Game-based Notions of Locality

Marcelo Arenas Pablo Barceló Leonid Libkin University of Toronto {marenas, pablo, libkin}@cs.toronto.edu

Abstract

Locality is a very useful tool in finite model theory, that allows one to prove inexpressibility results by avoiding complicated combinatorial reasoning typically associated with proofs involving Ehrenfeucht-Fraïssé games. It is applicable to first-order logic (FO) and some of its rather powerful counting extensions. In this short report on an on-going research project, we present a more general – and perhaps a more natural – notion of locality, and give a few examples of its applicability.

1 Introduction and motivation

The idea of locality in finite model theory is as follows. Suppose we have a formula $\phi(\vec{x})$ in some logic, a structure \mathfrak{A} , and two tuples \vec{a} and \vec{b} . We want to show that ϕ cannot distinguish \vec{a} from \vec{b} . For that, it suffices to establish that for some $r \geq 0$, the *r*-neighborhoods around \vec{a} and \vec{b} are isomorphic.

A typical example of using locality (assuming we proved such a property for a logic) is inexpressibility of the transitive closure. Assume, to the contrary, that the transitive closure is expressible by a formula $\phi(x, y)$. Pick r as above, and consider a "long" chain (successor relation), with two points a and b at distance at least 2r + 1 from each other and the endpoints. Then, the r-neighborhoods of (a, b) and (b, a)are isomorphic, and hence ϕ cannot express the transitive closure, which clearly sees the difference between (a, b) and (b, a).

To formulate this precisely, we need the notion of the Gaifman graph. Given a structure \mathfrak{A} of a relational vocabulary with universe A, its Gaifman graph is a graph whose vertices are the elements of A and where two nodes a and b are adjacent if there is a tuple in some relation of \mathfrak{A} containing both a and b. The distance between points a and b, denoted by d(a, b), is the distance in the Gaifman graph (if a = b we assume that d(a, b) = 0). We define $d((a_1, \ldots, a_n), b) =$ $\min_i d(a_i, b)$, and let $B_r(\vec{a}) = \{b \mid d(\vec{a}, b) \leq r\}$. The r-neighborhood of \vec{a} , $N_r(\vec{a})$ is the substructure of \mathfrak{A} whose universe is $B_r(\vec{a})$, extended with constants interpreted as \vec{a} . That is, for $N_r(\vec{a})$ and $N_r(\vec{b})$ to be isomorphic (written $N_r(\vec{a}) \cong N_r(\vec{b})$), we must have an isomorphism h such that $h(\vec{a}) = \vec{b}$.

Suppose we have an *m*-ary query, that is, a mapping Q that associates with each structure \mathfrak{A} a subset of A^m . We say that Q is *Gaifman-local* [4] if there exists a number r such that for any structure \mathfrak{A} and any $\vec{a}, \vec{b} \in A^m$,

$$N_r(\vec{a}) \cong N_r(\vec{b}) \implies \vec{a} \in Q(\mathfrak{A}) \text{ iff } \vec{b} \in Q(\mathfrak{A}).$$

Intuitively, if Q is a local query and two tuples look alike in some neighborhood, then they are indistinguishable by Q.

Gaifman's locality theorem [2] implies that every FO-definable query is Gaifman-local. More recently [4, 5] it was shown that Gaifman-locality extends to logics with very powerful counting mechanisms. While Gaifman-locality is very useful for proving expressivity bounds, its limitations are well understood [4]; in particular, it does not apply to the extension of FO with counting quantifiers *and* a linear order.

Instead of giving up hope of proving new bounds by locality beyond those currently known, we suggest a re-examination of the notion. The intuition behind locality is as follows: "if the neighborhoods of \vec{a} and b look the same, then a formula ϕ cannot distinguish (\mathfrak{A}, \vec{a}) and (\mathfrak{A}, \vec{b}) ". However, our notion of "look the same" is extremely strong: it says that the neighborhoods must be isomorphic. We use this strong notion to derive that the difference between \vec{a} and \vec{b} cannot be observed in some logic. It appears more natural to use a symmetric definition of the form: "if the difference of neighborhoods of \vec{a} and \vec{b} cannot be observed in a logic, then a formula ϕ cannot distinguish (\mathfrak{A}, \vec{a}) and (\mathfrak{A}, \vec{b}) ". This is the relaxation of the notion of locality we propose. We define it in the next section, and prove a few initial results about it.

2 Locality under games

For many logics, elementary equivalence can be characterized by Ehrenfeucht-Fraïssé games: if the duplicator (player II) has a winning strategy in the k-round game on \mathfrak{A} and \mathfrak{B} , then \mathfrak{A} and \mathfrak{B} agree on all formulae of quantifier rank up to k. The idea of the new notion of locality is to change isomorphism by the existence of a winning strategy for the duplicator. We present the definition and the initial results for the case of FO and the usual Ehrenfeucht-Fraïssé game, and for the case of an infinitary counting logic characterized by *bijective* games [3].

Let $\mathfrak{A} \equiv_k \mathfrak{B}$ mean that the duplicator has a winning strategy in the k-round Ehrenfeucht-Fraïssé game on \mathfrak{A} and \mathfrak{B} . We say that an *m*-ary query *Q* is *Gaifman-local* under games if there exist numbers $r, k \geq 0$ such that for any structure \mathfrak{A} and any $\vec{a}, \vec{b} \in A^m$,

$$N_r(\vec{a}) \equiv_k N_r(\vec{b}) \implies \vec{a} \in Q(\mathfrak{A}) \text{ iff } \vec{b} \in Q(\mathfrak{A}).$$

That every FO-definable query is Gaifman-local under games is a corollary of Gaifman's theorem [2]. However, the standard Gaifman-locality for FO can be shown by a simple inductive argument, which extends to other logics [4]. We thus looked for a similar direct proof of this new notion of locality for FO, and we found it. We established the following:

Proposition 1 If Q is definable by an FO formula ϕ , then Q is Gaifman-local under games, and r is $O(4^q)$, where q is the quantifier rank of ϕ .

This proposition is proved by an inductive argument, using Ehrenfeucht-Fraïssé games.

Example. Let \mathfrak{A} contain an equivalence relation \sim , together with a graph R on the equivalence classes. Suppose all \sim -classes have different cardinalities. How can we prove that the transitive closure of R is not expressible? The usual locality does not help, since for a, b with isomorphic r-neighborhoods, r > 0, we must have $a \sim b$. The new notion, however, is easily applicable, and implies the result.

We now move to a different logic, $\mathcal{L}_{\infty\omega}^*(\mathbf{C})$. It adds, for every k and m, a quantifier $\exists^k \vec{x} \phi(\vec{x}, \cdot)$, stating that there are at least k m-tuples \vec{x} such that $\phi(\vec{x}, \cdot)$ is true. Furthermore, it adds infinitary connectives \bigvee and \bigwedge , but only allows formulae of *finite* quantifier rank.

This logic is known to be Gaifman-local [5], and it is captured by bijective Ehrenfeucht-Fraïssé games [3]: in such a game, before each round, the duplicator selects a bijection $f : \mathfrak{A} \to \mathfrak{B}$, and if the spoiler plays $a \in \mathfrak{A}$, the duplicator responds by $f(a) \in \mathfrak{B}$. It is known that \mathfrak{A} and \mathfrak{B} agree on all $\mathcal{L}^*_{\infty\omega}(\mathbf{C})$ sentences of quantifier rank up to k iff the duplicator wins the k-round bijective game, which we denote by $\mathfrak{A} \equiv^{bij}_k \mathfrak{B}$.

We now say that an *m*-ary query Q is Gaifman-local under bijective games if there exist $r, k \geq 0$ such that for any structure \mathfrak{A} and any $\vec{a}, \vec{b} \in A^m$,

$$N_r(\vec{a}) \equiv_k^{bij} N_r(\vec{b}) \implies \vec{a} \in Q(\mathfrak{A}) \text{ iff } \vec{b} \in Q(\mathfrak{A}).$$

Proposition 2 Every $\mathcal{L}^*_{\infty\omega}(\mathbf{C})$ -definable query is Gaifman-local under bijective games, and r is $O(2^q)$, where q is the quantifier rank of ϕ .

3 Ongoing Work

- Propositions 1 and 2 suggest that there might be a general result saying that if $N_r(\vec{a})$ and $N_r(\vec{b})$ are indistinguishable for k rounds of a game for a local logic \mathcal{L} , then (\mathfrak{A}, \vec{a}) and (\mathfrak{B}, \vec{b}) are indistinguishable in l rounds of the game. The two proofs we have, however, are quite different, and we do not yet know how far we can push the results.
- For the FO case, our bound on r is better than Gaifman's $O(7^q)$ and matches the bound of Lifsches and Shelah [6]. For the standard notion of Gaifman-locality, an $O(2^q)$ bound is known [5] (and it matches the lower bound). We would like to bridge the gap between 2^q and 4^q .

4 Remarks

Other notions of locality known in the literature are Hanf-locality and its variation, threshold equivalence [1]. The latter is only valid for structures of small degrees, where the win for the duplicator with sufficiently many moves implies isomorphism of neighborhoods. For Hanf-locality, we can show that there are FO-definable queries that violate the natural extension of the notion that uses games instead of isomorphism.

References

- R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs. monadic co-NP. Information and Computation, 120(1):78-92, 1995.
- [2] H. Gaifman. On local and non-local properties. In Proceedings of the Herbrand Symposium, Logic Colloquium, pages 105-135, 1981.
- [3] L. Hella. Logical hierarchies in PTIME. Information and Computation, 129 (1996), 1–19.
- [4] L. Hella, L. Libkin, and J. Nurmonen. Notions of locality and their logical characterizations over finite models. *Journal of Symbolic Logic*, 64:1751-1773, 1999.
- [5] L. Libkin. Logics with counting and local properties. ACM TOCL, 1(1):33-59, 2000.
- [6] S. Lifsches and S. Shelah. Distorted sums of models. Unpublished manuscript, 1996.