
When Is Approximate Counting for ConjunctiveQueries
Tractable?

Marcelo Arenas
PUC & IMFD Chile
Santiago, Chile

marenas@ing.puc.cl

Luis Alberto Croquevielle
PUC & IMFD Chile
Santiago, Chile

lacroquevielle@uc.cl

Rajesh Jayaram
Carnegie Mellon University

Pittsburgh, USA
rkjayara@cs.cmu.edu

Cristian Riveros
PUC & IMFD Chile
Santiago, Chile

cristian.riveros@uc.cl

ABSTRACT
Conjunctive queries are one of the most common class of queries
used in database systems, and the best studied in the literature. A
seminal result of Grohe, Schwentick, and Segoufin (STOC 2001)
demonstrates that for every class G of graphs, the evaluation of all
conjunctive queries whose underlying graph is in G is tractable if,
and only if, G has bounded treewidth. In this work, we extend this
characterization to the counting problem for conjunctive queries.
Specifically, for every class C of conjunctive queries with bounded
treewidth, we introduce the first fully polynomial-time randomized
approximation scheme (FPRAS) for counting answers to a query in
C, and the first polynomial-time algorithm for sampling answers
uniformly from a query in C. As a corollary, it follows that for every
class G of graphs, the counting problem for conjunctive queries
whose underlying graph is in G admits an FPRAS if, and only if,
G has bounded treewidth (unless BPP ≠ P). In fact, our FPRAS is
more general, and also applies to conjunctive queries with bounded
hypertree width, as well as unions of such queries.

The key ingredient in our proof is the resolution of a funda-
mental counting problem from automata theory. Specifically, we
demonstrate the first FPRAS and polynomial time sampler for
the set of trees of size 𝑛 accepted by a tree automaton, which im-
proves the prior quasi-polynomial time randomized approximation
scheme (QPRAS) and sampling algorithm of Gore, Jerrum, Kannan,
Sweedyk, and Mahaney ’97. We demonstrate how this algorithm
can be used to obtain an FPRAS for many open problems, such as
counting solutions to constraint satisfaction problems (CSP) with
bounded hypertree width, counting the number of error threads in
programs with nested call subroutines, and counting valid assign-
ments to structured DNNF circuits.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
STOC ’21, June 21–25, 2021, Virtual, Italy

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8053-9/21/06. . . $15.00
https://doi.org/10.1145/3406325.3451014

CCS CONCEPTS
•Theory of computation→Tree languages;Design and anal-
ysis of algorithms; • Information systems→Relational data-
base query languages.

KEYWORDS
Conjunctive queries, fully polynomial-time approximation scheme
(FPRAS), approximate counting, tree automata
ACM Reference Format:
Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian
Riveros. 2021. When Is Approximate Counting for Conjunctive Queries
Tractable?. In Proceedings of the 53rd Annual ACM SIGACT Symposium on

Theory of Computing (STOC ’21), June 21–25, 2021, Virtual, Italy. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3406325.3451014

1 INTRODUCTION
Conjunctive queries (CQ) are expressions of the form

𝑄 (𝑥) ← 𝑅1 (𝑦1), . . . , 𝑅𝑛 (𝑦𝑛)
where each 𝑅𝑖 is a relational symbol, each 𝑦𝑖 is a tuple of vari-
ables, and 𝑥 is a tuple of output variables with 𝑥 ⊆ 𝑦1 ∪ · · · ∪ 𝑦𝑛 .
Conjunctive queries are the most common class of queries used
in database systems. They correspond to select-project-join queries
in relational algebra and select-from-where queries in SQL, and are
closely related to constraint satisfaction problems (CSPs). Therefore,
the computational complexity of tasks related to the evaluation
of conjunctive queries is a fundamental object of study. Given as
input a database instance 𝐷 and a conjunctive query 𝑄 (𝑥), the
query evaluation problem is defined as the problem of computing
𝑄 (𝐷) := {𝑎 | 𝐷 |= 𝑄 (𝑎)}. Namely, 𝑄 (𝐷) is the set of answers 𝑎 to
𝑄 over 𝐷 , where 𝑎 is an assignment of the variables 𝑥 which agrees
with the relations 𝑅𝑖 . The corresponding query decision problem

is to verify whether or not 𝑄 (𝐷) is empty. It is well known that
even the query decision problem is NP-complete for conjunctive
queries [16]. Thus, a major focus of investigation in the area has
been to find tractable special cases [18, 28, 32, 33, 35, 37, 62].

In addition to evaluation, two fundamental problems for con-
junctive queries are counting the number of answers to a query
and uniformly sampling such answers. The counting problem for
CQ is of fundamental importance for query optimization [47, 50].
Specifically, the optimization process of a relational query engine
requires, as input, an estimate of the number of answers to a query

1015

https://doi.org/10.1145/3406325.3451014
https://doi.org/10.1145/3406325.3451014
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3406325.3451014&domain=pdf&date_stamp=2021-06-15

STOC ’21, June 21–25, 2021, Virtual, Italy Arenas, Croquevielle, Jayaram, and Riveros

(without evaluating the query). Furthermore, uniform sampling
is used to efficiently generate representative subsets of the data,
instead of computing the entire query, which are often sufficient
for data mining and statistical tasks [1]. Starting with the work
of Chaudhuri, Motwani and Narasayya [17], the study of random
sampling from queries has attracted significant attention from the
database community [19, 63].

Beginning with the work in [62], a fruitful line of research for
finding tractable cases for CQs has been to study the degree of

acyclicity of a CQ. In particular, the treewidth tw(𝑄) of 𝑄 [18, 37],
and more generally the hypertree width hw(𝑄) of 𝑄 [35], are two
primary measurements of the degree of acyclicity. It is known that
the query decision problem can be solved in polynomial time for
every class C of CQs with bounded treewidth [18, 37] or bounded
hypertree width [35].1 A seminal result of Grohe, Schwentick, and
Segoufin [37] demonstrates that for every class G of graphs, the
evaluation of all conjunctive queries whose underlying graph is
in G is tractable if, and only if, G has bounded treewidth. Hence,
the property of bounded treewidth provides a characterization of
tractability of the query decision problem.

Unfortunately, uniform generation and exact counting are more
challenging than query evaluation for CQs. Specifically, given as
input a conjunctive query 𝑄 and database 𝐷 , computing |𝑄 (𝐷) | is
#P-complete even when tw(𝑄) = 1 [47] (that is, for so called acyclic
CQs [62]). Moreover, even approximate counting is intractable for
queries with unbounded treewidth, since any multiplicative approx-
imation clearly solves the decision problem. On the other hand,
these facts do not preclude the existence of efficient approxima-
tion algorithms for classes of CQs with bounded treewidth, as the
associated query decision problem is in P. Despite this possibility,
to date no efficient approximation algorithms for these classes are
known.

In this paper, we fill this gap by demonstrating the existence of a
fully polynomial-time randomized approximation scheme (FPRAS)
and a fully polynomial-time almost uniform sampler (FPAUS) for
every class of CQs with bounded hypertree width. Since hw(𝑄) ≤
tw(𝑄) for every CQ 𝑄 [35], our result also includes every class
of CQs with bounded treewidth, as well as classes of CQs with
bounded hypertree width but unbounded treewidth [35]. Specifi-
cally, we show the following.

Theorem 1.1 (Theorem 3.2 informal). Let C be a class of CQs with

bounded hypertree width. Then there exists a fully polynomial-time

randomized approximation scheme (FPRAS) that, given 𝑄 ∈ C and a

database𝐷 , estimates |𝑄 (𝐷) | to multiplicative error (1±𝜖). Moreover,

there is a fully polynomial-time almost uniform sampler (FPAUS) that

generates samples from 𝑄 (𝐷).
Our algorithm of Theorem 1.1 in fact holds for a larger class of
queries, including unions of conjunctive queries with bounded hy-
pertree width (Proposition 3.5). Note that, as defined in [40], an
FPAUS samples from a distribution with variational distance 𝛿 from
uniform (see Section 2 for a formal definition).

An interesting question is whether there exists a larger class of
queries C that admits an FPRAS. Since the decision problem for C
is in BPP whenever C admits an FPRAS, as a corollary of Theorem
1C has bounded treewidth (hypertree width) if tw(𝑄) ≤ 𝑘 (hw(𝑄) ≤ 𝑘) for every
𝑄 ∈ C, for a fixed constant 𝑘 .

1.1 and the characterization of [37], we obtain the following answer
to this question (see Section 3.3 for a precise statement of this result,
and for the necessary terminology for this statement):

Corollary 1.2 (Corollary 3.3 informal). Let G be a class of (undi-

rected) graphs and C be the class of all CQs whose underlying graph

is in G. Then assumingW[1] ≠ FPT and BPP = P, the following are

equivalent: (1) the problems of computing |𝑄 (𝐷) | and of sampling

from𝑄 (𝐷), given as input𝑄 ∈ C and a database 𝐷 , admit an FPRAS

and an FPAUS, respectively; and (2) G has bounded treewidth.

Corollary 1.2 shows that the results of [37] can be extended to
the approximate counting problem for CQs. Perhaps surprisingly,
this demonstrates that the classes of CQs for which the decision
problem is tractable, in the sense studied in [37], are precisely the

same as the classes which admit an FPRAS. Besides, this gives a
positive answer to the line of research started in [17], by providing a
characterization of the class of queries that admit an almost uniform
sampler.

1.1 An FPRAS for Tree Automata
The key to our results is the resolution of a fundamental counting
problem from automata theory; namely, the counting problem for
tree automata. Specifically, we first demonstrate that the solution
space 𝑄 (𝐷) of a conjunctive query with bounded hypertree width
can be efficiently expressed as the language accepted by a tree
automaton T . We then demonstrate the first FPRAS for the problem
of counting the number of trees accepted by a tree automaton T .

Tree automata are the natural extension of non-deterministic

finite automata (NFA) from words to trees. This extension is a
widely studied topic, since they have a remarkable capacity tomodel
problems, while retaining many of the desirable computational
properties of NFAs [54, 57]. Beginning with the strong decidability
result established by Rabin [49], many important problems have
been shown to be decidable via tree automata. Moreover, the fact
that tree automata are equivalent to monadic second order-logic
[56] is a basic component of the proof of Courcelle’s theorem [21].
Further applications of tree automata, among others, include model
checking [27, 60], program analysis [2–4], databases [45, 53], and
knowledge representation [10, 15, 55] (see also [20, 57] for a survey).
The counting problem of tree automata. Similarly to how a
non-deterministic finite automaton 𝑁 accepts a language L(𝑁)
of words, a tree automaton T accepts a language L(T) of labeled
trees. Given T and an integer 𝑛, define the 𝑛-slice of L(T) as:

L𝑛 (T) = {𝑡 ∈ L(T) | |𝑡 | = 𝑛}
where |𝑡 | is the number of vertices in 𝑡 . We consider the counting
problem #TA, which is the main counting problem studied in this
paper regarding tree automata:

Problem: #TA
Input: A tree automaton T and a string 0𝑛
Output: |L𝑛 (T)|

While exactly computing the size of the 𝑛-slice for deterministic
finite automata and deterministic tree automata is tractable [11,
42, 44], this is not the case for their non-deterministic counterparts.
In fact, given as input an NFA A and a number 𝑛 in unary, the

1016

When Is Approximate Counting for ConjunctiveQueries Tractable? STOC ’21, June 21–25, 2021, Virtual, Italy

problem of computing |L𝑛 (A)| is #P-hard [5], which implies #P-
hardness for tree automata. Naturally, this does not rule out the
possibility of efficient approximation algorithms. This observation
was first exploited by Kannan, Sweedyk, and Mahaney, who gave
a quasi polynomial-time approximation scheme (QPRAS) for NFAs
[42], which was later extended by the aforementioned authors,
along with Gore and Jerrum [31], to the case of tree automata.2
Specifically, the algorithm of [31] runs in time 𝜖−2 (𝑛𝑚)𝑂 (log(𝑛)) ,
where 𝑚 = |T | is the size of the description of T , and 𝜖 is the
error parameter. Improving the complexity of this algorithm to
polynomial time has been an open problem.

The algorithms of [31] and [42] are based on a recursive form
of Karp-Luby sampling [43], which is a type of rejection sampling.
This approach has the drawback that the probability a sample is
chosen is exponentially small in the depth of the recursion. Recently,
using a different sampling scheme, it was shown that an FPRAS and
an FPAUS exist for NFAs [8]. However, the techniques in [8] break
down fundamentally (discussed in the following) when applied to
tree automata. The main technical contribution of this work is to
address the failing points of [8] for tree automata, and design an
FPRAS for this case.

Theorem 1.3. Given a tree automaton T and 𝑛 ≥ 1, there is an
algorithm which runs in time poly(|T |, 𝑛, 𝜖−1, log(𝛿−1)) and with

probability 1 − 𝛿 , outputs an estimate 𝑁 with:

(1 − 𝜖) |L𝑛 (T)| ≤ 𝑁 ≤ (1 + 𝜖) |L𝑛 (T)|
Conditioned on the success of this event, there is a sampling algo-

rithm where each call runs in time poly(|T |, 𝑛, log(𝛿−1)), and either
outputs a uniformly random tree 𝑡 ∈ L𝑛 (T), or ⊥. Moreover, it

outputs ⊥ with probability at most 1/2.

Note that conditioned on the success of the above FPRAS (run
once), every subsequent call to the sampler generates a truly uni-
form sample (or⊥). Observe that this notion of sampling is stronger
than the standard notion of FPAUS (see Section 2). We note that
the existence of an FPAUS is in fact a corollary of the existence of
an FPRAS for the above [40].
Succinct NFAs. A key step in the proof of Theorem 1.3 is a reduc-
tion to counting and sampling from a succinct NFA N , which is an
NFA with succinctly encoded alphabet and transitions. Formally, a
succinct NFA N is a 5-tuple (𝑆, Σ,Δ, 𝑠init, 𝑠final), where 𝑆 is a set of
states, Σ is an alphabet, 𝑠init, 𝑠final ∈ 𝑆 are the initial and final states,
and Δ ⊆ 𝑆×2Σ×𝑆 is the transition relation, where each transition is
labeled by a set 𝐴 ⊆ Σ. We assume that Σ is succinctly encoded via
some representation (e.g. a DNF formula), and likewise for each set
𝐴 such that 𝑒 = (𝑠, 𝐴, 𝑠 ′) is a transition in Δ. Therefore, the size of
the alphabet Σ and the size of each such set 𝐴 can be exponentially
large in the representation of N . A word 𝑤 = 𝑤1𝑤2 . . .𝑤𝑛 ∈ Σ∗

is accepted by N if there is a sequence 𝑠init = 𝑠0, 𝑠1, . . . , 𝑠𝑛 = 𝑠final
of states such that there exists a transition (𝑠𝑖−1, 𝐴, 𝑠𝑖) ∈ Δ with
𝑤𝑖 ∈ 𝐴 for each 𝑖 = 1, 2, . . . , 𝑛. Note that the special case where
each transition (𝑠, 𝐴, 𝑠 ′) ∈ Δ satisfies |𝐴| = 1 is precisely the stan-
dard definition of an NFA. To solve the aforementioned problems
for succinct NFA, we must assume that the encodings of the label
sets satisfy some basic conditions. Specifically, we require that for
2The QPRAS of [31] holds more generally for context free grammars (CFG).

each transition (𝑠, 𝐴, 𝑠 ′), we are given an oracle which can (1) test
membership in 𝐴, (2) produce an estimate of the size of |𝐴|, and (3)
generate almost-uniform samples from 𝐴.

Theorem 1.4. Let N = (𝑆, Σ,Δ, 𝑠init, 𝑠final) be a succinct NFA and

𝑛 ≥ 1. Suppose that the sets 𝐴 in each transition (𝑠, 𝐴, 𝑠 ′) ∈ Δ satisfy

the properties (1), (2) and (3) described above. Then there is an FPRAS
and an FPAUS for L𝑛 (N).

While standard (non-succinct) NFAs are known to admit an
FPRAS by the results of [8], Theorem 1.4 is a strong generalization
of the main result of [8], and requires many non-trivial additional
insights and techniques.

1.2 Additional Applications of the FPRAS
We demonstrate that the FPRAS of Theorem 1.3 results in the
first polynomial-time randomized approximation algorithms for
many previously open problems in the fields of constraint satisfac-
tion problems, verification of correctness of programs with nested
calls to subroutines, and knowledge compilation. We give a brief
overview of these results in what follows. Further details are de-
ferred to the full version.
Constraint satisfaction problems. Constraint satisfaction prob-
lems (CSPs) offer a general and natural setting to represent a large
number of problems where solutions must satisfy some constraints,
and which can be found in different areas [12, 22, 39, 51, 52, 61].
The most basic task associated to a CSP is the problem of verifying
whether it has a solution, which corresponds to an assignment of
values to the variables of the CSP that satisfies all the constraints
of the problem. Tightly related with this task is the problem of
counting the number of solutions to a CSP. In this work, we con-
sider this counting problem in the usual setting where a projection
operator for CSPs is allowed, so that it is possible to indicate the
output variables of the problem. We denote this setting as ECSP.

As counting the number of solutions of an ECSP is #P-complete
and cannot admit an FPRAS (unless NP = RP), we focus on two
well known notions of acyclicity that ensure that solutions can
be found in polynomial time [34, 35]. More precisely, we define
#AECSP as the problem of counting, given an acyclic ECSP E, the
number of solutions to E. Moreover, given a fixed 𝑘 ≥ 0, we de-
fine #𝑘-HW-ECSP as the problem of counting, given an ECSP E
whose hypertree width is at most 𝑘 , the number of solutions for E.
Although both problems are known to be #P-complete [47], we
obtain as a consequence of Theorem 1.3 that both #AECSP and
#𝑘-HW-ECSP admit FPRAS.
Software verification. Nested words have been proposed as a
model for the formal verification of correctness of structured pro-
grams that can contain nested calls to subroutines [2–4]. In par-
ticular, the execution of a program is viewed as a linear sequence
of states, where a matching relation is used to specify the cor-
respondence between each point during the execution at which
a procedure is called with the point when we return from that
procedure call. This idea gives rise to the notion of nested word,
which is defined as a regular word accompanied by a matching
relation. Moreover, properties of programs to be formally verified
are specified by using nested word automata (NWA). The emptiness
problem for nested word automata ask whether, given a NWA N ,

1017

STOC ’21, June 21–25, 2021, Virtual, Italy Arenas, Croquevielle, Jayaram, and Riveros

there exists a nested word accepted by N . This is a fundamental
problem when looking for faulty executions of a program with
nested calls to subroutines; if N is used to encode the complement
of a property we expect to be satisfied by a program, then a nested
word accepted by N encodes a bug of this program. In this sense,
the following is also a very relevant problem for understanding
how faulty a program is. Define #NWA as the problem of counting,
given a nested word automaton N and a string 0𝑛 , the number of
nested words of length 𝑛 accepted by N . As expected, #NWA is a
#P-complete problem. Interestingly, from Theorem 1.3 and the re-
sults in [4] showing how nested word automata can be represented
by using tree automata over binary trees, it is possible to prove that
#NWA admits an FPRAS.

Knowledge compilation.Model counting is the problem of count-
ing the number of satisfying assignments given a propositional
formula. Although this problem is #P-complete [59], there have
been several approaches to tackle it [30]. One of them comes from
the field of knowledge compilation, a subarea in artificial intelli-
gence [25]. Roughly speaking, this approach consists in dividing
the reasoning process in two phases. The first phase is to compile
the formula into a target language (e.g. Horn formulae, BDDs, cir-
cuits) that has good algorithmic properties. The second phase is
to use the new representation to solve the problem efficiently. The
main goal then is to find a target language that is expressive enough
to encode a rich set of propositional formulae and, at the same time,
that allows for efficient algorithms to solve the counting problem.

A target language for knowledge compilation that has attracted
a lot of attention is the class of DNNF circuits [24]. DNNF has
good algorithmic properties in terms of satisfiability and logical
operations. Furthermore, DNNF can be seen as a generalization
of DNF formulae, ordered binary decision diagrams (OBDDs) [13]
and free binary decision diagrams (FBDDs) [25], in the sense that
every expression in these formalisms can be transformed into a
DNNF circuit in polynomial time. Moreover, DNNF is exponentially
more succinct than DNF, OBDD and FBDD [25], and hence it is
a more appealing language for knowledge compilation. Regard-
ing model counting, DNNF circuits can easily encode #P-complete
problems (e.g. #DNF) and, therefore, researchers have look into
subclasses of DNNF where counting can be done more efficiently.
One such a class that has recently received a lot of attention is
the class of structured DNNF [48], which has been used for ef-
ficient enumeration [6, 7], and has proved to be appropriate to
compile propositional CNF formulae with bounded width (e.g. CV-
width) [46]. Unfortunately, the problem of computing the number of
propositional variable assignments that satisfy a structured DNNF
circuit is a #P-complete problem, as these circuits include the class
of DNF formulae. However, and in line with the idea that structured
DNNF circuits allow for more efficient counting algorithms, we
can prove that the counting problem of structured DNNF circuits
admits a fully-polynomial time randomized approximation scheme
as a consequence of Theorem 1.3.

1.3 Outline of the Paper
In Section 2, we start by defining the notions of FPRAS and FPAUS.
Section 3 formalizes the connection between conjunctive queries

and tree automata. Section 4 gives a general overview of the par-
tition based approach to get an FPRAS and Section 5 shows the
specific partition scheme for tree automata. In Section 6 we give
the last ingredient of the algorithm, namely, an FPRAS for succinct
NFAs. In Section 7, we discuss some open problems and future work.
The complete proofs of all the results in the paper can be found
at [9].

2 PRELIMINARIES: FPRAS AND FPAUS
We start by giving the formal definition of fully polynomial time
randomized approximation scheme (FPRAS) and fully polynomial
time almost uniform sampler (FPAUS) used throughout the paper.

Given an input alphabet Σ, a randomized approximation scheme

(RAS) for a function 𝑓 : Σ∗ → [0,∞) is a randomized algorithm
A : Σ∗ × (0, 1) → [0,∞) such that for every𝑤 ∈ Σ∗ and 𝜖 ∈ (0, 1):

Pr[|A(𝑤, 𝜖) − 𝑓 (𝑤) | ≤ 𝜖 · 𝑓 (𝑤)] ≥ 3
4 .

Moreover, a randomized algorithm A : Σ∗ × (0, 1) → [0,∞) is a
fully polynomial-time randomized approximation scheme (FPRAS)
[40] for 𝑓 , if it is a randomized approximation scheme for 𝑓 and, for
every𝑤 ∈ Σ∗ and 𝜖 ∈ (0, 1),A(𝑤, 𝜖) runs in polynomial time in |𝑤 |
and 𝜖−1. Thus, if A is an FPRAS for 𝑓 , then A(𝑤, 𝜖) approximates
the value 𝑓 (𝑤) with a relative error of (1±𝜖), and it can be computed
in polynomial time in the size of𝑤 and the value 𝜖−1.

In addition to polynomial time approximation algorithms, we
also consider polynomial time (almost) uniform samplers. Given an
alphabet Σ and a finite universe Ω, let 𝑔 : Σ∗ → 2Ω . We say that 𝑔
admits a fully polynomial-time almost uniform sampler (FPAUS) [40]
if there is a randomized algorithmA : Σ∗ × (0, 1) → Ω ∪ {⊥} such
that for every 𝑤 ∈ Σ∗ with 𝑔(𝑤) ≠ ∅, and 𝛿 ∈ (0, 1), A(𝑤, 𝛿)
outputs a value 𝑥∗ ∈ 𝑔(𝑤) ∪ {⊥} with

Pr[𝑥∗ = 𝑥] = (1 ± 𝛿) 1
|𝑔(𝑤) | for all 𝑥 ∈ 𝑔(𝑤)

and, moreover,A(𝑤, 𝛿) runs in polynomial time over |𝑤 | and log 1
𝛿
.

If 𝑔(𝑤) = ∅, an FPAUS must output the symbol⊥with probability 1.
The symbol ⊥ can be thought of as a “failure” indicator, where the
algorithm produces no output. Notice that whenever 𝑔(𝑤) admits
a deterministic polynomial time membership testing algorithm (i.e.
to test if 𝑥 ∈ 𝑔(𝑤)), it is easy to ensure that a sampler only outputs
either an element 𝑥 ∈ 𝑔(𝑤) or ⊥. Also notice that the conditions
imply that if 𝑔(𝑤) ≠ ∅, we have Pr[𝑥∗ = ⊥] ≤ 𝛿 . Given a set
𝑆 = 𝑔(𝑤), when the function 𝑔 and the input 𝑤 are clear from
context, we will say that the set 𝑆 admits an FPAUS to denote the
fact that 𝑔 admits an FPAUS.

For an example of an FPAUS,𝑤 could be the encoding of a non-
deterministic finite automataN and an integer𝑛 ≥ 1 given in unary,
and 𝑔(𝑤) could be the set of strings of length 𝑛 accepted by N . A
polynomial-time almost uniform sampler must then generate a
string in L𝑛 (N) from a distribution which is pointwise a (1 ± 𝛿)
approximation of the uniform distribution over L𝑛 (N), output
⊥ with probability at most 𝛿 , and run in time poly(|N |, 𝑛, log 1

𝛿
).

Notice that an FPAUS must run in time poly(log 1
𝛿
), whereas an

FPRAS may run in time poly(1
𝜖).

1018

When Is Approximate Counting for ConjunctiveQueries Tractable? STOC ’21, June 21–25, 2021, Virtual, Italy

G(𝑥)

E(𝑥,𝑦) E(𝑥, 𝑧)

C(𝑦) M(𝑧)

(a) A join tree.

G(b)

E(b, c1) E(b, c3)

C(c1) M(c3)

G(b)

E(b, c2) E(b, c3)

C(c2) M(c3)

(b) Two witness trees for the answer b.

G(b)

E(b,★) E(b,★)

C(★) M(★)

(c) An anonymous tree for b.

Figure 1: Join, witness and anonymous trees for a CQ.

3 FROM CONJUNCTIVE QUERIES TO
TREE AUTOMATA

In this section, we provide the formal link between Conjunctive
Queries (CQ) and tree automata, and formalize our results for the
former. In particular, we show that it is possible to reduce #ACQ
to #TA, where #ACQ is the problem of counting the number of
solutions to an acyclic CQ. Hence, the existence of an FPRAS for
#ACQ is inferred from the existence of an FPRAS for #TA. In fact,
we will prove the more general statement that one can reduce
the problem of counting solutions to CQ’s with bounded hypertree

width, and unions of such queries, to the problem of #TA.
We start by formally introducing conjunctive queries. We first fix

two disjoint (countably) infinite sets C and V of constants and vari-
ables, respectively. Then a conjunctive query (CQ) is an expression
of the form:

𝑄 (𝑥) ← 𝑅1 (𝑢1), . . . , 𝑅𝑛 (𝑢𝑛), (1)

where for every 𝑖 ∈ {1, . . . , 𝑛}, 𝑅𝑖 is a 𝑘𝑖 -ary relation symbol (𝑘𝑖 ≥ 1)
and 𝑢𝑖 is a 𝑘𝑖 -ary tuple of variables and constants (that is, elements
from V and C), and 𝑥 = (𝑥1, . . . , 𝑥𝑚) is a tuple of variables such
that each variable 𝑥𝑖 in 𝑥 occurs in some 𝑢𝑖 . The symbol 𝑄 is used
as the name of the query, and var(𝑅𝑖) is used to denote the set of
variables in relation symbol 𝑅𝑖 . Moreover, var(𝑄) denotes the set of
all variables appearing in the query (i.e., left- and right-hand sides).

Intuitively, the right-hand side 𝑅1 (𝑢1), . . . , 𝑅𝑛 (𝑢𝑛) of 𝑄 is used
to specify a pattern over a database, while the tuple 𝑥 is used to
store the answer to the query when such a pattern is found. More
precisely, a database 𝐷 is a set of facts of the form𝑇 (𝑎) where 𝑎 is a
tuple of constants (elements from C), which indicates that 𝑎 is in the
table𝑇 in𝐷 . Then a homomorphism from𝑄 to𝐷 is a functionℎ from
the set of variables occurring in 𝑄 to the constants in 𝐷 such that
for every 𝑖 ∈ {1, . . . , 𝑛}, it holds that 𝑅𝑖 (ℎ(𝑢𝑖)) is a fact in 𝐷 , where
ℎ(𝑢𝑖) is obtained by applying ℎ to each component of 𝑢𝑖 leaving
the constants unchanged. Moreover, given such a homomorphism
ℎ, the tuple of constants ℎ(𝑥) is said to be an answer to 𝑄 over the
database 𝐷 , and 𝑄 (𝐷) is defined as the set of answers of 𝑄 over 𝐷 .

3.1 High-level Overview of the Reduction
to #TA

We now give a high-level overview of our reduction to #TA from a
simple class of acyclic conjunctive queries. This overview will be
sufficient to provide intuition for why tree automata are the correct
tool for representing the number of solutions to such conjunctive

queries. Consider a CQ:

𝑄1 (𝑥) ← G(𝑥), E(𝑥,𝑦), E(𝑥, 𝑧),C(𝑦),M(𝑧)

This query is said to be acyclic, because it can be encoded by a join
tree, that is, by a tree 𝑡 where each node is labeled by the relations
occurring in the query, and which satisfies the following connect-
edness property: each variable in the query induces a connected
subtree of 𝑡 [62]. In particular, a join tree for 𝑄1 (𝑥) is depicted in
Figure 1a, where the connected subtree induced by variable 𝑥 is
marked in green. An acyclic conjunctive query 𝑄 can be efficiently
evaluated by using a join tree 𝑡 encoding it [62]; in fact, a tree
witnessing the fact that 𝑎 ∈ 𝑄 (𝐷) can be constructed in polynomial
time. For example, if 𝐷1 = {G(a), G(b), E(a, c1), E(b, c1), E(b, c2),
E(b, c3), C(c1), C(c2), M(c3)}, then b is an answer to 𝑄1 over 𝐷1.
In fact, two witness trees for this answer are shown in Figure 1b.
Notice that the assignments to variable 𝑦 that distinguish these two
trees are marked in blue.

In this work, we consider the following problem:

Problem: #ACQ
Input: An acyclic CQ 𝑄 and a database 𝐷
Output: |𝑄 (𝐷) |

One might think that #ACQ can also be solved in polynomial time
given that the number of witness trees can be counted in polynomial
time. However, there is no one-to-one correspondence between the
answers to an acyclic CQ and their witness trees; as shown in
Figure 1b, two trees may witness the same answer. In fact, #ACQ is
#P-complete [47].

However, we first observe that in a witness tree 𝑡 , if only output
variables are given actual values and non-output variables are as-
signed an anonymous symbol ★, then there will be a one-to-one
correspondence between answers to a query and witnesses. Let’s
us denote such structures as anonymous trees, an example of which
is given in Figure 1c. But how can we specify when an anonymous
tree is valid? For example, if 𝑡 ′ is the anonymous tree obtained by
replacing b by a in Figure 1c, then 𝑡 ′ is not a valid anonymous tree,
because a is not an answer to 𝑄1 over 𝐷1. We demonstrate that
tree automata provide the right level of abstraction to specify the
validity of such anonymous trees, so that #ACQ can be reduced to
a counting problem over tree automata. In fact, in the extended ver-
sion of this paper at [9], we present this construction for the more
general notion of bounded hypertree width, which is introduced in
the following section.

1019

STOC ’21, June 21–25, 2021, Virtual, Italy Arenas, Croquevielle, Jayaram, and Riveros

3.2 A More General Notion of Acyclicity
In Section 3.1, we consider a CQ as acyclic if it can be encoded
by a join tree. However, our results apply to a more general no-
tion of acyclicity, known as the hypertree width of a CQ. We now
formalize this more general notion of acyclicity. Let 𝑄 be a CQ
of the form 𝑄 (𝑥) ← 𝑅1 (𝑢1), . . . , 𝑅𝑛 (𝑢𝑛). A hypertree for 𝑄 is a
triple ⟨𝑇, 𝜒, 𝜉⟩ such that 𝑇 = (𝑁, 𝐸) is a rooted tree, and 𝜒 and 𝜉

are node-labeling functions such that for every 𝑝 ∈ 𝑁 , it holds
that 𝜒 (𝑝) ⊆ var(𝑄) and 𝜉 (𝑝) ⊆ {𝑅1, . . . , 𝑅𝑛}. Moreover, ⟨𝑇, 𝜒, 𝜉⟩ is
said to be a hypertree decomposition for 𝑄 [35] if the following
conditions hold:

• for each atom 𝑖 ∈ {1, . . . , 𝑛}, there exists 𝑝 ∈ 𝑁 s.t. var(𝑅𝑖) ⊆
𝜒 (𝑝);
• for each variable 𝑥 ∈ var(𝑄), the set {𝑝 ∈ 𝑁 | 𝑥 ∈ 𝜒 (𝑝)}
induces a (connected) subtree of 𝑇 ;
• for each 𝑝 ∈ 𝑁 , it holds that

𝜒 (𝑝) ⊆
⋃

𝑅∈𝜉 (𝑝)
var(𝑅)

• for each 𝑝 ∈ 𝑁 , it holds that(⋃
𝑅∈𝜉 (𝑝)

var(𝑅)
)
∩
(⋃
𝑝′ :𝑝′ is a descendant of 𝑝 in𝑇

𝜒 (𝑝 ′)
)
⊆ 𝜒 (𝑝)

The width of the hypertree decomposition ⟨𝑇, 𝜒, 𝜉⟩ is defined as
the maximum value of |𝜉 (𝑝) | over all vertices 𝑝 ∈ 𝑁 . Finally, the
hypertree width hw(𝑄) of CQ 𝑄 is defined as the minimum width
over all its hypertree decompositions [35].

Example 3.1. Consider the CQ𝑄 (𝑥,𝑦, 𝑧) ← 𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧, 𝑥).
It is easy to see that 𝑄 is a non-acyclic query (it cannot be repre-
sented by a join tree as defined in Section 3.1), but we can still
study its degree of acyclicity using the idea of hypertree width. In
particular, the following is a hypertree decomposition for 𝑄 , where
the values of 𝜒 (𝑝) and 𝜉 (𝑝) are shown on the left- and right-hand
sides of the rectangle for node 𝑝:

{𝑥,𝑦, 𝑧}, {𝑅, 𝑆}

{𝑥, 𝑧}, {𝑇 }

Notice that the width of this hypertree decomposition is 2, as
|𝜉 (𝑝) | = 2 for the root. And in fact, no hypertree decomposition of
width 1 can be constructed for 𝑄 , so that hw(𝑄) = 2 (otherwise, 𝑄
would be acyclic). In some way, we are forced to bundle two of the
atoms (𝑅 and 𝑆) together and in the process increase the width, in
order to create a join tree-like structure. ■

It was shown in [35] that a CQ𝑄 is acyclic if and only if hw(𝑄) =
1. Thus, the notion of hypertree width generalizes the notion of
acyclicity given before. We are interested in classes of queries with
bounded hypertree width, for which it has been shown that the
evaluation problem can be solved efficiently [35]. More precisely,
for every 𝑘 ≥ 1 define the following counting problem.

Problem: #𝑘-HW
Input: A CQ 𝑄 such that hw(𝑄) ≤ 𝑘 and a database 𝐷
Output: |𝑄 (𝐷) |

It is important to notice that #ACQ = #1-HW. However, we will
keep both languages for historical reasons, as acyclic conjunctive
queries were defined two decades earlier, and are widely used in
databases. Both #ACQ and #𝑘-HW, for a fixed 𝑘 ≥ 1, are known to
be #P-complete [47]. On the positive side, based on the relationship
with tree automata that we show in the extended version of this
paper (see [9]), we can conclude that these problems admit an
FPRAS and an FPAUS, as formalized in Section 2.

Theorem 3.2. #ACQ admits an FPRAS and an FPAUS, and for every

constant 𝑘 ≥ 1, #𝑘-HW admits an FPRAS and an FPAUS.

3.3 A Characterization of Classes of
Conjunctive Queries Admitting FPRAS

In this section, we describe how Theorem 3.2 and the results in [37]
can be combined to obtain a characterization of the classes of con-
junctive queries which admit an FPRAS. We consider the slightly
different notion of conjunctive query used in [37], which explicitly
includes equality atoms and does not contain constants. More pre-
cisely, in this section a conjunctive query (CQ) is an expression of
the form:

𝑄 (𝑥) ← 𝛼1 (𝑦1), . . . , 𝛼𝑛 (𝑦𝑛), (‡)

where for every 𝑖 ∈ {1, . . . , 𝑛}, 𝛼𝑖 (𝑦𝑖) is either 𝑅𝑖 (𝑦𝑖) with 𝑅𝑖 a 𝑘𝑖 -
ary relation symbol (𝑘𝑖 ≥ 1) and 𝑦𝑖 a 𝑘𝑖 -ary tuple of variables from
V, or 𝛼𝑖 (𝑦𝑖) is 𝑦𝑖,1 = 𝑦𝑖,2 with 𝑦𝑖,1, 𝑦𝑖,2 variables from V. Moreover,
𝑥 = (𝑥1, . . . , 𝑥𝑚) is a tuple of variables such that each variable 𝑥𝑖
in 𝑥 occurs in some 𝑦𝑖 .

As before, the symbol 𝑄 is used as the name of the query, and
var(𝑄) denotes the set of all variables appearing in 𝑄 .

Given a CQ𝑄 (𝑥) of the form (‡), define a graph𝐺𝑄 representing
𝑄 as follows. The set of vertices of 𝐺𝑄 is var(𝑄), and there exists
an edge between two distinct variables 𝑥 and 𝑦 if, and only if, there
exists 𝑖 ∈ {1, . . . , 𝑛} such that both 𝑥 and 𝑦 occur in 𝛼𝑖 (𝑦𝑖). We
consider here the standard notion of tree-width of a graph 𝐺 and
of a conjunctive query 𝑄 [28, 37], which are denoted by tw(𝐺) and
tw(𝑄), respectively. Notice that although tw(𝑄) is not defined by
using 𝐺𝑄 , it holds that tw(𝑄) = tw(𝐺𝑄) [28]. Then a class G of
graphs is said to have bounded treewidth if there exists a constant
𝑘 such that tw(𝐺) ≤ 𝑘 for every 𝐺 ∈ G. Moreover, define CQ(G)
as the class of all conjunctive queries 𝑄 of the form (‡) whose
representing graph 𝐺𝑄 is in G.

Let G be a class of graphs, and assume that there exists a constant
𝑘 such that tw(𝐺) ≤ 𝑘 for every𝐺 ∈ G. Then for every𝑄 ∈ CQ(G),
we have that hw(𝑄) ≤ tw(𝑄) ≤ 𝑘 . Moreover, given 𝑄 ∈ CQ(G),
if 𝑄 ′ is a query obtained from 𝑄 by replacing each equality atom
𝑥 = 𝑦 by EQ(𝑥,𝑦), where EQ is a fresh predicate, then we have
that 𝑄 (𝐷) = 𝑄 ′(𝐷 ′) with 𝐷 ′ = 𝐷 ∪ {EQ(𝑎, 𝑎) | 𝑎 is an element of
𝐷}, and we also have that tw(𝑄 ′) = tw(𝑄) and hw(𝑄 ′) = hw(𝑄).
Therefore, by considering Theorem 3.2, we conclude that the prob-
lems of computing |𝑄 (𝐷) | and of sampling from 𝑄 (𝐷), given as
input𝑄 ∈ CQ(G) and a database𝐷 , admit an FPRAS and an FPAUS.

1020

When Is Approximate Counting for ConjunctiveQueries Tractable? STOC ’21, June 21–25, 2021, Virtual, Italy

Given a class G of graphs, the query decision problem for CQ(G)
is the problem of verifying, given a CQ 𝑄 ∈ CQ(G) and a database
𝐷 , whether𝑄 (𝐷) ≠ ∅. By the results of [37], assuming thatW[1] ≠
FPT, for every class G of (undirected) graphs, the query decision
problem for CQ(G) is tractable if, and only if, G has bounded
treewidth. Since the existence of an FPRAS or an FPAUS for the set
𝑄 (𝐷) of answers of a conjunctive query results in a BPP algorithm
for the query decision problem, it follows that if BPP = P, it is not
possible to obtain an FPRAS or an FPAUS for any class of CQs of
the form CQ(G) for a class of graphs G with unbounded treewidth.
As a corollary of this and the discussion in the previous paragraph,
we obtain the following characterization of classes of conjunctive
queries admitting FPRAS and FPAUS:

Corollary 3.3. Let G be a class of (undirected) graphs. Then assum-

ing W[1] ≠ FPT and BPP = P, the following are equivalent:

(1) The problems of computing |𝑄 (𝐷) | and of sampling from𝑄 (𝐷),

given as input𝑄 ∈ CQ(G) and a database 𝐷 , admit an FPRAS

and an FPAUS, respectively.

(2) G has bounded treewidth.

It should be mentioned that a refinement of the result of [37] is
given in [36], which can be applied over any recursively enumerable
class of conjunctive queries of fixed arity. We do not know whether
the results of this paper can be extended to this case, which in
particular means proving there exists an FPRAS for each class of
CQs whose cores [38] have bounded treewidth. We believe this to
be an interesting problem for future work.

3.4 Union of Conjunctive Queries
An important and well-studied extension of the class of conjunc-
tive queries is obtained by adding the union operator. A union of
conjunctive queries (UCQ) is an expression of the form:

𝑄 (𝑥) ← 𝑄1 (𝑥) ∨ · · · ∨𝑄𝑚 (𝑥), (2)

where 𝑄𝑖 (𝑥) is a conjunctive query of the form (1) for each 𝑖 ∈
{1, . . . ,𝑚}, and the same tuple 𝑥 of output variables is used in the
CQs 𝑄1 (𝑥), . . ., 𝑄𝑚 (𝑥). As for the case of CQs, the symbol 𝑄 is
used as the name of the query. A tuple 𝑎 is said to be an answer of
UCQ 𝑄 in (2) over a database 𝐷 if and only if 𝑎 is an answer to 𝑄𝑖

over 𝐷 for some 𝑖 ∈ {1, . . . ,𝑚}. Thus, we have that:

𝑄 (𝐷) =

𝑚⋃
𝑖=1

𝑄𝑖 (𝐷)

As expected, the problem of verifying, given a UCQ 𝑄 , a database
𝐷 and a tuple of constants 𝑎, whether 𝑎 is an answer to 𝑄 over 𝐷
is an NP-complete problem [16]. Also as expected, the evaluation
problem for union of acyclic conjunctive queries can be solved in
polynomial time, given that the evaluation problem for acyclic CQs
can be solved in polynomial time. Concerning to our investiga-
tion, we are interested in the following problem associated to the
evaluation problem for union of acyclic conjunctive queries:

Problem: #UACQ
Input: A union of acyclic CQ 𝑄 and a database 𝐷
Output: |𝑄 (𝐷) |

As expected from the result for conjunctive queries, #UACQ is
#P-complete [47]. However, #UACQ remains #P-hard even if we
focus on the case of UCQs without existentially quantified variables,
that is, UCQs of the form (2) where 𝑥 consists of all the variables
occurring in CQ𝑄𝑖 (𝑥) for each 𝑖 ∈ {1, . . . ,𝑚}. Notice that this is in
sharp contrast with the case of CQs, where #ACQ can be solved in
polynomial time if we focus on the case of CQs without existentially
quantified variables [47]. However, by using Theorem 3.2, we are
able to provide a positive result about the possibility of efficiently
approximating #UACQ.

Proposition 3.4. #UACQ admits an FPRAS and an FPAUS.

As a final fundamental problem, we consider the problem of
counting the number of solutions of a union of conjunctive queries
of bounded hypertree width.

Problem: #𝑘-UHW
Input: A database 𝐷 and a union of CQ

𝑄 (𝑥) ← 𝑄1 (𝑥) ∨ · · · ∨𝑄𝑚 (𝑥)
such that hw(𝑄𝑖) ≤ 𝑘 for all 𝑖 ∈ {1, . . . ,𝑚}

Output: |𝑄 (𝐷) |

By using the same ideas as in the proof of Proposition 3.4, we
obtain from Theorem 3.2 that:

Proposition 3.5. For every 𝑘 ≥ 1, it holds that #𝑘-UHW admits an

FPRAS and an FPAUS.

3.5 Some RelatedWork on Conjunctive Queries
Several works have looked into the counting problem for CQs (and
the related problems we listed above, like CSPs). In order to clarify
the discussion, we will give a rough characterization of the research
in this area. This will better illustrate how our results relate to
previous work. So as a first idea, when counting solutions to CQs,
an important source of difficulty is the presence of existentially
quantified variables. Consider the query we used in Section 3.1:

𝑄1 (𝑥) ← G(𝑥), E(𝑥,𝑦), E(𝑥, 𝑧),C(𝑦),M(𝑧) .
Notice that there are three variables 𝑥 , 𝑦 and 𝑧 in the right-hand
side, while only 𝑥 is present in the left-hand side. Thus, 𝑥 is an
output variable, while 𝑦 and 𝑧 are existentially quantified variables.
An alternative notation for CQs makes the quantification even more
explicit:
𝑄1 (𝑥) ← ∃𝑦∃𝑧 (G(𝑥) ∧ E(𝑥,𝑦) ∧ E(𝑥, 𝑧) ∧ C(𝑦) ∧M(𝑧)) .

As we mention later in Section 3, when variables are existentially
quantified, there is no one-to-one correspondence between the
answers to a CQ and their witness trees. This introduces a level of
ambiguity (i.e. potentially several witness trees for each answer)
into the counting problem, which makes it more difficult, even
though it does not make the evaluation problem any harder. In
fact, it is proved in Theorem 4 in [47] that the counting problem is
#P-complete for acyclic CQs over graphs (i.e. bounded arity), even
if queries are allowed a single existentially quantified variable (and
an arbitrary number of output variables). In contrast, it is known
(e.g. [23]) that for each class of CQs with bounded treewidth and
without existentially quantified variables, the counting problem
can be solved exactly in polynomial time.

1021

STOC ’21, June 21–25, 2021, Virtual, Italy Arenas, Croquevielle, Jayaram, and Riveros

It was open what happens with the counting problem when CQs
are considered with all their features, that is, when output and
existentially quantified variables are combined. In particular, it was
open whether the counting problem admits an approximation in
that case. Our paper aims to study precisely that case, in contrast
with previous work that does not consider such output variables
combined with existentially quantified variables [14, 23].

As a second idea, approaches to make the counting or evaluation
problem for CQs tractable usually revolve around imposing some
structural constraint on the query, in order to restrict its degree of
cyclicity. Most well-known is the result in [62], which proves that
the evaluation problem is tractable for acyclic queries. In general-
izations of this result (e.g. [37]), the acyclicity is usually measured
as the width of some query decomposition. Specific to the counting
problem, this type of notion is used in [26] to characterize tractable
cases. Notice, however, that they rely not only on the width of
different query decompositions, but also on a measure of how free
variables are spread in the query, which they call quantified star size.
In contrast, we rely only on the structural width of the hypertree
decomposition.

4 TREE AUTOMATA AND A PARTITION
BASED APPROACH FOR FINDING AN
FPRAS

Given the results of Section 3, we will now focus on the problem of
designing an FPRAS for #TA, which has as input a tree automata T
and an integer 𝑛 ≥ 1 (given in unary), and asks to output |L𝑛 (T)|.
In this section, we give an overview of the main components of
our algorithm, their relation to prior techniques, and the technical
challenges involved in designing such an FPRAS.

4.1 Binary Tree Automata
To capture the essence of the problem, in the following discussion
we consider a simplified version of tree automata. Specifically, we
restrict the discussion to unlabeled binary ordered trees, which
are sufficient to present the main ideas of the algorithm. A binary
ordered tree 𝑡 (or just tree) is a rooted binary tree where the children
of each node are ordered; namely, one can distinguish between the
left and right child of each non-leaf node. For a non-leaf node 𝑢
of 𝑡 , we write 𝑢1 and 𝑢2 to denote the left and right children of
𝑢, respectively, and we denote the root of any tree 𝑡 by 𝜆, which
representes the empty string. We will write 𝑢 ∈ 𝑡 to denote that
𝑢 is a node of 𝑡 , and |𝑡 | to denote the number of nodes of 𝑡 . For
example, Figure 2 depicts a binary ordered tree 𝑡1 with |𝑡1 | = 9, and
another tree 𝑡2 with |𝑡2 | = 13, where the children are ordered from
left to right.

A tree automaton T over a binary ordered tree is defined as a
tuple (𝑆,Δ, 𝑠init) where 𝑆 is a finite set of states, Δ ⊆ (𝑆 ×𝑆 ×𝑆) ∪𝑆
is the transition relation, and 𝑠init ∈ 𝑆 is the initial state. A run 𝜌 of
T over a tree 𝑡 is a function 𝜌 : 𝑡 → 𝑆 mapping nodes to states that
respects the transition relation. Namely, for every node 𝑢 of 𝑡 we
have 𝜌 (𝑢) ∈ Δ whenever 𝑢 is a leaf, and (𝜌 (𝑢), 𝜌 (𝑢1), 𝜌 (𝑢2)) ∈ Δ,
otherwise. We say that T accepts 𝑡 if there exists a run 𝜌 of T over 𝑡
such that 𝜌 (𝜆) = 𝑠init, and such a run 𝜌 is called an accepting run of
T over 𝑡 . The set of all trees accepted by T is denoted byL(T), and
the𝑛-slice ofL(T), denoted byL𝑛 (T), is the set of trees 𝑡 ∈ L(T)

with size 𝑛 (that is, |𝑡 | = 𝑛). For the sake of presentation, in the
following we write 𝑠 → 𝑞𝑟 to represent the transition (𝑠, 𝑞, 𝑟) ∈ Δ
and 𝑠 → · to represent 𝑠 ∈ Δ. Note that transitions of the form 𝑠 → ·
correspond to leaves that have no children, and can be thought as
“final states” of a run.

Figure 2 gives an example of a tree automaton T with states
{𝑠, 𝑟, 𝑞}. The right-hand side of Figure 2 shows an example of an
accepting run ofT over 𝑡2. One can easily check from the transitions
of T in this example that a tree 𝑡 is in L(T) if, and only if, there
exists a node 𝑣 ∈ 𝑡 such that both children of 𝑣 are internal (non-
leaf) nodes. For example, 𝑡2 satisfies this property and 𝑡2 ∈ L(T).
On the other hand, all nodes 𝑣 ∈ 𝑡1 have at least one child that is a
leaf, and thus there is no accepting run of T over 𝑡1, so 𝑡1 ∉ L(T).

4.2 Unrolling the Automaton
Fix 𝑛 ≥ 1 and a tree automaton T = (𝑆,Δ, 𝑠𝑖𝑛𝑖𝑡) as defined above.
Our first step will be to unroll the automaton, so that each state is
restricted to only producing trees of a fixed size. Specifically, we
construct an automaton T = (𝑆,Δ, 𝑠𝑛init), where each state 𝑠 ∈ 𝑆

is duplicated 𝑛 times into 𝑠1, 𝑠2, . . . , 𝑠𝑛 ∈ 𝑆 , and where 𝑠𝑖 is only
allowed to derive trees of size 𝑖 . To enforce this, each transition
𝑠 → 𝑟𝑞 in Δ is replaced with 𝑠𝑖 → 𝑟 𝑗𝑞𝑘 ∈ Δ for all 𝑗, 𝑘 > 0 such
that 𝑖 = 𝑗 + 𝑘 + 1, and each transition 𝑠 → · in Δ is replaced with
𝑠1 → · ∈ Δ. Now for every 𝑠 ∈ 𝑆 , let 𝑇 (𝑠𝑖) be set of trees that can
be derived beginning from the state 𝑠𝑖 (all of which have size 𝑖).
When 𝑖 > 1, we can define 𝑇 (𝑠𝑖) via the relation

𝑇 (𝑠𝑖) =
⋃

(𝑠𝑖→𝑟 𝑗𝑞𝑘) ∈Δ

(
𝑇 (𝑟 𝑗) ⊗ 𝑇 (𝑞𝑘)

)
(3)

where 𝑇 (𝑟 𝑗) ⊗ 𝑇 (𝑞𝑘) is a shorthand to denote the set of all trees
that can be created by taking every 𝑡1 ∈ 𝑇 (𝑟 𝑗) and 𝑡2 ∈ 𝑇 (𝑞𝑘) and
forming the tree:

•
𝑡1 𝑡2

This fact allows us to define each set𝑇 (𝑠𝑖) recursively as a union of
“products” of other such sets. Our goal is then to estimate |𝑇 (𝑠𝑛init) |
and sample from 𝑇 (𝑠𝑛init).

It should be mentioned that for so-called “bottom-up determin-
istic” automata T [20], the sets 𝑇 (𝑟 𝑗) ⊗ 𝑇 (𝑞𝑘) in the union in
Equation (3) are disjoint, so

|𝑇 (𝑠𝑖) | =
∑

(𝑠𝑖→𝑟 𝑗𝑞𝑘) ∈Δ
|𝑇 (𝑟 𝑗) | · |𝑇 (𝑞𝑘) |

and one can then compute the values |𝑇 (𝑠𝑖) | exactly via dynamic
programming. Thus, the core challenge is the ambiguity of the prob-
lem: namely, the fact that trees 𝑡 ∈ 𝑇 (𝑠𝑛init) may admit exponentially
many runs in the automaton. For example, the tree automaton T
from Figure 2 can accept 𝑡2 by two different runs. In what follows,
we will focus on the problem of uniform sampling from such a set
𝑇 (𝑠𝑖), since given a uniform sampler the problem of size estimation
is routine.

4.3 A QPRAS via Karp-Luby Sampling
To handle the problem of sampling with ambiguous derivations
Gore et al. [31] used a technique known as Karp-Luby sampling.
This technique is a form of rejection sampling, where given sets

1022

When Is Approximate Counting for ConjunctiveQueries Tractable? STOC ’21, June 21–25, 2021, Virtual, Italy

𝑡1 :

T := 𝑠 → 𝑠𝑞

𝑠 → 𝑞𝑠

𝑠 → 𝑟𝑟

𝑟 → 𝑞𝑞

𝑞 → 𝑞𝑞

𝑞 → ·
𝑠init = 𝑠

𝑡2 : 𝑠

𝑞

𝑞 𝑞

𝑠

𝑠 𝑞

𝑟

𝑞 𝑞

𝑟

𝑞 𝑞

Run :

Figure 2: A tree automata T , binary ordered trees 𝑡1 and 𝑡2, and a run of T over 𝑡2.

𝑇1, . . . ,𝑇𝑘 and 𝑇 = ∪𝑖𝑇𝑖 , one can sample from 𝑇 via the following
procedure:

(1) Sample a set 𝑇𝑖 with probability proportional to |𝑇𝑖 |.
(2) Sample an element 𝑡 uniformly from 𝑇𝑖 .
(3) Accept 𝑡 with probability 1/𝑚(𝑡), where 𝑚(𝑡) is the total

number of sets 𝑇𝑗 which contain 𝑡 .

The QPRAS of [31] applied this procedure recursively, using
approximations 𝑁 (𝑇𝑖) in the place of |𝑇𝑖 |, where the union𝑇 = ∪𝑖𝑇𝑖
in question is just the union in Equation (3), and each𝑇𝑖 is a product
of smaller sets 𝑇𝑖 = 𝑇𝑖,1 ⊗ 𝑇𝑖,2 which are themselves unions of sets
at a lower depth. So to carry out (2), one must recursively sample
from𝑇𝑖,1 and𝑇𝑖,2. The overall probability of acceptance in (3) is now
exponentially small in the sampling depth. Using a classic depth
reduction technique [58], they can reduce the depth to log(𝑛), but
since𝑚(𝑡) can still be as large as Ω(𝑛 |T |) at each step, the resulting
acceptance probability is quasi-polynomially small.

4.4 A Partition Based Approach
The difficult with Karp-Luby sampling is that it relies on a rejection
step to compensate for the fact that some elements can be sampled
in multiple ways. Instead, our approach will be to partition the sets
in question, so that no element can be sampled in more than one
way. Simply put, to sample from 𝑇 , we will first partition 𝑇 into
disjoint subsets𝑇 ′1 , . . . ,𝑇

′
ℓ
. Next, we sample a set𝑇 ′

𝑖
with probability

(approximately) proportional to |𝑇 ′
𝑖
|, and lastly we set 𝑇 ← 𝑇 ′

𝑖
and

now recursively sample from the new 𝑇 . The recursion ends when
the current set 𝑇 has just one element. Clearly no rejection proce-
dure is needed now for the sample to be approximately uniform. To
implement this template, however, there are two main implementa-
tion issues which we must address. Firstly, how to partition the set
𝑇 , and secondly, how to efficiently estimate the size of each part𝑇 ′

𝑖
.

In the remainder, we will consider these two issues in detail.

Our High-Level Sampling Template
Input: Arbitrary set 𝑇 .

(1) If |𝑇 | = 1, return 𝑇 . Otherwise, find some partition
𝑇 = ∪ℓ𝑖=1𝑇

′
𝑖

(2) Call subroutine to obtain estimates 𝑁 (𝑇 ′
𝑖
) ≈ |𝑇 ′

𝑖
|

(3) Set 𝑇 ← 𝑇 ′
𝑖
with probability 𝑁 (𝑇 ′

𝑖
)/∑𝑗 𝑁 (𝑇 ′𝑗),

and recursively sample from 𝑇 .

5 A PARTITION SCHEME FOR
TREE AUTOMATA

For the rest of the paper, fix some state 𝑠𝑖 . It will suffice to show how
to generate a uniform sample from the set 𝑇 (𝑠𝑖). To implement the
above template, we will rely on having inductively pre-computed
estimates of |𝑇 (𝑟 𝑗) | for every 𝑟 ∈ 𝑆 and 𝑗 < 𝑖 . Specifically, our
algorithm proceeds in rounds, where on the 𝑗-th round we compute
an approximation 𝑁 (𝑟 𝑗) ≈ |𝑇 (𝑟 𝑗) | for each state 𝑟 ∈ 𝑆 . In addition
to these estimates, a key component of our algorithm is that, on
the 𝑖-th round, we also store sketches 𝑇 (𝑟 𝑗) of each set 𝑇 (𝑟 𝑗) for
𝑗 < 𝑖 , which consist of polynomially many uniform samples from
𝑇 (𝑟 𝑗). One can uses these sketches 𝑇 (𝑟 𝑗) to aid in the generation
of uniform samples for the larger sets 𝑇 (𝑠𝑖) on the 𝑖-th round. For
instance, given a set of trees 𝑇 = ∪𝑘

𝑗=1𝑇𝑗 for some sets 𝑇1, . . . ,𝑇𝑘
where we have estimates 𝑁 (𝑇𝑗) ≈ |𝑇𝑗 | and sketches 𝑇𝑗 ⊆ 𝑇𝑗 , one
could estimate |𝑇 | by the value

𝑘∑
𝑗=1

𝑁 (𝑇𝑗)
©«
���𝑇𝑗 \⋃𝑗 ′< 𝑗 𝑇𝑗 ′

������𝑇𝑗 ��� ª®®¬ (4)

Here, the term in parenthesis in 4 estimates the fraction of the set
𝑇𝑗 which is not already contained in the earlier sets 𝑇𝑗 ′ .

5.1 The Partition Scheme for NFA
The above insight of sketching the intermediate subproblems𝑇 (𝑟 𝑗)
of the dynamic program and applying 4 was made by [8] in their
FPRAS for non-deterministic finite automata (NFA). Given an NFA
N with states 𝑆 , Σ = {0, 1}, and any state 𝑠 ∈ 𝑆 of N , one can
similarly define the intermediate subproblem𝑊 (𝑠𝑖)3 as the set of
words of length 𝑖 that can be derived starting at the state 𝑠 . The
FPRAS of [8] similarly pre-computes sketches for these sets in a
bottom-up fashion. To sample a string𝑤 = 𝑤1 · · ·𝑤𝑖 ∈𝑊 (𝑠𝑖), they
sampled the symbols in𝑤 bit by bit, effectively “growing” a prefix
of 𝑤 . First, 𝑊 (𝑠𝑖) is partitioned into 𝑊 (𝑠𝑖 , 0) ∪𝑊 (𝑠𝑖 , 1), where
𝑊 (𝑠𝑖 , 𝑏) ⊆𝑊 (𝑠𝑖) is the subset of strings 𝑥 = 𝑥1 · · · 𝑥𝑖 ∈𝑊 (𝑠𝑖) with
first bit 𝑥1 equal to 𝑏. If for any prefix𝑤 ′, we define 𝑅𝑤′ ⊆ 𝑆 to be
the set of states 𝑟 such that there is a path of transitions from 𝑠 to
𝑟 labeled by𝑤 ′, then observe that𝑊 (𝑠𝑖 , 𝑏) = {𝑏} · ∪𝑟 ∈𝑅𝑏𝑊 (𝑟 𝑖−1),
where · is the concatenation operation for sets of words. Thus
|𝑊 (𝑠𝑖 , 𝑏) | can be estimated directly by Equation 4 in polynomial

3We use𝑊 to denote sets of words, and𝑇 for sets of trees.

1023

STOC ’21, June 21–25, 2021, Virtual, Italy Arenas, Croquevielle, Jayaram, and Riveros

time. After the first bit𝑤1 = 𝑏 is sampled, they move on to sample
the second bit𝑤2 conditioned on the prefix𝑤1 = 𝑏. By partitioning
the strings again into those with prefix equal to either 𝑏0 or 𝑏1,
each of which is described compactly as {𝑏𝑏 ′} · ∪𝑟 ∈𝑅𝑏𝑏′𝑊 (𝑟

𝑖−2) for
𝑏 ′ ∈ {0, 1}, one can use Equation 4 again to sample 𝑤2 from the
correct distribution, and so on.

The key “victory” in the above approach is that for NFAs, one can
compactly condition on a prefix𝑤 ′ of a word𝑤 ∈𝑊 (𝑠𝑖) as a union
∪𝑟 ∈𝑅𝑤′𝑊 (𝑟

𝑖−|𝑤′ |) taken over some easy to compute subset of states
𝑅𝑤′ ⊆ 𝑆 . In other words, to condition on a partial derivation of a
word, one need only remember a subset of states. This is possible
because, for NFAs, the overall configuration of the automata at any
given time is specified only by a single current state of the automata.
However, this fact breaks down fundamentally for tree automata.
Namely, at any intermediate point in the derivation of a tree, the
configuration of a tree automata is described not by a single state,
but rather by the combination of states (𝑟 𝑗1𝑡1

, . . . , 𝑟
𝑗𝑘
𝑡𝑘
) assigned to the

(possibly many) leaves of the partially derived tree. So the number
of possible configurations is exponential in the number of leaves of
the partial tree. Consequentially, the number of sets in the union of
Equation 4 is exponentially large.4 Handling this lack of a compact
representation is the main challenge for tree automata, and will
require a substantially different approach to sampling.

5.2 The Partition Scheme for Tree Languages
Similarly at a high level to the word case, our approach to sampling
will be to “grow” a tree 𝑡 from the root down. However, unlike in
the word case, there is no longer any obvious method to partition
the ways to grow a tree (for words, one just partitions by the next
bit in the prefix). Our solution to this first challenge is to partition
based on the sizes of the subtrees of all the leaves of 𝑡 . Namely, at
each step we expand one of the leaves ℓ of 𝑡 , and choose what the
final sizes of the left and right subtrees of ℓ will be. By irrevocably
conditioning on the final sizes of the left and right subtrees of a leaf
ℓ , we partition the set of possibles trees which 𝑡 can grow into based
on the sizes that we choose. Importantly, we do not condition on
the states which will be assigned to any of the vertices in 𝑡 , since
doing so would no longer result in a partition of 𝑇 (𝑠𝑖).

More formally, we grow a partial tree 𝜏 , which is an ordered tree
with the additional property that some of its leaves are labeled with
positive integers, and these leaves are referred to as holes. For an
example, see the leftmost tree in Figure 3. A partial tree 𝜏 is called
complete if it has no holes. For a hole 𝐻 of 𝜏 , we denote its integral
label by 𝜏 (𝐻) ≥ 1, and call 𝜏 (𝐻) the final size of 𝐻 , since 𝜏 (𝐻) will
indeed be the final size of the subtree rooted at𝐻 once 𝜏 is complete.
Intuitively, to complete 𝜏 we must replace each hole 𝐻 of 𝜏 with
a subtree of size exactly 𝜏 (𝐻). Because no states are involved in
this definition, a partial tree 𝜏 is by itself totally independent of the
automata.

We can now define the set 𝑇 (𝑠𝑖 , 𝜏) ⊆ 𝑇 (𝑠𝑖) of completions of 𝜏
as the set of trees 𝑡 ∈ 𝑇 (𝑠𝑖) such that 𝜏 is a subtree of 𝑡 sharing the
same root, and such that for every hole 𝐻 ∈ 𝜏 the subtree rooted

4By being slightly clever about the order in which one derives the tree, one can reduce
the number of “active” leafs to𝑂 (log𝑛) , which would result in a quasi-polynomial
|𝑆 |𝑂 (log𝑛) time algorithm following the approach of [8], which in fact is a slight
improvement on the (|𝑆 |𝑛)𝑂 (log𝑛) obtained from [31].

5

7

3

3

𝐻1

𝐻2

𝐻4

𝐻3

Figure 3: Two examples of partial trees. The left-hand side
tree shows the label of each hole written inside the node.
The right-hand side tree illustrates the main path, where
non-white (green) nodes and thick arcs are used to highlight
the vertices and edges on the main path.

at the corresponding node 𝐻 ∈ 𝑡 has size 𝜏 (𝐻). Equivalently, 𝑡 can
be obtained from 𝜏 by replacing each hole 𝐻 ∈ 𝜏 with a subtree
𝑡𝐻 of size 𝜏 (𝐻). If 𝑖 is the partial tree consisting of a single hole
with final size 𝑖 , then we have 𝑇 (𝑠𝑖 , 𝑖) = 𝑇 (𝑠𝑖). So at each step
in the construction of 𝜏 , beginning with 𝜏 = 𝑖 , we will attempt
to sample a tree 𝑡 uniformly from 𝑇 (𝑠𝑖 , 𝜏). To do so, we can pick
any hole 𝐻 ∈ 𝜏 , and expand it by adding left and right children and
fixing the final sizes of the subtrees rooted at those children. There
are 𝜏 (𝐻) ways of doing this: namely, we can fix the final size of
the left and right subtrees to be 𝑗 and 𝜏 (𝐻) − 𝑗 − 1 respectively, for
each 𝑗 ∈ {0, 1, . . . , 𝜏 (𝐻) − 1}. So let 𝜏 𝑗 be the partial tree resulting
from fixing these final sizes to be 𝑗 and 𝜏 (𝐻) − 𝑗 − 1, and notice
that 𝑇 (𝑠𝑖 , 𝜏0), . . . ,𝑇 (𝑠𝑖 , 𝜏𝜏 (𝐻)−1) partitions the set 𝑇 (𝑠𝑖 , 𝜏). Thus it
will now suffice to efficiently estimate the sizes |𝑇 (𝑠𝑖 , 𝜏 𝑗) | of each
piece in the partition.

5.3 Estimating the Number of Completions via
the Main Path

The remaining challenge can now be rephrased in following way:
given any partial tree 𝜏 , design a subroutine to estimate the number
of completions |𝑇 (𝑠𝑖 , 𝜏) |. The key tool in our approach to this is
a reduction which allows us to represent the set 𝑇 (𝑠𝑖 , 𝜏) as the
language generated by a succinct NFA, whose transitions are labeled
by large sets which are succinctly encoded (see earlier definition
Theorem 1.4). In our reduction, on round 𝑖 ≤ 𝑛, the alphabet Σ of
the succinct NFA will be the set of all ordered trees of size at most 𝑖 .
Note that this results in Σ and the label sets 𝐴 being exponentially
large in 𝑛, preventing one from applying the algorithm of [8].

Our first observation is that by always choosing the hole𝐻 at the
lowest depth to expand in the partitioning scheme, the resulting
holes 𝐻1, . . . , 𝐻𝑘 ∈ 𝜏 will be nested within each other. Namely,
for each 𝑖 > 1, 𝐻𝑖 will be contained in the subtree rooted at the
sibling of 𝐻𝑖−1. Using this fact, we can define a distinguished path
𝑃 between the parent of𝐻1 and the parent of𝐻𝑘 . Observe that each
hole 𝐻 𝑗 must be a child of some node in 𝑃 . We call 𝑃 the main path

of 𝜏 (see Figure 3). For simplicity, assume that each vertex 𝑣 ∈ 𝑃

1024

When Is Approximate Counting for ConjunctiveQueries Tractable? STOC ’21, June 21–25, 2021, Virtual, Italy

has exactly one child that is a hole of 𝜏 ,5 and label the vertices of
the path 𝑃 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 }, so that 𝐻 𝑗 is the child of 𝑣 𝑗 . Notice by
the above nestedness property, the holes 𝐻 𝑗 , 𝐻 𝑗+1, . . . , 𝐻𝑘 are all
contained in the subtree rooted at 𝑣 𝑗 .

Observe that any completed tree 𝑡 ∈ 𝑇 (𝑠𝑖 , 𝜏) can be uniquely
represented by the trees (𝑡1, . . . , 𝑡𝑘), such that 𝑡 is obtained from 𝜏

by replacing each hole 𝐻𝑖 ∈ 𝜏 by the tree 𝑡𝑖 . Thinking of each tree
𝑡𝑖 as a symbol in the alphabet Σ of all ordered trees, we can thus
specify the tree 𝑡 by a word 𝑡1𝑡2 · · · 𝑡𝑘 ∈ Σ∗. So our goal is to show
that the set of words 𝑇 (𝑠𝑖 , 𝜏) = {𝑡1 · · · 𝑡𝑘 ∈ Σ∗ | 𝑡1 · · · 𝑡𝑘 ∈ 𝑇 (𝑠𝑖 , 𝜏)}
is the language accepted by an succinct NFA N over the alphabet
of ordered trees Σ with polynomially many states and set-labeled
transitions.

Now NFAs can only express labeled paths (i.e., words) and not
trees. However, the key observation is that if we restrict ourselves
to the main path 𝑃 , then the sequences of states from T which
can occur along 𝑃 can indeed be expressed by an NFA. Informally,
for every vertex 𝑣 𝑗 ∈ 𝑃 with (wlog) left child 𝐻 𝑗 , and for every
transition 𝑠 → 𝑟𝑠 ′ in the tree automata T which could occur at 𝑣 𝑗 ,
we create a unique transition 𝑠 → 𝑠 ′ in the succinct NFA. Here, the
two states 𝑠, 𝑠 ′ are assigned to the vertices 𝑣 𝑗 , 𝑣 𝑗+1 on the main path
𝑃 , and the state 𝑟 is placed inside of the hole 𝐻 𝑗 . Now the set of
trees 𝑡 𝑗 which could be placed in𝐻 𝑗 by this transition only depends
on the state 𝑟 . Specifically, this set of trees is exactly 𝑇 (𝑟𝜏 (𝐻 𝑗)).
Thus, if we label this transition 𝑠 → 𝑠 ′ in the succinct NFA by the
set 𝑇 (𝑟𝜏 (𝐻 𝑗)), the language accepted by the NFA will be precisely
𝑇 (𝑠𝑖 , 𝜏). The full details can be found in the full version.

The crucial fact about this construction is that the transition
labels of the succinct NFA are all sets of the form 𝑇 (𝑟 𝑗) for some
𝑟 ∈ 𝑆 and 𝑗 < 𝑖 . Since 𝑗 < 𝑖 , our algorithm has already pre-computed
the sketches 𝑇 (𝑟 𝑗) and estimates 𝑁 (𝑇 𝑗) of the label sets 𝑇 (𝑟 𝑗)
at this point. In the next section, we will use these sketches and
estimate to satisfy the “oracle” assumptions of Theorem 1.4.

6 AN FPRAS FOR SUCCINCT NFAS
Now that we have constructed the succinct NFA N which recog-
nizes the language𝑇 (𝑠𝑖 , 𝜏) as its𝑘-slice, wemust devise a subroutine
to approximate the size of the 𝑘-slice of N . Let 𝑆 ′,Δ′ be the states
and transitions of N . In order to estimate |L𝑘 (N)|, we mimic the
inductive, dynamic programming approach of our “outside” algo-
rithm.6 Namely, we define partial states of a dynamic program on
N , by setting𝑊 (𝑥 ℓ) to be the set of words of length ℓ accepted
by N starting from the state 𝑥 ∈ 𝑆 ′. We then similarly divide the
computation of our algorithm into rounds, where on round ℓ of the
subroutine, we inductively pre-compute new NFA sketches𝑊 (𝑥 ℓ)
of𝑊 (𝑥 ℓ) and estimates 𝑁 (𝑥 ℓ) of |𝑊 (𝑥 ℓ) | for each state 𝑥 ∈ 𝑆 ′.
Given these estimates and sketches, our procedure for obtaining
the size estimates 𝑁 (𝑥 ℓ) is straightforward. Thus, similar to the out-
side algorithm, the central challenge is to design a polynomial time
algorithm to sample from the set𝑊 (𝑥 ℓ), allowing us to construct
the sketch𝑊 (𝑥 ℓ).

For a string 𝑢 ∈ Σ∗, define 𝑊 (𝑥 ℓ , 𝑢) to be the set of strings
𝑤 ∈ 𝑊 (𝑥 ℓ) with prefix equal to 𝑢. Recall the approach of [8] to

5Extra care should be taken when this is not the case.
6We think of this subroutine to estimate |𝑇 (𝑠𝑖 , 𝜏) | as being the “inner loop” of the
FPRAS.

this problem for standard NFAs began by partitioning𝑊 (𝑥 ℓ) into⋃
𝛼 ∈Σ𝑊 (𝑥 ℓ , 𝛼) and estimating the size |𝑊 (𝑥 ℓ , 𝛼) | for each 𝛼 ∈ Σ.

Then one chooses 𝛼 with probability (approximately)

Pr[𝛼] = |𝑊 (𝑥 ℓ , 𝛼) |∑
𝛽∈Σ |𝑊 (𝑥 ℓ , 𝛽) |

and recurses into the set𝑊 (𝑥 ℓ , 𝛼). Clearly we can no longer follow
this strategy, as |Σ| is of exponential size with respect to N . Specif-
ically, we cannot estimate |𝑊 (𝑥 ℓ , 𝛼) | for each 𝛼 ∈ Σ. Instead, our
approach is to approximate the behavior of the “idealistic” algorithm
which does estimate all these sizes, by sampling from Σ without
explicitly estimating the sampling probabilities Pr[𝛼]. Namely, for
a prefix 𝑢 we must sample a string 𝑣 ∼ 𝑊 (𝑥 ℓ , 𝑢), by first sam-
pling the next symbol 𝛼 ∼ Σ from a distribution D̃(𝑢) which
is close to the true distribution D(𝑢) over Σ given by Pr[𝛼] =
|𝑊 (𝑥 ℓ , 𝑢 · 𝛼) |/|𝑊 (𝑥 ℓ , 𝑢) | for each 𝛼 ∈ Σ.

To do this, first note that we can write

𝑊

(
𝑥 ℓ , 𝑢

)
= {𝑢} ·

⋃
𝑦∈𝑅 (𝑥,𝑢)

𝑊

(
𝑦ℓ−|𝑢 |

)
where 𝑅(𝑥,𝑢) ⊆ 𝑆 ′ is the set of states 𝑦 such that there is a a path
of transitions from 𝑥 to 𝑦 labeled by sets 𝐴1 . . . 𝐴 |𝑢 | with 𝑢 𝑗 ∈ 𝐴 𝑗

for each 𝑗 ∈ {1, . . . , |𝑢 |}. Thus the set of possible symbols 𝛼 that we
can append to 𝑢 is captured by the sets of labels of the transitions
out of some state 𝑦 ∈ 𝑅(𝑥,𝑢). Now consider the set of transitions
{(𝑦,𝐴, 𝑧) ∈ Δ′ | 𝑦 ∈ 𝑅(𝑥,𝑢)}, namely, all transitions out of some
state in 𝑅(𝑥,𝑢). Furthermore, suppose for the moment that we were
given an oracle which generates uniform samples from each label
set 𝐴 of a transition (𝑦,𝐴, 𝑧), and also provided estimates 𝑁 (𝐴) of
the size of that set |𝐴|. Given such an oracle, we design a multi-
step rejection procedure to sample a symbol 𝛼 approximately from
D(𝑢), based on drawing samples from the external oracle and then
rejecting them based on intersection ratios of our pre-computed
internal NFA sketches𝑊 (𝑦ℓ−|𝑢 |).

Since 𝛼 is generated by a transition out of 𝑅(𝑥,𝑢), we first sample
such a transitions with probability proportional to the number of
remaining suffixes which could be derived by taking that transi-
tion. More specifically, the number of suffixes that can be produced
by following a transition (𝑦,𝐴, 𝑧) is given by |𝐴| · |𝑊 (𝑧ℓ−|𝑢 |−1) |,
which can be approximated by 𝑁 (𝐴) · 𝑁 (𝑧ℓ−|𝑢 |−1) using the or-
acle and our internal estimates. Then if 𝑍 is the sum of the esti-
mates 𝑁 (𝐴) · 𝑁 (𝑧ℓ−|𝑢 |−1) taken over all transitions {(𝑦,𝐴, 𝑧) ∈
Δ′ | 𝑦 ∈ 𝑅(𝑥,𝑢)}, we choose a transition (𝑦,𝐴, 𝑧) with probability
𝑁 (𝐴) · 𝑁 (𝑧ℓ−|𝑢 |−1)/𝑍 and then call the oracle to obtain a sample
𝛼 ∼ 𝐴. The sample 𝛼 now defines a piece𝑊 (𝑥 ℓ , 𝑢 ·𝛼) of the partition
of𝑊 (𝑥 ℓ , 𝑢) which the idealistic algorithm would have estimated
and potentially chosen. However, at this point 𝛼 is not drawn ap-
proximately from the correct distribution D(𝑢), since the sample
from the oracle does not taken into account any information about
the other transitions which could also produce 𝛼 . To remedy this,
we show that it suffices to accept the symbol 𝛼 with probability:��𝑊 (𝑧ℓ−|𝑢 |−1) \⋃𝜁 ∈B(𝛼) : 𝜁 ≺𝑧𝑊 (𝜁 ℓ−|𝑢 |−1)

����𝑊 (𝑧ℓ−|𝑢 |−1)
�� (†)

where ≺ is an ordering over 𝑆 ′ and B(𝛼) is the set of all states
that can be reached from 𝑅(𝑥,𝑢) by reading 𝛼 , namely, all states

1025

STOC ’21, June 21–25, 2021, Virtual, Italy Arenas, Croquevielle, Jayaram, and Riveros

𝜁 such that there exists a transition (𝜂, 𝐵, 𝜁) ∈ Δ′ with 𝜂 ∈ 𝑅(𝑥,𝑢)
and 𝛼 ∈ 𝐵. Otherwise, we reject 𝛼 . Intuitively, probability (†) is
small when the sets of suffixes which could be derived following
transitions B(𝛼) that could also produce 𝛼 intersect heavily. If
this is the case, we have “overcounted” the contribution of the set
𝑊 (𝑥 ℓ , 𝑢 · 𝛼) in the partition, and so the purpose of the probability
(†) is to compensate for this fact. We show that this procedure
results in samples 𝛼 drawn from a distribution D̃(𝑢) which is close
in statistical distance to the exact distribution D(𝑢). Furthermore,
one can bound the acceptance probability by (†) ≥ 1/poly(𝑛) in
expectation over the choice of 𝛼 , so after repeating the oracle call
polynomially many times, we will accept a sample 𝛼 . Once 𝛼 is
accepted, we condition on it and move to the next symbol, avoiding
any recursive rejection sampling.

We now return to the assumption of having a oracle to sample
from and approximate the size of the label sets 𝐴. By construction,
𝐴 is a set of trees 𝑇 (𝑠 𝑗) for which we have pre-computed sketches
and estimates𝑇 (𝑠 𝑗), 𝑁 (𝑠 𝑗) from the external algorithm. To simulate
this oracle, we reuse the samples within the sketches 𝑇 (𝑠 𝑗) for
each call to the succinct NFA sub-routine, pretending that they
are being generated fresh and on the fly. However, since the same
sketches must be reused on each call to the subroutine, we lose
independence between the samples generated within subsequent
calls. Ultimately, though, all that matters is that the estimate of
|𝑇 (𝑠𝑖 , 𝜏) | produced by the subroutine is correct. So to handle this,
we show that one can condition on a deterministic property of the
sketches {𝑇 (𝑠 𝑗)}𝑠∈𝑆,𝑗<𝑖 , so that every possible run of the succinct
NFA subroutine will yield a good approximation, allowing us to
ignore these dependencies.

Lastly, we handle the propagation of error resulting from the
statistical distance between D̃(𝑢) and D(𝑢). This statistical error
feeds into the error for the estimates 𝑁 (𝑥 ℓ+1) on the next step,
both of which feed back into the statistical error when sampling
from𝑊 (𝑥 ℓ+1), doubling the error at each step. We handle this by
introducing an approximate rejection sampling step, inspired by an
exact rejection sampling technique due to [41] (the exact version
was also used in [8]). This approximately corrects the distribution
of each sample 𝑤 , causing the error to increases linearly in the
rounds instead of geometrically, which will be acceptable for our
purposes.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we prove the existence of a fully polynomial-time
randomized approximation scheme (FPRAS) for counting solutions
to a large class of conjunctive queries, as well as the existence of a
fully polynomial-time almost uniform sampler (FPAUS) for these
solutions. In particular, our algorithm applies to all conjunctive
queries with bounded hypertree width (as defined in Section 3.2).

In Section 3.3, and based on Theorem 3.2 and the results in [37],
we provide a characterization of the classes of conjunctive queries
that admit an FPRAS, when such classes are of the form CQ(G)
for a family G of graphs (see Corollary 3.3). It remains as an open
problem how to extend this characterization to any class of conjunc-
tive queries and, in particular, to identify the right restriction on
conjunctive queries that is equivalent to the existence of an FPRAS.
It should be mentioned that recently, in a follow-up work by Focke,

Goldberg, Roth and Živnỳ [29], it was proved that our results can be
extended to the case of conjunctive queries with bounded fractional
hypertree width.

An important component of this work, in addition to the ear-
lier paper [8], is the study of approximate counting problems in
automata theory. As demonstrating in this paper, finite automata
have strong expressive potential to model the solution space of
many problems in computer science. Thus, resolving the counting
problem for a class of automata can result in an FPRAS for many
additional problems. So far, we know that the counting problem for
non-deterministic finite automata (NFA), and now tree automata,
admit polynomial time randomized approximations. However, there
are still many classes of automata for which it is unknown if an
FPRAS exists.

An additional natural case to consider is the class of context
free grammars (CFG), which generate the class of context free lan-
guages (CFL). Context free grammars are more expressive than
tree-automata, although they are closely related (for instance, the
set of all derivation trees of a CFG can be expressed by a tree au-
tomata). There are several barriers to generalizing the approach in
this paper to the case of context free grammars. Mainly, in order to
carry out our high-level sampling template described in Section 4,
we need to partition the current set 𝑇 into a collection of disjoint
subsets𝑇 ′1 , . . . ,𝑇

′
ℓ
. We accomplish this for the case of tree automata

by splitting based on the final sizes of the left and right subtrees.
However, such a partition does not work for the case of CFG’s,
since a single word in a CFL can have multiple derivations whose
subtrees have different sizes, thus this word would be contained in
multiple such sets 𝑇 ′

𝑖
causing the scheme to fail to be a partition.

Thus, the key barrier to extending our algorithmic framework to
the case of CFG’s is the design of an efficient partition scheme
which avoids this issue.

ACKNOWLEDGMENTS
This work was funded by ANID - Millennium Science Initiative
Program - Code ICN17_002.

REFERENCES
[1] Serge Abiteboul and Gilles Dowek. 2020. The Age of Algorithms. Cambridge

University Press.
[2] Rajeev Alur, Kousha Etessami, and P. Madhusudan. 2004. A Temporal Logic

of Nested Calls and Returns. In Tools and Algorithms for the Construction and

Analysis of Systems, 10th International Conference, TACAS 2004, Proceedings. 467–
481.

[3] Rajeev Alur and P. Madhusudan. 2004. Visibly pushdown languages. In Proceed-

ings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL,

USA, June 13-16, 2004. 202–211.
[4] Rajeev Alur and P. Madhusudan. 2009. Adding nesting structure to words. J.

ACM 56, 3 (2009), 16:1–16:43.
[5] Carme Àlvarez and Birgit Jenner. 1993. A Very Hard log-Space Counting Class.

Theor. Comput. Sci. 107, 1 (1993), 3–30.
[6] Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. 2017. A

Circuit-Based Approach to Efficient Enumeration. In 44th International Collo-

quium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,

Warsaw, Poland. 111:1–111:15.
[7] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. 2019.

Enumeration on Trees with Tractable Combined Complexity and Efficient Up-
dates. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, PODS 2019. 89–103.
[8] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros.

2019. Efficient Logspace Classes for Enumeration, Counting, and Uniform Gen-
eration. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems. ACM, 59–73.

1026

When Is Approximate Counting for ConjunctiveQueries Tractable? STOC ’21, June 21–25, 2021, Virtual, Italy

[9] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros.
2020. When is Approximate Counting for Conjunctive Queries Tractable? arXiv

preprint arXiv:2005.10029 (2020). https://arxiv.org/abs/2005.10029
[10] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press.
[11] Alberto Bertoni, Massimiliano Goldwurm, and Massimo Santini. 2000. Random

generation and approximate counting of ambiguously described combinatorial
structures. In Annual Symposium on Theoretical Aspects of Computer Science.
Springer, 567–580.

[12] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2009.
Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications,
Vol. 185. IOS Press.

[13] Randal E. Bryant. 1992. Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. ACM Comput. Surv. 24, 3 (1992), 293–318.

[14] Andrei A. Bulatov and Stanislav Živný. 2020. Approximate Counting CSP Seen
from the Other Side. ACM Trans. Comput. Theory 12, 2, Article 11 (May 2020),
19 pages. https://doi.org/10.1145/3389390

[15] Diego Calvanese, Giuseppe De Giacomo, andMaurizio Lenzerini. 1999. Reasoning
in expressive description logics with fixpoints based on automata on infinite
trees. In IJCAI, Vol. 99. 84–89.

[16] Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of
Conjunctive Queries in Relational Data Bases. In Proceedings of the 9th Annual

ACM Symposium on Theory of Computing (STOC’77). 77–90.
[17] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. 1999. On Random

Sampling over Joins. In SIGMOD. 263–274.
[18] Chandra Chekuri and Anand Rajaraman. 1997. Conjunctive Query Containment

Revisited. In Database Theory - ICDT ’97, 6th International Conference, Delphi,

Greece, January 8-10, 1997, Proceedings. 56–70.
[19] Yu Chen and Ke Yi. 2020. Random Sampling and Size Estimation Over Cyclic

Joins. In ICDT. 7:1–7:18.
[20] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. 2007. Tree Automata Techniques and Applications. Available
on: http://tata.gforge.inria.fr/. release October, 12th 2007.

[21] Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Information and computation 85, 1 (1990), 12–75.

[22] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. 2001. Complexity classifica-

tions of Boolean constraint satisfaction problems. SIAM monographs on discrete
mathematics and applications, Vol. 7. SIAM.

[23] Víctor Dalmau and Peter Jonsson. 2004. The complexity of counting homomor-
phisms seen from the other side. Theoretical Computer Science 329, 1 (2004), 315 –
323. https://doi.org/10.1016/j.tcs.2004.08.008

[24] Adnan Darwiche. 2001. Decomposable negation normal form. Journal of the
ACM (JACM) 48, 4 (2001), 608–647.

[25] Adnan Darwiche and Pierre Marquis. 2002. A knowledge compilation map.
Journal of Artificial Intelligence Research 17 (2002), 229–264.

[26] Arnaud Durand and Stefan Mengel. 2015. Structural Tractability of Counting of
Solutions to Conjunctive Queries. Theory Comput. Syst. 57, 4 (2015), 1202–1249.
https://doi.org/10.1007/s00224-014-9543-y

[27] E Allen Emerson and Charanjit S Jutla. 1991. Tree automata, mu-calculus and
determinacy. In [1991] Proceedings 32nd Annual Symposium of Foundations of

Computer Science. IEEE, 368–377.
[28] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer.
[29] Jacob Focke, Leslie Ann Goldberg, Marc Roth, and Stanislav Živnỳ. 2021. Ap-

proximately Counting Answers to Conjunctive Queries with Disequalities and
Negations. arXiv preprint arXiv:2103.12468 (2021).

[30] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. 2009. Model Counting. In
Handbook of Satisfiability. 633–654.

[31] Vivek Gore, Mark Jerrum, Sampath Kannan, Z Sweedyk, and Steve Mahaney.
1997. A quasi-polynomial-time algorithm for sampling words from a context-free
language. Information and Computation 134, 1 (1997), 59–74.

[32] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016.
Hypertree Decompositions: Questions and Answers. In Proceedings of the 35th

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

2016, San Francisco, CA, USA, June 26 - July 01, 2016. 57–74.
[33] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 1998. The Complexity

of Acyclic Conjunctive Queries. In 39th Annual Symposium on Foundations of

Computer Science, FOCS’98, November 8-11, 1998, Palo Alto, California, USA. 706–
715.

[34] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2000. A comparison of
structural CSP decomposition methods. Artif. Intell. 124, 2 (2000), 243–282.

[35] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree Decom-
positions and Tractable Queries. J. Comput. Syst. Sci. 64, 3 (2002), 579–627.

[36] Martin Grohe. 2007. The complexity of homomorphism and constraint satisfac-
tion problems seen from the other side. J. ACM 54, 1 (2007), 1:1–1:24.

[37] Martin Grohe, Thomas Schwentick, and Luc Segoufin. 2001. When is the eval-
uation of conjunctive queries tractable?. In Proceedings on 33rd Annual ACM

Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece

(STOC’01). 657–666.
[38] Pavol Hell and Jaroslav Nesetril. 1992. The core of a graph. Discret. Math. 109,

1-3 (1992), 117–126.
[39] Pavol Hell and Jaroslav Nesetril. 2004. Graphs and homomorphisms. Oxford

lecture series in mathematics and its applications, Vol. 28. Oxford University
Press.

[40] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. 1986. Random Generation
of Combinatorial Structures from a Uniform Distribution. Theor. Comput. Sci. 43
(1986), 169–188.

[41] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. 1986. Random generation
of combinatorial structures from a uniform distribution. Theoretical Computer

Science 43 (1986), 169–188.
[42] Sampath Kannan, Z Sweedyk, and Steve Mahaney. 1995. Counting and random

generation of strings in regular languages. In Proceedings of the sixth annual

ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 551–557.

[43] Richard M Karp, Michael Luby, and Neal Madras. 1989. Monte-Carlo approxi-
mation algorithms for enumeration problems. Journal of algorithms 10, 3 (1989),
429–448.

[44] Harry G Mairson. 1994. Generating words in a context-free language uniformly
at random. Inform. Process. Lett. 49, 2 (1994), 95–99.

[45] Frank Neven. 2002. Automata Theory for XML Researchers. SIGMOD Record 31,
3 (2002), 39–46.

[46] Umut Oztok and Adnan Darwiche. 2014. CV-width: A NewComplexity Parameter
for CNFs.. In ECAI. 675–680.

[47] Reinhard Pichler and Sebastian Skritek. 2013. Tractable counting of the answers
to conjunctive queries. J. Comput. Syst. Sci. 79, 6 (2013), 984–1001.

[48] Knot Pipatsrisawat and Adnan Darwiche. 2008. New Compilation Languages
Based on Structured Decomposability. In AAAI, Vol. 8. 517–522.

[49] Michael O Rabin. 1969. Decidability of second-order theories and automata on
infinite trees. Transactions of the american Mathematical Society 141 (1969), 1–35.

[50] Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke. 2003. Database
management systems. Vol. 3. McGraw-Hill New York.

[51] Francesca Rossi, Peter Van Beek, and Toby Walsh. 2006. Handbook of constraint
programming. Elsevier.

[52] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,.

[53] Thomas Schwentick. 2007. Automata for XML - A survey. J. Comput. System Sci.

73, 3 (2007), 289–315.
[54] Helmut Seidl. 1990. Deciding Equivalence of Finite Tree Automata. SIAM J.

Comput. 19, 3 (1990), 424–437.
[55] Eugenia Ternovskaia. 1999. Automata Theory for Reasoning About Actions. In

Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,

IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages.
153–159.

[56] James W. Thatcher and Jesse B. Wright. 1968. Generalized finite automata theory
with an application to a decision problem of second-order logic. Mathematical

systems theory 2, 1 (1968), 57–81.
[57] Wolfgang Thomas. 1997. Languages, automata, and logic. In Handbook of formal

languages. Springer, 389–455.
[58] LG Valiant, S Skyum, S Berkowitz, and C Rackoff. 1983. Fast Parallel Computation

of Polynomials Using Few Processors. SIAM J. Comput. 12, 4 (1983), 641–644.
[59] Leslie G Valiant. 1979. The complexity of enumeration and reliability problems.

SIAM J. Comput. 8, 3 (1979), 410–421.
[60] Moshe Y Vardi. 1995. Alternating automata and program verification. InComputer

Science Today. Springer, 471–485.
[61] Moshe Y. Vardi. 2000. Constraint Satisfaction and Database Theory: a Tutorial.

In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, May 15-17, 2000, Dallas, Texas, USA. 76–85.
[62] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very

Large Data Bases, 7th International Conference, September 9-11, 1981, Cannes,

France, Proceedings. 82–94.
[63] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random

Sampling over Joins Revisited. In SIGMOD. 1525–1539.

1027

https://arxiv.org/abs/2005.10029
https://doi.org/10.1145/3389390
http://tata.gforge.inria.fr/
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1007/s00224-014-9543-y

	Abstract
	1 Introduction
	1.1 An FPRAS for Tree Automata
	1.2 Additional Applications of the FPRAS
	1.3 Outline of the Paper

	2 Preliminaries: FPRAS and FPAUS
	3 From Conjunctive Queries to Tree Automata
	3.1 High-level Overview of the Reduction to #TA
	3.2 A More General Notion of Acyclicity
	3.3 A Characterization of Classes of Conjunctive Queries Admitting FPRAS
	3.4 Union of Conjunctive Queries
	3.5 Some Related Work on Conjunctive Queries

	4 Tree automata and a partition based approach for finding an FPRAS
	4.1 Binary Tree Automata
	4.2 Unrolling the Automaton
	4.3 A QPRAS via Karp-Luby Sampling
	4.4 A Partition Based Approach

	5 A partition scheme for tree automata
	5.1 The Partition Scheme for NFA
	5.2 The Partition Scheme for Tree Languages
	5.3 Estimating the Number of Completions via the Main Path

	6 An FPRAS for Succinct NFAs
	7 Conclusions and future work
	Acknowledgments
	References

