema S2 dominates S1

calculously if there exist relational algebra expressions Q over S1 and Q′ over S2 satisfying

the following property: For every instance I of S1, there exists an instance I ′ of S2 such

that Q(I) = I ′ and Q′(I ′) = I. Thus, every query Q1 over I can be transformed

into an equivalent query Q2 = Q1 ◦ Q′ over I ′, since Q2(I
′) = Q1(Q

′(I ′)) = Q1(I),

and, analogously, every query Q2 over I ′ can be transformed into an equivalent query

Q1 = Q2 ◦Q over I, since Q1(I) = Q2(Q(I)) = Q2(I
′).

Normalization algorithms try to achieve the goal of information losslessness; if any

of them transforms a database schema S into a database schema S ′, then S ′ should

dominate S calculously. All the normalization algorithms presented in this section use

only the projection operator to transform a schema5 and, thus, calculously dominance

is defined in terms of this operator and its inverse, the join operator. More precisely,

the normalization algorithms presented in this section take as input a relation schema

S = (R[U],Σ) and use the projection operator to transform it into a database schema

S ′ = {(Ri[Ui],Σi) | i ∈ [1, n]} in some normal form. Then, S ′ is a lossless decomposition

of S if for every instance I of S there is an instance I ′ of S ′ such that [ABU79]:

1. For every i ∈ [1, n], I ′(Ri) = πUi
(I).

2. I = I ′(R1) ./ I
′(R2) ./ · · · ./ I

′(Rn).

That is, every instance I of S can be transformed into an instance I ′ of S ′ by using the

projection operator, and I can be reconstructed from I ′ by using the join operator. It

is straightforward to prove that S ′ is a lossless decomposition of S if and only if Σ |=

./[U1, . . . , Un].

Let S, S ′ be as above. We define here the concept of dependency preservation for

functional dependencies (for multivalued dependencies, this concept is introduced later).

It is straightforward to prove that if X, Y ⊆ V ⊆ U and I is an instance of S, then

I |= X → Y if and only if πV (I) |= X → Y . Hence,
⋃n
i=1 Σi can be considered as a set of

5These algorithms have been called vertical decomposition algorithms in the literature [PBGG89],
as opposed to horizontal decomposition algorithms. In the horizontal decomposition approach, the
database schema contains functional dependencies and afunctional dependencies [PBGG89], and it is
decomposed by considering some goals. The decomposition is achieved by using a relation algebra
expression containing projection, selection and join operators among others. For a survey on horizontal
decomposition see [PBGG89].

Chapter 2. Relational and Nested Relational Databases 27

constraints over S. We use this property in the definition of dependency preservation; we

say that S ′ is a dependency preserving decomposition of S if and only if (
⋃n
i=1 Σi)

+ = Σ+,

that is,
⋃n
i=1 Σi and Σ are equivalent as sets of FDs over S.

Third Normal Form (3NF)

In order to avoid update anomalies in database schemas containing functional dependen-

cies, Codd [Cod72] introduced two normal forms: second normal form (2NF) and third

normal form (3NF). In this section, we only consider 3NF since every schema that is in

3NF is also in 2NF.

Let R[U] be a relation schema and Σ a set of functional dependencies over R[U]. We

say that an attribute A is a prime attribute if A is an element of some key of R[U], and we

say that (R[U],Σ) is in 3NF if for every nontrivial functional dependency X → A ∈ Σ+,

X is a superkey or A is a prime attribute6. Furthermore, we say that a database schema

S is in 3NF if every relation schema in S is in 3NF. For example, relation schema

(Course(Number , Title, Section, Room), {Number → Title}) is not in 3NF since Number

is not a superkey and Title is not a prime attribute. On the other hand, database schema

{(CourseName(Number ,Title), {Number → Title}), (Course(Number , Section,Room),

∅)} is in 3NF since Number is a superkey in relation CourseName.

For every normal form two problems have to be addressed: How to decide whether a

schema is in that normal form, and how to transform a schema into an equivalent one in

that normal form. In the rest of this section, we address these problems for the case of

3NF.

Unfortunately, it is expensive to check whether a schema is in 3NF. It was shown

by Jou and Fischer that this problem is NP-complete [JF82]. Interestingly, in real life

examples, it is usually not that expensive to check this condition. We present here an

algorithm introduced by Mannila and Räihä [MR89] for testing if an attribute is prime,

and we combine it with a Lemma of Jou and Fischer [JF82] to obtain a procedure for

testing whether a relation schema is in 3NF. This algorithm works in polynomial time in

the number of maximal sets not determining an attribute. Mannila and Räihä [MR89]

showed some theoretical and practical evidence that this quantity is small in practice and

exponential only for some “pathological” schemas, so that this algorithm can be used in

6This definition was proposed by Zaniolo [Zan82] and is equivalent to the original definition given by
Codd [Cod72].

Chapter 2. Relational and Nested Relational Databases 28

real life databases.

First, we present Mannila and Räihä’s algorithm for testing primality. Let R[U] be a

relation schema and Σ a set of FDs over U . For every A ∈ U , define max(A) as follows

[MR89].

max(A) = {Y ⊆ U | Y is a maximal set with respect to set inclusion

such that Y → A 6∈ Σ+}.

Furthermore, define max(U) as
⋃

A∈U max(A). It can be verified whether X ∈ max(A)

in time O(|U | · ‖Σ‖) by using the following condition: X ∈ max(A) if and only if

X → A 6∈ Σ+ and XB → A ∈ Σ+, for every B ∈ U −XA.

It was proved by Mannila and Räihä [MR89] that an attribute A is prime if and

only if there exists X ∈ max(A) such that XA is a superkey. Thus, it can be verified

whether A is a prime attribute in time O(|max(A)| · ‖Σ‖), if the set max (A) is given.

Furthermore, this algorithm can be used to verify whether a relation schema is in 3NF.

Let R[U] be as above. An attribute A ∈ U is abnormal if there exists X ⊆ U such

that X → A is a nontrivial functional dependency in Σ+ and X is not a superkey

[JF82]. It was proved by Jou and Fischer [JF82] that an attribute A is abnormal if

and only if there exists X → Y ∈ Σ such that A ∈ Y − X and X is not a superkey,

and, therefore, the set of abnormal attributes of U can be computed in time O(‖Σ‖2) by

using a linear time algorithm for computing the closure of a set of attributes (see Section

2.1.2). Moreover, relation schema R[U] is in 3NF if and only if every abnormal attribute

in U is prime, and, therefore, if max(A) is given for every A ∈ U , then it can be tested

in time O(‖Σ‖2 + ‖Σ‖ ·
∑

A∈U |max(A)|) whether R[U] is in 3NF. Thus, if max(A) has

been precomputed, for every A ∈ U , then it can be checked in quadratic time whether

(R[U],Σ) is in 3NF. An interesting corollary of this is that given a relation schema R[U]

and a set Σ of unary functional dependencies over R[U] (FDs of the form A→ B, where

A,B are attributes), it can be tested in polynomial time whether (R[U],Σ) is in 3NF

since in this case |max(A)| = 1, for every A ∈ U .

Now, we turn our attention to the problem of decomposing a relation schema into a

new schema in 3NF. Fortunately, for every relation schema S there is a database schema

S ′ such that S ′ is in 3NF and S ′ is a lossless and dependency preserving decomposition of

S. Furthermore, schema S ′ can be generated efficiently by using the synthesis approach

introduced by Bernstein et al. [Ber76, BDB79]. To present this approach, we need to

introduce some terminology.

Chapter 2. Relational and Nested Relational Databases 29

set S ′ := ∅

find a minimal cover Γ of Σ

find a LHS-partition Γ1, . . ., Γn of Γ

S ′ := {(Ri[Ui],Γi) | Ui is the set of all attributes appearing in Γi}

if there is (Ri[Ui],Γi) such that Ui is a superkey

then output S ′

else

determine a key X of U

output S ′ ∪ {(Rn+1[X], ∅)}

Figure 2.9: An algorithm for synthesizing 3NF schemas.

Given a set of functional dependencies Σ, a minimal cover of Σ is a set functional

dependencies Γ such that: (1) Σ+ = Γ+; (2) no proper subset of Γ is equivalent to Σ;

and (3) for each X → Y ∈ Γ, there is no Z $ X such that Z → Y ∈ Γ+. A partition

Σ1, . . . ,Σn of Σ is a LHS-partition of Σ if all functional dependencies in Σi (i ∈ [1, n])

have the same left hand side, and no two sets Σi, Σj (i 6= j) have the same left hand side.

An algorithm for producing dependency preserving 3NF decompositions was intro-

duced by Bernstein [Ber76], and it was extended by Biskup et al. [BDB79] to generate

lossless and dependency preserving decompositions. Figure 2.9 shows this algorithm.

The input of this procedure is a relation schema (R[U],Σ) and it requires quadratic time

to output a database schema S ′ in 3NF, since a minimal cover of a set of functional

dependencies can be found in quadratic time [BB79].

If we apply the synthesis algorithm shown in Figure 2.9 to (Course(Number ,

Title, Section, Room), {Number → Title}), we obtain the desired database schema

{(CourseName(Number ,Title), {Number → Title}), (Course(Number , Section, Room),

∅)}. Observe that if we eliminate the last if-statement from this algorithm, then we

obtain only the first relation schema (CourseName(Number , Title), {Number → Title}),

which is a dependency preserving decomposition of the original schema, but it is not a

lossless decomposition. This last if-statement was included by Biskup et al. [BDB79] to

ensure information losslessness.

Chapter 2. Relational and Nested Relational Databases 30

Boyce-Codd Normal Forms (BCNF)

In general, a schema in 3NF is considered to be well designed. However, in some cases

a 3NF relation can be prone to update anomalies. For instance, consider a relation

Code(Address, City , PostalCode) containing FDs {Address, City} → PostalCode and

PostalCode → City . Figure 2.10 shows an instance of this schema. Observe that Address

→ PostalCode is not a valid dependency in this schema since the same address can be

associated with different postal codes in different cities, and PostalCode → Address is

not a valid dependency because many addresses can share the same postal code. This

schema is prone to update anomalies, although it is in 3NF since {Address, City} is a

key and City is a prime attribute. For example, if Ottawa was incorrectly associated to

K1S 5B6 and it has to be changed to London, then two cells have to be updated.

Address City PostalCode

10 King’s College Road Toronto M5S 3G4

10 King’s College Road Ottawa K1S 5B6

32 King’s College Road Ottawa K1S 5B6

Figure 2.10: A 3NF relation prone to an update anomaly.

To avoid the kind of update anomalies shown in Figure 2.10, a more restrictive normal

form, which eliminates the distinction between prime and non-prime attributes, was

introduced by Codd7 [Cod74]. Let R[U] be a relation schema and Σ be a set of functional

dependencies over R[U]. Then, (R[U],Σ) is in Boyce Codd Normal Form (BCNF) [Cod74]

if for every nontrivial functional dependency X → A ∈ Σ+, X is a superkey. Furthermore,

a database schema S is in BCNF if every relation schema in S is in BCNF. For instance,

the relation schema shown in the previous paragraph is not in BCNF since PostalCode

→ City is a nontrivial functional dependency in this schema and PostalCode is not a

superkey.

As opposed to the case of 3NF, it can be tested efficiently whether a relation schema

is in BCNF. A relation schema (R[U],Σ) is in BCNF if and only if for every nontrivial

functional dependency X → Y ∈ Σ, X → U ∈ Σ+. Thus, it is possible to check in

quadratic time whether (R[U],Σ) is in BCNF by using the linear time algorithm for

functional dependency implication developed by Beeri and Bernstein [BB79, Ber79].

7Codd pointed out in [Cod74] that this normal form was developed by Raymond F. Boyce and himself.

Chapter 2. Relational and Nested Relational Databases 31

set S ′ := {(R[U],Σ)}

repeat until S ′ is in BCNF

choose a relation schema (R′[U ′],Σ′) ∈ S ′ that is not in BCNF

choose nonempty disjoint set of attributes X, Y, Z such that

XYZ = U ′, Σ′ |= X → Y and Σ′ 6|= X → A, for every A ∈ Z

replace (R′[U ′],Σ′) by (R1[XY], πXY (Σ′)) and (R2[XZ], πXZ(Σ′)),

where R1 and R2 are fresh relation names.

Figure 2.11: An algorithm for generating BCNF schemas [AHV95].

On the other hand, given a relation schema S, it is not always possible to find

a database schema S ′ such that S ′ is in BCNF and S ′ is a lossless and dependency

preserving decomposition of S. For instance, by constructing all possible lossless de-

compositions of the relation schema (Code(Address,City,PostalCode), {PostalCode →

City , {Address,City} → PostalCode}), it is possible to prove that this schema does

not admit a dependency preserving decomposition in BCNF. In general, for every re-

lation schema (R[U],Σ) there exists a database schema S ′ such that S ′ is in BCNF

and S ′ is a lossless decomposition of S. This decomposition can be constructed by

using the algorithm shown in Figure 2.11. In this algorithm, πX(Σ) represents the

projection of a set of functional dependencies Σ over a set of attributes X, that is,

{Y → Z | Σ |= Y → Z and Y Z ⊆ X}.

We note that in the worst case the previous algorithm runs in exponential time and

space, since |πX(Σ)| can be exponential in the size of Σ. A possible solution to this

problem is to replace πX(Σ) by an equivalent set of functional dependencies of polynomial

size. Unfortunately, there are cases where such a set does not exists. Furthermore, it

was proved by Beeri and Bernstein [BB79] that given a relation schema (R[U],Σ) and

V ⊆ U , the problem of verifying whether (R[V], πV (Σ)) is in BCNF is coNP-complete.

Thus, the algorithm shown in Figure 2.11 cannot run in polynomial time, even if πX(Σ)

is not materialized, unless P=NP.

In general, unless P=NP, there is no an efficient algorithm for constructing a loss-

less and dependency preserving BCNF decomposition of a relation schema, if such a

decomposition exists, since the problem of verifying whether a relation schema admits

a lossless and dependency preserving decomposition into BCNF is coNP-hard [BB79].

Interestingly, a polynomial time algorithm for finding some BCNF decomposition was

Chapter 2. Relational and Nested Relational Databases 32

developed by Tsou and Fischer [TF82]. Let S be a relation schema (R[U],Σ). Tsou and

Fischer showed that if any of the following conditions holds, then (R[U],Σ) is in BCNF:

(a) |U | ≤ 2.

(b) |U | > 2 and for any pair of distinct attributes A,B ∈ U , Σ 6|= U − AB → A.

Thus, if |U | > 2 and (R[U],Σ) does not satisfy condition (b), then Tsou and Fischer’s

algorithm extracts from U a set of attributes U1 such that (R1[U1], πU1
(Σ)) satisfies this

condition. This is achieved by using the following algorithm:

set U1 := U

for each attribute A ∈ U1 do

for each attribute B ∈ U1 − A do

if Σ |= U1 − AB → A then U1 := U1 − B and C := A

U2 := U − {C}

The same algorithm is applied to the remaining set of attributes U2, until |U2| ≤ 2 or

(R2[U2], πU2
(Σ)) satisfies condition (b). For instance, the schema that we have been us-

ing in this section does not satisfies condition (b) since {Address,City ,PostalCode} −

{City ,Address} → City . Hence, {Address, City , PostalCode} is split into two set of

attributes {PostalCode, City} and {Address, PostalCode}, each of them satisfying con-

dition (a). We note that this algorithm runs in polynomial time, since it does not need

to compute πU2
(Σ) in order to check whether U2 satisfies either (a) or (b). Indeed, it

was shown by Tsou and Fischer that it requires time O(|U |4 · ‖Σ‖) to compute a BCNF

decomposition.

Fourth Normal Form (4NF)

A database schema containing multivalued dependencies can be also prone to update

anomalies, as Fagin pointed out in [Fag77]. For instance, consider again the relation

schema Movie(Theater , Title, Snack), introduced in Section 2.1.2, containing multivalued

dependency Theater →→ Title. Figure 2.12 (a) shows one instance of this schema. If

we want to insert tuple (Bloor Cinema, Bad Company, coke) into this relation, then we

also have to insert tuple (Bloor Cinema, Spider-Man, coke) into it, since the updated

relation has to satisfy MVD Theater →→ Title. We note that a database containing

only functional dependencies is not prone to this type of insertion anomalies; we cannot

Chapter 2. Relational and Nested Relational Databases 33

Theater Title Snack

Bloor Cinema Bad Company coffee

Bloor Cinema Bad Company popcorn

Bloor Cinema Spider-Man coffee

Bloor Cinema Spider-Man popcorn

Theater Title Snack

Bloor Cinema Bad Company coffee

Bloor Cinema Bad Company popcorn

Bloor Cinema Bad Company coke

Bloor Cinema Spider-Man coffee

Bloor Cinema Spider-Man popcorn

Bloor Cinema Spider-Man coke

(a) Original relation. (b) Updated relation.

Figure 2.12: A new type of insertion anomaly.

solve an insertion anomaly in a database containing functional dependencies by inserting

additional tuples.

To avoid the type of anomalies shown in Figure 2.12, Fagin introduced a normal form

for functional and multivalued dependencies. Let R[U] be a relation schema and Σ a set

of FDs and MVDs. Then (R[U],Σ) is in fourth normal form (4NF) if for every nontrivial

multivalued dependency X →→ Y implied by Σ, X is a superkey. Moreover, a database

schema S is in 4NF if every relation schema in S is in 4NF. For example, the relation

schema shown in the previous paragraph is not in 4NF since Theater is not a superkey.

Observe that if Σ contains only functional dependencies and (R[U],Σ) is in 4NF, then for

every nontrivial FD X → A implied by Σ, X →→ A is a nontrivial MVD and, therefore,

X is a superkey. Thus, (R[U],Σ) is in BCNF.

Analogously to the case of functional dependencies, it is possible to prove that a

relation schema (R[U],Σ) is in 4NF if and only if for every nontrivial FD X → Y ∈ Σ,

Σ |= X → U , and for every nontrivial MVD X →→ Y ∈ Σ, Σ |= X → U . Thus, by using

Galil’s algorithm [Gal82] for testing implication of multivalued dependencies, it can be

verified in almost quadratic-time O(n2 · log n) whether a relation schema is in 4NF.

Before turning our attention to the problem of 4NF decomposition, we need to in-

troduce the concept of dependency preservation for multivalued dependencies. Consider

again the relation schema (Movie(Theater , Title, Snack), {Theater →→ Title}). A

natural 4NF decomposition of this schema is

{(Movie1(Theater ,Title), {Theater →→ Title}),

(Movie2(Theater , Snack), {Theater →→ Snack})}. (2.1)

Chapter 2. Relational and Nested Relational Databases 34

Observe that Theater →→ Title and Theater →→ Snack are trivial MVDs in Movie 1

and Movie2, respectively, and, therefore, decomposition (2.1) is equivalent to

{(Movie1(Theater ,Title), ∅), (Movie2(Theater , Snack), ∅)}. (2.2)

Thus, if we use a definition of dependency preservation similar to the definition for

functional dependencies, we would say that (2.2) is not a dependency preserving decom-

position since Theater →→ Title is not equivalent to the empty set of dependencies, if

both are considered as sets of constraints over Movie(Theater, Title, Snack). Indeed,

if a relation schema (R[U],Σ) contains only multivalued dependencies, then all its 4NF

decompositions are of the form {(Ri[Ui], ∅) | i ∈ [1, n]}, and no decomposition is depen-

dency preserving under the definition for functional dependencies. The problem with this

definition is that it does take into account all the semantic information available in the

decomposition; if {(Ri[Ui], ∅) | i ∈ [1, n]} is a lossless decomposition of (R[U],Σ), then

Σ |= ./[U1, . . . , Un]. We adopt here the definition of dependency preservation given by

Yuan and Ozsoyoglu [YÖ86]: {(Ri[Ui], ∅) | i ∈ [1, n]} is a dependency preserving decom-

position of (R[U],Σ) if Σ ≡ ./[U1, . . . , Un], that is, for every instance I of R[U], I |= Σ if

and only if I |= ./[U1, . . . , Un]. For example, (2.2) is a dependency preserving decomposi-

tion of (Movie(Theater , Title, Snack), {Theater →→ Title}) since Theater →→ Title is

equivalent to ./[{Theater ,Title}, {Theater , Snack}]. Moreover, if Σ is a set of FDs and

MVDs, then {(Ri[Ui],Σi) | i ∈ [1, n]} is a dependency preserving decomposition of Σ if

Σ ≡ {./[U1, . . . , Un]} ∪
⋃

i∈[1,n]

Σi.

Now, we turn our attention to the problem of 4NF decomposition. As in the case of

functional dependencies, every relation schema admits a lossless 4NF decomposition,

and in some cases a relation schema does not admit a dependency preserving 4NF

decomposition. For instance, the relation schema (Code(Address, City, PostalCode),

{PostalCode → City, {Address, City} → PostalCode}), introduced in the previous sec-

tion, does not admit a dependency preserving 4NF decomposition since {PostalCode

→ City, {Address, City} → PostalCode} is not equivalent to {PostalCode → City,

./[{PostalCode,City}, {PostalCode,Address}]}.

In order to present a 4NF decomposition algorithm, we separately consider databases

containing only multivalued dependencies and databases containing both functional and

multivalued dependencies. Let R[U] be relation schema and Σ a set of MVDs. Then, a

Chapter 2. Relational and Nested Relational Databases 35

set Γ:= Σ and Att := {U}.

while there is V ∈ Att and X →→ Y ∈ Γ such that X →→ Y is a nontrivial MVD in V

L := {Y | Y ∈ dep(X) and Y ∩ V 6= ∅}

for every Y ∈ L, Z1 →→ Z2 ∈ Γ and W1 ∈ LHS (Γ) do

if Z1 ⊆ X(Y ∩ V) ⊆ Z1Z2 and Z1 →→ Z2 splits W1

then Γ := Γ ∪ {Z1(Z2 ∩W1) →→W2 |W2 ∈ dep(Z1(Z2 ∩W1))}

Att := (Att− {V }) ∪ {X(Y ∩ V) | Y ∈ L}

Output {(Ri[Ui], ∅) | i ∈ [1, n]}, where Att = {U1, . . . , Un}.

Figure 2.13: A 4NF decomposition algorithm.

simple modification of the BCNF decomposition algorithm shown in Figure 2.11 leads

to an algorithm for 4NF decomposition. If (R[U],Σ) contains a nontrivial multivalued

dependency X →→ Y , then (R[U],Σ) is split into two schemas (R1[XY], πXY (Σ)) and

(R2[XZ], πXZ(Σ)), where Z = U − XY and πV (Σ) = {W1 →→ W2 ∩ V | Σ |= W1 →

→ W2 and W1 ⊆ V }. This process is repeated until no subschema contains a nontrivial

multivalued dependency.

The previous algorithm has the same drawbacks of the BCNF decomposition algo-

rithm shown in the previous section. Interestingly, Grahne and Räihä [GR83] developed

a more efficient algorithm which materializes a suitable subset of πV (Σ). This algorithm

works properly for any kind of multivalued dependencies, and it works in polynomial

time if a simple condition is satisfied.

In order to present Grahne and Räihä’s algorithm, we need to introduce some termi-

nology. Let (R[U],Σ) as in the previous paragraphs. Given V ⊆ U , we say that X →→ Y

is a nontrivial MVD in V if X $ X(Y ∩ V) $ V . Moreover, we say that X →→ Y splits

a set of attributes Z if (Y −X)∩Z 6= ∅ and (U −XY)∩Z 6= ∅. Finally, LHS (Σ) stands

for the set of left hand sides in Σ. Grahne and Räihä’s algorithm [GR83] is shown in

Figure 2.13.

To understand the idea behind the algorithm shown in Figure 2.13, we review the

first steps of this algorithm. Let Γ = Σ and Att = {U}. If (R[U],Γ) is not 4NF,

then Σ contains a nontrivial multivalued dependency X →→ Y . Thus, U is split by

using the minimal sets of attributes implied by X, that is, Att = {XY | Y ∈ dep(X)}.

Let XY be an element of Att. If XY is not in 4NF, then XY is split by using the

same method. But how can we check whether XY is not in 4NF? A sufficient, but

Chapter 2. Relational and Nested Relational Databases 36

not necessary, condition is that there exists Z →→ W ∈ Σ such that Z →→ W is a

nontrivial multivalued dependency in XY . Grahne and Räihä [GR83] proposed to add

some dependencies to Σ to ensure that this is also a necessary condition. They showed

that if all the consequences of the elements of LHS (Σ) that are split by Y are included

in Γ, then the previous condition is also necessary. The inner loop adds to Γ all these

elements by using the following rule. If Z1 →→ Z2 becomes a trivial MVD in XY

(Z1 ⊆ XY ⊆ Z1Z2) and Z2 splits an element W1 ∈ LHS (Σ), then all the consequence of

Z1(Z2 ∩W1) are added to this set. This process is repeated until all the subschemas are

in 4NF.

The algorithm shown in Figure 2.13 works in polynomial time if no dependency in

Σ splits an element X ∈ LHS (Σ), since in this case no additional elements are added

to Γ. It turns out that this class of multivalued dependencies properly contains the

class of conflict-free multivalued dependencies, which is defined as follows. A set of

MVD Σ is conflict-free if no dependency in Σ splits an element X ∈ LHS (Σ) and for

every X, Y ∈ LHS (Σ), dep(X)∩ dep(Y) ⊆ dep(X ∩Y). Conflict-free MVDs were widely

studied in the database literature [Sci81, FMU82, BFMY83, YÖ86] and they were claimed

to be the most “natural” class of multivalued dependencies [Sci81].

Finally, we consider the problem of normalizing a database containing functional and

multivalued dependencies. Let R[U] be a relation schema, Σ a set of FDs over R[U] and

Γ a set of MVDs over R[U]. Most database textbooks do not pay much attention to the

4NF decomposition problem in the presence of functional and multivalued dependencies

[EN99, GMUW01]. To solve this problem, they simply propose to transform Σ into a set

of multivalued dependencies Σ = {X →→ A | X → Y ∈ Σ and A ∈ Y } and then use a

4NF decomposition algorithm for multivalued dependencies. It was shown by Yuan and

Ozsoyoglu [YÖ86] that this is not a good approach; it could be the case that (R[U],Σ ∪

Γ) admits a lossless and dependency preserving 4NF decomposition, but it cannot be

obtained by normalizing (R[U],Σ ∪ Γ). The problem is that the different semantics of

FDs and MVDs are neglected. To overcome this limitation, Yuan and Ozsoyoglu [YÖ86]

propose to apply a 4NF decomposition algorithm for multivalued dependencies to the

following transformation of Σ ∪ Γ:

Envelope(Σ ∪ Γ) = {X →→ Y | X ∈ LHS (Σ ∪ Γ),

Σ ∪ Γ |= X →→ Y and Σ ∪ Γ 6|= X → Y }.

In [YÖ86], it was proved that a 4NF decomposition of (R[U],Envelope(Σ ∪ Γ)) is a

Chapter 2. Relational and Nested Relational Databases 37

4NF decomposition of (R[U],Σ ∪ Γ). Moreover, Yuan and Ozsoyoglu showed that if

Envelope(Σ ∪ Γ) is conflict-free, then (R[U],Σ ∪ Γ) has a lossless and dependency pre-

serving 4NF decomposition.

Projection/Join Normal Form (PJ/NF)

In the previous sections, we introduce some normal forms for functional dependencies

and multivalued dependencies. The next natural step is to define a normal form for join

dependencies. It turns out that defining such a normal form is more complicated than

in the previous cases. To see why, consider the most natural extension of 4NF to join

dependencies. Let R[U] be a relation schema and Σ a set of FDs and JDs. Then, (R[U],Σ)

is in fifth normal form (5NF) if for every nontrivial join dependency ./[X1, . . . , Xn] implied

by Σ, Xi (1 ≤ i ≤ n) is a superkey. So, 5NF is a simple generalization of 4NF. If X →→ Y

is a nontrivial multivalued dependency implied by Σ, then ./[XY,XZ] is implied by Σ,

where Z = U −XY . Thus, if (R[U],Σ) is in 5NF, then XY and XZ are superkeys and,

therefore, X is a superkey, since {./[XY,XZ], XY → U, XZ → U} |= X → U . Hence,

(R[U],Σ) is in 4NF.

This normal form is a very stringent requirement, as pointed out by Vincent [Vin97]. If

a join dependency ./[X1, . . . , Xn] is nontrivial, then ./[X1, . . . , Xn, A] is also nontrivial,

for every attribute A. Thus, if (R[U],Σ) is in 5NF, then every attribute must be a

superkey. This condition is virtually unattainable in practice.

A first definition of a normal form for join dependencies was provided by Fagin [Fag79].

Let (R[U],Σ) be as above and KD(Σ) = {X → U | X ⊆ U and Σ |= X → U}. Notice

that Σ |= KD(Σ), but KD(Σ) does not necessarily implies Σ. Fagin [Fag79] observed

that if Σ contains only functional and multivalued dependencies, then Σ is in 4NF if

and only if KD(Σ) |= Σ. In particular, if Σ contains only functional dependencies, then

(R[U],Σ) is in BCNF if and only if KD(Σ) |= Σ. Fagin considered these properties to

generalize BCNF and 4NF to the case of join dependencies. If Σ contains functional

dependencies and join dependencies, then (R[U],Σ) is in projection-join normal form

(PJ/NF) if KD(Σ) |= Σ. Moreover, a database schema S is in PJ/NF if every relation

schema in S is in PJ/NF.

In this section, we will only focus on the problem of testing whether a relation schema

is in PJ/NF, and we do not elaborate on the question of how to decompose a relation

schema into a PJ/NF database schema. The latter problem can be solved by using a

Chapter 2. Relational and Nested Relational Databases 38

decomposition algorithm similar to the decomposition algorithms for functional depen-

dencies and multivalued dependencies.

The problem of testing whether a relation schema is in PJ/NF can be solved by using a

simple algorithm. For every set of attributes X ⊆ U , use Maier et al. [MSY81] algorithm

(see Section 2.1.2) to test in polynomial time whether X is a superkey. Then, check if

KD(Σ) |= Σ by using the chase (see Section 2.1.2). This algorithm requires exponential

time. To the best of our knowledge, the exact complexity of the PJ/NF testing problem

remains open. Interestingly, Date and Fagin [DF92] proposed a sufficient condition that

ensures that a schema is in PJ/NF and it can be tested in polynomial time. Let R[U] be

a relation schema and Σ a set of FDs and JDs. Then, (R[U],Σ) is in BCNF [DF92] if for

every nontrivial FD X → A ∈ Σ+, X is a superkey. We note that this definition extends

the definition of BCNF to the case of functional and join dependencies. Furthermore,

a key in (R[U],Σ) is simple if it consists of a single attribute. Date and Fagin [DF92]

proved that if (R[U],Σ) is in BCNF and every key in (R[U],Σ) is simple, then (R[U],Σ)

is in PJ/NF 8.

We end this section by showing how to test in polynomial time whether a rela-

tion schema (R[U],Σ) contains only simple keys and is in BCNF. Let N = {A |

A ∈ U and Σ 6|= A → U}. Then, (R[U],Σ) contains only simple keys if and only if

Σ 6|= N → U . Thus, by using the FD implication algorithm presented in Section 2.1.2

we can test in polynomial time whether (R[U],Σ) contains only simple keys. We note

that since Σ contains join dependencies, we cannot test whether (R[U],Σ) is in BCNF by

checking that for every X → Y ∈ Σ, X is a superkey. For example, if U = ABCDE and

Σ = {E → ABCD, ./[AB,CD,E]}, then (R[U],Σ) is not in BCNF (Σ |= AB → CD

and AB is not a superkey) but E → ABCD is the only functional dependency in Σ

and E is a superkey. We verify whether (R[U],Σ) is in BCNF as follows. Assume that

(R[U],Σ) contains only simple keys. Then, (R[U],Σ) is in BCNF if and only if for every

A ∈ N , Σ 6|= N − {A} → A. This condition can be checked in polynomial time by using

the FD implication algorithm presented in Section 2.1.2.

Reduced-Fifth Normal Form (5NFR)

Vincent [Vin97] showed that PJ/NF can be too restrictive. For example, a database

schema containing functional dependencies AB → C, AC → B, BC → A and a join

8For a discussion on the usefulness of this condition see [Buf93, DF93].

Chapter 2. Relational and Nested Relational Databases 39

dependency ./[AB,AC,BC] is not in PJ/NF since {AB → C, AC → B, BC → A} 6|=

./[AB,AC,BC]. But this specification is not prone to update anomalies, since if a tuple

t is in the join of tuples t1, t2, t3, then t is equal to either t1 or t2 or t3.

Vincent [Vin97] proposed a less restrictive normal form for functional and join

dependencies. Let R[U] be a relation schema and Σ a set of FDs and JDs. A

join dependency ./[X1, . . . , Xn] ∈ Σ is strong-reduced if for every i ∈ [1, n], Σ 6|=

./[X1, . . . , Xi−1, Xi+1, . . . , Xn] or X1 ∪ · · · ∪ Xi−1 ∪ Xi+1 ∪ · · · ∪ Xn $ U . Then,

(R[U],Σ) is in reduced-fifth normal form (5NFR) if for every nontrivial, strong-reduced

join dependency ./[X1, . . . , Xn] ∈ Σ+ and every i ∈ [1, n], Xi is a superkey. Vincent

[Vin97] proved that if a database schema is in PJ/NF, then it is in 5NFR. Furthermore,

Vincent showed that if Σ contains only FDs and strong-reduced JDs, then (R[U],Σ)

is in 5NFR if and only if for every X → Y ∈ Σ, X is a superkey, and for every

./[X1, . . . , Xn] ∈ Σ and every i ∈ [1, n], Xi is a superkey. Thus, the relation schema

shown above is in 5NFR (./[AB,AC,BC] is strong-reduced and AB, AC and BC are

superkeys) and, therefore, PJ/NF is strictly stronger than 5NFR.

Domain Key Normal Form (DK/NF)

In general, a data dependency over a relation schema R[U] is a mapping f from {I | I is

an instance of R[U]} to {true, false}; it defines the set of valid instances of R[U], that

is, {I | I is an instance of R[U] and f(I) = true}. Fagin [Fag81] proposed the ultimate

normal form for any type of data dependencies. Let Σ be a set of data dependencies over

R[U], KD(Σ) the set of key dependencies implied by Σ and DD(Σ) the set of domain

dependencies implied by Σ. Recall that a domain dependency defines the domain of an

attribute and is an expression of the form IN (A,D), where A ∈ U and D ⊆ Dom(A).

Then, (R[U],Σ) is in domain key normal form (DK/NF) if KD(Σ)∪DD(Σ) |= Σ [Fag81].

In general, the problem of DK/NF testing is undecidable, and it becomes decidable if

we consider a class of dependencies for which the implication problem is decidable, such

as FDs and JDs. In the rest of this section, we present a simple fragment of first order

logic for which this problem is decidable. This fragment is interesting since it provides a

uniform way of representing functional dependencies, join dependencies and some domain

dependencies (if constants are allowed) as well as other data dependencies.

A universal sentence over a relation schema R[U] is a first order sentence of the

form ∀x̄ψ, where ψ is a quantifier-free formula. Functional dependencies and join de-

Chapter 2. Relational and Nested Relational Databases 40

pendencies can be expressed by using universal sentences. For example, a functional

dependency A → B in a relation schema R with attributes A, B, C can be repre-

sented as ∀x∀y1∀z1∀y2∀z2 (R(x, y1, z1)∧R(x, y2, z2) → y1 = y2), while a join dependency

./[AB,AC,BC] can be represented as

∀x∀y∀z∀u1∀u2∀u3 (R(x, y, u1) ∧R(x, u2, z) ∧R(u3, y, z) → R(x, y, z)).

Some domain dependencies can also be expressed by using universal sentences. For

example, a domain dependency IN (A, {1, 2, 3}) can be represented as ∀x∀y∀z(R(x, y, z)

→ (x = 1 ∨ x = 2 ∨ x = 3)).

The implication problem for universal sentences can be reduced to the problem of

testing if a formula of the form ∃x̄∀ȳψ is satisfiable, where ψ is a quantifier-free formula.

This is a Schönfinkel-Bernays expression and it can be tested in nondeterministic ex-

ponential time whether this sentence is satisfiable [AHV95]. By using this result, it is

possible to construct a simple algorithm for testing whether a database schema contain-

ing universal sentences is in DK/NF: materialize KD(Σ) ∪ DD(Σ) and verify whether

KD(Σ) ∪ DD(Σ) |= Σ. This algorithm runs in double exponential time.

2.1.4 Why are Normalized Databases Good?

Even though normalization theory is one of the most thoroughly researched subjects in

database theory (see [BBG78] for an early survey on normalization, and see [Kan90] for

a more recent survey), the problem of formally proving that normal forms are good has

not received much attention in the database literature. In this section, we summarize the

work that has been done in this area. First, we present two different approaches for char-

acterizing insertion and deletion anomalies, and we show that in both approaches BCNF

is precisely the normal form that guarantees no anomalies, if only functional dependencies

are provided. In this section, we also consider 4NF and DK/NF. Second, we characterize

some normal forms in terms of their ability to eliminate redundant information.

Insertion and Deletion Anomalies

Probably the first attempt to prove that BCNF eliminates insertion and deletion anoma-

lies is due to Bernstein and Goodman [BG80]. In this paper, they formalized the no-

tion of insertion anomaly in terms of functional dependencies that are affected when a

new tuple is inserted. For example, Figure 2.14 shows a database instance of relation

Chapter 2. Relational and Nested Relational Databases 41

ISBN Title Author

155860622X Data on the Web Serge Abiteboul

155860622X Data on the Web Dan Suciu

Figure 2.14: An instance of the relation schema (Book(ISBN, Title, Author), {ISBN →

Title}).

schema (Book(ISBN, Title, Author), {ISBN → Title}) for storing information about

books. Observe that this schema is not in BCNF. A tuple (0201537710, Foundations of

Databases, Victor Vianu) affects FD ISBN → Title since new values are inserted into

the first and second columns of the instance and, therefore, they can produce a violation

of FD ISBN → Title. On the other hand, tuple (155860622X, Data on the Web, Peter

Buneman) does not affect this functional dependency. This schema is undesirable since

the effects of an insertion cannot be predicted simply by examining the schema: some

insertions affect ISBN → Title while others do not affect this functional dependency.

Intuitively, a relation schema is free of insertion anomalies if it is syntactically predictable

[BG80], that is, the effects of an insertion can be determined by checking the schema

alone.

Formally, let S = (R[U],Σ) be a relation schema containing only functional depen-

dencies, I a database instance of S and t a U -tuple. Then, I ∪ {t} affects a functional

dependency X → Y if πXY (I) $ πXY (I ∪ {t}). Furthermore, Affect(S) is the set of all

nontrivial functional dependencies ϕ in Σ+ that are affected by some I ∪ {t}, where I is

a nonempty database instance I of S and t is a U -tuple, and NoAffect(S) is the set of all

nontrivial functional dependencies ϕ in Σ+ such that there exists a nonempty database

instance I of S and a U -tuple t 6∈ I such that I ∪ {t} does not affect ϕ. In the example

shown above:

Affect(S) = {ISBN → Title, {ISBN , Author} → {ISBN , Title, Author}},

NoAffect(S) = {ISBN → Title}.

Notice that a key is always affected by the insertion of a new tuple and, therefore, it

cannot be in NoAffect(S). Bernstein and Goodman [BG80] defined a relation schema S

as free of insertion anomalies if Affect(S) ∩ NoAffect(S) = ∅, and they proved that S

is free of insertion anomalies if and only if S is in BCNF. Bernstein and Goodman also

characterized deletion anomalies in terms of functional dependencies that are affected

Chapter 2. Relational and Nested Relational Databases 42

when a tuple is removed from the database, and they proved that a relation schema S is

free of deletion anomalies if and only if S is in BCNF [BG80].

The problem of characterizing BCNF in terms of insertion and deletion anomalies was

also considered by LeDoux and Parker [LJ82], but their results are weaker than Bern-

stein and Goodman’s characterization of BCNF [BG80]. The problem of characterizing

DK/NF (see Section 2.1.3), and in particular BCNF and 4NF, in terms of insertion and

deletion anomalies was considered by Fagin [Fag81]. In this paper, Fagin introduced the

notions of key-based insertion and deletion anomalies. Let S = (R[U],Σ) be a relation

schema, I a database instance of S and t a U -tuple not in I. Then t is compatible with

I if (1) for every domain dependency IN (A,D) ∈ Σ, t[A] ∈ D, and (2) for every key de-

pendency X → U ∈ Σ+ and every s ∈ I, t[X] 6= s[X]. For example, tuple (155860622X,

Foundations of Databases, Peter Buneman) is compatible with the database instance

shown in Figure 2.14. Relation schema S has a key-based insertion anomaly if there exists

an instance I of S and a U -tuple t compatible with I such that I∪{t} does not satisfy Σ.

Moreover, S has a key-based deletion anomaly if there exists an instance I of S and t ∈ I

such that I − {t} does not satisfy Σ. For example, the schema of the instance I shown

in Figure 2.14 does not have a key-based deletion anomaly and it has a key-based inser-

tion anomaly since tuple t = (155860622X, Foundations of Databases, Peter Buneman)

is compatible with I and I ∪ {t} 6|= ISBN → Title.

Fagin [Fag81] showed that a database schema S is free of key-based insertion and

deletion anomalies if and only if S is in DK/NF. In particular, if the schema contains

only functional and multivalued dependencies, then S is free of key-based insertion and

deletion anomalies if and only if S is in 4NF. The same corollary is obtained for the case

of BCNF and functional dependencies alone.

Redundant Information

A goal of normalization theory is to eliminate redundant information. Vincent [Vin99]

formalized the notion of redundancy for database schemas containing functional and

multivalued dependencies and proved that 4NF, and in particular BCNF, eliminates

redundant information. More precisely, let S = (R[U],Σ) be a relation schema containing

functional and multivalued dependencies, I a database instance of S and t ∈ I. Then, a

value t[A] is redundant in I [Vin99], for some A ∈ U , if for every a 6= t[A], the instance

I ′ obtained by replacing t[A] by a does not satisfy Σ. For example, the value “Data on

Chapter 2. Relational and Nested Relational Databases 43

Country

United States State

Illinois City

Chicago

Springfield

Massachusetts City

Boston

Springfield

Figure 2.15: A nested relation.

the Web” in the first row of the database instance shown in Figure 2.14 is redundant,

since any replacement of this value by a new one leads to an instance which does not

satisfy ISBN → Title. Vincent [Vin99] defined a relation schema S as redundant if there

exists an instance I of S containing a redundant value. Moreover, Vincent showed that

a relation schema S containing FDs and MVDs is not redundant if and only if S is in

4NF. A corollary of this theorem is that if S contains only functional dependencies, then

S is not redundant if and only if S is in BCNF.

2.2 Nested Relational Databases

The basic assumption in the relational model is that every tuple in a relation contains

atomic values. In some applications such as text processing, picture data processing and

computer aided design [Mak77, ÖY87] this assumption is not appropriate; these applica-

tions require relations whose tuple components are sets or even relations themselves. To

overcome this limitation, Makinouchi [Mak77] introduced the nested relational model.

In the nested relational model, a nested relation is a finite set of tuples whose com-

ponents are atomic values or nested relations. For example, Figure 2.15 shows a binary

nested relation containing one tuple. The first component of this tuple is an atomic value

for the attribute Country, and its second component is a nested relation containing two

tuples (Illinois, {Chicago, Springfield}), (Massachusetts, {Boston, Springfield}).

Every nested relation has associated a nested relation schema. A nested relation

schema [Mak77, ÖY87] is either a set of attributes X, or X(S1)
∗ . . . (Sn)

∗, where Si

Chapter 2. Relational and Nested Relational Databases 44

(i ∈ [1, n]) is a nested relation schema. For example, the nested relation schema of the

relation shown in Figure 2.15 is S1 = Country(S2)
∗, S2 = State(S3)

∗, S3 = City . This

relation contains one tuple, say t, such that t[Country] is an atomic value and t[S2] is a

nested relation of the nested relation schema S2. Moreover, a nested database schema

is a set of nested relation schemas. Usually, when defining a nested schema we omit

the names of the nested subschemas. Thus, S1 = Country(State(City)∗)∗ is the nested

relation schema of the relation shown in Figure 2.15.

In the following sections, we will introduce data dependencies and normalization

theory for nested relational databases. In these sections, the following concepts will play

a central role. Let S be a nested relation schema. If S = X, where X is a set of attributes,

then Attribute(S) = X. Otherwise, if S = X(S1)
∗ . . . (Sn)

∗, then Attribute(S) = X ∪

Attribute(S1) ∪ · · · ∪ Attribute(Sn). Given a nested relation I of S, the total unnesting

of I, denoted by TU (I), is recursively defined as follows. If S = X, where X is a set of

attributes, then TU (I) = I. If S is of the form X(S1)
∗ · · · (Sn)

∗ and Xi = Attribute(Si)

(i ∈ [1, n]), then

TU (I) = {t | t is a Attribute(S)-tuple and there exists a tuple u in I such that

t[X] = u[X] and t[Xi] is a tuple in the total unnesting of u[Si]}.

For example, the total unnesting of the nested relation shown in Figure 2.15 is shown in

Figure 2.16.

The total unnesting of a nested relation I is a flat representation of this relation.

It is possible to reconstruct I from this flat representation if I is in partition normal

form [RKS88]. Formally, if I is a nested relation of a schema X(S1)
∗ . . . (Sn)

∗, then I

is in partition normal form (PNF) if for any tuple t in I: (1) there is no t′ in I such

that t[X] = t′[X] and t 6= t′; and (2) each nested relation t[Si] (i ∈ [1, n]) is in PNF.

For example, the nested relation shown in Figure 2.15 is in PNF. From now on, as it

is usually done in nested relational databases [RKS88, ÖY87, MNE96], we assume that

every nested relation is in PNF.

2.2.1 Data Dependencies in Nested Relational Databases

Two main approaches have been followed in order to define data dependencies for nested

relational databases. In the first approach (flat approach), data dependencies are defined

in terms of tuples in the total unnesting of a nested relation [ÖY87, ÖY89, MNE96,

Chapter 2. Relational and Nested Relational Databases 45

Country State City

United States Illinois Chicago

United States Illinois Springfield

United States Massachusetts Boston

United States Massachusetts Springfield

Figure 2.16: Total unnesting of nested relation shown in Figure 2.15.

Mok02], while in the second one (nested approach) data dependencies are directly defined

in terms of the tuples in a nested relation or the values that can be reached by traversing

them [Mak77, FSTG85, HD99]. To the best of our knowledge, in both approaches only

functional dependencies and multivalued dependencies have been considered. We present

both approaches next.

The Nested Approach

Functional dependencies and multivalued dependencies can be easily generalized to the

case of nested relations. Let I be a nested relation of a nested schema X(S1)
∗ . . . (Sn)

∗

and Y, Z nonempty subsets of X∪{S1, . . . , Sn}. Then, I satisfies a functional dependency

Y → Z, denoted by I |= Y → Z, if for every t1, t2 ∈ I, t1[Z] = t2[Z] whenever t1[Y] =

t2[Y] [Mak77, FSTG85]. Furthermore, I satisfies a multivalued dependency Y →→ Z,

denoted by I |= Y →→ Z, if for every t1, t2 ∈ I such that t1[Y] = t2[Y], there exists t3 ∈ I

such that t3[Y Z] = t1[Y Z] and t3[YW] = t2[YW], where W = U−Y Z [Mak77, FSTG85].

Observe that in these definitions we are considering set theoretic equality. For example,

Figure 2.15 shows a nested relation of nested schema S1 = Country(S2)
∗, S2 = State(S3)

∗,

S3 = City . This relation satisfies FD Country → S2
9.

This simple approach was followed by Makinouchi [Mak77] to introduce functional

dependencies for nested relations. Fischer et al. [FSTG85] study the relationship between

functional dependencies and multivalued dependencies in a nested relation and in its

total unnesting. For instance, the schema of the total unnesting of the nested relation

I shown in Figure 2.15 contains attributes Country, State, City, and FD Country → S2

corresponds to FD Country → {State,City} in this schema. This functional dependency

does not hold in the total unnesting of I (see Figure 2.16).

9Indeed, any relation I of nested schema S1 satisfies FD Country → S2 since I is in PNF.

Chapter 2. Relational and Nested Relational Databases 46

Makinouchi [Mak77] considers only nested schemas with one level of nesting, that is,

schemas of the form X(X1)
∗ . . . (Xn)

∗, where X,X1, . . . , Xn are sets of attributes. The

main drawback of his definition of functional dependency is that it cannot be directly

extended to nested schemas with a larger degree of nesting. For instance, what is the

meaning of the FD City → State in the nested relation shown in Figure 2.15? Intu-

itively, I does not satisfy this constraint since two distinct states have Springfield as

a city. Formally, we need to check whether for every t1, t2 ∈ I, if t1[City] = t2[City],

then t1[State] = t2[State]. But, for a tuple t in I, what are the values of t[City] and

t[State]? If we assume that t[City] is the set of all values mentioned in the column City

for this tuple, and likewise for t[State], then I |= City → State since for each t1, t2 ∈ I,

t1[City] = t2[City] = {Chicago, Springfield, Boston} and t1[State] = t2[State] = {Illinois,

Massachusetts}.

To overcome this limitation, Hara and Davidson [HD99] considered functional depen-

dencies defined in terms of paths of attributes (this approach was previously followed

by Weddell [Wed92] to introduce functional dependencies for an object-oriented data

model). Formally, given a nested relation schema S = X(S1)
∗ . . . (Sn)

∗, p is a path on S

if p = ε (empty path) or p is of the form A.p′, where A ∈ X and there exists i ∈ [1, n]

such that p′ is path on Si. For example, Country.State and Country.State.City are paths

on the nested schema considered above. Then, a functional dependency over S is an

expression of the form [HD99]:

p0 [p1, . . . , pn → pn+1], (2.3)

where p0, p0.p1, . . ., p0.pn, p0.pn+1 are paths on S. For instance,

Country [State.City → State], (2.4)

is a functional dependency over the nested schema shown above. We use this FD to

present Hara and Davidson’s semantics for functional dependencies [HD99]. We do not

formally present this semantics since, to the best of our knowledge, all the normal forms

and normalization algorithms for nested relational databases presented in the literature

consider only data dependencies defined by using the flat approach (see next section).

Hara and Davidson’s approach [HD99] implicitly assume that nested relations can

be represented as trees. Figure 2.17 (a) shows a labeled tree TI representing nested

relation I shown in Figure 2.15, and Figure 2.17 (b) shows a labeled tree TI′ representing

a nested relation I ′ containing two tuples: (C1, {Illinois, {Chicago,Springfield}}) and

Chapter 2. Relational and Nested Relational Databases 47

Illinois

Chicago Springfield SpringfieldBoston

United States

Massachusetts

State State

CityCityCity

Chicago Springfield

Illinois

Boston Springfield

Massachusetts

Country Country Country

StateState

City City City City City

C1 C2

(a) Tree TI (b) Tree TI′

Figure 2.17: Labeled trees representing nested relations.

(C2, {Massachusetts, {Boston,Springfield}}). Notice that attributes are used as labels of

the edges. By following a path in these trees we reach some values. For example, Illinois

is reachable from the root of TI by following path Country.State, so is Massachusetts.

The prefix path Country in FD (2.4) (in general, p0 in FD (2.3)) indicates in which

subtrees State.City → State is evaluated; this FD is evaluated in all the subtrees whose

root is reachable by following path Country. One of these subtrees is shown in Figure

2.17 (a) inside a dotted rectangle. Assume that T is that subtree and let r be its root.

Then, T satisfies State.City → State if for every v1, v2 reachable from r by following

path State.City, if v1 = v2, then the intermediate values reached by following the prefix

path State are equal. Thus, T does not satisfy State.City → State since by following

path State.City we can reach value Springfield through two distinct intermediate values

Illinois and Massachusetts. Observe that I ′ satisfies (2.4) since the subtrees rooted at

C1 and C2 satisfy State.City → State. Hence, (2.4) expresses the following functional

dependency: In every country, cities in distinct states have different names. Notice that

if (2.4) is replaced by ε [Country .State.City → Country .State], then neither I nor I ′

satisfies the new functional dependency.

Finally, it is worth mentioning that Hara and Davidson [HD99] presented a sound and

complete set of eight inference rules for a subclass of functional dependencies satisfying

the following condition: empty sets cannot occur in any nested relation.

Chapter 2. Relational and Nested Relational Databases 48

The Flat Approach

The flat approach has two main advantages. First, FDs and MVDs are simple to define.

The total unnesting of a nested relation is a usual relation, and, therefore, functional

dependencies and multivalued dependencies are defined as usual. Let S be a nested

relation schema and X, Y ⊆ Attribute(S). Then, a nested relation I of S satisfies X → Y

(X →→ Y) if TU (I) |= X → Y (TU (I) |= X →→ Y) [ÖY87]. For example, functional

dependency (2.4) can be represented as10:

{Country , City} → State.

Nested relation I shown in Figure 2.15 does not satisfy this constraint since its total

unnesting, shown in Figure 2.16, does not satisfy this functional dependency in the usual

sense (see Section 2.1.2).

The second advantage of the flat approach is that the implication problem for FDs

and MVDs can be reduced to the same problem for relational databases. Thus, the

efficient methods presented in Section 2.1.2 can be used for nested relational databases.

2.2.2 Nested Relational Databases Design

Consider again the relation schema Movie(Theater ,Title, Snack) introduced in Section

2.1.2. Recall that a tuple (th, ti, sn) is in this database if theater th is showing movie ti

and offering snack sn. Figure 2.18 (a) shows one instance of the relation Movie. For a

given theater, the information about titles and snacks is independent and, therefore, this

schema satisfies MVD Theater →→ Title. Given that Theater is not a key, this database

specification is not in 4NF and is prone to update anomalies. To solve this problem, we

can split the database into two new relations; one containing information about theaters

and titles, and the other one containing information about theaters and snacks.

As mentioned in [Fag77], the MVD Theater →→ Title implies that Title and Snack

are “orthogonal” or “independent” columns names. This orthogonality holds in the sense

that the information about a particular theater, say Bloor Cinema, can be represented

as the cross product:

{Bloor Cinema} × {Bad Company, Spider-Man} × {coffee, popcorn}.

10There exists functional dependencies that can be expressed by using Hara and Davidson’s language
[HD99] and cannot be expressed by using the flat approach.

Chapter 2. Relational and Nested Relational Databases 49

Theater Title Snack

Bloor Cinema Bad Company coffee

Bloor Cinema Bad Company popcorn

Bloor Cinema Spider-Man coffee

Bloor Cinema Spider-Man popcorn

Paramount Bad Company coke

Paramount Bad Company popcorn

Paramount Insomnia coke

Paramount Insomnia popcorn

Paramount Spider-Man coke

Paramount Spider-Man popcorn

Theater

Bloor Cinema Title

Bad Company

Spider-Man

Snack

coffee

popcorn

Paramount Title

Bad Company

Insomnia

Spider-Man

Snack

coke

popcorn

(a) An instance of relation Movie (b) A nested representation of relation Movie

Figure 2.18: Movie relation as a nested relation.

Therefore, to avoid update anomalies, instead of splitting the information about theaters

into two relations, we can use a nested relation. For each theater, this relation stores a

set of titles and a set of snacks. The schema of this database is Theater(Title)∗(Snack)∗.

Figure 2.18 (b) shows a nested relation equivalent11 to the instance of Movie shown in

Figure 2.18 (a).

In general, given a relational database schema containing functional and multivalued

dependencies, it is possible to use nested relations to “normalize” this schema. In this

way, nested relations reduce redundancy and eliminate update anomalies. Based upon

this idea, Özsoyoglu and Yuan [ÖY87, ÖY89] and Mok et al. [MNE96] introduced three

normal forms for nested relational databases. Given a nested relation schema S such that

Attribute(S) = U and a set Σ of functional dependencies and multivalued dependencies

over S, defined by using the flat approach, these normal forms define when S is a good

grouping of the set of attributes U in the sense that: (1) redundant information and up-

dates anomalies are eliminated and (2) a good representation of the semantic information

contained in Σ is constructed. All these normal forms were called Nested Normal Form

(NNF) by their authors. To distinguish between them we will use the following notation:

NNF-87 for the normal form introduced in [ÖY87], NNF-89 for [ÖY89] and NNF-96 for

11The total unnesting of the nested relation shown in Figure 2.18 (b) is the relation shown in Figure
2.18 (a).

Chapter 2. Relational and Nested Relational Databases 50

Title Snack

Theater

(a) Country(State(City)∗)∗ (b) Theater (Title)∗(Snack)∗

City

State

Country

Figure 2.19: Schema trees of two nested schemas.

[MNE96]. We present them next.

NNF-87 and NNF-89

In order to present the nested normal forms introduced by Özsoyoglu and Yuan [ÖY87,

ÖY89] we need to introduce some terminology. Given a nested relation schema S, the

schema tree of S, denoted by SchemaTree(S), is a tree defined as follows. If S = X,

where X is a set of attributes, then SchemaTree(S) contains only one node labeled

X. If S = X(S1)
∗ . . . (Sn)

∗, then the root of SchemaTree(S) is a node labeled X and its

children are the roots of SchemaTree(S1), . . ., SchemaTree(Sn). For example, the schema

trees of nested relation schemas Country(State(City)∗)∗ and Theater(Title)∗(Snack)∗ are

shown in Figures 2.19 (a) and (b), respectively. Given a node Y in SchemaTree(S),

Ancestor(Y) is the union of labels of all ancestors of Y in this tree, including Y , and

Descendant(Y) is the union of labels of all descendants of Y in this tree, including Y . For

example, Ancestor(State) = {State, Country} and Descendant(State) = {State, City}

in the schema tree shown in Figure 2.19 (a).

By using the flat approach, introduced in Section 2.2.1, it is possible to represent

as multivalued dependencies the structural constraints embedded into a nested schema.

For instance, if I is a nested relation of nested schema Theater(Title)∗(Snack)∗, then I

satisfies the MVD Theater →→ Title, since TU (I) satisfies this MVD. Thus, Theater →

→ Title is embedded into this nested schema. In general, given a nested schema S, the

set of multivalued dependencies embedded into S, denoted by MVD(S), is defined as:

MVD(S) = {Ancestor(X) →→ Descendant(Y) | (X, Y) is an edge in SchemaTree(S)}.

Thus, for example, the set of multivalued dependencies embedded into

Country(State(City)∗)∗ is {Country →→ {State, City}, {Country , State} →→ City}.

Chapter 2. Relational and Nested Relational Databases 51

Minimal covers for functional dependencies were introduced in Section 2.1.3 to syn-

thesize 3NF database schemas from relation schemas. Minimal covers for multivalued

dependencies are fundamental for the nested normal forms introduced by Özsoyoglu and

Yuan [ÖY87, ÖY89]. We define them next. Given a set of multivalued dependencies Σ,

an MVD X →→ Y ∈ Σ+ is said to be reduced if all the following conditions hold [ÖY87].

1. X →→ Y is not trivial.

2. X →→ Y is left-reduced, that is, there is no X ′ $ X such that X ′ →→ Y ∈ Σ+.

3. X →→ Y is right-reduced, that is, there is no Y ′ $ Y such that X →→ Y ′ ∈ Σ+

and X →→ Y ′ is not trivial.

4. There is no X ′ $ X such that X ′ →→ Y (X −X ′) ∈ Σ+.

Furthermore, Σ is said to be minimal if Σ is not equivalent to any of its proper subsets.

Then, a set of multivalued dependencies Γ is a cover of Σ if Γ+ = Σ+. If in addition to

this, Γ is minimal and every dependency in this set is reduced, then Γ is a minimal cover

of Σ. Minimal covers for multivalued dependencies can be computed in polynomial time

[ÖY87].

Finally, we are ready to present the first normal form introduced by Özsoyoglu and

Yuan: NNF-87 [ÖY87]. This normal form defines four conditions that a well designed

nested schema should satisfy. We examine these conditions in the context of the following

example, introduced in Section 2.1.2. Assume that U = {Title, Director , Theater , Snack}

and Σ = {Title →→ Director , Theater →→ Snack}. Figure 2.20 shows three alternative

ways of grouping U into a nested schema. Is any of these groupings a good representation

of Σ?

None of the nested schemas shown in Figure 2.20 is a good representation of Σ.

The schema tree of nested schema Title(Director)∗(Theater)∗(Snack)∗ is shown in Fig-

ure 2.20 (a). The problem with this schema is that it has embedded some multi-

valued dependencies, such as Title →→ Theater , that are not implied by Σ. The

first condition in NNF-87 is that a nested schema S cannot contain more seman-

tic information than Σ, that is, Σ |= MVD(S). The schema tree of nested schema

S1 = Title(Director)∗(Theater(Snack)∗)∗ is shown in Figure 2.20 (b). Although Σ im-

plies MVD(S1), S1 is not a good representation of Σ since the multivalued dependency

{Title, Theater} →→ Snack ∈ MVD(S1) is not left-reduced in Σ (it can be deduced

from Theater →→ Snack). Indeed, this nested schema is prone to update anomalies. For

example, let I be the following nested relation of S1.

Chapter 2. Relational and Nested Relational Databases 52

Title

TheaterDirector Snack Director Theater

Title

Snack

Director {Theater, Snack}

Title

(a) (b) (c)

Figure 2.20: Three alternative representations of {Title →→ Director , Theater →→

Snack}.

Title

Bad Company Director

Joel Schumacher

Theater

Paramount Snack

coke

If we insert into this relation tuple (Insomnia, {Christopher Nolan}, {Paramount,

{popcorn}}), then we will also have to modify both the original tuple in I and this

new tuple in order to satisfy the MVD Theater →→ Snack :

Title

Bad Company Director

Joel Schumacher

Theater

Paramount Snack

coke

popcorn

Insomnia Director

Christopher Nolan

Theater

Paramount Snack

coke

popcorn

The second condition in NNF-87 forbids a nested schema S containing left-

reducible or right-reducible dependencies in MVD(S). Figure 2.20 (c) shows a

third grouping of the set of attributes U corresponding to the nested schema S2 =

Title(Director)∗({Theater , Snack})∗. Although Σ |= MVD(S2) and every MVD embed-

ded in S2 is left-reduced and right-reduced, S2 is not a good representation of Σ since

the node {Theater , Snack} has not been correctly split in order to represent the MVD

Chapter 2. Relational and Nested Relational Databases 53

Theater →→ Snack . Indeed, this schema presents the same type of update anomalies

that we show in the previous example. The attributes in the left hand side of Σ are a

good indication of how to group U and they should be taken into account when design-

ing a nested schema. This is the third condition in NNF-87 and it can be formalized as

follows. Let S be a nested relation schema and Σ a set of multivalued dependencies over

S. Assume that Attribute(S) = U . Then, the set of keys of Σ is defined as [ÖY87]:

{X | there exist Y ⊆ U such that X →→ Y is a reduced MVD in Σ}.

Notice that if Γ is a cover of Σ, then X is a key of Σ if and only if X is a key of Γ.

For every V ⊆ U , the set of fundamental keys on V , denoted by FKey(V), is defined as

[ÖY87]:

{V ∩X | X ∈ LHS (Σ), V ∩X 6= ∅ and

there is no Y ∈ LHS (Σ) such that ∅ 6= V ∩ Y $ V ∩X}.

Recall that LHS (Σ) stands for the set of left hand sides in Σ. If S is in NNF-87,

then the root of SchemaTree(S) is a key of Σ and for each other node X in this

tree, if FKey(Descendant(X)) 6= ∅, then X ∈ FKey(Descendant(X)). This condi-

tion does not hold in the example shown above since Descendant({Theater , Snack})

= {Theater , Snack}, FKey({Theater , Snack}) = {Theater} and {Theater , Snack} 6∈

FKey({Theater , Snack}).

To completely define NNF-87, we need to introduce some additional terminology for

the fourth condition in this normal form. Let S be a nested relation schema and Σ a set of

multivalued dependencies over S. Let (Y, Z) be an edge in SchemaTree(S) and X a key of

Σ. Then, Z is transitive redundant with respect to X in S if X →→ Descendant(Z) ∈ Σ+

and there exists sibling nodes Z1, . . ., Zn of Z in SchemaTree(S) such that the following

conditions hold:

X ⊆ Ancestor(Y) ∪
n⋃

i=1

Descendant(Zi),

X ∪
n⋃

i=1

Descendant(Zi) →→ Ancestor(Y) 6∈ Σ+.

Then, (S,Σ) is in NNF-87 [ÖY87] if there exists a minimal cover Γ of Σ such that the

following conditions hold.

1. Γ |= MVD(S).

Chapter 2. Relational and Nested Relational Databases 54

2. Every multivalued dependency in MVD(S) is left- and right-reduced in Γ.

3. The root of SchemaTree(S) is a key of Γ and for each other node X in

SchemaTree(S), if FKey(Descendant(X)) 6= ∅, then X ∈ FKey(Descendant(X)).

4. For each node X in SchemaTree(S), there is no key Y of Γ such that X is transitive

redundant with respect to Y in S.

A nested database schema is in NNF-87 if every nested relation schema in it is in NNF-87.

So far, we have not mentioned how to deal with functional dependencies in the defi-

nition of NNF-87. If Σ contains functional dependencies and multivalued dependencies,

then every functional dependency X → Y is replaced by {X →→ A | A ∈ Y } in order to

test whether (S,Σ) is in NNF-87. Özsoyoglu and Yuan [ÖY89] introduced a second nor-

mal form, namely NNF-89, that is defined in terms of the same conditions than NNF-87,

except that if Σ contains functional dependencies and multivalued dependencies, then

the envelope of Σ (see Section 2.1.3) is used to test whether (S,Σ) is in NNF-89.

Özsoyoglu and Yuan [ÖY87] present a NNF-87 decomposition algorithm for nested

relational databases. We do not present this algorithm here, we just point out some of

its important characteristics. The input of this algorithm is a set of attributes U and a

minimal set of multivalued dependencies Σ containing only reduced MVDs. The output

of this algorithm is a nested database schema S ′ = {Si | i ∈ [1, n]} such that:

• S ′ is a lossless decomposition of S, that is, U = Attribute(S1)∪ · · · ∪Attribute(Sn)

and Σ |= ./[Attribute(S1), . . . ,Attribute(Sn)].

• S ′ is in NNF-87: For every i ∈ [1, n], (Si,Σi) is in NNF-87, where Σi is the pro-

jection of Σ over Attribute(Si), that is, {X →→ Y ∩ Attribute(Si) | X →→ Y ∈

Σ+ and X ⊆ Attribute(Si)}.

For example, if U = {Title, Director , Theater , Snack} and Σ = {Title →→ Director ,

Theater →→ Snack}, then the output of the algorithm is the following nested database

schema.

Director Theater

Title

Snack

Theater

Observe that Title →→ Theater is embedded in the first nested schema. This is not a mis-

take, it represents the following fact. Given that Title →→ {Theater , Snack} is implied

Chapter 2. Relational and Nested Relational Databases 55

by Σ, if a database instance I defined over U satisfies Σ, then π{Title,Director ,Theater}(I)

|= Title →→ Theater . Thus, to understand when the decomposed nested schema

S ′ = {Si | i ∈ [1, n]} is a dependency preserving decomposition of Σ, we have to de-

fine how to transform the MVDs in MVD(Si) (i ∈ [1, n]) into MVDs over the set of

attributes U . Formally, for every i ∈ [1, n], MVDU(Si) is defined as follows.

{X →→ Y ∈ Σ | there exists X →→ Z ∈ MVD(Si) such that Z = Y ∩ Attribute(Si)}.

Then, S ′ is a dependency preserving decomposition of Σ if MVDU(S1)∪· · ·∪MVDU(Sn) |=

Σ. It was shown in [ÖY87] that if Σ is conflict-free (see Section 2.1.2), then S ′ is a

dependency preserving decomposition of S.

NNF-96

Mok et al. [MNE96] introduced a nested normal form for precisely characterizing re-

dundancy in nested relational databases. This normal form is defined as follows. Let

S be a nested relation schema and Σ a set of functional dependencies and multivalued

dependencies over S. Then, (S,Σ) is in NNF-96 [MNE96] if the following conditions

hold.

1. Σ is equivalent to MVD(S) ∪ {X → Y | X → Y ∈ Σ+}.

2. For every nontrivial FD X → A ∈ Σ+, X → Ancestor(NA) is also in Σ+, where

NA is the node in SchemaTree(S) that contains attribute A.

Mok et al. [MNE96] proved that nested relation schemas in NNF-96 cannot contain

redundant information. To present this result, we need to introduce some terminology.

Let S be a nested relation schema and Σ a set of functional and multivalued dependen-

cies over S. Then, (S,Σ) is consistent if Σ |= MVD(S), where MVD(S) is the set of

multivalued dependencies embedded into S (see previous section for a formal definition).

Furthermore, given an instance I of S, a tuple t in I and an atomic attribute A, t[A] is

redundant in I [MNE96] if for every a 6= t[A], the instance I ′ obtained by replacing t[A]

by a does not satisfy Σ. Mok et al. [MNE96] showed that if (S,Σ) is a consistent nested

relation schema, then (S,Σ) is not redundant if and only if (S,Σ) is in NNF-96. Interest-

ingly, Vincent’s characterization of 4NF [Vin99] (see Section 2.1.3) is a corollary of this

result, since every relation schema S = (R[U],Σ) is consistent (MVD(S) = {U →→ U}

is a trivial set of MVDs) and S is in 4NF if and only if S is in NNF-96 [MNE96].

Chapter 2. Relational and Nested Relational Databases 56

Mok [Mok02] introduced an NNF-96 normalization algorithm that works under the

assumption that the set of multivalued dependencies contained in Σ is conflict-free. The

input of this algorithm is a set of attributes U , the set of functional dependencies con-

tained in Σ and a join dependency equivalent to the set of multivalued dependencies

contained in Σ 12. The output of this algorithm is a lossless and dependency preserving

decomposition of (S,Σ) in NNF-96.

What is the relationship between NNF-87 and NNF-96? Mok [Mok02] showed that if

Σ is a conflict-free set of multivalued dependencies and (S,Σ) is in NNF-87, then (S,Σ)

is in NNF-96. Mok also showed that the converse of this theorem is not true.

12Such a join dependency exists since the set of multivalued dependencies in Σ is conflict-free
[BFMY83].

Chapter 3

An Information-Theoretic Approach

to Normal Forms

Normalization as a way of producing good relational database designs is a well-understood

topic. However, the same problem of distinguishing well-designed databases from poorly

designed ones arises in other data models, in particular, XML. While in the relational

world the criteria for being well-designed are usually very intuitive and clear to state,

they become more obscure when one moves to more complex data models.

Our goal in this chapter is to provide a set of tools for testing when a condition on

a database design, specified by a normal form, corresponds to a good design. We use

techniques of information theory, and define a measure of information content of elements

in a relational database with respect to a set of constraints. We use this measure to

provide information-theoretic justification for familiar relational normal forms such as

BCNF, 4NF, PJ/NF, 5NFR, DK/NF. We then look at information-theoretic criteria for

justifying normalization algorithms for relational databases.

The information-theoretic measure introduced in this chapter is robust; even though

it is defined in the context of relational databases, it can be extended straightforwardly

to different data model such as nested relational and XML. In particular, in Chapter 7,

we introduce a normal form for XML documents and we use this measure to justify it. In

that chapter, we also look at information-theoretic criteria for justifying normalization

algorithms for XML databases.

57

Chapter 3. An Information-Theoretic Approach to Normal Forms 58

3.1 Introduction

What constitutes a good database design? This question has been studied extensively,

with well-known solutions presented in practically all database texts. But what is it that

makes a database design good? This question is usually addressed at a much less formal

level. For instance, we know that BCNF is an example of a good design, and we usually

say that this is because BCNF eliminates update anomalies. Most of the time this is

sufficient, given the simplicity of the relational model and our good intuition about it.

Several papers (see Section 2.1.4) attempted a more formal evaluation of normal

forms, by relating it to the elimination of update anomalies. Another criterion is the

existence of algorithms that produce good designs: for example, we know that every

database scheme can be losslessly decomposed into one in BCNF, but some constraints

may be lost along the way.

The previous work was specific for the relational model. As new data formats such as

XML are becoming critically important, classical database theory problems have to be

revisited in the new context [Wid99, Via01, Suc01, BFSW01]. However, there is as yet

no consensus on how to address the problem of well-designed data in the XML setting

[EM01a, AL02].

It is problematic to evaluate XML normal forms based on update anomalies; while

some proposals for update languages exist [TIHW01], no XML update language has

been standardized. Likewise, using the existence of good decomposition algorithms as a

criterion is problematic: for example, to formulate losslessness, one needs to fix a small

set of operations in some language, that would play the same role for XML as relational

algebra for relations.

This suggests that one needs a different approach to the justification of normal forms

and good designs. Such an approach must be applicable to new data models before the

issues of query/update/constraint languages for them are completely understood and

resolved. Therefore, such an approach must be based on some intrinsic characteristics

of the data, as opposed to query/update languages for a particular data model. In

this chapter we suggest such an approach based on information-theoretic concepts, more

specifically, on measuring the information content of the data. Our goal here is to in-

troduce information-theoretic measures of “goodness” of a design, and test them in the

relational world. To be applicable in other contexts, we expect these measures to char-

acterize familiar normal forms. We also use our measures to reason about normalization

Chapter 3. An Information-Theoretic Approach to Normal Forms 59

algorithms for relational databases, by showing that standard decomposition algorithms

never decrease the information content of any piece of data in a database/document.

The rest of this chapter is organized as follows. In Section 3.2 we give the notations,

and review the basics of information theory (entropy and conditional entropy). Section

3.3 is an “appetizer” for the main part of the chapter: we present a particularly sim-

ple information-theoretic way of measuring the information content of a database, and

show how it characterizes BCNF and 4NF. The measure, however, is too coarse, and,

furthermore, cannot be used to reason about normalization algorithms. In Section 3.4 we

present our main information-theoretic measure of the information content of a database.

Unlike the measure studied before [Lee87, CP87, DR00, LL03], our measure takes into

account both database instance and schema constraints, and defines the content with

respect to a set of constraints. A well-designed database is one in which the content of

each datum is the maximum possible. We use this measure to characterize BCNF and

4NF as the best way to design schemas under FDs and MVDs, and to justify normal

forms involving JDs (PJ/NF, 5NFR) and other types of integrity constraints (DK/NF).

Finally, in Section 3.5, we use the measures of Section 3.4 to reason about normalization

algorithms for relational databases, by showing that good normalization algorithms do

not decrease the information content of each datum at every step.

3.2 Notations

In this chapter we assume familiarity with the terminology introduced in Section 2.1.

3.2.1 Schemas and Instances

Given a relation schema R, we denote by sort(R) the set of attributes of R. We shall

identify sort(R) of cardinality m with {1, . . . , m}. Throughout this chapter, we assume

that the domain of each attribute is N+, the set of positive integers. Thus, an instance

I of schema S assigns to each symbol R ∈ S with m = |sort(R)| a relation I(R) which

is a finite set of m-tuples over N+. By adom(I) we mean the active domain of I, that

is, the set of all elements of N+ that occur in I. The size of I(R) is defined as ‖I(R)‖ =

|sort(R)| · |I(R)|, and the size of I is ‖I‖ =
∑

R∈S ‖I(R)‖. If I is an instance of S, the

set of positions in I, denoted by Pos(I), is the set {(R, t, A) | R ∈ S, t ∈ I(R) and

A ∈ sort(R)}. Note that |Pos(I)| = ‖I‖. Furthermore, given a relational schema S

Chapter 3. An Information-Theoretic Approach to Normal Forms 60

and a set of data dependencies Σ over S, we define inst(S,Σ) as the set of all database

instances of S satisfying Σ and instk(S,Σ) as {I ∈ inst(S,Σ) | adom(I) ⊆ [1, k]}, where

[1, k] = {1, . . . , k}.

3.2.2 Basics of Information Theory

The main concept of information theory is that of entropy, which measures the amount

of information provided by a certain event. Assume that an event can have n different

outcomes s1, . . ., sn, each with probability pi, i ≤ n. How much information is gained

by knowing that si occurred? This is clearly a function of pi. Suppose g measures this

information; then it must be continuous and decreasing function with domain (0, 1] (the

higher the probability, the less information gained) and g(1) = 0 (no information is

gained if the outcome is known in advance). Furthermore, g is additive: if outcomes

are independent, the amount of information gained by knowing two successive outcomes

must be the sum of the two individuals amounts, that is, g(pi · pj) = g(pi) + g(pj). The

only function satisfying these conditions is g(x) = −c ln x, where c is an arbitrary positive

constant [Sha48]. It is customary to use base 2 logarithms: g(x) = − log x.

The entropy of a probability distribution represents the average amount of information

gained by knowing that a particular event occurred. Let A = ({s1, . . . , sn}, PA) be a

probability space. If pi = PA(si), then the entropy of A, denoted by H(A), is defined to

be

H(A) =
n∑

i=1

pi log
1

pi
= −

n∑

i=1

pi log pi.

Observe that some of the probabilities in the space A can be zero. For that case, we

adopt the convention that 0 log 1
0

= 0, since limx→0 x log 1
x

= 0. It is known that 0 ≤

H(A) ≤ logn, with H(A) = log n only for the uniform distribution PA(si) = 1/n [CT91].

We shall also use conditional entropy. Assume that we are given two probability spaces

A = ({s1, . . . , sn}, PA), B = ({s′1, . . . , s
′
m}, PB) and, furthermore, we know probabilities

P (s′j, si) of all the events (s′j, si) (that is, PA and PB need not be independent). Then

the conditional entropy of B given A, denoted by H(B | A), gives the average amount

of information provided by B if A is known [CT91]. It is defined using conditional

probabilities P (s′j | si) = P (s′j, si)/PA(si):

H(B | A) =

n∑

i=1

(

PA(si)

m∑

j=1

P (s′j | si) log
1

P (s′j | si)

)

.

Chapter 3. An Information-Theoretic Approach to Normal Forms 61

A B C

1 2 3

1 2 4

A B C

1 1 2

2 3 4

A B C

1 2 3

1 2 4

1 2 5

(a) (b) (c)

Figure 3.1: Database instances.

3.3 Information Theory and Normal Forms: an Ap-

petizer

We will now see a particularly simple way to provide information-theoretic characteriza-

tion of normal forms. Although it is very easy to present, it has a number of shortcomings,

and a more elaborate measure will be presented in the next section.

Violating a normal form, e.g., BCNF, implies having redundancies. For example, if

S = {R(A,B,C)} and Σ = {A → B}, then (S,Σ) is not in BCNF (A is not a key) and

some instances can contain redundant information: in Figure 3.1 (a), the value of the

gray cell must be equal to the value below it. We do not need to store this value as it

can be inferred from the remaining values and the constraints.

We now use the concept of entropy to measure the information content of every posi-

tion in an instance of S. The basic idea is as follows: we measure how much information

we gain if we lose the value in a given position, and then someone restores it (either to the

original, or to some other value, not necessarily from the active domain). For instance,

if we lose the value in the gray cell in Figure 3.1 (a), we gain zero information if it gets

restored, since we know from the rest of the instance and the constraints that it equals 2.

Formally, let I ∈ instk(S,Σ) (that is, adom(I) ⊆ [1, k]) and let p ∈ Pos(I) be a position

in I. For any value a, let Ip←a be a database instance constructed from I by replacing

the value in position p by a. We define a probability space EkΣ(I, p) = ([1, k + 1], P) and

use its entropy as the measure of information in p (we define it on [1, k+ 1] to guarantee

that there is at least one value outside of the active domain). The function P is given

Chapter 3. An Information-Theoretic Approach to Normal Forms 62

by:

P (a) =

0 Ip←a 6|= Σ,

1/|{b | Ip←b |= Σ}| otherwise.

In other words, let m be the number of b ∈ [1, k + 1] such that Ip←b |= Σ (note that

m > 0 since I |= Σ). For each such b, P (b) = 1/m, and elsewhere P = 0. For example,

for the instance in Figure 3.1 (a) if p is the position of the gray cell, then the probability

distribution is as follows: P (2) = 1 and P (a) = 0, for all other a ∈ [1, k + 1]. Thus, the

entropy of EkΣ(I, p) for position p is zero, as we expect. More generally, we can show the

following.

Theorem 3.3.1 Let Σ be a set of FDs (or FDs and MVDs) over a schema S. Then

(S,Σ) is in BCNF (or 4NF, resp.) if and only if for every k > 1, I ∈ inst k(S,Σ) and

p ∈ Pos(I),

H(EkΣ(I, p)) > 0.

Proof: We give the proof for the case of FDs; for FDs and MVDs the proof is almost

identical.

(⇒) Assume that (S,Σ) is in BCNF. Fix k > 0, I ∈ inst k(S,Σ) and p ∈ Pos(I).

Assume that a is the p-th element in I. We show that Ip←k+1 |= Σ, from which we

conclude that H(EkΣ(I, p)) > 0, since EkΣ(I, p) is uniformly distributed, and P (a), P (k +

1) 6= 0.

Towards a contradiction, assume that Ip←k+1 6|= Σ. Then there exist R ∈ S, t′1, t
′
2 ∈

Ip←k+1(R) and X → A ∈ Σ+ such that t′1[X] = t′2[X] and t′1[A] 6= t′2[A]. Assume that

t′1, t
′
2 were generated from tuples t1, t2 ∈ I(R) (hence t1 6= t2), respectively. Note that

t′1[X] = t1[X] (if t1[X] 6= t′1[X], then t′1[B] = k + 1 for some B ∈ X; given that k + 1 6∈

adom(I), only one position in Ip←k+1 mentions this value and, therefore, t′1[X] 6= t′2[X], a

contradiction). Similarly, t′2[X] = t2[X] and, therefore, t1[X] = t2[X]. Given that (S,Σ)

is in BCNF, X must be a key in R. Hence, t1 = t2, since I |= Σ, which is a contradiction.

(⇐) Assume that (S,Σ) is not in BCNF. We show that there exists k > 0,

I ∈ instk(S,Σ) and p ∈ Pos(I) such that H(EkΣ(I, p)) = 0. Since (S,Σ) is not in BCNF,

there exist R ∈ S and X → A ∈ Σ+ such that A 6∈ X, X ∪ {A} $ sort(R) and X is

not a key in R. Thus, there exists a database instance I of S such that I |= Σ and

I 6|= X → sort(R). We can assume that I(R) contains only two tuples, say t1, t2. Let k

be the greatest value in I, i = t1[A] and p be the position of t1[A] in I. It is easy to see

Chapter 3. An Information-Theoretic Approach to Normal Forms 63

that I ∈ instk(S,Σ) and P (j) = 0, for every j 6= i in [1, k+ 1], since t1[A] must be equal

to t2[A] = i. Therefore, H(EkΣ(I, p)) = 0. 2

We note that this theorem is essentially equivalent to Vincent’s characterizations of

BCNF and 4NF [Vin99] (see Section 2.1.3).

Theorem 3.3.1 says that a schema is in BCNF or 4NF iff for every instance, each

position carries non-zero amount of information. This is a clean characterization of

BCNF and 4NF, but the measure H(EkΣ(I, p)) is not accurate enough for a number of

reasons. For example, let Σ1 = {A → B} and Σ2 = {A →→ B}. The instance I in

Figure 3.1(a) satisfies Σ1 and Σ2. Let p be the position of the gray cell in I. Then

H(EkΣ1
(I, p)) = H(EkΣ2

(I, p)) = 0. But intuitively, the information content of p must be

higher under Σ2 than Σ1, since Σ1 says that the value in p must be equal to the value

below it, and Σ2 says that this should only happen if the values of the C-attribute are

distinct.

Next, consider I1 and I2 shown in Figures 3.1 (a) and (c), respectively. Let Σ =

{A → B}, and let p1 and p2 denote the positions of the gray cells in I1 and I2. Then

H(EkΣ(I1, p1)) = H(EkΣ(I2, p2)) = 0. But again we would like them to have different

values, as the amount of redundancy is higher in I2 than in I1. Finally, let S = R(A,B),

Σ = {∅ →→ A}, and I = {1, 2} × {3, 4} ∈ inst(S,Σ). For each position, the entropy

would be zero. However, consider both positions in attribute A corresponding to the

value 1. If they both disappear, then we know that no matter how they are restored,

the values must be the same. The measure presented in this section cannot possibly talk

about inter-dependencies of this kind.

In the next section we will present a measure that overcomes these problems.

3.4 A General Definition of Well-Designed Data

Let S be a schema, Σ a set of constraints, and I ∈ inst(S,Σ) an instance with ‖I‖ = n.

Recall that Pos(I) is the set of positions in I, that is, {(R, t, A) | R ∈ S, t ∈ I(R) and

A ∈ sort(R)}. Our goal is to define a function InfI(p | Σ), the information content of a

position p ∈ Pos(I) with respect to the set of constraints Σ. For a general definition of

well-designed data, we want to say that this measure has the maximum possible value.

This is a bit problematic for the case of an infinite domain (N+), since we only know

what the maximum value of entropy is for a discrete distribution over k elements: log k.

Chapter 3. An Information-Theoretic Approach to Normal Forms 64

A B C

6 5 4

3 2 1

A B C

1 7 3

1 2 4

A B C

v6 7 3

1 2 v1

A B C

8 7 3

1 2 4

(a) An enumeration of I (b) I(7,ā1) = σ1(I(7,ā1)) (c) I(7,ā2) (d) σ2(I(7,ā2))

Figure 3.2: Defining Inf
k
I (p | Σ).

To overcome this, we define, for each k > 0, a function Inf
k
I (p | Σ) that would only

apply to instances whose active domain is contained in [1, k], and then consider the ratio

Inf
k
I (p | Σ)/ log k. This ratio tells us how close the given position p is to having the

maximum possible information content, for databases with active domain in [1, k]. As

our final measure InfI(p | Σ) we then take the limit of this sequence as k goes to infinity.

Informally, Inf
k
I(p | Σ) is defined as follows. Let X ⊆ Pos(I) − {p}. Suppose the

values in those positions X are lost, and then someone restores them from the set [1, k];

we measure how much information about the value in p this gives us. This measure is

defined as the entropy of a suitably chosen distribution. Then Inf
k
I (p | Σ) is the average

such entropy over all sets X ⊆ Pos(I)−{p}. Note that this is much more involved than

the definition of the previous section, as it takes into account all possible interactions

between different positions in an instance and the constraints.

We now present this measure formally. An enumeration of I with ‖I‖ = n, n > 0, is

a bijection fI between Pos(I) and [1, n]. From now on, we assume that every instance

has an associated enumeration1. We say that the position of (R, t, A) ∈ Pos(I) is p in

I if the enumeration of I assigns p to (R, t, A), and if R is clear from the context, we

say that the position of t[A] is p. We normally associate positions with their rank in the

enumeration fI .

Fix a position p ∈ Pos(I). As the first step, we need to describe all possible ways of

removing values in a set of positions X, different from p. To do this, we shall be placing

variables from a set {vi | i ≥ 1} in positions where values are to be removed, where vi

can occur only in position i. Furthermore, we assume that each set of positions is equally

likely to be removed. To model this, let Ω(I, p) be the set of all 2n−1 vectors (a1, . . . ,

ap−1, ap+1, . . . , an) such that for every i ∈ [1, n] − {p}, ai is either vi or the value in the

1The choice of a particular enumeration will not affect the measures we define.

Chapter 3. An Information-Theoretic Approach to Normal Forms 65

i-th position of I. A probability space A(I, p) = (Ω(I, p), P) is defined by taking P to

be the uniform distribution.

Example 3.4.1 Let I be the database instance shown in Figure 3.1 (a). An enumeration

of the positions in I is shown in Figure 3.2 (a). Assume that p is the position of the gray

cell shown in Figure 3.1 (a), that is, p = 5. Then ā1 = (4, 2, 1, 3, 1) and ā2 = (v1, 2, 1, 3, v6)

are among the 32 vectors in Ω(I, p). For each of these vectors, we define P as 1
32

. 2

Our measure Inf
k
I(p | Σ), for I ∈ instk(S,Σ), will be defined as the conditional

entropy of a distribution on [1, k], given the above distribution on Ω(I, p). For that,

we define conditional probabilities P (a | ā) that characterize how likely a is to occur in

position p, if some values are removed from I according to the tuple ā from Ω(I, p) 2.

We need a couple of technical definitions first. If ā = (ai)i6=p is a vector in Ω(I, p) and

a > 0, then I(a,ā) is a table obtained from I by putting a in position p, and ai in position

i, i 6= p. If k > 0, then a substitution σ : ā → [1, k] assigns a value from [1, k] to each ai

which is a variable, and leaves the other ai values intact. We can extend σ to I(a,ā) and

thus talk about σ(I(a,ā)).

Example 3.4.2 (example 3.4.1 continued) Let k = 8 and σ1 be an arbitrary sub-

stitution from ā1 to [1, 8]. Note that σ1 is the identity substitution, since ā1 contains no

variables. Figure 3.2 (b) shows I(7,ā1), which is equal to σ1(I(7,ā1)). Let σ2 be a substitu-

tion from ā2 to [1, 8] defined as follows: σ(v1) = 4 and σ(v6) = 8. Figure 3.2 (c) shows

I(7,ā2) and Figure 3.2 (d) shows the database instance generated by applying σ2 to I(7,ā2).

2

If Σ is a set of constraints over S, then SAT k
Σ(I(a,ā)) is defined as the set of all

substitutions σ : ā → [1, k] such that σ(I(a,ā)) |= Σ and ‖σ(I(a,ā))‖ = ‖I‖ (the latter

ensures that no two tuples collapse as the result of applying σ). With this, we define

P (a | ā) as:

P (a | ā) =
|SAT k

Σ(I(a,ā))|
∑

b∈[1,k]

|SAT k
Σ(I(b,ā))|

.

2We use the same letter P here, but this will never lead to confusion. Furthermore, all probability
distributions depend on I , p, k and Σ, but we omit them as parameters of P since they will always be
clear from the context.

Chapter 3. An Information-Theoretic Approach to Normal Forms 66

We remark that this corresponds to conditional probabilities with respect to a distribution

P ′ on [1, k] × Ω(I, p) defined by P ′(a, ā) = P (a | ā) · (1/2n−1), and that P ′ is indeed a

probability distribution for every I ∈ inst k(S,Σ) and p ∈ Pos(I).

Example 3.4.3 (example 3.4.2 continued) Assume that Σ = {A → B}. Given

that the only substitution σ from ā1 to [1, 8] is the identity, for every a ∈ [1, 8], a 6= 2,

σ(I(a,ā1)) 6|= Σ, and, therefore, SAT 8
Σ(I(a,ā1)) = ∅. Thus, P (2 | ā1) = 1 since σ(I(2,ā1)) |=

Σ. This value reflects the intuition that if the value in the gray cell of the instance shown

in Figure 3.1 (a) is removed, then it can be inferred from the remaining values and the

FD A→ B.

There are 64 substitutions with domain ā2 and range [1, 8]. A substitution σ is in

SAT 8
Σ(I(7,ā2)) if and only if σ(v6) 6= 1, and, therefore, |SAT 8

Σ(I(7,ā2))| = 56. The same can

be proved for every a ∈ [1, 8], a 6= 2. On the other hand, the only substitution that is

not in SAT 8
Σ(I(2,ā2)) is σ(v1) = 3 and σ(v6) = 1, since σ(I(2,ā2)) contains only one tuple.

Thus, |SAT 8
Σ(I(2,ā2))| = 63 and, therefore,

P (a | ā2) =

63
455

if a = 2,

56
455

otherwise.

2

We define a probability space BkΣ(I, p) = ([1, k], P) where

P (a) =
1

2n−1

∑

ā∈Ω(I,p)

P (a | ā) ,

and, again, omit I, p, k and Σ as parameters, and overload the letter P since this will

never lead to confusion.

The measure of the amount of information in position p, Inf
k
I (p | Σ), is the conditional

entropy of BkΣ(I, p) given A(I, p), that is, the average information provided by p, given

all possible ways of removing values in the instance I:

Inf
k
I(p | Σ)

def
= H(BkΣ(I, p) | A(I, p)) =

∑

ā∈Ω(I,p)

(

P (ā)
∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

)

.

Note that for ā ∈ Ω(I, p),
∑

a∈[1,k] P (a | ā) log 1
P (a|ā)

measures the amount of information

in position p, given a set of constraints Σ and some missing values in I, represented by

Chapter 3. An Information-Theoretic Approach to Normal Forms 67

the variables in ā. Thus, Inf
k
I (p | Σ) is the average such amount over all ā ∈ Ω(I, p).

Furthermore, from the definition of conditional entropy, 0 ≤ Inf
k
I (p | Σ) ≤ log k, and

the measure Inf
k
I(p | Σ) depends on the domain size k. We now consider the ratio of

Inf
k
I (p | Σ) and the maximum entropy log k. It turns out that this sequence converges:

Lemma 3.4.4 If Σ is a set of first-order constraints over a schema S, then for every

I ∈ inst(S,Σ) and p ∈ Pos(I), limk→∞ Inf
k
I(p | Σ)/ log k exists.

The proof of this lemma is given in Appendix A.1. In fact, Lemma 3.4.4 shows that such

a limit exists for any set of generic constraints, that is, constraints that do not depend

on the domain. This finally gives us the definition of InfI(p | Σ).

Definition 3.4.5 For I ∈ inst(S,Σ) and p ∈ Pos(I), the measure InfI(p | Σ) is defined

as

lim
k→∞

Inf
k
I (p | Σ)

log k
.

InfI(p | Σ) measures how much information is contained in position p, and 0 ≤ InfI(p |

Σ) ≤ 1. A well-designed schema should not have an instance with a position that has

less than maximum information:

Definition 3.4.6 A database specification (S,Σ) is well-designed if for every I ∈

inst(S,Σ) and every p ∈ Pos(I), InfI(p | Σ) = 1.

Example 3.4.7 Let S be a database schema {R(A, B, C)}. Let Σ1 = {A → BC}.

Figure 3.1 (b) shows an instance I of S satisfying Σ1 and Figure 3.3 (a) shows the value

of Inf
k
I(p | Σ1) for k = 5, 6, 7, where p is the position of the gray cell. As expected, the

value of Inf
k
I (p | Σ1) is maximal, since (S,Σ1) is in BCNF. Indeed, given that we have to

preserve the number of tuples, the A-values must be distinct, hence all possibilities for

selecting B and C are open.

The next two examples show that the measure Inf
k
I (p | Σ) can distinguish cases

that were indistinguishable with the measure of Section 3.3. Let Σ2 = {A → B} and

Σ′2 = {A →→ B}. Figure 3.1 (a) shows an instance I of S satisfying both Σ2 and Σ′2.

Figure 3.3 (b) shows the value of Inf
k
I (p | Σ2) and Inf

k
I (p | Σ′2) for k = 5, 6, 7. As

expected, the values are smaller for Σ2. Finally, let Σ3 = {A→ B}. Figures 3.1 (a) and

3.1 (c) show instances I1, I2 of S satisfying Σ3. We expect the information content of

the gray cell to be smaller in I2 than in I1, but the measure used in Section 3.3 could not

Chapter 3. An Information-Theoretic Approach to Normal Forms 68

k A→ BC log k

5 2.3219 2.3219

6 2.5850 2.5850

7 2.8074 2.8074

k A→ B A→→ B

5 2.0299 2.2180

6 2.2608 2.4637

7 2.4558 2.6708

k I1 I2

5 2.0299 1.8092

6 2.2608 2.0167

7 2.4558 2.1914

(a) (b) (c)

Figure 3.3: Value of conditional entropy.

distinguish them. Figure 3.3 (c) shows the values of Inf
k
I1

(p | Σ3) and Inf
k
I2

(p | Σ3) for

k = 5, 6, 7. As expected, the values are smaller for I2. In fact, InfI1(p | Σ3) = 0.875 and

InfI2(p | Σ3) = 0.78125. 2

3.4.1 Basic Properties

It is clear from the definitions that InfI(p | Σ) does not depend on a particular enumer-

ation of positions. Two other basic properties that we can expect from the measure of

information content are as follows: first, it should not depend on a particular representa-

tion of constraints, and second, a schema without constraints must be well-designed (as

there is nothing to tell us that it is not). Both are indeed true.

Proposition 3.4.8

1) Let Σ1 and Σ2 be two sets of constraints over a schema S. If they are equivalent

(that is, Σ+
1 = Σ+

2), then for any instance I satisfying Σ1 and any p ∈ Pos(I),

InfI(p | Σ1) = InfI(p | Σ2).

2) If Σ = ∅, then (S,Σ) is well-designed.

Proof:

1) Follows from the fact that for every instance I of S, I |= Σ1 iff I |= Σ2. Hence,

for every a ∈ [1, k] and ā ∈ Ω(I, p), SAT k
Σ1

(I(a,ā)) = SAT k
Σ2

(I(a,ā)) and, therefore,

H(BkΣ1
(I, p) | A(I, p)) = H(BkΣ2

(I, p) | A(I, p)).

2) Follows from part 2) of Proposition 3.4.9, to be proved below. Since for every

I ∈ inst(S,Σ), p ∈ Pos(I) and a ∈ N+ − adom(I), we have Ip←a |= Σ, this implies

that (S,Σ) is well-designed.

Chapter 3. An Information-Theoretic Approach to Normal Forms 69

2

In the following proposition we show a very useful structural criterion for InfI(p | Σ) = 1,

namely that a schema (S,Σ) is well-designed if and only if one position of an arbitrary

I ∈ inst(S,Σ) can always be assigned a fresh value. Also in this proposition, we use

this criterion to show that Inf
k
I (p | Σ) cannot exhibit sub-logarithmic growth, that is, if

limk→∞ Inf
k
I(p | Σ)/ log k = 1, then limk→∞[log k − Inf

k
I (p | Σ)] = 0.

Proposition 3.4.9 Let S be a schema and Σ a set of constraints over S. Then the

following are equivalent.

1) (S,Σ) is well-designed.

2) For every I ∈ inst(S,Σ), p ∈ Pos(I) and a ∈ N+ − adom(I), Ip←a |= Σ.

3) For every I ∈ inst(S,Σ) and p ∈ Pos(I), limk→∞[log k − Inf
k
I (p | Σ)] = 0.

This proposition shows that the information-theoretic definition of being well-designed is

equivalent to the set-theoretic definition presented in Section 2.1.4, and used by Vincent

[Vin99] to show that 4NF precisely characterizing redundancy in relational databases

containing functional and multivalued dependencies. We use here an entropy-based ap-

proach because we would also like to measure the amount of redundancy in a relational

database and, in particular, we would like to reason about normalization algorithms

and show that the usual decomposition step in these algorithms reduces the amount of

redundancy in a database. We cannot possibly do this with the set-theoretic measure

because it is too coarse. In particular, given that the set-theoretic approach does not

measure the amount of redundancy, it cannot distinguish between instances containing

redundant information and cannot distinguish between different types of dependencies

that can cause different degrees of redundancy (think of a dependency that says that all

the values in a database must be the same).

In Section 3.4.2, we use our information-theoretic approach to justify normal forms

such as BCNF, 4NF, PJ/NF, 5NFR and DK/NF. It should be noted that we can also use

the set-theoretic measure to justify these normal forms. The advantage of our measure is

that it can also be used to reason about normal forms that allow redundant information,

such as 3NF [Kol05], and to reason about databases containing attributes with finite

domains, where the set-theoretic approach cannot be directly applied.

The following lemma will be used in the proof of Proposition 3.4.9 and in several

other proofs.

Chapter 3. An Information-Theoretic Approach to Normal Forms 70

Lemma 3.4.10 Fix n,m > 0, an n-element set A and a probability space A on A with

the uniform distribution PA. Assume that for each k > 0, we have a probability space on

[1, k] called Bk and a joint distribution PBk,A on [1, k] × A such that for some a0 ∈ A,

and for all k > 0, the conditional probability P (i | a0) = PBk,A(i, a0)/PA(a0) = 0, for at

least k −m elements of [1, k]. Then for every k > m2:

H(Bk | A)

log k
< 1 −

1

2n
.

In particular, if limk→∞H(Bk | A)/ log k exists, then limk→∞H(Bk | A)/ log k < 1.

Proof: First, assume that m > 1. Let k > m2 and M = {i ∈ [1, k] | P (i | a0) > 0}.

Observe that |M | ≤ m. Then H(Bk |A)
log k

is equal to

1

log k

[
∑

a∈A

1

n

∑

i∈[1,k]

P (i | a) log
1

P (i | a)

]

=
1

n log k

[(
∑

a∈A−{a0}

∑

i∈[1,k]

P (i | a) log
1

P (i | a)

)

+

(
∑

i∈[1,k]

P (i | a0) log
1

P (i | a0)

)]

=
1

n log k

[(
∑

a∈A−{a0}

∑

i∈[1,k]

P (i | a) log
1

P (i | a)

)

+

(
∑

i∈M

P (i | a0) log
1

P (i | a0)

)]

≤
1

n log k

[(
∑

a∈A−{a0}

log k

)

+ logm

]

(3.1)

=
1

n log k

[

(n− 1) log k + logm

]

= 1 −
1

n
+

logm

n log k
< 1 −

1

n
+

logm

n logm2
= 1 −

1

n
+

1

2n
= 1 −

1

2n
.

Now, assume that m = 1. In this case, logm in equation (3.1) is equal to 0 and, there-

fore, the previous sequence of formulas show that H(Bk | A)/ log k ≤ 1− 1
n
< 1− 1

2n
. 2

Proof of Proposition 3.4.9: We will prove the chain of implications 3) ⇒ 1) ⇒

2) ⇒ 3).

The implication 3) ⇒ 1) is straightforward. Next we show 1) ⇒ 2). Towards a

contradiction, assume that there exists I ∈ inst(S,Σ), p ∈ Pos(I) and a ∈ N+−adom(I)

such that Ip←a 6|= Σ. Let k > 0 be such that adom(I)∪{a} ⊆ [1, k]. By Claim A.1.1 (see

Appendix), for every b ∈ [1, k]−adom(I), Ip←b 6|= Σ. Thus, for every a ∈ [1, k]−adom(I),

P (a | ā0) = 0, where ā0 is the tuple in Ω(I, p) containing no variables. Therefore, applying

Chapter 3. An Information-Theoretic Approach to Normal Forms 71

Lemma 3.4.10 with n = 2‖I‖−1 and m = |adom(I)|, we conclude that for k > m2:

Inf
k
I(p | Σ)

log k
=

H(BkΣ(I, p) | A(I, p))

log k
< 1 −

1

2 · 2‖I‖−1
.

Since InfI(p | Σ) = limk→∞ Inf
k
I (p | Σ)/ log k exists by Lemma 3.4.4, we conclude that

InfI(p | Σ) < 1 and thus (S,Σ) is not well-designed, a contradiction.

Next, we show 2) ⇒ 3). Let I ∈ inst(I,Σ) and p ∈ Pos(I). Let ‖I‖ = n and let

k > n be such that I ∈ instk(S,Σ). First, we prove that for every a ∈ [1, k] − adom(I)

and ā ∈ Ω(I, p),

|SAT k
Σ(I(a,ā))| ≥ (k − n)|var(ā)| (3.2)

where var(ā) is the set of variables in ā. We do it by induction on |var(ā)| 3. We do

it by induction on |var(ā)|. Assume that |var(ā)| = 0. Then given that Ip←a |= Σ,

we conclude that |SAT k
Σ(I(a,ā))| = 1. Now assume that (3.2) is true for every tuple

in Ω(I, p) containing at most m variables, and let |var(ā)| = m + 1. Suppose that

ā = (a1, . . . , ap−1, ap+1, . . . , an) and ai = vi, for some i ∈ [1, p−1]∪[p+1, n]. Let I ′ = Ip←a.

By the assumption, I ′ |= Σ, and hence for every b ∈ [1, k]− adom(I ′) we have I ′i←b |= Σ.

Thus, given that |[1, k] − adom(I ′)| ≥ k − n and for every b1, b2 ∈ [1, k] − adom(I ′),

|SAT k
Σ(I ′

(a,b̄1)
)| = |SAT k

Σ(I ′
(a,b̄2)

)|, where b̄j (j = 1, 2) is a tuple constructed from ā by

replacing vi by bj, we conclude that if b̄ is a tuple constructed from ā by replacing vi

by an arbitrary b ∈ [1, k] − adom(I ′), then |SAT k
Σ(I(a,ā))| ≥ (k − n) · |SAT k

Σ(I ′
(a,b̄)

)|,

since |adom(I ′)| ≤ n. By the induction hypothesis, |SAT k
Σ(I ′

(a,b̄)
)| ≥ (k − n)|var(b̄)| =

(k − n)|var(ā)|−1 and, therefore, |SAT k
Σ(I(a,ā))| ≥ (k − n)|var(ā)|, proving (3.2).

Now we show that limk→∞[log k − Inf
k
I (p | Σ)] = 0. For every k ≥ 1 such that

adom(I) ⊆ [1, k], log k ≥ Inf
k
I(p | Σ) and, therefore, limk→∞[log k − Inf

k
I (p | Σ)] ≥ 0.

Hence, to prove the theorem we will show that

lim
k→∞

[log k − Inf
k
I (p | Σ)] ≤ 0. (3.3)

Let k ≥ 1 be such that adom(I) ⊆ [1, k]. Assume that k > n. Let a ∈ [1, k] − adom(I)

and ā ∈ Ω(I, p). Since
∑

b∈[1,k] |SAT k
Σ(I(b,ā))| ≤ k|var(ā)|+1, using (3.2), we get

P (a | ā) ≥
(k − n)|var(ā)|

k|var(ā)|+1
=

1

k
(1 −

n

k
)|var(ā)|. (3.4)

3This induction relies on the following simple idea: If a 6∈ adom(I), then Ip←a |= Σ and, therefore,
one can replace values in positions of ā one by one, provided that each position gets a fresh value.

Chapter 3. An Information-Theoretic Approach to Normal Forms 72

By Claim A.1.1 (see Appendix), for every a, b ∈ [1, k] − adom(I) and every ā ∈ Ω(I, p),

P (a | ā) = P (b | ā). Thus, for every a ∈ [1, k] − adom(I) and every ā ∈ Ω(I, p),

P (a | ā) ≤ 1/(k − |adom(I)|) ≤ 1/(k − n). (3.5)

In order to prove (3.3), we need to establish a lower bound for Inf
k
I(p | Σ). We do this

by using (3.4) and (3.5) as follows: Given the term P (a | ā) log 1
P (a|ā)

, we use (3.4) and

(3.5) to replace P (a | ā) and log 1
P (a|ā)

by smaller terms, respectively. More precisely,

Inf
k
I(p | Σ) =

∑

ā∈Ω(I,p)

(

P (ā)
∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

)

≥
1

2n−1

∑

a∈[1,k]−adom(I)

∑

ā∈Ω(I,p)

1

k
(1 −

n

k
)|var(ā)| log(k − n)

=
1

2n−1
log(k − n)

1

k

∑

a∈[1,k]−adom(I)

n−1∑

i=0

(
n− 1

i

)

(1 −
n

k
)i

=
1

2n−1
log(k − n)

1

k

∑

a∈[1,k]−adom(I)

((1 −
n

k
) + 1)n−1

≥
1

2n−1
log(k − n)

1

k
(k − n) (2 −

n

k
)n−1

≥
1

2n−1
log(k − n)

1

k
(k − n) (2 −

2n

k
)n−1

=
1

2n−1
log(k − n) (1 −

n

k
) 2n−1 (1 −

n

k
)n−1

= log(k − n) (1 −
n

k
)n.

Therefore, log k− Inf
k
I(p | Σ) ≤ log k− log(k−n) (1− n

k
)n. Since limk→∞[log k− log(k−

n) (1 − n
k
)n] = 0 we conclude that (3.3) holds. This completes the proof of Proposition

3.4.9. 2

A natural question at this point is whether the problem of checking if a relational schema

is well-designed is decidable. It is not surprising that for arbitrary first-order constraints,

the problem is undecidable:

Proposition 3.4.11 The problem of verifying whether a relational schema containing

first-order constraints is well-designed is undecidable.

Proof: It is known that the problem of verifying whether a first-order sentence ϕ of the

form ∃x̄∀ȳ ψ(x̄, ȳ), where ψ(x̄, ȳ) is an arbitrary first-order formula, is finitely satisfiable

is undecidable. Denote this decision problem by P∃∀.

Chapter 3. An Information-Theoretic Approach to Normal Forms 73

We will reduce P∃∀ to the complement of our problem. Let ϕ be a formula of the

form shown above. Assume that ϕ is defined over a relational schema {R1, . . . , Rn} and

|x̄| = m > 0, and let S be a relational schema {U1, U2, R1, . . . , Rn}, where U1, U2 are

m-ary predicates. Furthermore, define a set of constraints Σ over S as follows:

Σ = {∀x̄ (U1(x̄) ↔ U2(x̄)), ∀x̄ (U1(x̄) → ∀ȳ ψ(x̄, ȳ))}. (3.6)

It suffices to show that ϕ ∈ P∃∀ if and only if (S,Σ) is not well-designed.

(⇒) Assume that ϕ ∈ P∃∀ and let I0 be an instance of {R1, . . . , Rn} satisfying ϕ.

Define I ∈ inst(S,Σ) as follows: I(Ri) = I0(Ri), for every i ∈ [1, n], and I(U1) = I(U2) =

{ā}, where ā is an m-tuple in I0 such that I0 |= ∀ȳ ψ(ā, ȳ). Let a ∈ N+ − adom(I) and

p be an arbitrary position in I(U1). Then Ip←a 6|= ∀x̄ (U1(x̄) ↔ U2(x̄)) and, therefore,

(S,Σ) is not well-designed by Proposition 3.4.9.

(⇐) Assume that ϕ 6∈ P∃∀. Then for every nonempty instance I ∈ inst(S,Σ), I(U1)

= I(U2) = ∅ and I(Ri) 6= ∅, for some i ∈ [1, n]. But for every position p of a value in

I(Rj) (j ∈ [1, n]) and every a ∈ N+ − adom(I), Ip←a |= Σ since I(U1) and I(U2) are

empty. We conclude that (S,Σ) is well-designed by Proposition 3.4.9. 2

However, integrity constraints used in database schema design are most commonly univer-

sal, that is, of the form ∀x̄ ψ(x̄), where ψ(x̄) is a quantifier-free formula. FDs, MVDs and

JDs are universal constraints as well as more elaborated dependencies such as equality-

generating dependencies and full tuple-generating dependencies [AHV95]. For universal

constraints, the problem of testing if a relational schema is well-designed is decidable. In

fact,

Proposition 3.4.12 The problem of deciding whether a schema containing only univer-

sal constraints is well-designed is co-NEXPTIME-complete. Furthermore, if for a fixed

m, each relation in S has at most m attributes, then the problem is Πp
2-complete.

To prove this proposition, first we have to prove a lemma. In this lemma we use the

following terminology. A first-order constraint ϕ is a Σn-sentence if ϕ is of the form

Q1x1Q2x2 · · ·Qmxmψ, where (1) Qi ∈ {∀, ∃} (i ∈ [1, m]); (2) ψ is a quantifier-free

formula; (3) the string of quantifiers Q1Q2 · · ·Qm consists of n consecutive blocks, all

quantifiers in the same block are the same and no adjacent blocks have the same quanti-

fiers; and (4) the first block contains existential quantifiers. Moreover, Πn-sentences are

defined analogously, but requiring that the first block contains universal quantifiers.

Chapter 3. An Information-Theoretic Approach to Normal Forms 74

Lemma 3.4.13 Let S be a relational schema and Σ be a set of Σn ∪ Πn-sentences over

S, n ≥ 1. Then there exists a relational schema S ′ ⊇ S and a Πn+1-sentence ϕ over S ′

such that (S,Σ) is well-designed iff ϕ ∈ Σ+. Moreover, ‖ϕ‖ is O(‖(S,Σ)‖2).

Proof: Assume that S = {Rm1

1 , . . . , Rmn
n }, where mi is the arity of Ri (i ∈ [1, n]).

Define a relational schema S ′ as S ∪ {Rmi

i,j | i ∈ [1, n] and j ∈ [1, mi]} ∪ {U1}. To define

ϕ, first we define sentence ψ as the conjunction of the following formulas.

•
∨n
i=1 ∃x1 · · · ∃xmi

Ri(x1, . . . , xmi
). For some i ∈ [1, n], relation Ri is not empty.

• ∃x (U(x) ∧ ∀y (U(y) → x = y)). U contains exactly one element.

• For every i ∈ [1, n],

∀x∀y1 · · · ∀ymi−1 (U(x) →
mi∧

j=1

¬Ri(y1, . . . , yj−1, x, yj, . . . , ymi−1)).

That is, the element contained in U is not contained in the active domain of relation

Ri, for every i ∈ [1, n].

• For every i ∈ [1, n],

(∀x1 · · · ∀xmi
¬Ri(x1, . . . , xmi

)) → (

mi∧

j=1

∀y1 · · · ∀ymi
¬Ri,j(y1, . . . , ymi

)).

If Ri is empty, then Ri,j is empty, for every j ∈ [1, mi].

• For every i ∈ [1, n] and every j ∈ [1, mi],

∃u1 · · · ∃umi
Ri(u1, . . . , umi

) →

∃x∃x′∃y1 · · · ∃yj−1∃yj+1 · · · ∃ymi
(

Ri(y1, . . . , yj−1, x, yj+1, . . . , ymi
)∧

¬Ri,j(y1, . . . , yj−1, x, yj+1, . . . , ymi
)∧

Ri,j(y1, . . . , yj−1, x
′, yj+1, . . . , ymi

) ∧ U(x′)∧

∀z1 · · · ∀zmi
((zj 6= x ∧ zj 6= x′) ∨

mi∨

k=1,k 6=j

zk 6= yk →

(Ri(z1, . . . , zmi
) ↔ Ri,j(z1, . . . , zmi

)))).

If Ri is not empty, then there exists a tuple t in Ri and a tuple t′ in Ri,j such that

t′ is not in Ri, t is not in Ri,j and t, t′ contain exactly the same values, except

Chapter 3. An Information-Theoretic Approach to Normal Forms 75

for the element in the j-th column where t′ contains a value that is in relation U .

Furthermore, every other tuple is in Ri if and only if is in Ri,j.

Given i ∈ [1, n] and j ∈ [1, mi], we denote by Σ[Ri/Ri,j] the set of first-order constraints

generated from Σ by replacing every occurrence of Ri by Ri,j. We define sentence ϕ as

follows:

ψ →
n∧

i=1

mi∧

j=1

Σ[Ri/Ri,j]. (3.7)

Notice that ψ is a Σ2-sentence and, therefore, ϕ is a Πn+1-sentence, since n ≥ 1. To

finish the proof, we have to show that (S,Σ) is well-designed if and only if ϕ ∈ Σ+.

(⇐) Assume that (S,Σ) is not well-designed. Then by Proposition 3.4.9, there exists

I ∈ inst(S,Σ), p ∈ Pos(I) and a ∈ N+ − adom(I) such that Ip←a 6|= Σ. Assume that p is

the position of some element in the j0-th column of Ri0 (i0 ∈ [1, n], j0 ∈ [1, mi0]). Then

we define an instance I ′ of S ′ as follows. For every i ∈ [1, n], I ′(Ri) = I(Ri), I(U) = {a}

and I ′(Ri0,j0) = Ip←a(Ri0). Furthermore, for every i ∈ [1, n] and j ∈ [1, mi], with i 6= i0

or j 6= j0, if I(Ri) is empty, then I ′(Ri,j) is also empty, else I ′(Ri,j) is constructed by

replacing an arbitrary element in the j-th column of I(Ri) by a. Then I ′ |= Σ, since

I |= Σ and I ′(Ri) = I(Ri) for every i ∈ [1, n]. I ′ |= ψ since (1) I ′(Ri0) is not empty

(I(Ri0) is not empty); (2) I ′(U) = {a} and a 6∈ adom(I); (3) for every i ∈ [1, n], if

I ′(Ri) is empty, then I ′(Ri,j) is empty, for every j ∈ [1, mi]; and (4) for every i ∈ [1, n],

j ∈ [1, mi], if I ′(Ri) is not empty, then I ′(Ri,j) differs from I ′(Ri) by exactly one value,

which is in U . Finally, I ′ 6|= Σ[Ri0/Ri0,j0], since I ′(Ri0,j0) = Ip←a(Ri0) and Ip←a 6|= Σ. We

conclude that I ′ 6|= ϕ and, therefore, ϕ 6∈ Σ+.

(⇒) Assume that ϕ 6∈ Σ+. Then there exists a database instance I ′ of S ′, i0 ∈ [1, n]

and j0 ∈ [1, mi0] such that I ′ |= Σ, I ′ |= ψ and I ′ 6|= Σ[Ri0/Ri0,j0]. We note that I ′(Ri0)

is not empty (if I ′(Ri0) is empty, then I ′(Ri0,j0) is empty (I ′ |= ψ) and, therefore,

I ′(Ri0,j0) = I ′(Ri0) and I ′ |= Σ[Ri0/Ri0,j0], since I ′ |= Σ, a contradiction). Define an

instance I of S as follows. For every i ∈ [1, n], I(Ri) = I ′(Ri). Let a be the element in

I ′(U) and let p be the position in I of the element that has to be changed to obtain

I ′(Ri0,j0) from I(Ri0). Then (1) I is not empty, since I ′ |= ψ; (2) I |= Σ, since I ′ |= Σ

and I(Ri) = I ′(Ri), for every i ∈ [1, n]; and (3) Ip←a 6|= Σ, since I ′ 6|= Σ[Ri0/Ri0,j0].

Given that a ∈ N+ − adom(I), since I ′ |= ψ, by Proposition 3.4.9 we conclude that

(S,Σ) is not well-designed. 2

Chapter 3. An Information-Theoretic Approach to Normal Forms 76

Σ2-sentences correspond to the Schönfinkel-Bernays fragment of first-order logic. It is

known that the problem of verifying if a Schönfinkel-Bernays formula has a finite model

is NEXPTIME-complete [Pap94] and becomes Σp
2-complete if every relation has at most

m attributes, where m is a fixed constant. Thus, from Lemma 3.4.13 we obtain the

following corollary and the proof of Proposition 3.4.12.

Corollary 3.4.14 The problem of deciding whether a schema containing only Σ1 ∪ Π1-

sentences is well-designed belongs to co-NEXPTIME.

Proof of Proposition 3.4.12: We consider only the case of unbounded-arity

relations, being the case of fixed-arity relations similar. The membership part of the

proposition is a particular case of Corollary 3.4.14. The hardness part of the proposition

follows from the following observation. If in the reduction of Proposition 3.4.11 the

formula ϕ is of the form ∃x̄∀ȳ ψ(x̄, ȳ), where ψ is quantifier-free, then the set of

constraints Σ defined in (3.6) is universal. Thus, the same reduction of Proposition

3.4.11 shows that the problem of deciding whether a Σ2-sentence is finitely satisfiable

is reducible to the problem of deciding whether a schema containing only universal

constraints is well-designed. 2

For specific kinds of constraints, e.g., FDs, MVDs, lower complexity bounds will follow

from the results in the next section.

3.4.2 Justification of Relational Normal Forms

We now apply the criterion of being well-designed to various relational normal forms. We

show that all of them lead to well-designed specifications, and some precisely characterize

the well-designed specifications that can be obtained with a class of constraints.

We start by finding constraints that always give rise to well-designed schemas. Recall

that a typed unirelational equality-generating dependency [AHV95] is a constraint of the

form:

∀ (R(x̄1) ∧ · · · ∧R(x̄m) → x̄ = ȳ),

where ∀ represents the universal closure of a formula, x̄, ȳ ⊆ x̄1 ∪ · · · ∪ x̄m and there is

an assignment of variables to columns such that each variable occurs only in one column

Chapter 3. An Information-Theoretic Approach to Normal Forms 77

and each equality atom involves a pair of variables assigned to the same column. An

extended key is a typed unirelational equality-generating dependency of the form:

∀ (R(x̄1) ∧ · · · ∧ R(x̄m) → x̄i = x̄j),

where i, j ∈ [1, m]. Note that every key is an extended key.

Proposition 3.4.15 If S is a schema and Σ a set of extended keys over S, then (S,Σ)

is well-designed.

Before proving this proposition we introduce one definition that will be used in several

proofs. Let I ∈ inst(S,Σ), p ∈ Pos(I), a ∈ [1, k] and ā ∈ Ω(I, p). Given a substitution

σ : ā → [1, k] and R ∈ S, we say that a tuple t′ ∈ σ(I(a,ā))(R) is generated by a tuple

t ∈ I(R) by means of a tuple t∗ ∈ I(a,ā) if σ(t∗) = t′ and t∗ can be obtained from t

by replacing each value in it by the element of (a, ā) in the same position. We say

t′ ∈ σ(I(a,ā))(R) is generated by a tuple t ∈ I(R) if it is generated by t by means of some

t∗ ∈ I(a,ā).

Proof of Proposition 3.4.15: To prove the proposition, we now use part 2) of

Proposition 3.4.9. Let I ∈ inst(S,Σ), p ∈ Pos(I) and a ∈ N+ − adom(I). We have to

show that Ip←a |= Σ.

Assume to the contrary that Ip←a 6|= Σ. Then there exists R ∈ S and an extended key

∀(R(x̄1)∧· · ·∧R(x̄m) → x̄i = x̄j) ∈ Σ such that Ip←a 6|= ∀(R(x̄1)∧· · ·∧R(x̄m) → x̄i = x̄j).

Thus, there exists a substitution ρ′ : x̄1 ∪ · · · ∪ x̄m → [1, k] such that ρ′(x̄l) = t′l and t′l ∈

Ip←a(R), for every l ∈ [1, m], and t′i 6= t′j. Define a substitution ρ : x̄1 ∪ · · · ∪ x̄m → [1, k]

as follows. Let b be the value in the p-th position of I. Then

ρ(x) =

ρ′(x) ρ′(x) 6= a

b Otherwise

Let ρ(x̄l) = tl, for every l ∈ [1, n]. It is straightforward to verify that t′1, . . ., t
′
n are

generated from t1, . . ., tn, respectively. Given that I |= Σ, ti = tj and, therefore, t′i = t′j.

This contradiction proves the proposition. 2

From Section 2.1.2, recall that if (S,Σ) is a database schema such that Σ does not

contain any domain dependency, then (S,Σ) is in DK/NF if and only if Σ is implied by

the set of key dependencies in Σ+. Thus, in our setting, where domain dependencies are

not considered, we obtain the following corollary from Proposition 3.4.15.

Chapter 3. An Information-Theoretic Approach to Normal Forms 78

Corollary 3.4.16 A relational specification (S,Σ) in DK/NF is well-designed.

In the rest of this section, we also denote join dependencies by first-order sentences. More

precisely, a join dependency over a relation R is a first-order sentence of the form:

∀ (R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)),

where ∀ represents the universal closure of a formula, x̄ ⊆ x̄1 ∪ · · · ∪ x̄m, every variable

not in x̄ occurs in precisely one x̄i (i ∈ [1, m]) and there is an assignment of variables to

columns such that each variable occurs only in one column. For example, join dependency

./[AB,BC] over a relation R(A,B,C) can be denoted by

∀x∀y∀z∀u1∀u2 (R(x, y, u1) ∧ R(u2, y, z) → R(x, y, z)).

Next, we characterize well-designed schemas with FDs and JDs.

Theorem 3.4.17 Let Σ be a set of FDs and JDs over a relational schema S. (S,Σ)

is well-designed if and only if for every R ∈ S and every nontrivial join dependency

∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)) in Σ+, there exists M ⊆ {1, . . . , m} such that:

1) x̄ ⊆
⋃

i∈M x̄i.

2) For every i, j ∈M , ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → x̄i = x̄j) ∈ Σ+.

In the proof of Theorem 3.4.17 we shall use chase for FDs and JDs [MMS79] which was

introduced in Section 2.1. Chase can be generalized in a natural manner to the case of

more expressive constraints like typed equality-generating dependencies (see [AHV95]).

We now move to the proof of Theorem 3.4.17. We need two lemmas first.

Lemma 3.4.18 Let Σ be a set of FDs and JDs over a relational schema S and R ∈ S.

Assume that Σ contains a JD ∀(R(x̄1) ∧ · · · ∧R(x̄m) → R(x̄)) such that ∀(R(x̄1) ∧ · · · ∧

R(x̄m) → x̄ = x̄i) 6∈ Σ+, for every i ∈ [1, m]. Then there exists I ∈ inst(S,Σ) and

p ∈ Pos(I) such that InfI(p | Σ) < 1.

Proof: Let T be a tableau containing tuples {x̄1, . . . , x̄m}, and let x̄ be the distin-

guished variables. Let ρ be a one-to-one function with the domain x̄1 ∪ · · · ∪ x̄m and the

range contained in N+. Define I = ρ(ChaseΣ(T)). Assume that θ is the composition

of the substitutions used in the chase. Let tj = ρ(θ(x̄j)), for every j ∈ [1, m], and

t = ρ(θ(x̄)). Given that ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → x̄ = x̄i) 6∈ Σ+, for every i ∈ [1, m],

Chapter 3. An Information-Theoretic Approach to Normal Forms 79

we conclude that t 6= tj, for every j ∈ [1, m]. Let A ∈ sort(R), p be the position of

t[A] in I and k such that adom(I) ⊆ [1, k]. Since I |= Σ and I contains t1, . . ., tm,

the JD ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)) ∈ Σ implies that I must contain t. Thus,

changing any value in t generates an instance that does not satisfy Σ. Hence, for

every a ∈ [1, k] − {t[A]}, P (a | ā0) = 0, where ā0 is the tuple in Ω(I, p) containing no

variables. Applying Lemma 3.4.10 we conclude that H(BkΣ(I, p) | A(I, p))/ logk < c

for some constant c < 1, for all sufficiently large k, and thus by Lemma 3.4.4,

InfI(p | Σ) = limk→∞ Inf
k
I (p | Σ)/ log k < 1. 2

Given a set Σ of FDs and JDs over a relational schema S and a JD ϕ ∈ Σ of the form

∀(R(x̄1) ∧ · · · ∧R(x̄m) → R(x̄)), define an equivalence relation ∼ϕ on tuples of variables

as follows. For every i, j ∈ [1, m], x̄i ∼ϕ x̄j if ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → x̄i = x̄j) ∈ Σ+.

Let [i]ϕ be the equivalence class of x̄i, for every i ∈ [1, m], and let var([i]ϕ) be the set of

variables contained in all the tuples x̄j ∈ [i]ϕ.

Lemma 3.4.19 Let Σ be a set of FDs and JDs over a relational schema S and R ∈ S.

Assume that Σ contains a JD ϕ of the form ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)) such that

x̄ 6⊆ var([i]ϕ), for every i ∈ [1, m]. Then there exists I ∈ inst(S,Σ) and p ∈ Pos(I) such

that InfI(p | Σ) < 1.

Proof: If ∀(R(x̄1) ∧ · · · ∧R(x̄m) → x̄ = x̄i) 6∈ Σ+, for every i ∈ [1, m], then by Lemma

3.4.18 there exists I ∈ inst(S,Σ) and p ∈ Pos(I) such that InfI(p | Σ) < 1. Thus, we

may assume that there exists i ∈ [1, m] such that ∀(R(x̄1)∧· · ·∧R(x̄m) → x̄ = x̄i) ∈ Σ+.

By the hypothesis, there exists l ∈ [1, |x̄|] and a variable x in the l-th column of x̄ such

that x 6∈ var([i]ϕ). Let u be the variable in the l-th column of x̄i and Ui the set of

variables in the l-column of all the tuples x̄j (j ∈ [1, m]) such that x̄i ∼ϕ x̄j.

Let T be a tableau {x̄1, . . . , x̄m}, with x̄i as distinguished variables. In ChaseΣ(T),

all the tuples in the equivalence class of x̄i (and no other) are identified with this tuple.

Denote the l-th component of tuple x̄j by x̄lj (and similarly for other tuples).

Let ρ be a one-to-one function with the domain x̄1 ∪· · ·∪ x̄m and the range contained

in N+ and I = ρ(ChaseΣ(T)). Assume that θ is the composition of the substitutions

used in the chase. Let tj = ρ(θ(x̄j)) be a tuple in I, for every j ∈ [1, m]. Note that

ρ(θ(x̄i)) = ρ(x̄i) since x̄i is a tuple of distinguished variables. Additionally, since I

satisfies ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → x̄ = x̄i), it must be the case that ρ(θ(x̄)) = ρ(x̄i).

Chapter 3. An Information-Theoretic Approach to Normal Forms 80

Let p be the position in I of tli. The value in this position is ρ(u). We will show that

for every a ∈ [1, k] − {ρ(u)}, P (a | ā0) = 0, where ā0 is a tuple in Ω(I, p) containing no

variables.

Denote by t′j the tuple of I(a,ā0) that corresponds to tj in I. Note that t′j = tj for all

j such that x̄j is not in [i]ϕ. When x̄j is in [i]ϕ, t
′
j differs from tj only in that the value

in its l-th column is a rather than ρ(u). Assume that I(a,ā0) satisfies Σ. Then it satisfies,

in particular, ∀(R(x̄1) ∧ · · · ∧R(x̄m) → R(x̄)). Recall that in this JD, every variable not

in x̄ occurs in a unique x̄j. We give a substitution from the variable tuples x̄1, . . ., x̄m to

the tuples t′1, . . ., t
′
m, respectively. Let ρ′ : x̄1 ∪· · ·∪ x̄m → [1, k] be a substitution defined

as follows. For every y ∈ x̄1 ∪ · · · ∪ x̄m,

ρ′(y) =

ρ(θ(y)) if y 6∈ Ui

a otherwise.

We claim that for every j ∈ [1, m], ρ′(x̄j) = t′j. Clearly, we only need to consider the l-th

column. Indeed, if x̄j is in [i]ϕ, then t′j is tj, except in the l-column, where tj contains

the value a, since x̄lj is in Ui. Thus, ρ′(x̄j) = t′j. If x̄j is not in [i]ϕ, then x̄lj is either x, or

a variable that occurs only in x̄j. In either case, it is not in Ui. Thus, ρ′(x̄j) = t′j. Since

I(a,ā0) is assumed to satisfy JD ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)), it must contain ρ′(x̄).

However, since x is not in Ui, ρ
′(x̄) = ρ(θ(x̄)) = ρ(x̄i) = ti in I, which is not in I(a,ā0), a

contradiction.

We conclude that for every a ∈ [1, k] − {ρ(u)}, P (a | ā0) = 0. Hence, by Lemma

3.4.10, Inf
k
I (p | Σ)/ log k < c for some constant c < 1, for all sufficiently large k, and

then by Lemma 3.4.4, InfI(p | Σ) = limk→∞ Inf
k
I(p | Σ)/ log k < 1. This proves the

lemma. 2

Theorem 3.4.17 is a corollary of Proposition 3.4.15 and Lemma 3.4.19. We note that this

theorem justifies various normal forms proposed for JDs and FDs [Fag79, Vin97].

Corollary 3.4.20 Let Σ be a set of FDs and JDs over a relational schema S. If (S,Σ)

is in PJ/NF or 5NFR, then it is well-designed.

However, neither of these normal forms characterizes precisely the notion of being well-

designed:

Proposition 3.4.21 There exists a schema S and a set of JDs and FDs Σ such that

(S,Σ) is well-designed, but it violates all of the following: DK/NF, PJ/NF, 5NFR.

Chapter 3. An Information-Theoretic Approach to Normal Forms 81

Proof: Let S = {R(A,B,C)} and Σ = {AB → C, AC → B, ./[AB,AC,BC]}.

This specification is not in DK/NF and PJ/NF since the set of keys implied by Σ is

{AB → ABC, AC → ABC, ABC → ABC} and this set does not imply ./[AB,AC,BC].

Furthermore, this specification is not in 5NFR since ./[AB,AC,BC] is a strong-reduced

join dependency and BC is not a key in Σ.

Join dependency ./[AB,AC,BC] corresponds to the following first order sentence:

∀x∀y∀z∀u1∀u2∀u3 (R(x, y, u1) ∧ R(x, u2, z) ∧ R(u3, y, z) → R(x, y, z)).

From Theorem 3.4.17, we conclude that (S,Σ) is well designed since Σ implies the sen-

tence

∀x∀y∀z∀u1∀u2∀u3(R(x, y, u1) ∧ R(x, u2, z) ∧ R(u3, y, z) → y = u2 ∧ z = u1).

and (x, y, z) ⊆ (x, y, u1) ∪ (x, u2, z). 2

By restricting Theorem 3.4.17 to the case of specifications containing only FDs and

MVDs (or only FDs), we obtain the equivalence between well-designed databases and

4NF (respectively, BCNF).

Theorem 3.4.22 Let Σ be a set of integrity constraints over a relational schema S.

1) If Σ contains only FDs and MVDs, then (S,Σ) is well-designed if and only if it is

in 4NF.

2) If Σ contains only FDs, then (S,Σ) is well-designed if and only if it is in BCNF.

3.5 Normalization algorithms

We now show how the information-theoretic measure of Section 3.4 can be used for

reasoning about normalization algorithms at the instance level. For this section, we

assume that Σ is a set of FDs. The results shown here state that after each step of a

decomposition algorithm, the amount of information in each position does not decrease.

Let I ′ be the result of applying one step of a normalization algorithm to I. In order to

compare the amount of information in these instances, we need to show how to associate

positions in I and I ′. Since we only consider here functional dependencies, we deal

with BCNF, and standard BCNF decomposition algorithms use steps of the following

Chapter 3. An Information-Theoretic Approach to Normal Forms 82

kind: pick a relation R with the set of attributes W , and let W be the disjoint union of

X, Y, Z, such that X → Y ∈ Σ+. Then an instance I = I(R) of R gets decomposed into

IXY = πXY (I) and IXZ = πXZ(I), with the sets of FDs ΣXY and ΣXZ , where ΣU stands

for {C → D ∈ Σ+ | CD ⊆ U ⊆ W}. This decomposition gives rise to two partial maps

πXY : Pos(I) → Pos(IXY) and πXZ : Pos(I) → Pos(IXZ). If p is the position of t[A] for

some A ∈ XY , then πXY (p) is defined, and equals the position of πXY (t)[A] in IXY ; the

mapping πXZ is defined analogously. Note that πXY and πXZ can map different positions

in I to the same position of IXY or IXZ .

We now show that the amount of information in each position does not decrease in

the normalization process.

Theorem 3.5.1 Let (X, Y, Z) partition the attributes of R, and let X → Y ∈ Σ+. Let

I ∈ inst(R,Σ) and p ∈ Pos(I). If U is either XY or XZ and πU is defined on p, then

InfI(p | Σ) ≤ InfIU (πU(p) | ΣU).

To prove this theorem, first we need to prove two lemmas.

Lemma 3.5.2 Let Σ be a set of FDs over a relational schema S, I ∈ inst(S,Σ), p ∈

Pos(I) and ā ∈ Ω(I, p). Then limk→∞
1

log k

∑

a∈[1,k] P (a | ā) log 1
P (a|ā)

is either 0 or 1.

Proof: Given in Appendix A.2. 2

Let R be a relation schema such that sort(R) = X ∪ Y ∪ Z, where X, Y and Z are

nonempty pairwise disjoint sets of attributes. Let Σ be a set of FDs over R and I ∈

inst(R,Σ). Assume that X → Y ∈ Σ+. Define R′ as a relation schema such that

sort(R′) = X ∪ Y , Σ′ = ΣXY , and let I ′ be πXY (I). Note that I ′ ∈ inst(R′,Σ′). We use

Lemma 3.5.2 to show the following.

Lemma 3.5.3 Let t0 ∈ I, t′0 = πXY (t0) and A ∈ X ∪ Y . If t0[A] is the p-th element in

I and t′0[A] is the p′-th element in I ′, then InfI(p | Σ) ≤ InfI′(p
′ | Σ′).

Proof: Assume that ‖I‖ = n, X ∪ Y = {A1, . . . , Am} and {t[X] | t ∈ I} contains l

tuples {c̄1, . . . , c̄l}. For every i ∈ [1, l], choose a tuple ti ∈ I such that ti[X] = c̄i. Without

loss of generality, assume that t0 = tl, A = Am and ti[Aj] is the ((i−1)m+ j)-th element

in I. Thus, t1[A1] is the first element in I, t1[Am] is the m-th element in I and tl[Am] is

the lm-th element in I. We note that p = lm.

Chapter 3. An Information-Theoretic Approach to Normal Forms 83

For every ā = (a1, . . . , ap−1, ap+1, . . . , an) ∈ Ω(I, p), define ā∗ =

(a1, . . . , ap−1, vp+1, . . . , vn), that is, ā∗ is generated from ā by replacing each ai

(i ∈ [p + 1, n]) by a variable. Furthermore, define Ω∗(I, p) as {ā ∈ Ω(I, p) | for every

i ∈ [p + 1, n], ai is a variable}. It is easy to see that if limk→∞
1

log k

∑

a∈[1,k] P (a |

ā) log 1
P (a|ā)

= 1, then limk→∞
1

log k

∑

a∈[1,k] P (a | ā∗) log 1
P (a|ā∗)

= 1. Thus, by Lemma

3.5.2, for every ā ∈ Ω(I, p):

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)
≤ lim

k→∞

1

log k

∑

a∈[1,k]

P (a | ā∗) log
1

P (a | ā∗)
.

Therefore,

InfI(p | Σ) = lim
k→∞

1

log k

∑

ā∈Ω(I,p)

1

2n−1

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

=
1

2n−1

∑

ā∈Ω(I,p)

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

≤
1

2n−1
2n−p

∑

ā∈Ω∗(I,p)

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

=
1

2p−1

∑

ā∈Ω∗(I,p)

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)
. (3.8)

Observe that ‖I ′‖ = lm. Without loss of generality assume that p′ = lm = p. Then

for every ā = (a1, . . . , ap−1, ap+1, . . . , an) ∈ Ω(I, p), define ā′ ∈ Ω(I ′, p′) as (a1, . . . , ap′−1).

As in the case of ā∗, it is easy to see that limk→∞
1

log k

∑

a∈[1,k] P (a | ā) log 1
P (a|ā)

≤

limk→∞
1

log k

∑

a∈[1,k] P (a | ā′) log 1
P (a|ā′)

. Particularly, this property holds for every ā ∈

Ω∗(I, p). Thus, by (3.8) we conclude that

InfI′(p
′ | Σ′) = lim

k→∞

1

log k

∑

ā∈Ω(I′,p′)

1

2p′−1

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

=
1

2p′−1

∑

ā∈Ω(I′,p′)

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

≥
1

2p−1

∑

ā∈Ω∗(I,p)

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

≥ InfI(p | Σ).

2

Proof of Theorem 3.5.1: First, we notice that adding new relations and

constraints over them to a schema does not affect the information content of the old

Chapter 3. An Information-Theoretic Approach to Normal Forms 84

positions. Namely, let S = {R1, . . . , Rm} be a relational schema, Σ = Σ1 ∪ · · · ∪Σm be a

set of FDs over S such that Σi is a set of FDs over Ri (i ∈ [1, m]), S ′ = {R1}, Σ′ = Σ1,

I ∈ inst(S,Σ) and I ′ ∈ inst(S ′,Σ′) such that I ′ = I(R1). Furthermore, let p be a position

in I(R1) and p′ the corresponding position in I ′. Then InfI(p | Σ) = InfI′(p
′ | Σ′). The

theorem now is a direct consequence of this fact and Lemma 3.5.3. 2

A decomposition algorithm is effective in I if for one of its basic steps, and for some p,

the inequality in Theorem 3.5.1 is strict: that is, the amount of information increases.

This notion leads to another characterization of BCNF.

Proposition 3.5.4 (R,Σ) is in BCNF if and only if no decomposition algorithm is ef-

fective in (R,Σ).

Proof: (⇒) If (R,Σ) is in BCNF, then for every I ∈ inst(R,Σ) and p ∈ Pos(I), InfI(p |

Σ) = 1. Thus, no decomposition algorithm can be effective on any I ∈ inst(R,Σ).

(⇐) Assume that (R,Σ) is not in BCNF. We will show that there exists a decompo-

sition algorithm effective in (R,Σ).

Given that (R,Σ) is not in BCNF, we can find nonempty pairwise disjoint sets of

attributes X, Y , Z such that X ∪ Y ∪ Z = sort(R), X → Y ∈ Σ+, X is not a key and

(XY,ΣXY) is in BCNF. Let I be a database instance of R containing two tuples t1, t2

defined as follows. For every A ∈ sort(R), t1[A] = 1. If X → A ∈ Σ+, then t2[A] = 1,

otherwise t2[A] = 2. It is easy to see that I ∈ inst(R,Σ). Furthermore, for every A ∈ Y

and p ∈ Pos(I) such that t1[A] (or t2[A]) is the p-th element in I, InfI(p | Σ) < 1 and

InfIXY
(πXY (p) | ΣXY) = 1 (since (XY,ΣXY) is in BCNF). Therefore, InfI(p | Σ) <

InfIXY
(πXY (p) | ΣXY). Thus, a decomposition algorithm that decomposes I into IXY

and IXZ is effective in (R,Σ). 2

Chapter 4

XML Databases

The goal of this dissertation is to find principles for good XML data design, and algo-

rithms to produce such designs. To this end, in the previous chapter we have introduced

an information-theoretic measure for testing when a relational normal form corresponds

to a good design, and we have used this measure to provide information-theoretic justifi-

cation for familiar normal forms such as BCNF and 4NF. Our intention is to extend this

measure to XML databases and use it to provide justification for XML normal forms.

In this chapter, we take a first step towards this goal by introducing a formal model for

XML databases and a language for XML keys and foreign keys.

4.1 Introduction

XML (Extensible Markup Language) is a simple and flexible text format. It was originally

designed for publishing electronic data, but today it has emerged as the standard language

for storing and interchanging data on the web [ABS00].

An XML document is shown in Figure 4.1. This document contains two different types

of tags: start-tags, such as <course> and <title>, and end-tags, such as </course> and

</title>. These tags must be balanced and they are used to delimit elements. For

example,

<title> Computer Organization </title>

is an element bounded by matching tags <title> and </title>. Every element

can contain raw text, other elements, or a mixture of them. For instance, the el-

ement mentioned above contains raw text while the element delimited by <ut> con-

85

Chapter 4. XML Databases 86

<ut>

<student sno="st1">

<name> John Smith </name>

<taking>

<course_number> CSC258 </course_number>

</taking>

<taking>

<course_number> CSC309 </course_number>

</taking>

</student>

<course cno="CSC258" dept="Computer Science">

<title> Computer Organization </title>

<enrolled>

<student_number> st1 </student_number>

</enrolled>

</course>

</ut>

Figure 4.1: An XML document.

tains two elements, the first of which is delimited by tag <student>. In this case,

<student> is a sub-element of <ut>. Elements can also contain attributes, such as

<course cno="CSC258" dept="Computer Science">. This element contains two at-

tributes: cno with value CSC258 and dept with value Computer Science. The docu-

ment shown in Figure 4.1 is part of a database for storing information about students

and courses in the University of Toronto. Each <student> element represents a particu-

lar student, which has a name and a student number (sno) and is taking some courses.

Each <course> element represents a particular course, which is given by some department

(dept) and has a title, a course number (cno) and some students enrolled.

XML documents have a nested structure. This gives a lot of flexibility when storing

information. For example, the name of a student in the XML document shown in Figure

4.1 is stored as an element containing raw text: <name> John Smith </name>. However,

a nested structure can be used in these elements in order to distinguish first names from

last names:

<name>

Chapter 4. XML Databases 87

<!DOCTYPE ut [

<!ELEMENT ut (student*, course*)>

<!ELEMENT student (name, taking*)>

<!ATTLIST student

sno CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT taking (course_number)>

<!ELEMENT course_number (#PCDATA)>

<!ELEMENT course (title, enrolled*)>

<!ATTLIST course

cno CDATA #REQUIRED

dept CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT enrolled (student_number)>

<!ELEMENT student_number (#PCDATA)>

]>

Figure 4.2: A DTD for a university database.

<first> John </first>

<last> Smith </last>

</name>

To specify the structure of a class of XML documents, we have to specify, as in the

case of relational databases, a schema. In the XML world, no standard way to do this

has yet emerged, even though there are two predominant proposals: DTD (Document

Type Definition) [Gol91, Hun00] and XML Schema [TBMM]. Even though DTDs are

less expressive than XML Schema specifications, in general they are expressive enough

for a large variety of applications [BNdB04]. Moreover, from a theoretical point of view,

DTDs can be characterized in terms of unranked tree automata [Nev02], which have

been widely studied in automata theory and more recently in database theory. In this

dissertation, we consider only DTDs.

A DTD for the University of Toronto database is shown in Figure 4.2. This DTD

specifies the elements allowed in XML documents by means of ELEMENT declarations.

For example, <student> is an element since <!ELEMENT student (name, taking*)>

appears in the DTD. An ELEMENT declaration also specifies the sub-elements of an ele-

Chapter 4. XML Databases 88

ment by means of a regular expression. For instance, (name, taking*) says that the

sub-elements of <student> form a string in the regular language name(taking)∗ over

the alphabet {name, taking}, that is, each <student> element has as sub-elements one

<name> element followed by an arbitrary number of <taking> elements. #PCDATA is used

to specify elements containing raw text, for instance <!ELEMENT title (#PCDATA)>, and

an ATTLIST declaration is used to specify the attributes of an element. Finally, every

document has an start-tag, which is called the root of the document and is specified by

means of the DOCTYPE declaration (<ut> in the example).

In the next section, we formalize the notions of XML document and DTD.

4.2 XML Documents and DTDs

In this section, we present the formal model for XML documents and DTDs proposed

by Fan and Libkin [FL01, FL02]. Also in this section, we introduce the notion of simple

DTDs, which has been used to capture real-life DTDs [BNdB04], and we introduce the

notion of path in XML documents and in DTDs.

Assume that we have the following disjoint sets: El of element names, Att of attribute

names, Str of possible values of attributes and raw text, and Vert of node identifiers. All

attribute names start with the symbol @, and these are the only ones starting with this

symbol. We let S and ⊥ (null) be reserved symbols not in any of those sets.

In Fan and Libkin’s model [FL01, FL02], XML documents are represented as trees.

Definition 4.2.1 (XML Tree) An XML tree T is defined to be a tree

(V, lab, ele, att, root), where

• V ⊆ Vert is a finite set of vertices (nodes).

• lab : V → El.

• ele : V → Str ∪ V ∗.

• att is a partial function V × Att → Str . For each v ∈ V , the set {@l ∈ Att |

att(v,@l) is defined} is required to be finite.

• root ∈ V is called the root of T .

The parent-child edge relation on V , {(v1, v2) ∈ V ×V | v2 occurs in ele(v1)}, is required

to form a rooted tree.

Chapter 4. XML Databases 89

v1

v3

v4

v5

v6

v2

student

“st1”

v0

course

v7

v9

v10

student number

“John Smith”

“CSC258” “CSC309”

course number course number

“st1”

Science”
v8

“Computer

“CSC258”

title@dept@cno enrolledtaking@sno name taking

“Computer

Organization”

Figure 4.3: Tree representation of an XML document.

For every x ∈ V , lab(x) is called the type of x in T . Notice that mixed content is

not allowed in XML trees. The children of an element node can be either zero or more

element nodes or one string.

In an XML tree T , for each v ∈ V , there is a unique path of parent-child edges from

the root to v, and each node has at most one incoming edge. The root is a unique node.

If a node x is labeled τ ∈ El , then function ele defines the children of x and function att

defines the attributes of x. The children of x are ordered. In contrast, its attributes are

unordered and are identified by their labels (names).

In this dissertation, we also use the following notation. Given an XML tree T and

an element type τ ∈ El , ext(τ) is defined to be the set of all nodes of T of type τ .

Furthermore, given a list of attributes X = [@l1, . . . ,@ln], if v is a node of T such that

att(v,@li) is defined for every i ∈ [1, n], then v.@li is defined to be att(v,@li) (i ∈ [1, n])

and v[X] is defined to be the list of values [att(v,@l1), . . . , att(v,@ln)].

Example 4.2.2 Figure 4.3 shows the tree representation of the document shown in

Figure 4.1. This tree contains a set of nodes V = {vi | i ∈ [0, 10]}, which are labeled as

follows.

lab(v0) = ut lab(v1) = student lab(v2) = name

lab(v3) = taking lab(v4) = course number lab(v5) = taking

lab(v6) = course number lab(v7) = course lab(v8) = title

lab(v9) = enrolled lab(v10) = student number

Thus, ext(taking) = {v3, v5} and ext(course number) = {v4, v6}. The structure of this

tree is given by the function ele:

Chapter 4. XML Databases 90

ele(v0) = [v1, v7] ele(v1) = [v2, v3, v5] ele(v2) = [John Smith]

ele(v3) = [v4] ele(v4) = [CSC258] ele(v5) = [v6]

ele(v6) = [CSC309] ele(v7) = [v8, v9] ele(v8) = [Computer Organization]

ele(v9) = [v10] ele(v10) = [st1]

Moreover, this tree is rooted at v0 (root = v0) and it contains three attributes:

att(v1,@sno) = st1 , att(v7,@cno) = CSC258 and att(v7,@dept) = Computer Science.

Thus, v1.@sno = st1 , v7.@cno = CSC258 and v7[@cno,@dept] = [CSC258 ,

Computer Science]. We note that the labels of the edges shown in Figure 4.3 are not

part of the tree representation, they just represent the label of the vertices {v1, . . . , v10}.

2

In Fan and Libkin’s model [FL01, FL02], DTDs are defined as follows.

Definition 4.2.3 (DTD) A DTD (Document Type Definition) is defined to be D =

(E, A, P, R, r), where:

• E ⊆ El is a finite set of element types.

• A ⊆ Att is a finite set of attributes.

• P is a mapping from E to element type definitions: Given τ ∈ E, P (τ) = S or

P (τ) is a regular expression α defined as follows:

α ::= ε | τ ′ | α|α | α, α | α∗

where ε is the empty sequence, τ ′ ∈ E, and “|”, “,” and “∗” denote union, concate-

nation, and the Kleene closure, respectively.

• R is a mapping from E to the powerset of A. If @l ∈ R(τ), we say that @l is

defined for τ .

• r ∈ E and is called the element type of the root. Without loss of generality, we

assume that R(r) = ∅ and that r does not occur in P (τ) for any τ ∈ E.

The symbols ε and S represent element type declarations EMPTY and #PCDATA, respectively.

In this dissertation, we also use the following shorthands for regular expressions: α+ for

(α, α∗) and α? for (ε|α). We assume that each τ in E − {r} is connected to r, i.e., either

τ appears in P (r), or it appears in P (τ ′) for some τ ′ that is connected to r.

Chapter 4. XML Databases 91

Example 4.2.4 The DTD shown in Figure 4.2 is represented as follows. E = {ut ,

student , course, name, taking , course number , title, enrolled , student number}, A =

{@sno, @cno, @dept} and r = ut . Furthermore, R(student) = {@sno}, R(course) =

{@cno, @dept} and R(τ) = ∅ for the remaining elements types τ , and P is defined as:

P (ut) = student ∗, course∗ P (course) = title, enrolled∗

P (student) = name, taking∗ P (title) = S

P (name) = S P (enrolled) = student number

P (taking) = course number P (student number) = S

P (course number) = S

2

The notion of satisfaction of a DTD by an XML tree is defined in Fan and Libkin’s formal

model [FL01, FL02] as follows.

Definition 4.2.5 Given a DTD D = (E, A, P, R, r) and an XML tree T = (V, lab, ele,

att, root), we say that T conforms to D, denoted by T |= D, if

• lab is a mapping from V to E.

• For each v ∈ V , if P (lab(v)) = S, then ele(v) = [s], where s ∈ Str . Otherwise,

ele(v) = [v1, . . . , vn], and the string lab(v1) · · · lab(vn) must be in the regular lan-

guage defined by P (lab(v)).

• att is a partial function from V × A to Str such that for any v ∈ V and @l ∈ A,

att(v, @l) is defined iff @l ∈ R(lab(v)).

• lab(root) = r.

For example, the XML tree shown in Figure 4.3 conforms to the DTD shown in Figure

4.2.

A DTD D is called recursive if there is a cycle in the directed graph defined as

{(τ, τ ′) | τ ′ is in the alphabet of P (τ)}, and non-recursive otherwise. We also say that

D is a no-star DTD if the Kleene star does not occur in any regular expression P (τ)

(note that this is a stronger restriction than being ∗-free: a regular expression without

the Kleene star yields a finite language, while the language of a ∗-free regular expression

may still be infinite as it allows boolean operators including complement).

Chapter 4. XML Databases 92

<!ELEMENT ProcessSpecification (Documentation*, SubstitutionSet*, (Include |

BusinessDocument | ProcessSpecification | Package | BinaryCollaboration |

BusinessTransaction | MultiPartyCollaboration)*)>

<!ELEMENT Include (Documentation*)>

<!ELEMENT BusinessDocument (ConditionExpression?, Documentation*)>

<!ELEMENT SubstitutionSet (DocumentSubstitution | AttributeSubstitution |

Documentation)*>

<!ELEMENT BinaryCollaboration (Documentation*, InitiatingRole,

RespondingRole, (Documentation | Start | Transition | Success | Failure |

BusinessTransactionActivity | CollaborationActivity | Fork | Join)*)>

<!ELEMENT Transition (ConditionExpression?, Documentation*)>

Figure 4.4: Part of the Business Process Specification Schema of ebXML.

4.2.1 Simple DTDs

Typically, regular expressions used in DTDs are rather simple. We now formulate a

criterion for simplicity that corresponds to a very common practice of writing regular

expressions in DTDs [BNdB04, Cho02]. Given an alphabet E, a regular expression over

E is called trivial if it is of the form s1, . . . , sn, where for each si there is a letter ai ∈ E

such that si is either ai or ai? or a+
i or a∗i , and for i 6= j, ai 6= aj. We call a regular

expression s simple if there is a trivial regular expression s′ such that any word w in the

language denoted by s is a permutation of a word in the language denoted by s′, and

vice versa. Simple regular expressions were also considered in [ASV01] under the name

of multiplicity atoms.

For example, (a|b|c)∗ is simple: a∗, b∗, c∗ is trivial, and every word in (a|b|c)∗ is a

permutation of a word in a∗, b∗, c∗ and vice versa. Simple regular expressions are preva-

lent in DTDs [BNdB04]. For instance, every regular expression in the Business Process

Specification Schema of ebXML [ebX], a set of specifications to conduct business over

the Internet, is simple. Part of this schema is shown in Figure 4.4.

Definition 4.2.6 (Simple DTD) A DTD D is simple if all productions in D use only

simple regular expressions.

In this dissertation, we turn our attention to simple DTDs when trying to either obtain

more efficient algorithms for real-life DTDs or prove that a problem is infeasible even for

real-life DTDs.

Chapter 4. XML Databases 93

4.2.2 Paths in XML Documents and DTDs

Given an XML tree T = (V, lab, ele, att, root) and a string w = w1 · · ·wn, with

w1, . . . , wn−1 ∈ El and wn ∈ El ∪ Att ∪ {S}, we say that w is a path in T if there

are vertices v1, . . ., vn−1 in V such that:

• lab(vi) = wi (1 ≤ i ≤ n− 1),

• vi+1 is a child of vi (1 ≤ i ≤ n− 2),

• if wn ∈ El , then there is a child vn of vn−1 such that lab(vn) = wn. If wn = @l,

with @l ∈ Att , then att(vn−1, @l) is defined. If wn = S, then vn−1 has a child in

Str .

We assume that every path contains at least one element type. Thus, for example,

ut.student.name, ut.student.name.S, name.S, ut.course, course.@cno, course number and

ut.student.taking.course number are all paths1 in the XML document shown in Figures

4.1 and 4.3.

We let paths(T) stand for the set of paths in an XML tree T starting at the root of

T . We note that for every node v of T , there exists a unique path in paths(T) from the

root of T to v. For example, from the set of paths shown above, only ut.student.name,

ut.student.name.S, ut.course and ut.student.taking.course number belong to paths(T).

Furthermore, given a pair of nodes x,y in T , with y a descendant of x, and a path

w = w1 · · ·wn in T , with wn an element type, we say that w is a path in T from x to y

if for the nodes v1, . . ., vn in the definition above we have that v1 = x and vn = y.

Paths are an essential component of XML, as they have been used as one of the basic

primitives in languages for navigating and querying XML documents [CD, BCF+] and

in data dependency languages for XML [BFW98, AV99, BDF+01a, BDF+01b]. In all

these languages, the semantics of paths is as follows. Given an XML tree T , a node v

of T , and a path w in T , reach(v, w) is defined to be the set of all nodes and values in

T reached by following w from v in this tree. Formally, if w = w1 · · ·wn with wn ∈ El ,

then reach(v, w) = {v′ | w is a path in T from v to v′}. Furthermore,

reach(v, w.@l) =
⋃

v′∈reach(v,w)

{att(v′,@l)},

reach(v, w.S) =
⋃

v′∈reach(v,w)

{s ∈ Str | ele(v′) = [s]}.

1To improve the readability, we use the symbol . to separate the components of a path.

Chapter 4. XML Databases 94

Thus, for example, in the XML tree shown in Figure 4.3 we have that:

reach(v0, ut .student .name) = {v2},

reach(v0, ut .student .name.S) = {John Smith},

reach(v0, ut .student .taking .course number) = {v4, v6},

reach(v3, course number) = {v4}.

Paths can also be defined over DTDs. More specifically, given a DTD D = (E, A, P,

R, r), a string w = w1 · · ·wn is a path in D if wi is in the alphabet of P (wi−1), for

each i ∈ [2, n − 1], and either wn is in the alphabet of P (wn−1) or wn = @l for some

@l ∈ R(wn−1). Furthermore, we say that w1 · · ·wn is a path in D from τ to τ ′, where

τ, τ ′ ∈ E, if τ = w1 and τ ′ = wn. We define length(w) as n and last(w) as wn. We let

paths(D) stand for the set of all paths in D starting at the root, that is, the set of all

paths w = w1 · · ·wn such that w1 = r, and we let EPaths(D) stand for the set of all

paths in paths(D) that end with an element type (rather than an attribute or S); that

is, EPaths(D) = {w ∈ paths(D) | last(w) ∈ E}.

Finally, it is worth mentioning that a DTD D is recursive if and only if paths(D) is

infinite.

4.3 Keys and Foreign Keys for XML Databases

As in the case of relational databases, the design of XML databases is guided by the

semantic information encoded in data dependencies. In this dissertation, we consider

several flavors of the most popular XML data dependencies.

Although a number of dependency formalisms were developed for relational databases,

functional and inclusion dependencies are the ones used most often. In fact, two sub-

classes of functional and inclusion dependencies, namely, keys and foreign keys, are most

commonly found in practice. Both are fundamental to conceptual database design, and

are supported by the SQL standard [MS93]. They provide a mechanism by which one

can uniquely identify a tuple in a relation and refer to a tuple from another relation.

They have proved useful in update anomaly prevention, query optimization and index

design [AHV95, Ull88].

XML has become the prime standard for data exchange on the Web. XML

data typically originates in databases. If XML is to represent data currently re-

Chapter 4. XML Databases 95

siding in databases, it should support keys and foreign keys, which are an essen-

tial part of the semantics of the data. Besides, keys and foreign keys for XML

are important in, among other things, query optimization [PDST00], data integration

[BGL+99, BM99, EM01b], and in data transformations between XML and relational

databases [BCF+03, CFI+00, FK99, LC00, SSB+00, STZ+99, YP04].

A number of key and foreign key specifications have been proposed for XML. In

Section 4.3.1, we introduce a key and foreign key language proposed by Fan and Siméon

[FS00, FS03]. In Section 4.3.2, we extend this language to the case of relative constraints.

Finally, in Section 4.3.3, we present other proposals for XML keys and foreign keys. It is

worth mentioning that in Chapter 5, we extend the languages presented in this section

to the case of constraints involving regular expressions, and in Chapter 6, we introduce

a functional dependency language for XML.

4.3.1 Absolute keys and foreign keys

A class of absolute keys and foreign keys, denoted by AC∗,∗K ,FK (we shall explain the

notation shortly), was introduced by Fan and Siméon [FS00]. This class is defined for

element types as follows. An AC∗,∗K ,FK -constraint ϕ over a DTD D = (E, A, P, R, r) has

one of the following forms:

• Key : τ [X] → τ , where τ ∈ E and X is a nonempty set of attributes in R(τ). An

XML tree T satisfies this constraint, denoted by T |= τ [X] → τ , if T satisfies

∀x, y ∈ ext(τ) (x[X] = y[X] → x = y).

• Foreign key : τ1[X] ⊆FK τ2[Y], where τ1, τ2 ∈ E, X and Y are nonempty lists

of attributes in R(τ1) and R(τ2), respectively, and |X| = |Y |. This constraint is

satisfied by a tree T , denoted by T |= τ1[X] ⊆FK τ2[Y], if T |= τ2[Y] → τ2, and in

addition T satisfies

∀x ∈ ext(τ1) ∃y ∈ ext(τ2) (x[X] = y[Y]).

That is, τ [X] → τ says that the X-attribute values of a τ -element uniquely identify the

element in ext(τ), and τ1[X] ⊆FK τ2[Y] says that the Y -attribute values of a τ2-element

uniquely identify the element in ext(τ2) and the list of X-attribute values of every τ1-

node in T must match the list of Y -attribute values of some τ2-node in T . Notice that

Chapter 4. XML Databases 96

we use two notions of equality to define keys: value equality is assumed when comparing

attributes, and node identity is used when comparing elements. We shall use the same

symbol ‘=’ for both, as it will never lead to ambiguity.

Example 4.3.1 Keys and foreign keys are defined in terms of XML attributes since

PCDATA elements can always be replaced by attributes. For example, the PCDATA elements

in the DTD shown in Figure 4.2 can be eliminated as follows:

<!DOCTYPE ut [

<!ELEMENT ut (student*, course*)>

<!ELEMENT student (taking*)>

<!ATTLIST student

sno CDATA #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT taking (EMPTY)>

<!ATTLIST taking

course_number CDATA #REQUIRED>

<!ELEMENT course (enrolled*)>

<!ATTLIST course

cno CDATA #REQUIRED

dept CDATA #REQUIRED

title CDATA #REQUIRED>

<!ELEMENT enrolled (EMPTY)>

<!ATTLIST enrolled

student_number CDATA #REQUIRED>

]>

Subscripts K and FK in AC∗,∗K ,FK denote keys and foreign keys, respectively, and the

superscript ‘∗’ denotes multi-attribute. Constraints of AC∗,∗K ,FK are generally referred

to as multi-attribute constraints as they may be defined with multiple attributes. An

AC∗,∗K ,FK constraint is said to be unary if it is defined in terms of a single attribute; that

is, |X| = |Y | = 1 in the above definition. In that case, we write τ.@l → τ for unary keys,

and τ1.@l1 ⊆FK τ2.@l2 for unary foreign keys.

Example 4.3.2 To illustrate keys and foreign keys of AC∗,∗K ,FK , consider the DTD shown

Chapter 4. XML Databases 97

in Example 4.3.1. Typical AC∗,∗K ,FK -constraints over this DTD include:

student .@sno → student ,

course.@cno → course,

enroll .@student number ⊆FK student .@sno.

The first two constraints are unary keys and the last constraint is a unary foreign key.

The first constraint says that student number (sno) is an identifier for students, the

second constraint says that course number (cno) is an identifier for courses, and the last

constraint says that every person enrolled in a course must be a student.

We observe that if courses in different departments can have the same course number,

then unary key course.@cno → course has to be replaced by a multi-attribute key:

course[@cno,@dept] → course.

2

4.3.2 Relative keys and foreign keys

Since XML documents are hierarchically structured, one may be interested in the en-

tire document as well as in its sub-documents. The latter give rise to relative integrity

constraints [BDF+02, BDF+03], that only hold on certain sub-documents. Below we de-

fine relative keys and foreign keys. We use RC to denote such constraints. We use the

notation x ≺ y when x and y are two nodes in an XML tree and y is a descendant of x.

A class of relative keys and foreign keys, denoted by RC∗,∗K ,FK , is defined as follows. An

RC∗,∗K ,FK -constraint ϕ over a DTD D = (E, A, P, R, r) has one of the following forms:

• Relative key : τ(τ1[X] → τ1), where τ, τ1 ∈ E and X is a nonempty set of attributes

in R(τ1). It says that relative to each node x of element type τ , the set of attributes

X is a key for all the τ1-nodes that are descendants of x. That is, an XML tree T

satisfies this constraint, denoted by T |= τ(τ1[X] → τ1), if T satisfies

∀x ∈ ext(τ) ∀y, z ∈ ext(τ1)
(
(x ≺ y) ∧ (x ≺ z) ∧ y[X] = z[X] → y = z

)
.

• Relative foreign key : τ(τ1[X] ⊆FK τ2[Y]), where τ, τ1, τ2 ∈ E, X and Y are

nonempty lists of attributes in R(τ1) and R(τ2), respectively, and |X| = |Y |. It

indicates that for each x in ext(τ), X is a foreign key of descendants of x of type

Chapter 4. XML Databases 98

capitalprovince

capital

@inProvince

province capital

capital

@inProvince

country

@name
"Holland". . .

@name
"Limburg"

"Limburg"
"Maastricht"

.

@name
"Limburg"

"Limburg"
"Hasselt"

@name
"Belgium". . .

country

. . .

db

Figure 4.5: An XML document storing information about countries and their adminis-

trative subdivisions.

τ1 that references a key Y of τ2-descendants of x. That is, T satisfies ϕ, denoted

by T |= τ(τ1[X] ⊆FK τ2[Y]), if T |= τ(τ2[Y] → τ2) and T satisfies

∀x ∈ ext(τ) ∀y ∈ ext(τ1)
(
(x ≺ y) → ∃z ∈ ext(τ2) ((x ≺ z) ∧ y[X] = z[Y])

)
.

Note that relative constraints are somewhat related to the notion of keys for weak entities

in relational databases (cf. [Ull88]). Also note that absolute constraints are a special

case of relative constraints when τ = r: i.e., r(τ [X] → τ) is the usual absolute key.

As in the case of absolute constraints, a relative constraint is said to be unary if it is

defined in terms of a single attribute; that is, |X| = |Y | = 1 in the above definition. In

that case, we write τ(τ1.@l → τ) for relative unary keys, and τ(τ1.@l1 ⊆FK τ2.@l2) for

relative unary foreign keys.

Example 4.3.3 Consider an XML document that for each country lists its administra-

tive subdivisions (e.g., into provinces or states), as well as capitals of provinces. A DTD

is given below and an XML document conforming to it (represented as a tree) is depicted

in Figure 4.5.

<!DOCTYPE db [

<!ELEMENT db (country+)>

<!ELEMENT country (province+, capital+)>

<!ATTLIST country

name CDATA #REQUIRED>

<!ELEMENT province (capital, city*)>

Chapter 4. XML Databases 99

<!ATTLIST province

name CDATA #REQUIRED>

<!ELEMENT capital (#PCDATA)>

<!ATTLIST capital

inProvince CDATA #REQUIRED>

<!ELEMENT city (#PCDATA)>

]>

Each country has a nonempty sequence of provinces and a nonempty sequence of province

capitals, and for each province we specify its capital and perhaps other cities. Each coun-

try and province has an attribute @name, and each capital has an attribute @inProvince.

Now suppose we want to define keys for countries and provinces. One can state that

country @name is a key for country elements. It is also tempting to say that @name is a

key for province, but this may not be the case. The example in Figure 4.5 clearly shows

that; which Limburg one is interested in probably depends on whether one’s interests are

in database theory, or in the history of the European Union. To overcome this problem,

we define @name to be a key for province relative to a country; indeed, it is extremely

unlikely that two provinces of the same country would have the same name. Thus, our

constraints are:

country .@name → country ,

country(province.@name → province),

country(capital .@inProvince ⊆FK province.@name).

The first constraint is like those we have encountered before: it is an absolute key, which

applies to the entire document. The rest are relative constraints which are specified for

sub-documents rooted at country elements. They assert that for each country, @name

is a key of all province descendants of the country element and @inProvince is a foreign

key referring to @name of province elements in the same sub-document. 2

4.3.3 Related Work

We end this section by presenting other proposal of keys and foreign keys (inclusion

dependencies) for XML. But before doing this, we need to introduce some terminology.

In all the proposals presented in this section, data dependencies for XML are defined

as constraints on the values reached by following either paths or regular expressions in

Chapter 4. XML Databases 100

XML trees. Recall that in Section 4.2.2 we define reach(v, w) as the set of nodes of an

XML tree T reached by following path w from node v. Here we extend this definition to

the case of regular expressions. We define a regular expression over a finite alphabet Σ

contained in El ∪ Att ∪ {S} as follows:

β ::= ε | a | β.β | β ∪ β | β∗,

where ε denotes the empty word, a ∈ Σ and ‘.’, ‘∪’ and ‘∗’ denote concatenation, union

and Kleene closure, respectively. Then, given nodes x,y of an XML tree T , we say

that y is reachable from x in T by following β if there is a string w in the regular

language defined by β such that y ∈ reach(x, w). The set of all such nodes is de-

noted by reach(x, β). For example, in the XML document shown in Figures 4.1 and 4.3,

reach(v0, ut .student .name.S) is the set of student names in the document, and

reach(v0, ut .(student ∪ taking ∪ course)∗.(course number .S ∪ @cno))

is the set of all course numbers mentioned in the document.

One of the first kinds of data dependencies for XML was introduced by Abiteboul

and Vianu [AV99]. They considered inclusion dependencies of the form β ⊆ γ, where

β and γ are regular expressions. An XML tree T rooted at x satisfies this constraint if

reach(x, β) ⊆ reach(x, γ). For example, in the university database shown in Figure 4.1,

the following constraint says that the set of courses taken by students is a subset of the

set of courses given by the university:

ut .student .taken.course number .S ⊆ ut .course.@cno.

An inclusion dependency β ⊆ γ where β are γ are paths, like in the previous example, is

called a path constraint [AV99]. Buneman et al. [BFW98] introduced a more expressive

path constraint language. Given an XML tree and paths p1, p2, p3 in T , in this language

a constraint is an expression of either the forward form

∀x∀y (x ∈ reach(root , p1) ∧ y ∈ reach(x, p2) → y ∈ reach(x, p3)),

where root represents the root of the tree, or the backward form

∀x∀y (x ∈ reach(root , p1) ∧ y ∈ reach(x, p2) → x ∈ reach(y, p3)).

This language can be used to express relative constraints. For example, assume that

the document shown in Figure 4.1 is extended to store information about students and

courses in many different universities. Then <ut> is replaced by <university>:

Chapter 4. XML Databases 101

<db>

<university> ... </university>

<university> ... </university>

<university> ... </university>

</db>

Assume that we want to express the following constraint: for each university, the set of

courses taken by its students is a subset of the set of courses given by that university. This

dependency can be expressed as follows on the language of Buneman et al. [BFW98]:

∀x∀y (x ∈ reach(root , db.university) ∧

y ∈ reach(x, student .taking .course number .S) → y ∈ reach(x, course.@cno)).

This constraint is relative to each university and, thus, it cannot be expressed by using

Abiteboul and Vianu’s path constraint language [AV99], which can only express con-

straints on the entire document (absolute constraints). By using Abiteboul and Vianu’s

approach, we can only say that if a student is taking a course, then this course is given

in some university:

db.university .student .taken.course number .S ⊆ db.university .course.@cno.

As we mention earlier, keys for XML were first considered by Fan and Siméon [FS00]. A

key constraint language more expressive than Fan and Siméon’s language was introduced

by Buneman et al. [BDF+01a, BDF+01b]. This language allows the definition of absolute

keys and relative keys. More precisely, an absolute key is an expression of the form

(β, {γ1, . . . , γn}), where β, γ1, ..., γn are regular expressions. If n = 1, then the key

is said to be unary. An XML tree T satisfies this key if for every pair of node x, y ∈

reach(root , β), if reach(x, γi) ∩ reach(y, γi) 6= ∅, for every i ∈ [1, n], then x and y are the

same node. For example, a unary key dependency can be used to express that name is

an identifier for students in the University of Toronto database: (ut .student , {name.S}).

But, if a nested structure is used in this database to distinguish first names from last

names:

<ut>

<student sno="st1">

<name>

<first> John </first>

Chapter 4. XML Databases 102

<last> Smith </last>

</name>

...

</student>

...

</ut>

then a non-unary key dependency is needed to characterize name as an identifier for

students: (ut .student , {name.first .S, name.last .S}).

Buneman et al. [BDF+01a, BDF+01b] defined a relative key as a pair of the form

(β1, (β2, {γ1, . . . , γn})), where β1 is a regular expression and (β2, {γ1, . . . , γn}) is an abso-

lute key. An XML tree satisfies this key if every node reached from the root by following

a path in β1 satisfies (β2, {γ1, . . . , γn}), that is, for every x ∈ reach(root , β1) and for every

y1, y2 ∈ reach(x, β2), if reach(y1, γi) ∩ reach(y2, γi) 6= ∅, for every i ∈ [1, n], then y1 and

y2 are the same node. For example, a relative key constraint can be used to express that

a student cannot take the same course twice:

(ut .student , (taking, {course number .S}).

This key dependency must be relative since two distinct students can take the same

course.

Chapter 5

Consistency of XML Databases

The schema of an XML database consists of a type definition (a DTD) and a set of data

dependencies. As opposed to relational databases, it has been shown previously that

such schemas can be inconsistent in the sense that there is no way of populating the

database and satisfying both the DTD and the set of data dependencies given by the

schema. Inconsistent XML databases are poorly designed and, thus, it is desirable to

have algorithms for checking consistency.

Since the goal of this dissertation is to find principles for good XML data design, and

algorithms to produce such designs, in this chapter we study the consistency problem

for XML databases. More specifically, we consider a variety of languages for XML keys

and foreign keys, including the languages introduced in the previous chapter, and study

the complexity of the consistency problem for these languages. Our main conclusion is

that in the presence of foreign key constraints, compile-time verification of consistency

is usually infeasible. We look at two types of constraints: absolute (that hold in the

entire document), and relative (that only hold in a part of the document). For absolute

constraints, we extend earlier decidability results to the case of primary multi-attribute

keys and unary foreign keys, and to the case of constraints involving regular expressions,

providing lower and upper bounds in both cases. For relative constraints, we show

that even for unary constraints, the consistency problem is undecidable. At the end of

the chapter, we use the results for both absolute and relative constraints to study the

complexity of the consistency problems for real-life DTDs and XML Schema [TBMM].

It is worth mentioning that the consistency problem for functional dependencies is

studied in Chapter 6.

103

Chapter 5. Consistency of XML Databases 104

5.1 Introduction

The schema of an XML database consists of a type definition (a DTD) and a set of data

dependencies. A legitimate question then is whether such a specification is consistent,

or meaningful: that is, whether there exists an XML document that both satisfies the

constraints and conforms to the DTD.

In the relational database setting, such a question would have a trivial answer: one can

write arbitrary (primary) key and foreign key specifications in SQL, without worrying

about consistency. However, DTDs (and other schema specifications for XML) are more

complex than relational schema and, consequently, DTDs may interact with keys and

foreign keys in a rather nontrivial way, as shown in the following examples.

Example 5.1.1 As a simple example, consider the DTD given below:

<!DOCTYPE db [

<!ELEMENT db (foo)>

<!ELEMENT foo (foo)>

]>

Observe that there exists no finite XML tree conforming to this DTD, and hence this

specification – that consists only of a DTD and no constraints – is inconsistent. 2

Example 5.1.2 To illustrate the interaction between XML DTDs and key/foreign key

constraints, consider a DTD D, which specifies a (nonempty) collection of teachers:

<!DOCTYPE teachers [

<!ELEMENT teachers (teacher+)>

<!ELEMENT teacher (teach, research)>

<!ATTLIST teacher

name CDATA #REQUIRED>

<!ELEMENT teach (subject, subject)>

<!ELEMENT research (#PCDATA)>

<!ELEMENT subject (#PCDATA)>

<!ATTLIST subject

taught_by CDATA #REQUIRED>

]>

Chapter 5. Consistency of XML Databases 105

. . .

. . .
teacher

teachers

teacher

research

“Web DB”

teach

subject

“Joe”

“Joe”

@name

“XML” @taught by

“Joe”

@taught by“DB”

subject

Figure 5.1: An XML tree for storing information about teachers.

It says that a teacher teaches two subjects and has an attribute @name and each subject

has an attribute @taught by. Consider a set Σ of key and foreign key constraints:

teacher .@name → teacher ,

subject .@taught by → subject ,

subject .@taught by ⊆FK teacher .@name.

Referring to an XML tree T , the first constraint asserts that two distinct teacher nodes

in T cannot have the same @name attribute value: the (string) value of @name attribute

uniquely identifies a teacher node. The second key states that the @taught by attribute

value uniquely identifies a subject node in T . The third constraint asserts that for every

subject node x, there is a teacher node y in T such that the @taught by attribute value of

x equals the @name attribute value of y. Since @name is a key of teacher, the @taught by

attribute of any subject node refers to a unique teacher node.

Obviously, there exists an XML tree conforming to D, as shown in Figure 5.1. How-

ever, there is no XML tree that both conforms to D and satisfies Σ. To see this, recall

that given an XML tree T and an element type τ , we use ext(τ) to denote the set of

all the nodes labeled τ in T . Furthermore, given an attribute @l of τ , assume that

values(τ.@l) denotes the set of @l attribute values of all τ elements. Then immediately

from Σ follows a set of dependencies:

|values(teacher .@name)| = |ext(teacher)|,

|values(subject .@taught by)| = |ext(subject)|,

|values(subject .@taught by)| ≤ |values(teacher .@name)|,

Chapter 5. Consistency of XML Databases 106

where | · | is the cardinality of a set. Therefore, we have

|ext(subject)| ≤ |ext(teacher)|. (5.1)

On the other hand, DTD D requires that each teacher must teach two subjects. Since

no sharing of nodes is allowed in XML trees and the collection of teacher elements is

nonempty, from D follows:

1 ≤ |ext(teacher)|, (5.2)

2 · |ext(teacher)| = |ext(subject)|. (5.3)

Thus |ext(teacher)| < |ext(subject)|. Obviously, (5.1), (5.2) and (5.3) contradict each

other and as an immediate result, there exists no XML document that both satisfies Σ

and conforms to D. In particular, the XML tree in Figure 5.1 violates key constraint

subject .@taught by → subject . 2

This example demonstrates that a DTD may impose dependencies on the cardinalities of

certain sets of objects in XML trees. These cardinality constraints interact with keys and

foreign keys. More specifically, keys and foreign keys also enforce cardinality constraints

that interact with those imposed by a DTD. This makes the consistency analysis of keys

and foreign keys for XML far more intriguing than its relational counterpart.

The constraints in this example are fairly simple: there is an immediate analogy

between such XML constraints and relational keys and foreign keys. There have been

a number of proposals for supporting more powerful keys and foreign keys for XML

(e.g., [BDF+02, TBMM]). Not surprisingly, the interaction between DTDs and those

complicated XML constraints is more involved.

In light of this we are interested in the following family of the consistency (or satisfi-

ability) problems, where C ranges over classes of integrity constraints:

PROBLEM : SAT(C).

INPUT : A DTD D, a set Σ of C-constraints.

QUESTION : Is there an XML document that conforms to D and satisfies Σ?

In other words, we want to validate XML specifications statically, at compile-time. The

main reason is twofold: first, complex interactions between DTDs and constraints are

Chapter 5. Consistency of XML Databases 107

likely to result in inconsistent specifications, and second, an alternative dynamic approach

to validation (simply check a document to see if it conforms to the DTD and satisfies the

constraints) would not tell us whether repeated failures are due to a bad specification,

or problems with the documents.

In this chapter we study the consistency problem for XML databases. More specif-

ically, we consider a variety of languages for XML keys and foreign keys, including the

languages introduced in the previous chapter, and study the complexity of the consis-

tency problem for these languages. Our main conclusion is that in the presence of foreign

key constraints, compile-time verification of consistency is usually infeasible. We look at

two types of constraints: absolute (that hold in the entire document), and relative (that

only hold in a part of the document). For absolute constraints, we extend earlier decid-

ability results to the case of primary multi-attribute keys and unary foreign keys, and

to the case of unary constraints involving regular expressions, providing lower and upper

bounds in both cases. For relative constraints, we show that even for unary constraints,

the consistency problem is undecidable. At the end of the chapter, we use the results

for both absolute and relative constraints to study the complexity of the consistency

problems for real-life DTDs and XML Schema [TBMM].

This chapter is organized as follows. In Section 5.2, we present the main results of

Fan and Libkin [FL02] on the complexity of the consistency problem for absolute keys

and foreign keys. In Section 5.3, we study the complexity of the consistency problem

for the class of absolute multi-attribute keys and unary foreign keys, and the class of

regular expression constraints which is an extension of absolute constraints with regular

expressions. In Section 5.4, we investigate the complexity of the consistency problem for

relative keys and foreign keys. In Section 5.5, we present two applications of the main

results of this chapter. First, in Section 5.5.1, we study the complexity of the consistency

problem for real-life DTDs. Then, in Section 5.5.2, we investigate the complexity of the

consistency problem for XML Schema. Finally, in Section 5.6 we identify some directions

for future research.

5.2 Known Results about the Consistency Problem

To the best of our knowledge, consistency of XML constraints in the presence of schema

specifications was only investigated by Fan and Libkin [FL01, FL02]. In this section,

we present their main results. More specifically, we point out the complexity of the

Chapter 5. Consistency of XML Databases 108

consistency problem for the class AC∗,∗K ,FK of keys and foreign keys introduced in Section

4.3, and we also point out the complexity of this problem for the following subclasses of

AC∗,∗K ,FK : the class ACK ,FK consisting of unary keys and foreign keys, the class ACPK ,FK

consisting of primary unary keys and foreign keys and the class AC∗K consisting only of

multi-attribute keys.

The following result shows that, in general, it is not possible to verify statically

whether an XML specification is consistent.

Theorem 5.2.1 (Fan and Libkin [FL02]) SAT(AC∗,∗K ,FK) is undecidable.

This theorem was proved in [FL02] by showing that the implication problem associated

with keys and foreign keys in relational databases is undecidable, and then reducing

(the complement of) the implication problem to the consistency problem for AC∗,∗K ,FK

constraints.

Given this negative result, it is desirable to find some restrictions on AC∗,∗K ,FK that lead

to decidable cases. One important subclass of AC∗,∗K ,FK is ACK ,FK . A cursory examination

of existing XML specifications reveals that most keys and foreign keys are single-attribute

constraints, i.e., unary. The exact complexity of SAT(ACK ,FK) was established in [FL02]

by showing that this problem is polynomially equivalent to linear integer programming

[Pap81]. Given that linear integer programming is known to be NP-complete [GJ79], the

following theorem is an immediate consequence of the polynomial equivalence of the two

problems.

Theorem 5.2.2 (Fan and Libkin [FL02]) SAT(ACK ,FK) is NP-complete.

We have to be careful when interpreting this result, and, in general, when interpreting the

complexity results presented in this dissertation. If we assume that PTIME 6= NP, then

from a theoretical point of view this result says that for every SAT(ACK ,FK)-algorithm,

there exists some XML specification (D,Σ) for which the algorithm is not going to be

able to verify whether (D,Σ) is consistent in a reasonable amount of time. But given

that XML specifications tend to be relatively small in practice, as opposed to XML

documents which can be very large, and given that today we can find SAT solvers like

BerkMin [GN02] and Chaff [MMZ+01, ZM02] that routinely solve NP problems with

thousands of variables, we can expect that in practice we are going to be able to verify

whether XML specifications are consistent. Thus, given that all the NP-completeness

results in this dissertation depend on the size of XML specifications, and not in the size

Chapter 5. Consistency of XML Databases 109

of XML documents, we can expect them to be solvable in practice. Even more, for the

case of PSPACE problems in this dissertation, we can also expect them to be solvable in

some practical cases since today we can find model checkers that routinely solve PSPACE

problems with hundreds of variables [VW94, DGV99, Hol03].

Since all the flavors of the consistency problem presented so far are intractable, we next

want to find suitable restrictions that admit polynomial-time algorithms. A restriction

found in many real-life examples is that of primary keys: for each element type, at most

one key is defined. Unfortunately, as shown in [FL02], this restriction does not admit a

polynomial-time algorithm.

Theorem 5.2.3 (Fan and Libkin [FL02]) SAT(ACPK ,FK) is NP-complete.

An interesting special case of low complexity involves keys only. It was shown in [FL02]

that given a DTD D and a set Σ of multi-attributes keys over D, there exists an XML

document conforming to D and satisfying Σ if and only if there exists an XML document

conforming to D. Thus, the consistency problem for multi-attribute keys can be reduced

to the consistency problem for DTDs, which in turn can be reduced in linear time to the

emptiness problem for context free grammars. Since the latter problem can be solved in

linear time (cf. [HU79]), the following theorem is obtained in [FL02].

Theorem 5.2.4 (Fan and Libkin [FL02]) SAT(AC∗K) is decidable in linear time.

5.3 Absolute Integrity Constraints

In the previous section, we present the main results of [FL02]: the consistency problem for

multi-attribute keys and foreign keys, SAT(AC∗,∗K ,FK), is undecidable while the consistency

problem for absolute unary keys and foreign keys, SAT(ACK ,FK), is NP-complete. These

results only revealed the tip of the iceberg, as many other flavors of XML constraints exist,

and are likely to be added to future standards for XML such as XML Schema [TBMM].

Our goals in this section is to study such constraints. In particular, in this section we

establish the decidability and lower bounds for SAT(AC∗,1PK ,FK) and SAT(ACreg
K ,FK), the

consistency problems for primary multi-attribute keys and unary foreign keys and for

regular unary keys and foreign keys. The class ACreg
K ,FK is an extension of ACK ,FK with

regular expressions, which will be defined shortly.

Chapter 5. Consistency of XML Databases 110

5.3.1 Consistency of Multi-attribute Keys

We know that SAT(ACK ,FK), the consistency problem for absolute unary keys and foreign

keys, is NP-complete [FL02]. In contrast, SAT(AC∗,∗K ,FK) is undecidable [FL02]. This

leaves a rather large gap: namely, SAT(AC∗,1K ,FK), where only keys are allowed to be

multi-attribute (note that since a key is part of a foreign key, the other restriction, to

AC1,∗
K ,FK , does not make sense).

The reason for the undecidability of SAT(AC∗,∗K ,FK) is that the implication problem for

functional and inclusion dependencies can be reduced to it [FL02]. However, this impli-

cation problem is known to be decidable – in fact, in cubic time – for single-attribute in-

clusion dependencies [CKV90], thus giving us hope to get decidability for multi-attribute

keys and unary foreign keys. While the decidability of the consistency problem for

AC∗,1K ,FK is still an open problem, we resolve a closely-related problem, SAT(AC∗,1PK ,FK).

That is, the consistency problem for primary multi-attribute keys and unary foreign keys.

Recall that a set Σ of AC∗,1K ,FK -constraints is said to be primary if for each element type τ ,

there is at most one key in Σ defined for τ -elements (including key dependencies defined

by foreign key constraints). We prove the decidability by showing that complexity-wise,

the problem is equivalent to a certain extension of integer linear programming studied in

[GMWK02]:

PROBLEM: PDE (Prequadratic Diophantine Equations)

INPUT: An integer n × m matrix A, a vector ~b ∈ Zn, and a set E ⊆

{1, . . . , m}3.

QUESTION: Is there a vector ~x ∈ Nm such that A~x ≤ ~b and xi ≤ xj · xk for all

(i, j, k) ∈ E.

Note that for E = ∅, this is exactly the integer linear programming problem [Pap81].

Thus, PDE can be thought of as integer linear programming extended with inequalities

of the form x ≤ y · z among variables. It is therefore NP-hard, and [GMWK02] proved

an NEXPTIME upper bound for PDE. The exact complexity of the problem remains

unknown.

Recall that two problems P1 and P2 are polynomially equivalent if there are PTIME

reductions from P1 to P2 and from P2 to P1. We now show the following (the proof of

the theorem is given in Appendix B.1).

Theorem 5.3.1 SAT(AC∗,1PK ,FK) and PDE are polynomially equivalent.

Chapter 5. Consistency of XML Databases 111

It is known that the linear integer programming problem is NP-hard [GJ79] and PDE is

in NEXPTIME [GMWK02]. Thus from Theorem 5.3.1 follows immediately:

Corollary 5.3.2 SAT(AC∗,1PK ,FK) is NP-hard, and can be solved in NEXPTIME.

Obviously we cannot obtain the exact complexity of SAT(AC∗,1PK ,FK) without resolving

the corresponding question for PDE, which appears to be quite hard [GMWK02]. The

result of Theorem 5.3.1 can be generalized to disjoint AC∗,1K ,FK -constraints: that is, a

set Σ of AC∗,1K ,FK -constraints in which for every element type τ and every two distinct

keys τ [X] → τ and τ [Y] → τ in Σ (including key dependencies defined by foreign key

constraints), X ∩ Y = ∅. The proof of Theorem 5.3.1 applies almost verbatim to show

the following.

Corollary 5.3.3 The restriction of SAT(AC∗,1K ,FK) to disjoint constraints is polynomially

equivalent to PDE and, thus, it is NP-hard and can be solved in NEXPTIME.

5.3.2 Consistency of Regular Expression Constraints

Specifications of AC∗,∗K ,FK -constraints are associated with element types. To capture the

hierarchical nature of XML data, constraints can also be defined on a collection of ele-

ments identified by a regular path expression. It is common to find path expressions in

query languages for XML (e.g., XQuery [BCF+], XSL [Cla]). We define a regular (path)

expression over a set of element types E as follows:

β ::= ε | τ | β.β | β ∪ β | β∗,

where ε denotes the empty word, τ is an element type in E and ‘.’, ‘∪’ and ‘∗’ denote

concatenation, union and Kleene closure, respectively. A regular expression defines a

language over the alphabet E, which will be denoted by β as well. Given a DTD D =

(E, A, P, R, r) and a regular expression β over E, we say that β is a regular (path)

expression over D if β is of the form r.β ′ where β ′ does not include r. In this section, we

use ‘ ’ as a shorthand for E − {r}.

Recall that any pair of nodes x, y in an XML tree T with y a descendant of x uniquely

determines the path, denoted by ρ(x, y), from x to y. Also, recall that in Section 4.3.3,

we say that y is reachable from x by following a regular expression β if and only if

ρ(x, y) ∈ β. In that section, we denote by reach(x, β) the set of all nodes reachable from

x by following β. For any fixed T , let nodes(β) stand for the set of nodes reachable from

Chapter 5. Consistency of XML Databases 112

the root by following the regular expression β: nodes(β) = reach(x, β), where x is the

root of T . Note that for any element type τ ∈ E − {r}, nodes(r. ∗.τ) = ext(τ).

We now define XML keys and foreign keys with regular expressions. Let DTD D =

(E, A, P, R, r).

• A key over D is an expression ϕ of the form β.τ.@l → β.τ , where τ ∈ E,@l ∈ R(τ),

and β is a regular expression over D. An XML tree T satisfies ϕ, denoted by T |= ϕ,

if for every x, y ∈ nodes(β.τ), x.@l = y.@l implies x = y.

• A foreign key over D is an expression ϕ of the form β1.τ1.@l1 ⊆FK β2.τ2.@l2, where

for i = 1, 2, τi ∈ E, @li ∈ R(τi), and βi is a regular expression over D. Here

T |= ϕ if T |= β2.τ2.@l2 → β2.τ2, and for every x ∈ nodes(β1.τ1) there exists

y ∈ nodes(β2.τ2) such that x.@l1 = y.@l2.

We use ACreg
K ,FK to denote the set of all unary constraints defined with regular expressions.

We do not consider multi-attribute constraints here, since they subsume AC∗,∗K ,FK (by using

r. ∗.τ for τ), and thus consistency is undecidable for them.

Example 5.3.4 Consider an XML document in Figure 5.2, which conforms to the fol-

lowing DTD for schools:

<!ELEMENT r (students, courses, faculty, labs)>

<!ELEMENT students (student+)>

<!ELEMENT courses (cs340, cs108, cs434)>

<!ELEMENT faculty (prof+)>

<!ELEMENT labs (dbLab, pcLab)>

<!ELEMENT student (record)> /* similarly for prof

<!ELEMENT cs434 (takenBy+)> /* similarly for cs340, cs108

<!ELEMENT dbLab (acc+)> /* similarly for pcLab

Here we omit the descriptions of elements whose type is string (PCDATA). Assume that

each record element has an attribute @id, each takenBy has an attribute @sid (for student

id), and each acc has an attribute @num. One may impose the following constraints over

the DTD of that document:

r. ∗.(student ∪ prof).record .@id → r. ∗.(student ∪ prof).record ,

r. ∗.cs434.takenBy .@sid ⊆FK r. ∗.student .record .@id ,

r. ∗.dbLab.acc.@num ⊆FK r. ∗.cs434.takenBy .@sid.

Chapter 5. Consistency of XML Databases 113

students

record

@id

. . .
studentstudent dbLab pcLab

acc acc

@num @num

labs

. . .

record

prof

faculty

prof
. . .

@id

cs108cs340 cs434
.

@sid @sid

. . .
takenBy takenBy

courses

r

Figure 5.2: An XML document for storing information about students and professors.

Recall that ‘ ’ is a wildcard that matches any label except for r and ‘ ∗’ is its Kleene

closure that matches any path. The first constraint says that @id is a key for all records

of students and professors. The other constraints specify foreign keys, which assert that

cs434 can only be taken by students, and only students who are taking cs434 can have

an account in the database lab. Recall that a foreign key also imposes a key constraint

on the target elements, e.g., the last foreign key above also says that @sid is a key for

students taking cs434.

Clearly, there is an XML tree satisfying both the DTD and the constraints. XML

specifications are rarely written at once. Now suppose a new requirement is discovered:

all faculty members must have a dbLab account. Consequently, one adds a new foreign

key:

r.faculty .prof .record .@id ⊆FK r. ∗.dbLab.acc.@num.

However, this addition makes the whole specification inconsistent. This is because pre-

vious constraints postulate that dbLab users are students taking cs434, and no professor

can be a student since @id is a key for both students and professors, while the new for-

eign key insists upon professors also being dbLab users and the DTD enforces at least

one professor to be present in the document. Thus no XML document both conforms to

the DTD and satisfies all the constraints. 2

For SAT(ACreg
K ,FK), we are able to establish both an upper and a lower bound. The

lower bound already indicates that the problem is perhaps infeasible in practice, even

for non-recursive no-star DTDs. Finding the precise complexity of the problem remains

open, and does not appear to be easy. In fact, even the current proof of the upper

bound is quite involved, and relies on combining the techniques from [FL02] for coding

Chapter 5. Consistency of XML Databases 114

Class AC∗,∗K ,FK [FL02] AC∗,1PK ,FK ACreg
K ,FK ACK ,FK [FL02] AC∗K [FL02]

multi-attribute

keys and for-

eign keys

primary multi-

attribute keys,

unary foreign keys

unary regular con-

straints (keys, for-

eign keys)

unary keys and

foreign keys

multi-

attributes

keys

Upper

bound
undecidable NEXPTIME 2-NEXPTIME NP linear time

Lower

bound
undecidable NP PSPACE NP linear time

Table 5.1: Complexity of the consistency problem for absolute constraints

DTDs and constraints with integer linear inequalities, and from [AV99] for reasoning

about constraints given by regular expressions by using the product automaton for all

the expressions involved in the constraints.

Theorem 5.3.5

a) SAT(ACreg
K ,FK) can be solved in 2-NEXPTIME.

b) SAT(ACreg
K ,FK) is PSPACE-hard, even for non-recursive no-star DTDs.

The proof of this theorem is given in Appendix B.2.

5.3.3 Summary

Table 5.1 shows a summary of the complexity results for the consistency problem for

absolute keys and foreign keys (we also included the main results from [FL02] in this

table).

5.4 Relative integrity constraints

Since XML documents are hierarchically structured, one may be interested in the entire

document as well as in its sub-documents. The latter gives rise to relative integrity

constraints [BDF+02, BDF+03], that only hold on certain sub-documents. In this section

we study the complexity of the consistency problem for such constraints.

Recall that RC∗,∗K ,FK is the class of relative keys and foreign keys (see Section 4.3.2).

Following the notations for AC, we use RCK ,FK to denote the class of all relative unary

Chapter 5. Consistency of XML Databases 115

keys and unary foreign keys; RCPK ,FK means the primary key restriction. For exam-

ple, the constraints given in Example 4.3.3 over the country/province/capital DTD are

instances of RCK ,FK .

Recall that SAT(ACK ,FK), the consistency problem for absolute unary constraints, is

NP-complete. Thus, one would be tempted to think that SAT(RCK ,FK), the consistency

problem for relative unary constraints, is decidable as well. We show, however, in Section

5.4.1, that this is not the case. As a consequence, we obtain that the consistency problem

is also undecidable for any extension of RCK ,FK , in particular, for extensions including

multi-attribute constraints or regular expression constraints. In Section 5.4.2, we show

that the consistency problem for relative multi-attribute keys, SAT(RC∗K), can be solved

in linear time.

5.4.1 Undecidability of consistency

We now show that there is an enormous difference between unary absolute constraints,

where SAT(ACK ,FK) is decidable in NP, and unary relative constraints. We consider the

consistency problem SAT(RCK ,FK). Clearly, the problem is r.e.; it turns out that one

cannot lower this bound.

Theorem 5.4.1 SAT(RCK ,FK) is undecidable.

The proof of this theorem is given in Appendix B.3. In this proof, all relative keys are

primary. Thus, we obtain:

Corollary 5.4.2 SAT(RCPK ,FK) is undecidable.

5.4.2 A linear time decidable case

Exactly as in the case of absolute keys, it can be shown that given a DTD D and a set Σ

of relative multi-attributes keys over D, there exists an XML document conforming to D

and satisfying Σ if and only if there exists an XML document conforming to D. Thus, the

consistency problem for relative multi-attribute keys can be reduced to the consistency

problem for DTDs, which in turn can be reduced in linear time to the emptiness problem

for context free grammars [FL02]. Since the latter problem can be solved in linear time

(cf. [HU79]), the following theorem is obtained.

Theorem 5.4.3 SAT(RC∗K) can be solved in linear time.

Chapter 5. Consistency of XML Databases 116

Class RC∗,∗K ,FK [FL02] RCK ,FK RCPK ,FK RC∗K

multi-attribute

keys and foreign

keys

unary keys and

foreign keys

primary unary

keys and foreign

keys

multi-attribute

keys

Upper bound undecidable undecidable undecidable linear time

Lower bound undecidable undecidable undecidable linear time

Table 5.2: Complexity of the consistency problem for relative constraints

5.4.3 Summary

Table 5.2 shows a summary of the complexity results for the consistency problem for

relative keys and foreign keys (we also included the main results from [FL02] in this

table).

5.5 Two Applications

In this section, we use the results of the previous sections to study the complexity of the

consistency problems for real-life DTDs and XML Schema [TBMM].

5.5.1 Consistency of Real-Life DTDs

Since users tend to use very simple regular expressions in DTDs [BNdB04, Cho02], it

is a natural question whether the consistency problem for real-life DTDs can be solved

efficiently. In Section 4.2.1, we define simple regular expressions, which corresponds to a

very common practice of writing regular expressions in DTDs [BNdB04], and then we de-

fine simple DTDs as those that only use simple regular expressions in their element rules.

In this section, we study the complexity of the consistency problem for simple DTDs.

More specifically, we show that compile-time verification of consistency is infeasible even

for this class of DTDs

We note that the lower bounds shown in the previous sections do not directly carry

over to the case of simple DTDs. However, a careful examination of the proofs of these

lower bounds gives us the desired results. First, a slight modification of Fan and Libkin’s

proof [FL02] of the undecidability of the consistency problem for absolute keys and foreign

keys shows that the same problem remains undecidable in the case of simple DTDs.

Chapter 5. Consistency of XML Databases 117

Class AC∗,∗K ,FK ACK ,FK RCK ,FK

absolute multi-attribute

keys and foreign keys

absolute unary keys

and foreign keys

relative unary keys and

foreign keys

Upper bound undecidable NP undecidable

Lower bound undecidable NP undecidable

Table 5.3: Complexity of the consistency problem for simple DTDs.

Corollary 5.5.1 The consistency problem for simple DTDs and AC∗,∗K ,FK -constraints is

undecidable.

Second, the same proof of Fan and Libkin of the NP-hardness of the consistency problem

for absolute unary keys and foreign keys shows that the same problem remains NP-hard

for the case of simple DTDs.

Corollary 5.5.2 The consistency problem for simple DTDs and ACK ,FK -constraints is

NP-complete.

Finally, a slight modification of the proof of Theorem 5.4.1 shows that the consistency

problem for simple DTDs and relative unary keys and foreign keys is also undecidable.

Corollary 5.5.3 The consistency problem for simple DTDs and RCK ,FK -constraints is

undecidable.

Table 5.3 shows a summary of the complexity results for the consistency problem for

simple DTDs.

5.5.2 Consistency of XML Schema Specifications

All the results shown so far are for DTDs and keys and foreign keys. These days, one of

the prime standards for specifying XML data is XML Schema [TBMM]. XML Schema

defines both a type system and a class of integrity constraints. It supports a variety of

atomic types (e.g., string, integer, float, double, byte), complex type constructs (e.g.,

sequence, choice) and inheritance mechanisms (e.g., extension, restriction).

The central problem investigated in this section is the consistency problem for XML

Schema. Our main conclusion is that the semantics of keys and foreign keys in XML

Schema makes the consistency analysis rather intricate and intractable. Indeed, all the

hardness and undecidability results of the previous sections carry over to specifications

Chapter 5. Consistency of XML Databases 118

of XML Schema. However, using a new technique, we show that the most important

tractable case under the standard key semantics, become intractable under the semantics

of XML Schema.

Given a DTD D and a set Σ of keys and foreign keys under the XML Schema se-

mantics, it is possible to use the narrowing technique employed in the proof of Theorem

5.3.5 to construct in polynomial time an XML Schema X such that, (D,Σ) is consistent

if and only if X is consistent. Thus, to establish lower bounds for the complexity of the

consistency problem for XML Schema, in this section we consider the following technical

problem: Given a DTD D and a set Σ of key and foreign keys under the XML Schema se-

mantics, is there an XML tree conforming to D and satisfying Σ? In the next subsection,

we present the syntax and semantics of keys and foreign keys in XML Schema. Then,

in the last subsection, we use the results of the previous sections –and a new technique–

to establish some lower bounds for the complexity of the consistency problem for XML

Schema.

Keys and Foreign Keys in XML Schema

Given a DTD D = (E, A, P, R, r), a key over D is a constraint of the form:

P [Q1, . . . , Qn] → P,

where n ≥ 1 and P , Q1, . . ., Qn are regular expressions over the alphabet E ∪ A ∪ {S}.

If n = 1, then the key is called unary. Expression P is called the selector of the key and

is a regular expression conforming to the following BNF grammar [TBMM]:

selector ::= path | path ∪ selector

path ::= root//sequence | sequence

sequence ::= τ | | sequence/sequence

Here is a wildcard that matches any element type, τ ∈ E and // represents the Kleene

closure of , that is, any possible finite sequence of node labels. The expressions Q1, . . .,

Qn are called the fields of the key and are regular expressions conforming to the following

BNF grammar [TBMM]:

field ::= path | path ∪ field

path ::= //sequence/last | /sequence/last

sequence ::= ε | τ | | sequence/sequence

last ::= S | @l

Chapter 5. Consistency of XML Databases 119

Here @l is an attribute in A. This grammar differs from the one above in restricting the

final step to match a text node or an attribute.

It should be mentioned that XML Schema expresses selectors and fields with restricted

fragments of XPath [CD], which are precisely the regular expressions defined above. In

XPath, ‘ ’ represents child and ‘//’ denotes descendant1.

A foreign key over a DTD D is an expression of the form:

P [Q1, . . . , Qn] ⊆FK U [S1, . . . , Sn],

where P and U are the selectors of the foreign key, n ≥ 1 and Q1, . . ., Qn, S1, . . ., Sn

are its fields. If n = 1, then the foreign key is called unary.

To define the semantics of keys and foreign keys in XML Schema, we need to introduce

some terminology. In what follows we assume familiarity with the notation introduce in

Section 5.3.2. Given an XML tree T conforming to a DTD D and a sequence of regular

expressions P , Q1, . . ., Qn over D such that P conforms to the BNF grammar for selectors

and each Qi (i ∈ [1, n]) conforms to the BNF grammar for fields and is of the form either

Q′i/S or Q′i/@l, define the qualified node set of P , Q1, . . ., Qn in T [TBMM], denoted by

qns(P,Q1, . . . , Qn), as the set of nodes x ∈ nodes(P) in T such that for every i ∈ [1, n],

there is exactly one node yi such that yi ∈ reach(x,Q′i) in T .

Now we are ready to define the semantics of keys and foreign keys in XML

Schema. An XML tree T satisfies key dependency P [Q1, . . . , Qn] → P , denoted by

T |= P [Q1, . . . , Qn] → P , if

1) nodes(P) = qns(P,Q1, . . . , Qn) in T .

2) For each x1, x2 ∈ nodes(P) in T , if reach(x1, Qi) = reach(x2, Qi) in T , for every

i ∈ [1, n], then x1 = x2.

That is, the values of Q1, . . ., Qn uniquely identify the nodes reachable from the root by

following path P . It further asserts that starting from each one of these nodes there is a

single path conforming to the regular expression Qi (i ∈ [1, n]).

An XML tree T satisfies a foreign key P [Q1, . . . , Qn] ⊆FK U [S1, . . . , Sn], denoted by

T |= P [Q1, . . . , Qn] ⊆FK U [S1, . . . , Sn], if T |= U [S1, . . . , Sn] → U and

1) For each x ∈ qns(P,Q1, . . . , Qn) in T , there exists a node y ∈ nodes(U) in T such

that reach(x,Qi) = reach(y, Si), for every i ∈ [1, n].

1XPath [CD] uses ‘*’ to denote wildcard. Here we use ‘ ’ instead to avoid overloading the symbol ‘*’
with the Kleene star found in DTDs.

Chapter 5. Consistency of XML Databases 120

The foreign key asserts that [S1, . . . , Sn] is a key for the nodes reachable by following

path U and that for every node x reachable from the root by following path P such that

x ∈ qns(P,Q1, . . . , Qn), there is a node y reachable from the root by following path U

such that the Q1, . . ., Qn-values of x are equal to the S1, . . ., Sn-values of y.

Checking Consistency of XML Schema Specifications

Now we are ready to show that the consistency check of XML Schema specifications is

infeasible, even for specification containing only keys, the most important tractable case

under the standard key semantics.

Observe that the definition of the semantics of keys and foreign keys in XML Schema

requires the uniqueness and existence of the fields involved. Uniqueness conditions are

required by the XML Schema semantics, but they are not present in various earlier

proposals for XML keys coming from the database community [FS00, FL01, BDF+02,

BDF+03]. Since these new conditions are trivially satisfied by the key and foreign key

languages considered in Sections 5.2 and 5.3, we can use the results from these sections

to prove lower bounds for the consistency problem for XML Schema. In particular, from

Theorem 5.2.1 we obtain the undecidability of this problem.

Corollary 5.5.4 The consistency problem for XML schema is undecidable.

Furthermore, from Theorem 5.3.5 we obtain the intractability of the consistency problem

for unary constraints.

Corollary 5.5.5 The consistency problem for XML schema specifications containing

only unary constraints is PSPACE-hard.

Finally, using a new technique we show the intractability of the consistency problem for

XML Schema specifications containing only keys.

Example 5.5.6 From Section 5.2, recall that given any DTD D and any set Σ of keys

in AC∗K over D, there exists an XML tree conforming to D and satisfying Σ if and only

if there exists an XML tree conforming to D. Thus, any XML specification (D,Σ) where

D is non-recursive and Σ is a set of keys in AC∗K is consistent. We show here that a

specification in XML Schema may not be consistent even for non-recursive DTDs in the

absence of foreign keys.

Consider the following specification S = (D,Σ) for biomedical data, where D is the

following DTD:

Chapter 5. Consistency of XML Databases 121

gene

DNA DNA

clone clone

DNA geneDNA

. . .

seq

Figure 5.3: An XML document conforming to the DTD D shown in Example 5.5.6.

<!DOCTYPE seq [

<!ELEMENT seq (clone+)>

<!ELEMENT clone (DNA, gene)>

<!ELEMENT gene (DNA)>

<!ELEMENT DNA (#PCDATA)>

]>

and Σ contains only one key:

seq .clone. ∗.DNA.S → seq .clone.

The DTD describes a nonempty sequence of clone elements: each clone has a DNA

subelement and a gene subelement, and gene in turn has a DNA subelement, while DNA

carries text data (PCDATA). The key in Σ attempts to enforce the following semantic

information: there exist no two clone elements that have the same DNA no matter

where the DNA appears as their descendant. We note that the syntax of XML Schema

constraints is different from the syntax for XML constraints presented so far in that it

allows a regular expression (∗.DNA.S in our example) to be the identifier of an element

type.

This specification is inconsistent. XML Schema requires that for any XML document

satisfying a key, the identifier (that is, ∗.DNA.S in our example) must exist and be

unique. However, as depicted in Figure 5.3, in any XML document that conforms to

the DTD D, a clone element must have two DNA descendants. Thus, it violates the

uniqueness requirement of the key in Σ. 2

Fan and Libkin [FL02] showed that SAT(AC∗K), the consistency problem for absolute

keys, is decidable in linear time. In Section 5.3.2, we introduce absolute unary keys and

foreign keys with regular expressions. It is easy to extend this language to the case of

Chapter 5. Consistency of XML Databases 122

Class multi-attribute

constraints

unary constraints unary keys

Lower bound undecidable PSPACE NP

Table 5.4: Lower bounds for the complexity of the consistency problem for XML Schema.

multi-attribute constraints, and then it is easy to see that the same proof of Fan and

Libkin can be used to show that the consistency problem for absolute keys involving

regular expressions is also solvable in linear time. Even more, in Section 5.4.2 we use

the same proof to show that SAT(RC∗K), the consistency problem for relative keys, is

decidable in linear time. With all this evidence, one would be tempted to think that the

consistency problem for keys under the XML Schema semantics can be solved efficiently.

Somewhat surprisingly, this is not the case; the uniqueness and existence condition makes

the problem intractable, even for unary keys.

Theorem 5.5.7 The consistency problem for XML Schema specifications containing

only unary keys is NP-hard.

This result shows that the interaction of types and constraints under the XML Schema

semantics is so intricate that the consistency check of XML Schema specifications is

infeasible.

Table 5.4 shows a summary of the lower bounds for the consistency problem for XML

Schema specifications.

5.6 Conclusions

We studied the problem of statically checking XML specifications, which may include

various schema definitions as well as integrity constraints. As observed earlier, such

static validation is quite desirable as an alternative to dynamic checking, which would

attempt to validate each document; indeed, in the case of repeated failures, one does

not know whether the problems lies in the documents or in the specification. Our main

conclusion is that, however desirable, the static checking is hard: even with very simple

document definitions given by DTDs, and (foreign) keys as constraints, the complexity

ranges from NP-hard to undecidable.

Although most of the results of the chapter are negative, the techniques developed

in the chapter help study consistency of individual XML specification with type and

Chapter 5. Consistency of XML Databases 123

constraints. These techniques include, e.g., the connection between regular expression

constraints and integer linear programming and automata.

One open problem is to close the complexity gaps. However, these are by no means

trivial: for example, SAT(AC∗,1PK ,FK) was proved to be equivalent to a problem related

to Diophantine equations whose exact complexity remains unknown. In the case of

SAT(ACreg
K ,FK), we think that it is more likely that our lower bound corresponds to the

exact complexity of this problem. However, the algorithm is quite involved, and we do

not yet see a way to simplify it to prove the matching upper bound.

Chapter 6

Functional Dependencies for XML

Up to this point, we have given a set of information-theoretic tools for testing when a

condition on a relational database design, specified by a normal form, corresponds to a

good design, we have used this measure to provide information-theoretic justification for

familiar relational normal forms such as BCNF and 4NF, we have introduced a formal

model for XML databases and we have investigated the consistency problem for XML

schemas given by DTDs together with keys and foreign keys. Since the goal of this

dissertation is to find principles for good XML data design, it is time to start studying the

elements that we need to introduce a normal form for XML documents. More specifically,

it is time to introduce functional dependencies (FDs) for XML documents, which are the

basic component of the XML normal form proposed in this dissertation.

In this chapter, we introduce FDs for XML by considering a relational representation

of documents and defining FDs on them. The relational representation is somewhat

similar to the total unnesting of a nested relation (see Section 2.2); however, we have to

deal with DTDs that may contain arbitrary regular expressions, and be recursive. Our

representation via tree tuples may contain null values and, thus, XML FDs are introduced

via FDs on incomplete relations [AM84, IJ84, LL98]. In this chapter, we also investigate

the consistency and implication problems for XML functional dependencies.

6.1 Tree Tuples

To extend the notions of functional dependencies to the XML setting, we represent XML

trees as sets of tuples. While various mappings from XML to the relational model have

been proposed [FK99, STZ+99], the mapping that we use is of a different nature, as our

124

Chapter 6. Functional Dependencies for XML 125

goal is not to find a way of storing documents efficiently, but rather find a correspondence

between documents and relations that lends itself to a natural definition of functional

dependency.

Various languages proposed for expressing XML integrity constraints such as keys,

[BDF+01a, BDF+01b, TBMM], treat XML trees as unordered (for the purpose of defining

the semantics of constraints): that is, the order of children of any given node is irrelevant

as far as satisfaction of constraints is concerned. In XML trees, on the other hand,

children of each node are ordered. Since the notion of functional dependency we propose

also does not use the ordering in the tree, we first define a notion of subsumption that

disregard this ordering.

Given two XML trees T1 = (V1, lab1, ele1, att1, root1) and T2 = (V2, lab2, ele2, att2,

root2), we say that T1 is subsumed by T2, written as T1 � T2 if

• V1 ⊆ V2.

• root1 = root2.

• lab2�V1

= lab1.

• att2�V1×Att
= att1.

• For all v ∈ V1, ele1(v) is a sublist of a permutation of ele2(v).

This relation is a pre-order, which gives rise to an equivalence relation: T1 ≡ T2 iff

T1 � T2 and T2 � T1. That is, T1 ≡ T2 iff T1 and T2 are equal as unordered trees. We

define [T] to be the ≡-equivalence class of T . We write [T] |= D if T1 |= D for some

T1 ∈ [T]. It is easy to see that for any T1 ≡ T2, paths(T1) = paths(T2). We shall also

write T1 ≺ T2 when T1 � T2 and T2 6� T1.

In Chapter 4 we gave the standard definition of a tree conforming to a DTD (T |= D).

Here we also need a weaker version of T being compatible with D (T �D).

Definition 6.1.1 Given a DTD D and an XML tree T , we say that T is compatible

with D (written T �D) iff paths(T) ⊆ paths(D).

Clearly, T |= D implies T is compatible with D. Furthermore, for any T1 ≡ T2, we have

that T1 �D iff T2 �D.

In the following definition we extend the notion of tuple for relational databases to

the case of XML. In a relational database, a tuple is a function that assigns to each

Chapter 6. Functional Dependencies for XML 126

attribute a value from the corresponding domain. In our setting, a tree tuple t in a DTD

D is a function that assigns to each path in D a value in Vert ∪ Str ∪ {⊥} in such a way

that t represents a finite tree with paths from D containing at most one occurrence of

each path. In this section, we show that an XML tree can be represented as a set of tree

tuples.

Definition 6.1.2 (Tree tuples) Given a DTD D = (E, A, P, R, r), a tree tuple t in

D is a function from paths(D) to Vert ∪ Str ∪ {⊥} such that:

• For p∈EPaths(D), t(p)∈Vert ∪ {⊥}, and t(r) 6=⊥.

• For p ∈ paths(D) − EPaths(D), t(p) ∈ Str ∪ {⊥}.

• If t(p1) = t(p2) and t(p1) ∈ Vert, then p1 = p2.

• If t(p1)=⊥ and p1 is a prefix of p2, then t(p2)=⊥.

• {p ∈ paths(D) | t(p) 6= ⊥} is finite.

T (D) is defined to be the set of all tree tuples in D. For a tree tuple t and a path p, we

write t.p for t(p).

Example 6.1.3 Suppose that D is the DTD shown in Example 7.1.1 from Chapter 7.

Then a tree tuple in D assigns values to each path in paths(D):

t(courses) = v0

t(courses.course) = v1

t(courses.course.@cno) = csc200

t(courses.course.title) = v2

t(courses.course.title.S) = Automata Theory

t(courses.course.taken by) = v3

t(courses.course.taken by .student) = v4

t(courses.course.taken by .student .@sno) = st1

t(courses.course.taken by .student .name) = v5

t(courses.course.taken by .student .name.S) = Deere

t(courses.course.taken by .student .grade) = v6

t(courses.course.taken by .student .grade.S) = A+

2

Chapter 6. Functional Dependencies for XML 127

We intend to consider tree tuples in XML trees conforming to a DTD. The ability to map

a path to null (⊥) allows one in principle to consider tuples with paths that do not reach

the leaves of a given tree, although our intention is to consider only paths that do reach

the leaves. However, nulls are still needed in tree tuples because of the disjunction in

DTDs. For example, let D = (E, A, P, R, r), where E = {r, a, b}, A = ∅, P (r) = (a|b),

P (a) = ε and P (b) = ε. Then paths(D) = {r, r.a, r.b} but no tree tuple coming from an

XML tree conforming to D can assign non-null values to both r.a and r.b.

If D is a recursive DTD, then paths(D) is infinite; however, only a finite number of

values in a tree tuple are different from ⊥. For each tree tuple t, its non-null values give

rise to an XML tree as follows.

Definition 6.1.4 (treeD) Given a DTD D = (E, A, P, R, r) and a tree tuple t ∈ T (D),

treeD(t) is defined to be an XML tree (V, lab, ele, att, root), where root = t.r and

• V = {v ∈ Vert | ∃p ∈ paths(D) such that v = t.p}.

• If v = t.p and v ∈ V , then lab(v) = last(p).

• If v = t.p and v ∈ V , then ele(v) is defined to be the list containing {t.p′ | t.p′ 6=

⊥ and p′ = p.τ, τ ∈ E, or p′ = p.S}, ordered lexicographically.

• If v = t.p, @l ∈ A and t.p.@l 6= ⊥, then att(v, @l) = t.p.@l.

We note that in this definition the lexicographic order is arbitrary, and it is chosen simply

because an XML tree must be ordered.

Example 6.1.5 Let D be the DTD from Example 7.1.1 and t the tree tuple from Ex-

ample 6.1.3. Then, t gives rise to the following XML tree:

v0

v3csc200

v4Automata Theory

v5 v6st1

Deere A+

v2

v1

2

Chapter 6. Functional Dependencies for XML 128

Notice that the tree in the example conforms to the DTD from Example 7.1.1. In general,

this need not be the case. For instance, if the rule <!ELEMENT taken_by (student*)>

in the DTD shown in Example 7.1.1 is changed by a rule saying that every course must

have at least two students <!ELEMENT taken_by (student, student+)>, then the tree

shown in Example 6.1.5 does not conform to the DTD. However, treeD(t) would always

be compatible with D, as easily follows from the definition:

Proposition 6.1.6 If t ∈ T (D), then treeD(t) �D.

We would like to describe XML trees in terms of the tuples they contain. For this,

we need to select tuples containing the maximal amount of information. This is

done via the usual notion of ordering on tuples (and relations) with nulls, [BJO91,

Gra91, Gun92]. If we have two tree tuples t1, t2, we write t1 v t2 if whenever t1.p

is defined, then so is t2.p, and t1.p 6= ⊥ implies t1.p = t2.p. As usual, t1 < t2

means t1 v t2 and t1 6= t2. Given two sets of tree tuples, X and Y , we write

X v[Y if ∀t1 ∈ X∃t2 ∈ Y t1 v t2.

Definition 6.1.7 (tuplesD) Given a DTD D and an XML tree T such that T � D,

tuplesD(T) is defined to be the set of maximal, with respect to v, tree tuples t such that

treeD(t) is subsumed by T ; that is:

maxv{t ∈ T (D) | treeD(t) � T}.

Observe that T1 ≡ T2 implies tuplesD(T1) = tuplesD(T2). Hence, tuplesD applies to

equivalence classes: tuplesD([T]) = tuplesD(T). The following proposition lists some

simple properties of tuplesD(·).

Proposition 6.1.8 If T �D, then tuplesD(T) is a finite subset of T (D). Furthermore,

tuplesD(·) is monotone: T1 � T2 implies tuplesD(T1) v
[tuplesD(T2).

Proof: We prove only monotonicity. Suppose that T1 � T2 and t1 ∈ tuplesD(T1). We

have to prove that there exists t2 ∈ tuplesD(T2) such that t1 v t2. If t1 ∈ tuplesD(T2), this

is obvious, so assume that t1 6∈ tuplesD(T2). Given that t1 ∈ tuplesD(T1), treeD(t1) � T1,

and, therefore, treeD(t1) � T2. Hence, by definition of tuplesD(·), there exists t2 ∈

tuplesD(T2) such that t1 < t2, since t1 6∈ tuplesD(T2). 2

Chapter 6. Functional Dependencies for XML 129

Example 6.1.9 In Example 7.1.1 we saw a DTD D and a tree T conforming to D. In

Example 6.1.3 we saw one tree tuple t for that tree, with identifiers assigned to some of

the element nodes of T . If we assign identifiers to the rest of the nodes, we can compute

the set tuplesD(T) (the attributes are sorted as in Example 6.1.3):

{ (v0, v1, csc200, v2, Automata Theory, v3, v4, st1, v5, Deere, v6, A+),

(v0, v1, csc200, v2, Automata Theory, v3, v7, st2, v8, Smith, v9, B-),

(v0, v10, mat100, v11, Calculus I, v12, v13, st1, v14, Deere, v15, A),

(v0, v10, mat100, v11, Calculus I, v12, v16, st3, v17, Smith, v18, B+) }

2

The following example shows that there is a direct correspondence between tuples in

relational databases and tree tuples in XML documents.

Example 6.1.10 Assume that we are given a relation schema S(A,B) and a simple DTD

D = (E,A, P,R, r), where E = {r, s}, A = {@a,@b}, P (r) = s∗, P (s) = ε, R(r) = ∅ and

R(s) = {@a,@b}. We can use XML trees conforming to D to code instances of S. For

example, the following instance I:

A B

1 2

3 4

can be coded as an XML tree T = (V, lab, ele, att, root) conforming to D:

v2v1

v0

1 3 42

where lab(v0) = r, lab(v1) = lab(v2) = S, att(v1,@a) = 1, att(v1,@b) = 2, att(v2,@a) = 3

and att(v2,@b) = 4.

The set of paths in D is {r, r.s, r.s.@a, r.s.@b} and the set of tree tuples in T is:

r r.s r.s.@a r.s.@b

v0 v1 1 2

v0 v2 3 4

Chapter 6. Functional Dependencies for XML 130

Thus, there exists a one-to-one correspondence between the tuples in I and the tree

tuples in T . 2

Finally, we define the trees represented by a set of tuples X as the minimal, with respect

to �, trees containing all tuples in X.

Definition 6.1.11 (treesD) Given a DTD D and a set of tree tuples X ⊆ T (D),

treesD(X) is defined to be:

min�{T | T �D and ∀t ∈ X, treeD(t) � T}.

Notice that if T ∈ treesD(X) and T ′ ≡ T , then T ′ is in treesD(X). The following shows

that every XML document can be represented as a set of tree tuples, if we consider it

as an unordered tree. That is, a tree T can be reconstructed from tuplesD(T), up to

equivalence ≡.

Theorem 6.1.12 Given a DTD D and an XML tree T , if T � D, then

treesD(tuplesD([T])) = [T].

Proof: Every XML tree is finite, and, therefore, tuplesD([T]) = {t1, . . . , tn}, for some

n. Suppose that T 6∈ treesD({t1, . . . , tn}). Given that treeD(ti) � T , for each i ∈ [1, n],

there is an XML tree T ′ such that T ′ � T and treeD(ti) � T ′, for each i ∈ [1, n]. If

T ′ ≺ T , there is at least one node, string or attribute value contained in T which is not

contained in T ′. This value must be contained in some tree tuple tj (j ∈ [1, n]), which

contradicts treeD(tj) � T ′. Therefore, T ∈ treesD(tuplesD([T])).

Let T ′ ∈ treesD(tuplesD([T])). For each i ∈ [1, n], treeD(ti) � T ′. Thus, given that

tuplesD(T) = {t1, . . . , tn}, we conclude that T � T ′, and, therefore, by definition of

treesD, T ′ ≡ T . 2

Example 6.1.13 It could be the case that for some set of tree tuples X there is no an

XML tree T such that for every t ∈ X, tree(t) � T . For example, let D be a DTD

D = (E, A, P, R, r), where E = {r, a, b}, A = ∅, P (r) = (a|b), P (a) = ε and P (b) = ε.

Let t1, t2 ∈ T (D) be defined as

t1.r = v0 t2.r = v2

t1.r.a = v1 t2.r.a = ⊥

t1.r.b = ⊥ t2.r.b = v3

Chapter 6. Functional Dependencies for XML 131

Since t1.r 6= t2.r, there is no an XML tree T such that treeD(t1) � T and treeD(t2) � T .

2

We say that X ⊆ T (D) is D-compatible if there is an XML tree T such that T �D and

X ⊆ tuplesD(T). For a D-compatible set of tree tuples X there is always an XML tree

T such that for every t ∈ X, treeD(t) � T . Moreover,

Proposition 6.1.14 If X ⊆ T (D) is D-compatible, then (a) There is an XML tree T

such that T �D and treesD(X) = [T], and (b) X v[tuplesD(treesD(X)).

Proof: (a) Assume that D = (E, A, P, R, r). Since X is D-compatible, there exists

an XML tree T ′ = (V ′, lab′, ele′, att′, root′) such that T ′ �D and X ⊆ tuplesD(T ′). We

use T ′ to define an XML tree T = (V, lab, ele, att, root) such that treesD(X) = [T].

For each v ∈ V ′, if there is t ∈ X and p ∈ paths(D) such that t.p = v, then v

is included in V . Furthermore, for each v ∈ V , lab(v) is defined as lab′(v), ele(v) =

[s1, . . . , sn], where each si = t′.p.S or si = t′.p.τ for some t′ ∈ X and τ ∈ E such that

t′.p = v. For each @l ∈ A such that t′.p.@l 6= ⊥ and t′.p = v for some t′ ∈ X, att(v,@l)

is defined as t′.p.@l. Finally, root is defined as root′. It is easy to see that treesD(X) =

[T].

(b) Let t ∈ X and T be an XML tree such that treesD(X) = [T]. If t ∈ tuplesD([T]),

then the property holds trivially. Suppose that t 6∈ tuplesD([T]). Then, given that

treeD(t) � T , there is t′ ∈ tuplesD([T]) such that t < t′. In either case, we conclude that

there is t′ ∈ tuplesD(treesD(X)) such that t v t′. 2

The example below shows that it could be the case that tuplesD(treesD(X)) properly

dominates X, that is, X v[tuplesD(treesD(X)) and tuplesD(treesD(X)) 6v[X. In

particular, this example shows that the inverse of Theorem 6.1.12 does not hold, that is,

tuplesD(treesD(X)) is not necessarily equal to X for every set of tree tuples X, even if

this set is D-compatible. Let D be as in Example 6.1.13 and t1, t2 ∈ T (D) be defined as

t1.r = v0 t2.r = v0

t1.r.a = v1 t2.r.a = ⊥

t1.r.b = ⊥ t2.r.b = v2

Let t3 be a tree tuple defined as t3.r = v0, t3.r.a = v1 and t3.r.b = v2. Then,

tuplesD(treesD({t1, t2})) = {t3} since t1 < t3 and t2 < t3, and, therefore, {t1, t2} v[

tuplesD(treesD({t1, t2})) and tuplesD(treesD({t1, t2})) 6v
[{t1, t2}.

Chapter 6. Functional Dependencies for XML 132

From Theorem 6.1.12 and Proposition 6.1.14, it is straightforward to prove the fol-

lowing Corollary.

Corollary 6.1.15 For a D-compatible set of tree tuples X, treesD(tuplesD(treesD(X)))

= treesD(X).

Theorem 6.1.12 and Proposition 6.1.14 are summarized in the diagram presented in the

following figure. In this diagram, X is a D-compatible set of tree tuples. The arrow

⊂ - stands for the v[ordering.

X
treesD - [T]

X ′

tuplesD
?

treesD
6

⊂

-

6.2 Functional Dependencies

We define functional dependencies for XML by using tree tuples. For a DTD D, a

functional dependency (FD) over D is an expression of the form S1 → S2 where S1, S2

are finite non-empty subsets of paths(D). The set of all FDs over D is denoted by FD(D).

For S ⊆ paths(D), and t, t′ ∈ T (D), t.S = t′.S means t.p = t′.p for all p ∈ S.

Furthermore, t.S 6= ⊥ means t.p 6= ⊥ for all p ∈ S. If S1 → S2 ∈ FD(D) and T is an

XML tree such that T � D and S1 ∪ S2 ⊆ paths(T), we say that T satisfies S1 → S2

(written T |= S1 → S2) if for every t1, t2 ∈ tuplesD(T), t1.S1 = t2.S1 and t1.S1 6= ⊥ imply

t1.S2 = t2.S2. We observe that if tree tuples t1, t2 satisfy an FD S1 → S2, then for every

path p ∈ S2, t1.p and t2.p are either both null or both non-null. Moreover, if for every

pair of tree tuples t1, t2 in an XML tree T , t1.S1 = t2.S1 implies they have a null value

on some p ∈ S1, then the FD is trivially satisfied by T .

The previous definition extends to equivalence classes, since for any FD ϕ, and T ≡ T ′,

T |= ϕ iff T ′ |= ϕ. We write T |= Σ, for Σ ⊆ FD(D), if T |= ϕ for each ϕ ∈ Σ, and we

write T |= (D,Σ), if T |= D and T |= Σ.

Example 6.2.1 Referring back to Example 7.1.1, we have the following FDs. cno is a

key of course:

courses.course.@cno → courses.course.

Chapter 6. Functional Dependencies for XML 133

Another FD says that two distinct student subelements of the same course cannot have

the same sno:

{courses.course, courses.course.taken by .student .@sno} →

courses.course.taken by .student .

Finally, to say that two student elements with the same sno value must have the same

name, we use

courses.course.taken by .student .@sno → courses.course.taken by .student .name.S.

2

We offer a few remarks on our definition of FDs. First, using the tree tuples repre-

sentation, it is easy to combine node and value equality: the former corresponds to

equality between vertices and the latter to equality between strings. Moreover, keys nat-

urally appear as a subclass of FDs, and relative constraints can also be encoded. Note

that by defining the semantics of FD(D) on T (D), we essentially define satisfaction of

FDs on relations with null values, and our semantics is the standard semantics used in

[AM84, LL98].

Given a DTD D and a set Σ∪{ϕ} of FDs over D, we say that ϕ is implied by (D,Σ),

denoted by (D,Σ) ` ϕ, if for every XML tree T conforming to D and satisfying Σ, it is

the case that T |= ϕ. The set of all FDs implied by (D,Σ) will be denoted by (D,Σ)+.

Furthermore, an FD ϕ is trivial if (D, ∅) ` ϕ. In relational databases, the only trivial

FDs are X → Y , with Y ⊆ X. Here, DTD forces some more interesting trivial FDs. For

instance, for each p ∈ EPaths(D) and p′ a prefix of p, (D, ∅) ` p → p′, and for every p,

p.@l ∈ paths(D), (D, ∅) ` p→ p.@l. As a matter of fact, trivial functional dependencies

in XML documents can be much more complicated than in the relational case, as we

show in the following example.

Example 6.2.2 Let D = (E, A, P, R, r) be a DTD. Assume that a, b and c are element

types in D and P (r) = (a|b|c). Then, for every p ∈ paths(D), {r.a, r.b} → p is a trivial

FD since for every XML tree T conforming to D and every tree tuple t in T , t.r.a = ⊥

or t.r.b = ⊥. 2

Chapter 6. Functional Dependencies for XML 134

6.3 The Implication Problem for XML Functional

Dependencies

In the next Chapter, we introduce a normal form for XML specifications given by DTDs

and functional dependencies. As in the case of relational databases, testing whether

an XML specification is in this normal form involves testing some conditions on the

functional dependencies implied by the constraints in the specification. In this section,

we study the implication problem for XML functional dependencies.

Although XML FDs and relational FDs are defined similarly, the implication problem

for the former class is far more intricate. In Section 6.3.1, we show that the implica-

tion problem for XML functional dependencies is decidable in co-NEXPTIME. Then we

present classes of DTDs for which this problem can be solved more efficiently. In Section

6.3.2, we show that the implication problem for simple DTDs (see Section 4.2) can be

solved in quadratic time. In Section 6.3.3, we introduce a class of DTDs that contains the

class of simple DTDs and for which the implication problem can still be solved efficiently.

These classes include most of real-world DTDs. In Section 6.3.4 we introduce two classes

of DTDs for which the implication problem is coNP-complete. Finally, in Section 6.3.5

we show that, unlike relational FDs, XML FDs are not finitely axiomatizable. In all

these sections we assume, without loss of generality, that all FDs have a single path on

the right-hand side.

6.3.1 The General Case

In this section, we establish the decidability of the implication problem for XML func-

tional dependencies and DTDs.

Theorem 6.3.1 The implication problem for XML functional dependencies over DTDs

is solvable in co-NEXPTIME.

Proof: See Appendix C.1. 2

6.3.2 Simple regular expressions

In this section, we show that the implication problem for simple DTDs (see Section 4.2)

can be solved in quadratic time.

Chapter 6. Functional Dependencies for XML 135

Theorem 6.3.2 The implication problem for FDs over simple DTDs is solvable in

quadratic time.

Proof sketch: Here we present the sketch of the proof. The complete proof can be

found in Appendix C.2.

In the first part of the proof we show that given a simple DTD D and a set of FDs

Σ∪ {S → p} over D, the problem of verifying whether Σ 6` S → p can be reduced to the

problem of finding a counterexample to a certain implication problem. That is, we need

to find an XML tree T such that T |= (D,Σ), T 6|= S → p, T contains two tree tuples and

T satisfies some additional conditions that depend on the simplicity of D. Essentially,

if an element type is allowed to occur zero times (a? or a∗), then in constructing the

counterexample such elements not need to be considered if they are irrelevant to the

functional dependencies under consideration. Furthermore, all the element types in a

regular expression in D can be considered independently. Observe that this condition is

not longer valid if a regular expression in D contains a disjunction (D is not simple). For

instance, if (a|b) is a regular expression in D, then a and b are not independent; if a does

not appear in an XML tree conforming to D, then b appears in this tree.

In the second part of the proof we show that the problem of finding this counterex-

ample can be reduced to the problem of verifying if a certain propositional formula

ϕ, constructed from D and Σ ∪ {S → p}, is satisfiable. This formula is of the form

ϕ1 ∨ · · · ∨ ϕn, where n is at most the length of the path p and each ϕi (i ∈ [1, n]) is

a conjunction of Horn clauses and is of linear size in the size of D and Σ ∪ {S → p}.

Given that the consistency problem for Horn clauses is solvable in linear time [DG84],

we conclude that the counterexample can be found in quadratic time and, therefore, our

original problem can be solved in quadratic time. 2

6.3.3 Small number of disjunctions

In a simple DTD, disjunction can appear in expressions of the form (a|ε) or (a|b)∗, but

a general disjunction (a|b) is not allowed. For example, the following DTD cannot be

represented as a simple DTD:

<!DOCTYPE university [

<!ELEMENT university (course*)>

<!ELEMENT course (number, student*)>

Chapter 6. Functional Dependencies for XML 136

<!ELEMENT number (#PCDATA)>

<!ELEMENT student ((name | FLname), grade)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT FLname (first_name, last_name)>

<!ELEMENT first_name (#PCDATA)>

<!ELEMENT last_name (#PCDATA)>

<!ELEMENT grade (#PCDATA)>

]>

In this example, every student must have a name. This name can be an string or it can

be a composition of a first and a last name. It is desirable to express constraints on this

kind of DTDs. For instance,

student .name.S → student ,

{student .FLname.first name.S, student .FLname.last name.S} → student ,

are functional dependencies in this domain. It is also desirable to reason about these

constraints efficiently. Often, a DTD is not simple because a small number of regular

expressions in it are not simple. In this section we will show that there is a polynomial

time algorithm for reasoning about constraints over DTDs containing a small number of

disjunctions.

A regular expression s over an alphabet A is a simple disjunction if s = ε, s = a,

where a ∈ A, or s = s1|s2, where s1, s2 are simple disjunctions over alphabets A1,

A2 and A1 ∩ A2 = ∅. A DTD D = (E, A, P, R, r) is called disjunctive if for every

τ ∈ E, P (τ) = s1, . . . , sm, where each si is either a simple regular expression or a simple

disjunction over an alphabet Ai (i ∈ [1, m]), and Ai ∩ Aj = ∅ (i, j ∈ [1, m] and i 6= j).

This generalizes the concept of a simple DTD.

With each disjunctive DTD D, we associate a number ND that measures the com-

plexity of unrestricted disjunctions in D. Formally, for a simple regular expression s,

Ns = 1. If s is a simple disjunction, then Ns is the number of symbols | in s plus

1. If P (τ) = s1, . . . , sn, then Nτ is 1, if s1, . . . , sn is a simple regular expression,

Nτ = |{p ∈ paths(D) | last(p) = τ}|×Ns1 ×· · ·×Nsn
otherwise. Finally, ND =

∏

τ∈E Nτ .

Theorem 6.3.3 For any fixed c > 0, the FD implication problem for disjunctive DTDs

D with ND ≤ ‖D‖c is solvable in polynomial time1.

1‖ · ‖ is the size of the description of an object. For instance, ‖p‖ is the length of the path p and ‖S‖
is the sum of the lengths of the paths in S.

Chapter 6. Functional Dependencies for XML 137

Proof sketch: Here we present the sketch of the proof. The complete proof can be

found in Appendix C.3.

The main idea of this proof is that the implication problem for disjunctive DTDs

can be reduced to a number of implication problems for simple DTDs by splitting the

disjunctions. More precisely, given a disjunctive DTD D and a set of functional de-

pendencies Σ ∪ {S → p} over D, there exist (D1,Σ1), . . ., (Dn,Σn) such that each Di

(i ∈ [1, n]) is a simple DTD, Σi is a set of functional dependencies over Di (i ∈ [1, n])

and (D,Σ) ` S → p if and only if (Di,Σi) ` S → p for every i ∈ [1, n]. The number

n of implication problems for simple DTDs is at most ND. Thus, since the implication

problem for simple DTDs can be solved in quadratic time (see Theorem 6.3.2), the im-

plication problem for disjunctive DTDs D with ND ≤ ‖D‖c, for some constant c, can be

solved in polynomial time. 2

6.3.4 Relational DTDs

There are some classes of DTDs for which the implication problem is not tractable. One

such class consists of arbitrary disjunctive DTDs. Another class is that of relational

DTDs. We say that D is a relational DTD if for each XML tree T |= D, if X is a non-

empty subset of tuplesD(T), then treesD(X) |= D. This class contains regular expressions

like the one below, from a DTD for Frequently Asked Questions [HJ99]:

<!ELEMENT section (logo*, title, (qna+ | q+ | (p | div | section)+))>

There exist non-relational DTDs (for example, <!ELEMENT a (b,b)>). However:

Proposition 6.3.4 Every disjunctive DTD is relational.

Proof: Let D = (E, A, P, R, r) be a disjunctive DTD, T an XML tree conforming to

D and X a non-empty subset of tuplesD(T). Assume that treesD(X) 6|= D, that is, there

is an XML tree T ′ = (V, lab, ele, att, root) in treesD(X) such that T ′ 6|= D. Then, there

is a vertex v ∈ V reachable from the root by following a path p such that lab(v) = τ and

ele(v) does not conform to the regular expression P (τ).

If P (τ) = s, where s is a simple disjunction over an alphabet A, then there is t′ ∈ X

such that t′.p = v and t′.p.a = ⊥, for each a ∈ A. Thus, given that T |= D, we conclude

that there is a tuple t ∈ tuplesD(T) such that t.p.b 6= ⊥, for some b ∈ A, and t′.w = t.w for

each w ∈ paths(D) such that p.b is not a prefix of w. Hence, t′ < t. But, this contradicts

Chapter 6. Functional Dependencies for XML 138

the definition of tuplesD(·), since t′, t ∈ tuplesD(T). The proof for P (τ) = s1, . . . , sn,

where each si (i ∈ [1, n]) is either a simple regular expression or a simple disjunction, is

similar. 2

Theorem 6.3.5 The FD implication problem over relational DTDs and over disjunctive

DTDs is coNP-complete.

Proof: Here we prove the intractability of the implication problem for disjunctive

DTDs. The coNP membership proof can be found in Appendix C.4.

In order to prove the coNP-hardness, we will reduce SAT-CNF to the complement of

the implication problem for disjunctive DTDs. Let θ be a propositional formula of the

form C1∧· · ·∧Cn, where each Ci (i ∈ [1, n]) is a clause. Assume that θ uses propositional

variables x1, . . ., xm.

We need to construct a disjunctive DTD D and a set of functional dependencies

Σ ∪ {ϕ} such that (D,Σ) 6` ϕ if and only if θ is satisfiable. We define the DTD D =

(E, A, P, R, r) as follows.

E = {r, B, C} ∪ {Ci,j | Ci mentions literal xj} ∪ {C̄i,j | Ci mentions literal ¬xj},

A = {@l}.

In order to define P , first we define a function for translating clauses into regu-

lar expressions. If the set of literal mentioned in the clause Ci (i ∈ [1, n]) is

{xj1 , . . . , xjp, x̄k1 , . . . , x̄kq
}, then

tr(Ci) = Ci,j1| · · · |Ci,jp|C̄i,k1| · · · |C̄i,kq
.

We define the function P on the root as P (r) = tr(C1), . . . , tr(Cn), B, C
∗. For the

remaining elements of E, we define P as ε. Finally, R(r) = ∅ and R(τ) = {@l} for every

τ ∈ E − {r}. For example, figure 6.1 shows the DTD generated from a propositional

formula (x1 ∨ x2) ∧ (x1 ∨ ¬x3).

For each pair of elements Ci,j, C̄k,j ∈ E, the set of functional dependencies Σ includes

the constraint {r.Ci,j.@l, r.C̄k,j.@l} → r.C.@l. Functional dependency ϕ is defined as

r.B.@l → r.C.@l.

We now prove that (D,Σ) 6` ϕ if and only if θ is satisfiable.

(⇒) Suppose that (D,Σ) 6` ϕ. Then, there is an XML tree T such that T |= (D,Σ)

Chapter 6. Functional Dependencies for XML 139

r

C2,1 |C̄2,3C1,1 |C1,2 B C∗

@l @l@l@l@l@l

Figure 6.1: DTD generated from a formula (x1 ∨ x2) ∧ (x1 ∨ ¬x3).

and T 6|= ϕ. We define a truth assignment σ from T as follows. For each j ∈ [1, m], if

there is i ∈ [1, n] such that r has a child of type Ci,j in T , then σ(xj) = 1, otherwise

σ(xj) = 0. We now prove that σ |= Ci, for each i ∈ [1, n]. By definition of D, there

is j ∈ [1, m] such that r has a child in T of type either Ci,j or C̄i,j. In the first case,

Ci contains the literal xj and σ(xj) = 1, by definition of σ. Therefore, σ |= Ci. In the

second case, Ci contains a literal ¬xj. If σ(xj) = 1, then there is k ∈ [1, n] such that r

has a child of type Ck,j in T , by definition of σ. Since {r.Ck,j.@l, r.C̄i,j.@l} → r.C.@l is

a constraint in Σ, all the nodes in T of type C have the same value in the attribute @l.

Thus, T |= r.B.@l → r.C.@l, a contradiction. Hence, σ(xj) = 0 and σ |= Ci.

(⇐) Suppose that θ is satisfiable. Then, there exists a truth assignment σ such

that σ |= θ. We define an XML tree T conforming to D as follows. For each i ∈ [1, n],

choose a literal lj in Ci such that σ |= lj. If lj = xj, then r has a child of type Ci,j in

T , otherwise r has a child of type C̄i,j in T . Moreover, r has one child of type B and

two children of type C. We assign two distinct values to the attribute @l of the nodes

of type C, and the same value to the rest of the attributes in T . Thus, T 6|= ϕ, and it is

easy to verify that T |= Σ. This completes the proof. 2

6.3.5 Nonaxiomatizability of XML functional dependencies

In this section we present a simple proof that XML FDs cannot be finitely axiomatized.

This proof shows that, unlike relational databases, there is a nontrivial interaction be-

tween DTDs and functional dependencies. To present this proof we need to introduce

some terminology.

Given a DTD D and a set of functional dependencies Σ over D, we say that (D,Σ)

is closed under implication if for every FD ϕ over D such that (D,Σ) ` ϕ, it is the case

that ϕ ∈ Σ. Furthermore, we say that (D,Σ) is closed under k-ary implication, k ≥ 0, if

for every FD ϕ over D, if there exists Σ′ ⊆ Σ such that |Σ′| ≤ k and (D,Σ′) ` ϕ, then

Chapter 6. Functional Dependencies for XML 140

ϕ ∈ Σ. For example, if (D,Σ) is closed under 0-ary implication, then Σ contains all the

trivial FDs.

Since the implication problem for relational FDs is finitely axiomatizable, there exists

k ≥ 0 such that each relation schema R(A1, . . . , An) admits a k-ary ground axiomatiza-

tion for the implication problem, that is, an axiomatization containing rules of the form

if Γ then γ, where Γ ∪ {γ} is a set of FDs over R(A1, . . . , An) and |Γ| ≤ k. For instance,

R(A,B,C) admits a 2-ary ground axiomatization including, among others, the following

rules: if ∅ then AB → A, if A → B then AC → BC and if {A → B,B → C} then

A → C. Similarly, if there exists a finite axiomatization for the implication problem

of XML FDs, then there exists k ≥ 0 such that each DTD D admits a (possible infi-

nite) k-ary ground axiomatization for the implication problem. The contrapositive of

the following proposition gives us a sufficient condition for showing that the XML FD

implication problem does not admit a k-ary ground axiomatization for every k ≥ 0 and,

therefore, it does not admit a finite axiomatization.

Proposition 6.3.6 For every k ≥ 0, if there is a k-ary ground axiomatization for the

implication problem of XML FDs, then for every DTD D and set of FDs Σ over D, if

(D,Σ) is closed under k-ary implication then (D,Σ) is closed under implication.

Proof: This proposition was proved in [AHV95] for the case of relational databases.

The proof for XML FDs is similar. 2

Theorem 6.3.7 The implication problem for XML functional dependencies is not

finitely axiomatizable.

Proof: By Proposition 6.3.6, for every k ≥ 0 we need to exhibit a DTD Dk and a set

of functional dependencies Σk such that (Dk,Σk) is closed under k-ary implication and

(Dk,Σk) is not closed under implication.

The DTD Dk = (E, A, P, R, r) is defined as follows: E = {A1, . . . , Ak, Ak+1, B}, A

= ∅, P (r) = (A1| · · · |Ak|Ak+1), B
∗ and P (τ) = ε for every τ ∈ E − {r}. The set of FDs

Σk is defined as the union of the following sets:

• {r.Ai → r.B | i ∈ [1, k + 1]} ∪ {{r, r.Ai} → r.B | i ∈ [1, k + 1]},

• {S → p | S → p is a trivial FD in Dk}.

Chapter 6. Functional Dependencies for XML 141

It is easy to see that if ϕ is not a trivial functional dependency in Dk and ϕ 6∈ Σk, then

ϕ = r → r.B. Thus, in order to prove that (Dk,Σk) is closed under k-ary implication

and is not closed under implication, we have to show that:

1. For every Σ′ ⊆ Σk such that |Σ′| ≤ k, (Dk,Σ
′) 6` r → r.B. Since |Σ′| ≤ k, there

exists i ∈ [1, k + 1] such that r.Ai → r.B 6∈ Σ′ and {r, r.Ai} → r.B 6∈ Σ′. Thus, an

XML tree T defined as

Ai B B

r

conforms to Dk, satisfies Σ′ and does not satisfy r → r.B. We conclude that

(Dk,Σ
′) 6` r → r.B.

2. (Dk,Σk) ` r → r.B. This proof is straightforward.

This completes the proof of the theorem. 2

6.4 The Consistency Problem for XML Functional

Dependencies

As we mentioned in the previous chapters, an XML specification can be inconsistent in

the sense that there is no way of populating the database and satisfying both the DTD

and the set of data dependencies given by the specification. In particular, XML databases

containing functional dependencies can be inconsistent.

Inconsistent XML databases are poorly designed and, thus, it is desirable to have

algorithms for checking consistency. In Chapter 5, we study the complexity of checking

consistency for XML databases containing keys and foreign keys. In this section, we

study the complexity of the consistency problem for XML functional dependencies.

We start by noticing that if a relational DTD D is consistent, then there exists an

XML tree T conforming to D and containing only one tree tuple (|tuplesD(T)| = 1).

Thus, if D is consistent, then for every set Σ of functional dependencies over D, we

have that (D,Σ) is consistent since T trivially satisfies every functional dependency of

Σ. Hence, given a relational DTD D and a set Σ of FDs over D, there exists an XML

document conforming to D and satisfying Σ if and only if there exists an XML document

Chapter 6. Functional Dependencies for XML 142

conforming to D. Thus, the consistency problem for relational DTDs and FDs can be

reduced to the consistency problem for DTDs, which in turn can be reduced in linear time

to the emptiness problem for context free grammars [FL02]. Since the latter problem can

be solved in linear time (cf. [HU79]), the following theorem is obtained.

Theorem 6.4.1 The consistency problem for XML functional dependencies over rela-

tional DTDs is decidable in linear time.

Given that that simple (disjunctive) DTDs are also relational, the following corollary is

obtained.

Corollary 6.4.2 The consistency problem for XML functional dependencies over simple

(disjunctive) DTDs is decidable in linear time.

To obtain the decidability of the consistency problem for functional dependencies, we

reduce this problem to the implication problem for this class of constraints.

Proposition 6.4.3 Given a DTD D and set Σ of FDs over D, it is possible to construct

in linear time a DTD D′ and an FD ϕ such that (D,Σ) is consistent iff (D′,Σ) 6` ϕ.

Proof: Assume that D = (E, A, P, R, r). Then define D′ = (E ′, A, P ′, R, r) as

follows. The new set of element types E ′ is defined to be E ∪ {a, b}, where a and b are

fresh element types, and function P ′ is defined as P ′(r) = P (r), a, b∗, P (a) = P (b) = ε

and P ′(τ) = P (τ) for every τ ∈ E − {r, a, b}.

Furthermore, define functional dependency ϕ as r.a→ r.b. Then it is easy to see that

(D,Σ) is consistent if and only if (D′,Σ) 6` ϕ. 2

From Proposition 6.4.3 and Theorem 6.3.1, we obtain the decidability of the consis-

tency problem for XML functional dependencies. A slight modification of the proof of

coNP-hardness of the implication problem over relational DTDs (Theorem 6.3.5) shows

that the consistency problem for XML FDs is NP-hard.2

Theorem 6.4.4 The consistency problem for XML functional dependencies over DTDs

is NP-hard, and can be solved in NEXPTIME.

2To prove this lower bound, we are forced to transform the relational DTD used in the proof of
Theorem 6.3.5 into a non-relational DTD.

Chapter 6. Functional Dependencies for XML 143

6.5 Related Work

Fan and Simeón [FS00, FS03] introduced a simple language for expressing functional

dependencies for XML. In this language, a functional dependency is a constraint of the

form τ.p→ τ.q, where τ is an element type and p, q are paths. An XML tree T satisfies

this constraint if for every pair of nodes x, y in T of type τ , if reach(x, p) = reach(y, p),

then reach(x, q) = reach(y, q). This language only allows unary functional dependencies

that hold in the entire document (absolute constraints). Lee et al. [LLL02] also intro-

duced a language for expressing functional dependencies for XML. In that language, a

functional dependency is an expression of the form (p, [q1, . . . , qn → qn+1]), where p is a

path and every qi (i ∈ [1, n+ 1]) is of the form τ.@l, where τ is an element type and @l

is an attribute. An XML tree T satisfies this constraint if for any two subtrees T1, T2 of

T whose roots are nodes reachable from the root of T by following path p, if T1 and T2

agree on the value of qi, for every i ∈ [1, n], then they agree on the value of qn+1. This

language does not consider relative constraints and its semantics only works properly if

some syntactic restrictions are imposed on the functional dependencies [LLL02].

Chapter 7

XNF: A Normal Form for XML

Documents

We have developed all the elements that we need to introduce a normal form for XML

documents: a set of information-theoretic tools for testing when a normal form corre-

sponds to a good design, a formal model for XML databases and a functional dependency

language for XML. Thus, in this chapter, we finally propose a normal form for XML doc-

uments. More specifically, we show that, like relational databases, XML documents may

contain redundant information, and may be prone to update anomalies. We define an

XML normal form, XNF, that avoids update anomalies and redundancies. We study

its properties, and show that the information-theoretic measure introduced in Chapter 3

justifies XNF. We also show that XNF generalizes BCNF, and we discuss the relation-

ship between XNF and normal forms for nested relations. Finally, we present a lossless

algorithm for converting any DTD into one in XNF, and we look at information-theoretic

criteria for justifying this algorithm.

7.1 Introduction

The concepts of database design and normal forms are a key component of the relational

database technology. In this chapter, we study design principles for XML data. XML

has recently emerged as a new basic format for data exchange. Although many XML

documents are views of relational data, the number of applications using native XML

documents is increasing rapidly. Such applications may use native XML storage facilities

[KM00], and update XML data [TIHW01]. Updates, like in relational databases, may

144

Chapter 7. XNF: A Normal Form for XML Documents 145

cause anomalies if data is redundant. In the relational world, anomalies are avoided by

using well-designed database schema. XML has its version of schema too; most often

it is DTDs (Document Type Definitions), and some other proposals exist or are under

development [TBMM, LJM+]. What would it mean then for such a schema to be well

or poorly designed? Clearly, this question has arisen in practice: one can find companies

offering help in “good DTD design.” This help, however, comes in form of consulting

services rather than commercially available software, as there are no clear guidelines for

producing well designed XML.

Our goal is to find principles for good XML data design, and algorithms to produce

such designs. We believe that it is important to do this research now, as a lot of data is

being put on the web. Once massive web databases are created, it is very hard to change

their organization; thus, there is a risk of having large amounts of widely accessible, but

at the same time poorly organized legacy data.

Normalization is one of the most thoroughly researched subjects in database theory.

Here we follow the standard treatment of one of the most common (if not the most

common) normal forms, BCNF. It eliminates redundancies and avoids update anomalies

(see Section 2.1.4) which they cause by decomposing into relational subschemas in which

every nontrivial functional dependency defines a key. Just to retrace this development

in the XML context, we need the following:

a) Understanding of what a redundancy and an update anomaly is.

b) A definition and basic properties of functional dependencies (so far, most proposals

for XML constraints concentrate on keys).

c) A definition of what “bad” functional dependencies are (those that cause redun-

dancies and update anomalies).

d) An algorithm for converting an arbitrary DTD into one that does not admit such

bad functional dependencies.

Starting with point a), how does one identify bad designs? We have looked at a large

number of DTDs and found two kinds of commonly present design problems. They are

illustrated in two examples below.

Example 7.1.1 Consider the following DTD that describes a part of a university

database:

Chapter 7. XNF: A Normal Form for XML Documents 146

@sno

"st1"

name

"Deere"

grade

"A+"

@sno

"st2"

name

"Smith"

grade

"B-"

@sno

"st1"

name

"Deere" "A"

grade @sno name grade

"st3" "Smith" "B+"

courses

title

"Automata

Theory"

title

"Calculus I"

taken bytaken by@cno

"csc200"

@cno

"mat100"

student student studentstudent

course course

Figure 7.1: A document containing redundant information.

<!DOCTYPE courses [

<!ELEMENT courses (course*)>

<!ELEMENT course (title, taken_by)>

<!ATTLIST course

cno CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT taken_by (student*)>

<!ELEMENT student (name, grade)>

<!ATTLIST student

sno CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT grade (#PCDATA)>

]>

For every course, we store its number (cno), its title and the list of students taking the

course. For each student taking a course, we store his/her number (sno), name, and the

grade in the course.

An example of an XML document that conforms to this DTD is shown in Figure

7.1. This document satisfies the following constraint: any two student elements with

the same sno value must have the same name. This constraint (which looks very much

like a functional dependency), causes the document to store redundant information: for

example, the name Deere for student st1 is stored twice. And just as in relational

databases, such redundancies can lead to update anomalies: for example, updating the

name of st1 for only one course results in an inconsistent document, and removing the

Chapter 7. XNF: A Normal Form for XML Documents 147

student from a course may result in removing that student from the document altogether.

In order to eliminate redundant information, we use a technique similar to the rela-

tional one, and split the information about the name and the grade. Since we deal with

just one XML document, we must do it by creating an extra element type, info, for

student information, as shown below:

<!DOCTYPE courses [

<!ELEMENT courses (course*, info*)>

<!ELEMENT course (title,taken_by)>

<!ATTLIST course

cno CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT taken_by (student*)>

<!ELEMENT student (grade)>

<!ATTLIST student

sno CDATA #REQUIRED>

<!ELEMENT grade (#PCDATA)>

<!ELEMENT info (number*,name)>

<!ELEMENT number EMPTY>

<!ATTLIST number

sno CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

]>

Each info element has as children one name and a sequence of number elements, with sno

as an attribute. Different students can have the same name, and we group all student

numbers sno for each name under the same info element. A restructured document that

conforms to this DTD is shown in Figure 7.2. Note that st2 and st3 are put together

because both students have the same name. 2

This example is reminiscent of the canonical example of bad relational design caused

by non-key functional dependencies, and so is the modification of the schema. Some

examples of redundancies are more closely related to the hierarchical structure of XML

documents.

Example 7.1.2 The DTD below is a part of the DBLP database [Ley] for storing data

about conferences.

Chapter 7. XNF: A Normal Form for XML Documents 148

@sno

"st1"

grade

"A+"

@sno

"st1"

grade

"A"

@sno

"st3"

grade

"B+"

@sno

"st2"

grade

"B-"

info info

@cno

"csc200"

taken bytitle

"Automata

Theory"

"Smith"

title

"Calculus I"

taken by number number number name@cno

"mat100" "Deere"

name

student student studentstudent @sno

"st1"

@sno

"st2"

@sno

"st3"

courses

course course

Figure 7.2: A well-designed document.

<!DOCTYPE db [

<!ELEMENT db (conf*)>

<!ELEMENT conf (title, issue+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT issue (inproceedings+)>

<!ELEMENT inproceedings (author+, title)>

<!ATTLIST inproceedings

key ID #REQUIRED

pages CDATA #REQUIRED

year CDATA #REQUIRED>

<!ELEMENT author (#PCDATA)>

]>

Each conference has a title, and one or more issues (which correspond to years when

the conference was held). Papers are stored in inproceedings elements; the year of

publication is one of its attributes.

Such a document satisfies the following constraint: any two inproceedings children

of the same issue must have the same value of year. This too is similar to relational

functional dependencies, but now we refer to the values (the year attribute) as well as

the structure (children of the same issue). Moreover, we only talk about inproceedings

nodes that are children of the same issue element. Thus, this functional dependency

can be considered relative to each issue.

The functional dependency here leads to redundancy: year is stored multiple times

for a conference. The natural solution to the problem in this case is not to create a new

element for storing the year, but rather restructure the document and make year an

Chapter 7. XNF: A Normal Form for XML Documents 149

attribute of issue. That is, we change attribute lists as:

<!ATTLIST issue

year CDATA #REQUIRED>

<!ATTLIST inproceedings

key ID #REQUIRED

pages CDATA #REQUIRED>

2

Our goal is to show how to detect anomalies of those kinds, and to transform documents

in a lossless fashion into ones that do not suffer from those problems.

The first step towards that goal is to introduce functional dependencies (FDs) for

XML documents. We already achieved this goal in Chapter 6, where we introduced FDs

for XML by considering a relational representation of documents, via tree tuples, and

defining FDs on them.

The second step is the definition of a normal form that disallows redundancy-causing

FDs. We give it in Section 7.2, and show that our normal form, called XNF, generalizes

BCNF and a nested normal form NNF-96 [MNE96] when only functional dependencies

are considered. In Section 7.3 we study the complexity of testing XNF.

The third step is to formally justify XNF. We do this in Section 7.4, where we show

that the information-theoretic measure of Chapter 3 straightforwardly extends to the

XML setting, giving us a definition of well-designed XML specifications. We prove that

for constraints given by XML functional dependencies, well-designed XML specifications

are precisely those in XNF.

The last step then is to find an algorithm that converts any DTD, given a set of

FDs, into one in XNF. We do this in Section 7.5. On both examples shown earlier, the

algorithm produces exactly the desired reconstruction of the DTD. The main algorithm

uses implication of functional dependencies (although there is a version that does not

use implication, but it may produce suboptimal results). It is worth mentioning that in

Section 7.5.3, we use the information-theoretic measure of Section 7.4 to show that the

algorithm do not decrease the information content of each datum at every step, which is

the criterion used in Chapter 3 to test whether a relational normalization algorithm is

good. Finally, in Section 7.7 we describe related work.

Chapter 7. XNF: A Normal Form for XML Documents 150

One of the reasons for the success of the normalization theory is its simplicity, at least

for the commonly used normal forms such as BCNF, 3NF and 4NF. Hence, the normal-

ization theory for XML should not be extremely complicated in order to be applicable. In

particular, this was the reason we chose to use DTDs instead of more complex formalisms

[TBMM]. This is in perfect analogy with the situation in the relational world: although

SQL DDL is a rather complicated language with numerous features, BCNF decomposi-

tion uses a simple model of a set of attributes and a set of functional dependencies.

7.2 XNF: An XML Normal Form

With the definitions of Chapter 6, we are ready to present the normal form that gener-

alizes BCNF for XML documents.

Definition 7.2.1 Given a DTD D and Σ ⊆ FD(D), (D,Σ) is in XML normal form

(XNF) iff for every nontrivial FD ϕ ∈ (D,Σ)+ of the form S → p.@l or S → p.S, it is

the case that S → p is in (D,Σ)+.

The intuition is as follows. Suppose that S → p.@l is in (D,Σ)+. If T is an XML tree

conforming to D and satisfying Σ, then in T for every set of values of the elements in S,

we can find only one value of p.@l. Thus, for every set of values of S we need to store

the value of p.@l only once; in other words, S → p must be implied by (D,Σ).

In this definition, we impose the condition that ϕ is a nontrivial FD. Indeed, the

trivial FD p.@l → p.@l is always in (D,Σ)+, but often p.@l → p 6∈ (D,Σ)+, which does

not necessarily represent a bad design.

To show how XNF distinguishes good XML design from bad design, we revisit the

examples from the introduction, and prove that XNF generalizes BCNF and NNF-96,

a normal form for nested relations [MNE96], when only functional dependencies are

provided.

Example 7.2.2 Referring back to example 7.1.1, we have the following FDs. cno is a

key of course:

courses.course.@cno → courses.course. (FD1)

Another FD says that two distinct student subelements of the same course cannot have

Chapter 7. XNF: A Normal Form for XML Documents 151

the same sno:

{courses.course, courses.course.taken by .student .@sno} →

courses.course.taken by .student . (FD2)

Finally, to say that two student elements with the same sno value must have the same

name, we use

courses.course.taken by .student .@sno →

courses.course.taken by .student .name.S. (FD3)

Functional dependency (FD3) associates a unique name with each student number, which

is therefore redundant. The design is not in XNF, since it contains (FD3) but does not

imply the functional dependency

courses.course.taken by .student .@sno → courses.course.taken by .student .name.

To remedy this, we gave a revised DTD in example 7.1.1. The idea was to create a new

element info for storing information about students. That design satisfies FDs (FD1),

(FD2) as well as

courses.info.number .@sno → courses.info,

and can be easily verified to be in XNF. 2

Example 7.2.3 Suppose that D is the DBLP DTD from example 7.1.2. Among the set

Σ of FDs satisfied by the documents are:

db.conf .title.S → db.conf (FD4)

db.conf .issue → db.conf .issue.inproceedings.@year (FD5)

{db.conf .issue, db.conf .issue.inproceedings.title.S} →

db.conf .issue.inproceedings (FD6)

db.conf .issue.inproceedings.@key → db.conf .issue.inproceedings (FD7)

Constraint (FD4) enforces that two distinct conferences have distinct titles. Given that

an issue of a conference represents a particular year of the conference, constraint (FD5)

Chapter 7. XNF: A Normal Form for XML Documents 152

enforces that two articles of the same issue must have the same value in the attribute

year. Constraint (FD6) enforces that for a given issue of a conference, two distinct articles

must have different titles. Finally, constraint (FD7) enforces that key is an identifier for

each article in the database.

By (FD5) for each issue of a conference, its year is stored in every article in that issue

and, thus, DBLP documents can store redundant information. (D,Σ) is not in XNF,

since

db.conf .issue → db.conf .issue.inproceedings

is not in (D,Σ)+.

The solution we proposed in the introduction was to make year an attribute of issue.

(FD5) is not valid in the revised specification, which can be easily verified to be in XNF.

Note that we do not replace (FD5) by db.conf.issue → db.conf.issue.@year, since it is a

trivial FD and thus is implied by the new DTD alone. 2

7.2.1 BCNF and XNF

Relational databases can be easily mapped into XML documents. Given a relation

G(A1, . . . , An) and a set of FDs FD over G, we translate the schema (G,FD) into an

XML representation, that is, a DTD and a set of XML FDs (DG,ΣFD). The DTD

DG = (E, A, P, R, db) is defined as follows:

• E = {db,G}.

• A = {@A1, . . . ,@An}.

• P (db) = G∗ and P (G) = ε.

• R(db) = ∅, R(G) = {@A1, . . . ,@An}.

Without loss of generality, assume that all FDs are of the form X → A, where A is an

attribute. Then ΣFD over DG is defined as follows.

• For each FD Ai1 · · ·Aim → Ai ∈ FD, {db.G.@Ai1, . . . , db.G.@Aim} → db.G.@Ai is

in ΣFD .

• {db.G.@A1, . . . , db.G.@An} → db.G is in ΣFD .

Chapter 7. XNF: A Normal Form for XML Documents 153

The latter is included to avoid duplicates.

Example 7.2.4 A schema G(A,B,C) can be coded by the following DTD:

<!ELEMENT db (G*)>

<!ELEMENT G EMPTY>

<!ATTLIST G

A CDATA #REQUIRED

B CDATA #REQUIRED

C CDATA #REQUIRED>

In this schema, an FD A→ B is translated into db.G.@A→ db.G.@B. 2

The following proposition shows that BCNF and XNF are equivalent when relational

databases are appropriately coded as XML documents.

Proposition 7.2.5 Given a relation schema G(A1, . . . , An) and a set of functional de-

pendencies FD over G, (G,FD) is in BCNF iff (DG,ΣFD) is in XNF.

Proof: This follows from Proposition 7.2.6 (to be proved in the next section) since

every relation schema is trivially consistent (see next section) and NNF-FD coincides

with BCNF when only functional dependencies are provided [MNE96]. 2

7.2.2 NNF-96 and XNF

In this section we assume familiarity with the terminology introduced in Section 2.2.

Recall that a nested relation schema is either a set of attributes X, or X(G1)
∗ . . . (Gn)

∗,

where Gi’s are nested relation schemas. An example of a nested relation for the schema

H1 = Country(H2)
∗, H2 = State(H3)

∗, H3 = City is shown in Figure 7.3 (a).

Nested schemas are naturally mapped into DTDs, as they are defined by means

of regular expressions. For a nested schema G = X(G1)
∗ . . . (Gn)

∗, we introduce an

element type G with P (G) = G∗1, . . . , G
∗
n and R(G) = {@A1, . . . ,@Am}, where X =

{A1, . . . , Am}; at the top level we have a new element type db with P (db) = G∗ and

R(db) = ∅. In our example the DTD is:

<!DOCTYPE db [

<!ELEMENT db (H1*)>

Chapter 7. XNF: A Normal Form for XML Documents 154

Country

United States State

Texas City

Houston

Dallas

State

Ohio City

Columbus

Cleveland

(a) Nested relation I1

Country State City

United States Texas Houston

United States Texas Dallas

United States Ohio Columbus

United States Ohio Cleveland

(b) Complete unnesting of I1

Figure 7.3: Nested relation and its unnesting.

<!ELEMENT H1 (H2*)>

<!ATTLIST H1 Country CDATA #REQUIRED>

<!ELEMENT H2 (H3*)>

<!ATTLIST H2 State CDATA #REQUIRED>

<!ELEMENT H3 EMPTY>

<!ATTLIST H3 City CDATA #REQUIRED>

]>

In [MNE96, ÖY87], functional dependencies are defined by following the flat approach

presented in Section 2.2.1, that is, a functional dependency holds in a nested relation I

if and only if it holds in the total unnesting of I. Thus, for example, nested relation I1

shown in Figure 7.3 satisfies FD State → Country since its total unnesting, shown in

Figure 7.3 (b), satisfies this constraint. On the other hand, FD State → City does not

hold in I1.

Normalization is usually considered for nested relations in the partition normal form

(PNF). Note that PNF can be enforced by using FDs on the XML representation. In

Chapter 7. XNF: A Normal Form for XML Documents 155

our example this is done as follows:

db.H1.@Country → db.H1

{db.H1, db.H1.H2.@State} → db.H1.H2

{db.H1.H2, db.H1.H2.H3.@City} → db.H1.H2.H3

It turns out that one can define FDs over nested relations by using the XML representa-

tion. Let U be a set of attributes, G1 a nested relation schema over U and FD a set of

functional dependencies over G1. Assume that G1 includes nested relation schemas G2,

. . ., Gn and a set of attributes U ′ ⊆ U . For each Gi (i ∈ [1, n]), path(Gi) is inductively

defined as follows. If Gi = G1, then path(Gi) = db.G1. Otherwise, if Gi is a nested

attribute of Gj, then path(Gi) = path(Gj).Gi. Furthermore, if A ∈ U ′ is an atomic

attribute of Gi, then path(A) = path(Gi).@A. For instance, for the schema of the nested

relation in Figure 7.3 (a), path(H2) = db.H1.H2 and path(City) = db.H1.H2.H3.@City .

We now define ΣFD as follows:

• For each FD Ai1 · · ·Aim → Ai ∈ FD , {path(Ai1), . . . , path(Aim)} → path(Ai) is in

ΣFD .

• For each i ∈ [1, n], if Aj1, . . . , Ajm is the set of atomic attributes of Gi and Gi is

a nested attribute of Gj, {path(Gj), path(Aj1), . . . , path(Ajm)} → path(Gi) is in

ΣFD .

Furthermore, if Bj1, . . . , Bjl is the set of atomic attributes of G1, then

{path(Bj1), . . . , path(Bjl)} → path(G1) is in ΣFD .

Note that the last rule imposes the partition normal form. The set ΣPNF contains all the

functional dependencies defined by this rule.

In Section 2.2.2, we introduced NNF-96 [MNE96]. This normal form was defined for

nested schemas containing functional and multivalued dependencies. Here we consider a

normal form NNF-FD, which is NNF-96 restricted to FDs only. Recall that MVD(G),

with G being a nested schema, stands for the set of multivalued dependencies embedded

in G. For example, if G1 = Title(G2)
∗(G3)

∗, G2 = Director , G3 = Theater(G4)
∗,

G4 = Snack , then MVD(G1) is equal to

{Title →→ Director , Title →→ {Theater , Snack}, {Title,Theater} →→ Snack},

Given a nested relation schema G and a set FD of functional dependencies over G, we say

that (G,FD) is in NNF-FD if (1) FD ` MVD(G), that is, every multivalued dependency

Chapter 7. XNF: A Normal Form for XML Documents 156

embedded in G is implied by FD , and (2) for each nontrivial FD X → A ∈ FD+,

X → Ancestor(NA) is also in FD+, where NA is the node in the schema tree of G that

contains attribute A. As in Section 2.2, FD+ stands for the set of all FDs implied by

FD.

The following proposition shows that NNF-FD and XNF are equivalent when nested

relational databases are appropriately coded as XML documents. Recall that (G,FD) is

consistent [MNE96] if FD ` MVD(G).

Proposition 7.2.6 Let G be a nested relation schema and FD a set of functional de-

pendencies over G such that (G,FD) is consistent. Then (G,FD) is in NNF-FD iff

(DG,ΣFD) is in XNF.

Proof: First we need to prove the following claim.

Claim 7.2.7 Ai1 · · · Aim → Ai ∈ FD+ if and only if {path(Ai1), . . . , path(Aim)} →

path(Ai) ∈ (DG,ΣFD)+.

The proof of this claim follows from the following fact. For each instance I of G, there is

an XML tree TI conforming to DG such that I |= FD iff TI |= ΣFD . Moreover, for each

XML tree T conforming to DG and satisfying ΣPNF , there is an instance IT of G such

that T |= ΣFD iff IT |= FD.

Now we prove the proposition.

(⇐) Suppose that (DG,ΣFD) is in XNF. We prove that (G,FD) is in NNF-FD.

Given that (G,FD) is consistent, we only need to consider the second condition in the

definition of NNF-FD. Let Ai1 · · · Aim → Ai be a nontrivial functional dependency in

FD+. We have to prove that Ai1 , . . . , Aim → Ancestor(NAi
) is in FD+, where NAi

is

the node in the schema tree of G that contains attribute Ai. By Claim 7.2.7, we know

that {path(Ai1), . . . , path(Aim)} → path(Ai) is a nontrivial functional dependency in

(DG,ΣFD)+. Since (DG,ΣFD) is in XNF, {path(Ai1), . . . , path(Aim)} → path(Gj) is in

(DG,ΣFD)+, where Gj is a nested relation schema contained in G such that Ai is an

atomic attribute of Gj. Thus, given that path(Gj) → path(A) is a trivial functional

dependency in DG, for each A ∈ Ancestor(NAi
), we conclude that {path(Ai1), . . . ,

path(Aim)} → path(A) is in (DG,ΣFD)+ for each A ∈ Ancestor(NAi
). By Claim 7.2.7,

Ai1 · · · Aim → Ancestor(NAi
) is in FD+.

Chapter 7. XNF: A Normal Form for XML Documents 157

(⇒) Suppose that (G,FD) is in NNF-FD. We will prove that (DG,ΣFD) is in

XNF. Let R be a nested relation schema contained in G and A an atomic attribute of R.

Suppose that there is S ⊆ paths(DG) such that S → path(A) is a nontrivial functional

dependency in (DG,ΣFD)+. We have to prove that S → path(R) ∈ (DG,ΣFD)+. Let S1

and S2 be set of paths such that S = S1∪S2, S1 ⊆ EPaths(DG) and S2∩EPaths(DG) = ∅.

Let S ′1 = {path(A′) | there is path(R′) ∈ S1 such that A′ is an atomic attribute of

some nested relation schema mentioned in path(R′)}. Given that ΣPNF ⊆ ΣFD ,

S ′1 → S1 ∈ (DG,ΣFD)+. Thus, S ′1 ∪ S2 → path(A) ∈ (DG,ΣFD)+. Assume that

S ′1 ∪ S2 = {path(Ai1), . . . , path(Aim)}. By Claim 7.2.7, Ai1 · · · Aim → A is a nontrivial

functional dependency in FD+. Thus, given that (G,FD) is in NNF-FD, we conclude

that Ai1 · · · Aim → Ancestor(NA) is in FD+, where NA is the node in the schema

tree of G that contains attribute A. Therefore, by Claim 7.2.7, S ′1 ∪ S2 → path(B) is

in (DG,ΣFD)+, for each B ∈ Ancestor(NA). But {path(B) | B ∈ Ancestor(NA)} →

path(R) is in (DG,ΣFD)+, since ΣPNF ⊆ ΣFD . Thus, S ′1 ∪ S2 → path(R) ∈ (DG,ΣFD)+,

and given that S1 → S ′1 is a trivial functional dependency in DG, we conclude that

S → path(R) is in (DG,ΣFD)+. This concludes the proof of the proposition. 2

Finally, in the following example we show that in general XNF does not generalize NNF

since it does not take into account multivalued dependencies.

Example 7.2.8 Let G1 be nested schema Title(G2)
∗(G3)

∗, where G2 = Director , G3 =

Theater(G4)
∗ and G4 = Snack . Assume that Σ is the following set of multivalued

dependencies:

{ Title →→ Director , Title →→ Theater , Title →→ Snack }.

Then (G,Σ) is not in NNF since the set of multivalued dependencies MVD(G) =

{Title →→ Director} is not equivalent to Σ. On the other hand, the XML represen-

tation of (G,Σ) is trivially in XNF since Σ does not contain any functional dependency.

2

7.3 The complexity of testing XNF

In Sections 4.2 and 6.3.4, we introduce simple DTDs and relational DTDs. In this section,

we study the complexity of testing XNF for XML specifications containing these types

Chapter 7. XNF: A Normal Form for XML Documents 158

of DTDs.

Relational DTDs have the following useful property that lets us establish the com-

plexity of testing XNF.

Proposition 7.3.1 Given a relational DTD D and a set Σ of FDs over D, (D,Σ) is in

XNF iff for each nontrivial FD of the form S → p.@l or S → p.S in Σ, S → p ∈ (D,Σ)+.

Proof: We only need to prove the “if” direction. Suppose that for each nontrivial FD

of the form S → p.@l or S → p.S in Σ, S → p ∈ (D,Σ)+.

Assume that (D,Σ) is not in XNF. Without loss of generality, assume that there

exists a nontrivial functional dependency S ′ → p′.@l′ such that S ′ → p′.@l′ ∈ (D,Σ)+

and S ′ → p′ 6∈ (D,Σ)+. By Lemma C.4.1, there is an XML tree T and a path q prefix

of p′ such that T conforms to D, T satisfies Σ, tuplesD(T) = {t1, t2}, t1.S
′ = t2.S

′,

t1.S
′ 6= ⊥, t1.p

′ 6= t2.p
′, t1.q 6= t2.q and for each s ∈ paths(D), if q is not a prefix of

s, then t1.s = t2.s. If t1.p
′.@l′ 6= t2.p

′.@l′, then (D,Σ) 6` S ′ → p′.@l′, a contradiction.

Thus, we can assume that t1.p
′.@l′ = t2.p

′.@l′. We can also assume t1.p
′.@l′ 6= ⊥, since

if t1.p
′.@l′ = t2.p

′.@l′ = ⊥, then t1.p
′ = t2.p

′ = ⊥ and, therefore, T |= S ′ → p′. Define

a new tree tuple t′1 as follows: t′1.w = t1.w, for each w 6= p′.@l′, t′1.p
′.@l′ 6= t1.p

′.@l′ and

t′1.p
′.@l′ 6= ⊥. Then, there is an XML tree T ′ ∈ treesD({t′1, t2}) such that T ′ |= D and

T ′ 6|= S ′ → p′.@l′, since p′.@l′ 6∈ S ′ (S ′ → p′.@l′ is a nontrivial functional dependency).

If T ′ |= Σ, then (D,Σ) 6` S ′ → p′.@l′, a contradiction. Hence T ′ 6|= Σ and, therefore,

there is S → p′′ ∈ Σ such that T ′ 6|= S → p′′. But p′′ must be equal to p′.@l′, since

t1, t2 ∈ tuplesD(T) and T |= Σ. Therefore, T 6|= S → p′, because t1.S = t′1.S = t2.S,

t′1.S 6= ⊥ and t1.p
′ 6= t2.p

′. We conclude that (D,Σ) 6` S → p′, which contradicts our

initial assumption since S → p′.@l′ is a nontrivial FD in Σ. 2

From this and Theorems 6.3.2 and 6.3.5 we immediately derive:

Corollary 7.3.2 Testing if (D,Σ) is in XNF can be done in cubic time for simple DTDs,

and is coNP-complete for relational DTDs.

7.4 Justifying XNF

In this section we show that the notion of being well-designed straightforwardly extends

from relations to XML. Furthermore, if all constraints are specified as functional depen-

dencies, this notion precisely characterizes XNF.

Chapter 7. XNF: A Normal Form for XML Documents 159

We do not need to introduce a new notion of being well-designed specifically for

XML: the definition that we formulated in Section 3.4 for relational data will apply.

We only have to define the notion of positions in a tree, and then reuse the relational

definition. For relational databases, positions correspond to the “shape” of relations, and

each position contains a value. Likewise, for XML, positions will correspond to the shape

(that is more complex, since documents are modeled as trees), and they must have values

associated with them. Consequently, we formally define the set of positions Pos(T) in

a tree T = (V, lab, ele, att, root) as {(x,@l) | x ∈ V, att(x,@l) is defined}. As before,

we assume that there is an enumeration of positions (a bijection between Pos(T) and

{1, . . . , n} where n = |Pos(T)|) and we shall associate positions with their numbers in

the enumeration. We define adom(T) as the set of all values of attributes in T and Tp←a

as an XML tree constructed from T by replacing the value in position p by a.

As in the relational case, we take the domain of values V of the attributes to be N+.

Let Σ be a set of FDs over a DTD D and k > 0. Define inst(D,Σ) as the set of all XML

trees that conform to D and satisfy Σ and instk(D,Σ) as its restriction to trees T with

adom(T) ⊆ [1, k]. Now fix T ∈ instk(D,Σ) and p ∈ Pos(T). With the above definitions,

we define the probability spaces A(T, p) and BkΣ(T, p) exactly as we defined A(I, p) and

BkΣ(I, p) for a relational instance I. That is, Ω(T, p) is the set of all tuples ā of the form

(a1, . . . , ap−1, ap+1, . . . , an) such that every ai is either a variable, or the value T has in

the corresponding position, SAT k
Σ(T(a,ā)) as the set of all possible ways to assign values

from [1, k] to variables in ā that result in a tree satisfying Σ, and the rest of the definition

repeats the relational case one verbatim, substituting T for I.

We use the above definitions to define Inf
k
T (p | Σ) as the entropy of BkΣ(T, p) given

A(T, p):

Inf
k
T (p | Σ)

def
= H(BkΣ(T, p) | A(T, p)) .

As in the relational case, we can show that the limit

lim
k→∞

Inf
k
T (p | Σ)

log k

exists, and we denote it by InfT (p | Σ). Following the relational case, we introduce

Definition 7.4.1 An XML specification (D,Σ) is well-designed if for every T ∈

inst(D,Σ) and every p ∈ Pos(T), InfT (p | Σ) = 1.

Note that the information-theoretic definition of well-designed schema presented in Sec-

tion 3.4 for relational data proved to be extremely robust, as it extended straightforwardly

Chapter 7. XNF: A Normal Form for XML Documents 160

to a different data model: we only needed a new definition of Pos(T) to use in place of

Pos(I), and Pos(T) is simply an enumeration of all the places in a document where

attribute values occur. As in the relational case, it is possible to show that well-designed

XML and XNF coincide. Furthermore, it is also possible to establish a useful structural

criterion for InfT (p | Σ) = 1, namely that an XML specification (D,Σ) is well-designed

if and only if one position of an arbitrary T ∈ inst(D,Σ) can always be assigned a fresh

value.

Theorem 7.4.2 Let D be a DTD and Σ a set of FDs over D. Then the following are

equivalent.

1) (D,Σ) is well-designed.

2) (D,Σ) is in XNF.

3) For every T ∈ inst(D,Σ), p ∈ Pos(T) and a ∈ N+ − adom(T), Tp←a |= Σ.

The proof of the theorem follows rather closely the proof of Proposition 3.4.9, by

replacing relational concepts by their XML counterparts.

Proof of Theorem 7.4.2: We will prove the chain of implications 1) ⇒ 2) ⇒ 3)

⇒ 1).

1) ⇒ 2) Assume that (D,Σ) is not in XNF. We will show that there exists T ∈

inst(D,Σ) and p ∈ Pos(T) such that InfT (p | Σ) < 1.

Given that (D,Σ) is not in XNF, there exists a nontrivial FD X → q.@l ∈ (D,Σ)+

such that X → q 6∈ (D,Σ)+. Thus, there is T ∈ inst(D,Σ) containing tree tuples t1, t2

such that t1(q
′) = t2(q

′) and t1(q
′) 6= ⊥, for every q′ ∈ X, and t1(q) 6= t2(q). We may

assume that t1(q) 6= ⊥ and t2(q) 6= ⊥ (if t1(q) = ⊥ or t2(q) = ⊥, then t1(q.@l) 6= t2(q.@l),

which would contradict T |= Σ). Let x = t1(q), p be the position of (x,@l) in T and

a = t1(q.@l). Let ā0 be the vector in Ω(T, p) containing no variables. Given that

t1(q) 6= t2(q) and none of these values is ⊥, for every b ∈ [1, k] − {a}, T(b,ā0) 6|= Σ. Thus,

for every b ∈ [1, k] − {a}, P (b | ā0) = 0. Now a straightforward application of Lemma

3.4.10 implies

InfT (p | Σ) = lim
k→∞

Inf
k
T (p | Σ)/ log k < 1.

This concludes the proof.

Chapter 7. XNF: A Normal Form for XML Documents 161

2) ⇒ 3) Let (D,Σ) be an XML specification in XNF, T ∈ inst(D,Σ), p ∈ Pos(T)

and a ∈ N+ − adom(T). We prove that Tp←a |= Σ.

Assume, to the contrary, that Tp←a 6|= Σ. Then there exists a FD X → q ∈ Σ such

that Tp←a 6|= X → q. Thus, there exists t′1, t
′
2 ∈ tuplesD(Tp←a) such that t′1(q

′) = t′2(q
′)

and t′1(q
′) 6= ⊥, for every q′ ∈ X, and t′1(q) 6= t′2(q). Assume that these tuples were

generated from tuples t1, t2 ∈ tuplesD(T). Given that a ∈ N+ − adom(T), t1(q
′) = t2(q

′)

and t1(q
′) 6= ⊥, for every q′ ∈ X, and, therefore, t1(q) = t2(q), since T |= Σ. If q is an

element path, then t′1(q) = t1(q) and t′2(q) = t2(q), since Tp←a is constructed from T by

modifying only the values of attributes. Thus, t′1(q) = t′2(q), a contradiction. Assume

that q is an attribute path of the form q1.@l. In this case, X → q1.@l is a nontrivial

FD in Σ and, therefore, X → q1 ∈ (D,Σ)+, since (D,Σ) is in XNF. We conclude that

t1(q1) = t2(q1). Given that q1 is an element path, as in the previous case we conclude

that t′1(q1) = t′2(q1). Hence, t′1(q1.@l) = t′2(q1.@l), again a contradiction.

3) ⇒ 1) Let T ∈ inst(D,Σ) and p ∈ Pos(T). We have to prove that InfT (p | Σ) = 1.

To show this, it suffices to prove that

lim
k→∞

Inf
k
T (p | Σ)

log k
≥ 1. (7.1)

Let n = |Pos(T)| and k > 2n such that T ∈ inst k(D,Σ). If ā ∈ Ω(T, p) and var(ā) is

the set of variables mentioned in ā, then for every a ∈ [1, k] − adom(T),

|SAT k
Σ(T(a,ā))| ≥ (k − 2n)|var(ā)|

since by hypothesis one can replace values in positions of ā one by one, provided that

each position gets a fresh value. Thus, given that
∑

b∈[1,k] |SAT k
Σ(T(b,ā))| ≤ k|var(ā)|+1, for

every a ∈ [1, k] − adom(T) and every ā ∈ Ω(T, p), we have:

P (a | ā) ≥
(k − 2n)|var(ā)|

k|var(ā)|+1
=

1

k
(1 −

2n

k
)|var(ā)|. (7.2)

Functional dependencies are generic constraints. Thus, for every a, b ∈ [1, k] − adom(T)

and every ā ∈ Ω(T, p), P (a | ā) = P (b | ā). Hence, for every a ∈ [1, k] − adom(T) and

every ā ∈ Ω(T, p):

P (a | ā) ≤
1

k − |adom(T)|
≤

1

k − n
. (7.3)

In order to prove (7.1), we need to establish a lower bound for Inf
k
T (p | Σ). We do this

by using (7.2) and (7.3) as follows: Given the term P (a | ā) log 1
P (a|ā)

, we use (7.2) and

Chapter 7. XNF: A Normal Form for XML Documents 162

(7.3) to replace P (a | ā) and log 1
P (a|ā)

by smaller terms, respectively. More precisely,

Inf
k
T (p | Σ) =

∑

ā∈Ω(T,p)

(

P (ā)
∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)

)

≥
1

2n−1

∑

a∈[1,k]−adom(T)

∑

ā∈Ω(T,p)

1

k
(1 −

2n

k
)|var(ā)| log(k − n)

=
1

2n−1
log(k − n)

1

k

∑

a∈[1,k]−adom(I)

n−1∑

i=0

(
n− 1

i

)

(1 −
2n

k
)i

=
1

2n−1
log(k − n)

1

k

∑

a∈[1,k]−adom(I)

((1 −
2n

k
) + 1)n−1

≥
1

2n−1
log(k − n)

1

k
(k − n) (2 −

2n

k
)n−1

=
1

2n−1
log(k − n) (1 −

n

k
) 2n−1 (1 −

n

k
)n−1

= log(k − n) (1 −
n

k
)n.

Therefore,
Inf

k
T (p|Σ)

log k
≥ log(k−n)

log k
(1 − n

k
)n. Since limk→∞

log(k−n)
log k

(1 − n
k
)n = 1, (7.1) follows.

This concludes the proof. 2

The theory of XML constraints and normal forms is not nearly as advanced as its rela-

tional counterparts, but we have demonstrated here that the definition of well-designed

schemas works well for the existing normal form based on FDs; thus, it could be used to

test other design criteria for XML when they are proposed.

7.5 Normalization Algorithms

The goal of this section is to show how to transform a DTD D and a set of FDs Σ into

a new specification (D′,Σ′) that is in XNF and contains the same information.

Throughout the section, we assume that the DTDs are non-recursive. This can be

done without any loss of generality. Notice that in a recursive DTD D, the set of all

paths is infinite. However, a given set of FDs Σ only mentions a finite number of paths,

which means that it suffices to restrict one’s attention to a finite number of “unfoldings”

of recursive rules.

We make an additional assumption that all the FDs are of the form:

{q, p1.@l1, . . . , pn.@ln} → p. That is, they contain at most one element path on the

Chapter 7. XNF: A Normal Form for XML Documents 163

left-hand side. Note that all the FDs we have seen so far are of this form. While con-

straints of the form {q, q′, . . .} are not forbidden, they appear to be quite unnatural (in

fact it is very hard to come up with a reasonable example where they could be used).

Furthermore, even if we have such constraints, they can be easily eliminated. To do so,

we create a new attribute @l, remove {q, q′} ∪ S → p and replace it by q′.@l → q′ and

{q, q′.@l} ∪ S → p.

We shall also assume that paths do not contain the symbol S (since p.S can always

be replaced by a path of the form p.@l).

7.5.1 The Decomposition Algorithm

In this section, we present an algorithm for converting an XML schema into a new

schema in XNF. This algorithm combines two basic ideas presented in the introduction

of this chapter: creating a new element type, and moving an attribute. It should be

noted that the former step resembles the decomposition step of BCNF normalization

algorithms (see Section 2.1.3). The more we apply this step, the less expensive it is to

update XML documents since they contain less redundancy, and the more expensive it

is to query them since the original document has to be recomposed. Depending on how

important are these operations, the user can choose not to apply the algorithm until

a schema in XNF is obtained; instead he/she can apply a few steps of the algorithm

or even use a completely unnormalized XML schema. In general, the right amount of

normalization, both in the relational and in the XML cases, should depend on a query

workload. The problem of finding this amount is an optimization problem that should

take into account the cost of reconstructing the original database. In relational databases,

this cost is associated with the cost of performing joins between different tables, which

is a well studied problem. In the case of XML, how to measure this cost is not so clear

as it depends on performing queries in an XML query language like XQuery [BCF+],

which is under development and does not have a well studied cost model. To the best

of our knowledge, the problem of finding the right amount of normalization has received

very little attention in the database community, and there are only a few papers on the

subject [SS82]. This problem and, in particular, the problem of measuring the cost of

reconstructing XML documents are out of the scope of this dissertation, and they are

interesting problems for future research.

It should also be noted that since decomposition and recomposition are in general

Chapter 7. XNF: A Normal Form for XML Documents 164

expensive operations, the normalization algorithm presented in this section also includes a

simpler step that moves attributes in XML specifications. This step takes into account the

hierarchical structure of XML documents, and it does not decompose the original schema.

The decomposition step is only applied when this step cannot be applied. We have found

real applications where this simple step can be used to solve some normalization problems

(e.g. DBLP [Ley]) and, thus, we expect it to be used in practice to avoid expensive

recompositions.

For presenting the algorithm and proving its losslessness, we make the following as-

sumption: if X → p.@l is an FD that causes a violation of XNF, then every time that

p.@l is not null, every path in X is not null. This will make our presentation simpler,

and then at the end of the section we will show how to eliminate this assumption.

Given a DTD D and a set of FDs Σ, a nontrivial FD S → p.@l is called anomalous,

over (D,Σ), if it violates XNF; that is, S → p.@l ∈ (D,Σ)+ but S → p 6∈ (D,Σ)+. A

path on the right-hand side of an anomalous FD is called an anomalous path, and the

set of all such paths is denoted by AP(D,Σ).

Next we present the two steps of the XNF decomposition algorithm: creating a new

element type, and moving an attribute.

Moving attributes

Let D = (E, A, P, R, r) be a DTD and Σ a set of FDs over D. Assume that (D,Σ)

contains an anomalous FD q → p.@l, where q ∈ EPaths(D). For example, the DBLP

database shown in example 7.1.2 contains an anomalous FD of this form:

db.conf .issue → db.conf .issue.inproceedings.@year . (7.4)

To eliminate the anomalous FD, we move the attribute @l from the set of attributes of

the last element of p to the set of attributes of the last element of q, as shown in the

following figure

r

@l

last(p)

@m

last(q)

p
q

For instance, to eliminate the anomalous functional dependency (7.4) we move the at-

tribute @year from the set of attributes of inproceedings to the set of attributes of issue.

Chapter 7. XNF: A Normal Form for XML Documents 165

Formally, the new DTD D[p.@l := q.@m], where @m is an attribute, is defined to be

(E, A′, P, R′, r), where A′ = A∪ {@m}, R′(last(q)) = R(last(q))∪ {@m}, R′(last(p)) =

R(last(p)) − {@l} and R′(τ ′) = R(τ ′) for each τ ′ ∈ E − {last(q), last(p)}.

After transforming D into a new DTD D[p.@l := q.@m], a new set of functional

dependencies is generated. Formally, the set of FDs Σ[p.@l := q.@m] over D[p.@l :=

q.@m] consists of all FDs S1 → S2 ∈ (D,Σ)+ with S1 ∪ S2 ⊆ paths(D[p.@l := q.@m]).

Observe that the new set of FDs does not include the functional dependency q → p.@l

and, thus, it contains a smaller number of anomalous paths, as we show in the following

proposition.

Proposition 7.5.1 Let D be a DTD, Σ a set of FDs over D, q → p.@l an anomalous

FD, with q ∈ EPaths(D), D′ = D[p.@l := q.@m], where @m is not an attribute of

last(q), and Σ′ = Σ[p.@l := q.@m]. Then AP(D′,Σ′) $ AP(D,Σ).

Proof: First, we prove (by contradiction) that q.@m 6∈ AP(D′,Σ′). Suppose that

S ′ ⊆ paths(D′) and S ′→ q.@m ∈ (D′,Σ′)+ is a nontrivial functional dependency. Assume

that S ′ → q 6∈ (D′,Σ′)+. Then there is an XML tree T ′ such that T ′ |= (D′,Σ′) and T ′

contains tree tuples t1, t2 such that t1.S
′ = t2.S

′, t1.S
′ 6= ⊥ and t1.q 6= t2.q. Given that

there is no a constraint in Σ′ including the path q.@m, the XML tree T ′′ constructed

from T ′ by giving two distinct values to t1.q.@m and t2.q.@m conforms to D′, satisfies

Σ′ and does not satisfy S ′ → q.@m, a contradiction. Hence, q.@m 6∈ AP(D′,Σ′).

Second, we prove that for every S1 ∪ S2 ⊆ paths(D′) − {q.@m}, (D,Σ) ` S1 → S2

if and only if (D′,Σ′) ` S1 → S2, and, thus, by considering the previous paragraph we

conclude that AP(D′,Σ′) ⊆ AP(D,Σ). Let S1∪S2 ⊆ paths(D′)−{q.@m}. By definition

of Σ′, we know that if (D,Σ) ` S1 → S2, then (D′,Σ′) ` S1 → S2 and, therefore, we only

need to prove the other direction. Assume that (D,Σ) 6` S1 → S2. Then there exists an

XML tree T such that T |= (D,Σ) and T 6|= S1 → S2. Define an XML tree T ′ from T

by assigning arbitrary values to q.@m and removing the attribute @l from last(p). Then

T ′ |= (D′,Σ′) and T ′ 6|= S1 → S2, since all the paths mentioned in Σ′ ∪ {S1 → S2} are

included in paths(D′) − {q.@m}. Thus, (D′,Σ′) 6` S1 → S2.

To conclude the proof we note that p.@l ∈ AP(D,Σ) and p.@l 6∈ AP(D′,Σ′), since

p.@l 6∈ paths(D′). Therefore, AP(D′,Σ′) $ AP(D,Σ). 2

Chapter 7. XNF: A Normal Form for XML Documents 166

Creating new element types

Let D = (E, A, P, R, r) be a DTD and Σ a set of FDs over D. Assume that (D,Σ)

contains an anomalous FD {q, p1.@l1, . . . , pn.@ln} → p.@l, where q ∈ EPaths(D) and n ≥

1. For example, the university database shown in example 7.1.1 contains an anomalous

FD of this form (considering name.S as an attribute of student):

{courses, courses.course.taken by .student .@sno} →

courses.course.taken by .student .name.S. (7.5)

To eliminate the anomalous FD, we create a new element type τ as a child of the last

element of q, we make τ1, . . ., τn its children, where τ1, . . ., τn are new element types,

we remove @l from the list of attributes of last(p) and we make it an attribute of τ and

we make @l1, . . ., @ln attributes of τ1, . . ., τn, respectively, but without removing them

from the sets of attributes of last(p1), . . ., last(pn), as shown in the following figure.

. . .

. . .

r

τ

@ln@l1

τ1 τn

p1

last(p1)last(pn)

@l

@ln @l1

@l

pn
q

last(q)

last(p)

p

For instance, to eliminate the anomalous functional dependency (7.5), in example 7.1.1

we create a new element type info as a child of courses, we remove name.S from student

and we make it an “attribute” of info, we create an element type number as a child of info

and we make @sno its attribute. We note that we do not remove @sno as an attribute of

student. Formally, if τ, τ1, . . . , τn are element types which are not in E, the new DTD,

denoted by D[p.@l := q.τ [τ1.@l1, . . . , τn.@ln,@l]], is (E ′, A, P ′, R′, r), where E ′ = E∪{τ,

τ1, . . . , τn} and

1. if P (last(q)) is a regular expression s, then P ′(last(q)) is defined as the concate-

nation of s and τ ∗, that is (s, τ ∗). Furthermore, P ′(τ) is defined as the concate-

Chapter 7. XNF: A Normal Form for XML Documents 167

nation of τ ∗1 , . . ., τ ∗n, P
′(τi) = ε, for each i ∈ [1, n], and P ′(τ ′) = P (τ ′), for each

τ ′ ∈ E − {last(q)}.

2. R′(τ) = {@l}, R′(τi) = {@li}, for each i ∈ [1, n], R′(last(p)) = R(last(p)) − {@l}

and R′(τ ′) = R(τ ′) for each τ ′ ∈ E − {last(p)}.

After transforming D into a new DTD D′ = D[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l]], a

new set of functional dependencies is generated. Formally, Σ[p.@l := q.τ [τ1.@l1, . . . ,

τn.@ln,@l]] is a set of FDs over D′ defined as the union of the sets of constraints defined

in 1., 2. and 3.:

1. S1 → S2 ∈ (D,Σ)+ with S1 ∪ S2 ⊆ paths(D′).

2. Each FD over q, pi, pi.@li (i ∈ [1, n]) and p.@l is transferred to τ and its children.

That is, if S1∪S2 ⊆ {q, p1, . . . , pn, p1.@l1, . . . , pn.@ln, p.@l} and S1 → S2 ∈ (D,Σ)+,

then we include an FD obtained from S1 → S2 by changing pi to q.τ.τi, pi.@li to

q.τ.τi.@li, and p.@l to q.τ.@l.

3. {q, q.τ.τ1.@l1, . . . , q.τ.τn.@ln} → q.τ , and {q.τ, q.τ.τi.@li} → q.τ.τi for i ∈ [1, n]
1.

We are not interested in applying this transformation to an arbitrary anomalous FD, but

rather to a minimal one. To understand the notion of minimality for XML FDs, we first

introduce this notion for relational databases. Let R be a relation schema containing

a set of attributes U and Σ be a set of FDs over R. If (R,Σ) is not in BCNF, then

there exist pairwise disjoint sets of attributes X, Y and Z such that U = X ∪ Y ∪ Z,

Σ ` X → Y and Σ 6` X → A, for every A ∈ Z. In this case we say that X → Y is

an anomalous FD. To eliminate this anomaly, a decomposition algorithm splits relation

R into two relations: S(X, Y) and T (X,Z). A desirable property of the new schema is

that S or T is in BCNF. We say that X → Y is a minimal anomalous FD if S(X, Y)

is in BCNF, that is, S(X, Y) does not contain an anomalous FD. This condition can be

defined as follows: X → Y is minimal if there are no pairwise disjoint sets X ′, Y ′ ⊆ U

such that X ′ ∪ Y ′ $ X ∪ Y , Σ ` X ′ → Y ′ and Σ 6` X ′ → X ∪ Y .

In the XML context, the definition of minimality is similar in the sense that we

expect the new element types τ , τ1, . . ., τn form a structure not containing anomalous

1If ⊥ can be a value of p.@l in tuplesD(T), the definition must be modified slightly, by letting P ′(τ)
be τ∗

1
, . . . , τ∗n , (τ ′|ε), where τ ′ is fresh, making @l an attribute of τ ′, and modifying the definition of FDs

accordingly.

Chapter 7. XNF: A Normal Form for XML Documents 168

elements. However, the definition of minimality is more complex to account for paths

used in FDs. We say that {q, p1.@l1, . . . , pn.@ln} → p0.@l0 is (D,Σ)-minimal if there

is no anomalous FD S ′ → pi.@li ∈ (D,Σ)+ such that i ∈ [0, n] and S ′ is a subset of

{q, p1, . . . , pn, p0.@l0, . . . , pn.@ln} such that |S ′ |≤ n and S ′ contains at most one element

path.

Proposition 7.5.2 Let D be a DTD, Σ a set of FDs over D and

{q, p1.@l1, . . . , pn.@ln} → p.@l a (D,Σ)-minimal anomalous FD, where q ∈ EPaths(D)

and n ≥ 1. If D′ = D[p.@l := q.τ [τ1.@l1, . . . , τn.@ln,@l]], where τ , τ1, . . ., τn

are new element types, and Σ′ = Σ[p.@l := q.τ [τ1.@l1, . . . , τn.@ln,@l]], then

AP(D′,Σ′) $ AP(D,Σ).

Proof: First, we prove that q.τ.τi.@li 6∈ AP(D′,Σ′), for each i ∈ [1, n]. Suppose that

there is S ′ ⊆ paths(D′) such that S ′ → q.τ.τi.@li is a nontrivial functional dependency in

(D′,Σ′)+ for some i ∈ [1, n]. Notice that q.τ.τi 6∈ S ′, since q.τ.τi → q.τ.τi.@li is a trivial

functional dependency. Let S1 ∪ S2 = S ′, where (1) S1 ∩ ({q, q.τ.@l} ∪ {q.τ.τj | j ∈ [1, n]

and j 6= i} ∪ {q.τ.τj.@lj | j ∈ [1, n]}) = ∅ and (2) S2 ⊆ {q, q.τ.@l} ∪ {q.τ.τj | j ∈ [1, n]

and j 6= i} ∪ {q.τ.τj.@lj | j ∈ [1, n]}.

If there is no an XML tree T ′ conforming to D′, satisfying Σ′ and containing a

tuple t such that t.S1 ∪ S2 6= ⊥, then S1 ∪ S2 → q.τ.τi must be in (D′,Σ′)+. In this

case q.τ.τi.@li 6∈ AP(D′,Σ′). Suppose that there is an XML tree T ′ conforming to D′,

satisfying Σ′ and containing a tuple t such that t.S1 ∪ S2 6= ⊥. In this case, by definition

of Σ′ it is straightforward to prove that S2 → q.τ.τi.@li is in (D′,Σ′)+.

By definition of Σ′ and (D,Σ)-minimality of {q, p1.@l1, . . . , pn.@ln} → p.@l, one of

the following is true: (1) S2 → q.τ.τi.@li is not an anomalous FD, (2) {q, q.τ.τ1.@l1, . . . ,

q.τ.τn.@ln, q.τ.@l} = S2 ∪{q.τ.τi.@li} or (3) {q.τ.τj, q.τ.τ1.@l1, . . . , q.τ.τn.@ln, q.τ.@l} =

S2 ∪ {q.τ.τi.@li} for some j 6= i (j ∈ [1, n]). In the first case, q.τ.τi.@li 6∈ AP(D′,Σ′), so

we assume that either (2) or (3) holds. We prove that S2 → q.τ.τi must be in (D′,Σ′)+.

If either (2) or (3) holds, then S2 ∪ {q.τ.τi.@li} → q.τ is in (D′,Σ′)+ since {q, q.τ.τ1.@l1,

. . . , q.τ.τn.@ln} → q.τ is in Σ′ and q.τ.τk → q is a trivial FD in D′, for every k ∈ [1, n].

Let T ′ be an XML tree conforming to D′ and satisfying Σ′ and t1, t2 ∈ tuplesD′(T ′) such

that t1.S2 = t2.S2 and t1.S2 6= ⊥. Given that S2 → q.τ.τi.@li ∈ (D′,Σ′)+, t1.q.τ.τi.@li =

t2.q.τ.τi.@li. If t1.q.τ.τi.@li = ⊥, then t1.q.τ.τi = t2.q.τ.τi = ⊥. If t1.q.τ.τi.@li 6= ⊥, then

t1.q.τ = t2.q.τ and t1.q.τ 6= ⊥, because S2 ∪ {q.τ.τi.@li} → q.τ ∈ (D′,Σ′)+. But, by

definition of Σ′, {q.τ, q.τ.τi.@li} → q.τ.τi ∈ Σ′, and, therefore, t1.q.τ.τi = t2.q.τ.τi. In any

Chapter 7. XNF: A Normal Form for XML Documents 169

case, we conclude that t1.q.τ.τi = t2.q.τ.τi and, therefore, S2 → q.τ.τi ∈ (D′,Σ′)+. Thus,

q.τ.τi.@li 6∈ AP(D′,Σ′).

In a similar way, we conclude that q.τ.@l 6∈ AP(D′,Σ′).

Second, we prove that for every S3 ∪ S4 ⊆ paths(D) − {p.@l}, (D,Σ) ` S3 → S4

if and only if (D′,Σ′) ` S3 → S4, and, thus, by considering the previous paragraph we

conclude that AP(D′,Σ′) ⊆ AP(D,Σ). Let S3 ∪ S4 ⊆ paths(D) − {p.@l}. By definition

of Σ′, we know that if (D,Σ) ` S3 → S4, then (D′,Σ′) ` S3 → S4 and, therefore, we only

need to prove the other direction. Assume that (D,Σ) 6` S3 → S4. Then there exists an

XML tree T such that T |= (D,Σ) and T 6|= S3 → S4. Define an XML tree T ′ from T

by assigning ⊥ to q.τ and removing the attribute @l from last(p). Then T ′ |= (D′,Σ′)

and T ′ 6|= S3 → S4, since all the paths mentioned in Σ′ ∪ {S3 → S4} are included in

paths(D) − {p.@l}. Thus, (D′,Σ′) 6` S3 → S4.

To conclude the proof we note that p.@l ∈ AP(D,Σ) and p.@l 6∈ AP(D′,Σ′), since

p.@l 6∈ paths(D′). Therefore, AP(D′,Σ′) $ AP(D,Σ). 2

The algorithm

The algorithm applies the two transformations presented in the previous sections until

the schema is in XNF, as shown in Figure 7.4. Step (2) of the algorithm corresponds

to the “moving attributes” rule applied to an anomalous FD q → p.@l and step (3)

corresponds to the “creating new element types” rule applied to an anomalous FD {q,

p1.@l1, . . . , pn.@ln} → p.@l. We choose to apply first the “moving attributes” rule since

the other one involves minimality testing .

The algorithm shows in Figure 7.4 involves FD implication, that is, testing mem-

bership in (D,Σ)+ (and consequently testing XNF and (D,Σ)-minimality), which is

described in Section 6.3. Since each step reduces the number of anomalous paths (Propo-

sitions 7.5.1 and 7.5.2), we obtain:

Theorem 7.5.3 The XNF decomposition algorithm terminates, and outputs a specifica-

tion (D,Σ) in XNF.

Even if testing FD implication is infeasible, one can still decompose into XNF, although

the final result may not be as good as with using the implication. A slight modification

of the proof of Propositions 7.5.1 and 7.5.2 yields:

Chapter 7. XNF: A Normal Form for XML Documents 170

(1) If (D,Σ) is in XNF then return (D,Σ), otherwise go to step (2).

(2) If there is an anomalous FD X → p.@l and q ∈ EPaths(D) such that q ∈ X and

q → X ∈ (D,Σ)+, then:

(2.1) Choose a fresh attribute @m

(2.2) D := D[p.@l := q.@m]

(2.3) Σ := Σ[p.@l := q.@m]

(2.4) Go to step (1)

(3) Choose a (D,Σ)-minimal anomalous FD X → p.@l,

where X = {q, p1.@l1, . . . , pn.@ln}

(3.1) Create fresh element types τ , τ1, . . ., τn

(3.2) D := D[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l]]

(3.3) Σ := Σ[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l]]

(3.4) Go to step (1)

Figure 7.4: XNF decomposition algorithm.

Proposition 7.5.4 Consider a simplification of the XNF decomposition algorithm which

only consists of step (3) applied to FDs S → p.@l ∈ Σ, and in which the definition of

Σ[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l]] is modified by using Σ instead of (D,Σ)+. Then

such an algorithm always terminates and its result is in XNF.

7.5.2 Lossless Decomposition

To prove that our transformations do not lose any information from the documents, we

define the concept of lossless decompositions similarly to the relational notion of “cal-

culously dominance” from [Hul86]. That notion requires the existence of two relational

algebra queries that translate back and forth between two relational schemas. Adapting

the definition of [Hul86] is problematic in our setting, as no XML query language yet has

the same “yardstick” status as relational algebra for relational databases.

Instead, we define (D′,Σ′) as a lossless decomposition of (D,Σ) if there is a mapping

f from paths in the DTD D′ to paths in the DTD D such that for every tree T |= (D,Σ),

there is a tree T ′ |= (D′,Σ′) such that T and T ′ agree on all the paths with respect to

this mapping f .

Chapter 7. XNF: A Normal Form for XML Documents 171

This can be done formally using the relational representation of XML trees via the

tuplesD(·) operator. Given DTDs D and D′, a function f : paths(D′) → paths(D) is a

mapping from D′ to D if f is onto and a path p is an element path in D′ if and only

if f(p) is an element path in D. Given tree tuples t ∈ T (D) and t′ ∈ T (D′), we write

t ≡f t
′ if for all p ∈ paths(D′) − EPaths(D′), t′.p = t.f(p). Given nonempty sets of tree

tuples X ⊆ T (D) and X ′ ⊆ T (D′), we let X ≡f X
′ if for every t ∈ X, there exists

t′ ∈ X ′ such that t ≡f t
′, and for every t′ ∈ X ′, there exist t ∈ X such that t ≡f t

′.

Finally, if T and T ′ are XML trees such that T � D and T ′ � D′, we write T ≡f T
′ if

tuplesD(T) ≡f tuplesD′(T ′).

Definition 7.5.5 Given XML specifications (D,Σ) and (D′,Σ′), (D′,Σ′) is a lossless

decomposition of (D,Σ), written (D,Σ) ≤lossless (D′,Σ′), if there exists a mapping f from

D′ to D such that for every T |= (D,Σ) there is T ′ |= (D′,Σ′) such that T ≡f T
′.

In other words, all information about a document conforming to (D,Σ) can be recovered

from some document that conforms to (D′,Σ′).

It follows immediately from the definition that ≤lossless is transitive. Furthermore, we

show that every step of the normalization algorithm is lossless.

Proposition 7.5.6 If (D′,Σ′) is obtained from (D,Σ) by using one of the transforma-

tions from the normalization algorithm, then (D,Σ) ≤lossless (D′,Σ′).

Proof: We consider the two steps of the normalization algorithm, and for each step

generate a mapping f . The proofs that those mappings satisfy the conditions of Definition

7.5.5 are straightforward.

1. Assume that the “moving attribute” transformation was used to generate (D ′,Σ′).

Then D′ = D[p.@l := q.@m], Σ′ = Σ[p.@l := q.@m] and q → p.@l is an anomalous

FD in (D,Σ)+. In this case, the mapping f from D′ to D is defined as follows. For

every p′ ∈ paths(D′) − {q.@m}, f(p′) = p′, and f(q.@m) = p.@l.

2. Assume that the “creating new element types” transformation was used to gen-

erate (D′,Σ′). Then (D′,Σ′) was generated by considering a (D,Σ)-minimal

anomalous FD {q, p1.@l1, . . . , pn.@ln} → p.@l. Thus, D′ = D[p.@l :=

q.τ [τ1.@l1, . . . , τn.@ln,@l]] and Σ′ = Σ[p.@l := q.τ [τ1.@l1, . . . , τn.@ln,@l]]. In

this case, the mapping f from D′ to D is defined as follows: f(q.τ) = p,

f(q.τ.@l) = p.@l, f(q.τ.τi) = pi, f(q.τ.τi.@li) = pi.@li and f(p′) = p′ for the

remaining paths p′ ∈ paths(D′).

Chapter 7. XNF: A Normal Form for XML Documents 172

2

Thus, if (D′,Σ′) is the output of the normalization algorithm on (D,Σ), then

(D,Σ) ≤lossless (D′,Σ′).

In relational databases, the definition of lossless decomposition indicates how to trans-

form instances containing redundant information into databases without redundancy.

This transformation uses the projection operator. Notice that Definition 7.5.5 also in-

dicates a way of transforming XML documents to generate well-designed documents: If

(D,Σ) ≤lossless (D′,Σ′), then for every T |= (D,Σ) there exists T ′ |= (D′,Σ′) such that T

and T ′ contain the same data values. The mappings T 7→ T ′ corresponding to the two

transformations of the normalization algorithm can be implemented in an XML query

language, more precisely, using XQuery FLWOR2 expressions. We use transformations

of documents shown in Section 7.1 for illustration; the reader will easily generalize them

to produce the general queries corresponding to the transformations of the normalization

algorithm.

Example 7.5.7 Assume that the DBLP database is stored in a file dblp.xml. As shown

in example 7.1.2, this document can contain redundant information since year is stored

multiple times for a given conference. We can solve this problem by applying the “moving

attribute” transformation and making year an attribute of issue. This transformation

can be implementing by using the following FLWOR expression:

let $root := document("dblp.xml")/db

<db>

{ for $co in $root/conf

<conf>

<title> { $co/title/text() } </title>,

{ for $is in $co/issue

let $value := $is/inproceedings[position() = 1]/@year

<issue year="{ $value }">

{ for $in in $is/inproceedings

<inproceedings key="{ $in/@key }" pages="{ $in/@pages }">

{ for $au in $in/author

<author> { $au/text() } </author>,

<title> { $in/title/text() } </title>

2FLWOR stands for for, let, where, order by, and return.

Chapter 7. XNF: A Normal Form for XML Documents 173

}

</inproceedings>

}

</issue>

}

</conf>

}

</db>

The XPath expression $is/inproceedings[position() = 1]/@year is used to retrieve

for every issue the value of the attribute year in the first paper in that issue. For every

issue this number is stored in a variable $value and it becomes the value of its attribute

year: <issue year="{ $value }">. 2

Example 7.5.8 Assume that the XML document shown in Figure 7.1 is stored in a

file university.xml. This document stores information about courses in a university

and it contains redundant information since for every student taking a course we store

his/her name. To solve this problem, we split the information about names and grades

by creating an extra element type, info, for student information. This transformation

can be implemented as follows.

let $root := document("university.xml")/courses

<courses>

{ for $co in $root/course

<course> {-- Query that removes name as a child of student --} </course>,

for $na in distinct-values($root/course/taken_by/student/name/text())

<info>

{ for $nu in distinct-values($root/course/taken_by/student[name/text() =

$na]/@sno)

<number sno="{ $nu }">,

<name> { $na } </name>

}

</info>

}

</courses>

We omitted the query that removes name as a child of student since it can be done as

in the previous example. 2

Chapter 7. XNF: A Normal Form for XML Documents 174

7.5.3 Justifying the Decomposition Algorithm

We now show how the information-theoretic measure of Section 7.4 can be used for

reasoning about normalization algorithms at the instance level. The results shown here

state that after each step of the decomposition algorithm, the amount of information in

each position does not decrease.

We shall prove a result similar to Theorem 3.5.1 of Section 3.5. To state the result,

we need to explain how each step of the decomposition algorithm induces a mapping

between positions in two XML trees. Recall that this algorithm eliminates anomalous

functional dependencies by using two basic steps: moving an attribute, and creating a

new element type.

Let (D,Σ) be an XML specification and T ∈ inst(D,Σ). Assume that (D,Σ) is not

in XNF. Let (D′,Σ′) be an XML specification obtained by executing one step of the

normalization algorithm. Every step of this algorithm induces a natural transformation

on XML documents. One of the properties of the algorithm is that for each normalization

step that transforms T ∈ inst(D,Σ) into T ′ ∈ inst(D′,Σ′), one can find a map πT ′,T :

Pos(T ′) → 2Pos(T) that associates each position in the new tree T ′ with one or more

positions in the old tree T , as shown below.

1) Assume that D′ = D[q.@l := q′.@m] and, therefore, q′ → q.@l is an anomalous FD

in (D,Σ). In this case, an XML tree T ′ is constructed from T as follows. For every

t ∈ tuplesD(T), define a tree tuple t′ by using the following rule: t′(q′.@m) = t(q.@l)

and for every q′′ ∈ paths(D)−{q.@l}, t′(q′′) = t(q′′). Then T ′ is an XML tree whose

tree tuples are {t′ | t ∈ tuplesD(T)}. Furthermore, positions in t′ are associated to

positions in t as follows: if p′ = (t′(q′),@m), then πT ′,T (p′) = {(t(q),@l)}; otherwise,

πT ′,T (p′) = {p′}.

2) Assume that (D′,Σ′) was generated by considering a (D,Σ)-minimal anoma-

lous FD {q′, q1.@l1, . . . , qn.@ln} → q.@l. Thus, D′ = D[q.@l :=

q′.a′′[a1.@l1, . . . , an.@ln,@l]]. In this case, an XML tree T ′ is constructed from

T as follows. For every t ∈ tuplesD(T), define a tree tuple t′ by using the fol-

lowing rule: t′(q′.a′′) is a fresh node identifier, t′(q′.a′′.@l) = t(q.@l), t′(q′.a′′.ai)

is a fresh node identifier (i ∈ [1, n]), t′(q.a′′.qi.@li) = t(qi.@li) and for every

q′′ ∈ paths(D)−{q.@l}, t′(q′′) = t(q′′). Then T ′ is an XML tree whose tree tuples are

{t′ | t ∈ tuplesD(T)}. Furthermore, positions in t′ are associated to positions in t as

Chapter 7. XNF: A Normal Form for XML Documents 175

follows. If p′ = (t′(q′.a′′),@l), then πT ′,T (p′) = {(t(q),@l)}. If p′ = (t′(q′.a′′.ai),@li),

then (t(qi),@li) ∈ πT ′,T (p′) (note that in this case πT ′,T (p) may contain more than

one position). For any other position p′ in t′, πT ′,T (p′) = {p′}.

Similarly to the relational case, we can now show the following.

Theorem 7.5.9 Let T be an XML tree that conforms to a DTD D and satisfies a set of

FDs Σ, and let T ′ ∈ inst(D′,Σ′) result from T by applying one step of the normalization

algorithm. Let p′ ∈ Pos(T ′). Then

InfT ′(p′ | Σ′) ≥ max
p∈πT ′,T (p′)

InfT (p | Σ).

Proof: Let (D,Σ) be an XML specification and T ∈ inst(D,Σ). Assume that (D,Σ)

is not in XNF. Let (D′,Σ′) be an XML specification obtained by executing one step of

the normalization algorithm. We have to prove that for every p′ ∈ Pos(T ′), InfT ′(p′ |

Σ′) ≥ maxp∈πT ′,T (p′) InfT (p | Σ). This can be done in exactly the same way as the proof

of Theorem 3.5.1. First, by using the same proof as for Lemma 3.5.2, we show that the

same results holds for XML trees. Using this, we show the following:

1) Assume D′ = D[q.@l := q′.@m] and q′ → q.@l is an anomalous FD over (D,Σ).

Let a′ be the last element of q′ and p′ ∈ Pos(T ′). If p′ is of the form (x,@m), where

att(x,@m) = a′, then InfT ′(p′ | Σ′) = 1 and, therefore, the theorem trivially holds.

Otherwise, πT ′,T (p′) = {p′} and it can be shown that InfT ′(p′ | Σ′) ≥ InfT (p′ | Σ)

by using the same proof as that of Lemma 3.5.3.

2) Assume that D′ = D[q.@l := q′.a′′[a1.@l1, . . . , an.@ln,@l]] and {q′, q1.@l1, . . . ,

qn.@ln} → q.@l is a (D,Σ)-minimal anomalous FD. Let p′ ∈ Pos(T ′). If p′ is the

position in T ′ of some value reachable from the root by following path q ′.a′′.@l or

q′.a′′.ai.@li, for some i ∈ [1, n], then InfT ′(p′ | Σ′) = 1 since {q′, q1.@l1, . . . , qn.@ln}

→ q.@l is (D,Σ)-minimal. Thus, in this case the theorem trivially holds. Otherwise,

πT ′,T (p′) = {p′} and again it can be shown that InfT ′(p′ | Σ′) ≥ InfT (p′ | Σ) by

using the same proof as for Lemma 3.5.3.

This completes the proof of the theorem. 2

Just like in the relational case, one can define effective steps of the algorithm as those in

which the above inequality is strict for at least one position, and show that (D,Σ) is in

XNF if and only if no decomposition algorithm is effective in (D,Σ).

Chapter 7. XNF: A Normal Form for XML Documents 176

7.5.4 Eliminating additional assumptions

Finally, we have to show how to get rid of the additional assumption that for every

anomalous FD X → p.@l, every time that p.@l is not null, every path in X is not null.

We illustrate this by a simple example.

Assume that D is the DTD shown in Figure 7.5 (a). Every XML tree conforming to

this DTD has as root an element of type r which has a child of type either A or B and an

arbitrary number of elements of type C, each of them containing an attribute @l. Let Σ

be the set of FDs {r.A→ r.C.@l}. Then, (D,Σ) is not in XNF since (D,Σ) 6` r.A→ r.C.

r

@l

(a)

r

r1 | r2

@l1 @l2

(b)

A |B C∗

A1 C∗
1 B2 C∗

2

Figure 7.5: Splitting a DTD.

If we want to eliminate the anomalous FD r.A→ r.C.@l, we cannot directly apply the

algorithm presented in Section 7.5.1, since this FD does not satisfy the basic assumption

made in that section; it could be the case that r.C.@l is not null and r.A is null. To

solve this problem we transform (D,Σ) into a new XML specification (D′,Σ′) that is

essentially equivalent to (D,Σ) and satisfies the assumption made in Section 7.5.1. The

new XML specification is constructed by splitting the disjunction. More precisely, DTD

D′ is defined as the DTD shown in Figure 7.5 (b). This DTD contains two copies of

the DTD D, one of then containing element type A, denoted by A1, and the other one

containing element type B, denoted by B2. The set of functional dependencies Σ′ is

constructed by including the FD r.A → r.C.@l in both DTDs, that is, Σ′ = {r.A1 →

r.C1.@l1, r.A2 → r.C2.@l2}.

In the new specification (D′,Σ′), the user chooses between having either A or B by

choosing between either r1 or r2. We note that the new FD r.A2 → r.C2.@l2 is trivial

and, therefore, to normalize the new specification we only have to take into account FD

r.A1 → r.C1.@l1. This functional dependency satisfies the assumption made in Section

7.5.1, so we can use the decomposition algorithm presented in that section.

Chapter 7. XNF: A Normal Form for XML Documents 177

It is straightforward to generalize the methodology presented in the previous example

for any DTD. In particular, if we have an arbitrary regular expression s in a DTD

D = (E, A, P, R, r) and we have to split it into one regular expression containing an

element type τ ∈ E and another one not containing this symbol, we consider regular

expressions s ∩ (E∗τE∗) and s− (E∗τE∗).

7.6 A Third Normal Form for XML

In Section 2.1, we show that BCNF has the advantage of eliminating redundant in-

formation and has the disadvantage of requiring certain functional dependencies to be

maintained only as inter-relational constraints. Thus, sometimes in practice (especially

in those cases where enforcing integrity of the database is crucial) one aims at 3NF since

the decompositions based on 3NF are dependency preserving.

In Section 7.2.1, we have shown a direct mapping of relational databases into XML

where there exists a one-to-one correspondence between functional dependencies in these

two models. For XML specifications generated by this mapping, the XNF decomposition

algorithm works as the BCNF decomposition algorithm and, thus, the former algorithm

cannot be dependency preserving. Even though we have not proved that XNF is not

dependency preserving, we strongly believe that this is the case. Hence, the situation for

XML is similar to the one for BCNF; XNF eliminates redundant information but it is

not dependency preserving in general.

A natural question at this point is how does a third normal form for XML look like.

Although in this dissertation we have not studied 3NF for XML, we have given all the

necessary components to define such a normal form: an XML functional dependency

language and a syntactic condition to extend BCNF to XML. In fact, in [Kol05] Kolahi

uses these two elements to propose a third normal form for XML (X3NF). We give here

a brief description of X3NF.

To extend 3NF to XML, Kolahi extends to the notion of prime attribute (see Section

2.1.3) to the case of paths. More precisely, a path p.@l is a prime path if there exists a

nontrivial FD S → q ∈ (D,Σ)+ such that q is an element path, p.@l ∈ S and S−{p.@l} →

q 6∈ (D,Σ)+. Then an XML specification (D,Σ) is in X3NF if and only if for every non-

trivial FD S → p.@l ∈ (D,Σ)+, we have that S → p ∈ (D,Σ)+ or p.@l is a prime path

[Kol05]. It remains to be proved that the decompositions based on X3NF definition are

dependency preserving.

Chapter 7. XNF: A Normal Form for XML Documents 178

7.7 Related Work

Embley and Mok [EM01a] introduced an XML normal form defined in terms of func-

tional dependencies, multi-valued dependencies and inclusion constraints. Although that

normal form was also called XNF, the approach of [EM01a] was very different from ours.

The normal form of [EM01a] was defined in terms of two conditions: XML specifications

must not contain redundant information with respect to a set of constraints, and the

number of schema trees (see Section 7.2.2) must be minimal. The normalization process

is similar to the ER approach in relational databases. A conceptual-model hypergraph

is constructed to model the real world and an algorithm produces an XML specification

in XNF. It is proved in Section 7.4 that an XML specification given by a DTD D and a

set Σ of XML functional dependencies is in XNF if and only if no XML tree conforming

to D and satisfying Σ contains redundant information. Thus, for the class of functional

dependencies defined in this chapter, the XML normal form introduced in [EM01a] is

more restrictive than our XML normal form.

Normal forms for extended context-free grammars, similar to the Greibach normal

form for CFGs, were considered in [AGW01]. These, however, do not necessarily guar-

antee good XML design.

Lee et al. [LLL02] introduced a functional dependency language for XML (see Section

6.5 for a precise description). The normalization problem is not considered in this paper.

Chapter 8

Conclusions

The goal of this dissertation was to find principles for good XML data design, and

algorithms to produce such designs. Seeking for such principles, we realized that while

in the relational world the criteria for being well designed are usually very intuitive and

clear to state, they become more obscure when one moves to more complex data models

such as XML. Thus, our first task was to find criteria for good data design based on the

intrinsic properties of a data model rather than tools built on top of it, such as query

and update languages. We were motivated by the justification of normal forms for XML,

where usual criteria based on update anomalies or existence of lossless decompositions

are not applicable until we have standard and universally accepted query and update

languages. We proposed to use techniques from information theory, and we developed a

measure of information content of elements in a database with respect to a set of data

dependencies.

This information-theoretic measure is the main contribution of this dissertation. As

in the case of relational databases, principles for good XML data design are expressed as

normal forms that well-designed databases are expected to satisfy. As such, normal forms

play a central role in the design of XML databases. The information-theoretic measure

proposed in this dissertation is a general and robust tool that can used in different ways to

study normal forms in data models such as the relational model and XML. The following

are some applications of this tool.

• First, it can be employed to justify normal forms. In fact, in this dissertation we

showed that it characterizes well-known relational normal forms such as BCNF

and 4NF as precisely those corresponding to good designs; furthermore, it justifies

others, more complicated ones, involving join dependencies. We then showed that

179

Chapter 8. Conclusions 180

for the case of constraints given by XML functional dependencies, it equates the

XML normal form XNF –proposed in this dissertation– with good designs.

• Second, the information-theoretic measure can be used to justify normalization

algorithms. Indeed, in this dissertation we looked at information-theoretic justifi-

cations for normalization algorithms for relational and XML databases.

• Third, our measure can be employed to aid in the process of finding a normal form

for a class of data dependencies. Recall that, as in the case of relational databases,

the design of XML databases is guided by the semantic information encoded in data

dependencies. As such, normal forms are usually defined as syntactic conditions

on classes of data dependencies. In general, finding these syntactic conditions is a

nontrivial problem, especially in XML. Our information-theoretic approach offers

a simple solution to this problem. Regardless of how complicated is an XML data

dependency language, the information-theoretic approach can be immediately used

to provide a normal form for this class of dependencies. Thus, even if no syntactic

normal form is known for a class of data dependencies, we can still check whether

an XML database containing this type of dependencies is well-designed.

Certainly, the information-theoretic approach proposed in this dissertation does not solve

all the problems related to the design of XML databases. In particular, once a normal

form has been justified by this approach, there are two additional problems that need

to be solved to make it practical: testing whether a database is in this normal form and

transforming a database into an equivalent one in this normal form.

In this dissertation, we propose a language for XML functional dependencies and a

normal form, XNF, for XML databases containing this type of dependencies. Since our

goal was to find algorithms to produce good designs, apart from providing an information-

theoretic justification for XNF, we also investigate the complexity of testing XNF and

transforming an XML database into one in XNF. More specifically, we identify some

natural cases whether this problem can be solved efficiently and we present an algorithm

for converting any XML schema into an equivalent one in XNF. Thus, the second main

contribution of this dissertation is to have shown that XNF can be used in practice, since

(1) the functional dependency language used in XNF is simple and expressive, (2) in

most practical cases we can test XNF efficiently, and (3) there exists an algorithm for

transforming any XML schema into an equivalent one in XNF.

Chapter 9

Future Work

The following is a list of problems for future research.

• In this dissertation, we propose an information-theoretic measure that takes into

account both instance and schema constraints, unlike the measures studied before

[Lee87, CP87, DR00, LL03].

Our information-theoretic approach can be used to measure the information content

of a position of an instance. It would be interesting to take a step forward, and

define an information-theoretic measure that can be used to reason about database

schemas. In particular, it would be interesting to connect this new approach with

that of Hull [Hul86], where information capacities of two relational schemas can

be compared based on the existence of queries in some standard language that

translates between them. For two classes of well-designed schemas (those with

no constraints, and with keys only), being information-capacity equivalent means

being identical [AIR99, Hul86] (up to renaming and re-ordering of attributes and

relations), and we would like to see if this connection extends beyond the classes of

schemas studied by Hull [Hul86] and Albert et al. [AIR99].

• It is an interesting problem for future research to extend the set-theoretic measure

presented in Section 2.1.4 to reason about normalization algorithms and normal

forms that allow redundant information.

• It would be interesting to characterize 3NF by using our information-theoretic

measure. So far, a little is known about 3NF. For example, as in the case of BCNF,

it is possible to prove that the synthesis approach for generating 3NF databases does

181

Chapter 9. Future Work 182

not decrease the amount of information in each position. Furthermore, given that

3NF does not necessarily eliminate all redundancies, one can find 3NF databases

where the amount of information in some positions is not maximal.

• It remains as an open problem what is the exact complexity of the functional

dependency implication problem. In this dissertation, we prove that this problem

is NP-hard, and can be solved in co-NEXPTIME, and we also identify some classes

of DTDs for which this problem can be solved efficiently. It would be interesting to

close the complexity gap and to identify other natural classes of DTDs for which

this problem is tractable.

• As prevalent as BCNF is, it does not solve all the problems of relational schema

design, and one cannot expect XNF to address all shortcomings of DTD design. It

would be interesting to extend XNF to more powerful normal forms, in particular

by taking into account more expressive functional dependency languages and mul-

tivalued dependencies, which are naturally induced by the tree structure of XML

documents.

• The XNF decomposition algorithm introduced in Section 7.5.1 can be improved

in various ways. In particular, it would be interesting to work on making it more

efficient.

• Finally, it would be interesting to study the complexity of checking consistency for

more complex XML constraints, e.g., those defined in terms of XPath [CD], and

more complex schema specifications such as the type system of XQuery [BCF+].

In particular, it would be interesting to considered the case of extended DTDs

[PV00], which precisely characterize unranked tree automata [Tha67, BKMW01].

Our lower bounds apply to those settings, but it is open whether upper bounds

remain intact.

Bibliography

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From

Relations to Semistructured Data and XML. Morgan Kaufmann, 2000.

[ABU79] Alfred Aho, Catriel Beeri, and Jeffrey D. Ullman. The Theory of Joins in

Relational Databases. ACM Transactions on Database Systems, 4(3):297–

314, 1979.

[AFL02a] Marcelo Arenas, Wenfei Fan, and Leonid Libkin. On Verifying Consistency

of XML Specifications. In Proceedings of the Twenty-first ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages

259–270, 2002.

[AFL02b] Marcelo Arenas, Wenfei Fan, and Leonid Libkin. What’s Hard about XML

Schema Constraints? In Proceedings of the 13th International Conference

on Database and Expert Systems Applications, pages 269–278, 2002.

[AGW01] Jurgen Albert, Dora Giammarresi, and Derick Wood. Normal Form Algo-

rithms for Extended Context-free Grammars. Theoretical Computer Science,

267(1-2):35 – 47, 2001.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[AIR99] Joseph Albert, Yannis Ioannidis, and Raghu Ramakrishnan. Equivalence of

Keyed Relational Schemas by Conjunctive Queries. Journal of Computer

and System Sciences, 58(3):512–534, 1999.

[AL02] Marcelo Arenas and Leonid Libkin. A Normal Form for XML Documents.

In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, pages 85–96, 2002.

183

Bibliography 184

[AL03] Marcelo Arenas and Leonid Libkin. An Information-Theoretic Approach

to Normal Forms for Relational and XML Data. In Proceedings of the

Twenty-second ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, pages 15 – 26, 2003.

[AL04] Marcelo Arenas and Leonid Libkin. A Normal Form for XML Documents.

ACM Transactions on Database Systems, 29(1):195–232, 2004.

[AL05] Marcelo Arenas and Leonid Libkin. An Information-Theoretic Approach

to Normal Forms for Relational and XML Data. Journal of the ACM,

52(2):246–283, 2005.

[AM84] Paolo Atzeni and Nicola Morfuni. Functional Dependencies in Relations

with Null Values. Information Porcessing Letters, 18(4):233–238, 1984.

[Arm74] W. W. Armstrong. Dependency Structures of Data Base Relationships. In

Proceedings of the IFIP Congress 74, pages 580–583, 1974.

[ASV01] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Representing and Query-

ing XML with Incomplete Information. In Proceedings of the Twentieth

ACM Symposium on Principles of Database Systems, pages 150 – 161, 2001.

[AV99] Serge Abiteboul and Victor Vianu. Regular Path Queries with Constraints.

Journal of Computer and System Sciences, 58(3):428–452, 1999.

[BB79] Catriel Beeri and Philip Bernstein. Computational Problems Related to

the Design of Normal Form Relational Schemas. ACM Transactions on

Database Systems, 4(1):30–59, 1979.

[BBG78] Catriel Beeri, Philip Bernstein, and Nathan Goodman. A Sophisticate’s

Introduction to Database Normalization Theory. In Fourth International

Conference on Very Large Data Bases, pages 113–124, 1978.

[BCF+] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,

Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Lan-

guage. W3C Working Draft, April 2005. http://www.w3.org/TR/xquery.

[BCF+03] Michael Benedikt, Chee Yong Chan, Wenfei Fan, Juliana Freire, and Rajeev

Rastogi. Capturing both Types and Constraints in Data Integration. In

Bibliography 185

Proceedings of the 2003 ACM SIGMOD International Conference on Man-

agement of Data, pages 277–288, 2003.

[BDB79] Joachim Biskup, Umeshwar Dayal, and Philip Bernstein. Synthesizing In-

dependent Database Schemas. In Proceedings of the 1979 ACM SIGMOD

International Conference on Management of Data, pages 143–151, 1979.

[BDF+01a] Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and

Wang Chiew Tan. Keys for XML. In Proceedings of the Tenth Interna-

tional World Wide Web Conference, pages 201–210, 2001.

[BDF+01b] Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and

Wang Chiew Tan. Reasoning about Keys for XML. In Proceedings of the

Eighth International Workshop on Database Programming Languages, 2001.

[BDF+02] Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and

Wang Chiew Tan. Keys for XML. Computer Networks, 39(5):473–487,

2002.

[BDF+03] Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and

Wang Chiew Tan. Reasoning about Keys for XML. Information Systems,

28(8):1037–1063, 2003.

[Bee80] Catriel Beeri. On the Membership Problem for Functional and Multival-

ued Dependencies in Relational Databases. ACM Transactions on Database

Systems, 5(3):241–259, 1980.

[Ber76] Philip Bernstein. Synthesizing Third Normal Form Relations from Func-

tional Dependencies. ACM Transactions on Database Systems, 1(4):277–

298, 1976.

[Ber79] Philip Bernstein. Errata: Computational Problems Related to the Design of

Normal Form Relational Schemas. ACM Transactions on Database Systems,

4(3):396, 1979.

[BFH77] Catriel Beeri, Ronald Fagin, and John Howard. A Complete Axiomatiza-

tion for Functional and Multivalued Dependencies in Database Relations. In

Proceedings of the 1977 ACM SIGMOD International Conference on Man-

agement of Data, pages 47–61. ACM, 1977.

Bibliography 186

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the

Desirability of Acyclic Database Schemes. Journal of the ACM, 30(3):479–

513, 1983.

[BFSW01] Peter Buneman, Wenfei Fan, Jérôme Siméon, and Scott Weinstein. Con-

straints for Semi-structured Data and XML. SIGMOD Record, 30(1):47–45,

2001.

[BFW98] Peter Buneman, Wenfei Fan, and Scott Weinstein. Path Constraints in

Semistructured and Structured Databases. In Proceedings of the Seventeenth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, pages 129–138, 1998.

[BG80] Philip Bernstein and Nathan Goodman. What does Boyce-Codd Normal

Form Do? In Sixth International Conference on Very Large Data Bases,

pages 245–259, 1980.

[BGL+99] Chaitanya K. Baru, Amarnath Gupta, Bertram Ludäscher, Richard Mar-

ciano, Yannis Papakonstantinou, Pavel Velikhov, and Vincent Chu. XML-

Based Information Mediation with MIX. In Proceedings of th 1999 ACM

SIGMOD International Conference on Management of Data, pages 597–599,

1999.

[BJO91] Peter Buneman, Achim Jung, and Atsushi Ohori. Using Powerdomains to

Generalize Relational Databases. Theoretical Computer Science, 91(1):23–

55, 1991.

[BKMW01] Anne Bruüggemann-Klein, Makoto Murata, and Derick Wood. Regular Tree

and Regular Hedge Languages over Unranked Alphabets. HKUST Theo-

retical Computer Science Center Research Report; HKUST-TCSC-2001-05,

2001.

[BM99] Catriel Beeri and Tova Milo. Schemas for Integration and Translation of

Structured and Semi-structured Data. In Proceedings of the 7th Interna-

tional Conference on Database Theory, pages 296–313, 1999.

Bibliography 187

[BNdB04] Geert Jan Bex, Frank Neven, and Jan Van den Bussche. DTDs versus XML

Schema: A Practical Study. In Proceedings of the Seventh International

Workshop on the Web and Databases, pages 79–84, 2004.

[Buf93] H. W. Buff. Remarks on Two New Theorems of Date and Fagin. SIGMOD

Record, 22(1):55–56, 1993.

[CD] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0.

W3C Recommendation, November 1999. http://www.w3.org/TR/xpath.

[CFI+00] Michael J. Carey, Daniela Florescu, Zachary G. Ives, Ying Lu, Jayavel

Shanmugasundaram, Eugene J. Shekita, and Subbu N. Subramanian.

XPERANTO: Publishing Object-Relational Data as XML. In Proceedings

of the Third International Workshop on the Web and Databases, pages 105–

110, 2000.

[CFP84] Marco Casanova, Ronald Fagin, and Christos Papadimitriou. Inclusion De-

pendencies and Their Interaction with Functional Dependencies. Journal of

Computer and System Sciences, 28(1):29–59, 1984.

[CGL99] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Repre-

senting and Reasoning on XML Documents: A Description Logic Approach.

Journal of Logic and Computation, 9(3):295–318, 1999.

[Cho02] Byron Choi. What are real DTDs like? In WebDB, pages 43–48, 2002.

[CKV90] Stavros S. Cosmadakis, Paris C. Kanellakis, and Moshe Y. Vardi.

Polynomial-Time Implication Problems for Unary Inclusion Dependencies.

Journal of the ACM, 37(1):15–46, 1990.

[Cla] James Clark. XSL transformations (XSLT) version 1.0. w3c recommenda-

tion, november 1999. http://www.w3.org/TR/xslt.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM, 13(6):377–387, 1970.

[Cod72] E. F. Codd. Further Normalization of the Data Base Relational Model. In

Data base systems, pages 33–64. Englewood Cliffs, N.J. Prentice-Hall, 1972.

Bibliography 188

[Cod74] E. F. Codd. Recent Investigations in Relational Data Base Systems. In IFIP

Congress, pages 1017–1021, 1974.

[CP87] Roger Cavallo and Michael Pittarelli. The Theory of Probabilistic

Databases. In Proceedings of 13th International Conference on Very Large

Data Bases, pages 71–81, 1987.

[CT91] Thomas Cover and Joy Thomas. Elements of Information Theory. Wiley-

Interscience, 1991.

[CV85] Ashok Chandra and Moshe Vardi. The Implication Problem for Functional

and Inclusion Dependencies is Undecidable. SIAM Journal on Computing,

14(3):671–677, 1985.

[DF92] C. J. Date and Ronald Fagin. Simple Conditions for Guaranteeing Higher

Normal Forms in Relational Databases. ACM Transactions on Database

Systems, 17(3):465–476, 1992.

[DF93] C. J. Date and Ronald Fagin. Response to ”Remarks on Two New Theorems

of Date and Fagin”. SIGMOD Record, 22(1):57–58, 1993.

[DG84] William Dowling and Jean Gallier. Linear-Time Algorithms for Testing the

Satisfiability of Propositional Horn Formulae. Journal of Logic Program-

ming, 1(3):267–284, 1984.

[DGV99] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved Au-

tomata Generation for Linear Temporal Logic. In Proceedings of the 11th

International Conference on Computer Aided Verification, pages 249–260,

1999.

[DR00] Mehmet Dalkilic and Edward Robertson. Information Dependencies. In Pro-

ceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems, pages 245–253, 2000.

[ebX] ebXML. Business Process Specification Schema v1.01.

http://www.ebxml.org/specs/.

Bibliography 189

[EM01a] David Embley and Wai Yin Mok. Developing XML Documents with Guar-

anteed “Good” Properties. In Proceedings of the Twentieth International

Conference on Conceptual Modeling, pages 426–441, 2001.

[EM01b] Anat Eyal and Tova Milo. Integrating and Customizing Heterogeneous E-

commerce Applications. The VLDB Journal, 10(1):16–38, 2001.

[EN99] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Systems.

Addison-Wesley, 3rd edition, 1999.

[Fag77] Ronald Fagin. Multivalued Dependencies and a New Normal Form for Re-

lational Databases. ACM Transactions on Database Systems, 2(3):262–278,

1977.

[Fag79] Ronald Fagin. Normal Forms and Relational Database Operators. In Pro-

ceedings of the 1979 ACM SIGMOD International Conference on Manage-

ment of Data, pages 153–160. ACM, 1979.

[Fag81] Ronald Fagin. A Normal Form for Relational Databases That Is Based on

Domians and Keys. ACM Transactions on Database Systems, 6(3):387–415,

1981.

[FK99] Daniela Florescu and Donald Kossmann. Storing and Querying XML Data

using an RDMBS. IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

[FL01] Wenfei Fan and Leonid Libkin. On XML Integrity Constraints in the Pres-

ence of DTDs. In Proceedings of the Twentieth ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, pages 114 – 125,

2001.

[FL02] Wenfei Fan and Leonid Libkin. On XML integrity constraints in the presence

of DTDs. Journal of the ACM, 49(3):368–406, 2002.

[FMU82] Ronald Fagin, Alberto Mendelzon, and Jeffrey Ullman. A Simplified Univer-

sal Relation Assumption and Its Properties. ACM Transactions on Database

Systems, 7(3):343–360, 1982.

Bibliography 190

[FS00] Wenfei Fan and Jérôme Siméon. Integrity Constraints for XML. In Pro-

ceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems, pages 23–34, 2000.

[FS03] Wenfei Fan and Jérôme Siméon. Integrity constraints for XML. Journal of

Computer and System Sciences, 66(1):254–291, 2003.

[FSTG85] Patrick Fischer, Lawrence Saxton, Stan Thomas, and Dirk Van Gucht. In-

teractions between Dependencies and Nested Relational Structures. Journal

of Computer and System Sciences, 31(3):343–354, 1985.

[FT83] Patrick Fischer and Don-Min Tsou. Whether a Set of Multivalued Depen-

dencies Implies a Join Dependency is NP-Hard. SIAM Journal on Comput-

ing, 12(2):259–266, 1983.

[FV86] Ronald Fagin and Moshe Vardi. The Theory of Data Dependencies: a Sur-

vey. Mathematics of Information Processing, Proceedings of Symposia in

Applied Mathematics, American Mathematical Society, 34:19–72, 1986.

[Gal82] Zvi Galil. An Almost Linear-Time Algorithm for Computing a Dependency

Basis in a Relational Database. Journal of the ACM, 29(1):96–102, 1982.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[GMUW01] Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom. Database Sys-

tems: The Complete Book. Prentice Hall, 1st edition, 2001.

[GMWK02] Robert Givan, David A. McAllester, Carl Witty, and Dexter Kozen.

Tarskian Set Constraints. Information and Computation, 174(2):105–131,

2002.

[GN02] Evgueni Goldberg and Yakov Novikov. BerkMin: A Fast and Robust Sat-

Solver. In Proceedings of the 2002 Design, Automation and Test in Europe

Conference and Exposition, pages 142–149, 2002.

[Gol91] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1991.

Bibliography 191

[GR83] Gösta Grahne and Kari-Jouko Räihä. Database Decomposition into Fourth

Normal Form. In 9th International Conference on Very Large Data Bases,

pages 186–196, 1983.

[Gra91] Gosta Grahne. The Problem of Incomplete Information in Relational

Databases. Springer, 1991.

[Gun92] Carl Gunter. Semantics of Programming Languages: Structures and Tech-

niques. MIT Press, 1992.

[HD99] Carmem Hara and Susan Davidson. Reasoning about Nested Functional

Dependencies. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, pages 91–100, 1999.

[HJ99] Justin Higgins and Rick Jelliffe. QAML Version 2.4.

http://xml.ascc.net/resource/qaml-xml.dtd, 1999.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference

Manual. Addison-Wesley, 2003.

[HU79] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory.

Addison-Wesley, 1979.

[Hul86] Richard Hull. Relative Information Capacity of Simple Relational Database

Schemata. SIAM Journal on Computing, 15(3):856–886, 1986.

[Hun00] David Hunter. Beginning XML. Wrox Press, 1st edition, 2000.

[IJ84] Tomasz Imielinski and Witold Lipski Jr. Incomplete Information in Rela-

tional Databases. Journal of the ACM, 31(4):761–791, 1984.

[JF82] Jiann Jou and Patrick Fischer. The Complexity of Recognizing 3NF Relation

Schemes. Information Processing Letters, 14(4):187–190, 1982.

[Kan90] Paris Kanellakis. Elements of Relational Database Theory. In Handbook

of Theoretical Computer Science, Volume B, pages 1075-1144, MIT Press,

1990.

Bibliography 192

[KM00] Carl-Christian Kanne and Guido Moerkotte. Efficient Storage of XML Data.

In Proceedings of the 16th International Conference on Data Engineering,

page 198, 2000.

[Kol05] Solmaz Kolahi. Dependency-Preserving Normalization of Relational and

XML Data. In Proceedings of the 10th International Symposium on Database

Programming Languages, 2005.

[LC00] Dongwon Lee and Wesley W. Chu. Constraints-Preserving Transformation

from XML Document Type Definition to Relational Schema. In Proceedings

of the 19th International Conference on Conceptual Modeling, pages 323–

338, 2000.

[Lee87] Tony Lee. An Information-Theoretic Analysis of Relational Databases -

Part I: Data Dependencies and Information Metric. IEEE Transactions on

Software Engineering, 13(10):1049–1061, 1987.

[Ley] Michael Ley. DBLP. http://www.informatik.uni-trier.de/~ley/

db/index.html.

[LJ82] Carol Helfgott LeDoux and Douglas Stott Parker Jr. Reflections on Boyce-

Codd Normal Form. In Eigth International Conference on Very Large Data

Bases, pages 131–141, 1982.

[LJM+] Andrew Layman, Edward Jung, Eve Maler, Henry S. Thompson, Jean Paoli,

John Tigue, Norbert H. Mikula, and Steve De Rose. XML-Data. W3C Note,

January 1998. http://www.w3.org/TR/1998/NOTE-XML-data-0105/.

[LL98] Mark Levene and George Loizou. Axiomatisation of Functional Dependen-

cies in Incomplete Relations. Theoretical Computer Science, 206(1-2):283–

300, 1998.

[LL03] Mark Levene and George Loizou. Why is the Snowflake Schema a Good

Data Warehouse Design? Information Systems, 28(3):225–240, 2003.

[LLD04] Tok Wang Ling, Mong-Li Lee, and Gillian Dobbie. Semistructured Database

Design. Springer, 2004.

Bibliography 193

[LLL02] Mong-Li Lee, Tok Wang Ling, and Wai Lup Low. Designing Functional De-

pendencies for XML. In Proceedings of the Eighth International Conference

on Extending Database Technology, pages 124–141, 2002.

[Mak77] Akifumi Makinouchi. A Consideration on Normal Form of Not-Necessarily-

Normalized Relation in the Relational Data Model. In Proceedings of the

Third International Conference on Very Large Data Bases, pages 447–453,

1977.

[Mat93] Yuri Matiyasevich. Hilbert’s 10th Problem. MIT Press, 1993.

[Men79] Alberto Mendelzon. On Axiomatizing Multivalued Dependencies in Rela-

tional Databases. Journal of the ACM, 26(1):37–44, 1979.

[Mit83] John Mitchell. The Implication Problem for Functional and Inclusion De-

pendencies. Information and Control, 56(3):154–173, 1983.

[MMS79] David Maier, Alberto Mendelzon, and Yehoshua Sagiv. Testing Implications

of Data Dependencies. ACM Transactions on Database Systems, 4(4):455–

469, 1979.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings

of the 38th Design Automation Conference, pages 530–535, 2001.

[MNE96] Wai Yin Mok, Yiu-Kai Ng, and David Embley. A Normal Form for Precisely

Characterizing Redundancy in Nested Relations. ACM Transactions on

Database Systems, 21(1):77–106, 1996.

[Mok02] Wai Yin Mok. A Comparative Study of Various Nested Normal Forms. IEEE

Transactions on Knowledge and Data Engineering, 14(2):369–385, 2002.

[MR89] Heikki Mannila and Kari-Jouko Räihä. Practical Algorithms for Finding

Prime Attributes and Testing Normal Forms. In Proceedings of the Eighth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, pages 128–133, 1989.

[MS93] Jim Melton and Alan R. Simon. Understanding the New SQL: A Complete

Guide. Morgan Kaufmann, 1993.

Bibliography 194

[MSY81] David Maier, Yehoshua Sagiv, and Mihalis Yannakakis. On the Complexity

of Testing Implications of Functional and Join Dependencies. Journal of the

ACM, 28(4):680–695, 1981.

[Nev99] Frank Neven. Extensions of Attribute Grammars for Structured Document

Queries. In Proceedings of the 7th International Workshop on Database

Programming Languages, pages 99–116, 1999.

[Nev02] Frank Neven. Automata Theory for XML Researchers. SIGMOD Record,

31(3):39–46, 2002.

[ÖY87] Meral Özsoyoglu and Li-Yan Yuan. A New Normal Form for Nested Rela-

tions. ACM Transactions on Database Systems, 12(1):111–136, 1987.

[ÖY89] Meral Özsoyoglu and Li-Yan Yuan. On the Normalization in Nested Rela-

tional Databases. In Nested Relations and Complex Objects, pages 243–271.

Springer, 1989.

[Pap81] Christos Papadimitriou. On the Complexity of Integer Programming. Jour-

nal of the ACM, 28(4):765–768, 1981.

[Pap94] Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PBGG89] Jan Paredaens, Paul De Bra, Marc Gyssens, and Dirk Van Gucht. The Struc-

ture of the Relational Database Model, chapter 5, pages 132–155. Springer-

Verlag, 1989.

[PDST00] Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. A chase

too far? In SIGMOD Conference, pages 273–284, 2000.

[Pet89] Sergey Petrov. Finite Axiomatisation of Languages for Representation of

System Properties: Axiomatization of Dependencies. Information Sciences,

47(3):339–372, 1989.

[PV00] Yannis Papakonstantinou and Victor Vianu. DTD Inference for Views of

XML Data. In Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, pages 35–46, 2000.

Bibliography 195

[RKS88] Mark Roth, Henry Korth, and Abraham Silberschatz. Extended Algebra and

Calculus for Nested Relational Databases. ACM Transactions on Database

Systems, 13(4):389–417, 1988.

[Sci81] Edward Sciore. Real-World MVD’s. In Proceedings of the 1981 ACM SIG-

MOD International Conference on Management of Data, pages 121–132,

1981.

[SDPF81] Yehoshua Sagiv, Claude Delobel, D. Scott Parker, and Ronald Fagin. An

Equivalence Between Relational Database Dependencies and a Fragment of

Propositional Logic. Jornal of the ACM, 28(3):435–453, 1981.

[Sha48] Claude Shannon. A Mathematical Theory of Communication. Bell System

Technical Journal, 27:379–423 (Part I), 623–656 (Part II), 1948.

[SMD03] Arijit Sengupta, Sriram Mohan, and Rahul Doshi. XER - Extensible Entity

Relationship Modeling. In Proceedings of the XML 2003 Conference, 2003.

[SS82] Mario Schkolnick and Paul G. Sorenson. The Effects of Denormalisation on

Database Performance. Australian Computer Journal, 14(1):12–18, 1982.

[SSB+00] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J.

Carey, Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Effi-

ciently Publishing Relational Data as XML Documents. In Proceedings of

26th International Conference on Very Large Data Bases, pages 65–76, 2000.

[STZ+99] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David

DeWitt, and Jeffrey Naughton. Relational Databases for Querying XML

Documents: Limitations and Opportunities. In Proceedings of 25th Inter-

national Conference on Very Large Data Bases, pages 302–314, 1999.

[Suc01] Dan Suciu. On Database Theory and XML. SIGMOD Record, 30(3):39–45,

2001.

[TBMM] Henry S. Thompson, David Beech, Murray Maloney, and Noah

Mendelsohn. XML Schema. W3C Recommendation, October 2004.

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

Bibliography 196

[TF82] Don-Min Tsou and Patrick Fischer. Decomposition of a Relation Schema

into Boyce-Codd Normal Form. SIGACT News, 14(3):23–29, 1982.

[Tha67] James W. Thatcher. Characterizing Derivation Trees of Context-Free Gram-

mars through a Generalization of Finite Automata Theory. Journal of Com-

puter and System Sciences, 1(4):317–322, 1967.

[TIHW01] Igor Tatarinov, Zachary Ives, Alon Halevy, and Daniel Weld. Updating

XML. In Proceedings of the 2001 ACM SIGMOD International Conference

on Management of Data, pages 413–424, 2001.

[Ull88] Jeffrey Ullman. Principles of Database and Knowledge-Base Systems, Vol-

ume I. Computer Science Press, 1988.

[Via01] Victor Vianu. A Web Odyssey: from Codd to XML. In Proceedings of the

Twenteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 1–15, 2001.

[Vin97] Millist Vincent. A Corrected 5NF Definition for Relational Database Design.

Theoretical Computer Science, 185(2):379–391, 1997.

[Vin99] Millist Vincent. Semantic Foundations of 4NF in Relational Database De-

sign. Acta Informatica, 36(3):173–213, 1999.

[VW94] Moshe Vardi and Pierre Wolper. Reasoning about Infinite Computations.

Information and Computation, 115(1):1–37, 1994.

[Wed92] Grant Weddell. Reasoning about Functional Dependencies Generalized for

Semantic Data Models. ACM Transactions on Database Systems, 17(1):32–

64, 1992.

[Wid99] Jennifer Widom. Data Management for XML: Research Directions. IEEE

Data Engineering Bulletin, 22(3):44–52, 1999.

[WLLD01] Xiaoying Wu, Tok Wang Ling, Mong-Li Lee, and Gillian Dobbie. Designing

Semistructured Databases Using ORA-SS Model. In Proceedings of the 2nd

International Conference on Web Information Systems Engineering, pages

171–180, 2001.

Bibliography 197

[YÖ86] Li-Yan Yuan and Meral Özsoyoglu. Unifying Functional and Multivalued

Dependencies for Relational Database Design. In Proceedings of the Fifth

ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,

pages 183–190, 1986.

[YP04] Cong Yu and Lucian Popa. Constraint-based xml query rewriting for data

integration. In SIGMOD Conference, pages 371–382, 2004.

[Zan82] Carlo Zaniolo. A New Normal Form for the Design of Relational Database

Schemata. ACM Transactions on Database Systems, 7(3):489–499, 1982.

[ZM02] Lintao Zhang and Sharad Malik. The Quest for Efficient Boolean Satis-

fiability Solvers. In Proceedings of the 14th International Conference on

Computer Aided Verification, pages 17–36, 2002.

Appendix A

Proofs from Chapter 3

A.1 Proof of Lemma 3.4.4

We start with the following simple but useful observation. The proof follows immediately

from genericity.

Claim A.1.1 Let Σ be a set of generic integrity constraints over a relational schema S,

I ∈ instk(S,Σ) and p ∈ Pos(I). Assume that a, b ∈ [1, k] − adom(I). Then for every

ā ∈ Ω(I, p), |SAT k
Σ(I(a,ā))| = |SAT k

Σ(I(b,ā))|.

Next, we need the following.

Claim A.1.2 Let Σ be a set of integrity constraints over a relational schema S, I ∈

inst(S,Σ), p ∈ Pos(I) and ā ∈ Ω(I, p). Then for every a ∈ N+, there exists k0 ∈ N+ and

a polynomial qa(k) such that |SAT k
Σ(I(a,ā))| = qa(k), for every k > k0.

Proof: Let the variables of ā be v1, . . . , vl. Fix a > 0, and let m be the maximum

value in adom(I) ∪ {a}. Define k0 to be m + l + 1. By genericity, |SAT k0
Σ (I(a,ā))| = 0

implies |SAT k
Σ(I(a,ā))| = 0 for all k > k0, so we assume there is at least one substitution

in SAT k0
Σ (I(a,ā)).

We consider the set of all triples P = (X, σX ,Π) where

• X ⊆ {1, . . . , l},

• σX : {vi | i ∈ X} → [1, m], and

• Π is a partition on {1, . . . , l} −X.

198

Appendix A. Proofs from Chapter 3 199

Given σ ∈ SAT k
Σ(I(a,ā)), we write σ ∼ P if for every i ∈ X, σ(vi) = σX(vi), for every

i 6∈ X, σ(vi) 6∈ [1, m], and for every i, j 6∈ X, σ(vi) = σ(vj) iff i and j are in the same

block of Π. Observe that for every σ ∈ SAT k
Σ(I(a,ā)), there exists exactly one triple P

such that σ ∼ P.

Let σ, σ′ ∼ P be two substitutions. From the genericity of Σ we immediately see that

σ(I(a,ā)) |= Σ iff σ′(I(a,ā)) |= Σ. Furthermore, if σ collapses two rows in I(a,ā), then so

does σ′ (since σ(vi) = σ(vj) iff σ′(vi) = σ′(vj)). We conclude that σ ∈ SAT k
Σ(I(a,ā)) iff

σ′ ∈ SAT k
Σ(I(a,ā)).

The number of triples P depends on I, a and ā but not on k. For each P, either all σ

with σ ∼ P belong to SAT k
Σ(I(a,ā)), or none belongs to SAT k

Σ(I(a,ā)). Thus, it will suffice

to show that for every P, there exists a polynomial qPa (k) such that |{σ ∈ SAT k
Σ(I(a,ā)) |

σ ∼ P}| = qPa (k).

The case when no σ with σ ∼ P belongs to SAT k
Σ(I(a,ā)) is trivial: qPa (k) = 0 for all

k. Otherwise, let P = (X, σX ,Π), and let mP be the number of partition blocks of Π.

The number of σ ∼ P is then the number of ways to chose mP distinct ordered elements

in [m+ 1, k], that is

qPa (k) =

mP−1∏

i=0

(k −m− i).

Since m and mP do not depend on k, this concludes the proof of the claim. 2

Proof of Lemma 3.4.4: Let I ∈ inst(S,Σ), p ∈ Pos(I), and ā ∈ Ω(I, p). To prove

this lemma it suffices to show that the following limit exists:

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)
. (A.1)

By Claims A.1.1 and A.1.2, there exists k0 > 0 and polynomials qa(k), for every a ∈

adom(I), and q(k) such that for every k > k0:

1. |SAT k
Σ(I(a,ā))| = qa(k), for every a ∈ adom(I);

2. |SAT k
Σ(I(a,ā))| = q(k), for every a ∈ [1, k] − adom(I).

Let n = |adom(I)| and r(k) = (k − n)q(k) +
∑

a∈adom(I) qa(k). Then (A.1) is equal to

lim
k→∞

1

log k

[
∑

a∈adom(I)

(
qa(k)

r(k)
log

r(k)

qa(k)

)

+ (k − n)
q(k)

r(k)
log

r(k)

q(k)

]

. (A.2)

Appendix A. Proofs from Chapter 3 200

We first show that

lim
k→∞

1

log k

[
∑

a∈adom(I)

qa(k)

r(k)
log

r(k)

qa(k)

]

= 0. (A.3)

Note that degree(r) ≥ degree(qa) for every a ∈ adom(I). If degree(r) >

degree(qa), then clearly limk→∞
qa(k)
r(k)

log r(k)
qa(k)

= 0. If degree(r) = degree(qa),

then limk→∞
qa(k)
r(k)

log r(k)
qa(k)

exists and equals some positive constant ca; hence

limk→∞
1

log k
qa(k)
r(k)

log r(k)
qa(k)

= 0. Thus, (A.3) holds and (A.2) equals

lim
k→∞

[
(k − n)

log k
·
q(k)

r(k)
· log

r(k)

q(k)

]

. (A.4)

By the definition of r, degree(r) ≥ degree(q) + 1. A simple calculation shows that

for degree(r) = degree(q) + 1, (A.4) equals some positive constant that depends on the

coefficients of q and r, and for degree(r) > degree(q)+1, (A.4) equals 0. Hence, the limit

(A.2) always exists, which completes the proof. 2

A.2 Proof of Lemma 3.5.2

Assume that

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)
6= 0. (A.5)

We will show that this limit must be 1.

First note that by (A.5), there exists k0 > 0 such that for every k ≥ k0 and a ∈

[1, k] − adom(I), |SAT k
Σ(I(a,ā))| ≥ 1. If this were not true, then by Claim A.1.1, for

every a ∈ N+ − adom(I), we would have |SAT k
Σ(I(a,ā))| = 0 and, therefore,

∑

a∈[1,k] P (a |

ā) log 1
P (a|ā)

≤ log |adom(I)|. We conclude that

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)
≤ lim

k→∞

log |adom(I)|

log k
= 0,

which contradicts (A.5).

To prove the lemma we need to introduce an equivalence relation on the elements of

ā and prove some basic properties about it. Assume that ‖I‖ = n, n > 0. Let k ≥ k0 be

such that adom(I) $ [1, k]. Given ai, aj ∈ ā, we say that ai and aj are linked in (a, ā),

written as ai ∼ aj, if for every substitution σ : ā → [1, k] such that σ(I(a,ā)) |= Σ, it is

Appendix A. Proofs from Chapter 3 201

the case that σ(ai) = σ(aj). Observe that if ai, aj are constants, then ai ∼ aj iff ai = aj.

It is easy to see that ∼ is an equivalence relation on ā. We say that ai ∈ ā is determined

in (a, ā) if for every pair of substitutions σ1, σ2 : ā → [1, k] such that σ1(I(a,ā)) |= Σ and

σ2(I(a,ā)) |= Σ, it is the case that σ1(ai) = σ2(ai). Notice that if ai is a constant, then

ai is determined in (a, ā). Furthermore, observe that if ai ∼ aj and ai is determined in

(a, ā), then aj is determined in (a, ā). Thus, we can extend the definition for equivalence

classes: [ai]∼ is determined in (a, ā) if ai is determined in (a, ā). We define undet(a, ā)

as the set of all undetermined equivalence classes of ∼:

undet(a, ā) = {[ai]∼ | ai ∈ ā and [ai]∼ is not determined}.

Claim A.2.1

1) For every a ∈ adom(I) and b ∈ [1, k] − adom(I), if there exists a substitution

σ : ā→ [1, k] such that σ(I(b,ā)) |= Σ, then |undet(b, ā)| ≥ |undet(a, ā)|.

2) For every a, b ∈ [1, k] − adom(I), undet(b, ā) = undet(a, ā).

Proof: 1) Let a ∈ adom(I) and b ∈ [1, k] − adom(I). Assume that there exists a

substitution σ : ā → [1, k] such that σ(I(b,ā)) |= Σ. It is easy to see that for every

ai, aj ∈ ā, if ai is determined in (b, ā), then ai is determined in (a, ā), and if ai, aj are

linked in (b, ā), then ai, aj are linked in (a, ā). Thus, |undet(b, ā)| ≥ |undet(a, ā)|.

2) Trivial, by Claim A.1.1. 2

Claim A.2.2 Let a ∈ [1, k] − adom(I). If k > 2n, then |SAT k
Σ(I(a,ā))| ≥ (k −

2n)|undet(a,ā)|.

Proof: To prove this claim, we consider two cases. First assume that ā does not contain

any variable. Then |undet(a, ā)| = 0 and we have to prove that |SAT k
Σ(I(a,ā))| ≥ 1. For

that, it suffices to show that I(a,ā) |= Σ. Towards a contradiction, assume that I(a,ā) 6|= Σ.

Then by Claim A.1.1, |SAT k
Σ(I(b,ā))| = 0, for every b ∈ N+ − adom(I), which contradicts

the existence of k0.

Second assume that ā contains at least one variable. Let σ0 : ā → [1, k] be

a substitution such that σ0(I(a,ā)) |= Σ (such a substitution exists by assumption

(A.5)). Let σ : ā → [1, k] be a substitution such that: (a) σ and σ0 coincide in

determined equivalence classes; (b) for every undetermined class [ai]∼, σ assigns the

same value in [1, k] − (adom(I) ∪ {a}) to each element in this class; (c) for every

Appendix A. Proofs from Chapter 3 202

pair of distinct undetermined classes [ai]∼, [aj]∼, σ(ai) 6= σ(aj). Notice that such

a function exists since k > 2n. Given that σ0(I(a,ā)) |= Σ, we have σ(I(a,ā)) |= Σ.

Thus, |SAT k
Σ(I(a,ā))| is greater than or equal to the number of substitutions with do-

main ā and range contained in [1, k] satisfying conditions (a), (b) and (c). Therefore,

|SAT k
Σ(I(a,ā))| ≥ (k− (n+1))(k− (n+2)) · · · (k− (n+ |undet(a, ā)|)) ≥ (k−2n)|undet(a,ā)|.

This proves the claim. 2

We will use this claim to prove that limk→∞
1

log k

∑

a∈[1,k] P (a | ā) log 1
P (a|ā)

= 1. Let

k ≥ k0 be such that adom(I) ⊆ [1, k] and k > 2n. By Claim A.2.2, for every a ∈

[1, k] − adom(I), |SAT k
Σ(I(a,ā))| ≥ (k − 2n)|undet(a,ā)|. Furthermore, by Claim A.2.1, for

every a ∈ [1, k] − adom(I):

∑

b∈[1,k]

|SAT k
Σ(I(b,ā))| ≤

∑

b∈[1,k]

k|undet(b,ā)| ≤ k|undet(a,ā)|+1

Thus, for every a ∈ [1, k] − adom(I):

P (a | ā) ≥
(k − 2n)|undet(a,ā)|

k|undet(a,ā)|+1
=

1

k
(1 −

2n

k
)|undet(a,ā)|. (A.6)

By Claim A.1.1, for every a, b ∈ [1, k] − adom(I), P (a | ā) = P (b | ā) and, therefore,

P (a | ā) ≤
1

k − |adom(I)|
≤

1

k − n
. (A.7)

Therefore, using (A.6) and (A.7) we conclude that:

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)
≥

∑

a∈[1,k]−adom(I)

1

k
(1 −

2n

k
)|undet(b,ā)| log(k − n)

≥ log(k − n) (1 −
n

k
)(1 −

2n

k
)|undet(b,ā)|,

where b is an arbitrary element in [1, k] − adom(I). Thus,

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)
≥

log(k − n)

log k
(1 −

n

k
)(1 −

2n

k
)|undet(b,ā)|.

It is straightforward to prove that limk→∞[log(k−n)
log k

(1 − n
k
)(1 − 2n

k
)|undet(b,ā)|] = 1. Thus,

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)
≥ 1

and, therefore,

lim
k→∞

1

log k

∑

a∈[1,k]

P (a | ā) log
1

P (a | ā)
= 1,

since
∑

a∈[1,k] P (a | ā) log 1
P (a|ā)

≤ log k. This completes the proof of Lemma 3.5.2.

Appendix B

Proofs from Chapter 5

In this chapter we use the following notations. Referring to an XML tree T = (V , lab,

ele, att, root) conforming to a DTD D = (E, A, P , R, r), for every element type τ ∈ E

and @l ∈ R(τ), values(τ.@l) denotes {x.@l | x ∈ ext(τ)}, the set of all the @l-attribute

values of τ -nodes in T . We write |S| for the cardinality of a set S. Given a DTD D and

a set Σ of constraints, we also use |D| and |Σ| to denote their sizes, respectively. Finally,

we write T |= (D,Σ) instead of T |= D and T |= Σ.

B.1 Proof of Theorem 5.3.1

The proof consists of two PTIME reductions, one for each direction.

a) A reduction from SAT(AC∗,1PK ,FK) to PDE. We first define a class of simplified

DTDs called narrow DTDs, and we explain how to reduce the consistency problem for

AC∗,1PK ,FK -constraints over arbitrary DTDs to that over narrow DTDs. Then we show

how to encode the consistency problem for narrow DTDs and AC∗,1PK ,FK -constraints by a

prequadratic Diophantine system.

We start by explaining the process of narrowing the DTDs. Intuitively, we replace

long “horizontal” regular expressions in P (τ) by shorter ones. Formally, consider a DTD

D = (E, A, P, R, r). D is basically an extended regular grammar (cf. [CGL99, Nev99]);

for each τ ∈ E, P (τ) is a regular expression α and, thus, τ → α can be viewed as the

production rule for τ . We rewrite the regular expression by introducing a set N of new

element types (nonterminals) such that the production rules of the new DTD have one

203

Appendix B. Proofs from Chapter 5 204

of the following forms:

τ → τ1, τ2 τ → τ1 | τ2 τ → τ ∗1 τ → τ ′ τ → S τ → ε

where τ, τ1, τ2 are element types in E ∪ N , τ ′ ∈ E, S is the string type and ε denotes

the empty word. More specifically, we conduct the following “narrowing” process on the

production rule τ → α:

• If α = (α1, α2), then we introduce two new element types τ1, τ2 and replace τ → α

with a new rule τ → τ1, τ2. We proceed to process τ1 → α1 and τ2 → α2 in the

same way.

• If α = (α1|α2), then we introduce two new element types τ1, τ2 and replace τ → α

with a new rule τ → τ1 | τ2. We proceed to process τ1 → α1 and τ2 → α2 in the

same way.

• If α = α∗1, then we introduce a new element type τ1 and replace τ → α with τ → τ ∗1 .

We proceed to process τ1 → α1 in the same way.

• If α is one of τ ′ ∈ E, S or ε, then the rule for τ remains unchanged.

We refer to the set of new element types introduced when processing τ → P (τ) as Nτ

and the set of production rules generated/revised as Pτ . Observe that Nτ ∩E = ∅ for any

τ ∈ E. We define a new DTD DN = (EN , A, PN , RN , r), referred to as the narrowed

DTD of D (or just a narrow DTD if D is clear from the context), where

• EN = E ∪
⋃

τ∈E

Nτ , i.e., all element types of E and new element types introduced

in the narrowing process;

• PN =
⋃

τ∈E

Pτ , i.e., production rules generated/revised in the narrowing process;

• RN(τ) = R(τ) for each τ ∈ E, and RN (τ) = ∅ for each τ ∈ EN − E.

Note that the root element type r and the set A of attributes remain unchanged. More-

over, elements of any type in EN − E do not have any attribute. The only kind of PN

production rules whose right-hand side contains element type of E are of the form τ → τ ′,

where τ ′ ∈ E. It is easy to see that DN is computable in polynomial time.

Obviously, any set Σ of AC∗,1PK ,FK -constraints over D is also a set of AC∗,1PK ,FK -

constraints over the narrow DTD DN of D. The next lemma establishes the connection

between D and DN , which allows us to consider only narrow DTDs from now on.

Appendix B. Proofs from Chapter 5 205

Lemma B.1.1 Let D be a DTD, DN the narrowed DTD of D and Σ a set of AC∗,1PK ,FK -

constraints over D. Then there exists an XML tree T1 such that T1 |= (D,Σ) iff there

exists an XML tree T2 such that T2 |= (DN ,Σ).

Proof: Given an element type τ and a sequence of attributes @l1, . . . ,@ln ∈ R(τ), define

values(τ [@l1, . . . ,@ln]) as {(x.@l1, . . . , x.@ln) | x ∈ ext(τ)}.

To prove the lemma, it suffices to show the following:

Claim: Given any XML tree T1 |= D one can construct an XML tree T2 by modifying

T1 such that T2 |= DN , and vice versa. Furthermore, for every element type τ in D and

@l1, . . . ,@ln ∈ R(τ), |ext(τ)| in T2 equals |ext(τ)| in T1, and values(τ [@l1, . . . ,@ln]) in

T2 equals values(τ [@l1, . . . ,@ln]) in T1.

For if the claim holds, we can show the lemma as follows. Assume that there exists

an XML tree T1 such that T1 |= D and T1 |= Σ. By the claim, there is T2 such that

T2 |= DN . Suppose, by contradiction, there is ϕ ∈ Σ such that T2 6|= ϕ. (1) If ϕ is a

key τ [@l1, . . . ,@ln] → τ , then there exist two distinct nodes x, y ∈ ext(τ) in T2 such that

x.@li = y.@li for every i ∈ [1, n]. In other words, |values(τ [@l1, . . . ,@ln])| < |ext(τ)|

in T2. Since T1 |= ϕ, it must be the case that |values(τ [@l1, . . . ,@ln])| = |ext(τ)|

in T1 because the tuple (x.@l1, . . . , x.@ln) of each x ∈ ext(τ) uniquely identifies x

among ext(τ). This contradicts the claim that |ext(τ)| in T2 equals |ext(τ)| in T1 and

values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1. (2) If ϕ is a unary

foreign key: τ1.@l1 ⊆FK τ2.@l2, then either T2 6|= τ2.@l2 → τ2 or there is x ∈ ext(τ1)

in T2 such that for all y ∈ ext(τ2) in T2, x.@l1 6= y.@l2. In the first case, we reach a

contradiction as in (1). In the second case, we have x.@l1 6∈ values(τ2.@l2) in T2. By the

claim, x.@l1 ∈ values(τ1.@l1) in T1. Since T1 |= ϕ, x.@l1 ∈ values(τ2.@l2) in T1. Again

by the claim, we have x.@l1 ∈ values(τ2.@l2) in T2, which contradicts the assumption.

The proof for the other direction is similar.

We next verify the claim. Given an XML tree T1 = (V1, lab1, ele1, att, root) such that

T1 |= D, we construct an XML tree T2 by modifying T1 such that T2 |= DN . Consider a

τ -element v in T1. Let ele1(v) = [v1, ..., vn] and w = lab1(v1) . . . lab1(vn). Recall Nτ and

Pτ , the set of nonterminals and the set of production rules generated when narrowing

τ → P (τ). Let Qτ be the set of E symbols that appear in Pτ plus S. We can view

G = (Qτ , Nτ ∪ {τ}, Pτ , τ) as an extended context free grammar, where Qτ is the set of

terminals, Nτ ∪ {τ} the set of nonterminals, Pτ the set of production rules and τ the

Appendix B. Proofs from Chapter 5 206

start symbol1. Since T1 |= D, we have w ∈ P (τ). By a straightforward induction on

the structure of PN(τ) it can be verified that w is in the language defined by G. Thus

there is a parse tree T (w) w.r.t. the grammar G for w, and w is the frontier (the list

of leaves from left to right) of T (w). Without loss of generality, assume that the root

of T (w) is v, and the leaves are v1, . . . , vn. Observe that the internal nodes of T (w) are

labeled with element types in Nτ except that the root v is labeled τ . Intuitively, we

construct T2 by replacing each element v in T1 by such a parse tree. More specifically,

let T2 = (V2, lab2, ele2, att, root). Here V2 consists of nodes in V1 and the internal nodes

introduced in the parse trees. For each x in V2, let lab2(x) = lab1(x) if x ∈ V1, and

otherwise let lab2(x) be the node label of x in the parse tree where x belongs. Note that

nodes in V2 − V1 are elements of some type in EN − E. For every x ∈ V1, let ele2(x) be

the list of its children in the parse tree having x as root. For every x ∈ V2−V1, let ele2(x)

be the list of its children in the parse tree containing x. Note that att and root remain

unchanged. By the construction of T2 it can be verified that T2 |= DN ; and moreover,

for every element type τ in D and @l1, . . . ,@ln ∈ R(τ), |ext(τ)| in T2 equals |ext(τ)| in

T1 and values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1 because, among

other things, (1) none of the new nodes, i.e., nodes in V2 −V1, is labeled with an E-type;

(2) no new attributes are defined; and (3) attribute function att is unchanged.

Conversely, assume that there is T2 = (V2, lab2, ele2, att, root) such that T2 |= DN .

We construct an XML tree T1 by modifying T2 such that T1 |= D. For every node v ∈ V2

with lab(v) = τ and τ ∈ EN − E, we substitute v in ele2(v
′) by the children of v, where

v′ is the parent of v. In addition, we remove v from V2, lab2(v) from lab2, and ele2(v)

from ele2. Observe that by the definition of DN , no attributes are defined for elements of

any type in EN − E. We repeat the process until there is no node labeled with element

type in EN − E. Now let T1 = (V1, lab1, ele1, att, root), where V1, lab1 and ele1 are V2,

lab2 and ele2 at the end of the process, respectively. Notice that att and root remain

unchanged. By the definition of T1 it can be verified that T1 |= D; and in addition, for

every element type τ in D and @l1, . . . ,@ln ∈ R(τ), |ext(τ)| in T2 equals |ext(τ)| in T1

and values(τ [@l1, . . . ,@ln]) in T2 equals values(τ [@l1, . . . ,@ln]) in T1 because, among

other things, none of the nodes removed is labeled with a type of E and the attribute

function att is unchanged. 2

By Lemma B.1.1, in the rest of this proof we consider only narrow DTDs. Next we

1If τ is in P (τ), i.e., if τ is recursively defined, we need to rename τ in Qτ to ensure that Qτ and
Nτ ∪ {τ} are disjoint. It is straightforward to handle that case.

Appendix B. Proofs from Chapter 5 207

show how to encode AC∗,1PK ,FK -constraints by a prequadratic Diophantine system. Let

D = (E, A, P, R, r) be a narrow DTD and Σ be a set of AC∗,1PK ,FK -constraints, i.e.,

primary AC∗,1K ,FK -constraints. We encode Σ with a set CΣ of integer constraints, referred

to as the cardinality constraints determined by Σ. For every ϕ ∈ Σ,

• if ϕ is a key constraint τ [@l1, . . . ,@lk] → τ , then CΣ contains |ext(τ)| ≤

|values(τ.@l1)| · . . . · |values(τ.@lk)|;

• if ϕ is a unary foreign key τ1.@l1 ⊆FK τ2.@l2, then CΣ contains |values(τ1.@l1)| ≤

|values(τ2.@l2)| and |ext(τ2)| ≤ |values(τ2.@l2)|;

• furthermore, for any τ ∈ E, if R(τ) = ∅, then 0 ≤ |ext(τ)| is in CΣ. Otherwise, for

every @l ∈ R(τ), |values(τ.@l)| ≤ |ext(τ)| and 0 ≤ |values(τ.@l)| are in CΣ.

Observe that for a unary key τ.@l → τ we have both |values(τ.@l)| ≤ |ext(τ)| and

|ext(τ)| ≤ |values(τ.@l)| in CΣ. Thus CΣ assures |ext(τ)| = |values(τ.@l)|.

We write T |= CΣ if T satisfies all the constraints of CΣ, and we write T |= (D,CΣ)

if T conforms to a narrow DTD D and satisfies CΣ. Note that CΣ is equivalent (in

fact, can be converted in polynomial time) to a prequadratic Diophantine system since

x ≤ x1 · . . . · xk can be written as constraints of the form x ≤ y · z by introducing k − 2

fresh variables, e.g., x ≤ x1 · x2 · x3 · x4 is equivalent to x ≤ x1 · z1, z1 ≤ x2 · z2 and

z2 ≤ x3 · x4 (in the sense that the former is satisfiable iff the latter is). Thus, without

loss of generality, assume that CΣ consists of linear and prequadratic integer constraints

only. It should be noted that CΣ can be computed in time polynomial in the size of Σ

and D. The lemma below shows that CΣ characterizes the consistency of Σ if keys in Σ

are primary.

Lemma B.1.2 Let D be a narrow DTD and Σ a set of AC∗,1PK ,FK -constraints over D.

Then every XML tree conforming to D and satisfying Σ also satisfies CΣ. In addition,

if there exists an XML tree T2 such that T2 |= (D,CΣ), then there exists an XML tree T1

such that T1 |= (D,Σ).

Proof: It is easy to see that for every XML tree T1 that satisfies Σ, it must be the case

that T1 |= CΣ.

Conversely, we show that if there exists an XML tree T2 = (V, lab, ele, att2, root) such

that T2 |= (D,CΣ), then we can construct an XML tree T1 = (V, lab, ele, att1, root) such

that T1 |= (D,Σ). We construct T1 from T2 by modifying the function att2 while leaving

Appendix B. Proofs from Chapter 5 208

V , lab, ele and root unchanged. More specifically, let S = {τ.@l | τ ∈ E, @l ∈ R(τ)}.

To define the new function, denoted by att1, we first associate a set of string values

with each τ.@l in S. Let N be the maximum cardinality of values(τ.@l) in T2, i.e.,

N ≥ |values(τ.@l)| in T2 for all τ.@l ∈ S. Let VS = {ai | i ∈ [1, N]} be a set of distinct

string values. For each τ.@l ∈ S, let Vτ.@l = {ai | i ∈ [1, |values(τ.@l)|]}, and for each

x ∈ ext(τ), let att(x,@l) be a string value in Vτ.@l such that in T1, values(τ.@l) = Vτ.@l.

In addition, for each key ϕ = τ [@l1, . . . ,@lk] → τ in Σ, let x[@l1, . . . ,@lk] be a distinct

list of string values from Vτ.@l1 × . . .×Vτ.@lk . This is possible because by the definition of

T1, (1) ext(τ) in T1 equals ext(τ) in T2; (2) |values(τ.@l)| in T1 equals |values(τ.@l)| in

T2; (3) T2 |= CΣ and |ext(τ)| ≤ |values(τ.@l1)| · . . .· |values(τ.@lk)| is in CΣ; and (4) since

ϕ is the only key defined for τ -elements, the population of the attributes @l1, . . . ,@lk of

x is independent of the population of any other attributes of x. It should be noted that

it may be the case that Vτ1.@l1 ⊆ Vτ2.@l2 even if Σ does not imply τ1.@l1 ⊆FK τ2.@l2. This

does not lose generality as we do not intend to capture negation of foreign keys. We next

show that T1 is indeed what we want.

It is easy to verify that T1 |= D given the construction of T1 from T2 and the assump-

tion that T2 |= D. To show that T1 |= Σ, we consider ϕ ∈ Σ in the following cases. (1) If

ϕ is a key τ [@l1, . . . ,@lk] → τ , it is immediate from the definition of T1 that T1 |= ϕ since

for any x ∈ ext(τ), x[@l1, . . . ,@lk] is a distinct list of string values from Vτ.@l1×. . .×Vτ.@lk .

(2) If ϕ is τ1.@l1 ⊆FK τ2.@l2, then T2 |= |values(τ1.@l1)| ≤ |values(τ2.@l2)| by T2 |= CΣ.

By the definition of att1, for i = 1, 2, Vτi.@li = {ai | i ∈ [1, |values(τi.@li)|]} and in

T1, values(τi.@li) = Vτi.@li. Thus values(τ1.@l1) ⊆ values(τ2.@l2) in T1. Furthermore,

given that |ext(τ2)| ≤ |values(τ2.@l2)| and |values(τ2.@l2)| ≤ |ext(τ2)| are both in CΣ,

T2 |= CΣ, |ext(τ2)| in T2 is equal to |ext(τ2)| in T1 and |values(τ2.@l2)| in T2 is equal

to |values(τ2.@l2)| in T1, we conclude that |ext(τ2)| is equal to |values(τ2.@l2)| in T1

and, hence, T1 |= τ2.@l2 → τ2 since each x ∈ ext(τ2) in T1 has a distinct @l2-attribute

value and thus the value of its @l2-attribute uniquely identifies x among nodes in ext(τ2).

Therefore, T1 |= ϕ and, thus, T1 |= (D,Σ). This concludes the proof of the lemma. 2

The above lemma takes care of coding the constraints; the next step is to code DTDs.

For that, we use the technique developed in [FL02]: for each narrow DTD D, one can

compute in polynomial time in the size of D a set ΨD of linear inequalities on nonnegative

integers, referred to as the set of cardinality constraints determined by D, which includes

|ext(τ)| as a variable for each element type τ in D, but it does not have |values(τ.@l)| as

a variable for any attribute @l of τ . Moreover, the following has been shown [FL02]: ΨD

Appendix B. Proofs from Chapter 5 209

has a nonnegative integer solution if and only if there exists an XML tree T conforming

to D such that the cardinality of ext(τ) in T equals the value of the variable |ext(τ)| in

the solution for each element type τ in D.

We now combine this coding with the coding for AC∗,1PK ,FK -constraints. Given a narrow

DTD D and a set Σ of AC∗,1PK ,FK -constraints over D, we define the set of cardinality

constraints determined by D and Σ to be

Ψ(D, Σ) = ΨD ∪ CΣ ∪ {(|ext(τ)| > 0) → (|values(τ.@l)| > 0) | τ ∈ E, @l ∈ R(τ)},

where CΣ is the set of cardinality constraints determined by Σ, ΨD is the set of cardinality

constraints determined by D, and constraints (|ext(τ)| > 0) → (|values(τ.@l)| > 0) are

to ensure that every τ -element has an @l-attribute (note that |values(τ.@l)| ≤ |ext(τ)| is

already in CΣ). Constraints in Ψ(D, Σ) are either linear integer constraints, or inequali-

ties of the form x ≤ y ·z, which come from CΣ, or constraints of the form x > 0 → y > 0.

Note that if we leave out constraints of the form x > 0 → y > 0, Ψ(D, Σ) is a pre-

quadratic Diophantine system. Also note that Ψ(D, Σ) can be computed in polynomial

time in the size of D and Σ.

We say that Ψ(D, Σ) is consistent if and only if Ψ(D, Σ) admits a nonnegative integer

solution. That is, there is a nonnegative integer assignment to the variables in Ψ(D, Σ)

such that all the constraints in Ψ(D, Σ) are satisfied.

Lemma B.1.3 Let D be a narrow DTD and Σ a set of AC∗,1PK ,FK -constraints over D.

Then Ψ(D, Σ) is consistent if and only if there is an XML tree T such that T |= (D,Σ).

Proof: Suppose that there exists an XML tree T such that T |= (D,Σ). Then there is

a nonnegative integer solution to ΨD such that for each element type τ in D, the value

of the variable |ext(τ)| equals the number of τ -elements in T [FL02]. By Lemma B.1.2

and T |= Σ, we have T |= CΣ. We extend the solution of ΨD to be one to Ψ(D, Σ) by

letting the variable |values(τ.@l)| equal the number of distinct @l-attribute values of all

τ -elements in T , for each element type τ and attribute @l of τ in D. Since T |= CΣ, this

extended assignment satisfies all the constraints in CΣ. In addition, if |ext(τ)| > 0 then

|values(τ.@l)| > 0 since every τ -element in T has an @l-attribute. Hence the assignment

is indeed a nonnegative solution to Ψ(D, Σ) and, therefore, Ψ(D, Σ) is consistent.

Conversely, suppose that Ψ(D, Σ) admits a nonnegative integer solution. Then there

exists an XML tree T such that T |= D and moreover, for each element type τ in D,

the cardinality of ext(τ) in T equals the value of the variable |ext(τ)| in the solution

Appendix B. Proofs from Chapter 5 210

[FL02]. We construct a new tree T ′ from T by modifying the definition of the function

att such that in T ′, for each element type τ and attribute @l of τ , the number of distinct

@l-attribute values of all τ -elements equals the value of the variable |values(τ.@l)| in

the solution. This is possible since |values(τ.@l)| ≤ |ext(τ)| and (|ext(τ)| > 0) →

(|values(τ.@l)| > 0) are in Ψ(D, Σ). The assignment is also a solution to CΣ. Thus

T ′ |= D and T ′ |= CΣ. Hence by Lemma B.1.2, there exists an XML tree T ′′ such that

T ′′ |= (D,Σ). This concludes the proof of the lemma. 2

We now conclude the proof of reduction from SAT(AC∗,1PK ,FK) to PDE. By Lemma

B.1.1, given an arbitrary DTD D and a set Σ of AC∗,1PK ,FK -constraints, one can compute a

narrow DTDDN such that (D,Σ) is consistent iff (DN ,Σ) is consistent. By Lemma B.1.3,

(DN ,Σ) is consistent iff Ψ(DN ,Σ) has a nonnegative integer solution. Such a solution

requires |values(τ.@l)| > 0 if |ext(τ)| > 0. To ensure this, let Φ(DN ,Σ) be a system

that includes all linear integer constraints and prequadratic constraints in Ψ(DN ,Σ) and

moreover, |ext(τ)| ≤ |values(τ.@l)| · |ext(τ)| for each (|ext(τ)| > 0) → (|values(τ.@l)| >

0) in Ψ(DN ,Σ). Now Φ(DN ,Σ) is a prequadratic Diophantine system. In addition,

Ψ(DN ,Σ) has a nonnegative integer solution iff Φ(DN ,Σ) has a nonnegative integer

solution. To see this, observe that for any nonnegative integer assignment to |ext(τ)|

and |values(τ.@l)|, (|ext(τ)| > 0) → (|values(τ.@l)| > 0) iff |ext(τ)| ≤ |values(τ.@l)| ·

|ext(τ)|. Thus, (D,Σ) is consistent iff the prequadratic Diophantine system Φ(DN ,Σ)

has a nonnegative integer solution. Note that DN can be computed in polynomial time

in the size of D, Ψ(DN ,Σ) can be computed in polynomial time in the size of DN and Σ,

and Φ(DN ,Σ) can be computed in polynomial time in the size of Ψ(DN ,Σ). Hence, it

takes polynomial time to compute Φ(DN ,Σ) from D and Σ. Therefore, there is a PTIME

reduction from SAT(AC∗,1PK ,FK) to PDE.

b) A reduction from PDE to SAT(AC∗,1PK ,FK). We now move to the other direction. Given

an instance of PDE, i.e., a system S consisting of a set SL of linear equations/inequalities

on integers and a set SP of prequadratic constraints of the form x ≤ y ·z, we define a DTD

D and a set Σ of AC∗,1PK ,FK -constraints such that S has a nonnegative solution iff there is

an XML tree T satisfying Σ and conforming to D. We use X = {xi | i ∈ [1, n]} to denote

the set of all the variables in S. Assume that SL = {ej | j ∈ [1, m]} and ej is of the form:

aj1 x1 + . . .+ ajn xn + cj ≤ bj1 x1 + . . .+ bjn xn + dj, where aji (i ∈ [1, n]), bji (i ∈ [1, n]), cj

and dj are nonnegative integers2. Also, assume that SP = {pj | j ∈ [1, l]}, where pj is a

2For example, we represent equation −3x + 5y ≤ −7 as 0x + 5y + 7 ≤ 3x + 0y + 0.

Appendix B. Proofs from Chapter 5 211

prequadratic equation of the form x ≤ y · z. Then we define DTD D = (E, A, P, R, r)

as follows:

(1) For each variable xi, we define an element type Xi. In addition, for each ps ∈ SP

of the form xi ≤ xj · xk, we define an element type U s
i . For each linear constraint ej, we

define distinct element types Ej, A
j
1, . . ., A

j
n, Cj, Fj, B

j
1, . . ., B

j
n, Dj. We use r to denote

the root element type. That is,

E = {r} ∪ {Xi | i ∈ [1, n]} ∪

{Ej, A
j
1, . . . , A

j
n, Cj, Fj, B

j
1, . . . , B

j
n, Dj | j ∈ [1, m]} ∪ {U s

i | ps = xi ≤ xj · xk ∈ SP}.

Intuitively, referring to an XML tree conforming to D, we use |ext(Xi)| to code the value

of the variable xi in S. For every equation ej, we use |ext(Aj
1)|, . . ., |ext(A

j
n)|, |ext(Cj)|

to code the values of constants aj1, . . ., a
j
n, cj, |ext(Ej)| to code the value of the expression

aj1x1 + · · ·+ ajnxn + cj, |ext(B
j
1)|, . . ., |ext(B

j
n)|, |ext(Dj)| to code the values of constants

bj1, . . ., b
j
n, dj and |ext(Fj)| to code the value of the expression bj1x1 + · · · + bjnxn + dj,

Furthermore, for each prequadratic equation ps = xi ≤ xj · xk in SP , we create a

distinct copy U s
i of Xi. The reason to use U s

i instead of Xi is to ensure that the set Σ of

AC∗,1K ,FK -constraints defined below is primary.

(2) A = {@c, @d, @e}. Intuitively, we shall define @e as a key and use @c and @d to

code prequadratic constraint of the form x ≤ y · z.

(3) We define production rules as follows. For the root of the DTD:

P (r) = (X1, U
s1,1

1 , . . . , U
s1,j1

1)∗, . . . , (Xn, U
sn,1

n , . . . , U sn,jn
n)∗,

C1, . . . , C1
︸ ︷︷ ︸

c1 times

, . . . , Cm, . . . , Cm
︸ ︷︷ ︸

cm times

, D1, . . . , D1
︸ ︷︷ ︸

d1 times

, . . . , Dm, . . . , Dm
︸ ︷︷ ︸

dm times

,

where {si,1, . . ., si,ji} (i ∈ [1, n]) is the set of indexes {s | ps = xi ≤ xj · xk ∈ SP}.

Furthermore, for every i ∈ [1, n] and every j ∈ [1, m]:

P (Aji) = Ej,

P (Cj) = Ej,

P (Bj
i) = Fj,

P (Dj) = Fj,

P (Xi) = A1
i , . . . , A

1
i

︸ ︷︷ ︸

a1i times

, . . . , Ami , . . . , A
m
i

︸ ︷︷ ︸

am
i times

, B1
i , . . . , B

1
i

︸ ︷︷ ︸

b1i times

, . . . , Bm
i , . . . , B

m
i

︸ ︷︷ ︸

bmi times

.

Finally, for every i ∈ [1, n] and every s ∈ [1, l] such that ps = xi ≤ xj ·xk ∈ SP , P (U s
i) = ε.

Appendix B. Proofs from Chapter 5 212

Y1

Y2

Y1

Y0

A

Y0 Y0 Y0 Y0

(b)

r

X1

A1
1 A1

1

U1
1 X2X2

B1
2B1

2@d@c

D1D1D1D1X3

E1 E1 F1 F1

@e@e@e@e

(a)

@e@e@e@e

@e @e @e @e

F1 F1 F1 F1

Figure B.1: Trees used in the proof of Theorem 5.3.1

(4) We define the attribute function R as follows: for every j ∈ [1, m], R(Ej) =

R(Fj) = {@e}. In addition, for every i ∈ [1, n], R(Xi) = {@e}, and for every s ∈ [1, l]

such that ps = xi ≤ xj · xk ∈ SP , R(U s
i) = {@c,@d}. For all other element type τ , let

R(τ) be empty.

For example, Figure B.1 (a) shows an XML tree conforming to the DTD constructed

from the set of equations SL = {2x1 ≤ x2 + 4} and SP = {x1 ≤ x2 · x3}. We note that

this tree codes solution x1 = 1, x2 = 2, x3 = 1 for this system of equations.

Given DTDD, we define a set Σ of AC∗,1PK ,FK -constraints over D. For each j ∈ [1, m], Σ

includes keys Ej.@e→ Ej, Fj.@e→ Fj and foreign key Ej.@e ⊆FK Fj.@e. Furthermore,

for every i, j, k ∈ [1, n] and s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP , Σ includes the

following constraints:

U s
i [@c,@d] → U s

i , U s
i .@c ⊆FK Xj.@e, U s

i .@d ⊆FK Xk.@e.

Clearly, the set Σ is primary, i.e., for any element type τ there is at most one key defined.

In fact, we use copies U s
i of Xi just to ensure that Σ is primary.

We next show that the encoding is indeed a reduction from PDE to SAT(AC∗,1PK ,FK).

Suppose that S has a nonnegative solution. Then we construct an XML tree T conforming

to D as shown in Figure B.1 (a). That is, for each i ∈ [1, n] we let |ext(Xi)| be the value of

the variable xi in the solution. We note that, by definition ofD, this implies that for every

s ∈ [1, l] such that ps = xi ≤ xj · xk ∈ SP , |ext(U s
i)| is also equal to the value of xi in the

solution. For every i ∈ [1, n] and every Xi-element x in T , we let x.@e be a distinct value

such that in T , |values(Xi.@e)| = |ext(Xi)|. For every j ∈ [1, m] and every Ej-element

x in T , we let x.@e be a distinct value such that in T , |values(Ej.@e)| = |ext(Ej)|.

Likewise, we assign values to the @e-attribute of the nodes in ext(Fj) in such a way that

|values(Fj.@e)| = |ext(Fj)| in T . Finally, for every i, j, k ∈ [1, n] and s ∈ [1, l] such that

Appendix B. Proofs from Chapter 5 213

ps = xi ≤ xj · xk ∈ SP , and for every node x in T of type U s
i , we let x[@c,@d] be a

distinct list of string values from values(Xj.@e)× values(Xk.@e). This is possible since

xi ≤ xj · xk ∈ SP and by definition of T , |ext(U s
i)| = |ext(Xi)| = xi, |values(Xj.@e)| =

|ext(Xj)| = xj and |values(Xk.@e)| = |ext(Xk)| = xk. Since T codes a solution of S, it

is straightforward to prove that T |= CΣ, the set of cardinality constraints determined

by Σ. Thus, by Lemma B.1.2 we conclude that there exists an XML tree T ′ such that

T ′ |= (D,Σ) and, hence, (D,Σ) is consistent. Conversely, suppose that there exists an

XML tree T such that T |= (D,Σ). We construct a solution of S by letting variable xi

equal |ext(Xi)| in T . By definitions of D and Σ, it is easy to verify that this is indeed

a nonnegative integer solution for S. In particular, each ps = xi ≤ xj · xk in SP holds

because T |= (D,Σ) and, thus, |ext(Xi)| = |ext(U s
i)| ≤ |values(U s

i .@c)| · |values(U
s
i .@d)|

≤ |values(Xj.@e)| · |values(Xk.@e)| ≤ |ext(Xj)| · |ext(Xk)|.

We observe that the previous reduction is not polynomial since constants aji , b
j
i (i ∈

[1, n], j ∈ [1, m]) and cj, dj (j ∈ [1, m]) are coded in unary. To overcome this problem,

next we show how code in a DTD the binary representation of a number. We introduce

this coding separately to simplify the presentation of this proof.

Assume that a =
∑k

i=0 ai · 2
i, where each ai (i ∈ [0, k− 1]) is either 0 or 1 and ak = 1,

that is, the binary representation of a is akak−1 · · ·a1a0. To code a in a DTD we include

element types A, Y0, . . . , Yk and we define P on these elements as follows:

P (Yi) =

ε i = 0

Yi−1, Yi−1 Otherwise

and P (A) = Yi1, . . . , Yil, where il > · · · > i1 ≥ 0 and {i1, . . . , il} is the set of indexes

{j ∈ [0, k] | aj = 1}. We note that the size of this set of rules is polynomial in the size of

a. Furthermore, if an XML tree T conforms to this DTD, then |ext(Y0)| = a in T . For

example, if a = 5, then P (A) = Y2, Y0, P (Y2) = Y1, Y1, P (Y1) = Y0, Y0 and P (Y0) = ε

and an XML tree conforming to these rules is of the form shown in Figure B.1 (b).

Thus, by using this coding in our original reduction of PDE to SAT(AC∗,1PK ,FK) we can

show that there is a PTIME reduction from PDE to SAT(AC∗,1PK ,FK). This completes the

proof of Theorem 5.3.1.

Appendix B. Proofs from Chapter 5 214

B.2 Proof of Theorem 5.3.5

We reduce SAT(ACreg
K ,FK) to the existence of solution of an (almost) instance of lin-

ear integer programming, which happens to be of double-exponential size; hence the

2-NEXPTIME bound. For the lower bound, we encode the quantified boolean formula

problem (QBF) as an instance of SAT(ACreg
K ,FK).

Proof of a) The proof is a bit long, so we first give a rough outline. The idea is similar

to the proof of the NP membership for SAT(ACK ,FK) [FL02]: we code both the DTD and

the constraints with linear inequalities over integers. However, compared to the proof

of [FL02], the current proof is considerably harder due to the following. First, regular

expressions in DTDs (“horizontal” regular expressions) interact in a certain way with

regular expressions in integrity constraints (those correspond to “vertical” paths through

the trees). To eliminate this interaction, we first show how to reduce the problem to

that over narrow DTDs, in which no wide horizontal regular expressions are allowed.

The next problem is that regular expressions in constraints can interact with each other.

Thus, to model them with linear inequalities, we extend the approach of [FL02] by taking

into account all possible Boolean combinations of regular languages given by expressions

used in constraints. The last problem is coding the DTDs in such a way that variables

corresponding to each node have the information about the path leading to the node,

and its relationship with the regular expressions used in constraints. For that, we adopt

the technique of [AV99], and tag all the variables in the coding of DTDs with states of

a certain automaton (the product automaton for all the automata corresponding to the

regular expressions used in constraints).

Now it is time to fill in all the details. First, we need some additional notation. For

every regular expression β and every attribute @l, we write values(β.@l) to denote the

set {y.@l | y ∈ nodes(β) and y.@l is defined}. Observe that for any τ ∈ E − {r}, and

@l ∈ R(τ), values(r. ∗.τ.@l) corresponds to our original definition of values(τ.@l)

We say that a DTD D is one-attribute if D contains only one attribute and no element

type τ such that P (τ) = S. We start by showing that SAT(ACreg
K ,FK) can be reduced to

the consistency problem for regular expression constraints over one-attribute DTDs. Let

D = (E, A, P , R, r) be a DTD and Σ a set of ACreg
K ,FK -constraints over D. First, define

DTD DU = (EU , AU , PU , RU , r) as follows. For every τ ∈ E and @l ∈ R(τ), assume that

τ@l is a fresh element type symbol. Then define EU as E ∪ {τ@l | τ ∈ E and @l ∈ R(τ)}

and AU = {@e}, where @e is a fresh attribute symbol. Furthermore, define functions PU

Appendix B. Proofs from Chapter 5 215

and RU as:

• For every τ ∈ E such that P (τ) = S, if R(τ) = {@l1, . . . ,@ln}, where n ≥ 0, then

PU(τ) = τ@l1 , . . . , τ@ln and RU(τ) = ∅.

• For every τ ∈ E such that P (τ) is a regular expression over E, if R(τ) =

{@l1, . . . ,@ln}, where n ≥ 0, then PU(τ) = P (τ), τ@l1, . . . , τ@ln and RU(τ) = ∅.

• For every τ ∈ E and @l ∈ R(τ), PU(τ@l) = ε and RU(τ@l) = {@e}.

We note that if P (τ) = S and R(τ) = ∅, then PU(τ) = ε.

Second, define set ΣU of ACreg
K ,FK -constraints over DU as follows. For every key con-

straint β.τ.@l → β.τ in Σ, β.τ.τ@l.@e → β.τ.τ@l is in ΣU , and for every foreign key

constraint β.τ.@l ⊆FK β ′.τ ′.@l′ in Σ, β.τ.τ@l.@e ⊆FK β ′.τ ′.τ ′@l′.@e is in ΣU .

Lemma B.2.1 Let D be a DTD, Σ be a set of ACreg
K ,FK -constraints over D, and DU , ΣU

be as defined above. Then there exists an XML tree T1 such that T1 |= (D,Σ) iff there

exists an XML tree T2 such that T2 |= (DU ,ΣU).

Proof: (⇒) Let T1 = (V1, lab1, ele1, att1, root) be an XML tree such that T1 |= (D,Σ).

We define an XML tree T2 from T1 such that T2 |= (DU ,ΣU). More specifically, T2 =

(V2, lab2, ele2, att2, root), where V2, lab2, ele2 and att2 are defined as follows. Let v

be a node in T1 such that lab1(v) = τ ∈ E and R(τ) = {@l1, . . . ,@lk}. Then V2

contains node v and fresh nodes v@l1 , . . ., v@lk such that lab2(v) = τ and lab2(v@li) =

τ@li , for every i ∈ [1, k]. Furthermore, if ele1(v) = [s], where s ∈ Str , then ele2(v) =

[v@l1 , . . . , v@lk]. Otherwise, ele1(v) = [v1, . . . , vn], where n ≥ 0 and each vi is an element

node, and ele2(v) = [v1, . . . , vn, v@l1, . . . , v@lk]. Finally, att2(v,@e) is not defined and

att2(v@li ,@e) = att1(v,@li), for every i ∈ [1, k]. Next we show that T2 |= (DU ,ΣU).

By definition of DU and given that T1 |= D, it is easy to see that T2 |= DU . Assume

that T2 6|= ΣU . Then there exists ϕ ∈ ΣU such that T2 6|= ϕ. (1) If ϕ is a key β.τ.τ@l.@e→

β.τ.τ@l, then there exists distinct v1, v2 ∈ nodes(β.τ.τ@l) in T2 such that att2(v1,@e) =

att2(v2,@e). Let u1, u2 be the parents of v1, v2 in T2, respectively. By definition of DU

and given that v1 6= v2, we have that u1 6= u2. Thus, by definition of T2, u1 and u2 are

nodes in T1 such that u1, u2 ∈ nodes(β.τ) and att1(u1,@l) = att1(u2,@l) = att2(v1,@e).

Therefore, T1 6|= β.τ.@l → β.τ , which contradicts the fact that T1 |= Σ. (2) If ϕ is a

foreign key β.τ.τ@l.@e ⊆FK β ′.τ ′.τ ′@l′.@e, then T2 6|= β ′.τ ′.τ ′@l′.@e → β ′.τ ′.τ ′@l′ or there

exists v ∈ nodes(β.τ.τ@l) such that att2(v,@e) 6∈ values(β ′.τ ′.τ ′@l′.@e) in T2. In the

Appendix B. Proofs from Chapter 5 216

former case, we reach a contradiction as in (1). In the latter case, assume that u is

the parent of v in T2. By definition of T2, we have that u is a node in T1 such that

u ∈ nodes(β.τ) and att1(u,@l) = att2(v,@e). Thus, given that values(β ′.τ ′.τ ′@l′ .@e) in

T2 is equal to values(β ′.τ ′.@l′) in T1, we conclude that att1(u,@l) 6∈ values(β ′.τ ′.@l′) in

T1. Therefore, T1 6|= β.τ.@l ⊆FK β ′.τ ′.@l′, which contradicts the fact that T1 |= Σ.

(⇐) Let T2 = (V2, lab2, ele2, att2, root) be an XML tree such that T2 |= (DU ,ΣU).

We define an XML tree T1 from T2 such that T1 |= (D,Σ). More specifically, T1 =

(V1, lab1, ele1, att1, root), where V1, lab1, ele1 and att1 are defined as follows. Let v be a

node in T2 such that lab2(v) = τ , τ ∈ E andR(τ) = {@l1, . . . ,@lk}. Then V1 also contains

node v with lab1(v) = τ . Furthermore, if P (τ) = S, then ele2(v) = [v@l1 , . . . , v@lk], where

lab(v@lj) = τ@lj (j ∈ [1, k]), and we define ele1(v) as [s], where s is an arbitrary element

in Str , and we define att1(v,@li) as att2(v@li,@e), for every i ∈ [1, k]. Otherwise, P (τ)

is a regular expression over E and ele2(v) = [v1, . . . , vn, v@l1, . . . , v@lk], where lab(vi) ∈ E

(i ∈ [1, n]) and lab(v@lj) = τ@lj (j ∈ [1, k]), and we define ele1(v) as [v1, . . . , vn] and

att1(v,@li) as att2(v@li,@e), for every i ∈ [1, k]. Next we show that T1 |= (D,Σ).

By definition of DU and given that T2 |= DU , it is easy to see that T1 |= D. Assume

that T1 6|= Σ. Then there exists ϕ ∈ Σ such that T1 6|= ϕ. (1) If ϕ is a key β.τ.@l → β.τ ,

then there exists distinct u1, u2 ∈ nodes(β.τ) in T1 such that att1(u1,@l) = att1(u2,@l).

By definition of T1, u1 and u2 are also in nodes(β.τ) in T2. Let v1, v2 be the children

of u1, u2 in T2 of type τ@l, respectively. Given that u1 6= u2, we have that v1 6= v2.

Thus, by definition of T1, v1 and v2 are nodes in T2 such that v1, v2 ∈ nodes(β.τ.τ@l)

and att2(v1,@e) = att2(v2,@e) = att1(u1,@l). Therefore, T2 6|= β.τ.τ@l.@e → β.τ.τ@l,

which contradicts the fact that T2 |= ΣU . (2) If ϕ is a foreign key β.τ.@l ⊆FK β ′.τ ′.@l′,

then T1 6|= β ′.τ ′.@l′ → β ′.τ ′ or there exists u ∈ nodes(β.τ) such that att1(u,@l) 6∈

values(β ′.τ ′.@l′) in T1. In the former case, we reach a contradiction as in (1). In the latter

case, assume that v is the child of u in T2 of type τ@l (u is a node of T2 by definition of T1).

By definition of T1, we have that v ∈ nodes(β.τ.τ@l) and att2(v,@e) = att1(u,@l). Thus,

given that values(β ′.τ ′.τ ′@l′.@e) in T2 is equal to values(β ′.τ ′.@l′) in T1, we conclude that

att2(v,@e) 6∈ values(β ′.τ ′.τ ′@l′ .@e) in T2. Therefore, T2 6|= β.τ.τ@l.@e ⊆FK β ′.τ ′.τ ′@l′ .@e,

which contradicts the fact that T2 |= ΣU . This concludes the proof of the lemma. 2

By Lemma B.2.1, from now on we consider only one-attribute DTDs. Let D = (E,

{@l}, P , R, r) be a one-attribute DTD and DN = (EN , {@l}, PN , RN , r) be the narrow

DTD of D (defined in the proof of Theorem 5.3.1). Observe that DN is also one-attribute.

Furthermore, observe that an XML tree T valid w.r.t. D may not conform to DN and

Appendix B. Proofs from Chapter 5 217

vice versa. Furthermore, an ACreg
K ,FK -constraint ϕ over D may be satisfied by T but it

may not be satisfied by any XML tree conforming to DN . To explore the connection

between XML trees conforming to D and those conforming to DN , we replace ACreg
K ,FK -

constraints over D by new ACreg
K ,FK -constraints over DN . More precisely, given a set Σ of

ACreg
K ,FK -constraints over D, we define a set ΣN of ACreg

K ,FK -constraints over DN , referred

to as the narrowed set of constraints of Σ, as follows. Let f be a substitution for the

element types in E defined as f(τ) = τ.(EN − E)∗ for every τ ∈ E. Then for every

key constraint β.τ.@l → β.τ in Σ, f(β).τ.@l → f(β).τ is in ΣN , and for every foreign

key constraint β1.τ1.@l ⊆FK β2.τ2.@l in Σ (recall that @l is the only attribute of D),

f(β1).τ1.@l ⊆FK f(β2).τ2.@l is in ΣN .

We are now ready to establish the connection between D and DN , which allows us to

consider only narrow DTDs from now on.

Lemma B.2.2 Let D be a one-attribute DTD, DN the narrowed DTD of D, Σ a set

of ACreg
K ,FK -constraints over D and ΣN the narrowed set of constraints of Σ. Then there

exists an XML tree T1 such that T1 |= (D,Σ) iff there exists an XML tree T2 such that

T2 |= (DN ,ΣN).

Proof: It suffices to show the following:

Claim: Given any XML tree T1 |= D one can construct an XML tree T2 by modifying T1

such that T2 |= DN , and vice versa. Furthermore, for any regular expression β.τ over D

and @l ∈ R(τ), |nodes(f(β).τ)| in T2 equals |nodes(β.τ)| in T1, and values(f(β).τ.@l)

in T2 equals values(β.τ.@l) in T1, where f is the substitution defined above.

For if the claim holds, we can show the lemma as follows. Assume that there exists

an XML tree T1 such that T1 |= (D,Σ). By the claim, there is T2 such that T2 |=

DN . Suppose, by contradiction, there is ϕ ∈ ΣN such that T2 6|= ϕ. (1) If ϕ is a key

f(β).τ.@l → f(β).τ , then there exist two distinct nodes x, y ∈ nodes(f(β).τ) in T2 such

that x.@l = y.@l. In other words, |values(f(β).τ.@l)| < |nodes(f(β).τ)| in T2. Since

T1 |= ϕ, it must be the case that |values(β.τ.@l)| = |nodes(β.τ)| in T1 because the value

x.@l of each x ∈ nodes(β.τ) uniquely identifies x among nodes(β.τ). This contradicts

the claim that |nodes(f(β).τ)| in T2 equals |nodes(β.τ)| in T1 and values(f(β).τ.@l) in

T2 equals values(β.τ.@l) in T1. (2) If ϕ is a foreign key: f(β1).τ1.@l ⊆FK f(β2).τ2.@l,

then either T2 6|= f(β2).τ2.@l → f(β2).τ2 or there is x ∈ nodes(f(β1).τ1) such that for

all y ∈ nodes(f(β2).τ2) in T2, x.@l 6= y.@l. In the first case, we reach a contradiction

as in (1). In the second case, we have x.@l 6∈ values(f(β2).τ2.@l) in T2. By the claim,

Appendix B. Proofs from Chapter 5 218

x.@l ∈ values(β1.τ1.@l) in T1. Since T1 |= ϕ, x.@l ∈ values(β2.τ2.@l) in T1. Again by

the claim, we have x.@l ∈ values(f(β2).τ2.@l) in T2, which contradicts the assumption.

The proof for the other direction is similar.

We next verify the claim. Given an XML tree T1 = (V1, lab1, ele1, att, root) such

that T1 |= D, we construct an XML tree T2 by modifying T1 such that T2 |= DN .

Consider a τ -element v in T1. Let ele1(v) = [v1, ..., vn] and w = lab1(v1) . . . lab1(vn).

Recall Nτ and Pτ , the set of nonterminals and the set of production rules generated

when narrowing τ → P (τ) (see proof of Theorem 5.3.1). Let Qτ be the set of E symbols

that appear in Pτ . We can view G = (Qτ , Nτ ∪ {τ}, Pτ , τ) as an extended context free

grammar, where Qτ is the set of terminals, Nτ ∪ {τ} the set of nonterminals, Pτ the set

of production rules and τ the start symbol3. Since T1 |= D, we have w ∈ P (τ). By a

straightforward induction on the structure of PN(τ) it can be verified that w is in the

language defined by G. Thus there is a parse tree T (w) w.r.t. the grammar G for w, and

w is the frontier (the list of leaves from left to right) of T (w). Without loss of generality,

assume that the root of T (w) is v, and the leaves are v1, . . . , vn. Observe that the internal

nodes of T (w) are labeled with element types in Nτ except that the root v is labeled τ .

Intuitively, we construct T2 by replacing each element v in T1 by such a parse tree. More

specifically, let T2 = (V2, lab2, ele2, att, root). Here V2 consists of nodes in V1 and the

internal nodes introduced in the parse trees. For each x in V2, let lab2(x) = lab1(x)

if x ∈ V1, and otherwise let lab2(x) be the node label of x in the parse tree where x

belongs. Note that nodes in V2 − V1 are elements of some type in EN − E. For every

x ∈ V1, let ele2(x) be the list of its children in the parse tree having x as root. For every

x ∈ V2 − V1, let ele2(x) be the list of its children in the parse tree containing x. Note

that att remains unchanged. By the construction of T2 it can be verified that T2 |= DN ;

and moreover, for every regular expression β.τ over D and @l ∈ R(τ), |nodes(f(β).τ)|

in T2 equals |nodes(β.τ)| in T1 and values(f(β).τ.@l) in T2 equals values(β.τ.@l) in T1

because, among other things, (1) if a string r.τ1. · · · .τn.τ over E is in β.τ , then for every

sequence of strings w0, . . ., wn in (EN − E)∗, r.w0.τ1.w1. · · · .τn.wn.τ is in f(β).τ ; (2) if

a string r.w0.τ1.w1. · · · .τn.wn.τ is in f(β).τ , where τ1, . . ., τn, τ are element types in E

and w0, . . ., wn are strings in (EN − E)∗, then r.τ1. · · · .τn.τ is in β.τ ; (3) none of the

new nodes, i.e., nodes in V2 − V1, is labeled with an E type; (4) no new attributes are

defined; and (5) the ancestor-descendant relation on T1-elements is not changed in T2.

3As in the proof of Lemma B.1.1, if τ is in P (τ), then we need to rename τ in Qτ to ensure that Qτ

and Nτ ∪ {τ} are disjoint. It is straightforward to handle that case.

Appendix B. Proofs from Chapter 5 219

Conversely, assume that there is T2 = (V2, lab2, ele2, att, root) such that T2 |= DN .

We construct an XML tree T1 by modifying T2 such that T1 |= D. For any node v ∈ V2

with lab(v) = τ and τ ∈ EN−E, we substitute v in ele2(v
′) by the children of v, where v′

is the parent of v. In addition, we remove v from V2, lab2(v) from lab2, and ele2(v) from

ele2. Observe that by the definition of DN , no attributes are defined for elements of any

type in EN−E. We repeat the process until there is no node labeled with element type in

EN −E. Now let T1 = (V1, lab1, ele1, att, root), where V1, lab1 and ele1 are V2, lab2 and

ele2 at the end of the process, respectively. Observe that att and root remain unchanged.

By the definition of T1 it can be verified that T1 |= D; and in addition, for any regular

expression β.τ over D and @l ∈ R(τ), |nodes(β.τ)| in T1 equals |nodes(f(β).τ)| in T2,

and values(β.τ.@l) in T1 equals values(f(β).τ.@l) in T2, because of (1) and (2) above

and, among other things, the fact that none of the nodes removed is labeled with a type

of E and the attribute function att is unchanged. 2

We now move to encoding of DTDs, more specifically, narrow one-attribute DTDs.

Let D = (E, {@l}, P, R, r) be a narrow one-attribute DTD and Σ a set of ACreg
K ,FK -

constraints over D. We encode D with a system ΨΣ
D of integer constraints such that

there exists an XML tree conforming to D iff ΨΣ
D admits a nonnegative solution. The

coding is developed w.r.t. Σ. More specifically, assume that β1.τ1.@l, . . . , βk.τk.@l is an

enumeration of all regular expressions and attributes that appear in Σ and Θ be the set

of functions θ : {1, . . . , k} → {0, 1} which are not identically 0. For every θ ∈ Θ, define

a regular expression:

rθ =

(
⋂

i : θ(i)=1

βi.τi

)

∩

(
⋂

j : θ(j)=0

βj.τj

)

, (B.1)

where βj.τj is the complement βj.τj. We allow intersection and complement operators

only in regular expressions rθ. We note that for every i ∈ [1, k]:4

βi.τi =
⋃

θ : θ(i)=1

rθ.

Then to capture the interaction between D and constraints of Σ, the system ΨΣ
D has a

variable |nodes(βi.τi)|, for every i ∈ [1, k], and |nodes(rθ)|, for every θ ∈ Θ. In other

words, ΨΣ
D specifies the dependencies imposed by D on the number of elements reachable

by following βi.τi (i ∈ [1, k]) and rθ (θ ∈ Θ).

4Recall that the regular language defined by a regular expression β is denoted by β as well.

Appendix B. Proofs from Chapter 5 220

To capture βi.τi (i ∈ [1, k]) and rθ (θ ∈ Θ) in ΨΣ
D, consider, for each regular expression

βi.τi (i ∈ [1, k]), a deterministic automaton that recognizes that expression. Let M be the

deterministic automaton equivalent to the product of all these automata. We refer to M

as the DFA for Σ. Let sM be the start state of M and δ be its transition function. Given

an XML tree T conforming to D, for each node x in T we define state(x) as s, if there

is a simple path ρ over D such that T |= ρ(root, x) and s = δ(sM , ρ). The connection

between M and T w.r.t. βi.τi (i ∈ [1, k]) is described by the following lemma:

Lemma B.2.3 Let D be a narrow one-attribute DTD, Σ a set of ACreg
K ,FK -constraints

over D, M the DFA for Σ and βi.τi a regular expression in Σ. Then for every XML

tree T conforming to D and every τi-element x in T , x ∈ nodes(βi.τi) in T iff state(x)

contains some final state fβi.τi of the automaton for βi.τi.

In other words, nodes(βi.τi) in T consists of all τi-elements x such that state(x)

(which is a tuple of states of automata corresponding to regular expressions in Σ)

contains some final state fβi.τi of the automaton for βi.τi. A similar idea was exploited

in [AV99].

Proof: Since T is a tree, there exists a unique simple path ρ over D such that T |=

ρ.τi(root, x). Thus x ∈ nodes(β.τi) in T iff ρ.τi ∈ β.τi. If x ∈ nodes(β.τi) in T , then

ρ.τi ∈ β.τi and, therefore, there must be a final state fβ.τi in the automaton for β.τi and

a state s in M such that s = δ(sM , ρ.τi) and s contains fβi.τi . Thus state(x) = s contains

some final state fβi.τi of the automaton for βi.τi. Conversely, if state(x) contains a final

state fβi.τi in the automaton for βi.τi, then ρ.τi ∈ β.τi since s = δ(sM , ρ.τi). Therefore,

x ∈ nodes(βi.τi) in T . 2

We next define a system ΨΣ
D of integer constraints. The variables used in the con-

straints of ΨΣ
D are as follows. Let τ ∈ E be an element type and s = δ(sM , ρ.τ) for

some simple path ρ.τ ∈ E∗. For each such pair we create a distinct variable xsτ . In-

tuitively, in an XML tree T conforming to D, we use xsτ to keep track of the number

of τ -elements with state s. Furthermore, define Y s
τ as the set of pairs (τ ′, s′) such that

τ ′ ∈ E, s′ = δ(sM , ρ.τ
′) for some simple path ρ.τ ′ ∈ E∗, τ is mentioned in P (τ ′) and

s = δ(s′, τ). For each such pair (τ ′, s′), we create a variable xs,s
′

τ,τ ′ . Intuitively, in an XML

tree T conforming to D, we use xs,s
′

τ,τ ′ to keep track of the number of τ -elements with

state s that are children of a node of type τ ′ with state s′. There are exponentially many

variables (in the size of D and Σ) in total since M is a DFA. Using these, we define an

Appendix B. Proofs from Chapter 5 221

integer constraint to specify τ → P (τ) at state s as follows. Let us use Ψs
τ to denote the

set of integer constraints defined for τ at s.

• If P (τ) = τ1, then Ψs
τ includes xsτ = xs1,sτ1,τ

, where s1 = δ(s, τ1).

• If P (τ) = (τ1, τ2), then Ψs
τ includes xsτ = xs1,sτ1,τ

and xsτ = xs2,sτ2 ,τ
, where si = δ(s, τi)

for i = 1, 2. Referring to the XML tree T , these assure that each τ -element in T

must have a τ1-subelement and a τ2-subelement.

• If P (τ) = (τ1|τ2), then Ψs
τ includes xsτ = xs1,sτ1 ,τ

+ xs2,sτ2,τ
, where si = δ(s, τi) for

i = 1, 2. This assures that each τ -element in T must have either a τ1-subelement

or a τ2-subelement, and thus the sum of the number of these τ1-subelements and

the number of τ2-subelements equals the number of τ -elements.

• If P (τ) = τ ∗1 , then Ψs
τ includes (xs1,sτ1,τ

> 0) → (xsτ > 0), where s1 = δ(s, τ1).

In addition, Ψs
τ includes xsτ =

∑

(τ ′,s′)∈Y s
τ

xs,s
′

τ,τ ′ .

Recall that β1.τ1.@l, . . . , βk.τk.@l is an enumeration of all regular expressions and

attributes that appear in Σ, that Θ is the set of functions θ : {1, . . . , k} → {0, 1} which

are not identically 0 and that for each such function θ, rθ is a regular expression defined

as in (B.1). For each i ∈ [1, k], we define Fβi.τi as the set of states s = (s1, . . . , sk) of

the DFA for Σ such that si is a final state of the DFA for βi.τi. Notice that by Lemma

B.2.3, for every XML tree T conforming to D and every node x of T , x ∈ nodes(βi.τi)

in T if and only if state(x) ∈ Fβi.τi. Furthermore, for each θ ∈ Θ, we define Fθ as the

set of states s = (s1, . . . , sk) of the DFA for Σ such that for every i ∈ [1, k], si is a

final state of the DFA for βi.τi if and only if θ(i) = 1. Notice that by Lemma B.2.3, for

every XML tree T conforming to D and every node x of T , x ∈ nodes(rθ) in T if and

only if state(x) ∈ Fθ. Finally, for each rθ 6= ∅, we have that for every i, j ∈ [1, k], if

θ(i) = θ(j) = 1, then τi = τj. In this case, we define τθ as τi, for an arbitrary i ∈ [1, k]

such that θ(i) = 1.

By our restriction on regular expressions regarding element type r, there is a unique

variable xsr associated with r, where s = δ(sM , r). We write xr for xsr. Then we define the

set of cardinality constraints determined by DTD D w.r.t. a set Σ of ACreg
K ,FK -constraints

over D, denoted by ΨΣ
D, as follows:

• For each τ ∈ E and each state s given above, ΨΣ
D contains all the constraints in

Ψs
τ .

Appendix B. Proofs from Chapter 5 222

• ΨΣ
D contains constraint xr = 1; i.e., there is a unique root in each XML tree

conforming to D.

• For every i ∈ [1, k], ΨΣ
D contains constraint |nodes(βi.τi)| =

∑

s : s∈Fβi.τi

xsτi .

• For every θ ∈ Θ such that rθ 6= ∅, ΨΣ
D contains constraint |nodes(rθ)| =

∑

s : s∈Fθ

xsτθ .

• For every θ ∈ Θ such that rθ = ∅, ΨΣ
D contains constraint |nodes(rθ)| = 0.

Note that ΨΣ
D can be computed in EXPTIME in the size of D and Σ. We say that ΨΣ

D is

consistent iff it has a nonnegative solution. We next show that ΨΣ
D indeed characterizes

narrow one-attribute DTD D.

Lemma B.2.4 Let D be a narrow one-attribute DTD, Σ a set of ACreg
K ,FK -constraints

over D and ΨΣ
D the set of cardinality constraints determined by D w.r.t. Σ. Then ΨΣ

D is

consistent iff there is an XML tree T such that T |= D. In addition, for every i ∈ [1, k]

and θ ∈ Θ, |nodes(βi.τi)| and |nodes(rθ)| in T equal the value of variables |nodes(βi.τi)|

and |nodes(rθ)| given by the solution to ΨΣ
D.

Proof: First, assume that there is an XML tree T = (V, lab, ele, att, root) conforming

to D. We define a nonnegative solution of ΨΣ
D as follows. For each variable xs,s

′

τ,τ ′ in ΨΣ
D,

let its value be the number of τ -elements x in T such that x is a child of a node y of

type τ ′ with state(x) = s and state(y) = s′. Furthermore, let xr be 1 and for every

variable xsτ in ΨΣ
D, let xsτ be the sum of the variables xs,s

′

τ,τ ′ where (τ ′, s′) ∈ Y s
τ . Finally,

for every i ∈ [1, k] and every θ ∈ Θ, let |nodes(βi.τi)| and |nodes(rθ)| be
∑

s : s∈Fβi.τi

xsτi

and
∑

s : s∈Fθ
xsτθ , respectively. This defines a nonnegative assignment since T is finite. It

can be verified that the assignment is a solution of ΨΣ
D. Indeed, it satisfies the constraint

xr = 1 and constraints of the form xsτ =
∑

(τ ′,s′)∈Y s
τ
xs,s

′

τ,τ ′, |nodes(βi.τi)| =
∑

s : s∈Fβi.τi

xsτi

and |nodes(rθ)| =
∑

s : s∈Fθ
xsτθ by the definition of the assignment. Moreover, one can

verify that it also satisfies the constraints of each Ψs
τ , by considering four different cases

corresponding to the four different types of regular expressions in D. In particular,

it satisfies constraints of the form (xs1,sτ1,τ
> 0) → (xsτ > 0) for each τ → τ ∗1 in P ,

since if xs1,sτ1,τ
> 0, then there exists a τ1-node in T having as its parent a τ -node y

with state(y) = s. Thus, xsτ > 0 by the definition of the assignment. Therefore, ΨΣ
D

is consistent. Moreover, by Lemma B.2.3, for every i ∈ [1, k] and θ ∈ Θ, the values

Appendix B. Proofs from Chapter 5 223

of variables |nodes(βi.τi)| and |nodes(rθ)| in the solution are indeed |nodes(βi.τi)| and

|nodes(rθ)| in T .

Conversely, assume that ΨΣ
D admits a nonnegative solution. We show that there exists

an XML tree T = (V, lab, ele, att, root) such that T |= D. To do so, for each element

type τ and state s for τ , we create xsτ many distinct τ -elements. Let ext(τ) denote the

set of all τ -elements created above and

V =
⋃

τ∈E

ext(τ).

Then function lab is defined as lab(v) = τ if v ∈ ext(τ), and function att is defined as

follows:

att(v, @l) =

empty string if @l ∈ R(lab(v))

undefined otherwise

It is easy to verify that these functions are well defined. Let root be the node labeled r,

which is unique since xr = 1 is in ΨΣ
D. Finally, to define function ele, we do the following.

For each xs,s
′

τ,τ ′ in ΨΣ
D, we choose xs,s

′

τ,τ ′ many distinct vertices labeled τ and mark them

with xs,s
′

τ,τ ′ . Note that every τ -element in V can be marked once and only once. Starting

at root, for each τ -element x marked with xs,s
′

τ,τ ′ for some (τ ′, s′) ∈ Y s
τ , consider P (τ) and

constraints of ΨΣ
D

5. If P (τ) is τ1 ∈ E, then we choose a distinct τ1-element y marked

with xs1,sτ1,τ
and let ele(x) = [y], where xsτ = xs1,sτ1,τ

is in ΨΣ
D. If P (τ) = (τ1, τ2), then we

choose a τ1-element y1 marked with xs1,sτ1 ,τ
and a τ2-element y2 marked with xs2,sτ2 ,τ

and let

ele(x) = [y1, y2], where xsτ = xs1,sτ1,τ
and xsτ = xs2,sτ2,τ

are in ΨΣ
D. If P (τ) = (τ1|τ2), then

we choose an element y marked with either xs1,sτ1 ,τ
or xs2,sτ2,τ

and let ele(x) = [y], where

xsτ = xs1,sτ1,τ
+ xs2,sτ2,τ

is in ΨΣ
D. If P (τ) = τ ∗1 , then we choose a list [y1, . . . , yn] (n ≥ 0) of

τ1-elements marked with xs1,sτ1,τ
and let ele(x) = [y1, . . . , yn], where (xs1,sτ1,τ

> 0) → (xsτ > 0)

is in ΨΣ
D. By the constraints in ΨΣ

D, each element of V can be chosen once and only once.

One can verify that T defined in this way is indeed an XML tree and T |= D. Hence,

there exists an XML tree conforming to D.

Finally, to see that for every i ∈ [1, k] and θ ∈ Θ, |nodes(βi.τi)| and |nodes(rθ)| in T

equals the values of variables |nodes(β.τ)| and |nodes(rθ)| in the solution, respectively,

it suffices to show, by Lemma B.2.3, that for each node x in T , if x is marked with xs,s
′

τ,τ ′

in the construction, then state(x) = s. Since T is a tree, there is a unique simple path

5We assume that root is marked with xs
r , where s = δ(sM , r) and sM is the initial state of the DFA

for Σ.

Appendix B. Proofs from Chapter 5 224

ρ ∈ E∗ such that T |= ρ(root, x). We show the claim by induction on the length |ρ| of

ρ. If |ρ| = 1, i.e., ρ = r, then x is the root and obviously, state(x) = δ(sM , r). Assume

the claim for ρ and we show that the claim holds for ρ.τ . Let y be the τ ′-element in

T such that T |= ρ(root, y) and y is the parent of x. Suppose that y is marked with

xs
′,s′′

τ ′,τ ′′ in the construction. By the induction hypothesis state(y) = s′. It is easy to see

state(x) = δ(s′, τ). By the definition of Ψs′

τ ′, we have that s is precisely the state δ(s′, τ).

Thus state(x) = s. This proves the claim and thus the lemma. 2

We now move to encoding ACreg
K ,FK -constraints in terms of integer constraints. Let D

be a DTD (E, {@l}, P, R, r) and Σ a set of ACreg
K ,FK -constraints over D. By Lemmas

B.2.1 and B.2.2, we assume, without loss of generality, that D is a narrow one-attribute

DTD. To encode Σ, let β1.τ1.@l, . . . , βk.τk.@l be an enumeration of all regular expressions

and attributes that appear in Σ, and for every function θ : {1, . . . , k} → {0, 1} which

is not identically 0, let regular expression rθ be defined as in (B.1). Then for every

nonempty Ω ⊆ Θ, we introduce a new variables zΩ. In any XML tree conforming to D,

the intended interpretations of zΩ is the the cardinality of

(
⋂

θ : θ∈Ω

values(rθ.@l)

)

−

(
⋃

θ : θ∈Θ−Ω

values(rθ.@l)

)

. (B.2)

Note that the number of new variables is double-exponential in the number of regular

expression in Σ. Using these variables, we define the set of the cardinality constraints

determined by Σ, denoted by CΣ, which consists of the following:

Appendix B. Proofs from Chapter 5 225

∑

Ω : θ∈Ω

zΩ = |values(rθ.@l)| for every θ ∈ Θ,

∑

Ω :Ω∩{θ|θ(i)=1}6=∅

zΩ = |values(βi.τi.@l)| for every i ∈ [1, k],

|values(βi.τi.@l)| = |nodes(βi.τi)| for every βi.τi.@l → βi.τi in Σ,

|values(βj.τj.@l)| = |nodes(βj.τj)| for every βi.τi.@l ⊆FK βj.τj.@l in Σ,

∑

Ω : Ω∩{θ|θ(i)=1}6=∅,
Ω∩{θ′|θ′(j)=1}=∅

zΩ = 0 for every βi.τi.@l ⊆FK βj.τj.@l in Σ,

|values(βi.τi.@l)| ≤ |nodes(βi.τi)| for every i ∈ [1, k],

|values(rθ.@l)| ≤ |nodes(rθ)| for every θ ∈ Θ.

Note that the size of CΣ is double-exponential in the size of Σ.

We now combine the encodings for constraints and the DTDs, and present a system

Ψ(D, Σ) of linear integer constraints for a DTD D and a set Σ of ACreg
K ,FK -constraints.

Assuming that D and Σ are as above, the set Ψ(D, Σ), called the set of cardinality

constraints determined by D and Σ, is defined to be:

ΨΣ
D ∪ CΣ ∪ {(|nodes(βi.τi)| > 0) → (|values(βi.τi.@l)| > 0) | i ∈ [1, k]} ∪

{(|nodes(rθ)| > 0) → (|values(rθ.@l)| > 0) | θ ∈ Θ},

where CΣ is the set of cardinality constraints determined by Σ, and ΨΣ
D is the set of

cardinality constraints determined by D w.r.t. Σ. The system Ψ(D, Σ) is said to be

consistent iff it has a nonnegative solution that satisfies all of its constraints. Observe

that Ψ(D, Σ) can be partitioned into two sets: Ψ(D, Σ) = Ψl(D, Σ) ∪ Ψd(D, Σ), where

Ψl(D, Σ) consists of linear integer constraints, and Ψd(D, Σ) consists of constraints of

the form (x > 0 → y > 0). Also note that the size of Ψ(D, Σ) is double-exponential in

the size of D and Σ.

We next show that Ψ(D, Σ) indeed characterizes the consistency of D and Σ.

Appendix B. Proofs from Chapter 5 226

Lemma B.2.5 Let D be a narrow one-attribute DTD, Σ a finite set of ACreg
K ,FK -

constraints over D and Ψ(D, Σ) the set of cardinality constraints determined by D and Σ.

Then Ψ(D, Σ) is consistent if and only if there is an XML tree T such that T |= (D,Σ).

Proof: Suppose that there exists an XML tree T such that T |= (D,Σ). Then by

Lemma B.2.4, there exists a nonnegative solution for ΨΣ
D such that for every i ∈ [1, k] and

θ ∈ Θ, the values of variables |nodes(rθ)| and |nodes(βi.τi)| in this solution coincide with

|nodes(rθ)| and |nodes(βi.τi)| in T , respectively. From this solution, it is easy to generate

a solution to Ψ(D,Σ) by assigning to variable |values(rθ.@l)| the size of values(rθ.@l) in

T , for every θ ∈ Θ, assigning to variable |values(βi.τi.@l)| the size of values(βi.τi.@l) in

T , for every i ∈ [1, k], and then assigning to each variable zΩ the cardinality of set (B.2)

above. It is straightforward to verify that this assignment is a solution to Ψ(D, Σ).

Conversely, suppose that Ψ(D, Σ) has an integer solution. We show that there is

an XML tree T such that T |= (D,Σ). By Lemma B.2.4, given an integer solution to

Ψ(D, Σ), we can construct an XML tree T ′ = (V, lab, ele, att′, root) such that T ′ |= D.

Moreover, for every i ∈ [1, k], there are exactly nβi.τi elements in T ′ reachable by following

βi.τi, where nβi.τi is the value of the variable |nodes(βi.τi)| in Ψ(D, Σ), and for every

θ ∈ Θ, there are exactly nrθ elements in T ′ reachable by following rθ, where nrθ is the value

of the variable |nodes(rθ)| in Ψ(D, Σ). We modify the definition of the function att′, while

leaving V , lab, ele and root unchanged, to generate a tree T = (V, lab, ele, att, root) such

that T |= (D,Σ). More specifically, we modify att′(v,@l) if v is in nodes(β.τ) for some

regular expression β.τ mentioned in Σ, and leave att′(v,@l) unchanged otherwise. To do

this, for each variable zΩ we create a set sΩ of distinct string values such that |sΩ| = zΩ

and sΩ∩sΩ′ = ∅ if Ω 6= Ω′. Then for every Ω ⊆ Θ, we let values(rθ.@l) in T to contain sΩ

if and only if θ ∈ Ω. This is possible because (1)
∑

Ω : θ∈Ω zΩ = |values(rθ.@l)| is in CΣ,

for every θ ∈ Θ; (2)
∑

Ω : Ω∩{θ|θ(i)=1}6=∅ zΩ = |values(βi.τi.@l)| is in CΣ, for every i ∈ [1, k];

(3) if rθ = ∅, then |nodes(rθ)| = 0 is in ΨΣ
D, for every θ ∈ Θ; (4) |values(βi.τi.@l)| ≤

|nodes(βi.τi)| is in CΣ, for every i ∈ [1, k]; (5) |values(rθ.@l)| ≤ |nodes(rθ)| is in CΣ, for

every θ ∈ Θ; and (6) nodes(β) in T equals nodes(β) in T ′, for every regular expression

β over D.

We next show that T has the desired properties. It is easy to verify T |= D given

the construction of T from T ′ and the assumption T ′ |= D. By definition of T , we

have that for every i ∈ [1, k] and θ ∈ Θ, |nodes(βi.τi)|, |values(βi.τi.@l)|, |nodes(rθ)|

and |values(rθ.@l)| in T equal the value of variables |nodes(βi.τi)|, |values(βi.τi.@l)|,

Appendix B. Proofs from Chapter 5 227

|nodes(rθ)| and |values(rθ.@l)| given by the solution to Ψ(D,Σ). We use this property

to show that T |= Σ. Let ϕ be a constraint in Σ. (1) If ϕ is a key βi.τi.@l → βi.@l, it is

immediate from the definition of T that T |= ϕ since |values(βi.τi.@l)| = |nodes(βi.τi)| is

a constraint in CΣ and, hence, |values(βi.τi.@l)| = |nodes(βi.τi)| in T . That is, each x ∈

nodes(βi.τi) in T has a distinct @l-attribute value and thus the value of its @l-attribute

uniquely identifies x among nodes in nodes(βi.τi). (2) If ϕ is βi.τi.@l ⊆FK βj.τj.@l, it is

easy to see that in T :

values(βi.τi.@l) − values(βj.τj.@l) =
⋃

Ω :Ω∩{θ|θ(i)=1}6=∅,Ω∩{θ′|θ′(j)=1}=∅

sΩ,

Since sΩ ∩ sΩ′ = ∅ if Ω 6= Ω′,

|values(βi.τi.@l) − values(βj.τj.@l)| =
∑

Ω : Ω∩{θ|θ(i)=1}6=∅,Ω∩{θ′|θ′(j)=1}=∅

zΩ.

Thus, given that

∑

Ω :Ω∩{θ|θ(i)=1}6=∅,Ω∩{θ′|θ′(j)=1}=∅

zΩ = 0

is in CΣ (since βi.τi.@l ⊆FK βj.τj.@l ∈ Σ), we have |values(βi.τi.@l)−values(βj.τj.@l)| =

0 in T , that is, values(βi.τi.@l) ⊆ values(βj.τj.@l) in T . Furthermore, T |= βj.τj.@l →

βj.τj since |values(βj.τj.@l)| = |nodes(βj.τj)| is a constraint in CΣ. Thus T |= ϕ. This

concludes the proof of the lemma. 2

We need another lemma for a mild generalization of linear integer constraints.

Lemma B.2.6 Given a system A~x ≤ ~b of linear integer constraints together with condi-

tions of the form (xi > 0) → (xj > 0), where A is an n×m matrix on integers, ~b is an

n-vector on integers and 1 ≤ i, j ≤ m, the problem of determining whether the system

admits a nonnegative integer solution is in NP.

Proof: Let c1, . . . , cp enumerate the conditions of the form (x > 0) → (y > 0), ck being

(x1
k > 0) → (x2

k > 0). Consider 2p instances Ij of integer linear programming obtained

by adding, for each k ≤ p, either x1
k = 0, or x2

k > 0 to A~x ≤ ~b. Clearly, the original

system of constraints has a solution iff some Ij has a solution. By [Pap81], Ij has a

solution iff it has a solution whose size is polynomial in A, ~b and p. Hence, to check if

the original system of constraints has a solution, it suffices to guess a system Ij and then

guess a polynomial size solution for it; thus, the problem is in NP. 2

Appendix B. Proofs from Chapter 5 228

We now conclude the proof of the first part of the theorem. By Lemma B.2.1, given

an arbitrary DTD D and a set Σ of ACreg
K ,FK -constraints over D, it is possible to compute

a one-attribute DTD D′ and a set Σ′ of ACreg
K ,FK -constraints over D′ such that (D,Σ)

is consistent iff (D′,Σ′) is consistent. By Lemma B.2.2, one can compute a narrow

one-attribute DTD D′N and a set Σ′N of ACreg
K ,FK -constraints over D′N such that (D′,Σ′)

is consistent iff (D′N ,Σ
′
N) is consistent. By Lemma B.2.5, (D′N ,Σ

′
N) is consistent iff

Ψ(D′N ,Σ
′
N) has a nonnegative integer solution. Thus, (D,Σ) is consistent iff Ψ(D′N ,Σ

′
N)

has a nonnegative integer solution. Note that (D′,Σ′) can be computed in polynomial

time on |D| + |Σ|, (D′N ,Σ
′
N) can be computed in polynomial time on |D′| + |Σ′|, and

Ψ(D′N ,Σ
′
N) can be computed in double-exponential time on |D′N | + |Σ′N |. Thus, by

Lemma B.2.6, one can check in 2-NEXPTIME whether there exists an XML tree T such

that T |= (D,Σ).

Proof of b) We establish the PSPACE-hardness by reduction from the QBF-CNF

problem. An instance of QBF-CNF is a quantified boolean formula in prenex conjunctive

normal form. The problem is to determine whether this formula is valid. QBF-CNF is

known to be PSPACE-complete [GJ79, Pap94].

Let θ be a formula of the form

Q1x1 · · ·Qmxmψ, (B.3)

where each Qi ∈ {∀, ∃} (1 ≤ i ≤ m) and ψ is a propositional formula in conjunctive

normal form, say C1 ∧ · · ·∧Cn, that mentions variables x1, . . . , xm. We construct a DTD

Dθ and a set Σθ of ACreg
K ,FK -constraint such that θ is valid if and only if there is an XML

tree conforming to Dθ and satisfying Σθ.

We construct a DTD Dθ = (E, A, P, R, r) as follows. E = {r, C} ∪
⋃m
i=1{xi, x̄i, Nxi

, Pxi
}, A = {@l} and P is defined by considering the quantifiers of θ.

We use Q1 to define P on the root:

P (r) =

(Nx1
|Px1

), C Q1 = ∃

(Nx1
, Px1

), C Q1 = ∀

In general, for each 1 ≤ i ≤ m − 1, we consider quantifier Qi+1 to define P (Nxi
) and

P (Pxi
):

P (Nxi
) = P (Pxi

) =

Nxi+1
|Pxi+1

Qi+1 = ∃

Nxi+1
, Pxi+1

Qi+1 = ∀

Appendix B. Proofs from Chapter 5 229

.

Nx1

Px2

Nx3
Px3

Px1

Nx2

Px3
Nx3

r

C

u

(x1|x2|x̄3)

Figure B.2: An XML tree conforming to the DTD constructed from ∀x1∃x2∀x3(x1 ∨x2 ∨

¬x3).

We represent formula ψ as a regular expression. Given a clause Cj =
∨p
i=1 yi ∨

∨q
i=1 ¬zi

(j ∈ [1, n]), tr(Cj) is defined to be the regular expression y1| · · · |yp|z̄1| · · · |z̄q. We define

P on element types Nxm
and Pxm

as P (Nxm
) = P (Pxm

) = tr(C1), . . . , tr(Cn). For the

remaining elements of E, we define P as ε. We define function R as follows:

R(r) = R(Pxi
) = R(Nxi

) = ∅ 1 ≤ i ≤ m

R(C) = R(xi) = R(x̄i) = {@l} 1 ≤ i ≤ m.

Finally, Σθ contains the following foreign keys:

r. ∗.Nxi
. ∗.xi.@l ⊆FK r.C.C.@l, r. ∗.Pxi

. ∗.x̄i.@l ⊆FK r.C.C.@l, i ∈ [1, m].

For instance, for the formula ∀x1∃x2∀x3(x1 ∨ x2 ∨ ¬x3), an XML tree conforming to D

is shown in Figure B.2. In this tree, a node of type Nxi
represents a negative value (0)

for the variable xi and a node of type Pxi
represents a positive value (1) for this variable.

Thus, given that the root has two children of types Nx1
and Px1

, the values 0 and 1

are assigned to x1 (representing the quantifier ∀x1). Nodes of type Nx1
have one child

of type either Nx2
or Px2

, and, therefore, either 0 or 1 is assigned to x2 (representing

the quantifier ∃x2). The same holds for nodes of type Px2
. The fourth level of the tree

represents the quantifier ∀x3.

In Figure B.2, every path from the root r to a node of type either Nx3
or Px3

represents

a truth assignment for the variables x1, x2, x3. For example, the path from the root to

the node u represents the truth assignment σu: σu(x1) = 0, σu(x2) = 1 and σu(x3) = 0.

To verify that all these assignments satisfy the formula x1 ∨ x2 ∨ ¬x3 we use the set of

constraint Σθ.

Appendix B. Proofs from Chapter 5 230

Next we prove that θ, defined in (B.3), is valid if and only if there is an XML tree

T conforming to Dθ and satisfying Σθ. We show only the “if” direction. The “only if”

direction is similar.

Suppose that there is an XML tree T such that T |= (Dθ,Σθ). To prove that θ is

valid, it suffices to prove that each path from the root r to a node of type either Nxm
or

Pxm
represents a truth assignment satisfying ψ. Let p be one of these paths and let v be

the node of type either Nxm
or Pxm

reachable from the root by following p. We define

the truth assignment σp as follows:

σp(xi) =

1 p contains a node of type Pxi

0 Otherwise.

We have to prove that σp(Ci) = 1 for each i ∈ [1, n]. Given that T |= Dθ, v has

as a child a node v′ whose type is in tr(Ci). If the type of v′ is xj, then given that

T |= r. ∗.Nxj
. ∗.xj .@l ⊆FK r.C.C.@l and that there is no a node in T reachable by

following the path r.C.C, p contains a node of type Pxj
, and, therefore, σp(Ci) = 1 since

σp(xj) = 1. If the type of v′ is x̄j, then given that T |= r. ∗.Pxj
. ∗.x̄j .@l ⊆FK r.C.C.@l, p

contains a node of type Nxj
and it does not contain a node of type Pxj

, and, therefore,

σp(Ci) = 1 since σp(¬xj) = 1. Thus, we conclude that θ is valid. This concludes the

proof of part b) of the theorem.

B.3 Proof of Theorem 5.4.1

We establish the undecidability of the consistency problem for unary relative keys and

foreign keys by reduction from the Hilbert’s 10th problem [Mat93]. To do this, we

consider a variation of the Diophantine problem, referred as the positive Diophantine

quadratic system problem. An instance of the problem is

P1(x1, . . . , xk) = Q1(x1, . . . , xk) + c1

P2(x1, . . . , xk) = Q2(x1, . . . , xk) + c2

...

Pn(x1, . . . , xk) = Qn(x1, . . . , xk) + cn

where for 1 ≤ i ≤ n, Pi and Qi are polynomials in which all coefficients are positive

integers; the degree of Pi is at most 2 and the degree of each of its monomial is at least

Appendix B. Proofs from Chapter 5 231

1; each polynomial Qi satisfies the same condition, and each ci is a nonnegative integer

constant. The problem is to determine, given any positive Diophantine quadratic system,

whether it has a nonnegative integer solution.

The positive Diophantine quadratic system problem is undecidable. To prove this,

it is straightforward to reduce to it another variation of the Diophantine problem, the

positive Diophantine equation problem, which is known to be undecidable. An instance of

this problem is R(ȳ) = S(ȳ), where R and S are polynomials in which all coefficients are

positive integers, and the problem is to determine whether it has a nonnegative integer

solution.

In what follows, we show a reduction from the positive Diophantine quadratic system

problem to SAT(RCK ,FK). More precisely, given a quadratic equation we show how to

represent it by using a DTD and a set of constraints. It is straightforward to extend this

representation to consider an arbitrary number of quadratic equations.

Consider the following equation:

m∑

i=1

aixαi
+

n∑

i=m+1

aixαi
xβi

=

p∑

i=1

bixγi
+

q∑

i=p+1

bixγi
xδi + o. (B.4)

In this equation, for every i ∈ [1, n] and j ∈ [m + 1, n], ai is a positive integer and

xαi
, xβj

represent variables, where αi, βj ∈ [1, k]. Furthermore, for every i ∈ [1, q] and

j ∈ [p+1, q], bi is a positive integer and xγi
, xδj are variables, where γi, δj ∈ [1, k]. Finally,

o is a nonnegative integer.

To code the previous equation, we need to define a DTD D = (E,A, P,R, r) and a

set of RCK ,FK -constraints Σ. Here D includes the following elements types:

E = {r,X, Y } ∪
k⋃

i=1

{ni} ∪

n⋃

i=1

{αi} ∪
n⋃

i=m+1

{α′i, βi, ci, di, ei} ∪

q
⋃

i=1

{γi} ∪

q
⋃

i=p+1

{γ′i, δi, fi, gi, hi},

and it includes the following attributes: A = {@v}. In this DTD, r is the root. Intuitively,

referring to an XML tree conforming to D, we use |ext(ni)| to code the value of the

variable xi, and we use |ext(X)| and |ext(Y)| to code the values of the left and the right

hand sides of (B.4), respectively.

Appendix B. Proofs from Chapter 5 232

We define P (r) as follows:

P (r) = n∗1, . . . , n
∗
k, α

∗
1, . . . , α

∗
m, (ε|αm+1), . . . , (ε|αn),

γ∗1 , . . . , γ
∗
p, (ε|γp+1), . . . , (ε|γq), Y, . . . , Y

︸ ︷︷ ︸

o times

We define the function P on αi and βi as follows:

P (αi) = X, . . . , X
︸ ︷︷ ︸

ai times

1 ≤ i ≤ m

P (αi) = (βi, ci, ci, X, . . . , X
︸ ︷︷ ︸

ai times

)∗, α′i m + 1 ≤ i ≤ n

P (γi) = Y, . . . , Y
︸ ︷︷ ︸

bi times

1 ≤ i ≤ p

P (γi) = (δi, fi, fi, Y, . . . , Y
︸ ︷︷ ︸

bi times

)∗, γ′i p+ 1 ≤ i ≤ q

To code (B.4) we need to capture the multiplication operator. To do this, we use α′i and

γ′i:

P (α′i) = (βi, di, di)
∗, (αi|(ci, ei)

∗) m+ 1 ≤ i ≤ n

P (γ′i) = (δi, gi, gi)
∗, (γi|(fi, hi)

∗) p+ 1 ≤ i ≤ q

For all the other element types τ in D, P (τ) is defined as ε:

P (βi) = ε m+ 1 ≤ i ≤ n P (δi) = ε p+ 1 ≤ i ≤ q

P (ci) = ε m+ 1 ≤ i ≤ n P (fi) = ε p+ 1 ≤ i ≤ q

P (di) = ε m+ 1 ≤ i ≤ n P (gi) = ε p+ 1 ≤ i ≤ q

P (ei) = ε m+ 1 ≤ i ≤ n P (hi) = ε p+ 1 ≤ i ≤ q

P (X) = ε P (Y) = ε

P (ni) = ε 1 ≤ i ≤ k

Finally, we include the following attributes:

R(r) = ∅ R(βi) = R(ci) = R(di) = R(ei) = {@v} m+ 1 ≤ i ≤ n

R(ni) = {@v} 1 ≤ i ≤ k R(δi) = R(fi) = R(gi) = R(hi) = {@v} p+ 1 ≤ i ≤ q

R(αi) = {@v} 1 ≤ i ≤ n R(α′i) = ∅ m+ 1 ≤ i ≤ n

R(γi) = {@v} 1 ≤ i ≤ q R(γ ′i) = ∅ p+ 1 ≤ i ≤ q

R(X) = {@v} R(Y) = {@v}

Appendix B. Proofs from Chapter 5 233

To ensure that XML documents that conform to D indeed code equation (B.4) we need

to define a set of RCK ,FK -constraints Σ. This set contains the following absolute keys:

r(X.@v → X) r(Y.@v → Y)

r(αi.@v → αi) for every 1 ≤ i ≤ n r(γi.@v → γi) for every 1 ≤ i ≤ q

r(βi.@v → βi) for every m+ 1 ≤ i ≤ n r(δi.@v → δi) for every p+ 1 ≤ i ≤ q

r(ci.@v → ci) for every m+ 1 ≤ i ≤ n r(fi.@v → fi) for every p+ 1 ≤ i ≤ q

r(di.@v → di) for every m+ 1 ≤ i ≤ n r(gi.@v → gi) for every p+ 1 ≤ i ≤ q

r(ei.@v → ei) for every m+ 1 ≤ i ≤ n r(hi.@v → hi) for every p+ 1 ≤ i ≤ q

r(ni.@v → ni) for every 1 ≤ i ≤ k

Σ contains the following absolute foreign keys:

r(X.@v ⊆FK Y.@v), r(Y.@v ⊆FK X.@v)

r(ns.@v ⊆FK αi.@v), r(αi.@v ⊆FK ns.@v) 1 ≤ i ≤ n and the value of αi in (B.4)

is equal to s

r(ns.@v ⊆FK ei.@v), r(ei.@v ⊆FK ns.@v) m + 1 ≤ i ≤ n and the value of βi in

(B.4) is equal to s

r(ns.@v ⊆FK γi.@v), r(γi.@v ⊆FK ns.@v) 1 ≤ i ≤ q and the value of γi in (B.4)

is equal to s

r(ns.@v ⊆FK hi.@v), r(hi.@v ⊆FK ns.@v) p + 1 ≤ i ≤ q and the value of δi in

(B.4) is equal to s

Finally, Σ contains the following relative foreign keys:

αi(βi.@v ⊆FK di.@v), αi(di.@v ⊆FK βi.@v) m+ 1 ≤ i ≤ n

α′i(βi.@v ⊆FK ci.@v), α′i(ci.@v ⊆FK βi.@v) m+ 1 ≤ i ≤ n

γi(δi.@v ⊆FK gi.@v), γi(gi.@v ⊆FK δi.@v) p+ 1 ≤ i ≤ q

γ′i(δi.@v ⊆FK fi.@v), γ′i(fi.@v ⊆FK δi.@v) p+ 1 ≤ i ≤ q

We show next that there is an XML tree T such that T |= (D,Σ) if and only if there

exists a nonnegative integer solution for (B.4). To do this, we prove that every XML

tree T satisfying D and Σ codifies equation (B.4). More precisely, if the value of every

variable xi is vi and |ext(ni)| = vi, for i ∈ [1, k], then

|ext(X)| =
m∑

i=1

aivαi
+

n∑

i=m+1

aivαi
vβi
, (B.5)

|ext(Y)| =

p
∑

i=1

bivγi
+

q
∑

i=p+1

bivγi
vδi + o. (B.6)

Appendix B. Proofs from Chapter 5 234

αi

r1

(βi, ci, ci, X, ..., X)∗ α′
i

r2

(βi, di, di)
∗ αi

r3

(βi, ci, ci, X, ..., X)∗ α′
i

r4

(ci, ei)
∗(βi, di, di)

∗

Figure B.3: Part of the XML tree used in the proof of Theorem 5.4.1.

Let T be an XML tree conforming to D. Then every node of type X in T appears as a

child of some node of type αi (i ∈ [1, n]). Thus, to prove (B.5) it suffices to show that

the number of X-nodes that are children of some node of type αi (i ∈ [1, n]) is equal to

the i-th term of (B.5), that is, for every i ∈ [1, m]:

|{x | x is an X-node in T and x is a child of a node of type αi}| = aivαi
,

and for every i ∈ [m + 1, n]:

|{x | x is an X-node in T and x is a child of a node of type αi}| = aivαi
vβi
.

Analogously, to show that (B.6) holds, we have to prove that the number of Y -nodes

that are children of some node of type γi (i ∈ [1, q]) is equal to the i-th term of (B.6).

We will only consider here the case of X-nodes, being the other case similar.

First, let i ∈ [1, m] and s be the value of αi in (B.5). Given that r(ns.@v ⊆FK

αi.@v), r(αi.@v ⊆FK ns.@v) are in Σ, by definition of P (αi) the total number of X-

nodes that are children of a node of type αi is equal to aivαi
. Second, let i ∈ [m + 1, n]

and s, t be the values of αi and βi in (B.4), respectively. Next we prove that |{x |

x is an X-node in T and x is a child of a node of type αi}| = aivsvt.

Given that r(ns.@v ⊆FK αi.@v), r(αi.@v ⊆FK ns.@v) are in Σ, |ext(αi)| in T is

equal to |ext(ns)| = vs. Thus, in T there are exactly vs nodes of type αi, each of

them having exactly one child of type α′i. Hence, there are exactly vs nodes of type

α′i, being the last one of the form shown in Figure B.3 (see node r4). By definition of

P (α′i), |{x | x is a child of r4 of type ci}| = |{x | x is a child of r4 of type ei}|. Given

that r(nt.@v ⊆FK ei.@v), r(ei.@v ⊆FK nt.@v) are in Σ and that every node of type

ei in T is a child of r4, |{x | x is a child of r4 of type ci}| = |ext(nt)|. Thus, since r4

Appendix B. Proofs from Chapter 5 235

is a node of type α′i and α′i(βi.@v ⊆FK ci.@v), α
′
i(ci.@v ⊆FK βi.@v) are in Σ, |{x |

x is a child of r4 of type βi}| = |ext(nt)| = vt. In addition, by definition of P (α′i), the

number of children of r4 of type di is 2vt.

Given that r3 is a node of type αi and αi(βi.@v ⊆FK di.@v), αi(di.@v ⊆FK βi.@v)

are in Σ, |{x | x is a child of r3 of type βi}| = vt, since there are 2vt descendants of r3 of

type di and vt children of r4 of type βi. Furthermore, by definition of P (αi), the number

of children of r3 of type X is aivt and the number of children of r3 of type ci is 2vt. We

can use the same argument to prove that the number of children of r2 of types βi and di

are vt and 2vt, respectively. Thus, the number of children of r1 of type X is aivt and the

number of descendants of r1 of type X is 2aivt. If we continue with this process we can

prove, by induction, that the number of X-nodes in T that are children of some node of

type αi is vsaivt, since there are vs nodes of type αi in T . This conclude the proof, since

|{x | x is an X-node in T and x is a child of a node of type αi}| = aivsvt.

B.4 Proof of Theorem 5.5.7

We will reduce SAT-CNF to our problem. Let ϕ be a propositional formula C1∧· · ·∧Cn,

where each Ci is a clause. Assume that each Ci (i ∈ [1, n]) contains neither repeated nor

complementary literals and ϕ mentions propositional variables x1, . . ., xm.

We will define a non-recursive no-star DTD D and a set of unary keys Σ such that ϕ

is satisfiable iff (D,Σ) is consistent. Define D = (E, A, P, R, r) as follows.

• E = {r} ∪ {Xi,j | Ci contains literal xj} ∪ {X̄i,j | Ci contains literal ¬xj}.

• If C1 =
∨p
k=1 xik ∨

∨q
k=1 ¬xjk , then P (r) = X1,i1 | · · · |X1,ip|X̄1,j1| · · · |X̄1,jq . For

each l ∈ [2, n], if Cl =
∨p
k=1 xik ∨

∨q
k=1 ¬xjk , then for each Xl−1,j ∈ E,

P (Xl−1,j) = Xl,i1| · · · |Xl,ip|X̄l,j1| · · · |X̄l,jq , and for each X̄l−1,j ∈ E, P (X̄l−1,j) =

Xl,i1| · · · |Xl,ip|X̄l,j1| · · · |X̄l,jq .

• A = {@li,j,k | i < j and xk,¬xk are contained in the union of the literals of Ci and

Cj}.

• For each Xi,j ∈ E, R(Xi,j) = {@lk,i,j′ | j 6= j ′ and @lk,i,j′ ∈ A}. For each X̄i,j ∈ E,

R(X̄i,j) = {@lk,i,j′ | j 6= j ′ and @lk,i,j′ ∈ A}. Furthermore, R(r) = ∅.

For example, if ϕ = (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3), then D is equal to the DTD shown in

figure B.4

Appendix B. Proofs from Chapter 5 236

r

(X1,1 | X̄1,3)

(X̄2,1 | X2,2 | X2,3) (X̄2,1 | X2,2 | X2,3)

@l1,2,3 @l1,2,1 @l1,2,3 @l1,2,1 @l1,2,3 @l1,2,1 @l1,2,3 @l1,2,1

Figure B.4: DTD generated from (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).

A set of unary keys Σ is defined as follows. If Xi,k ∈ E, X̄j,k ∈ E and i < j,

then r//Xi,k[//@li,j,k] → r//Xi,k is in Σ. If X̄i,k ∈ E, Xj,k ∈ E and i < j, then

r//X̄i,k[//@li,j,k] → r//X̄i,k is in Σ.

XML trees conforming to D represent truth assignments for variables x1, . . ., xm. For

example, one XML tree conforming to the DTD shown in figure B.4 contains nodes of

types r, X̄1,3, X2,2, and attributes @l1,2,1 and @l1,2,3 in the node of type X2,2. This tree

represents the truth assignment σ(x3) = 0 and σ(x2) = 1. We use the set of keys Σ to

avoid inconsistent assignments. For instance, there is an XML tree T conforming to the

DTD shown in figure B.4 containing nodes of types r, X1,1, X̄2,1, and attribute @l1,2,3 in

the node of type X̄2,1. T cannot represent a truth assignment since it says that 0 and

1 must be assigned to x1. T does not satisfy Σ, since r//X1,1[//@l1,2,1] → r//X1,1 ∈ Σ

and, therefore, T must contain a node of type either X2,2 or X2,3.

We have to prove that ϕ is satisfiable iff (D,Σ) is consistent. Here, we will prove only

the “if” direction. The “only if” direction is similar.

Assume that T = (V, lab, ele, att, root) is an XML tree conforming to D and satisfy-

ing Σ. Define a truth assignment σ as follows. For each variable xj (j ∈ [1, m]), if there

is a node in V of type Xi,j (i ∈ [1, n]), then σ(xj) = 1, otherwise, σ(xj) = 0. We have

to prove that σ satisfies ϕ. Let Ci be a clause in ϕ (i ∈ [1, n]). By definition of D, there

is a literal xj (j ∈ [1, m]) in Ci and a node in V of type Xi,j or there is a literal ¬xk

(k ∈ [1, m]) and a node in V of type X̄i,k. In the former case, σ(xj) = 1 and, therefore,

σ satisfies Ci since xj is a literal in this clause. In the latter case, assume that there is a

node in V of type X̄i,k (k ∈ [1, m]). If σ(xk) = 1, then there is a node in V of type Xi′,k

(i′ ∈ [1, n]). We have to consider two cases.

Appendix B. Proofs from Chapter 5 237

1. If i′ < i, then r//Xi′,k[//@li′,i,k] → r//Xi′,k ∈ Σ. By definition of R, @li′,i,k 6∈

R(X̄i,k). Thus, T 6|= Σ since there is a node x in T reachable from the root by

following a path in r//Xi′,k such that reach(x, //@li′,i,k) = ∅.

2. If i′ > i, then r//X̄i,k[//@li,i′,k] → r//X̄i,k ∈ Σ. By definition of R, @li,i′,k 6∈

R(Xi′,k). Thus, T 6|= Σ since there is a node x in T reachable from the root by

following a path in r//X̄i,k such that reach(x, //@li,i′,k) = ∅.

In both cases we reach a contradiction since we assume that T |= Σ. Thus, we conclude

that V does not contain a node of type Xi′,k (i′ ∈ [1, n]) and, therefore, σ(xk) = 0. Hence,

σ satisfies Ci since ¬xk is a literal in this clause. This concludes the proof of the theorem.

Appendix C

Proofs from Chapter 6

A DTD D can be inconsistent in the sense that there is no XML tree T such that T |= D.

For example, a recursive DTD containing a rule P (a) = a is not consistent; there is no

a finite XML tree satisfying this rule. In this section we only consider consistent DTDs,

since the implication problem for inconsistent DTDs is trivial and it can be checked in

linear time whether a DTD is consistent [FL01].

C.1 Proof of Theorem 6.3.1

To prove this theorem, we need to introduce some terminology and prove two technical

lemmas. Given an XML tree T = (V, lab, ele, att, root) and a node v ∈ V − {root},

define T−v as an XML tree constructed by removing v and all the descendant of v from T .

Formally, T−v is defined to be (V ′, lab′, ele′, att′, root), where V ′ = V − {x ∈ V | x = v

or x is a descendant of v}, lab′ = lab�V ′
, att′ = att�V ′×Att

and ele′ is defined as follows.

For every v′ ∈ V ′ such that v′ is not the parent of v in T , ele′(v′) = ele(v′). For the

parent v? of v in T , assume that ele(v?) = [v1, . . . , vn] and that v is the i-th child of v?,

and define ele′(v?) as [v1, . . . , vi−1, vi+1, . . . , vn].

Given an XML tree T , if v is a node of T having a sibling v ′ of the same type

(lab(v) = lab(v′)), then v is said to be removable from T . The following lemma follows

from the definitions of T−v and tuplesD.

Lemma C.1.1 Given a DTD D, a tree T �D and a node v of T , if v is removable from

T , then tuplesD(T−v) $ tuplesD(T).

Given a regular expression β, denote by L(β) the language defined by β. There are well-

238

Appendix C. Proofs from Chapter 6 239

known polynomial time algorithms that given a regular expression β, generate nondeter-

ministic automata accepting the same language as β. Choose one of these algorithms,

and assume that its running time is O(|β|c), where c is a fixed constant. Furthermore,

define Aβ as the automaton generated by the algorithm on input β, and let Qβ be the

set of states of Aβ.

Given strings w and w′ over the same alphabet, we say that w′ is contained in w if

there exist k ≥ 1 and strings u1, . . ., uk, v1, . . ., vk−1 such that w = u1v1 · · ·uk−1vk−1uk

and w′ = u1 · · ·uk−1uk. Thus, w′ is contained in w if w′ can be obtained by removing

from w some of its substrings.

Lemma C.1.2 Let β be a regular expression, w ∈ L(β) and Γ the set of symbols men-

tioned in w. Then there exists a string w′ ∈ L(β) such that:

1. w′ is contained in w and the set of symbols mentioned in w′ is Γ;

2. |w′| ≤ 2 · (|Qβ| + 1) · (|Γ| + 1);

3. for every a ∈ Γ, if a appears more than once in w, then it also appears more than

once in w′.

Proof: If w is the empty string, then the property trivially holds. Thus, assume that

w = a1 · · ·an, where n ≥ 1 and each ai ∈ Γ (i ∈ [1, n]).

Define a set I ⊆ [1, n] as follows. For every a ∈ Γ, if a appears only once in w, then

pick an arbitrary i ∈ [1, n] such that ai = a and let i be an element of I. Otherwise, pick

distinct i, j ∈ [1, n] such that ai = aj = a and let i, j be elements of I. Finally, let 1 and

n be elements of I.

Given that w ∈ L(β), there exists an accepting run of Aβ on w, that is, a function

ρ : {1, . . . , n} → Qβ such that ρ(1) ∈ δβ(q0, a1), ρ(i + 1) ∈ δβ(ρ(i), ai+1) (i ∈ [1, n − 1])

and ρ(n) ∈ Fβ, where q0, δβ and Fβ are the initial state, the transition function and the

set of final states of automaton Aβ, respectively. We use ρ to define string w′. More

precisely, we can construct a string w′ satisfying the conditions of the lemma by choosing

some of the substrings u of w such that u = ai · · ·aj (1 ≤ i < j ≤ n), [i, j] ∩ I = ∅

and ρ(i) = ρ(j), and then removing ai+1 · · ·aj from w. In particular, we have that

|w′| ≤ |I| + |Qβ| · (|I| − 1) since there exists an accepting run of Aβ on w′ that has no

cycles in between two positions of this string that correspond to two consecutive positions

in I. Therefore, given that |I| ≤ 2·|Γ|+2, we have that |w′| ≤ (2·|Γ|+2)+|Qβ|·(2·|Γ|+1) ≤

Appendix C. Proofs from Chapter 6 240

(2 · |Γ|+ 2) + |Qβ| · (2 · |Γ|+ 2) = (|Qβ|+ 1) · (2 · |Γ|+ 2) = 2 · (|Qβ|+ 1) · (|Γ|+ 1). This

concludes the proof of the lemma. 2

Proof of Theorem 6.3.1: We show that the complement of our problem is in

NEXPTIME. More precisely, we prove that given a DTD D and set of functional de-

pendencies Σ ∪ {ϕ} over D, if (D,Σ) 6` ϕ, then there exists an XML tree T such that

T |= (D,Σ), T 6|= ϕ and ‖T‖ is ‖D‖O(‖D‖+‖Σ‖).

Let D = (E,A, P,R, r) be a DTD and Σ ∪ {ϕ} a set of functional dependencies such

that (D,Σ) 6` ϕ. Assume that ϕ is of the form S → p, where S ∪{p} ⊆ paths(D). Given

that (D,Σ) 6` ϕ, there exists an XML tree T ′ conforming to D and satisfying Σ such

that T ′ 6|= ϕ. Furthermore, given that Σ ∪ {ϕ} only mentions a finite number of paths,

we assume that the depth of T ′ is at most ‖Σ‖ + ‖D‖. We observe that the size of T ′

can be arbitrarily large.

Given that T ′ 6|= ϕ, there exists tree tuples t1, t2 ∈ tuplesD(T ′) such that t1.q = t2.q

and t1.q 6= ⊥, for every q ∈ S, and t1.p 6= t2.p. By Lemmas C.1.1 and C.1.2, we know

that there exists a subtree T of T ′ such that T |= D, t1, t2 ∈ tuplesD(T), tuplesD(T) ⊆

tuplesD(T ′) and for every element type τ ∈ E and every τ -node v of T , the number of

children of v is at most 2 · (|QP (τ)|+1) · (|E|+1). Thus, we have that for every τ -node v

of T , the number of children of v is O(‖D‖c+1) since |QP (τ)| is O(|P (τ)|c), |P (τ)| ≤ ‖D‖

and |E| ≤ ‖D‖. We conclude that ‖T‖ is ‖D‖O(‖D‖+‖Σ‖) since the depth of T is at most

‖D‖ + ‖Σ‖. Furthermore, we deduce that T |= Σ, since tuplesD(T) ⊆ tuplesD(T ′) and

T ′ |= Σ, and that T 6|= ϕ, since t1, t2 ∈ tuplesD(T). Hence, there exists an XML tree T

such that T |= (D,Σ), T 6|= ϕ and ‖T‖ is ‖D‖O(‖D‖+‖Σ‖). This concludes the proof of the

theorem. 2

C.2 Proof of Theorem 6.3.2

To prove this theorem we start by introducing some terminology. Given a simple DTD

D = (E, A, P, R, r) and p, p′ ∈ paths(D) such that p is a proper prefix of p′, we say

that p′ can be nullified from p if p′ is of the form p.w1. · · · .wn, where wi ∈ E ∪ A ∪ {S}

(i ∈ [1, n]) and either (1) P (last(p)) contains w1? or w∗1; or (2) there is i ∈ [1, n− 1] such

that P (wi) contains wi+1? or w∗i+1. Intuitively, p′ can be nullified from p if there exists

and XML tree T conforming to D and a tree tuple t in T such that t.p 6= ⊥ and t.p′ = ⊥.

For example, if P (r) = a, P (a) = b∗ and P (b) = c, then r.a.b.c can be nullified from r

and r.a, but it cannot be nullified from r.a.b. Given S ⊆ paths(D), we say that p′ can be

Appendix C. Proofs from Chapter 6 241

nullified from S if p′ can be nullified from p, where p is the longest common prefix of p′

and a path from S.

The following is proved by the same argument as Lemma C.4.1 shown in electronic

appendix C.4.

Lemma C.2.1 Given a simple DTD D, a set Σ of functional dependencies over D and

S ∪ {p} ⊆ paths(D), (D,Σ) 6` S → p if and only if there is an XML tree T and a

path q prefix of p such that T |= (D,Σ), tuplesD(T) = {t1, t2}, t1.S = t2.S, t1.S 6= ⊥,

t1.p 6= t2.p, t1.p 6= ⊥, t2.p 6= ⊥, t1.q 6= t2.q and

• For each s ∈ paths(D), if s can be nullified from S ∪ {p}, then t1.s = t2.s = ⊥.

• For each s ∈ paths(D), if q is not a prefix of s and s cannot be nullified from

S ∪ {p}, then t1.s = t2.s and t1.s 6= ⊥.

To prove that the implication problem for simple DTDs can be solved in polynomial time,

we use the technique of [SDPF81] and code constraints with propositional formulas. That

is, for each simple DTD D and set of functional dependencies Σ∪{S → p} over D, we will

define a propositional formula ϕ such that (D,Σ) 6` S → p if and only if ϕ is satisfiable.

This formula will be of the form ϕ1 ∨ · · · ∨ϕn, where each ϕi (i ∈ [1, n]) is a conjunction

of Horn clauses. Given that the consistency problem for Horn clauses is solvable in linear

time, we will conclude that our problem is solvable in quadratic time.

Let D be a DTD, Σ a set of functional dependencies over D and S ∪{p} ⊆ paths(D).

Recall that we assumed that each constraints in Σ is of the form S ′ → p′, where S ′∪{p′} ⊆

paths(D). We define paths(Σ) as {s | there is S ′ → p′ ∈ Σ such that s ∈ S ′ ∪ {p′}}.

To define the propositional formula ϕ we view each path s ∈ paths(Σ) ∪ S ∪ {p} as a

propositional variable. Furthermore, for each path q which is a prefix of p we define a

propositional formula ϕq as

¬p ∧ (
∧

s∈Pq∪S

s) ∧ (
∧

s∈Nq

¬s) ∧
∧

ψ∈Γ

ψ,

where Pq, Nq and Γ are set of propositional variables and formulas defined as follows.

• For each s ∈ paths(Σ) such that s cannot be nullified from S ∪ {p} and q is not a

prefix of s, s is included in Pq.

• For each s ∈ paths(Σ) such that s ∈ EPaths(D), s cannot be nullified from S ∪

{p} and q is a prefix of s, s is included in Nq.

Appendix C. Proofs from Chapter 6 242

• For each S ′ → p′ ∈ Σ, if there is no q′ ∈ S ′ ∪ {p′} such that q′ can be nullified from

S ∪ {p}, then (
∧

s∈S′ s) → p′ is included in Γ

We note that ϕq is a conjunction of Horn clauses.

The propositional formula ϕ is defined as the disjunction of some of the formula ϕqs.

The following lemma shows that in this disjunction we only need to consider qs such that

q = q′.τ , for some τ ∈ E, and P (last(q′)) contains τ ∗ or τ+.

Lemma C.2.2 Let D = (E, A, P, R, r) be a simple DTD, Σ a set of functional depen-

dencies over D and S ∪ {p, q} ⊆ paths(D) such that q is a prefix of p. If there is τ ∈ E

such that q = q′.τ and P (last(q′)) contains τ ∗ or τ+, then ϕq is satisfiable iff there is

an XML tree T such that T |= (D,Σ), tuplesD(T) = {t1, t2}, t1.S = t2.S, t1.S 6= ⊥,

t1.p 6= t2.p, t1.p 6= ⊥, t2.p 6= ⊥, t1.q 6= t2.q and

• For each s ∈ paths(D), if s can be nullified from S ∪ {p}, then t1.s = t2.s = ⊥.

• For each s ∈ paths(D), if q is not a prefix of s and s cannot be nullified from

S ∪ {p}, then t1.s = t2.s and t1.s 6= ⊥.

Proof: (⇒) Let σ be a truth assignment satisfying ϕq. We define tuples t1 and t2 as

follows. For each s ∈ paths(D), if s can be nullified from S ∪ {p}, then t1.s = t2.s = ⊥.

If s cannot be nullified from S ∪ {p} we consider two cases. If q is not a prefix of s, then

t1.s = t2.s and t1.s 6= ⊥. Otherwise, if σ(s) = 1, then t1.s = t2.s and t1.s 6= ⊥, else

t1.s 6= t2.s, t1.s 6= ⊥ and t2.s 6= ⊥.

It is straightforward to prove that there is an XML tree T ∈ treesD({t1, t2}) such that

T |= D and tuplesD(T) = {t1, t2}. Given that σ |= ¬p ∧
∧

s∈S s, t1.S = t2.S, t1.S 6= ⊥,

t1.p 6= t2.p, t1.p 6= ⊥ and t2.p 6= ⊥. Besides, t1.q 6= t2.q, since q ∈ Nq and σ |=
∧

s∈Nq
¬s.

Thus, to finish the proof we have to show that T |= Σ. Let S ′ → p′ ∈ Σ. If there

is q′ ∈ S ′ ∪ {p′} such that q′ can be nullified from S ∪ {p}, then T trivially satisfies

S ′ → p′ since t1.q
′ = t2.q

′ = ⊥. Otherwise, suppose that t1.S
′ = t2.S

′ and t1.S
′ 6= ⊥.

Then, by considering that σ |=
∧

s∈Pq
s and the definition of t1 and t2, we conclude that

σ |=
∧

s∈S′ s. Thus, given that σ |= (
∧

s∈S′ s) → p′, we conclude that σ(p′) = 1, and,

therefore, t1.p
′ = t2.p

′.

(⇐) Suppose that there is an XML tree T satisfying the conditions of the lemma. Define

a truth assignment σ as follows. For each s ∈ paths(Σ) ∪ S ∪ {p}, if t1.s 6= t2.s then

σ(s) = 0. Otherwise, σ(s) = 1.

Appendix C. Proofs from Chapter 6 243

Given that t1.p 6= t2.p and t1.S = t2.S, σ(¬p) = 1 and σ |=
∧

s∈S s. Let s ∈ Pq. By

definition, s cannot be nullified from S ∪ {p} and q is not a prefix of s, and, therefore,

t1.s = t2.s. Thus, σ(s) = 1. We conclude that σ |=
∧

s∈Pq
s. Let s ∈ Nq. By definition, s

cannot be nullified from S ∪{p}, q is a prefix of s and s ∈ EPaths(D). Hence, t1.s 6= t2.s

and σ(s) = 0. We conclude that σ |=
∧

s∈Nq
¬s. Finally, let (

∧

s∈S′ s) → p′ ∈ Σq. If

σ |=
∧

s∈S′ s, then by definition of σ and Σq, we conclude that t1.S
′ = t2.S

′ and t1.S
′ 6= ⊥.

Thus, given that T |= Σ, we conclude that t1.p
′ = t2.p

′ and, therefore, σ(p′) = 1. 2

Combining Lemmas C.2.1 and C.2.2 we obtain:

Lemma C.2.3 Let D = (E, A, P, R, r) be a simple DTD, Σ a set of functional depen-

dencies over D and S ∪ {p} ⊆ paths(D). Assume that X = {q ∈ paths(D) | q is a prefix

of p and there is τ ∈ E such that q = q′.τ and P (last(q′)) contains τ ∗ or τ+}. Then,

(D,Σ) 6` S → p iff ϕ =
∨

q∈X ϕq is satisfiable.

Finally, we are ready to show that for a simple DTD D and a set of FDs Σ∪{S → p} over

D, checking whether (D,Σ) ` S → p can be done in quadratic time. The size of each

formula ϕq in the previous Lemma is O(‖Σ‖ + ‖S‖ + ‖p‖). Thus, it is possible to verify

whether ϕq is satisfiable in time O(‖Σ‖+ ‖S‖+ ‖p‖), since satisfiability of propositional

Horn formulas can be checked in linear time [DG84]. Hence, given that there are at most

‖p‖ of these formulas, checking whether formula
∨

q∈X ϕq in Lemma C.2.3 is satisfiable

requires time O(‖p‖ · (‖Σ‖+ ‖S‖+ ‖p‖)). To construct this formula, first we execute two

steps:

1. For every s ∈ paths(Σ), find the longest common prefix of s and a path from S∪{p},

which requires time O(‖s‖ · (‖S‖+ ‖p‖)). By using this prefix verify whether s can

be nullified from S ∪ {p}, which requires time O(‖s‖ · ‖D‖).

2. For each s ∈ paths(Σ) and for each prefix q of p, verify whether q is a prefix of s,

which requires time O(‖q‖).

The total time required by these steps is O(‖Σ‖·(‖D‖+‖S‖+‖p‖)). Let k be the number

of paths in Σ and l be the number of prefixes of p. The information generated by the first

step is stored in a array with k entries, one for each path in Σ, indicating whether each

of these paths can be nullified from S ∪ {p}. Similarly, the information generated by the

second step is stored in l arrays with k entries each. By using these data structures, the

formula
∨

q∈X ϕq in Lemma C.2.3 can be constructed in time O(‖p‖ · (‖Σ‖+ ‖S‖+ ‖p‖)).

Appendix C. Proofs from Chapter 6 244

Thus, the total time of the algorithm is O(‖p‖·(‖Σ‖+‖S‖+‖p‖)+‖Σ‖·(‖D‖+‖S‖+‖p‖)).

This completes the proof of Theorem 6.3.2.

C.3 Proof of Theorem 6.3.3

To prove this theorem first we prove two lemmas. Let D = (E, A, P, R, r) be a

disjunctive DTD and τ ∈ E such that P (τ) = s1, . . . , sn. Assume that for a fixed

k ∈ [1, n], sk = s′1|s
′
2, where s′1, s

′
2 are simple disjunctions over alphabets A′1, A

′
2 and

A′1 ∩ A′2 = ∅. Assume that there is only one pτ ∈ paths(D) such that last(pτ) = τ .

We define paths i(D) (for i = 1, 2) as the set of all paths q in D such that one of the

following statement holds: (1) pτ is not a proper prefix of q or (2) there is τ ′ ∈ E such

that pτ .τ
′ is a prefix of q and τ ′ is in the alphabet of any of the regular expressions s1,

. . ., sk−1, s
′
i, sk+1, . . ., sn. Then we define DTDs Di = (Ei, Ai, Pi, Ri, r) (for i = 1, 2)

as follows. Ei = {τ ′ ∈ E | τ ′ is mentioned in some q ∈ paths i(D)}, Ai = {@l | there is

τ ′ ∈ Ei such that @l ∈ R(τ ′)}, Pi(τ) = s1, . . . , sk−1, s
′
i, sk+1, . . . , sn, Pi(τ

′) = P (τ ′), for

each τ ′ ∈ Ei − {τ}, and Ri = R|Ei
. Moreover, given a set of functional dependencies Σ

over D, we define a set of functional dependencies Σi over Di (for i = 1, 2) as follows.

For each S → p ∈ Σ, if S ∪ {p} ⊆ paths i(D), then S → p is included in Σi.

Lemma C.3.1 Let D, Σ, τ , pτ , Di and Σi, for i = 1, 2 be as above and let S → p be a

functional dependency over D. Then

(a) If S ∪ {p} 6⊆ paths i(D) for every i ∈ [1, 2], then (D,Σ) ` S → p.

(b) If S ∪ {p} ⊆ paths1(D) and S ∪ {p} 6⊆ paths2(D), then (D,Σ) ` S → p iff

(D1,Σ1) ` S → p.

(c) If S ∪ {p} ⊆ paths i(D) for every i ∈ [1, 2], then (D,Σ) ` S → p iff for every

i ∈ [1, 2], (Di,Σi) ` S → p.

Proof: (a) Let pi ∈ paths i(D) (i ∈ [1, 2]) such that pi ∈ S ∪ {p}, for every i ∈ [1, 2],

p1 6∈ paths2(D) and p2 6∈ paths1(D). Let T be an XML tree such that T |= (D,Σ), and

t1, t2 ∈ tuplesD(T). Without loss of generality, assume that p1 ∈ S. If t1.p1 = t2.p1 and

t1.p1 6= ⊥, then t1.p2 = t2.p2 = ⊥, and, therefore, T |= S → p. Thus, we conclude that

(D,Σ) ` S → p.

Appendix C. Proofs from Chapter 6 245

(b) If (D,Σ) ` S → p, we have to prove that (D1,Σ1) ` S → p. Let T1 be an

XML such that T1 |= (D1,Σ1). This tree conforms to D and satisfies Σ, since each

constraint ϕ ∈ Σ − Σ1 contains at least one path q such that for every t ∈ tuplesD(T1),

t.q = ⊥. Hence, T1 |= S → p.

Suppose that (D1,Σ1) ` S → p. We have to prove that (D,Σ) ` S → p. Let T be an

XML tree such that T |= (D,Σ), and t1, t2 ∈ tuplesD(T). Let p1 ∈ paths1(D) such that

p1 ∈ S ∪ {p} and p1 6∈ paths2(D). By contradiction, suppose that t1.S = t2.S, t1.S 6= ⊥

and t1.p 6= t2.p. If p1 ∈ S, then there is T1 ∈ treesD({t1, t2}) such that T1 |= D1, since

t1.p1 6= ⊥ and t2.p1 6= ⊥. Since T |= Σ, T1 |= Σ1, and, therefore (D1,Σ1) 6` S → p, a

contradiction. If p1 = p, without loss of generality, we can assume that t1.p1 6= ⊥. If

t2.p1 6= ⊥, then there is T1 ∈ treesD({t1, t2}) such that T1 |= D1. But, T1 |= Σ1, since

T |= Σ, and, therefore (D1,Σ1) 6` S → p, a contradiction. Assume that t2.p1 = ⊥.

Define t′2 ∈ T (D1) as follows. For each w ∈ paths1(D) ∩ paths2(D), t′2.w = t2.w, and

for each w ∈ paths1(D) − paths2(D), if t1.w = ⊥, then t′2.w = ⊥, otherwise t′2.w 6= t1.w.

Given that t1.pτ 6= t2.pτ , since t1.p1 6= ⊥ and t2.p1 = ⊥, we conclude that there is

an XML tree T1 ∈ treesD({t1, t
′
2}) such that T1 conforms to D1. But T1 |= Σ1, since

treesD({t1, t2}) |= Σ. Thus, (D1,Σ1) 6` S → p, again a contradiction.

(c) We will only prove the “if” direction. The “only if” direction is analogous to

the proof of this direction in (b). Assume that (D,Σ) 6` S → p. We will show that

(D1,Σ1) 6` S → p or (D2,Σ2) 6` S → p.

Given that every disjunctive DTD is a relational DTD (see Proposition 6.3.4), by

Lemma C.4.1 we conclude that (D,Σ) 6` S → p if and only if there is an XML tree T and

a path q prefix of p such that T |= (D,Σ), tuplesD(T) = {t1, t2}, t1.S = t2.S, t1.S 6= ⊥,

t1.p 6= t2.p, t1.q 6= t2.q and for each s ∈ paths(D), if q is not a prefix of s, then t1.s = t2.s.

We consider three cases.

1. If q is not a prefix of pτ . Then, there is T ′ ∈ treesD({t1, t2}) such that T ′ conforms

to either D1 or D2. Without loss of generality, assume that T ′ |= D1. In this case,

T ′ |= Σ1, since T |= Σ. Hence, (D1,Σ1) 6` S → p.

2. If q is a prefix of pτ and there exists a′1 ∈ A′1 and a′2 ∈ A′2 such that t1.pτ .a
′
1 6=

⊥ and t2.pτ .a
′
2 6= ⊥. In this case, we define t′2 ∈ T (D1) as follows. For each

w ∈ paths1(D) ∩ paths2(D), t′2.w = t2.w, and for each w ∈ paths1(D) − paths2(D),

if t1.w = ⊥, then t′2.w = ⊥, otherwise t′2.w 6= t1.w. Then, there exists T ′ ∈

Appendix C. Proofs from Chapter 6 246

treesD1
({t1, t

′
2}) such that T ′ |= D1, T

′ |= Σ1 and T ′ 6|= S → p, since T |= Σ and

T 6|= S → p. We conclude that (D1,Σ1) 6` S → p.

3. If q is a prefix of pτ and there are no a′1 ∈ A′1 and a′2 ∈ A′2 such that either

t1.pτ .a
′
1 6= ⊥ and t2.pτ .a

′
2 6= ⊥ or t2.pτ .a

′
1 6= ⊥ and t1.pτ .a

′
2 6= ⊥. This case is

analogous to the first one.

2

Given a disjunctive DTD D = (E, A, P, R, r), to apply the previous lemma we need

to find an element type τ such that there is exactly one path in D whose last element

is τ and P (τ) = s1, . . . , sk, . . . , sn, where sk = s′1|s
′
2, s

′
1 and s′2 are simple disjunctions

over alphabets A′1, A
′
2 and A′1 ∩ A′2 = ∅. If there is no such an element type and D is

not a simple DTD, it is possible to create it by using the following transformation. Pick

τ satisfying the previous conditions except for there is more than one path whose last

element is τ . Pick p ∈ paths(D) such that last(p) = τ . Define a DTD Dp = (Ep, A, Pp,

Rp, rp) as follows. rp = [r] and Ep = (E−{r})∪{[q] | q ∈ paths(D) and q is a prefix of p}

(we use square brackets to distinguish between paths and element types). The functions

Pp and Rp are defined as follows.

• For each q ∈ paths(D) and τ ′ ∈ E such that q.τ ′ is a prefix of p, Pp([q]) =

f(P (last(q))), where f is a homomorphism defined as f(τ ′) = [q.τ ′] and f(τ ′′) = τ ′′

for each τ ′′ 6= τ ′. Moreover, Pp([p]) = P (last(p)) and Pp(τ
′) = P (τ ′), for each

τ ′ ∈ E − {r}.

• For each [q] ∈ Ep, Rp([q]) = R(last(q)). Moreover, Rp(τ
′) = R(τ ′), for each

τ ′ ∈ E − {r}.

Let Σ∪{S → q} be a set of functional dependencies over D. We define a set of functional

dependencies Σp∪{Sp → qp} over Dp as follows. For each path q′ mentioned in Σ∪{S →

q}, if q′ = q1.q2, where q1 is the longest common prefix of q′ and p, then q′ is replaced by

g(q1).q2, where g is an homomorphism defined as g([r]) = [r] and g([w.τ ′]) = g([w]).[w.τ ′],

for each w.τ ′ prefix of p. The following is straightforward.

Lemma C.3.2 Let D, Σ ∪ {S → q}, Dp and Σp ∪ {Sp → qp} be as above. Then,

(D,Σ) ` S → q iff (Dp,Σp) ` Sp → qp.

Theorem 6.3.3 now follows from Lemmas C.3.1 and C.3.2.

Appendix C. Proofs from Chapter 6 247

C.4 The Implication Problem for Relational DTDs

is in coNP

To prove this theorem we start with the following lemma.

Lemma C.4.1 Given a relational DTD D, a set Σ of functional dependencies over D

and S ∪ {p} ⊆ paths(D), (D,Σ) 6` S → p if and only if there is an XML tree T and

a path q prefix of p such that T conforms to D, T satisfies Σ, tuplesD(T) = {t1, t2},

t1.S = t2.S, t1.S 6= ⊥, t1.p 6= t2.p, t1.q 6= t2.q and for each s ∈ paths(D), if q is not a

prefix of s, then t1.s = t2.s.

Proof: We will prove only the “only if” direction, since the “if” direction is trivial.

Suppose that (D,Σ) 6` S → p. There is an XML tree T ′ conforming to D and

satisfying Σ such that T ′ 6|= S → p. Then, there are tuples t′1, t
′
2 ∈ tuplesD(T) such

that t′1.S = t′2.S, t′1.S 6= ⊥ and t′1.p 6= t′2.p. Let q be the shortest prefix of p such that

t′1.q 6= t′2.q. We define tree tuples t1 and t2 as follows. For each s ∈ paths(D), if q is not a

prefix of s, then t1.s = t′1.s and t2.s = t′1.s. Otherwise, t1.s = t′1.s and t2.s = t′2.s. Notice

that t1, t2 ∈ tuplesD(T ′).

Given that D is a relational DTD, it is possible to find T ∈ treesD({t1, t2}) such that

T |= D. We need to prove that T satisfies the conditions of the lemma. By definition of

t1 and t2, tuplesD(T) = {t1, t2} and for each s ∈ paths(D), if q is not a prefix of s, then

t1.s = t2.s. Besides, t1.S = t2.S, t1.S 6= ⊥ and t1.p 6= t2.p, since t′1.S = t′2.S, t′1.S 6= ⊥,

t′1.p 6= t′2.p and q is a prefix of p. Finally, t1.q 6= t2.q, since t′1.q 6= t′2.q, and T |= Σ, since

T ′ |= Σ and t1, t2 ∈ tuplesD(T ′). 2

Now we are ready to prove that the implication problem for relational DTDs is in coNP.

Let D be a relational DTD, Σ a set of functional dependencies over D and S ∪ {p} ⊆

paths(D). Let prefix(Σ ∪ {S → p}) be the set of all p′ ∈ paths(D) such that p′ is a

prefix of a path mentioned in Σ ∪ {S → p}. Notice that ‖prefix(Σ ∪ {S → p})‖ is

O(‖Σ ∪ {S → p}‖2).

To check whether (D,Σ) 6` S → p, we use a nondeterministic algorithm that guesses

the tuples t1 and t2 mentioned in Lemma C.4.1. This algorithm does not construct all

the values in t1 and t2, it guesses only the values of these tuples that are necessary to

verify whether treesD({t1, t2}) |= Σ. The algorithm works as follows. For each s ∈

prefix(Σ ∪ {S → p}), guess the values of t1.s and t2.s. Verify whether it is possible to

construct an XML tree conforming to D and containing t1 and t2. If this does not hold,

Appendix C. Proofs from Chapter 6 248

then return “no”. Otherwise, guess a prefix q of p. Verify whether t1.S = t2.S, t1.S 6= ⊥,

t1.p 6= t2.p, t1.q 6= t2.q and for each s ∈ paths(Σ∪ {S → p}), if q is not a prefix of s, then

t1.s = t2.s. If this does not hold, then return “no”. Otherwise, check whether the values

in t1 and t2 satisfy Σ. If this is the case, then return “yes”, otherwise return “no”.

The previous algorithm works in nondeterministic polynomial time, since ‖prefix(Σ∪

{S → p})‖ is O(‖Σ ∪ {S → p}‖2). Therefore, we conclude that the implication problem

for relational DTDs is in coNP.

