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Abstract

We consider here scalar aggregation queries in databases that may violate a given set of
functional dependencies. We de3ne consistent answers to such queries to be greatest-lowest/least-
upper bounds on the value of the scalar function across all (minimal) repairs of the database. We
show how to compute such answers. We provide a complete characterization of the computational
complexity of this problem. We also show how tractability can be improved in several special
cases (one involves a novel application of Boyce–Codd Normal Form) and present a practical
hybrid query evaluation method.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In this paper, we address the issue of obtaining consistent information from in-
consistent databases—databases that violate the given integrity constraints. Our basic
assumption departs from everyday practice of database management systems. Typically,
a database management system checks the satisfaction of integrity constraints and backs
out those updates that violate them. Therefore, databases seemingly never become in-
consistent. However, we list below several practical scenarios in which inconsistent
databases do occur.
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Integration of autonomous data sources: The sources may separately satisfy the
constraints but, when the sources are integrated together, the constraints may stop
to hold. For instance, consider diFerent, conIicting addresses for the same person in
the taxpayer and the voter registration databases. Each of those databases separately
satis3es the functional dependency that associates a single address with each person,
yet together they violate this dependency. Moreover, since the sources are autonomous
they cannot be simply 3xed to satisfy the dependency by removing all but one of the
conIicting tuples.
Unenforced integrity constraints: Even though integrity constraints capture an im-

portant part of the semantics of a given application, they may still fail to be enforced
for a variety of reasons. A data source may be a legacy system that does not support
the notion of integrity checking altogether. Integrity checking may be too costly (this
is often the reason for dropping some integrity constraints from the database schema).
Finally, the DBMS itself may support only a limited class of constraints. For example,
SQL2 DBMS typically support only key functional dependencies (FDs), not arbitrary
ones. Therefore, if the relations in a data warehouse are denormalized for eLciency
reasons, some FDs may become unenforceable.
Temporary inconsistencies: It may often be the case that the database consistency is

only temporarily violated and further updates or transactions are expected to restore it.
This phenomenon is becoming more and more common, as databases are increasingly
involved in a variety of long-running activities or work8ows.
Con8ict resolution: Removing tuples from a database to restore consistency leads

to information loss, which may be undesirable. For example, one may want to keep
multiple addresses for a person if it is not clear which is the correct one. In general,
the process of conIict resolution may be complex, costly, and nondeterministic. In
real-time decision-making applications, there may not be enough time to resolve all
conIicts relevant to a query.
To formalize the notion of consistent information obtained from a (possibly in-

consistent) database in response to a user query, we proposed in [3] the notion of
a consistent query answer. A consistent answer is, intuitively, true regardless of the
way the database is 3xed to remove constraint violations. Thus, answer consistency
serves as an indication of its reliability. The diFerent ways of 3xing an inconsistent
database are formalized using the notion of repair: another database that is consistent
and minimally diFers from the original database.
For instance, in the case of multiple addresses of a single person, one can still

consistently determine the addresses of those people who have only a single address in
the integrated database. Or, more interestingly, if all tuples for the same person have
the same birthdate, then the birthdate can be returned as a consistent answer, although
there may be multiple conIicting addresses. Also, the diFerent addresses may have a
common part, e.g., the state name, that can be consistently returned and will suLce for
some queries, e.g., those concerned with taxation. These examples show that simply
discarding conIicting data will lead to information loss.
In [3], in addition to a formal de3nition of a consistent query answer, a compu-

tational mechanism for obtaining such answers was presented. However, the queries
considered were just :rst-order queries. Here we address in the same context the
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issue of aggregation queries. Aggregation queries are important in OLAP and data
warehousing—precisely the context in which inconsistent databases may occur (see
above). We limit, however, ourselves to single relations that possibly violate a given
set of FDs.
In de3ning consistent answers to aggregation queries we distinguish between queries

with scalar and aggregation functions. The former return a single value for the entire
relation. The latter perform grouping on an attribute (or a set of attributes) and return a
single value for each group. Both kinds of queries use the same standard set of SQL-2
aggregate operators: MIN, MAX, COUNT, SUM, and AVG. In this paper, we address only
aggregation queries with scalar functions.

Example 1. Consider the following example. Suppose the results of an election in
which two candidates, Brown and Green are running, are kept in two relations: Brown-
Votes and GreenVotes.

BrownVotes

County Date Tally

A 11=07 541
A 11=11 560
B 11=07 302

GreenVotes

County Date Tally

A 11=07 653
A 11=11 730
B 11=07 101

Vote tallies in every county should be unique. Consequently, the functional depen-
dency County→Tally should hold in both relations. On the other hand, we may want
to keep multiple tallies corresponding to diFerent counts (and recounts). Clearly, both
relations will have two repairs each, depending on whether the 3rst or the second count
for county A is picked. Altogether, the original database has thus four repairs.
The total tally for Brown is 843 in one repair and 862 in the other. For Green, the

corresponding 3gures are 754 and 831. It is clear that there is no single consistent
answer to the aggregation query:

SELECT SUM(Tally)
FROM BrownVotes

and the same holds for the similar query involving the relation GreenVotes. Therefore,
the notion of consistent query answer from [3] needs to be adapted in the context of
aggregation queries. For such queries, we propose to return ranges of values: [843; 862]
for Brown and [754; 831] for Green. Note that in this case we can safely say that Brown
won the election, since the minimum vote for Brown is greater than the maximum vote
for Green.

The plan of the paper is as follows. In Section 2, we provide a general de3nition
of consistent answer to an aggregation query with a scalar function. We also de3ne a
graph-theoretical representation of database repairs, which is speci3cally geared towards
FDs. In Section 3, we study data complexity of the problem of computing consistent
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answers to aggregation queries in inconsistent databases. In Section 4, we show how to
reduce in practice the computational cost of computing such answers by decomposing
the computation into two parts: one that involves standard relational query evaluation
and one that computes the consistent answers in a smaller instance. In Section 5, we
show that the complexity of computing consistent answers can be reduced by exploiting
special properties of the given set of FDs or the given instances. In Section 6 we discuss
related and further work.

2. Basic notions

In this paper we assume that we have a 3xed database schema containing only
one relation schema R with the set of attributes U . We will denote elements of U by
A; B; : : : ; subsets of U by X; Y; : : : ; and the union of X and Y by XY. We also have two
3xed, disjoint in3nite database domains: D (uninterpreted constants) and N (rational
numbers). We assume that elements of the domains with diFerent names are diFerent.
The database instances can be seen as 3nite 3rst-order structures that share the domains
D and N . Every attribute in U is typed, thus all the instances of R can contain only
elements either of D or of N in a single attribute. Since each instance is 3nite, it has a
3nite active domain which is a subset of D∪N . As usual, we allow built-in predicates
(=; �=;¡;¿;6;¿) over N that have in3nite, 3xed extensions. There is also a set of
integrity constraints F over R that captures the semantics of the database. E.g., it may
express the property that an employee has only a single salary. The instances of the
database do not have to satisfy F . A database that satis3es a given set of integrity
constraints F , denoted by r |=F , is called consistent, otherwise inconsistent. In this
paper we consider only integrity constraints that are functional dependencies (FDs).

2.1. Repairs

The following de3nitions are adapted from [3].

De�nition 1. For the instances r; r′; r′′, r′6rr′′ if r − r′ ⊆ r − r′′.

De�nition 2. Given a set of integrity constraints F and database instances r and r′,
we say that r′ is a repair of r w.r.t. F if r′ |=F and r′ is 6r-minimal in the class of
database instances that satisfy F .

We denote by RepairsF(r) the set of repairs of r w.r.t. F . Examples 1 (earlier)
and 2 (below) illustrate the notion of repair.
Because we consider only FDs here and for such constraints all the repairs of an

instance are obtained by deleting tuples from it, the notion of repair from [3] can be
simpli3ed here. A repair is simply a maximal consistent subset of an instance. Clearly,
there are only 3nitely many repairs, since the relations are 3nite. Also, in this case the
union of all repairs of any instance r is equal to r. These properties are not necessarily
shared by other classes of integrity constraints.
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De�nition 3. The core of r is de3ned as

CoreF(r) =
⋂

r′∈RepairsF (r)
r′:

The core is a new database instance. If r consists of a single relation, then the core
is the intersection of all the repairs of r. The core of r itself is not necessarily a repair
of r.

Example 2. In Example 1, the relation BrownVotes has two repairs

r1

County Date Tally

A 11=07 541
B 11=07 302

r2

County Date Tally

A 11=11 560
B 11=07 302

The core of the relation BrownVotes consists of the single tuple

County Date Tally

B 11=07 302

and is not a repair. It satis3es the functional dependency County→Tally but is not a
maximal consistent subset of the original instance.

2.2. Consistent query answers

2.2.1. First-order queries
Query answers for 3rst-order queries are de3ned in the standard way.

De�nition 4. A ground tuple Ot is an answer to a query Q( Ox) in a database instance r
if r |=Q(Ot), i.e., the query Q( Ox) is true of Ot in the instance r.

Consistent query answers were 3rst de3ned in [3]. We present here a slightly mod-
i3ed but equivalent de3nition.

De�nition 5. A ground tuple Ot is a consistent answer to a query Q( Ox) with respect to
a set of integrity constraints F in a database instance r if for every r′∈RepairsF(r),
r′ |=Q(Ot). We denote the set of consistent answers to Q w.r.t. F in r by CqaQF (r).

Example 3. The query

SELECT * FROM BrownVotes
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has the following consistent answer in the instance of Example 1:

Brown B 11=07 302

In the same instance the query

SELECT County FROM BrownVotes WHERE Tally > 400

has A as the only consistent answer. Notice that this answer cannot be obtained by
evaluating the query in the original instance from which the conIicting tuples have
been removed.

2.2.2. Aggregation queries
The aggregation queries we consider are queries of the form

SELECT f FROM R

where f is one of: MIN(A), MAX(A), COUNT(A), SUM(A), AVG(A), or COUNT(*), where
A is an attribute of the schema R. These queries return single numerical values by
applying the corresponding scalar function, i.e., for MIN(A) the minimum A-value in
the given instance, etc. In general, f will also denote an aggregation query (or a scalar
function itself). Thus, f(r) will denote the result of applying f to the given instance
r of R.
In contrast with 3rst-order queries, there is no single intuitive notion of consistent

query answer for aggregation queries. It is likely (see Example 5 below) that aggre-
gation queries return diFerent answers in diFerent repairs, and thus there will be no
single consistent answer in the sense of De3nition 5. In order to obtain more informa-
tive answers even in such a case, we explore therefore several alternative de3nitions
of consistent query answers.

De�nition 6. Given a set of integrity constraints F , an aggregation query f and a
database instance r, the set of possible answers PossfF (r) is de3ned as

PossfF (r) = {f(r′) | r′ ∈ RepairsF(r)}:

The greatest-lower-bound (glb)-answer glbfF (r) to f w.r.t. F in r is de3ned as

glbfF (r) = glb PossfF (r):

The least-upper-bound (lub)-answer lubfF (r) to f w.r.t. F in r is de3ned as

lubfF (r) = lub PossfF (r):

Example 4. In the instance of Example 1 and the query

SELECT SUM(Tally) FROM BrownVotes
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the set of possible answers is {843; 862}, the glb-answer is 843 and the lub-answer is
862.

Based on De3nition 6, one can envision several possible notions of consistent query
answer for aggregation queries:
(1) the set of possible answers PossfF (r),
(2) the range of possible answers [glbfF (r); lub

f
F (r)],

(3) some aggregate, for example average, of all possible answers, or
(4) some representation of the distribution of all possible answers.
We conjecture that each of those notions makes sense in the context of some appli-
cation. In this paper, we study the second notion, that of the range of all possible
answers [glbfF (r); lub

f
F (r)], for the reasons outlined below.

Example 5. Consider the functional dependency A→B and the following family of
relation instances rn, n¿0:

A B
1 0
1 1
2 0
2 2
· · ·

i 0
i 2i−1

· · ·
n 0
n 2n−1

We use this example to illustrate two points. First, the instance rn has 2n diFerent
repairs. Therefore, the approach to computing consistent query answers to any aggrega-
tion query (or any other query for that matter) by evaluating the query in every repair
separately and then collecting the results is infeasible. Second, note that the aggregation
query SUM(B) admits a diFerent result in every repair. Actually, every integer in the
answer range [0; 2n − 1] is the result of the query SUM(B) in some repair. In spite of
that, glb- and lub-answers have polynomial size (since the bounds can be represented
in binary). This is will not be the case if we represent all the possible values as a
set, a distribution, or some form of disjunctive information e.g., an OR-object [22] or
a C-table [21]. (An OR-object is a special domain value speci3ed as a set of atomic
values and interpreted as one of those values. A C-table is a table with null values
that have to satisfy conditions associated with individual rows or the entire table. For
a discussion of the relationship between tables with OR-objects and sets of all repairs,
see Section 6.)
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It is easy to see that glb- and lub-answers in our framework are always polynomially
sized and thus exponentially more succinct than set-, distribution-, or disjunction-based
representations. However, representing a set of values as a range may lead to infor-
mation loss. For instance, while we guarantee that the value of the scalar function in
every repair falls within the returned range, clearly not every value in this range will
necessarily correspond to the value of the function obtained in some repair.
Further aggregating the values of an aggregation query over all repairs, e.g., taking

the average, leads to further information loss. In fact, presented with such an answer
the user can no longer say anything about the values the query has in the individual
repairs.
We should note that regardless of whether a range- or a set-based representation is

used, the obtained result is semantically not a standard relation, so it cannot directly
serve as input to other SQL queries. In the 3rst case, the obtained range [a; b] can be
represented as a pair but in fact should be interpreted as a condition a6v6b on the
repair-dependent value v of the scalar function. In the second case, the result is a set
and thus requires going beyond First Normal Form. Moreover, the set needs to be inter-
preted as a condition too, in this case disjunctive. (The condition is x= v1 ∨ · · · ∨ x= vk
where {v1; : : : ; vk} is the set of possible values of the scalar function.)
We will also consider other auxiliary notions of query answer in inconsistent

databases. Core answers are used for hybrid evaluation in Section 4 and union an-
swers are de3ned for symmetry with core answers.

De�nition 7. A number v is a core answer to f w.r.t. F in r if

v = f(CoreF(r)) = f

( ⋂
r′∈RepairsF (r)

r′
)
:

A number v is a union answer to f w.r.t. F in r if

v = f

( ⋃
r′∈RepairsF (r)

r′
)
:

However, union answers are trivial for FDs, as the union of all the repairs of r is
r itself, so the union answer reduces to f(r).

2.3. Graph representation

Given a set of FDs F and an instance r, all the repairs of r w.r.t. F can be succinctly
represented as a graph.

De�nition 8. The con8ict graph GF; r is an undirected graph whose set of vertices is
the set of tuples in r and whose set of edges consists of all the edges (t1; t2) such
that t1 ∈ r, t2∈r, and there is a dependency X →Y ∈F for which t1[X ] = t2[X ] and
t1[Y ] �= t2[Y ].
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Example 6. Consider a schema R(AB), the set F of two FDs A→ B and B→A, and
an instance r= {(a1; b1); (a1; b2); (a2; b2); (a2; b1)} over this schema. The conIict graph
GF; r looks as follows:

(a1; b1) —— (a1; b2)
| |

(a2; b1) —— (a2; b2):

De�nition 9. An independent set S in an (undirected) graph G=(V; E) is a subset of
the set of vertices V of this graph, such that there is no edge in the set of edges E
connecting two vertices in S. A maximal independent set is an independent set which
is not a proper subset of any other independent set. A maximum independent set is an
independent set of maximum cardinality.

Proposition 1. Each repair in RepairsF(r) corresponds to a maximal independent set
in GF; r and vice versa.

ConIict graphs are geared speci3cally towards FDs. The repairs of other classes of
constraints do not necessarily have similar representations.
We also note that, for a given set of FDs F over R, one can write an SQL2 query

that for any instance r of R computes the edges of the conIict graph GF; r .

2.4. Computational complexity

2.4.1. Data complexity
The data complexity notion [8,31] makes it possible to study the complexity of query

processing as a function of the number of tuples in the database instance. We de3ne
separately the data complexity of checking repairs, the data complexity of computing
consistent query answers to 3rst-order queries, and that of computing consistent query
answers to aggregation queries.

De�nition 10. Given a class of databases D and a class of integrity constraints, the
data complexity of checking repairs is de3ned to be the complexity of determining
the membership of the sets

DF = {(r; r′) | r ∈ D ∧ r′ ∈ RepairsF(r)}
for a 3xed 3nite set F of integrity constraints. This problem is C-data-hard for a
complexity class C if there is a 3nite set of integrity constraints F0 such that DF0 is
C-hard.

Lemma 1. For a given set F of FDs, the data complexity of checking whether an
instance r′ is a repair of r is in PTIME.

Proof. Checking whether r′ satis3es F is in PTIME. The repair r′ has also to be
6r-minimal among those instances that satisfy F . For FDs, it means that r′ has to
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be a maximal subset of r that satis3es F . Checking this property can be done as
follows: try all the tuples Ot in r − r′, one by one. If r′∪{Ot} satis3es F , then r′ is not
maximal. Otherwise, if for no such tuple Ot, r′∪{Ot} satis3es F , no superset of r′ can
satisfy F (violations of FDs cannot be removed by adding tuples) and r′ is maximal.

De�nition 11. Given a class of databases D, a class of 3rst-order queries L and a class
of integrity constraints, the data complexity of computing consistent query answers
is de3ned to be the complexity of determining the membership of the sets

DF; = {(r; Ot) | r ∈ D ∧ Ot ∈ Cqa F(r)}
for a 3xed  ∈L and a 3xed 3nite set F of integrity constraints. This problem is
C-data-hard for a complexity class C if there is a query  0∈L and a 3nite set of
integrity constraints F0 such that DF0 ;  0 is C-hard.

From Lemma 1, we can immediately obtain:

Corollary 1. For any set of FDs F and :rst-order query Q, the data complexity
of checking whether a tuple Ot is a consistent answer to Q is in co-NP.

In Section 3, we will see that the above problem is in fact co-NP-hard (Corollary 2).

De�nition 12. Given a class of databases D, a class of aggregation queries F and a
class of integrity constraints, the data complexity of computing the glb-answer (resp.
lub-answer) is de3ned to be the complexity of determining the membership of the sets

DF;f = {(r; k) | r ∈ D ∧ glbfF (r)6 k}
and

DF;f = {(r; k) | r ∈ D ∧ lubfF (r)¿ k};
respectively, for a 3xed aggregation query f∈F and a 3xed 3nite set F of integrity
constraints. This problem is C-data-hard for a complexity class C if DF0 ; f0 is C-hard
for some aggregation query f0∈F and a 3nite set of integrity constraints F0.

In our case, each class of aggregation queries F contains only queries that use scalar
functions of the same kind, e.g., MIN(A) for some attribute A of R.

Proposition 2. For every class of aggregation queries F that contains only queries
with scalar functions of the same kind, computing the glb- and lub-answer is in NP.

Proof. Consider computing the glb-answer (the other case is symmetric). We have that
glbfF (r)6k if and only if there is a repair r′∈RepairsF(r) such that f(r′)6k. The
latter condition can be clearly checked in NP, in the view of Lemma 1.
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Our PTIME results will yield algorithms that compute the glb-answer glbfF (r) (or
lubfF (r)), which is clearly suLcient to determine the truth of the condition glbfF (r)6k
(resp. lubfF (r)¿k).

3. Complexity of scalar aggregation

We have seen (Example 5) that there may be exponentially many repairs even in
the case of one functional dependency. Therefore, it is computationally infeasible to
evaluate a scalar aggregation query in every repair. In [3] and this paper, we have
identi3ed two ways of computing consistent answers by querying the given, possibly
inconsistent database instance, without having to compute all the repairs. Query trans-
formation modi3es the original query, Q, into a new query, T (Q), that returns only
consistent answers. We have applied this approach in [3] to restricted 3rst-order queries
and universal integrity constraints. Except in some simple cases, this approach does not
seem applicable to aggregation queries. For example, even when MAX(A) and MIN(A)
queries can be written as 3rst-order queries, their resulting syntax does not allow the
application of the methodology developed in [3] to them. Moreover, as argued earlier
in the paper, aggregation queries seem to require a diFerent notion of consistent query
answer than 3rst-order queries. Therefore, we use instead the fact that for FDs, the set
of all repairs of an instance can be compactly represented as the conIict graph. We
develop techniques and algorithms geared speci3cally towards this representation.
We start by considering core answers—an easy case. Then we consider several

aggregate operators—MIN, MAX, SUM and COUNT(*)—together. They share common
properties: for each of them computing glb- and lub-answers is tractable only in the
case of a single functional dependency and the proof of tractability uses the same
technique of building an appropriate single repair. Subsequently, we consider the AVG
operator which requires a much more involved tractability proof. Finally, we study
COUNT(A), for which even the single-dependency case is not tractable.
In the following r denotes an instance of the schema R. The input of the problem

of computing consistent query answers will consist of r and a numerical parameter k
(as required by De3nition 12).

3.1. Core answers

For some aggregate operators, e.g., COUNT and SUM of nonnegative values, a core
answer is a lower-bound-answer, but not necessarily the glb-answer. As we will see in
Section 4, computing core answers to aggregation queries can be useful for computing
consistent answers.

Theorem 1. The data complexity of computing core answers for any scalar function
is in PTIME.

Proof. The core consists of all the isolated vertices in the conIict graph.
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We note that, for a given set of FDs F over R, one can write an SQL2 query
that computes for any instance r of R the set of isolated vertices in the conIict
graph GF; r .
In general, computing glb- and lub-answers is considerably more involved than

computing core answers.

3.2. Aggregation using MIN, MAX, SUM and COUNT(*)

3.2.1. One functional dependency
Consider MAX(A) (MIN(A) is symmetric). In this case computing the lub-answer

in r w.r.t. an arbitrary set of FDs F consists of evaluating MAX(A) in r, thus it is
clearly in PTIME. However, it is not obvious how to compute the glb-answer, namely
the minimum of the set of maximums obtained by posing the query MAX(A) in every
repair. Computing MAX(A) in CoreF(r) gives us only a lower-bound-answer which
does not have to be the glb-answer.

Theorem 2. The data complexity of computing glbfF (r) in r for a set of FDs
F consisting of a single FD X →Y and f∈{MAX(A); SUM(A); COUNT(*)} is in
PTIME.

Proof. The approach for all of the above scalar functions is essentially identical and
consists of constructing a repair that minimizes the value of the scalar function. Call
an (X; Y )-cluster a maximal set of tuples of r that have the same attribute values in
X and Y . Clearly, in a single repair we can have only one (X; Y )-cluster for every
given value of X . For every value of the attribute X we pick that (X; Y )-cluster that
minimizes the scalar function and apply the scalar function to this cluster. Finally, we
aggregate the obtained values across all values of X (and combine the (X; Y )-clusters
if we want to obtain a repair minimizing f). This approach gives the minimum of the
scalar function over all repairs. For MAX(A) it can be de3ned in SQL2 as the following
sequence of views:

CREATE VIEW S(X,Y,C) AS
SELECT X,Y,MAX(A) FROM R
GROUP BY X,Y;

CREATE VIEW T(X,C) AS
SELECT X, MIN(C) FROM S
GROUP BY X;

SELECT MAX(C) FROM T;

For SUM(A), we only have to replace MAX in the above by SUM. For COUNT(*), we
replace MAX(A) by COUNT(*) and MAX(C) by SUM(C). Evaluating all those SQL2
queries can be done in PTIME.
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It is clear that there is a symmetric result to Theorem 2 for lub-answers to MIN(A).
Note that

lubMIN(A)F (r) = −glbMAX(A)F (r−);

where r− contains identical tuples to r except that their A-values are inverted (every
A-value v is changed to −v).
We show now that Theorem 2 exhausts the tractable cases for the scalar functions

in question.

3.2.2. Two FDs and MAX(A)
Theorem 3. There is a set of 2 FDs F0 for which deciding whether

glbMAX(A)F0 (r)6 k

in r is NP-data-hard.

Proof. Reduction from 3SAT. Consider a propositional formula ’=C1 ∧ · · · ∧Cn
in CNF. Let p1; : : : pm be the propositional variables in ’. Construct a relation r with
the attributes A; B; C; D, and containing exactly the following tuples:
(1) (pi; 1; Cj; 1) if making pi true makes Cj true,
(2) (pi; 0; Cj; 1) if making pi false makes Cj true, and
(3) (w; 2; Cj; 2), 16j6n, where w is a new symbol.

The set of FDs F0 consists of A→B (each propositional variable cannot have more
than one truth value) and C→D. Also, k =1. We show that glbMAX(D)F0 (r)= 1 iF ’ is
satis3able.
Assume glbMAX(D)F0 (r)= 1. Then there is a repair r0 of r in which the attribute D

assumes only the value 1. If for some j the repair r0 does not contain any tuple of
the form ( ; ; Cj; 1), then r0 has to contain the tuple (w; 2; Cj; 2) and MAX(D) returns 2
in this repair, a contradiction. From r0 we can build a satisfying assignment for ’ by
reading oF the values of the attributes A and B for each conjunct Cj. Notice that r0
has to satisfy the FD A→B and thus each propositional variable receives in this way
only a single value.
Assume now that ’ is satis3able. Then, given a satisfying assignment, we build a

database instance r1 in the following way: for every propositional variable pi made
true by the assignment and every conjunct Cj in which this variable occurs positively,
we include the tuple (pi; 1; Cj; 1) in r1. The variables made false by the assignment are
treated symmetrically. Clearly, r1 satis3es A→B. Since the assignment satis3es ’, for
every conjunct Cj there is a tuple in r1 which has Cj as the value of the attribute C.
Therefore, r1 cannot contain any tuples of the third kind, and has to satisfy C→D as
well. It is also maximal, and thus a repair. Since in every repair of r, MAX(D) returns
a value greater or equal to 1, and MAX(D) returns 1 in r1, then glbMAX(D)F0 (r)= 1.

The above reduction yields also a lower bound for checking consistent query answers
for 3rst-order queries.
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Corollary 2. There is a set of 2 FDs F0 and a :rst-order query Q for which the
problem of checking whether Ot is a consistent answer to Q is co-NP-data-hard.

Proof. We use the same reduction and the same set of FDs F0 as in Theorem 3. We
note that the formula ’ is unsatis3able iF 2 is a consistent answer to the query

∃x; y; z: R(x; y; z; w):

Corollary 2 should be contrasted with the results of [3], which imply that in the
presence of FDs the data complexity of computing consistent query answers for 3rst-
order queries consisting only of quanti3er-free conjunctions of positive and negative
literals is in PTIME. Thus Corollary 2 identi3es the existential quanti3er as a source
of intractability.

3.2.3. Two FDs and COUNT(*)
We consider now COUNT(*).

Lemma 2. There is a set of 2 FDs F1 for which the problem of determining the
existence of a repair of r of size ¿k is NP-data-hard.

Proof. Reduction from 3-Colorability. Given a graph G=(N; E), with N = {1; 2; : : : ; n},
such that (i; i) =∈ E for each i∈[1; n], and given colors w (white), b (blue) and r (red),
we de3ne the relation p with attributes A; B; C; D and the following tuples:
(1) for every 16i6n, (i; w; i; w)∈p, (i; b; i; b)∈p and (i; r; i; r)∈p, and
(2) for every (i; j)∈E, (i; w; j; b)∈p, (i; w; j; r)∈p, (i; b; j; w)∈p, (i; b; j; r)∈p,

(i; r; j; w)∈p and (i; r; j; b)∈p.
We consider the set of FDs F1 = {A→B, C → D}. We will show that G is 3-colorable
iF there is a repair p′ of p with exactly n+2 · |E| tuples (the maximum possible number
of tuples in a repair). That property follows from Lemmas 3, 4 and 5.

Lemma 3. Assuming p is de:ned as in the proof of Lemma 2, every repair p′ of p
has at most n+ 2 · |E| tuples.

Proof. by induction on n. If n is equal to 1, then p is equal to
p

1 w 1 w
1 b 1 b
1 r 1 r

and, therefore, it has three repairs:

p1

1 w 1 w

p2

1 b 1 b

p3

1 r 1 r
.

Thus, |p1|= |p2|= |p3|=16n+ 2 · |E|.
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Suppose that the theorem is satis3ed in every graph with n nodes. Let (N; E) be
a graph containing n + 1 nodes, p be a table constructed from (N; E) as we showed
above and p′ be a repair of p. De3ne N ∗ =N − {n + 1}, E∗ =E ∩N ∗ ×N ∗, p∗ =
p∩N ∗ ×{w; b; r}×N ∗ ×{w; b; r} and (p∗)′ =p′ ∩N ∗ ×{w; b; r}×N ∗ ×{w; b; r}.

(p∗)′ satis3es the set of functional dependencies and it only contains tuples from
table p∗. Then, there exists a repair (p∗)′′ of p∗ such that (p∗)′ ⊆ (p∗)′′. Thus, by
induction hypothesis we conclude that |(p∗)′′|6n + 2 · |E∗|, and, therefore, |(p∗)′|6
n+ 2 · |E∗|.
In order to know how many tuples p′ could have, we need to know how many tuples

p′ − (p∗)′ could contain, which can be established by considering the following:
(I) This set could contains at most one of the following tuples: (n + 1; w; n + 1; w),

(n+ 1; b; n+ 1; b), (n+ 1; r; n+ 1; r).
(II) For each (i; n + 1)∈E, this set could contains at most two tuples of the form

(i; color1; n+ 1; color2), (n+ 1; color3; i; color4).

By (I) and (II) we conclude that

|p′ − (p∗)′|6 1 + 2 · |E − E∗|

and, therefore,

|p′|6 n+ 2 · |E∗|+ 1 + 2 · |E − E∗|6 n+ 1 + 2 · |E|:

Lemma 4. Assuming p is de:ned as in the proof of Lemma 2, if it is possible to color
the graph (N; E) where N = {1; 2; : : : ; n}, with colors w, b and r, then there exists
a repair of p with n+ 2 · |E| tuples.

Proof. Suppose that Ci is the color assigned to the node i in the graph. De3ne p′ as
follows:
(1) for every 16i6n, (i; Ci; i; Ci)∈p′, and
(2) for every (i; j)∈E, (i; Ci; j; Cj)∈p′ and (j; Cj; i; Ci)∈p′.

Clearly, p′ satis3es the integrity constraints A→B and C→D. But |p′|= n + 2 · |E|
and, therefore, by the previous lemma we conclude that p′ is a repair of p.

Lemma 5. Assuming p is de:ned as in the proof of Lemma 2, if there is a repair p′

of p with n+ 2 · |E| tuples, then is possible to color the graph (N; E) by using colors
w, b and r.

Proof. Let q= {(i; x; i; x) | 16i6n and x is equal to w, b or r}. For every (i; j)∈E,
there are 12 tuples in p mentioning i and j:

(i; w; j; b), (i; r; j; w), (j; b; i; w),
(i; w; j; r), (i; r; j; b), (j; b; i; r),
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(i; b; j; w), (j; w; i; b), (j; r; i; w),
(i; b; j; r), (j; w; i; r), (j; r; i; b).

A repair of p must have at most two tuples from this set and, therefore, |p′−q|62· |E|.
Thus, |p′ ∩ q| must be equal to n, since |p′|= n+2 · |E|. Hence, for every node i there
exists a color Ci such that (i; Ci; i; Ci)∈p′. We will prove that if we choose color Ci
for painting node i, then we have a coloring for the graph.
Let (i; j)∈E. There are at most two tuples in p′ that mention i and j together. If we

have zero or one of these kind of tuples, |p′−q|¡2 · |E| and, therefore, |p′|¡n+2 · |E|,
a contradiction. Thus, we have exactly two tuples in p′ mentioning i and j together.
But these tuples together with (i; Ci; i; Ci) and (j; Cj; j; Cj) cannot violate the set of
FDs, because p′ is a repair. Then (i; Ci; j; Cj)∈p and (j; Cj; i; Ci)∈p. By the de3nition
of p, we conclude that Ci �=Cj.

Lemma 6. There is a set of 2 FDs F2 for which the problem of determining the
existence of a repair of r of size 6k is NP-data-hard.

Proof. Modi3cation of the lower bound proof of Theorem 3. We build the instance
by using the same tuples of the 3rst and second kinds, as well as “suLciently many
tuples” of the third kind, each with a diFerent new symbol w. It is enough to have
3n+1 tuples of the third kind for each clause (where n is the number of clauses), thus
the instance will have the total of 3n+ n(3n+ 1) tuples. Every repair that contains a
tuple of the third kind, has to contain at least 3n+1 such tuples (by maximality). The
formula ’ is satis3able iF there is a repair of size 63n.

Lemmas 2 and 6 imply the following theorems:

Theorem 4. There is a set of two FDs F1 for which determining whether

lubCOUNT(*)F1 (r)¿ k

in r is NP-data-hard.

Theorem 5. There is a set of two FDs F2 for which determining whether

glbCOUNT(*)F2 (r)6 k

in r is NP-data-hard.

Analogous results to Theorems 4 and 5 can be obtained for SUM(A) and the proofs
are easy modi3cations of the above proofs (COUNT(*) can be mimicked by SUM over
an additional attribute that has the value 1 in each tuple).
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3.3. Aggregation using AVG

3.3.1. One functional dependency
We reduce the problem of computing glb- and lub-answers to AVG(A) queries

w.r.t. a single FD X →Y to the following problem of Maximum Average Weight
(MAW):

There are m bins, each containing weighted, colored objects. No two bins have
objects of the same color, although any particular bin may contain more than one
object of the same color. Choose exactly one color for each bin in such a way
that the sum of the weights of all objects of the chosen colors divided by the total
number of such objects (i.e., the average weight AVG of objects of the chosen
color) is maximized.

In the reduction of the problem of computing lub-answers to MAW, bins corre-
spond to diFerent X-values, and objects of the same color have the same Y -values.
Each object corresponds to a tuple in which the attribute A represents the weight
of the object. DiFerent objects of the same color can have diFerent weight, since
A does not have to be a member of Y or be functionally dependent on Y . For
glb-answers, we use an inverted database, as in the remarks after the proof of
Theorem 2.
To solve MAW, consider the well-known “2-OPT” strategy of starting with an

arbitrary selection 〈c1; c2; : : : ; cm〉 of one color each from each of the m bins. The
2-OPT strategy is simply to replace a color from one bin with a diFerent color from
the same bin if doing so increases the value of the average weight of objects of the
colors in the selection.
More precisely, let c= 〈c1; c2; : : : ; cm〉 be a selection of colors such that ci is the

color chosen from the ith bin. Let AVG(c) be the average weight of objects with
colors from c. Let OPT be the maximum value over all choices of c of AVG(c).
Then 2-OPT is the end result of the following strategy:

Let c be any arbitrary selection of m colors, one from each bin.
while there is a color c′i in bin i : AVG(〈c1; c2; : : : ; ci−1; c′i ; ci+1; : : : ; cm〉)¿AVG(c) do

c := 〈c1; c2; : : : ; ci−1; c′i ; ci+1; : : : ; cm〉
endwhile
2-OPT :=AVG(c)

We establish the proof of the main theorem through two intermediate lemmas.

Lemma 7. 2-OPT =OPT .

Proof. Let ni denote the number of objects of color ci and let wi denote the total
weight of objects of color ci. For any color c′i in bin i, it can be veri3ed (after a little
bit of arithmetic) that AVG(〈c1; c2; : : : ; ci−1; c′i ; ci+1; : : : ; cm〉)¿AVG(c) if and only if
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one of the following holds (where n′i is the number of objects of color c′i):
(1) ni= n′i and w

′
i¿wi,

(2) ni¡n′i and (w′
i − wi)=(n′i − ni)¿AVG(c), and

(3) ni¿n′i and (w′
i − wi)=(n′i − ni)¡AVG(c).

Intuitively, the conditions above may be interpreted in the following way. Let the
density of a set of objects be the sum of the weight of the objects divided by the
number of objects. A swap is bene3cial if and only if the net changes made correspond
to adding objects with density greater than the current average density of the solution,
or deleting objects with density smaller than the current average density of the solution.
Now if 2-OPT¡OPT , then there is some c for which none of the above 3 con-

ditions holds for any choice of c′i in any bin i and yet OPT is larger than AVG(c).
Speci3cally, let the coloring for OPT be d= 〈d1; d2; : : : ; dm〉 where the total weight of
objects of color di is ui and the total number of such objects is mi. We will show that
for some i, the choice c′i =di will satisfy one of the above three conditions, yielding
a contradiction.
First observe that, for any i such that ni=mi, having wi¡ui would immediately give

a contradiction. Also, if ui¡wi, then OPT can be improved by replacing di with ci,
again a contradiction. Therefore, if ni=mi it must be that ui=wi and we may as well
assume that di= ci for all such i.
Next consider the colors which are diFerent in d and c. We will use the elementary

fact that if

p+ A+ B
q+ C + D

¿
p
q

then either
p+ A
q+ C

¿
p
q

or
p+ B
q+ D

¿
p
q
:

In particular, let q=
∑

i ni and p=
∑

i wi. Let E=
∑

i:di �= ci ui−wi and F =
∑

i:di �= ci
mi − ni. Observe that (p + E)=(q + F)=OPT¿2-OPT =p=q. If the sum in E runs
over only one index i then c′i =di satis3es (2) or (3) above, a contradiction. Otherwise,
E may be partitioned into two sums A and B and F into corresponding sums C
and D such that the above fact guarantees that either (p + A)=(q + C)¿2-OPT or
(p + B)=(q + D)¿2-OPT . If the former is true, we replace E and F with A and C;
otherwise we replace E and F with B and D. Repeated application of the above fact
in this manner will eventually result in 3nding some i such that c′i =di satis3es (2) or
(3), a contradiction.

We have just shown that the simple 2-OPT strategy will converge to the value OPT.
However, it does not necessarily follow that the number of iterations of the 2-OPT
strategy is polynomial. For this, we need another idea.
Let c be any selection of colors with one color from each bin. We say that color ci

is stable if there exists no c′i in the ith bin for which condition (1), (2), or (3) holds.
Note that if color ci can be replaced by any color in bin i to produce an increase
in the value of AVG, then there exists a stable color with which it can be replaced,
this simply being the color which results in the largest value of AVG obtained by
maintaining the colors in all bins other than i 3xed while trying diFerent colors from
the ith bin. Clearly, such a stable color can be found by simply cycling through the
choices for the ith bin. This leads to the following “Stable-2-OPT” strategy.
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Let c be any arbitrary selection of m colors, one from each bin.
while there is a color c′i in bin i : AVG(〈c1; c2; : : : ; ci−1; c′i ; ci+1; : : : ; cm〉)¿AVG(c) do

Find a stable color di for bin i.
c := 〈c1; c2; : : : ; ci−1; di; ci+1; : : : ; cm〉

endwhile
Stable-2-OPT :=AVG(c)

From Lemma 7, it follows that Stable-2-OPT =OPT also. In addition, we claim
the following.

Lemma 8. Any color ci is chosen in the Stable-2-OPT strategy at most once as a
stable color for the ith bin.

Proof. Consider the situation when a color ci is chosen as a stable color for the 3rst
time. At this point in time, none of conditions (1), (2), or (3) holds with respect to
other colors c′i in bin i. This means that none of the colors c′i with ni¡n′i can ever
take the ith position as a stable color since AVG increases monotonically in the run of
the strategy and color ci will always be preferred over such a color c′i . Similarly, none
of the colors c′i with n

′
i = ni can ever take the ith position as a stable color. Finally,

if a color c′i replaces ci as a stable color, it must be because AVG has increased to
such an extent that condition (3) now holds; subsequently, the monotonicity of AVG
ensures that color c′i will always be preferred to color ci as a stable color for the ith
bin and hence color ci will never ever be chosen again.

Each iteration of the while loop chooses a new stable color and by Lemma 8, a color
is chosen at most once. It follows that the number of iterations of the while loop is at
most the number of colors available. Therefore, Stable-2-OPT 3nishes in polynomial
time.
Now the main theorem follows from Lemmas 7 and 8.

Theorem 6. If the set of FDs F consists of a single dependency X →Y , with X ∩Y =∅,
then the data complexity of computing both glbAVG(A)F (r) and lubAVG(A)F (r) in an instance
r is in PTIME.

3.3.2. Two FDs
Theorem 7. There is a set of two FDs F3 for which determining whether

glbAVG(A)F3 (r)6 k

in r is NP-data-hard.

Proof. We can use the same reduction from 3SAT as in Theorem 3. Given a set
of clauses, there is a satisfying assignment if and only if there is a repair of the
corresponding database r for which AVG(D)=1 (since otherwise the glb-answer is
greater than 1). This is the case if and only if glbAVG(D)F3 r61.
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Theorem 8. There is a set of two FDs F4 for which determining whether

lubAVG(A)F4 (r)¿ k

in r is NP-data-hard.

Proof. We reduce 3SAT to our problem. Change the tuples of the instance in the proof
of Theorem 3 as follows:

(3′) (w; 2; Cj; d), 16j6n, where w is a new symbol and d¡1.

Given a set of clauses, there is a satisfying assignment if and only if there is a repair
of the corresponding database r for which AVG(D)=1. This is the case if and only if
lubAVG(D)F4 r¿1.

3.4. Aggregation using COUNT(A)

We assume here that distinct values of A are counted (COUNT (DISTINCT A)).

Theorem 9. There is a single FD d0 =B→A for which determining whether

glbCOUNT(A)d0 (r)6 k

in r is NP-data-hard.

Proof. To see that the lower bound holds, we will encode an instance of the HITTING
SET problem in r (whose schema is R(A; B)). The HITTING SET problem [14] is
formulated as follows: Given a collection C = {S1; : : : ; Sn} of sets, is there a set H
(called a hitting set) with k or fewer elements that intersects all the members of C?
For every set Si in C and every element x∈Si we put the tuple (x; i) in r. There is in
C a hitting set of size less than or equal to k if and only if there is a repair of r with
at most k diFerent values of the 3rst attribute A.

Theorem 10. There is a single FD d1 =A→B for which determining whether

lubCOUNT(C)d1 (r)¿ k

in r is NP-data-hard.

Proof. We reduce SAT to this problem. Let ’=C1 ∧ · · · ∧Cn. Consider the functional
dependency A→B and the database instance r over the schema ABC with the following
tuples:
(1) (pi; 1; Cj) if making pi true makes Cj true, and
(2) (pi; 0; Cj) if making pi false makes Cj true.
Then, ’ is satis3able iF lubCOUNT(C)d1 (r)¿n.
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3.5. Summary of complexity results

The following is a tabular summary of the results presented in this section. The
membership in NP is from Proposition 2.

glb-answer lub-answer

|F |=1 |F |¿2 |F |=1 |F |¿2
MIN(A) PTIME PTIME PTIME NP-complete
MAX(A) PTIME NP-complete PTIME PTIME
COUNT(*) PTIME NP-complete PTIME NP-complete
COUNT(A) NP-complete NP-complete NP-complete NP-complete
SUM(A) PTIME NP-complete PTIME NP-complete
AVG(A) PTIME NP-complete PTIME NP-complete

4. Hybrid computation

As we have seen, determining glb- and lub-answers is often computationally hard.
However, it seems that hard instances of those problems are unlikely to occur in
practice. We expect that in a typical instance a large majority of tuples are not involved
in any conIicts. If this is the case, it is advantageous to break up the computation of
the lub- (or the glb-answer) to f in r into three parts:
(1) the computation of f in the core of r,
(2) the computation of the lub-answer to f in the complement of the core of r (which

should be small), and
(3) the combination of the results of the 3rst two steps using an operator g (which

depends on f).

The 3rst step can be done using a DBMS because the core of r can be computed using
a 3rst-order query (Theorem 1).

De�nition 13. The scalar function f admits a g-decomposition of its lub-answers (resp.
glb-answers) w.r.t. a set of FDs F if for every instance r of R, the lub-answer (resp.
glb-answer) v to f satis3es the condition

v = g(f(CoreF(r)); v′);

where v′ = lubfF (r − CoreF(r)) (resp. v′ = glbfF (r − CoreF(r))).

Theorem 11. The following pairs describe g-decompositions admitted by scalar
functions f :
(1) f= MIN(A), g= min,
(2) f= MAX(A), g= max,
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(3) f= COUNT(*), g=+, and
(4) f= SUM(A), g=+.

Proof. First, notice that every repair r′ of r w.r.t. a set of FDs F is a union of
CoreF(r) and a repair of r −CoreF(r). Now to see that the 3rst decomposition holds
for f= MIN(A) consider:

lub PossfF (r) = min(f(CoreF(r)); lub Poss
f
F (r − CoreF(r)))

and similarly for glb-answers and other decompositions.

5. Special cases

We consider here several cases when the conIict graph has a special form that could
be used to reduce the complexity of computing answers to aggregation queries. We
only consider lub-answers to COUNT(*) queries. It is an open question whether our
approach will generalize to other classes of scalar aggregation queries.

5.1. BCNF

We show here that if the set of FDs F has two dependencies and the schema R is
in Boyce–Codd Normal Form (BCNF), computing lub-answers to COUNT(*) queries
can be done in PTIME. This should be contrasted with Theorem 4 which showed that
two dependencies without the BCNF assumption are suLcient for NP-hardness.
Given a set of FDs F in a schema R, we say that the schema R is in BCNF

if all the dependencies in F are of the form X →Y where X contains a key of R
(w.r.t. F). This de3nition can be found in every database textbook. BCNF is often
satis3ed in practice, since schemas in BCNF are considered good, by the virtue of
being free of redundancies and insertion=deletion=update anomalies. For example, the
relation instance in the proof of Theorem 3 is not in BCNF, since neither A nor C is
a key of this relation.
We pursue here two diFerent approaches to BCNF schemas. The 3rst [5] is based on

the observation that for 2 FDs in BCNF the conIict graph is claw-free. For such graphs
computing a maximum independent set (an independent set of maximum cardinality)
can be done in PTIME. The second approach is direct and yields a subquadratic time
complexity bound.

De�nition 14. An FD X →Y is a partition dependency over R if X ∪Y =U (where
U is the set of all the attributes of R) and X ∩Y = ∅.

Lemma 9. For any instance r of R and any partition dependency d=X →Y over R,
the con8ict graph Gd; r is a union of disjoint cliques.

Proof. Assume (t1; t2) and (t2; t3) are two edges in Gd; r such that t1 �= t3. Then t1[X ] =
t2[X ], t1[Y ] �= t2[Y ], t2[X ] = t3[X ], and t2[Y ] �= t3[Y ]. Therefore t1[X ] = t3[X ]. Also,
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t1[Y ] �= t3[Y ] because otherwise t1 and t3 would be the same tuple. So (t1; t3) is an
edge in Gd; r .

Lemma 10. If R is in BCNF and F is equivalent to a set of FDs with k dependencies,
then F is equivalent to a set of FDs with at most k partition dependencies.

Proof. We build a set of partition dependencies equivalent to F by replacing every
nontrivial dependency d=X →Y , d∈F , by the partition dependency X →U − X .

Therefore, in the case |F |=2 we can assume that F = {d1; d2} where d1 and d2 are
diFerent partition dependencies. (The case of |F |=1 has already been shown to be in
PTIME, even without the BCNF assumption.) Note that Lemma 10 does not have to
hold for arbitrary FDs.
We consider now the 3rst class of graphs for which maximum independent set

can be computed in PTIME: claw-free graphs. Since repairs correspond to maximal
independent sets in the conIict graph, the size of a maximum independent set provides
the lub-answer to a COUNT(*) aggregation query.

De�nition 15. A graph is claw-free if it does not contain an induced subgraph (V0; E0)
where V0 = {t1; t2; t3; t4} and E0 = {(t2; t1); (t3; t1); (t4; t1)}.

Lemma 11. If R is in BCNF over F = {d1; d2}, then for every instance r of R, the
con8ict graph G{d1 ; d2}; r is claw-free.

Proof. Assume that the conIict graph contains a claw (V0; E0) where V0 = {t1; t2; t3; t4}
and E0 = {(t2; t1); (t3; t1); (t4; t1)}. Then two of the edges in E0, say (t2; t1) and (t3; t1)
come from one of Gd1 ; r or Gd2 ; r . By Lemma 9, the edge (t3; t2) also belongs to
that graph, and consequently to G{d1 ; d2}; r . Thus the subgraph induced by V0 is not
a claw.

We note that it can also be shown that the conIict graph is perfect in this case
[5]. (A graph is perfect if its chromatic number is equal to the size of its maximum
clique.)

Theorem 12. If the relational schema R is in BCNF and the given set of FDs F
is equivalent to one with at most two dependencies, computing lubCOUNT(*)F (r) in any
instance r of R can be done in PTIME.

Proof. The theorem follows from Lemma 11 and the fact that a maximum independent
set in a claw-free graph can be found in polynomial time [28,26].

We show now the second approach that directly yields an O(n1:5) complexity
bound.

Theorem 13. If the relational schema R is in BCNF and the given set of FDs F is
equivalent to one with at most two dependencies, computing lubCOUNT(*)F (r)
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in any instance r of R can be done in O(n1:5) time where n is the number of tuples
in r.

Proof. Suppose that Gd1 ; r =(V; E1) and Gd2 ; r =(V; E2). Then G{d1 ; d2}; r =(V; E1∪E2).
By Lemma 9, both Gd1 ; r =(V; E1) and Gd2 ; r =(V; E2) are unions of disjoint cliques.
Let U1; U2; : : : ; Uk1 be the cliques in Gd1 ; r . Let W1; W2; : : : ; Wk2 be the cliques
in Gd2 ; r .
In order to 3nd a maximum independent set in G{d1 ; d2}; r =(V; E1∪E2), we construct

a bipartite graph H =(U ∪W;EH ) as follows: U = {u1; u2; : : : ; uk1} and W = {w1; w2; : : : ;
wk2}. For each vertex v∈V , v is in exactly one clique Ui and in exactly one clique
Wj. We add an edge (ui; wj) into EH . H contains only these edges.
A matching of H is a subset M ⊆EH such that no two edges in M share a common

end vertex. The crucial observation is that the independent sets in G{d1 ; d2}; r =(V; E1

∪E2) one-to-one correspond to the matchings in H . To see this, 3rst note that the
vertices of G{d1 ; d2}; r one-to-one correspond to the edges of H . Consider two vertices
x; y in G{d1 ; d2}; r . Suppose that e=(x; y) is an edge in G{d1 ; d2}; r . Without loss of
generality, we may assume e∈E1. Then both x and y are in the same clique Ui.
Hence, the two edges in H corresponding to x and y share a common vertex ui in
H . Conversely, suppose that x and y are not adjacent in G{d1 ; d2}; r . Then x and y are
in diFerent cliques in G{d1}; r , say they are in Ui and Ui′ , where i �= i′, respectively.
Similarly, x and y are in diFerent cliques in G{d2}; r , say they are in Wj and Wj′ ,
where j �= j′, respectively. Thus, the edge (ui; vj) in H corresponding to x and the
edge (ui′ ; vj′) in H corresponding to y share no common end vertex in H . Therefore,
a subset S of vertices in G{d1 ; d2}; r is an independent set if and only its corresponding
edge set is a matching in H . Hence, 3nding a maximum independent set in G{d1 ; d2}; r is
equivalent to 3nding a maximum matching in the bipartite graph H . This can be done
in O((|U | + |W |)1=2|EH |) time by using the algorithm in [20]. Since |U |6n; |W |6n
and |EH |= n, the total time needed is O(n1:5).

We show now that more than two FDs, even in BCNF, push the problem of com-
puting lub-answers beyond tractability.

Theorem 14. If the relational schema R is in BCNF and the given set of FDs
F is equivalent to one with three dependencies, the data complexity of computing
lubCOUNT(*)F (r) in an instance r of R is NP-hard.

Proof. Let d1; d2; d3 be three partition dependencies. As before, the graph Gdi; r =(V; Ei)
(16i63) is a union of disjoint cliques. We also have G{d1 ; d2 ; d3}; r =(V; E1 ∪E2 ∪E3).
Our problem is equivalent to 3nding a maximum independent set in G{d1 ; d2 ; d3}; r .
To show the problem is NP-hard, we reduce the 3-dimensional matching (3DM)

problem [14] to it. The 3DM problem is de3ned as follows:
An instance of 3DM is a tuple (X; Y; Z;M), where X; Y; Z are three disjoint sets of the

same cardinality, and M ⊆X ×Y ×Z . A matching of the instance is a subset M ′ ⊆M
such that no two elements in M ′ agree in any coordinate. The goal is to determine the
existence of a (maximum) matching of size |X |.
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Given an instance (X; Y; Z;M) of 3DM, we construct a graph D=(VD; ED) as follows:
VD=M . Suppose X = {x1; x2; : : : ; xt}. Partition M into M1; : : : ; Mt such that Mi= {(xi;
y; z)∈M} (for 16i6t). For each i (16i6t), we add a clique into ED whose vertices
are exactly the triples in Mi. Denote the set of the edges added this way by EX . Note
that the graph (VD; EX ) is a union of disjoint cliques. Similarly, we perform the same
action for Y and Z , and let EY and EZ be the sets of the edges added, respectively.
We set ED=EX ∪EY ∪EZ .
Note that the maximum matchings of the instance (X; Y; Z;M) one-to-one correspond

to the maximum independent sets of the graph D. Also note that D=G{d1 ; d2 ; d3}; r
for the instance r=M and partition dependencies d1 =A→BC, d2 =B→AC, and
d3 =C→AB, where ABC is the schema of r. Thus, there is a maximum matching of
size |X | iF lubCOUNT(*){d1 ; d2 ; d3}(r)= |X |. This completes the reduction.

5.2. Other tractable cases

There are other, simpler cases where the conIict graph has a structure that makes it
possible to determine the cardinality of a maximum independent set in PTIME.

Theorem 15. If an instance r is the disjoint union of two instances that separately
satisfy F, the data complexity of computing lubCOUNT(*)F (r) is in PTIME.

Proof. In this case, the only conIicts are between the parts of r that come from
diFerent instances. Thus, the conIict graph is a bipartite graph. For bipartite graphs
determining the cardinality m of a maximum independent set can be done in PTIME.
This follows from the fact that m= n − k where n is the number of vertices in the
graph and k is the cardinality of the minimum vertex cover. The latter is equal to the
cardinality of the maximum matching in the graph (KTonig–Egervary Theorem [23]).

Note that the assumption in Theorem 15 is satis3ed when the instance r is obtained
by merging together two consistent databases in the context of database integration.

Theorem 16. If every tuple in an instance r is in con8ict with at most two tuples in
the same instance, the data complexity of computing lubCOUNT(*)F (r) is in PTIME.

Proof. In this case, each vertex in the conIict graph has degree at most 2, thus the
conIict graph is a union of disjoint components each of which is an isolated vertex, a
noncyclic path, or a single cycle. Finding the cardinality of a maximum independent
set in such a graph can clearly be done in PTIME.

6. Related and further work

We have provided a complete classi3cation of the tractable/intractable cases of
the problem of computing glb- and lub-answers to aggregation queries with scalar
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functions in the presence of functional dependencies. We have also shown how tractabil-
ity can be obtained in several special cases and presented a practical hybrid computation
method.
We only brieIy survey the related work here. A more comprehensive discussion can

be found in [3]. The need to accommodate violations of functional dependencies is one
of the main motivations for considering disjunctive databases [22,30] and has led to
various proposals in the context of data integration [2,6,13,25]. A purely proof-theoretic
notion of consistent query answer comes from Bry [7]. This notion, described only in
the propositional case, corresponds to our notion of core answer. None of the above
approaches considers aggregation queries.
There seems to be an intriguing connection between relation repairs w.r.t. FDs and

databases with disjunctive information [30]. For example, the set of repairs of the
relation BrownVotes from Example 1 can be represented as a disjunctive database D
consisting of the formulas

BrownVotes(A; 11=07; 541) ∨ BrownVotes(A; 11=11; 560)

and

BrownVotes(B; 11=07; 302):

Each repair corresponds to a minimal model of D and vice versa. We conjecture that
the set of all repairs of an instance w.r.t. a set of FDs can be represented as a disjunc-
tive table (with rows that are disjunctions of atoms with the same relation symbol).
This is not as obvious as it seems, as the repairs require an exclusive representation
of disjunctions, which is forced through the minimal model semantics of disjunctive
formulas. The relationship in the other direction does not hold. E.g., the set of minimal
models of the formula

(p(a1; b1) ∨ p(a2; b2)) ∧ p(a3; b3)
cannot be represented as a set of repairs of any set of FDs. However, we are not
aware of any work on aggregation in general disjunctive databases (but see
below).
The relationship between sets of repairs and databases with OR-objects [22,9] is

more complicated.

Example 7. The set of repairs of the relation BrownVotes in Example 1 cannot be
represented as a table with OR-objects. However, the set of repairs of the projection
of Brown Votes on the 3rst and third attributes:

County Tally

A 541
A 560
B 302
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can be represented as

County Tally

A OR(541; 560)
B 302

In the example above, the schema of the relation BrownVotes was not in BCNF.
But even under BCNF, there is still a mismatch.

Example 8. Consider the following set of FDs F = {A→B; A→C}, which is in BCNF.
The set of all repairs of the instance {(a1; b1; c1); (a1; b2; c2)} cannot be represented as
a table with OR-objects.

The relationship in the other direction, from tables with OR-objects to sets of repairs,
also does not hold.

Example 9. Consider the following table with OR-objects:

OR(a; b) c
a OR(c; d)

It does not represent the set of all repairs of any instance under any set of FDs.

A correspondence between sets of repairs and tables with OR-objects occurs only
in the very restricted case when a relation is binary, say R(A; B), and there is one
FD B→A.
Several people [12,9] studied aggregation in databases with OR-objects. As in our

case, the query results in this case are inde3nite. The dissertation [12] suggests, like we
do, to return ranges of values of the aggregate functions. On the other hand, the paper
[9] proposes to return sets of all possible values of such functions. The second approach
runs into the problem that the set of possible values may have exponential size, c.f.,
Example 5. The paper [9] discusses not only scalar aggregation but also aggregation
functions (GROUP BY in SQL). Possibly, some of the techniques of that paper can be
adapted if we extend the present results in that direction. Due to the above-mentioned
lack of correspondence between sets of repairs and tables with OR-objects the results
from our paper cannot be directly transferred to the context of [9], except in a very
restricted case, and vice versa.
Incidentally, the paper [9] incorrectly claims that the greatest lower bound on the

value of the aggregate function COUNT(A) can be computed in PTIME in tables with
OR-objects. This is contradicted by our Theorem 9, which shows in an equivalent set-
ting that checking whether the glb bound is less than or equal to k is an NP-complete
problem. The paper [9] provides a greedy PTIME algorithm (Algorithm 3.1) for com-
puting the glb of COUNT(A) but the algorithm is incorrect. To see this consider the set
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of OR-objects S = {OR(a; b); OR(a; c); OR(a; d); b; c; d}. The algorithm will compute 4
as the lower bound on the number of diFerent values that cover all the OR-objects in
S. However, this bound is actually 3= |{b; c; d}|.

There are several proposals for language constructs specifying nondeterministic
queries that are related to our approach (witness [1], choice [15,16,18]). Essentially,
the idea is to construct a maximal subset of a given relation that satis3es a given
set of functional dependencies. Since there is usually more than one such subset, the
approach yields nondeterministic queries in a natural way. Clearly, maximal consistent
subsets (choice models [15]) correspond to repairs. Datalog with choice [15] is, in a
sense, more general than our approach, since it combines enforcing functional depen-
dencies with inference using Datalog rules. Answering queries in all choice models
(∀G-queries [18]) corresponds to our notion of computation of consistent query an-
swers for 3rst-order queries (De3nition 5). However, in [18] the former problem is
shown to be co-NP-complete and no tractable cases are identi3ed. One of the sources
of complexity in this case is the presence of Datalog rules, absent from our ap-
proach. Moreover, the procedure proposed in [18] runs in exponential time if there
are exponentially many repairs, as in Example 5. Also, only conjunctions of literals
are considered as queries in [18]. Arbitrary 3rst-order or aggregation queries are not
studied.
As mentioned earlier, the paper [3] contains a general method for transforming 3rst-

order queries in such a way that the transformed query computes the consistent answers
to the original query. In that paper, soundness, completeness and termination of the
transformation are studied, and some classes of constraints and queries for which con-
sistent query answers can be computed in PTIME are identi3ed. Representing repairs
as stable models of logic programs with disjunction and classical negation has been
proposed in [4,17]. Those papers consider computing consistent answers to 3rst-order
queries (but not to aggregation queries). No tractable cases beyond those of [3] are
identi3ed in [4,17], which is not surprising in view of Corollary 2.
Many further questions suggest themselves. First, is it possible to identify more

tractable cases and to reduce the degree of the polynomial in those already identi3ed?
Second, is it possible to use approximation in the intractable cases? The INDEPEN-
DENT SET problem is notoriously hard to approximate [19], but perhaps the special
structure of the conIict graph may be helpful. Finally, it would be very interesting
to see if our approach can be generalized to broader classes of queries and integrity
constraints. In most implementations of SQL2, only functional dependencies in BCNF
are supported (using PRIMARY KEY and UNIQUE constraints). Therefore, the approaches
described in Section 5 may be applicable there. It is not obvious, however, how to
generalize our approach to broader classes of queries. Is it possible to combine the
approach of this paper with that of [3]?
There is some recent work done on rewriting aggregation queries in terms of

aggregation views [29,10,11]. It would be interesting to explore how to take advantage
of those results when computing consistent answers to aggregation queries. Another
possible avenue is to consider aggregation constraints [24,27].
Finally, alternative de3nitions of repairs and consistent query answers that include,

for example, preferences are left for future work. Also, one can apply further
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aggregation to the results of aggregation queries in diFerent repairs, e.g., the aver-
age of all MAX(A) answers.
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