
Query Evaluation in Almost Consistent Databases Using Residues

Marcelo Arenas
Pontificia Universidad Católica de Chile

Escuela de Ingenieŕıa
Departamento de Ciencia de Computacíon

marenas@ing.puc.cl

Leopoldo Bertossi
Pontificia Universidad Católica de Chile

Escuela de Ingenieŕıa
Departamento de Ciencia de Computacíon

bertossi@ing.puc.cl

Jan Chomicki
Monmouth University

Department of Computer Science
chomicki@moncol.monmouth.edu

Abstract

In this paper we consider the problem of the logical char-
acterization of the notion of correct answer in a relational
database that may violate given integrity constraints. This
notion is captured in terms of the possible repaired versions
of the database. A computational counterpart of the se-
mantical notion is provided in terms of the reconstruction
of the database as a deductive database to which concepts
and techniques from semantic query optimization are ap-
plied with the purpose of computing correct answers.

1. Introduction

In databases it is usually the case that when a transac-
tion is going to violate an integrity constraint, the trans-
action cannot be executed. Nevertheless, there are cases
in which we are willing to accept an inconsistent database
because: (1) We know that the DB consistency can be re-
paired by executing new transactions in the future; (2) We
are not in position to detect any violations, maybe because
our query language is not expressive enough; (3) The incon-
sistent database can still give us correct answers to certain
queries; ...

In this paper we will consider a form of relaxed con-
sistency of databases, according to which violations are al-
lowed to exist and persist. In this context, it is important
to characterize in logical terms the fact that we can trust,
hopefully big, parts of the database, still obtaining correct
answers to queries. Intuitively, an answer to a query posed
to a database that violates some given integrity constraints
will be correct in a precise sense: It should be the same as

the answer obtained from any repaired version of the origi-
nal database.

Example 1. Consider a database subject to theIC: “the
number of items in stock must be at least 30”. Assume that
according to the database there only 28 items in stock, being
the IC violated. We are willing to keep working with the
database, because: (1) Soon a new supply will bring the
database back to a consistent state; (2) Our database can still
answer some queries correctly. For example, if we ask “Are
there at least 26 items in stock?”, the answer will be YES,
the same as from any consistent instance of the database.

Example 2. If we have an heterogeneous database system,
it is possible that only a certain kind of queries can be asked
to a particular database in the system due to the lack of ex-
pressive power of the query language. In particular, it is
possible that we cannot verify its consistency from outside
the database. We will need to trust that database and keep
asking queries to it, some of them will be correct wrt to the
implicit assumption about its consistency.

In order to make the conceptualization of correct answer
precise, it is necessary to deal with the problem of repairing
a database, that is with the problem of taking the database
to a new, consistent state. For the purpose of defining cor-
rect answers in inconsistent databases, we use concepts and
techniques borrowed from semantic query optimization [1],
that is we use semantic knowledge about the database that is
represented by means of integrity constraints. [3] presents
an interesting survey of applications of integrity constraints,
in particular, semantic query optimization is discussed.

We will also see that our approach to answer correctness
allows us to determine alternatives to be considered in order
to repair the consistency of the database. It turns out that
our subject has also interesting connections to the problem

of detecting violations of integrity constraints by means of
queries in a particular language.

We will concentrate mostly on relational databases. Nev-
ertheless, we think that our approach can be extended to the
case of deductive databases as well.

2. Some Useful Notions

In this paper we will assume that we have a fixed
database schema and a fixed database domainD. We also
have a first order language based on this schema with names
for the elements ofD. Concrete, physical databases will be
instances of the schema. We will see them as structures for
interpreting the first order language, as such they all share
the given domainD, nevertheless, since tables are finite,
every instance will have a finite active domain which is a
subset ofD. We will consider instances as structures com-
patible with the formal language. There is also a set of in-
tegrity constraints,IC, expressed in that language, which the
database instances are expected to satisfy. We will assume
that IC is consistent in the sense that there is a database
instance that makes it true. InIC built–in predicates may
appear.

A database instance,r, is consistent ifr satisfiesIC, that
is, r � IC. If r satisfies a subset ofIC, we say thatr is
partially consistent.

2.1. Repairing partially consistent DBs

Given a database instancer, we denote withΣ(r) the
set of formulasfP(ā)jr � P(ā)g. We can also define a
notion of distance between databases instancesr and r 0:
∆(r; r 0) = (Σ(r)�Σ(r 0))[(Σ(r 0)�Σ(r)), the symmetric dif-
ference. With this we can say thatr is closer tor 0 than tor 00

if ∆(r; r 0) � ∆(r; r 00), i.e., if the distance betweenr andr 0 is
less than the distance betweenr andr 00. We formalize this
notion by means of the relation�r .

Definition 1. Given a database’s instancer, we say that
r 0 �r r 00 if ∆(r; r 0)� ∆(r; r 00).

Now we will define the notion of a repair of a database
instance.

Definition 2. Given database instancesr andr 0, we say that
r 0 is a repair ofr if r 0 � IC andr 0 is�r -minimal.

Example 3. Let us consider a database schema with two
tables P and Q, both with one argument. Let the do-
main containa;b;c. Assume that for an instancer, Σ(r) =
fP(a);P(b);Q(a);Q(c)g, and letIC = f8x(P(x)�Q(x))g.
As we can see,r does not satisfiesIC becauser � P(b)^
:Q(b).

In this case we have two possibles repairs forr. First, we
can falsifyP(b) for satisfyingIC, obtaining an instancer 0

with Σ(r 0) = fP(a);Q(a);Q(c)g. As a second alternative, in
order to satisfyIC is possible to makeQ(b) true, obtaining
an instancer 00 with Σ(r 00) = fP(a);P(b);Q(a);Q(b);Q(c)g.

The definition of a repair satisfies certain desirable and
expected properties. Firstly, a consistent database does not
need to be repaired, because ifr satisfiesIC, then, by the
minimality condition wrt the relation�r , r is the only re-
pair of itself (since∆(r; r) is empty). Secondly, a partially
consistent databaser can always be repaired because there
is a databaser 0 that satisfiesIC, and∆(r; r 0) is finite.

2.2. Querying partially consistent DBs

We need to formalize the intuition that even when a
database is inconsistent, it is possible to obtain correct an-
swers to queries. This is important if we still want or need
to keep working with an only partially consistent database.

Definition 3. We say that a (ground) tuplēt is a correct
answer to a queryQ(x̄) (a formula of the language) in the
database instancer if for every repairr 0 of r, it holds r 0 �
Q(t̄). If Q is a sentence, thentrue (false) is a correct answer
to Q in r, if for every repairr 0 of r, r 0 �Q (r 0 2Q).

Example 4. (example 1 continued) The answer YES to the
query “Are there at least 26 items in stock?” in the given
database that contained only 28 items is correct because in
any repair of the database there will be at least 30 items in
stock. Of course, in those databases there will be at least 26
items in stock.

On another side, if we pose the query “Are there at least
29 items in stock?”, then we obtain the answer NO, that, be-
ing true wrt to the instance of database, is not correct wrt to
the assumption of consistency of the database. The answer
to that query will change its truth values as soon as we re-
pair the database. Notice also that knowing that the answer
NO is incorrect would allow us to detect a violation of the
ICs.1

We would like to have a computational mechanism for
determining if an answer to a query is correct or not. Usu-
ally a query produces a set of tuples as answers. With such
mechanism we would be in position to detect which of the
tuples are correct and which are not. In the rest of the paper
we address the problem of constructing such a mechanism.
We will achieve this goal when we restrict the ICs to be of
a certain, but interesting, syntactical form. The computa-
tional mechanism will be provably sound.

We will apply ideas and techniques from semantical
query optimization [1] as it appears in deductive databases
to the construction of the computational counterpart of the
semantical notion of correct answer. For doing this we

1In the extended version of this paper we present a connection of the
problem of qualifying answers with the problem of detecting violations to
the ICs by means of queries.

will need to adapt the methodology to the case of relational
databases.

3. Applying Semantic Query Optimization in
Relational DBs

3.1. A review of SQO

In a deductive database we have an extensional database,
EDB, and an intensional database,IDB. The extensional
predicates are the ordinary tables and the intensional pred-
icates are defined by means of logical rules. Another com-
ponent of the database is a set of integrity constraints,IC,
which are represented by rules of the form B1, where
the bodyB is a conjunction of literals . These are condi-
tions that are expected to be satisfied by the database along
its evolution. They impose a condition on the possible mod-
els of the database and in that sense they provide semantic
information about the database. The idea of semantic query
optimization is to take advantage of these constraints in the
process of answering queries, in such a way that the answer-
ing process is optimized by reduction of the search space.

According to [1], such a query evaluation procedure can
be divided into a semantic compilation step followed by a
query transformation step. Semantic compilation can be in-
formally described as the process of retaining relevant frag-
ments of the ICs. After this step, all the information that can
be useful for answering queries has been extracted from the
ICs. This compilation is done on the relatively stable com-
ponents of the database, asEDB, IDB andIC, so that it is
executed once on the deductive database, independently of
any particular query. During this step, the fragments of the
ICs, called “residues”, are computed and associated to new
deductive rules that can be used later on.

When a query is posed, a semantic transformation proce-
dure uses the already stored residues for generating possibly
several semantically equivalent queries. Informally, a query
is semantically equivalent to the original query if both pro-
duce the same answer on the same database. In this way,
maybe one or more new queries will be in position to be
evaluated faster than the original query.

In the context of the semantic compilation step, the no-
tion of “subsumption” appears. Subsumption means to in-
clude or consider something as a particular case of a more
general rule or principle. Given rules inIDB, that is those
rules that define the intentional relations, of the formR
B2, in SQO one attempts to subsume the negated bodies of
the intentional rules, that is the B2, into the ICs. It is
uncommon that such a perfect subsumption is achieved, be-
cause this embodies a contradiction, or better, that no tuples
appear in the intentional relation. Instead, it is more com-
mon that only a subclause of an IC subsumes the negated

body. In this case, the discordant fraction, the residue, rep-
resents additional information that can be associated to the
relation.

Example 5.Consider the IC

 Disease(type;code); type= A;

saying that “There are no diseases of type A” and the inten-
tional relation

DiseaseA(type;code) Disease(type;code); type= A;

then it is obvious that no tuples can be introduced in the
relation, because there is a contradiction between the defi-
nition of the table and the IC. In this case, the negation of
the body of the defining rule is subsumed by the IC.

Now, if we define a new relation

DiseaseT(type;code)

Disease(type;code);code> 1000;

then, although the IC does not subsume

 Disease(type;code);code> 1000;

a part of it does, namely Disease(type;code).
In this case, the discordant fraction isf type= Ag.

This residue can be associated to the relationDiseaseTin
order to emphasize that fact that diseases of type A are not
allowed.

3.2. Generating residues in relational DBs

In this section we show how to accommodate the
techniques introduced in SQO for deductive databases,
like generation of residues and new rules, to the relational
database context. The rules we will generate are not
exactly rules as in deductive databases, rather they are
computational mechanisms without the clear declarative
contents they have in deductive databases. The reason for
this difference is the fact that we are considering relational
databases only.

The expansion phase. We need the ICs in a canoni-
cal form that is suitable for our processing of them.

Definition 4. An integrity constraint is in standard format if
it has the form

8(
m_

i=1

Pi(x̄i)_
n_

i=1

:Qi(ȳi)_ψ);

where8 represents the universal closure of the formula, ¯xi ,
ȳi are tuples of variables andψ is a formula that mentions

only built–in predicates, in particular, equality. Notice that
there are no constants in thePi ;Qi , if they are needed they
can be pushed intoψ.

In the so called “expansion step” the ICs are transformed
into logically equivalent formulas in the standard format. In
consequence, our syntactical restriction on a set of integrity
constraints for the rest of this paper is that it has a logically
equivalent set of integrity constraints that are in standard
format.

Example 6. Assume that we have the following in-
tegrity constraint on the tablesP, Q and the elementa:
8x(P(x;a) � Q(x;a)). In order to bring the integrity con-
straint into the standard format, we first split it into the fol-
lowing set of sentences:

f8x(P(x;a)�Q(x;a));8x(Q(x;a)� P(x;a))g:

Secondly, we have to change the elementa, in the predicate
arguments, by a variable:

f8(x;y)(P(x;y)^y= a�Q(x;y));

8(x;y)(Q(x;y)^y= a� P(x;y))g:

After that we eliminate the connectiveŝand�:

f8(x;y)(:P(x;y)_Q(x;y)_y 6= a);

8(x;y)(:Q(x;y)_P(x;y)_y 6= a)g:

The residues computation phase. After the expansion
of IC, rules associated to the database schema are gener-
ated. This could be seen as considering an instance of
the database as an extensional database expanded with new
rules, and so obtaining an associated deductive database
where semantical query optimization can be used.

For each predicate, its negative and positive occurrences
in the ICs (in standard format) will be treated separately
with the purpose of generating corresponding residues and
rules.

For each IC in standard format

8(
m_

i=1

Pi(x̄i)_
n_

i=1

:Qi(ȳi)_ψ); (1)

and each positive occurrence of a predicatePj(x̄j) in it, a
residue is generated

Q̄(
j�1_

i=1

Pi(x̄i)_
m_

i= j+1

Pi(x̄i)_
n_

i=1

:Qi(ȳi)_ψ); (2)

whereQ̄ represents a sequence of universal quantifiers over
all the variables in the formula not appearing in ¯xj .

Once all residues for the positive cases are computed, let
us denote them byR1(x̄j); : : : ;Rr(x̄j), we create the rule2

:Pj(x̄j) 7�! :Pj(x̄j)fR1(x̄j); : : : ;Rr(x̄j)g:

The rule has a procedural contents: in order to compute:Pj ,
compute the RHS.

For each negative occurrence of a predicateQj(ȳj) in (1),
the following residue is generated

Q̄(
m_

i=1

Pi(x̄i)_
j�1_

i=1

:Qi(ȳi)_
n_

i= j+1

:Qi(ȳi)_ψ);

whereQ̄ is a sequence of universal quantifiers over all the
variables in the formula not appearing in ¯yj .

Once all residues for the negative cases are computed, let
us denote them byR0

1(ȳj); : : : ;R0

s(ȳj), we create the rule3

Qj(ȳj) 7�!Qj(ȳj)fR
0

1(ȳj); : : : ;R
0

s(ȳj)g:

Notice that there is exactly one new rule for each positive
predicate, and exactly one rule for each negative predicate.

Example 7. If we have the following ICs in standard format

IC = f8x(R(x)_:P(x)_:Q(x));8x(P(x)_:Q(x))g;

the following rules are generated:

P(x) 7�! P(x)fR(x)_:Q(x)g

Q(x) 7�! Q(x)fR(x)_:P(x);P(x)g

R(x) 7�! R(x)

:P(x) 7�! :P(x)f:Q(x)g

:Q(x) 7�! :Q(x)

:R(x) 7�! :R(x)f:P(x)_:Q(x)g

In section 4 we will show how to use these rules for
computing correct answers to queries.

The reduction phase.Once the rules have been generated,
it is possible to simplify the residues in them. In every
new rule of the formP(ū) 7�! P(ū)fR1(ū); : : : ;Rr(ū)g
the auxiliary quantifications introduced in the expansion
step are eliminated (both the quantifier and the associated
variable in the formula) from the residues by the process
inverse to the one applied in the expansion. The same is
done with rules of the form:P 7�! :Pf� � �g.

2In deductive databases, we could generate a rule of the form
(:Pj)

I (x̄j) :Pj (x̄j)fR1(x̄j); : : : ;Rr (x̄j)g, where, to avoid circularity,
(:Pj)

I is a new intentional predicate associated to the extensional pred-
icatePj . In the residuesRi only some of the new intentional predicates or
built–in predicates should appear.

3Again, in a deductive database context we could generate the rule
(Qj)

I (ȳj) Qj (ȳj)fR0

1(ȳj); : : : ;R0

s(ȳj)g, with only intentional versions of
the extensional predicates or built–in predicates in the residues only.

Example 8. (motivated by [7]) In a company database the
tableSupply(x;y;z) stands for “Companyx supplies to de-
partmenty the itemz”. The IC

8(x;y;z)(Supply(x;y; I1) � Supply(x;y; I2))

says that “If a company supplies to a department itemI1,
then necessarily it also supplies itemI2”. Its version in the
standard format is

8(x;y;z;w)(:Supply(x;y;z)_Supply(x;y;w)_

z 6= I1_w 6= I2):

The following is one of the two rules to be generated

Supply(x;y;z) 7�! Supply(x;y;z)

f8w(Supply(x;y;w)_z 6= I1_w 6= I2)g:

Simplifying the residue by elimination of the quantification
onw, we obtain

Supply(x;y;z) 7�! Supply(x;y;z)

fSupply(x;y; I2)_z 6= I1g:

4. An Operator on Queries

In order to determine correct answers to queries in par-
tially consistent databases, we will make use of an operator,
the T operator, that will be applied iteratively on a given
query. The idea is to apply all the generated transformation
rules obtained at the end of the residue computation step.

Definition 5. The application of operator Tn to a query is
defined by means of the following rules

1. Tn[2] := 2, Tn[:2] := :2, for everyn� 0 (2 is the
empty clause).

2. T0[ϕ] := ϕ.

3. For each P(ū), if there is the rule P(ū) 7�!
P(ū)fR1(ū); : : : ;Rr(ū)g, then

Tn+1[P(ū)] := P(ū)^
r̂

i=1

Tn[Ri(ū)]:

If P(ū) does not have residues, then Tn+1[P(ū)] :=
P(ū).

4. For each:Q(v̄), if there is the rule:Q(v̄) 7�!
:Q(v̄)fR0

1(v̄); : : : ;R
0

s(v̄)g, then

Tn+1[:Q(v̄)] := :Q(v̄)^
ŝ

i=1

Tn[R
0

i(v̄)]:

If :Q(v̄) does not have any residues, then
Tn+1[:Q(ū)] := :Q(ū).

5. If ϕ is a formula in prenex disjunctive normal form,
that is,

ϕ = Q̄
s_

i=1

(
mî

j=1

Pi; j(ūi; j)^
nî

j=1

:Qi; j(v̄i; j)^ψi);

whereQ̄ is a sequence of quantifiers andψi is a for-
mula that includes only built–in predicates, then for
everyn� 0:

Tn[ϕ] := Q̄
s_

i=1

(
mî

j=1

Tn[Pi; j(ūi; j)]^

nî

j=1

Tn[:Qi; j(v̄i; j)]^ψi):

Notice that the application of the T operator to a formula
produces a new formula. Additionally, Tω[ϕ] will store, in
a possibly infinite set, the results Tn[ϕ], for everyn� 0.

Definition 6. The application of operator Tω on a query is
defined as Tω[ϕ] =

[

n<ω
fTn[ϕ]g.

In the rest of this section, we will consider queriesQ(x̄)
written in prenex disjunctive normal form.

Example 9. (example 7 continued) For the query
Q(x) : :R(x) we have T1[Q(x)] = :R(x) ^ (:P(x) _
:Q(x)), T2[Q(x)] = :R(x) ^ ((:P(x) ^ :Q(x)) _ :Q(x))
and T3[Q(x)] = T2[Q(x)]. We have reached a fix point
and then Tω[Q(x)] = f:R(x)^ (:P(x) _:Q(x));:R(x) ^
((:P(x)^:Q(x))_:Q(x))g.

We want to use the T operator for answering queries in
almost consistent databases. First we need some results, in
particular, that the operator works properly when we try to
answer queries in a consistent database.

Proposition 1. Given a database instancer and a set of in-
tegrity constraintsIC, such thatr � IC, then for every query
Q(x̄) and every natural numbern: r � 8x̄(Q(x̄)� Tn[Q(x̄)]).

Corollary 1. Given a database instancer and a set of in-
tegrity constraintsIC, such thatr � IC, then for every query
Q(x̄) and every tuplēt: r �Q(t̄) if and only if r � Tω[Q(t̄)].

Now we will show the relationship between the correct-
ness of an answer to a query wrt to a database instancer
(definition 3) and the answer given to the application of the
T operator to the query.

Proposition 2.Given a database instancer, a set of integrity
constraintsIC and a queryQ(x̄), if r � Tω[Q(x̄)](t̄), thent̄
is a correct answer toQ in r (in the sense of definition 3).

We can see that the operator can be used to be sure that
some of the answers obtained by direct querying of the in-
consistent database are correct, all we need is to see if they

appear in the answer set to the transformed query obtained
by application of the T operator.

Example 10. (motivated by [7]) Consider a database with
the following IC, telling thatC is the only supplier of items
of classT4: 8(x;y;z)(Supply(x;y;z)^Class(z;T4)� x=C),
which transformed into the standard format is

8(x;y;z;w)(:Supply(x;y;z)_

:Class(z;w)_w 6= T4_x=C):

The following rule can be generated:

Class(z;w) 7�!Class(z;w)

f8(x;y)(:Supply(x;y;z)_w 6= T4_x=C)g:

Consider now the following database that violates the IC:

Supply Class
C D1 I1 I1 T4

D D2 I2 I2 T4

If we pose the queryClass(z;T4)?, asking for the items of
classT4, directly to the database, we obtainI1 andI2. Nev-
ertheless, if we pose the query Tω[Class(z;T4)], that is

Class(z;T4)^8(x;y)(:Supply(x;y;z)_x=C);

we obtain onlyI1, eliminatingI2, whose supplier is notC.
That is, onlyI1 is to be considered as a correct answer.

Example 11. (example 8 continued) We had the following
IC:

8(x;y;z)(Supply(x;y; I1) � Supply(x;y; I2));

saying that itemI2 is supplied whenever itemI1 is supplied.
The rules were already generated in example 8. Consider
now the following inconsistent instance of the database

Supply
C D1 I1
C D1 I3

and pose the querySupply(C;D1;z)?, asking for the items
supplied byC to D1. The answer from the database in-
stance isI1 andI3. There should be something wrong with
item I1, because itemI2 is not supplied. If we compute
now Tω[Supply(C;D1;z)], we obtain a set of queries that
is equivalent to the formula

Supply(C;D1;z)^ (Supply(C;D1; I2)_z 6= I1);

thus if we askTω[Supply(C;D1;z)], we obtain onlyI3 as a
correct answer.

Example 12. Consider now a student database.
Student(x;y;z) means thatx is the student number,y is the
student’s name, andz is the student’s address. The two fol-
lowing ICs state that the first argument is a key of the rela-
tion

8(x;y;z;u;v)(Student(x;y;z)^Student(x;u;v)� y= u);

8(x;y;z;u;v)(Student(x;y;z)^Student(x;u;v)� z= v):

In the standard format, these ICs take the form

8(x;y;z;u;v)(:Student(x;y;z)_

:Student(x;u;v)_y= u);

8(x;y;z;u;v)(:Student(x;y;z)_

:Student(x;u;v)_z= v):

The following rule can be generated

Student(x;y;z) 7�! Student(x;y;z)

f8(u;v)(:Student(x;u;v)_y= u);

8(u;v)(:Student(x;u;v)_z= v)g:

Given the database instance

Student Course
S1 N1 D1 S1 C1 G1

S1 N2 D1 S1 C2 G2

We pose the queryCourse(S1;y;z)?, asking for the names
of the courses and their grades of the student with number
S1, obtaining(C1;G1) and(C2;G2). If we pose the query
Tω[Course(S1;y;z)] = Course(S1;y;z), obviously we obtain
the same answer. Intuitively, in this case the T operator help
us establish that even when the name of the student with
numberS1, it is still possible to obtain the list of courses in
which he/she is registered.

If we pose the query 9(u;v)(Student(u;N1;v) ^
Course(u;x;y)), about the courses and grades for a
student with nameN1, to the database, we obtain
(C1;G1) and (C2;G2) again. Nevertheless, if we ask
Tω[9(u;v)(Student(u;N1;v)^Course(u;x;y))]?:

9(u;v)(Student(u;N1;v)^

8(y0;z0)(:Student(u;y0;z0)_y0 = N1)^

8(y0;z0)(:Student(u;y0;z0)_z0 = v)^Course(u;x;y))

we obtain the empty set of tuples. This answer is intuitively
correct, because the number of the student with nameN1 is
uncertain, and in consequence it is not possible to find out
in which courses he/she is registered. This is because the
Coursetable is indexed by the student number.

5. Conclusions and Further Work

This paper represents a first step in the development of
a whole research area we have identified around databases
that do not fully satisfy expected integrity constraints. In
the extended version of this paper we will present applica-
tions of the T operator to the problem of determining which
part of a partially consistent database does not have to be
repaired if one wants to take the database to a consistent
state. One can say that applying the T operator to a query is
equivalent to posing the original query to that “consistent”
part of the original database.

We are also working on the problems of: (1) Detect-
ing violations of integrity constraints by means of given
query languages. (2) Introducing degrees of partial satis-
factions of integrity constraints. (3) Developing a modal
approach to the notion of correct answer in partially consis-
tent databases (notice the modal look of definition 3). Con-
nections to modal approaches to database queries [4] and
deontic logic approaches to integrity constraint satisfaction
[5] are being established. Those results and full proofs for
the propositions will be given in the extended version of this
paper.

It seems interesting to establish connections of our re-
sults with some work already done by the database commu-
nity. Some related issues have to do with: (1) Querying a
database by means of restricted query languages [4, 6, 8].
(2) Characterizing consistency repair as done in [2].

Acknowledgments

This research has been partially supported by FONDE-
CYT Grants (1971304 & 1980945) and a NSF Grant (IRI-
9632870). Part of this research was done when the sec-
ond author was on sabbatical at the Technical University of
Berlin (CIS Group) with the financial support from DAAD
and DIPUC.

References

[1] U. Chakravarthy, J. Grant, and J. Minker. Logic-Based Ap-
proach to Semantic Query Optimization.ACM Transactions
on Database Systems, 15(2):162–207, 1990.

[2] M. Gertz. Diagnosis and Repair of Constraint Violations in
Database Systems. PhD thesis, Universit¨at Hannover, 1996.

[3] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity Con-
straints: Semantics and Applications. In J. Chomicki and
G. Saake, editors,Logics for Databases and Information Sys-
tems. Kluwer Academic Publishers, 1998.

[4] T. Imielinski. Relative Knowledge in Distributed Database
(Extended Abstract). InProc. Symposium on Principles of
Database Systems, PODS’87, pages 197–209, 1987.

[5] K. Kwast. A Deontic Approach to Database Integrity.Annals
of Mathematics and Artificial Intelligence, 9:205–238, 1993.

[6] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answer-
ing Queries Using Views. InProc. Symposiun on Principles
of Database Systems (PODS’95), pages 95–104. ACM Press,
1995.

[7] J.-M. Nicolas. Logic for Improving Integrity Checking in Re-
lational Data Bases.Acta Informatica, 18:227–253, 1982.

[8] A. Rajaraman, Y. Sagiv, and J. Ullman. Answering Queries
Using Templates with Binding Patterns. InProc. Symposiun
on Principles of Database Systems (PODS’95), pages 105–
112. ACM Press, 1995.

