
Querying in the Age of Graph Databases and Knowledge Graphs
Marcelo Arenas

marenas@ing.puc.cl

Universidad Católica & IMFD

Chile

Claudio Gutierrez

cgutierr@dcc.uchile.cl

DCC, Universidad de Chile & IMFD

Chile

Juan F. Sequeda

juan@data.world

data.world

USA

ABSTRACT
Graphs have become the best way we know of representing knowl-

edge. The computing community has investigated and developed

the support for managing graphs by means of digital technology.

Graph databases and knowledge graphs surface as the most success-

ful solutions to this program. This tutorial will provide a conceptual

map of the data management tasks underlying these developments,

paying particular attention to data models and query languages for

graphs.

CCS CONCEPTS
• Information systems → Graph-based database models; •
Computing methodologies→ Knowledge representation and rea-
soning.

KEYWORDS
Graph databases; knowledge graphs; data models; querying

ACM Reference Format:
Marcelo Arenas, Claudio Gutierrez, and Juan F. Sequeda. 2021. Querying

in the Age of Graph Databases and Knowledge Graphs. In Proceedings of
the 2021 International Conference on Management of Data (SIGMOD ’21),
June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3448016.3457545

1 INTRODUCTION
What does it mean to query a graph? What does it mean query-

ing graph models? Any answers to these questions should try to

understand the role of graphs as a conceptual tool to model data, in-

formation and knowledge. Graphs have a long tradition as medium

of representation, and an impressive wide range of uses. Let us

recall some highlights related to our area: underlying data struc-

tures (the hierarchical and networks database systems of the sixties

[64]); semantic networks; graph neural networks; entity relation-

ship model; XML; graph databases; the Web as universal network

of information (and later of data and knowledge); and knowledge

graphs. This non-exhaustive list indicates at least that some reflec-

tion is necessary before addressing the goal of this tutorial

Following usual practices, we performed an initial examination

of what is being researched disciplinary in the area of data, graphs

and knowledge. We explored five of the most salient keywords that

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457545

today represent research around this area: “graph database”; “RDF”;

“SPARQL”; “property graph”, “knowledge graph”, by analyzing pa-

pers in computer science (those indexed by DBLP)
1
having these

strings in their titles.
2
Figure 1 shows the evolution of the number

of publications of papers with these keyword in the title from 2010

to 2020.

Figure 1: Number of knowledge graph related publications.
Source: DBLP.

In this preliminary exploration we can observe the following.

The growth of “knowledge graph” papers can be seen starting in

2013, which correlates with the year after the Google’s Knowledge

Graph announcement. The amount of publications about “RDF”

and “SPARQL” continue to be stable. However we observe a decline

when compared to “knowledge graph”. In 2015, 70% of knowledge

graphs papers were about RDF/SPARQL, while that went down to

14% in 2020. Papers about “graph database” are comparatively small

and there is no significant growth, while papers about “property

graph” are negligible. The main takeaway message from this seems

to be that publications about knowledge graphs are significantly

increasing and in some sense “dominate” the area. Thus, when

addressing graphs as a model for data to knowledge, we cannot

ignore the obvious knowledge graph hype.

This poses the question: What are knowledge graphs and what

is their relation to graph databases? In addressing this question we

should be cautions about two extremes: On one hand, as Jeffrey

Ullman wrote, avoid to get “engaged in hand-wringing over the

idea that we [the database discipline] are becoming irrelevant” [66].

On the other hand, try to understand if there is someting really

new under this new hype about knowledge graphs. Our prelimi-

nary hypothesis –one that we will follow here– is that this rather

1
This includes all types of publications indexed by DBLP.

2
Data: https://data.world/juansequeda/dblp-knowledge-graph

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2821

https://doi.org/10.1145/3448016.3457545
https://doi.org/10.1145/3448016.3457545
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3448016.3457545&domain=pdf&date_stamp=2021-06-18

vague notion with no clear borders (see e.g. Appendix A in [39])

encompasses a great variety of methods and practices dealing with

data, information and knowledge, orbiting around the gravitation

center of graph models.

Our intention in this brief overview is to try to convey a rough

cartography of what is means to query in this new scenario, and

instill in the audience some doubts and reflections we have about

the development of our area as a whole. We feel that this reflection

is more important than ever today, when big data, deep learning

and other trends of the beginning of the 21st century have shaken

computing as we know it.

More concretely, the goal of this tutorial is to provide in Section 3

a unified and simple view of the data models behind graph databases

and knowledge graphs, and show some recently established results

on querying such graphs. More specifically, we focus in Section 4

on the fundamental task of extracting knowledge from graphs in

the form of nodes and paths satisfying a pattern, and we study

new paradigms on path extraction, the inclusion of knowledge in

some graph analytic tasks, and the connection of declarative with

procedural frameworks for node extraction.

But before approaching this goal, we considered necessary in

Section 2 to establish a general picture of the area in order to

better organize the conceptual map of the wide diversity of existing

methods and techniques.

2 DATABASES, GRAPHS AND KNOWLEDGE
GRAPHS

Before going to technicalities, wewill present a conceptual overview

of the main notions of the area and how they interplay. Our goal is

to contribute to a necessary discussion of the reasons why graph

have become so prominent in data and knowledge management.

2.1 Graph data and querying
Data is the raw material of our area. Databases originated in the

need to store, keep safe and private, organize and operate in a

efficient, reliable and permanent form, big quantities of data in

computers. From these basic and essential tasks, it was developed

what is probably the most important functionality of databases,

namely querying, that boils down to friendly, expressive, and effi-

cient languages for defining, updating, transforming and extracting

data. That is why query languages play such a relevant role in our

discipline.

One of the landmark advances in the field was the notion of

“data independence” [23]. As computing is essentially about com-

municating humans and machines, or better, human knowledge and

machine operation, for methodological and practical reasons one

should separate the physical level (the one revolving around the

machine and data) from the logical level (revolving around the way

humans model reality and knowledge). Our working hypothesis is

that graphs are an appropriate way of representing, both, data and

knowledge. And this would be the reason why graphs began to be

so prominent in this field of data and knowledge management.

Graphs have a simple data structure consisting of nodes and

edges, which has the nice operational properties of expressing

relations, presenting data in a rather holistic way (neither ordered

nor sequentially), and last but not least, having a flexible structure

that permits growing and shrinking (adding/deleting nodes and

edges) and integration (of different graphs) in a natural way.

Over this nice data structure, floats a similarly nice group of

conceptual ideas. First, entities, represented by nodes; second, con-

nectivity, represented by edges and paths; and third, emergent

(global) properties that the structure produces. Then it comes as no

surprise that languages for querying graphs deal with extracting in-

formation about these three main features (we will discuss them in

detail in Section 4): (i) local properties (nodes and neighborhoods),

where pattern matching and its extensions play a key role, being

usually approached with logical methods; (ii) connectivity, where

paths and more complicated structures need to be extracted, usually

by means of a mixture of regular expressions and logical methods;

and (iii) global properties that need essentially different methods

and approaches than those of (i) and (ii), and which are usually put

under the graph analytics umbrella.

2.2 Some paradigmatic examples
To get a flavor of how these structures and ideas work in practice,

let us briefly review three paradigmatic examples.

The first attempt to represent knowledge in the form of graphs

was the notion of Semantic Network [54, 55, 57]. Although first

purely graphic, researchers formalized it using logical methods.

Graphs (called networks in this field) are used because they are

good objects to represent knowledge. Besides being a bridge to

visualization of knowledge, semantic networks have the feature

(shared with graphs in general) of highlighting and facilitating the

discovery and representation of relationships.

Classical relational databases are flexible enough to represent

a graph, e.g. by a two attribute relation storing its edges. In this

representation, nodes are entries and paths are constructed by suc-

cessive joins. Why then do we need graph databases? There are at
least two reasons: joins are expensive and thus, reasoning about

paths becomes very costly. Furthermore, global properties are no

easy to compute with classical queries based on logical methods.

Hence, it comes as no surprise that people have tried since the early

days of databases to develop graph databases. First at the hardware

level with the hierarchical and network models of the sixties [64];

then at a more logical level in the eighties where we found the

“golden years” of graph databases [7, 11, 63]. However, many rea-

sons, among them the limitations of hardware and software, did

not permit the popularization of these systems [7].

The Web is the first comprehensive system for representing,

integrating and “producing” knowledge at big scale, whose key

idea is taking advantage of the structure and features of the graph

model. The Web was originally thought as a universal network,

that is, nodes and edge were designed to be directly interpreted by

humans. However, due to its scale, soon emerged the need to enrich

the network to allow automation of functionalities. This is the origin

of the semantic Web, where semantics means “understandable by

machines” [18]. The semantic Web contained the two ideas that

were to originate the current notion of knowledge graph: a graph

structure to organize the data; and a system which encodes not only

information (i.e. data to be interpreted directly by humans), but it

is also organized to derive new facts from the current ones, that

is, deals essentially with knowledge. However, the universality of

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2822

𝑛1 : person 𝑛2 : person

𝑛5 : infected

𝑒1 : lives

𝑛3 : bus

𝑒2 : rides

𝑛4 : person
𝑒3 : rides

𝑒4 : contact

name = Alice
age = 30

𝑛1 : person

name = Eve
age = 60

𝑛2 : person

name = Claire
virus = covid19

𝑛5 : infected

date = 3/4/21

𝑒4 : contact

zip = 10002

𝑒1 : lives

𝑛3 : bus

date = 3/7/21

𝑒2 : rides

name = Bob

𝑛4 : person

date = 3/7/21

𝑒3 : rides

𝑛1

©«

person
Alice
30
⊥
⊥
⊥

ª®®®®®®¬
𝑛2

©«
person
Eve
60
⊥
⊥
⊥

ª®®®®®¬𝑒1

©«

lives
⊥
⊥

10002
⊥
⊥

ª®®®®®®¬

𝑛3

©«
bus
⊥
⊥
⊥
⊥
⊥

ª®®®®®¬

𝑒2

©«

rides
⊥
⊥
⊥

3/7/21
⊥

ª®®®®®®¬
𝑛5

©«

infected
Claire

⊥
⊥
⊥

covid19

ª®®®®®®¬
𝑛4

©«
person
Bob
⊥
⊥
⊥
⊥

ª®®®®®¬

𝑒3

©«

rides
⊥
⊥
⊥

3/7/21
⊥

ª®®®®®®¬

𝑒4

©«
contact

⊥
⊥
⊥

3/4/21
⊥

ª®®®®®¬

(a) A labeled graph (b) A property graph (c) A vector-labeled graph that

represents the property graph in (b)

Figure 2: Three graph data models.

the semantic Web became a problem for private organizations, due

to privacy and property rights concerns. Google overcame this by

developing the notion of knowledge graph as a “finite”, manageable,

controlled and usually private Semantic Web. Nevertheless, the

main concepts, namely, ontologies to integrate knowledge, and the

Web as medium, would become almost standards.

2.3 Knowledge Graphs
The cases of semantic networks, graph databases and the semantic

Web point to systems in which graphs supports the representation,

integration and production of knowledge. This rather fuzzy idea

is what is at the core of the notion of knowledge graph, so it can

be defined as a software object (artifact) that represents (codifies),

integrates and produces knowledge. In order to perform these func-

tionalities, knowledge graphs rely on the model of graphs, so they

encompass many previous developments [26, 35].

Knowledge representation is incorporatedmainly trough standard-

ized languages, metadata and ontologies on one hand, and semantic

networks and other non-formal language representations on the

other. Lately, low-level representations like vector-labeled graphs

were added. Notice that all of them use the flexibility of graphs

for model representation (see Section 3). Integration of knowledge
is achieved essentially via the aforementioned features of graph

extensibility and integration (assuming a good and standardized

representation like an ontology). Thus, a knowledge graph is capa-

ble of integrating knowledge from different sources, by linking or

materializing them in one place, and in widely different formats.

Finally, producing new knowledge is probably the main “added-

value” as opposed to classical repositories of knowledge. Knowledge

graphs have the capabilities of: deducing, e.g. by means of logical

reasoners or neural networks; linking, that is, relating different

pieces of knowledge beforehand isolated; learning, through new

data and learning algorithms; and of course, generating new knowl-

edge by human intervention through refined ways of querying

them (see section 4). This new knowledge is not only user-oriented,

but is utilized in parallel to “complete” and enrich the knowledge

already present. As a clear example of this, we see the rapid devel-

opment of knowledge graph embeddings [19, 21], and its use in the

refinement and completion of knowledge graphs [36, 43, 52, 56].

These features make a knowledge graph a highly multifaceted

software object. One of the best examples of this is Wikipedia. It

is a repository that represents knowledge in the form of a large

graph (implemented via Web link protocols), with the capability of

integrating knowledge from different sources in different formats.

Moreover, Wikipedia has a mechanism to “extract” or “produce”

knowledge. In this case, these are the multiple interfaces, most of

them human interfaces. Wikipedia is a knowledge graph oriented

toward a final human user, that is, it does not (or at least was not

conceived to) feed another software systems. DBpedia [12] and

Wikidata [69] are derived systems oriented to supply this facet.

3 GRAPH DATA MODELS
In this section, we give a simple unifying view of the most popular

graph data models, from the simplest ones used in graph databases

to the models that have emerged to store, integrate and produce

knowledge.

The following are two basic ingredients to define graph data

models. Assume that Const is a set of constants, or strings, that
can be used for different purposes, for example as node identifiers,

edge identifiers, labels, property names or actual values (such as

integers, real values or dates). Moreover, define a multigraph as a

graph where multiple edges can connect two nodes, that is, a tuple

(𝑁, 𝐸, 𝜌) where 𝑁 ⊆ Const is a set of nodes, 𝐸 ⊆ Const is a set of
edges and 𝜌 : 𝐸 → 𝑁 × 𝑁 is a function indicating the starting and

ending node of each edge.

As a first data model, we consider labeled graphs, which are a

popular and simple way to represent semi-structured data. Formally,

a labeled graph is a tuple L = (𝑁, 𝐸, 𝜌, 𝜆) where (𝑁, 𝐸, 𝜌) is a
multigraph and 𝜆 : (𝑁 ∪ 𝐸) → Const is a function indicating

the label of each node and edge. Such graphs have been called

heterogeneous graphs in the literature [39, 65], as opposed to edge-

labeled graphs where labels are only associated to edges [6]. But

here we prefer the simple term labeled graph to indicate that both

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2823

nodes and edges are labeled. An example of such a graph storing

information about people and their contacts is shown in Figure 2(a).

It is worth saying a few words about RDF [24], a class of labeled

graphs that is widely used in practice. A first characteristic that

distinguish RDF graphs is that edges are replaced by triples, and

they are not assigned identifiers. Formally, an RDF graph is a set of

triples (𝑠, 𝑝, 𝑜) such that 𝑠, 𝑝, 𝑜 ∈ Const, so that (𝑠, 𝑝, 𝑜) represents
an edge from 𝑠 to 𝑜 with label 𝑝 . A second important feature of RDF

graphs is that Const is considered as a set of Uniform Resource

Identifiers (URIs [17, 25]), that can be used to identify any resource

used byWeb technologies. In this way, RDF graphs have a universal

interpretation: if 𝑐 ∈ Const is used in two different RDF graphs,

then 𝑐 is considered to represent the same element.

As a second model we consider property graphs, which are

widely used in graph databases [28, 49, 59, 67]. Property graphs are

defined as the extension of labeled graphs where nodes and edges

can have values for some properties. Formally, a property graph

is a tuple P = (𝑁, 𝐸, 𝜌, 𝜆, 𝜎) where (𝑁, 𝐸, 𝜌, 𝜆) is a labeled graph,

and 𝜎 : (𝑁 ∪𝐸) ×Const → Const is a partial function such that if

𝜎 (𝑜, 𝑝) = 𝑣 , then 𝑣 is said to be the value of property 𝑝 for object 𝑜 .

Besides, it is assumed that each node or edge in P has values for

a finite number of properties [5, 6, 49]. In Figure 2(b), we show

an example of a property graph that extends the labeled graph in

Figure 2(a), including as properties the name and age of a person,

the zip code of the address for two people that live together, the

date when someone rides a bus, and the date a contact between

two people occurs.

As a final model, vector-labeled graphs are defined in a way that

unifies the use of labels and properties, and allows to include in

a simple way extra values that are necessary for message-passing

graph algorithms [42], such as the Weisfeiler-Lehman graph iso-

morphism test [33, 34, 70], and when graphs are used as input of

graph neural networks [48, 60]. Formally, a vector-labeled graph of

dimension 𝑑 , with 𝑑 ≥ 1, is a tupleV = (𝑁, 𝐸, 𝜌, 𝜆) where (𝑁, 𝐸, 𝜌)
is a multigraph and 𝜆 : (𝑁 ∪ 𝐸) → Const𝑑 is a function that as-

signs a vector of values to each node and edge in the graph [39],

which is called a vector of features of dimension 𝑑 . Hence, labels

and properties are replaced by vectors of values from Const in
vector-labeled graphs, as shown in Figure 2(c). In this figure, the

string ⊥ is used to represent the fact that a row in a vector does

not have a value.

4 QUERY FUNCTIONALITIES
In this section we will present some recently obtained results on

querying graphs. We will focus on the fundamental task of ex-

tracting knowledge from graphs in the form of nodes and paths

satisfying a pattern, and study new paradigms on path extraction,

the inclusion of knowledge in some graph analytic tasks, and the

connection of declarative with procedural frameworks for node

extraction.

As mentioned before, extracting nodes and paths is a fundamen-

tal task when retrieving knowledge from graphs [6, 28]. Regular

expressions form the core of such an extraction task, so before go-

ing into the details of the results shown in this section, we formalize

the notion of regular expression for the data models presented in

Section 3. More precisely, a regular expression over a labeled graph

L = (𝑁, 𝐸, 𝜌, 𝜆) is given by the following grammar:

test ::= ℓ | (¬test) | (test ∨ test) | (test ∧ test)
𝑟 ::= ?test | test | test− | (𝑟 + 𝑟) | (𝑟/𝑟) | (𝑟∗), (1)

where ℓ is a node or edge label in L. An answer to 𝑟 over L is a

path whose labels conform to 𝑟 . Formally, such a path is a sequence

𝑝 = 𝑛0𝑒1𝑛1𝑒2 · · · 𝑒𝑖𝑛𝑖 , where 𝑛0, 𝑛1, . . . , 𝑛𝑖 ∈ 𝑁 and 𝑒1, . . . , 𝑒𝑖 ∈
𝐸. Moreover, the starting and ending nodes of 𝑝 are defined as

start(𝑝) = 𝑛0 and end(𝑝) = 𝑛𝑖 , respectively, and the concatena-

tion of 𝑝 with a path 𝑝 ′ = 𝑛𝑖𝑒𝑖+1𝑛𝑖+1𝑒𝑖+2 · · · 𝑒𝑖+𝑗𝑛𝑖+𝑗 is defined
as cat(𝑝, 𝑝 ′) = 𝑛0𝑒1𝑛1𝑒2 · · · 𝑒𝑖𝑛𝑖𝑒𝑖+1𝑛𝑖+1𝑒𝑖+2 · · · 𝑒𝑖+𝑗𝑛𝑖+𝑗 . With this

terminology, the evaluation of 𝑟 over L, denoted by ⟦𝑟⟧L , is re-
cursively defined as follows (omitting the usual interpretation for

Boolean connectives ¬, ∨ and ∧):
⟦?ℓ⟧L = {𝑛 | 𝑛 ∈ 𝑁 ∧ 𝜆(𝑛) = ℓ}
⟦ℓ⟧L = {𝑛0𝑒1𝑛1 | 𝜌 (𝑒1) = (𝑛0, 𝑛1) ∧ 𝜆(𝑒1) = ℓ}

⟦ℓ−⟧L = {𝑛0𝑒1𝑛1 | 𝜌 (𝑒1) = (𝑛1, 𝑛0) ∧ 𝜆(𝑒1) = ℓ}
⟦𝑟1 + 𝑟2⟧L = ⟦𝑟1⟧L ∪ ⟦𝑟2⟧L
⟦𝑟1/𝑟2⟧L = {cat(𝑝1, 𝑝2) | 𝑝1 ∈ ⟦𝑟1⟧L ∧ 𝑝2 ∈ ⟦𝑟2⟧L ∧

end(𝑝1) = start(𝑝2)}
⟦𝑟∗⟧L = 𝑁 ∪ ⟦𝑟⟧L ∪ ⟦𝑟/𝑟⟧L ∪ ⟦𝑟/𝑟/𝑟⟧L ∪ · · ·

Notice that ?ℓ is used to test the label of a node, ℓ is used to follow

an edge with label ℓ , and ℓ− is used to follow the opposite direction

of an edge with label ℓ . Besides, as an example of a test with Boolean

connectives, observe that ⟦(¬ℓ1 ∧ ¬ℓ2)−⟧L = {𝑛0𝑒1𝑛1 | 𝜌 (𝑒1) =

(𝑛1, 𝑛0) ∧ 𝜆(𝑒1) ≠ ℓ1 ∧ 𝜆(𝑒1) ≠ ℓ2}. Hence, if L is the labeled graph

in Figure 2(a), then

⟦?person/contact/?infected⟧L = {𝑛1𝑒4𝑛5}, (2)

⟦?person/rides/?bus/rides-/?person⟧L = {𝑛1𝑒2𝑛3𝑒3𝑛4,
𝑛4𝑒3𝑛3𝑒2𝑛1}.

As property graphs are an extension of labeled graphs, the grammar

in (1) can be easily expanded to consider property values:

test ::= ℓ | (𝑝 = 𝑣) | (¬test) | (test ∨ test) | (test ∧ test) .
In particular, (𝑝 = 𝑣) is used to verify whether the value of property
𝑝 is 𝑣 , with 𝑝, 𝑣 ∈ Const. Formally, the evaluation of a regular

expression 𝑟 over a property graph P = (𝑁, 𝐸, 𝜌, 𝜆, 𝜎), denoted by

⟦𝑟⟧P , is defined as for the case of labeled graphs but with three

additional cases:

⟦?(𝑝 = 𝑣)⟧P = {𝑛 | 𝑛 ∈ 𝑁 ∧ 𝜎 (𝑛, 𝑝) = 𝑣}
⟦(𝑝 = 𝑣)⟧P = {𝑛0𝑒1𝑛1 | 𝜌 (𝑒1) = (𝑛0, 𝑛1) ∧ 𝜎 (𝑒1, 𝑝) = 𝑣}

⟦(𝑝 = 𝑣)−⟧P = {𝑛0𝑒1𝑛1 | 𝜌 (𝑒1) = (𝑛1, 𝑛0) ∧ 𝜎 (𝑒1, 𝑝) = 𝑣}.
For example, we can extend regular expression (2) to indicate that

the date of the contact between a person and an infected person is

March 4th 2021:

?person/(contact ∧ (date = 3/4/21))/?infected (3)

Regular expressions for vector-labeled graphs are defined exactly in

the same way. IfV = (𝑁, 𝐸, 𝜌, 𝜆) is a vector-labeled graph of dimen-

sion 𝑑 , then a regular expression overV is defined by modifying

grammar (1) to consider the following tests:

test ::= (𝑓𝑖 = 𝑣) | (¬test) | (test ∨ test) | (test ∧ test),

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2824

where 𝑖 ∈ {1, . . . , 𝑑} and 𝑣 ∈ Const. In particular, (𝑓𝑖 = 𝑣) is used
to verify whether the value of the 𝑖-th feature is 𝑣 , which is formally

defined as follows:

⟦?(𝑓𝑖 = 𝑣)⟧V = {𝑛 | 𝑛 ∈ 𝑁 ∧ 𝜆(𝑛)𝑖 = 𝑣}
⟦(𝑓𝑖 = 𝑣)⟧V = {𝑛0𝑒1𝑛1 | 𝜌 (𝑒1) = (𝑛0, 𝑛1) ∧ 𝜆(𝑒1)𝑖 = 𝑣}

⟦(𝑓𝑖 = 𝑣)−⟧V = {𝑛0𝑒1𝑛1 | 𝜌 (𝑒1) = (𝑛1, 𝑛0) ∧ 𝜆(𝑒1)𝑖 = 𝑣},
where 𝜆(𝑛)𝑖 refers to the 𝑖-th feature of 𝑑-dimensional vector 𝜆(𝑛),
and likewise for 𝜆(𝑒1)𝑖 . Thus, for example, regular expression (3) can

be rewritten as follows over the vector-labeled graph in Figure 2(c):

?(f1 = person)/(f1 = contact ∧ f5 = 3/4/21)/?(f1 = infected).

4.1 Path extraction: enumeration, uniform
generating and approximate counting

Computing the complete set of answers to a graph query can be

prohibitively expensive [8, 44]. As a way to overcome this limitation,

the idea of enumerating the answers to a query with a small delay

has recently attracted much attention [46, 62]. More specifically,

the computation of the answers is divided into a preprocessing

phase, where a data structure is built to accelerate the process of

computing answers, and then in an enumeration phase, the answers

are produced with a polynomial-time delay between them.

Unfortunately, because of the data structures used in the pre-

processing phase, these enumeration algorithms usually return

answers that are similar to each other [14, 27, 62]. In this respect,

the possibility of generating an answer uniformly, at random, is

a desirable condition to improve the variety, if it can be done effi-

ciently [1, 2, 13, 37]. However, how can we know how complete is

the set of answers calculated by such algorithms? A third tool that is

needed then is an efficient algorithm for computing, or estimating,

the number of solutions to a query.

In the following we will present some recent results on efficient

enumeration, uniform generation and approximate counting of

paths conforming to a regular expression [9, 10]. We will give an

overview of two of these results for labeled graphs, but the reader

must keep in mind that they can be readily adapted to property and

vector-labeled graphs.

The length of a path 𝑝 = 𝑛0𝑒1𝑛1𝑒2 · · · 𝑒𝑘𝑛𝑘 , denoted by |𝑝 |, is
defined as 𝑘 . The problem Count has as input a labeled graph L,

a regular expression 𝑟 over L and a number 𝑘 (given in unary as a

string 0
𝑘
), and the task is to compute the number of paths 𝑝 ∈ ⟦𝑟⟧L

with |𝑝 | = 𝑘 , which is denoted by Count(𝐺, 𝑟, 𝑘). The problem

Count is known to be intractable; in fact, it is SPanl-complete [4],

which implies that if Count can be solved in polynomial time, then

P = NP [4]. However, in this tutorial we will show that Count can

be efficiently approximated [9]. More precisely, we will present a

randomized algorithmA that receives as input L, 𝑟 , 𝑘 and an error

𝜀 ∈ (0, 1), and computes a value A(𝐺, 𝑟, 𝑘, 𝜀) such that:

Pr

(����Count(𝐺, 𝑟, 𝑘) − A(𝐺, 𝑟, 𝑘, 𝜀)
Count(𝐺, 𝑟, 𝑘)

���� ≤ 𝜀

)
≥ 1 −

(
1

2

)
100

,

that is, with a very high probability the algorithm returns a value

whose relative error is at most 𝜀. Moreover, the algorithm works in

polynomial time in the size of L, 𝑟 , and the values 𝑘 , 1/𝜀.
The problem Gen has the same input L, 𝑟 , 𝑘 as Count, but

the task is to generate uniformly, at random, a path 𝑝 ∈ ⟦𝑟⟧L

with |𝑝 | = 𝑘 . In this tutorial, we will show that this problem can be

solved efficiently [10]. More precisely, we will present a randomized

algorithm B that is divided into a preprocessing and a generation

phase. In the preprocessing phase, the algorithm construct with

a very high probability a data structure, which can be repeatedly

used in the generation phase to produce paths 𝑝 ∈ ⟦𝑟⟧L of length

𝑘 with uniform distribution.

4.2 Graph analytics: including knowledge
Graph analytic makes reference to a series of techniques to analyze

the structure and content of a graph as a whole. Typical applications

include clustering [61], computation of connected components and

the diameter of a graph, computation of shortest paths between

pairs of nodes, calculation of centrality measures [51], such as

betweenness centrality [29] and PageRank [20], and community

detection, such as finding the subgraph of a graph with the largest

density [30, 45], to identify groups with a rich interaction in a

network [41] or groups with suspicious behaviour [40, 53].

How should knowledge be included in such techniques? We

focus here on the task of computing centrality. Given a labeled

graph L = (𝑁, 𝐸, 𝜌, 𝜆) and nodes 𝑎, 𝑏, 𝑥 ∈ 𝑁 , let 𝑆𝑎,𝑏 be the set of

shortest paths from 𝑎 to 𝑏 in L, and 𝑆𝑎,𝑏 (𝑥) be the set of paths in
𝑆𝑎,𝑏 including node 𝑥 . Then the betweenness centrality of a node 𝑥

of L is defined as [29]:

bc(𝑥) =
∑

𝑎,𝑏∈𝑁 :𝑎≠𝑥∧𝑏≠𝑥

|𝑆𝑎,𝑏 (𝑥) |
|𝑆𝑎,𝑏 |

This definition does not use the labels in L, which may be a prob-

lem if not all the shortest paths passing through a node need to

be considered to measure its centrality. Of course, not including

some nodes and edges in the computation can be a solution to

this problem. But, unfortunately, in many cases this is not enough

as the pattern defining the paths to be taken into account can be

more complicated. As an example, consider the labeled graph in

Figure 2(a), and assume that we want to measure the centrality of

bus 𝑛3 as a transportation service with respect to other buses. In

this case, we should only consider the shortest paths confirming

to the regular expression 𝑟 = ?person/rides/?bus/rides-/?person.

That is, we must consider the paths where the bus is used as a

transportation service for people, and not, for example, the paths

with information about the company that owns it. In fact, if 𝑆𝑎,𝑏,𝑟
is the set of shortest paths from 𝑎 to 𝑏 conforming to the regular

expression 𝑟 , and 𝑆𝑎,𝑏,𝑟 (𝑛3) is the set of paths in 𝑆𝑎,𝑏,𝑟 including

node 𝑛3, then the centrality of 𝑛3 can be redefined as follows:

bc𝑟 (𝑛3) =
∑

𝑎,𝑏∈𝑁 :𝑎≠𝑛3∧𝑏≠𝑛3

|𝑆𝑎,𝑏,𝑟 (𝑥) |
|𝑆𝑎,𝑏,𝑟 |

This definition can be generalized to any regular expression 𝑟 . For

example, the regular expression 𝑟1 = ?infected/rides/?bus/rides-/

(?person/(lives + contact))*/?person can be used in conjunction

with betweenness centrality to measure the important of a bus in

the propagation of an infection. In fact, 𝑟1 is used to find pairs (𝑎, 𝑏)
of people such that 𝑎 is infected and shared a bus with a person 𝑐 ,

and 𝑏 is connected to 𝑐 through a path of arbitrary length of people

that lives together or have been in contact with each other.

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2825

Betweenness centrality can be computed efficiently, as there

exists an efficiently algorithm for the following problem: given a

labeled graph L, a pair of nodes 𝑎, 𝑏 in L and a length 𝑘 , count the

number of paths of length𝑘 from𝑎 to𝑏 inL. However, asmentioned

in Section 4.1, the situation is different if regular expressions are

considered as the previous problem is intractable [4]. How can

we overcome this limitation? In this tutorial, we show how the

tools presented in Section 4.1 can be used to provide an efficient

randomized approximation algorithm for bc𝑟 (·).
We conclude by pointing out that it is a challenging question how

knowledge should be considered in centrality measures. In a recent

article [58], the authors provide a natural and general framework

to specify centrality measures, where betweenness centrality can

be defined, but still without taking labels into consideration.

4.3 Node extraction: declarative versus
procedural frameworks

The task of matching a pattern against a graph is fundamental

when extracting knowledge. We have considered this problem for

regular expressions, but such patterns can be specified in other

frameworks, ranging from logic-based declarative languages [15,

38] to more procedural frameworks such as graph neural networks

[48, 60]. The goal of this part of the tutorial is to show a recently

established tight connection between these apparently different

frameworks [16, 50, 71], which has interesting corollaries in terms

of the use of declarative formalisms to specify patterns, versus the

use of procedural formalisms to efficiently evaluate them.

Let 𝑟 = ?person/rides/?bus/rides-/?infected. How should this

regular expression be evaluated over the labeled graph L in Fig-

ure 2(a)? To think about this problem, let us focus on the task of

retrieving the nodes 𝑎 that can reach a node 𝑏 by following a path

conforming to 𝑟 , that is, a path 𝑝 ∈ ⟦𝑟⟧L such that start(𝑝) = 𝑎

and end(𝑝) = 𝑏. Pattern 𝑟 is then used to retrieve the list of people

who are possibly infected because they shared a bus with infected

people. This regular expression can be specified in first-order logic:

𝜑 (𝑥) = person(𝑥) ∧ ∃𝑦∃𝑧 (rides(𝑥,𝑦) ∧ bus(𝑦) ∧
rides(𝑧,𝑦) ∧ infected(𝑧)),

considering node labels as unary predicates and edge labels as

binary predicates. This expression can be evaluated efficiently if

the number of variables in it is bounded by a fixed constant [68].

Moreover, only unary and binary predicates are used in it, and

they are placed in a sequence in which values of variables can be

forgotten, allowing them to be reused. Indeed, the following first-

order logic formula that uses two variables is equivalent to 𝜑 (𝑥):

𝜓 (𝑥) = person(𝑥) ∧ ∃𝑦 (rides(𝑥,𝑦) ∧ bus(𝑦) ∧
∃𝑥 (rides(𝑥,𝑦) ∧ infected(𝑥))) .

Thus, regular expression 𝑟 can be evaluated efficiently by noticing

that the result of any join in 𝑟 is always a binary table, so no auxiliary

relations with an arbitrary number of columns need to be stored.

This idea has been successfully used in a variety of scenarios [3, 31,

32, 47, 68], and we are convinced that it should be kept in mind, not

only as it provides an efficient way to evaluate regular expressions,

but also as it allows to establish a tight connection with the more

procedural and popular formalism of graph neural networks.

A graph neural network G receives as input a vector-labeled

graph V = (𝑁, 𝐸, 𝜌, 𝜆), generates from it a vector-labeled graph

V ′ = (𝑁, 𝐸, 𝜌, 𝜆′), and then uses a classification function that

returns either true or false for each 𝑛 ∈ 𝑁 based on 𝜆′(𝑛). In this

way, G is a classifier [48, 60]. But also G can be considered as a

unary query [16] that is true for a node 𝑛 of a vector-labeled graph

V if and only if the output ofG is true for𝑛. Hence, it is fundamental

to understand the expressiveness of graph neural networks as a

query language, in particular because they can act as an efficient

procedural counterpart of more declarative query formalisms. And

here again the use of a logic with a fixed number of variables plays

a key role: it is proved in [22] that the Weisfeiler-Lehman test

for graph isomorphism [70] has the same expressive power as an

extension of first-order logic with counting and with a fixed number

of variables, it is proved in [50, 71] that the Weisfeiler-Lehman test

can be used to characterize the expressiveness of graph neural

networks, and these ingredients are combined in [16] to provide a

characterization of graph neural networks in terms of a logic with a

fixed number of variables. Interestingly, the Weisfeiler-Lehman test

is a message-passing graph algorithm [42], which is an algorithmic

model intimately related with graph neural networks.

5 TAKEAWAY MESSAGES
The richness of the manifold technical developments in the area,

part of which we reviewed, deserves to be encompassed in a concep-

tual map. Graphs have become ubiquitous in data and knowledge

management. We argued that one of the main drivers of this bloom-

ing is the dual character of graphs: on one hand, being a simple,

flexible and extensible data structure; and on the other, being one

of the most deep-rooted form of representing human knowledge.

Graphs (as representation) unveil social aspects that are rela-

tively far from being the main concerns of our area. Traditionally,

we divided our labor between designers, organizing the conceptual

boxes (through schemata and metadata) that contain data; and we,

data people, dealing with preserving and transforming such data.

Knowledge graphs mixed both worlds making difficult to trace a

clear frontier between them.

Today we witness highly efficient techniques, particularly from

the area of statistics, that are coping our area. They have to do with

the massive and automated collection of new type of data, thus un-

structured and uncertain. We have been using them mainly as tools,

but large graphs force to incorporating them harmonically into

our discipline. Much of this has to do with the classic counterpoint

between logic and statistics, but it goes much deeper.

Finally, we are convinced that we should re-think the very notion

of “querying” in graphs.We try to organize current research in three

big areas, namely entities/nodes, relationships/connectivity, and

emergent/global properties. But orthogonal to this is the extension

of classical queries as languages for transforming data into data

plus a final interpretation, into a loop with a continuous process

of interaction between humans and data. Probably the allure of

graphs today has to do with this loop.

ACKNOWLEDGMENTS
This work was funded by ANID - Millennium Science Initiative

Program - Code ICN17_002.

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2826

REFERENCES
[1] Serge Abiteboul and Gilles Dowek. 2020. The Age of Algorithms. Cambridge

University Press.

[2] Serge Abiteboul, Gerome Miklau, Julia Stoyanovich, and Gerhard Weikum. 2016.

Data, Responsibly. Dagstuhl Reports 6, 7 (2016), 42–71.
[3] Natasha Alechina and Neil Immerman. 2000. Reachability Logic: An Efficient

Fragment of Transitive Closure Logic. Log. J. IGPL 8, 3 (2000), 325–337.

[4] Carme Àlvarez and Birgit Jenner. 1993. A Very Hard log-Space Counting Class.

Theor. Comput. Sci. 107, 1 (1993), 3–30.
[5] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.

Fletcher, Claudio Gutiérrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,

Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for

Future GraphQuery Languages. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018. 1421–1432.

[6] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,

and Domagoj Vrgoc. 2017. Foundations of Modern Query Languages for Graph

Databases. ACM Comput. Surv. 50, 5 (2017), 68:1–68:40.
[7] Renzo Angles and Claudio Gutierrez. 2008. Survey of Graph Database Models.

ACM Comput. Surv. 40, 1, Article 1 (Feb. 2008), 39 pages.
[8] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting beyond

a Yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the

standard. In Proceedings of the 21st World Wide Web Conference 2012, WWW 2012,
Lyon, France, April 16-20, 2012. ACM, 629–638.

[9] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros.

2019. Efficient Logspace Classes for Enumeration, Counting, and Uniform Gen-

eration. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019. 59–73.

[10] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros.

2020. Efficient Logspace Classes for Enumeration, Counting, and Uniform Gen-

eration. SIGMOD Rec. 49, 1 (2020), 52–59.
[11] Malcolm P. Atkinson, François Bancilhon, David J. DeWitt, Klaus R. Dittrich,

David Maier, and Stanley B. Zdonik. 1992. The Object-Oriented Database System

Manifesto. In Building an Object-Oriented Database System, The Story of O2. 3–20.
[12] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary G. Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In The
Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic
Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007
(Lecture Notes in Computer Science), Vol. 4825. 722–735.

[13] Martin Aumüller, Rasmus Pagh, and Francesco Silvestri. 2020. Fair Near Neighbor

Search: Independent Range Sampling in High Dimensions. In Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2020, Portland, OR, USA, June 14-19, 2020. 191–204.

[14] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic

Conjunctive Queries and Constant Delay Enumeration. In Proceedings of CSL.
208–222.

[15] Pablo Barceló. 2013. Querying graph databases. In Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2013, New York, NY, USA - June 22 - 27, 2013. 175–188.

[16] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and

Juan Pablo Silva. 2020. The Expressive Power of Graph Neural Networks as a

Query Language. SIGMOD Rec. 49, 2 (2020), 6–17.
[17] Tim Berners-Lee, Roy Fielding, Larry Masinter, et al. 1998. Uniform resource

identifiers (URI): Generic syntax.

[18] Tim Berners-Lee, James Hendler, and Ora Lassila. 2001. The Semantic Web.

Scientific American 284, 5 (May 2001), 34–43.

[19] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational

Data. In Advances in Neural Information Processing Systems 26: 27th Annual Con-
ference on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States. 2787–2795.

[20] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertex-

tual Web Search Engine. Comput. Networks 30, 1-7 (1998), 107–117.
[21] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2018. A Com-

prehensive Survey of Graph Embedding: Problems, Techniques, and Applications.

IEEE Trans. Knowl. Data Eng. 30, 9 (2018), 1616–1637.
[22] Jin-yi Cai, Martin Fürer, and Neil Immerman. 1992. An optimal lower bound on

the number of variables for graph identifications. Comb. 12, 4 (1992), 389–410.
[23] E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks.

Commun. ACM 13, 6 (June 1970), 377–387.

[24] Richard Cyganiak, , David Wood, and Markus Lanthaler. 2014. RDF 1.1 concepts

and abstract syntax, W3C Recommendation 25 February 2014.

[25] Martin Dürst and Michel Suignard. 2005. Internationalized resource identifiers
(IRIs). Technical Report. RFC 3987, January.

[26] Dieter Fensel, Umutcan Simsek, Kevin Angele, Elwin Huaman, Elias Kärle, Olek-

sandra Panasiuk, Ioan Toma, JürgenUmbrich, andAlexanderWahler. 2020. Knowl-
edge Graphs - Methodology, Tools and Selected Use Cases. Springer.

[27] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and

Domagoj Vrgoc. 2020. Efficient Enumeration Algorithms for Regular Document

Spanners. ACM Trans. Database Syst. 45, 1 (2020), 3:1–3:42.
[28] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and An-

drés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs. In

Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018. 1433–1445.

[29] Linton C Freeman. 1977. A Set of Measures of Centrality based on Betweenness.

Sociometry (1977), 35–41.

[30] Andrew V Goldberg. 1984. Finding a maximum density subgraph. University of

California Berkeley.

[31] Georg Gottlob, Christoph Koch, and Reinhard Pichler. 2002. Efficient Algorithms

for Processing XPath Queries. In Proceedings of 28th International Conference on
Very Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002. 95–106.

[32] Georg Gottlob, Christoph Koch, and Reinhard Pichler. 2005. Efficient Algorithms

for Processing XPath Queries. ACM Trans. Database Syst. 30, 2 (2005), 444–491.
[33] Martin Grohe. 2011. From Polynomial Time Queries to Graph Structure Theory.

Commun. ACM 54, 6 (2011), 104–112.

[34] Martin Grohe and Pascal Schweitzer. 2020. The Graph Isomorphism Problem.

Commun. ACM 63, 11 (2020), 128–134.

[35] Claudio Gutiérrez and Juan F. Sequeda. 2021. Knowledge Graphs. Commun. ACM
64, 3 (2021), 96–104.

[36] William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure

Leskovec. 2018. Embedding Logical Queries on Knowledge Graphs. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. 2030–2041.

[37] Sariel Har-Peled and Sepideh Mahabadi. 2019. Near Neighbor: Who is the Fairest

of Them All?. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada. 13176–13187.

[38] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language, W3C

Recommendation 21 March 2013.

[39] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,

Claudio Gutiérrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier,

Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid,

Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine

Zimmermann. 2020. Knowledge Graphs. To appear in ACM Computing Surveys.
CoRR abs/2003.02320 (2020).

[40] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos

Faloutsos. 2016. FRAUDAR: Bounding Graph Fraud in the Face of Camouflage.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. 895–904.

[41] Jon M. Kleinberg. 1999. Authoritative Sources in a Hyperlinked Environment. J.
ACM 46, 5 (1999), 604–632.

[42] H. T. Kung. 1982. Why Systolic Architectures? Computer 15, 1 (1982), 37–46.
[43] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning

Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA. 2181–2187.

[44] Katja Losemann andWimMartens. 2013. The Complexity of Regular Expressions

and Property Paths in SPARQL. ACM Trans. Database Syst. 38, 4 (2013), 24:1–
24:39.

[45] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie

Zhang, and Xuemin Lin. 2020. Efficient Algorithms for Densest Subgraph Discov-

ery on Large Directed Graphs. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020. 1051–1066.

[46] Wim Martens and Tina Trautner. 2019. Dichotomies for Evaluating Simple

Regular Path Queries. ACM Trans. Database Syst. 44, 4 (2019), 16:1–16:46.
[47] Maarten Marx. 2005. Conditional XPath. ACM Trans. Database Syst. 30, 4 (2005),

929–959.

[48] Christian Merkwirth and Thomas Lengauer. 2005. Automatic Generation of

Complementary Descriptors with Molecular Graph Networks. J. Chem. Inf.
Model. 45, 5 (2005), 1159–1168.

[49] Justin J Miller. 2013. Graph Database Applications and Concepts with Neo4j.

In Proceedings of the Southern Association for Information Systems Conference,
Atlanta, GA, USA, Vol. 2324.

[50] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric

Lenssen, Gaurav Rattan, andMartin Grohe. 2019. Weisfeiler and LemanGoNeural:

Higher-Order Graph Neural Networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 4602–4609.

[51] Mark Newman. 2018. Networks. Oxford university press.

[52] Heiko Paulheim. 2017. Knowledge Graph Refinement: A Survey of Approaches

and Evaluation Methods. Semantic Web 8, 3 (2017), 489–508.
[53] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju,

and Christos Faloutsos. 2010. EigenSpokes: Surprising Patterns and Scalable

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2827

Community Chipping in Large Graphs. In Advances in Knowledge Discovery and
Data Mining, 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June
21-24, 2010. Proceedings. Part II (Lecture Notes in Computer Science), Vol. 6119.
435–448.

[54] Ross Quillan. 1963. A Notation for Representing Conceptual Information: An Appli-
cation to Semantics and Mechanical English Paraphrasing. Systems Development

Corporation.

[55] Ross Quillian. 1967. Word Concepts: A Theory and Simulation of some Basic

Semantic Capabilities. Behavioral science 12, 5 (1967), 410–430.
[56] Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020. Query2box: Reasoning over

Knowledge Graphs in Vector Space Using Box Embeddings. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020.

[57] Richard H Richens. 1956. Preprogramming for Mechanical Translation. Mech.
Transl. Comput. Linguistics 3, 1 (1956), 20–25.

[58] Cristian Riveros and Jorge Salas. 2020. A Family of Centrality Measures for

Graph Data Based on Subgraphs. In 23rd International Conference on Database
Theory, ICDT 2020, March 30-April 2, 2020, Copenhagen, Denmark (LIPIcs), Vol. 155.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1–23:18.

[59] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph Databases: New Oppor-
tunities for Connected Data. O’Reilly Media, Inc.

[60] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2009. The Graph Neural NetworkModel. IEEE Trans. Neural Networks
20, 1 (2009), 61–80.

[61] Satu Elisa Schaeffer. 2007. Graph Clustering. Comput. Sci. Rev. 1, 1 (2007), 27–64.
[62] Luc Segoufin. 2013. Enumerating with Constant Delay the Answers to a Query.

In Joint 2013 EDBT/ICDT Conferences, ICDT ’13 Proceedings, Genoa, Italy, March

18-22, 2013. ACM, 10–20.

[63] Ehud Shapiro, David H. D. Warren, Kazuhiro Fuchi, Robert A. Kowalski, Koichi

Furukawa, Kazunori Ueda, Kenneth M. Kahn, Takashi Chikayama, and Evan Tick.

1993. The Fifth Generation Project: Personal Perspectives. Commun. ACM 36, 3

(1993), 46–103.

[64] Michael Stonebraker and Joey Hellerstein. 2005. What goes around comes around.

Readings in database systems 4 (2005), 1724–1735.
[65] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-

Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information

Networks. Proc. VLDB Endow. 4, 11 (2011), 992–1003.
[66] Jeffrey D. Ullman. 2020. The Battle for Data Science. IEEE Data Eng. Bull. 43, 2

(2020), 8–14.

[67] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.

2016. PGQL: A Property Graph Query Language. In Proceedings of the Fourth
International Workshop on Graph Data Management Experiences and Systems,
Redwood Shores, CA, USA, June 24 - 24, 2016.

[68] Moshe Y. Vardi. 1995. On the Complexity of Bounded-Variable Queries. In Proceed-
ings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 22-25, 1995, San Jose, California, USA. 266–276.

[69] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: A Free Collaborative

Knowledge Base. Commun. ACM 57, 10 (2014), 78–85.

[70] Boris Weisfeiler and Andrei Leman. 1968. The reduction of a graph to canonical

form and the algebra which appears therein. NTI, Series 2, 9 (1968), 12–16.
[71] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-

erful are Graph Neural Networks?. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Tutorial Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2828

	Abstract
	1 Introduction
	2 Databases, Graphs and Knowledge Graphs
	2.1 Graph data and querying
	2.2 Some paradigmatic examples
	2.3 Knowledge Graphs

	3 Graph data models
	4 Query functionalities
	4.1 Path extraction: enumeration, uniform generating and approximate counting
	4.2 Graph analytics: including knowledge
	4.3 Node extraction: declarative versus procedural frameworks

	5 Takeaway messages
	Acknowledgments
	References

