
Ontology-Based Data Access Using Views

Juan F. Sequeda1, Marcelo Arenas2, and Daniel P. Miranker1

1 Department of Computer Science, The University of Texas at Austin
{jsequeda,miranker}@cs.utexas.edu

2 Department of Computer Science, PUC Chile
marenas@ing.puc.cl

1 Our Position

The OWL 2 QL profile, which is based on DL-LiteR, has been designed so that
query answering is possible using relational database technology via query rewrit-
ing. Unfortunately, given a query Q posed in terms of an OWL 2 QL ontology1

O, the size of the rewritten query, Qo, which can be evaluated directly on the
relational database, is worst case exponential w.r.t the size of Q and O [1]. This
means that the computation and evaluation of Qo can be costly. Recent research
focuses on creating rewriting algorithms that generatesQo with a smaller size [3].

In this paper, we propose a new approach to answering SPARQL queries
on OWL 2 QL ontologies over existing relationally stored data. Our proposal
is to replace answering queries via query rewriting with answering queries us-
ing views. Our position is that SQL infrastructure can be leveraged in order to
support effective SPARQL query answering on OWL 2 QL ontologies over ex-
isting relationally stored data. We present preliminary results that support our
position.

Our position is inspired by our previous work on Ultrawrap [5], a system that
can execute SPARQL queries at almost equivalent execution speed as its se-
mantically equivalent SQL queries. Previous experimental studies demonstrated
that existing approaches were several magnitudes slower. Our main insight was
to represent the relational data as RDF triples using views. SPARQL queries are
syntactically translated to SQL queries which operate on the views. We observed
that two relational optimizations are needed in order for relational database to
effectively execute SPARQL queries: detection of unsatisfiable conditions and
self-join elimination. Given this past history, we ask ourselves if we can apply
this same approach to answering SPARQL queries on OWL 2 QL ontologies.

We first present the status quo with a running example adapted from [3]. We
then present our proposed approach and show initial results that support our
position. Finally, we present the open issues and our next steps.

1 In this paper, we use the term OWL 2 QL ontology to refer only to a TBox. Therefore,
we assume that it only contains axioms.

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 262–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Ontology-Based Data Access Using Views 263

2 The Status Quo

The status quo of systems that answer queries over an OWL 2 QL ontology
mapped to a relational database, also known as Ontology-based Data Access
(OBDA), consists of the following input: an OWL 2 QL ontology O, a relational
database D and an initial mapping M from the database D to the ontology O.
Queries posed over the ontology O are answered in three steps:

1. Query Rewriting: given a conjunctive query Q, and the ontology O, compute
a union of conjunctive queries Qo, which is a rewriting of Q w.r.t O.

2. Query Unfolding: given the mapping M , and the rewritten query Qo, com-
pute a SQL query QSQL.

3. Query Evaluation: the SQL query QSQL is evaluated on the relational
database.

OBDA systems such as Quest [4] or Mastro [2] implement these three steps. Ad-
ditionally, Calvanese et al. [1] and Perez-Urbina et al. [3] present query rewriting
algorithms and part of systems such as QuOnto2, Owlgres3 and REQUIEM4.

Throughout this paper, we will use the following running example. Consider
the following OWL 2 QL ontology O with concepts Student, Professor and Per-
son, and the following axioms:

Student � Person

Professor � Person

Consider the following relational databaseD consisting of tables PROF(PID,NAME)
and STUD(SID,NAME), and consider a mapping M from the database D to the
ontology O defined as follows using Datalog notation:

Student(x)← STUD(x, y)

Professor(x)← PROF(x, y)

Now assume that Q(x) is the query Person(x) posed over O. The first step of the
methodology just described is query rewriting: given the query Q and ontology
O, Q is rewritten to Qo:

Qo(x) = Student(x) ∨ Professor(x)

The next step is query unfolding: given the mapping M and the rewritten query
Qo, generate a SQL query QSQL:

SELECT SID FROM STUD UNION ALL SELECT PID FROM PROF

Finally, query QSQL is sent to the RDBMS where it is evaluated. Note that
UNION ALL is used because it does not eliminate duplicate rows.

2 http://www.dis.uniroma1.it/quonto/
3 http://pellet.owldl.com/owlgres/
4 http://www.cs.ox.ac.uk/projects/requiem/



264 J.F. Sequeda, M. Arenas, and D.P. Miranker

3 Our Proposal: Answering Queries Using Views

Our proposal is to replace answering queries via query rewriting with answering
queries using views. We do this in two steps. First, we represent the mappings
using SQL views, which is a union of SQL queries. We call this view the Triple-
view. Second, we compile the axioms of the OWL 2 QL ontology into SQL queries
and add them to the Tripleview. Note that this is only done once and not for
each time a query is executed. With our approach, we avoid rewriting queries
at run time and let the relational database do the query unfolding. In order to
further explain our approach, consider the same running example: the OWL 2
QL ontology O, the relational database D and the initial mapping M shown in
Section 2. First, we represent the mapping M in the Tripleview:

CREATE VIEW Tripleview(s, p, o) AS

SELECT SID AS s, "rdf:type" AS p, "Student" AS o FROM STUD

UNION ALL

SELECT PID AS s, "rdf:type" AS p, "Professor" AS o FROM PROF

The next step is to compile the OWL 2 QL ontology axioms into SQL queries.
Following our example, we need to add two additional queries to the Tripleview,
generating the following:

CREATE VIEW Tripleview(s, p, o) AS

SELECT SID AS s, "rdf:type" AS p, "Student" AS o FROM STUD

UNION ALL

SELECT PID AS s, "rdf:type" AS p, "Professor" AS o FROM PROF

UNION ALL

SELECT SID AS s, "rdf:type" AS p, "Person" AS o FROM STUD

UNION ALL

SELECT PID AS s, "rdf:type" AS p, "Person" AS o FROM PROF

Everything up to now is done before any query is executed. After the Tripleview
is created, we can execute queries. For example, consider the query Q written in
SPARQL:

SELECT ?x WHERE { ?x rdf:type Person }

This query is then syntactically translated to a SQL query on the Tripleview
and evaluated directly on the RDBMS without any further processing:

SELECT s FROM Tripleview WHERE p = "rdf:type" AND o = "Person"

4 Does This Work in Practice?

To test if our approach works in practice, we created the example database and
implemented the Tripleview on Microsoft SQL Server and executed the query.
The resulting query plan is shown in Fig. 1.



Ontology-Based Data Access Using Views 265

Fig. 1. The physical query plan for our running example on Microsoft SQL Server

The logical query plan consists of the Tripleview with the union of four queries.
We observe that the physical query plan generated by SQL Server consists of a
union of two queries. Therefore, the SQL optimizer determined which queries in
the Tripleview were not going to satisfy the original query and transformed the
original logical query plan into the optimal physical plan shown in Fig. 1. This
transform is the detection of unsatisfiable conditions optimization. Additionally,
we observe that query QSQL generates the same query plan.

This preliminary result supports our position that by answering queries using
views, the SQL infrastructure can be leveraged to support effective SPARQL
query answering on OWL 2 QL ontologies over existing relationally stored data.
Notice that we are not claiming that query rewriting is not needed. On the con-
trary, we are trying to get the best of both worlds. For example, query rewriting
algorithms, such as the ones presented in [2,3], would need to be modified to
generate the views. Additionally, we need to investigate how much of OWL 2
QL can be represented in views. Our first findings show that any axioms that
is not of the form A � ∃R (i.e. sub-class, sub-property, equivalent class, equiva-
lent property, etc), can be represented in views. Nevertheless, the possibility of
representing existential axioms of the form A � ∃R depends on the ability of a
relational database to generate the equivalent of a blank node.

We are currently implementing this approach in Ultrawap and planning to
evaluate it against other OBDA systems.

References

1. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reason-
ing and efficient query answering in description logics: The dl-lite family. J. Autom.
Reason. 39(3), 385–429 (2007)

2. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The mastro system for ontology-based
data access. Semantic Web 2(1), 43–53 (2011)

3. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient Query Answering for OWL 2.
In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 489–504. Springer,
Heidelberg (2009)

4. Rodŕıguez-Muro, M., Calvanese, D.: Quest, a system for ontology based data access.
In: OWLED (2012)

5. Sequeda, J.F., Miranker, D.P.: Ultrawrap: Sparql execution on relational data. Tech-
nical Report TR-12-10, The University of Texas at Austin, Department of Computer
Sciences (2012)


	Ontology-Based Data Access Using Views
	Our Position
	The Status Quo
	Our Proposal: Answering Queries Using Views
	Does This Work in Practice?
	References




