
Towards Tractability of the Diversity ofQuery Answers:
Ultrametrics to the Rescue
MARCELO ARENAS, Pontificia Universidad Católica de Chile, Chile and RelationalAI, USA

TIMO CAMILLO MERKL, TU Wien, Austria

REINHARD PICHLER, TU Wien, Austria

CRISTIAN RIVEROS, Pontificia Universidad Católica de Chile, Chile

The set of answers to a query may be very large, potentially overwhelming users when presented with the

entire set. In such cases, presenting only a small subset of the answers to the user may be preferable. A

natural requirement for this subset is that it should be as diverse as possible to reflect the variety of the entire

population. To achieve this, the diversity of a subset is measured using a metric that determines how different

two solutions are and a diversity function that extends this metric from pairs to sets. In the past, several

studies have shown that finding a diverse subset from an explicitly given set is intractable even for simple

metrics (like Hamming distance) and simple diversity functions (like summing all pairwise distances). This

complexity barrier becomes even more challenging when trying to output a diverse subset from a set that is

only implicitly given (such as the query answers for a given query and a database). Until now, tractable cases

have been found only for restricted problems and particular diversity functions.

To overcome these limitations, we focus in this work on the notion of ultrametrics, which have been widely

studied and used in many applications. Starting from any ultrametric 𝑑 and a diversity function 𝛿 extending 𝑑 ,

we provide sufficient conditions over 𝛿 for having polynomial-time algorithms to construct diverse answers.

To the best of our knowledge, these conditions are satisfied by all the diversity functions considered in the

literature. Moreover, we complement these results with lower bounds that show specific cases when these

conditions are not satisfied and finding diverse subsets becomes intractable. We conclude by applying these

results to the evaluation of conjunctive queries, demonstrating efficient algorithms for finding a diverse subset

of solutions for acyclic conjunctive queries when the attribute order is used to measure diversity.

CCS Concepts: • Theory of computation→ Database theory.

Additional Key Words and Phrases: Query evaluation, diversity, conjunctive queries.

ACM Reference Format:
Marcelo Arenas, Timo Camillo Merkl, Reinhard Pichler, and Cristian Riveros. 2024. Towards Tractability of

the Diversity of Query Answers: Ultrametrics to the Rescue. Proc. ACM Manag. Data 2, 5 (PODS), Article 215
(November 2024), 26 pages. https://doi.org/10.1145/3695833

1 Introduction
The set of answers to a query may be very large, potentially overwhelming users when presented

with the entire set. In such cases, presenting only a small subset of the answers to the user may

be preferable. Ideally, the selected answers should give the user a good overview of the variety

Authors’ Contact Information: Marcelo Arenas, Pontificia Universidad Católica de Chile, Santiago, Chile and RelationalAI,

Berkeley, USA, marenas@uc.cl; Timo Camillo Merkl, TU Wien, Vienna, Austria, timo.merkl@tuwien.ac.at; Reinhard

Pichler, TU Wien, Vienna, Austria, reinhard.pichler@tuwien.ac.at; Cristian Riveros, Pontificia Universidad Católica de Chile,

Santiago, Chile, cristian.riveros@uc.cl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/11-ART215

https://doi.org/10.1145/3695833

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

https://doi.org/10.1145/3695833
https://doi.org/10.1145/3695833

215:2 Marcelo Arenas et al.

present in the complete set of answers. As was argued in [34], determining such a small subset by

sampling will, in general, not constitute a satisfactory solution to this problem, since it would most

probably miss interesting but rarely occurring answers. Instead, the goal should be to present to

the user a diverse subset of the answer space to reflect its variety.

This raises the question of how to define diversity among query results. The natural way of

defining the diversity of a set of elements (see, e.g., [17] for a whole framework on dealing with

diversity) is to first define the diversity of 2 elements by a metric (the “distance” function) and then

to appropriately extend it to arbitrary (finite) sets. Both, for the metric and for the generalization

to arbitrary sets, many choices exist and, as was mentioned in [36], it ultimately depends on the

application context which distance and diversity function is best suited.

We restrict ourselves here to the relational model. Hence, the answer to a query is a set of tuples

and we are interested in outputting a subset with a given size 𝑘 so as to maximize the diversity. A

natural and simple choice for the distance between two tuples is the Hamming distance (i.e., the

number of positions in which the two tuples differ), which was used e.g., in the analysis of the

diversity of query answers in [22]. A more nuanced point of view was taken in [33, 34], where an

ordering of the attributes is assumed and tuples are considered as more distant if they differ on

an attribute that comes earlier in the ordering. This idea was exemplified by a car-relation with

attributes make-model-color-year-description in this order. Hence, for instance, the query engine

would preferably output a subset of cars with different models rather than with different colors.

Actually, this distance function is an ultrametric, i.e., a metric d, that satisfies the strong triangle
inequality d(𝑎, 𝑐) ≤ max{d(𝑎,𝑏), d(𝑏, 𝑐)} for any three elements.

For the generalization of the distance to a diversity 𝛿 of sets, one can aggregate the pairwise

distances, for instance, by taking their sum or minimum (see, e.g., [17, 22, 33, 34]). In this work, we

also want to look at a more sophisticated diversity measure proposed by Weitzman in [36], which

we will refer to as 𝛿W. It is motivated by the goal of capturing the increase of diversity (measured

as the minimum distance from the already chosen elements) when yet another element is added.

Detailed formal definitions of all concepts mentioned here will be given in Section 2.

Aiming at a diverse subset of the answers to a query raises several computational problems. The

most basic problem is to actually evaluate the diversity function 𝛿 for a given set 𝑆 of tuples. Clearly,

this problem is easy to solve, if 𝛿 is defined by taking one of the standard aggregate functions sum

or min over some efficiently computable metric (such as the Hamming distance). However, if we

take the more sophisticated diversity measure 𝛿W proposed by Weitzman, this is not clear any more.

In fact, only an exponential algorithm was proposed in [36] for this task and it was left open, if a

polynomial-time algorithm exists. We will settle this open question by proving NP-hardness.

Our ultimate goal is to select a small subset (say, of size 𝑘 for given 𝑘 > 1) of the query answers

so as to maximize the diversity. When considering data complexity and restricting ourselves to

FO-queries, query evaluation is tractable and we may assume the entire set 𝑆 of query answers as

explicitly given. Now the goal is to find a subset 𝑆 ′ ⊆ 𝑆 of size 𝑘 such that 𝛿(𝑆 ′) is maximal. In [22],

it was shown that this task is NP-hard even for the simple setting where 𝛿 is defined as the sum or

as the minimum over the pairwise Hamming distances of the tuples. Taking the Weitzman diversity

clearly makes this task yet more complex. It is here that ultrametrics come to the rescue. Indeed,

we show tractability of the following problem: given a set 𝑆 of elements and integer 𝑘 > 1, find a

subset 𝑆 ′ of 𝑆 such that 𝛿(𝑆 ′) is maximal, where 𝛿 is a diversity function extending an ultrametric

and 𝛿 satisfies a certain monotonicity property we call weak subset-monotonicity. Moreover, we

show that even slightly relaxing the monotonicity property immediately leads to NP-hardness.

Things get yet more complex if we consider combined complexity. Since the set 𝑆 of query

answers can be exponentially big, we cannot afford to compute it upfront. In other words, 𝑆 is only

given implicitly by the database 𝐷 and query 𝑄 . But the goal remains the same: we want to find a

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:3

subset 𝑆 ′ of 𝑆 with ⋃︀𝑆 ′⋃︀ = 𝑘 that maximizes the diversity 𝛿(𝑆 ′). Since query evaluation is intractable

for conjunctive queries even without worrying about diversity, we now restrict the query language

to acyclic conjunctive queries. We then manage again to prove tractability for the task of finding a

subset 𝑆 ′ with maximal diversity, provided that 𝛿 is subset-monotone – a restriction slightly stronger

than weak subset-monotonicity but which is satisfied by 𝛿W, for example. Again we show tightness

of this tractability result by proving that without this stronger notion of monotonicity, the problem

is NP-hard. Finally, we also identify a kind of middle ground in terms of monotonicity of 𝛿 that

ensures fixed-parameter tractability when considering 𝑘 as parameter.

Structure of the paper. In Section 2, we introduce basic notions and formally define the computa-

tional problems studied here. The complexity of evaluating 𝛿W is studied in Section 3. Fundamental

(and well-known) properties of ultrametrics are recalled in Section 4. In Sections 5 and 6, we study

the problem of finding a subset 𝑆 ′ ⊆ 𝑆 maximizing 𝛿(𝑆 ′) for the cases where 𝑆 is given explicitly

or implicitly, respectively. In particular, in Section 6, we first define a general framework that

formalizes the notion of an implicitly given set 𝑆 equipped with an ultrametric. The general results

for the implicit setting are then studied in Section 7 for the concrete case of combined complexity

of query answering for acyclic conjunctive queries. We discuss related work in Section 8 and we

provide a conclusion and an outlook to future work in Section 9. Due to lack of space, proofs are

only sketched in the main body of the text. Full proofs of our membership results are provided in

the appendix. Full proofs of all results presented here are given in the full version of this paper [4].

2 Preliminaries

Sets and sequences. We denote by N the set of natural numbers, by Q the set of rational numbers,

and by Q≥0 the set of non-negative rational numbers. Given a set 𝐴, we denote by finite(𝐴) the set
of all non-empty finite subsets of 𝐴. For 𝑘 ∈ N, we say that 𝐵 ∈ finite(𝐴) is a 𝑘-subset if ⋃︀𝐵⋃︀ = 𝑘 . We

usually use 𝑎, 𝑏, or 𝑐 to denote elements, and 𝑎, ¯𝑏, or 𝑐 to denote sequences of such elements. For

𝑎 = 𝑎1, . . . , 𝑎𝑘 , we write 𝑎(︀𝑖⌋︀ ∶= 𝑎𝑖 to denote the 𝑖-th element of 𝑎 and ⋃︀𝑎⋃︀ ∶= 𝑘 to denote the length of

𝑎. Further, given a function 𝑓 we write 𝑓 (𝑎) ∶= 𝑓 (𝑎1), . . . , 𝑓 (𝑎𝑘) to denote the function applied to

each element of 𝑎.

Conjunctive queries. Fix a set D of data values. A relational schema 𝜎 (or just schema) is a pair

(ℛ, arity) whereℛ is a set of relation names and arity ∶ ℛ → N assigns each name to a number. An

𝑅-tuple of 𝜎 (or just a tuple) is a syntactic object 𝑅(𝑎1, . . . , 𝑎𝑘) such that 𝑅 ∈ ℛ, 𝑎𝑖 ∈ D for every 𝑖 ,

and 𝑘 = arity(𝑅). We will write 𝑅(𝑎) to denote a tuple with values 𝑎. A relational database 𝐷 over

𝜎 is a finite set of tuples over 𝜎 .

Fix a schema 𝜎 = (ℛ, arity) and a set of variables 𝒳 disjoint from D. A Conjunctive Query (CQ)

over 𝜎 is a syntactic structure of the form:

𝑄(𝑥) ← 𝑅1(𝑥1), . . . , 𝑅𝑚(𝑥𝑚) (†)

such that𝑄 denotes the answer relation and 𝑅𝑖 are relation names inℛ, 𝑥𝑖 is a sequence of variables
in 𝒳 , ⋃︀𝑥 ⋃︀ = arity(𝑄), and ⋃︀𝑥𝑖 ⋃︀ = arity(𝑅𝑖) for every 𝑖 ≤ 𝑚. Further, 𝑥 is a sequence of variables

appearing in 𝑥1, . . . , 𝑥𝑚 . We will denote a CQ like (†) by 𝑄 , where 𝑄(𝑥) and 𝑅1(𝑥1), . . . , 𝑅𝑚(𝑥𝑚)
are called the head and the body of 𝑄 , respectively. Furthermore, we call each 𝑅𝑖(𝑥𝑖) an atom of 𝑄 .

Let𝑄 be a CQ like (†), and 𝐷 be a database over the same schema 𝜎 . A homomorphism from𝑄 to

𝐷 is a function ℎ ∶ 𝒳 → D such that 𝑅𝑖(ℎ(𝑥𝑖)) ∈ 𝐷 for every 𝑖 ≤𝑚. We define the answers of 𝑄 over

𝐷 as the set of 𝑄-tuples

⎜𝑄⨆︁(𝐷) ∶= {𝑄(ℎ(𝑥)) ⋃︀ ℎ is a homomorphism from 𝑄 to 𝐷}.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:4 Marcelo Arenas et al.

Diversity setting. Let 𝒰 be an infinite set. We see 𝒰 as a universe of possible solutions and

𝑆 ∈ finite(𝒰) as a candidate finite set of solutions that cannot be empty. To determine the diversity

of 𝑆 , we first determine how different the pairs of elements are in 𝑆 , which is done through a metric.

A metric d over 𝒰 is a function d ∶ 𝒰 × 𝒰 → Q≥0 such that d(𝑎,𝑏) = 0 iff 𝑎 = 𝑏, d is symmetric (i.e.,

d(𝑎,𝑏) = d(𝑏,𝑎)), and d satisfies the triangle inequality (i.e., d(𝑎, 𝑐) ≤ d(𝑎,𝑏) + d(𝑏, 𝑐)). We define

the distance of an element 𝑎 ∈ 𝒰 to a set 𝑆 ∈ finite(𝒰) as d(𝑎, 𝑆) ∶= min𝑏∈𝑆 d(𝑎,𝑏).
Given a metric d, a diversity function 𝛿 extending d is a function 𝛿 ∶finite(𝒰) → Q≥0 such that

𝛿(𝑆) = 0 iff ⋃︀𝑆 ⋃︀ = 1, and 𝛿({𝑎,𝑏}) = d(𝑎,𝑏). Note that we see 𝛿 as a function that extends d from pairs

to sets, and that is 0 when the set has a single element (i.e., no diversity). Moreover, we impose the

restriction that 𝛿 should be closed under isomorphism. That is, if 𝑓 ∶ 𝒰 → 𝒰 is a bijective function

such that d(𝑎,𝑏) = d(𝑓 (𝑎), 𝑓 (𝑏)) for every 𝑎,𝑏 ∈ 𝒰 , then 𝛿(𝑆) = 𝛿(𝑓 (𝑆)) for every 𝑆 ∈ finite(𝒰).
As proposed in [17], one way of defining a diversity function 𝛿 for a given metric d over 𝒰 is to

define an aggregator 𝑓 that combines the pairwise distances. That is, we set 𝛿(𝑆) ∶= 𝑓 (d(𝑎,𝑏)𝑎,𝑏∈𝑆).
Common aggregators are sum and min, which give rise to the following diversity functions

extending an arbitrary metric d1:

𝛿sum(𝑆) ∶= ∑
𝑎,𝑏∈𝑆

d(𝑎,𝑏) and 𝛿min(𝑆) ∶= min

𝑎,𝑏∈𝑆 ∶𝑎≠𝑏
d(𝑎,𝑏).

A more elaborate diversity function is theWeitzman diversity function 𝛿W [36], which is recursively

defined as follows:

𝛿W(𝑆) ∶= max

𝑎∈𝑆
(𝛿W(𝑆 ∖ {𝑎}) + d(𝑎, 𝑆 ∖ {𝑎})) (1)

where 𝛿W({𝑎}) ∶= 0 is the base case. In [36], it is shown that 𝛿W satisfies several favorable properties.

For instance, in many application contexts, the “monotonicity of species" is desirable. That is, adding

an element (referred to as “species” in [36]) to a collection should increase its diversity. Now the

question is, by how much the diversity 𝛿 should increase. Analogously to the first derivative, it

seems plausible to request that

𝛿(𝑆) = 𝛿(𝑆 ∖ {𝑎}) + d(𝑎, 𝑆 ∖ {𝑎}) (2)

should hold for every 𝑎 ∈ 𝑆 . That is, the additional diversity achieved by adding element 𝑎 corre-

sponds to the distance of 𝑎 to its closest relative in 𝑆 ∖ {𝑎}. However, as is argued in [36], since this

property can, in general, not be satisfied for every element 𝑎, the diversity function 𝛿W provides a

reasonable approximation to Equation (2) by taking the maximum over all 𝑎 ∈ 𝑆 .
Diversity problems. When confronted with the task of selecting a diverse set of elements from an

(explicitly or implicitly) given set, we are mainly concerned with three problems – each of them

depending on a concrete diversity function 𝛿 , which in turn is defined over some universe 𝒰 of

elements. The most basic problem consists in computing the diversity for a given 𝑆 ∈ finite(𝒰):

Problem: DiversityComputation(︀𝛿⌋︀
Input: A finite set 𝑆 ⊆ 𝒰

Output: 𝛿(𝑆)

An additional source of complexity is introduced if the task is to find a subset of 𝑆 with a certain

diversity.

1
Note that, for 𝛿sum(𝑆), the distance between any two distinct elements 𝑎,𝑏 is contained twice in this sum, namely as

d(𝑎,𝑏) and d(𝑏,𝑎). We could avoid this by imposing a condition of the form 𝑎 < 𝑏 or by dividing the sum by 2. However,

this is irrelevant in the sequel and, for the sake of simplifying the notation, we have omitted such an addition.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:5

Problem: DiversityExplicit(︀𝛿⌋︀
Input: A finite set 𝑆 ⊆ 𝒰 and 𝑘 > 1

Output: arg max𝑆′⊆𝑆 ∶ ⋃︀𝑆′⋃︀=𝑘 𝛿(𝑆 ′)

In light of the previous problem, it is convenient to introduce the following notation: we call 𝑆 ′

with 𝑆 ′ ⊆ 𝑆 a “𝑘-diverse subset of 𝑆”, if 𝑆 ′ = arg max𝐴⊆𝑆 ∶ ⋃︀𝐴⋃︀=𝑘 𝛿(𝐴). In other words, the goal of the

DiversityExplicit(︀𝛿⌋︀ problem is to find a 𝑘-diverse subset of 𝑆 .

Things may get yet more complex, if the set 𝑆 ⊆ 𝒰 from which we want to select a subset with

maximal diversity is only “implicitly” given. For us, the most important example of such a setting

is when 𝑆 is the set of answer tuples to a given query 𝑄 (in particular, an acyclic CQ) over database

𝐷 and we consider combined complexity. Further settings will be introduced in Section 6. All these

settings have in common that 𝑆 might be exponentially big and one cannot afford to turn the

implicit representation into an explicit one upfront.

Problem: DiversityImplicit(︀𝛿⌋︀
Input: An implicit representation of a finite set 𝑆 ⊆ 𝒰 and 𝑘 > 1

Output: arg max𝑆′⊆𝑆 ∶ ⋃︀𝑆′⋃︀=𝑘 𝛿(𝑆 ′)

By slight abuse of notation, we will formulate intractability results on the three functional

problems introduced above in the form of “NP-hardness” results. Strictly speaking, we thus mean

the decision variants of the diversity problems, i.e., deciding if the diversity 𝛿(𝑆) is above a given
threshold 𝑡ℎ or if a set 𝑆 ′ ⊆ 𝑆 with 𝛿(𝑆 ′) ≥ 𝑡ℎ exists.

Complexity analysis of algorithms. For the implementation of our algorithms, we assume the

computational model of Random Access Machines (RAM) with uniform cost measure and addition

and subtraction as basic operations [1]. Further, in all the scenarios considered in this paper, a

metric d is defined over a countably infinite set 𝒰 , and the value d(𝑎,𝑏) is a non-negative rational
number for every 𝑎,𝑏 ∈ 𝒰 . Thus, we assume that the codomain of every metric d is the set Q≥0,

which in particular implies that we have a finite representation for each possible value of a metric

that can be stored in a fixed number of RAM registers. Moreover, although d is defined over an

infinite set, we will only need its values for a finite set, and we assume that d(𝑎,𝑏) can be computed

in constant time for any pair 𝑎, 𝑏 of elements in this set. Alternatively, one could multiply the

complexity of our algorithms by a parameter 𝑝 that encapsulates the cost of computing d(𝑎,𝑏)
or consider the metric as given by a look-up table at the expense of a quadratic blow-up of the

input. Neither of these alternatives would provide any additional insights while complicating the

notation or blurring the setting. We have therefore refrained from adopting one of them.

3 Computing diversity is hard
The most basic computational problem considered here is DiversityComputation(︀𝛿⌋︀. Clearly, for
𝛿sum and 𝛿min, this problem is efficiently solvable. Here, we study the complexity of computing

the diversity 𝛿(𝑆) of a subset 𝑆 ⊆ 𝒰 for the more elaborate Weitzman diversity measure 𝛿W.

In [36], it was shown that 𝛿W can be computed efficiently, if the distance function d it extends

is an ultrametric. However, for arbitrary distance functions, only an exponential algorithm was

presented and, implicitly,NP-membership of (the decision variant of) DiversityComputation(︀𝛿𝑊 ⌋︀
was proven. We show that this upper bound is tight by proving also NP-hardness of this problem.

Theorem 3.1. The DiversityComputation(︀𝛿W⌋︀ problem of the Weitzman diversity function 𝛿W

is NP-hard.

Proof Sketch. NP-hardness of (the decision variant of) the DiversityComputation(︀𝛿W⌋︀ prob-
lem is shown by reduction from the Independent Set problem. Let an arbitrary instance of

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:6 Marcelo Arenas et al.

Independent Set be given by a graph𝐺 = (𝑉 , 𝐸) and integer 𝑘 . Let ⋃︀𝑉 ⋃︀ = 𝑛. Then we set 𝑆 = 𝑉 and

𝑡ℎ = 𝑛 − 𝑘 + 2(𝑘 − 1), and we define the distance function d on 𝑆 as follows:

d(𝑢, 𝑣) =
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

0 if 𝑢 = 𝑣
1 if 𝑢 and 𝑣 are adjacent in 𝐺

2 otherwise

It is straightforward to verify that d is a metric and that 𝐺 has an independent set of size 𝑘 , if and

only if 𝛿W(𝑆) ≥ 𝑡ℎ. □

In this work, we are mainly interested in the diversity of sets of tuples – either from the

database itself or sets of tuples resulting from evaluating a query over the database. The above

NP-hardness proof can be adapted so as to get NP-hardness also for the (decision variant of the)

DiversityComputation(︀𝛿W⌋︀ problem if 𝑆 is a set of tuples, even in a very restricted setting:

Theorem 3.2. The DiversityComputation(︀𝛿W⌋︀ problem of the Weitzman diversity function 𝛿W

is NP-hard, even if 𝑆 is a set of tuples of arity 5 and we take the Hamming distance as distance between
any two tuples.

Proof Sketch. NP-hardness is again shown by reduction from the Independent Set problem.

As was shown in [2], the Independent Set problem remains NP-complete even if we restrict the

graphs to degree 3. Then the crux of the problem reduction is to construct, from a given graph with𝑛

vertices {𝑣1, . . . , 𝑣𝑛}, a set of 𝑛 tuples 𝑆 = {𝑡1, . . . , 𝑡𝑛}, such that, for the Hamming distance 𝑑 between

two tuples 𝑡𝑖 ≠ 𝑡 𝑗 , we have d(𝑡𝑖 , 𝑡 𝑗) = 4 if 𝑣𝑖 , 𝑣 𝑗 are adjacent in𝐺 and d(𝑡𝑖 , 𝑡 𝑗) = 5 otherwise. For this

step, we adapt a construction that was used in [22]. As threshold 𝑡ℎ, we set 𝑡ℎ = 4(𝑛 −𝑘) + 5(𝑘 − 1).
Analogously to Theorem 3.1, it can then be shown that 𝐺 has an independent set of size 𝑘 , if and

only if 𝛿W(𝑆) ≥ 𝑡ℎ. □

When moving from DiversityComputation(︀𝛿⌋︀ to the DiversityExplicit(︀𝛿⌋︀ problem, of

course, the complexity is at least as high. So for the Weitzman diversity function 𝛿W, the in-

tractability clearly carries over. However, in case of the DiversityExplicit(︀𝛿⌋︀ problem, even

simpler diversity settings lead to intractability. More specifically, it was shown in [22, 23] that the

DiversityExplicit(︀𝛿⌋︀ problem2
is NP-hard even in the simple setting where 𝑆 is a set of tuples

of arity 5, considering the Hamming distance and one of the simple diversity functions 𝛿sum or

𝛿min. Therefore, in [22], the parameterized complexity of this problem was considered (with 𝑘 as

parameter) and the DiversityExplicit(︀𝛿⌋︀ problem was shown to be fixed-parameter tractable,

when 𝑆 is a set of tuples, considering the Hamming distance and very general diversity functions 𝛿

satisfying a certain monotonicity property.

Clearly, for the DiversityImplicit(︀𝛿⌋︀ problem, things get yet more complex. Indeed, unless

FPT =W(︀1⌋︀, fixed-parameter tractability was ruled out in [22] by showing W(︀1⌋︀-hardness for the
setting where 𝑆 is the set of answers to an acyclic CQ, considering Hamming distance and one of

the simple diversity functions 𝛿sum or 𝛿min. On the positive side, XP-membership was shown for

this setting.

In the remainder of this work, we will consider ultrametrics as an important special case of

distance functions. It will turn out that they allow us to prove several positive results for otherwise

hard problems. For instance, the DiversityImplicit(︀𝛿⌋︀ problem becomes tractable in this case

even when we consider the Weitzman diversity measure 𝛿W.

2
Strictly speaking, the problem considered there was formulated as the task of finding a set of 𝑘 answer tuples to an acyclic

CQ 𝑄 over a database 𝐷 with diversity ≥ 𝑡ℎ. NP-hardness was shown for data complexity, which means that we may

assume that the set 𝑆 of answer tuples is explicitly given since, with polynomial-time effort, one can compute 𝑆 .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:7

CARS

Make Model Color Year
𝑡1 Honda Civic Green 2007

𝑡2 Honda Civic Black 2007

𝑡3 Honda Civic Black 2006

𝑡4 Honda Accord Blue 2007

𝑡5 Toyota Corolla Black 2007

𝑡6 Toyota Corolla Blue 2007

(a)

{𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6}

{𝑡1, 𝑡2, 𝑡3, 𝑡4}

{𝑡1, 𝑡2, 𝑡3}

{𝑡1} {𝑡2, 𝑡3}

{𝑡2} {𝑡3}

{𝑡4}

{𝑡5, 𝑡6}

{𝑡5} {𝑡6}

1⇑2

1⇑4 1⇑8

1⇑8

1⇑16

(b)

Fig. 1. On the left, a relation CARS where each tuple is a car model. On the right, the ultrametric tree of the
ultrametric u

rel
over the tuples 𝑆 in CARS. On one side of each ball 𝐵 (in grey) we display its radius r𝑆(𝐵).

4 Ultrametrics to the rescue
In this section, we recall the definition of an ultrametric and present some of its structural properties.

The results presented here are well-known in the literature of ultrametric spaces. Nevertheless, they

are crucial to understand the algorithms for diversity measures shown in the following sections.

We provide proofs of these properties in [4].

Ultrametrics. Let 𝒰 be a possibly infinite set. An ultrametric u over 𝒰 is a metric over 𝒰 that

additionally satisfies the strong triangle inequality:

u(𝑎, 𝑐) ≤ max{u(𝑎,𝑏),u(𝑏, 𝑐)}.
We use d to denote a metric and u to denote an ultrametric, thereby making it explicit that we are

using an ultrametric.

As an example, consider the following ultrametric for tuples in a relational database with

schema 𝜎 . Let 𝒰 be the set of all tuples of 𝜎 . Define the metric u
rel

such that u
rel
(𝑅(𝑎), 𝑅(𝑎)) = 0,

u
rel
(𝑅(𝑎), 𝑆(¯𝑏)) = 1, and u

rel
(𝑅(𝑎), 𝑅(𝑎′)) = 2

−𝑖
with 𝑖 = min{ 𝑗 ⋃︀ 𝑎(︀ 𝑗⌋︀ ≠ 𝑎′(︀ 𝑗⌋︀}, for arbitrary tuples

𝑅(𝑎), 𝑅(𝑎′), and 𝑆(¯𝑏) of 𝜎 with 𝑅 ≠ 𝑆, 𝑎 ≠ 𝑎′. In other words, the distance is 1 if tuples comes from

different relations, and otherwise 2
−𝑖

such that 𝑖 is the first position where (the arguments of) the

tuples differ. One can check that u
rel

is an ultrametric since, for arbitrary tuples 𝑅(𝑎), 𝑅(¯𝑏), 𝑅(𝑐)
such that 𝑖 is the first position where 𝑅(𝑎) and 𝑅(𝑐) differ, it holds that 𝑅(𝑎) and 𝑅(¯𝑏) differ at
position 𝑖 or 𝑅(¯𝑏) and 𝑅(𝑐) differ at position 𝑖 , so that

u
rel
(𝑅(𝑎), 𝑅(𝑐)) ≤ max{u

rel
(𝑅(𝑎), 𝑅(¯𝑏)),u

rel
(𝑅(¯𝑏), 𝑅(𝑐))}.

Similarly, the strong triangle inequality holds for tuples of different relations.

Example 4.1. Consider the following running example which is a simplified version taken

from [33, 34] where u
rel

is used as a metric. In Figure 1a, we show the relation CARS that contains

car models with the brand (i.e., “Make”), model, color, and year (in that order). Each row represents

a tuple and 𝑡𝑖 is the name given to refer to the 𝑖-th tuple. Then, one can check that u
rel
(𝑡1, 𝑡5) = 1⇑2

given that 𝑡1 is made by Honda and 𝑡5 by Toyota. Similarly, u
rel
(𝑡1, 𝑡2) = 1⇑8 given that 𝑡1 and 𝑡2

differ in the color, that is, at position 3 and, thus, u
rel
(𝑡1, 𝑡2) = 2

−3
. □

Structure of ultrametric spaces over finite sets. Ultrametrics form a class of well-studied metric

spaces, which have useful structural properties. For instance, if d in Equation (2) from Section 2 is

an ultrametric, then that equation holds for every 𝑎 ∈ 𝑆 . Moreover, every three elements form an

isosceles triangle, namely, for every 𝑎,𝑏, 𝑐 ∈ 𝒰 it holds that u(𝑎,𝑏) = u(𝑎, 𝑐), or u(𝑎,𝑏) = u(𝑏, 𝑐), or
u(𝑎, 𝑐) = u(𝑏, 𝑐). In particular, this implies some well-structured hierarchy on all balls centered at

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:8 Marcelo Arenas et al.

elements of a finite set, that we introduce next. Fix an ultrametric u ∶ 𝒰 × 𝒰 → Q≥0 and fix a finite

set 𝑆 ⊆ 𝒰 . For every 𝑎 ∈ 𝑆 and 𝑟 ∈ Q≥0, let:

ℬ𝑆(𝑎, 𝑟) ∶= {𝑏 ∈ 𝑆 ⋃︀ u(𝑎,𝑏) ≤ 𝑟}.

That is, ℬ𝑆(𝑎, 𝑟) is the (closed) ball centered at 𝑎 with radius 𝑟 . Let ℬ𝑆 = {ℬ𝑆(𝑎, 𝑟) ⋃︀ 𝑎 ∈ 𝑆 ∧ 𝑟 ∈ Q≥0}
be the set of all balls of u over 𝑆 . Given that 𝑆 is finite, ℬ𝑆 is finite as well. Moreover, the set ℬ𝑆
follows a nested structure given by the following standard properties of ultrametrics.

Property 1. (a) For every 𝐵1, 𝐵2 ∈ ℬ𝑆 , it holds that 𝐵1 ∩ 𝐵2 = ∅ or 𝐵1 ⊆ 𝐵2 or 𝐵2 ⊆ 𝐵1.

(b) If u(𝑎1, 𝑎2) ≤ 𝑟 , then ℬ𝑆(𝑎1, 𝑟) = ℬ𝑆(𝑎2, 𝑟).

Property 1(a) implies a nested structure among balls inℬ𝑆 that we can represent as a tree structure
as follows. First, for every 𝐵 ∈ ℬ𝑆 , define the set:

parent(𝐵) ∶= {𝐵′ ∈ ℬ𝑆 ⋃︀ 𝐵 ⊊ 𝐵′ ∧ ¬∃𝐵′′ ∈ ℬ𝑆 ∶ 𝐵 ⊊ 𝐵′′ ⊊ 𝐵′}.

Since (ℬ𝑆 ,⊆) is a partial order over a finite set, parent(𝐵) is non-empty for every 𝐵 ≠ 𝑆 . Moreover,

by Property 1(a), we have that parent(𝐵) has at most one element. Then, for every 𝐵 ∈ ℬ𝑆 ∖ {𝑆}
we can write parent(𝐵) to denote this single element.

We define the ultrametric tree of u over 𝑆 as the graph 𝒯𝑆 = (𝑉𝑆 , 𝐸𝑆) such that 𝑉𝑆 ∶= ℬ𝑆 and

𝐸𝑆 ∶= {(parent(𝐵), 𝐵) ⋃︀ 𝐵 ∈ ℬ𝑆 ∖ {𝑆}}.

Given that (ℬ𝑆 ,⊆) is a partial order and every 𝐵 has at most one incoming edge, we have that 𝒯𝑆 is a
(directed) tree and 𝑆 is the root of this tree. Therefore, we can write children(𝐵) = {𝐵′ ⋃︀ (𝐵, 𝐵′) ∈ 𝐸𝑆}
to denote the children of 𝐵 in 𝒯𝑆 . Note that 𝐵 is a leaf in the tree 𝒯𝑆 iff 𝐵 = {𝑎} for some 𝑎 ∈ 𝑆 .
Further, if ⋃︀𝐵⋃︀ ≥ 2, then children(𝐵) forms a partition of 𝐵 by Property 1(a).

Example 4.2. Let 𝑆 be the set of all tuples in the relation CARS of Example 4.1. In Figure 1b, we

display the ultrametric tree of u
rel

over 𝑆 . One can check in this figure that each leaf contains a

single tuple, and the children of each ball form a partition. □

It will be also convenient to relate the distance between elements in 𝑆 with the radius of the balls

in ℬ𝑆 . For this purpose, for every 𝐵 ∈ ℬ𝑆 we define its radius as:

r𝑆(𝐵) ∶= max{u(𝑎,𝑏) ⋃︀ 𝑎,𝑏 ∈ 𝐵}.

Notice that r𝑆(𝐵) is well defined since 𝐵 is a finite set. By Property 1(b), we have that 𝐵 =
ℬ𝑆(𝑎, r𝑆(𝐵)) for every ball 𝐵 ∈ ℬ𝑆 and point 𝑎 ∈ 𝐵. Hence, in what follows, we can use any

𝑎 ∈ 𝐵 as the center of the ball 𝐵.

Another crucial property of the radius of 𝐵 is that it determines the distance between elements

of different children of 𝐵 in 𝒯𝑆 as follows.

Property 2. Let 𝐵1, 𝐵2 ∈ children(𝐵)with 𝐵1 ≠ 𝐵2. Then u(𝑎1, 𝑎2) = r𝑆(𝐵) for every 𝑎1 ∈ 𝐵1, 𝑎2 ∈ 𝐵2.

Example 4.3. In the ultrametric tree of Figure 1b we display the radius of each ball. One can

check that the root node 𝑆 = {𝑡1, . . . , 𝑡6} satisfies that r𝑆(𝑆) = 1⇑2 and u
rel
(𝑡, 𝑡 ′) = 1⇑2 for every

𝑡 ∈ {𝑡1, . . . , 𝑡4} and 𝑡 ′ ∈ {𝑡5, 𝑡6}. Hence, Property 2 holds in this case. □

By Properties 1 and 2, the ultrametric tree 𝒯𝑆 and the radius function r𝑆 completely determine

the ultrametric over a finite set 𝑆 and they will be the starting point for our algorithms. By the

following property, we can always construct both in quadratic time over the size of ⋃︀𝑆 ⋃︀.

Property 3. Given an ultrametric u and a finite set 𝑆 , we can construct 𝒯𝑆 and r𝑆 in 𝑂(⋃︀𝑆 ⋃︀2).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:9

Property 3 above can be easily seen by making use of the classical result that a minimum-weight

spanning tree 𝒯 of a graph 𝐺 = (𝑆, 𝑆 × 𝑆), where u expresses the edge weight, can be computed in

time 𝑂(⋃︀𝑆 ⋃︀2) and the fact that 𝒯𝑆 and r𝑆 can be easily computed from 𝒯 . On the other hand, it is

also easy to see that, in general, one cannot compute the ultrametric tree 𝒯𝑆 in time 𝑜(⋃︀𝑆 ⋃︀2). Indeed,
we just have to consider an ultrametric on a set 𝑆 = {𝑎1, . . . , 𝑎𝑛} where only one pair (𝑎𝑖 , 𝑎 𝑗) of
elements has distance 1 and all other pairs have distance 2. Then one cannot compute 𝒯𝑆 and r𝑆

without finding this pair (𝑎𝑖 , 𝑎 𝑗).

5 Ultrametrics for explicit representation
In this section, we present our first algorithmic results for the DiversityExplicit(︀𝛿⌋︀ problem,

i.e., the problem of finding a 𝑘-diverse subset of a finite set 𝑆 given a diversity function 𝛿 of an

ultrametric u. Here, we assume that 𝑆 is represented explicitly, namely, 𝑆 is given as a finite list

𝑎1, . . . , 𝑎𝑛 . In order to find tractable scenarios for the explicit case, we introduce the notion of

subset-monotonicity for diversity functions.

Definition 5.1 (Subset-monotonicity). A diversity function 𝛿 extending a metric d over a universe

𝒰 is said to be subset-monotone if, and only if, for every 𝐴,𝐵, 𝐵′ ⊆ 𝒰 such that 𝐵 = {𝑏1, . . . , 𝑏ℓ},
𝐵′ = {𝑏′

1
, . . . , 𝑏′ℓ}, 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵′ = ∅, 𝛿(𝐵) ≤ 𝛿(𝐵′), and d(𝑎,𝑏𝑖) ≤ d(𝑎,𝑏′𝑖) for every 𝑎 ∈ 𝐴 and

𝑖 ∈ {1, . . . , ℓ}, it holds that 𝛿(𝐴 ∪ 𝐵) ≤ 𝛿(𝐴 ∪ 𝐵′).
Subset-monotonicity captures the natural intuition that, if we replace 𝐵 with 𝐵′ such that 𝐵′ is

at least as diverse as 𝐵 and 𝐵′ is at least as from 𝐴 as 𝐵 is, then 𝐴 ∪ 𝐵′ is at least as diverse as 𝐴 ∪ 𝐵.

We observe that, for ultrametrics, all diversity functions from Section 2 are subset-monotone. The

diversity functions 𝛿sum and 𝛿min have this property even for arbitrary metrics.

Proposition 5.2. The diversity functions 𝛿sum and 𝛿min are subset-monotone no matter the metric
they extend. If 𝛿W extends an ultrametric, then it is also subset-monotone. If 𝛿W extends an arbitrary
metric, then it is, in general, not subset-monotone.

Interestingly, if 𝛿 is a subset-monotone diversity function extending an ultrametric u, then we

can always find a 𝑘-diverse subset of a finite set 𝑆 efficiently. In fact, it is possible to prove this

result even if we consider a weaker notion of subset-monotonicity.

Definition 5.3 (Weak subset-monotonicity). A diversity function 𝛿 extending a metric d over a

universe 𝒰 is said to be weakly subset-monotone if, and only if, for every 𝐴,𝐵, 𝐵′ ⊆ 𝒰 such that

𝐵 = {𝑏1, . . . , 𝑏ℓ}, 𝐵′ = {𝑏′1, . . . , 𝑏′ℓ},𝐴∩𝐵 = 𝐴∩𝐵′ = ∅, 𝛿(𝐵) ≤ 𝛿(𝐵′) and d(𝑎,𝑏𝑖) = d(𝑎,𝑏′𝑖) for every
𝑎 ∈ 𝐴 and 𝑖 ∈ {1, . . . , ℓ}, it holds that 𝛿(𝐴 ∪ 𝐵) ≤ 𝛿(𝐴 ∪ 𝐵′).

In otherwords, if we replace𝐵with𝐵′ such that𝐵′ is at least as diverse as𝐵 and both have the same
pairwise distance to𝐴, then𝐴∪𝐵′ is at least as diverse as𝐴∪𝐵. Note that this weaker version is almost

verbatim from subset monotonicity, but with d(𝑎,𝑏𝑖) ≤ d(𝑎,𝑏′𝑖) replaced by d(𝑎,𝑏𝑖) = d(𝑎,𝑏′𝑖).
Clearly, subset-monotonicity implies weak subset-monotonicity but not vice versa.

Theorem 5.4. Let 𝛿 be a weakly subset-monotone diversity function extending an ultrametric u.
Then DiversityExplicit(︀𝛿⌋︀ can be solved in time 𝑂(𝑘2 ⋅ 𝑓𝛿(𝑘) ⋅ ⋃︀𝑆 ⋃︀ + ⋃︀𝑆 ⋃︀2) where 𝑂(𝑓𝛿(𝑘)) is the
time required to compute 𝛿 over a set of size 𝑘 .

Note that 𝑓𝛿(𝑘) ≤ 𝑘2
for 𝛿sum, 𝛿min, and 𝛿W (when extending an ultrametric), so we conclude

from Theorem 5.4 that the problem DiversityExplicit(︀𝛿⌋︀ can be solved in polynomial time for

these fundamental diversity functions.

Proof Sketch of Theorem 5.4. The main ideas of the algorithm for Theorem 5.4 are the fol-

lowing. Let 𝑆 be a finite subset of the universe 𝒰 , u an ultrametric over 𝒰 , and 𝛿 a weakly subset-

monotone diversity function extending u. By Proposition 3, we can construct an ultrametric tree

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:10 Marcelo Arenas et al.

𝒯𝑆 of 𝑆 in time 𝑂(⋃︀𝑆 ⋃︀2). For the sake of simplification, assume that 𝒯𝑆 is a binary tree. Otherwise,

one can easily extend the following ideas to the non-binary case. For each vertex 𝐵 (i.e., a ball) of

𝒯𝑆 , we maintain a function C𝐵 ∶ {0, . . . ,min{𝑘, ⋃︀𝐵⋃︀}} → 2
𝐵
where C𝐵(𝑖) is an 𝑖-diverse subset of 𝐵.

That is, for every 𝑖 ∈ {0, . . . ,min{𝑘, ⋃︀𝐵⋃︀}} we have C𝐵(𝑖) ∶= arg max𝐴⊆𝐵∶⋃︀𝐴⋃︀=𝑖 𝛿(𝐴). Clearly, if we
can compute C𝑆 for the root 𝑆 of 𝒯𝑆 , then C𝑆(𝑘) is a 𝑘-diverse subset for 𝑆 .
The algorithm follows a dynamic programming approach, computing C𝐵 for each 𝐵 ∈ ℬ𝑆 in a

bottom-up fashion over 𝒯𝑆 . For every ball 𝐵, we can easily check that C𝐵(0) = ∅ and C𝐵(1) = {𝑎}
for some 𝑎 ∈ 𝐵. In particular, C{𝑎} = {0 ↦ ∅, 1 ↦ {𝑎}} is our base case for every leaf {𝑎} of

𝒯𝑆 . For an inner vertex 𝐵 of 𝒯𝑆 , the process is a bit more involved. Let 𝐵1 and 𝐵2 be the two

children of 𝐵 in 𝒯𝑆 and assume that we have already computed C𝐵1
and C𝐵2

. We claim that, for

every 𝑖 ∈ {0, . . . ,min{𝑘, ⋃︀𝐵⋃︀}}, we can calculate C𝐵(𝑖) as C𝐵(𝑖) = C𝐵1
(𝑖1) ∪C𝐵2

(𝑖2), where 𝑖1, 𝑖2 are
obtained as follows:

(𝑖1, 𝑖2) = arg max

(𝑗1, 𝑗2)∶𝑗1+𝑗2=𝑖
𝛿(C𝐵1

(𝑗1) ∪C𝐵2
(𝑗2)).

Intuitively, when maximizing diversity with 𝑖 elements of 𝐵, one must try all combinations of a

𝑗1-diverse subset from 𝐵1 and a 𝑗2-diverse subset from 𝐵2, such that 𝑖 = 𝑗1 + 𝑗2 holds. That is, the

best elements to pick from 𝐵1 and 𝐵2 are found in C𝐵1
and C𝐵2

, respectively.

To see that the claim holds, let 𝐴 be a subset of 𝐵 with 𝑖-elements maximizing 𝛿(𝐴). Define
𝐴1 ∶= 𝐴 ∩ 𝐵1 and 𝐴2 ∶= 𝐴 ∩ 𝐵2, and their sizes 𝑖1 ∶= ⋃︀𝐴1⋃︀ and 𝑖2 ∶= ⋃︀𝐴2⋃︀, respectively. Due to the

optimality of C𝐵1
, we know that 𝛿(𝐴1) ≤ 𝛿(C𝐵1

(𝑖1)). Further, u(𝑎1, 𝑎2) = u(𝑎′
1
, 𝑎2) = r𝑆(𝐵) for

every 𝑎1 ∈ 𝐴1, 𝑎
′
1
∈ C𝐵1

(𝑖1), 𝑎2 ∈ 𝐴2 by Property 2. Then the conditions of weak subset-monotonicity

are satisfied and 𝛿(𝐴1 ∪𝐴2) ≤ 𝛿(C𝐵1
(𝑖1) ∪𝐴2). Following the same argument, we can conclude

that 𝛿(C𝐵1
(𝑖1) ∪𝐴2) ≤ 𝛿(C𝐵1

(𝑖1) ∪C𝐵2
(𝑖2)), proving that C𝐵1

(𝑖1) ∪C𝐵2
(𝑖2) is optimal.

By the previous ideas, the desired algorithm with time complexity 𝑂(𝑘2 ⋅ 𝑓𝛿(𝑘) ⋅ ⋃︀𝑆 ⋃︀ + ⋃︀𝑆 ⋃︀2) for
solving the DiversityExplicit(︀𝛿⌋︀ problem follows. □

By Theorem 5.4, we get the following result for finding 𝑘-diverse outputs of CQ query evaluation,

where 𝑓𝑄(𝐷) ≤ ⋃︀𝐷 ⋃︀⋃︀𝑄 ⋃︀.

Corollary 5.5. Let u be an ultrametric over tuples, 𝛿 be a weakly subset-monotone diverse function
extending u, and 𝑄 be a fixed CQ (i.e., data complexity). Given a relational database 𝐷 , and a value
𝑘 (in unary), we can compute a 𝑘-diverse subset of ⎜𝑄⨆︁(𝐷) with respect to 𝛿 in time 𝑂(𝑘2 ⋅ 𝑓𝛿(𝑘) ⋅
⋃︀⎜𝑄⨆︁(𝐷)⋃︀ + ⋃︀⎜𝑄⨆︁(𝐷)⋃︀2 + 𝑓𝑄(𝐷)) where 𝑓𝑄(𝐷) is the time required to evaluate 𝑄 over 𝐷 .

An open question is whether we can extend Theorem 5.4 beyond weakly subset-monotone

diversity functions (extending ultrametrics). We provide here a partial answer by focusing on

monotone diversity functions.

Definition 5.6 (Monotonicity). A diversity function 𝛿 extending a metric d is said to bemonotone if,
and only if, for every𝐴,𝐴′ ⊆ 𝒰 such that𝐴 = {𝑎1, . . . , 𝑎ℓ},𝐴′ = {𝑎′1, . . . , 𝑎′ℓ}, and d(𝑎𝑖 , 𝑎 𝑗) ≤ d(𝑎′𝑖 , 𝑎′𝑗)
for every 𝑖, 𝑗 ∈ {1, . . . , ℓ}, it holds that 𝛿(𝐴) ≤ 𝛿(𝐴′).

Monotone diversity functions were considered in [22] as a general class of natural diversity

functions. In the next result, we show that monotonicity of the diversity function 𝛿 extending some

ultrametric is, in general, not enough to make the DiversityExplicit(︀𝛿⌋︀ problem tractable.

Theorem 5.7. The DiversityExplicit(︀𝛿⌋︀ problem is NP-hard even for a monotone, efficiently
computable diversity function 𝛿 extending an ultrametric.

That is, the previous result implies that there are monotone diversity functions beyond the

weakly subset-monotone class where the algorithmic strategy of Theorem 5.4 cannot be used.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:11

6 Ultrametrics for implicit representations
We move now to study the case when 𝑆 is represented implicitly. Our motivation for implicit

representations is to model the query evaluation setting: we receive as input a query 𝑄 and a

database 𝐷 , and we want to compute a 𝑘-diverse subset of 𝑆 = ⎜𝑄⨆︁(𝐷). The main challenge is that

𝑆 could be of exponential size concerning ⋃︀𝑄 ⋃︀ and ⋃︀𝐷 ⋃︀; namely, 𝑆 is implicitly encoded by 𝑄 and 𝐷 ,

and it is not efficient first to compute 𝑆 to find a 𝑘-diverse subset of 𝑆 . To formalize this setting

in general, given a universe 𝒰 , we say that an implicit schema over 𝒰 is a tuple (ℐ, ⎜⋅⨆︁) where ℐ
is a set of objects called implicit representations, and ⎜⋅⨆︁ is a function that maps every implicit

representation 𝐼 ∈ ℐ to a finite subset of 𝒰 . Further, we assume the existence of a size function

⋃︀ ⋅ ⋃︀ ∶ ℐ → N that represents the size ⋃︀𝐼 ⋃︀ of each implicit representation 𝐼 ∈ ℐ . For example, ℐ can be all

pairs (𝑄,𝐷) where 𝑄 is a CQ and 𝐷 is a relational database, ⎜⋅⨆︁ maps each pair (𝑄,𝐷) to ⎜𝑄⨆︁(𝐷),
and ⋃︀(𝑄,𝐷)⋃︀ = ⋃︀𝑄 ⋃︀ + ⋃︀𝐷 ⋃︀. Note that we do not impose any restriction on the number of elements of

⎜𝐼⨆︁, so it can be arbitrarily large with respect to ⋃︀𝐼 ⋃︀. Our goal in this section is to compute efficiently,

given an implicit representation 𝐼 ∈ ℐ and 𝑘 > 1, a 𝑘-diverse subset of ⎜𝐼⨆︁ with respect to a diversity

function 𝛿 extending an ultrametric u.
Given this general scenario, we need a way to navigate through the elements of ⎜𝐼⨆︁. In particular,

we need a way to navigate the ultrametric tree 𝒯⎜𝐼⨆︁ of u over ⎜𝐼⨆︁. Like ⎜𝐼⨆︁, 𝒯⎜𝐼⨆︁ could be arbitrarily

large with respect to ⋃︀𝐼 ⋃︀, so it could be unfeasible to construct 𝒯⎜𝐼⨆︁ explicitly. For this reason, we will
assume that our implicit schemas admit some efficient algorithms for traversing ultrametric trees.

Formally, an implicit ultrametric tree for an implicit schema (ℐ, ⎜⋅⨆︁) consists of three algorithms

(Root, Children, Member) such that, given an implicit representation 𝐼 ∈ ℐ and a ball 𝐵 ∈ ℬ⎜𝐼⨆︁:
(1) Root(𝐼) computes the root of 𝒯⎜𝐼⨆︁ in polynomial time with respect to ⋃︀𝐼 ⋃︀;
(2) Children(𝐼 , 𝐵) enumerates all children of 𝐵 in 𝒯⎜𝐼⨆︁ with polynomial delay w.r.t. ⋃︀𝐼 ⋃︀; and
(3) Member(𝐼 , 𝐵) outputs one solution in 𝐵 in polynomial time with respect to ⋃︀𝐼 ⋃︀.

Further, when we say that a method receives a ball 𝐵 as input or enumerates 𝐵 as output, it means

an ID representing the ball 𝐵. Recall that 𝐵 ⊆ ⎜𝐼⨆︁ and then 𝐵 could be large with respect to ⋃︀𝐼 ⋃︀. For
this reason, methods Root(𝐼) and Children(𝐼 , 𝐵) output IDs representing balls in ℬ⎜𝐼⨆︁, that one
later uses to call Children and Member. Here, we assume that each ID has the size of one register of

the RAM or a small number of registers that one can bound by some parameter on 𝐼 (e.g., the arity

of query answers if (ℐ, ⎜⋅⨆︁) models the query evaluation setting). For example, in the next section

we show that such a representation exists in the case of acyclic CQs. Regarding performance, we

say that we can compute an implicit ultrametric tree in time𝑂(𝑓𝒯 (𝐼)), for some function 𝑓𝒯 , if the
running time of Root and Member, and the delay of Children are in 𝑂(𝑓𝒯 (𝐼)). Note that we can
always assume that 𝑓𝒯 (𝐼) ≤ ⋃︀𝐼 ⋃︀ℓ for some constant ℓ .

Unlike the results presented in Section 5, there is a difference in the complexity of the prob-

lem DiversityImplicit(︀𝛿⌋︀ depending on whether a diversity function is subset-monotone or

weakly subset-monotone. First, it is possible to show that DiversityImplicit(︀𝛿⌋︀ is tractable when
restricted to the class of subset-monotone diversity functions.

Theorem 6.1. Let (ℐ, ⎜⋅⨆︁) be an implicit schema and u an ultrametric over a common universe
𝒰 that admit an implicit ultrametric tree, and 𝛿 be a subset-monotone diversity function extend-
ing u. Further, assume that the running time of computing 𝛿 over a 𝑘-subset of 𝒰 is bounded by
𝑂(𝑓𝛿(𝑘)), and we can compute the implicit ultrametric tree in time 𝑂(𝑓𝒯 (𝐼)). Then, the problem
DiversityImplicit(︀𝛿⌋︀ can be solved in time 𝑂(𝑘 ⋅ 𝑓𝒯 (𝐼) + 𝑘2 ⋅ 𝑓𝛿(𝑘)).

Proof sketch. To achieve this run time, we employ Algorithm 1. This algorithm assumes a

fixed implicit representation (ℐ, ⎜⋅⨆︁) over 𝒰 , including a fixed implicit ultrametric tree given by the

methods (Root, Children, Member). In addition, the ultrametric u over 𝒰 and the subset-monotone

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:12 Marcelo Arenas et al.

Algorithm 1: For fixed ultrametric u and implicit representation (ℐ, ⎜⋅⨆︁) over a common

universe 𝒰 , implicit ultrametric tree (Root, Children, Member), and subset-monotone di-

versity function 𝛿 extending u, compute, for an instance 𝐼 ∈ ℐ , a 𝑘-diverse subset of ⎜𝐼⨆︁.
Input: An instance 𝐼 ∈ ℐ and 𝑘 ∈ N.
Output: A 𝑘-diversity set 𝑆 ⊆ ⎜𝐼⨆︁ with respect to 𝛿 .

1 𝐵root ← Root(𝐼)
2 𝑆 ← {Member(𝐼 , 𝐵root)}
3 𝐿 ← {𝐵root}
4 Children(𝐼 , 𝐵root).init
5 Children(𝐼 , 𝐵root).next
6 while ⋃︀𝑆 ⋃︀ < 𝑘 ∧ 𝐿 ≠ ∅ do
7 𝐵 ← arg max𝐵∈𝐿 𝛿(𝑆 ∪ {Member(𝐼 , Children(𝐼 , 𝐵).current)}
8 𝑆 ← 𝑆 ∪ {Member(𝐼 , Children(𝐼 , 𝐵).current)}
9 if Children(𝐼 , 𝐵).next = false then
10 𝐿 ← 𝐿 ∖ {𝐵}
11 for 𝐵′ ∈ Children(𝐼 , 𝐵) do
12 if ⋃︀𝐵′⋃︀ > 1 then
13 𝐿 ← 𝐿 ∪ {𝐵′}
14 Children(𝐼 , 𝐵′).init
15 Children(𝐼 , 𝐵′).next

16 return 𝑆

diversity function 𝛿 extending u are fixed. Then, given an instance 𝐼 ∈ ℐ and a 𝑘 ∈ N, the algorithm
computes a 𝑘-diverse set 𝑆 ⊆ ⎜𝐼⨆︁ with respect to 𝛿 .

Recall that, given a ball 𝐵 ∈ ℬ(⎜𝐼⨆︁), the method Children(𝐼 , 𝐵) enumerates the children of 𝐵 in

𝒯⎜𝐼⨆︁ with polynomial delay. For using this enumeration process, we assume an iterator interface

with methods init, next, and current, such that: (1) Children(𝐼 , 𝐵).init starts the iteration,

placing the current pointer to the first child of 𝐵; (2) Children(𝐼 , 𝐵).current retrieves the current
child of 𝐵; (3) Children(𝐼 , 𝐵).next moves the current pointer to the next child of 𝐵, outputting

true if a next child exists, and false, otherwise. The running times of these methods are𝑂(𝑓𝒯 (𝐼)).
For the sake of simplification, we assume that the method Member(𝐼 , 𝐵) always outputs the same

solution as Member(𝐼 , 𝐵fc) where 𝐵fc is the first-child of 𝐵 in the implicit ultrametric tree. In other

words, if we call Children(𝐼 , 𝐵).init, then it always holds that:

Member(𝐼 , 𝐵) = Member(𝐼 , Children(𝐼 , 𝐵).current). (‡)

Intuitively, Algorithm 1 keeps a set 𝑆 of solutions, and its primary goal is to maximize the

“incremental” diversity of adding a new element to 𝑆 . This new element is chosen from balls of the

ultrametric tree that have not been visited yet. For this purpose, the algorithm maintains a set 𝐿 of

balls such that, for each 𝐵 ∈ 𝐿, the algorithm is iterating through the children of 𝐵. The algorithm

picks the new element that maximizes the incremental diversity of 𝑆 from 𝐿 by computing (line 7):

𝐵 ← arg max

𝐵∈𝐿
𝛿(𝑆 ∪ {Member(𝐼 , Children(𝐼 , 𝐵).current)}.

Then, the algorithm adds Member(𝐼 , Children(𝐼 , 𝐵).current) to 𝑆 (line 8) and moves to the next

children of 𝐵 (line 9) until 𝑆 has size 𝑘 or 𝐿 is empty (line 6).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:13

Following the above strategy, Algorithm 1 starts by picking the root ball 𝐵root = Root(𝐼) and
adds a first solution to 𝑆 (line 2). Then, it adds 𝐵root to 𝐿 for iterating through its children (lines 3

and 4). By assumption (‡), the solution in 𝐵root added to 𝑆 is the same as the first children of 𝐵root.

For this reason, the algorithm skips the first children of 𝐵root by calling Children(𝐼 , 𝐵root).next.
When Algorithm 1 reaches the end of the children of a ball 𝐵 ∈ 𝐿 (line 9), it removes 𝐵 from 𝐿

(line 10). After this, it iterates over all the children 𝐵′ of 𝐵 (line 11), adding 𝐵′ to 𝐿 whenever 𝐵′ is
not a leaf node in the ultrametric tree, namely, ⋃︀𝐵′⋃︀ > 1 (lines 12 and 13). Again, by assumption (‡)
we can skip the first child of 𝐵′, given that a solution of the first child is already in 𝑆 (lines 14-15).

For the correctness of the algorithm it remains to show the following: (1) The element 𝑙 ∶=
Member(𝐼 , Children(𝐼 , 𝐵).current) added to 𝑆 in line 8 maximizes the incremental diversity, i.e.,

𝛿(𝑆 ∪{𝑙}) = max𝑙 ′∈⎜𝐼⨆︁ 𝛿(𝑆 ∪{𝑙 ′}); (2) For subset-monotone diversity functions, proceeding greedily

always leads to an optimal 𝑘-diverse set.

For the run time, note that the number of balls of the ultrametric tree that are used is at most

𝑂(𝑘). By caching the result of the functions Children and Member, we can bound the running time

of these methods in the algorithm by𝑂(𝑘 ⋅ 𝑓𝒯 (𝐼)). Furthermore, one can check that ⋃︀𝐿⋃︀ = 𝑂(𝑘) and,
for each iteration, we compute 𝐵 by calling 𝛿 exactly ⋃︀𝐿⋃︀-times over a set of size at most 𝑘 . Then,

the running time of line 7 takes at most 𝑂(𝑘 ⋅ 𝑓𝛿(𝑘)). Overall, we can bound the running time of

Algorithm 1 by 𝑂(𝑘 ⋅ 𝑓𝒯 (𝐼) + 𝑘2 ⋅ 𝑓𝛿(𝑘)). □

Unfortunately, and in contrast with Theorem 5.4 in Section 5, the tractability of the problem

DiversityImplicit(︀𝛿⌋︀ no longer holds if we consider weakly subset-monotone diversity functions.

To prove this, let d be any metric over a universe 𝒰 , and define the sum-min diversity function
𝛿sum-min as follows. For every set 𝑆 ∈ finite(𝒰): 𝛿(𝑆) = 0 if ⋃︀𝑆 ⋃︀ = 1, and 𝛿(𝑆) is given by the following

expression if ⋃︀𝑆 ⋃︀ > 1:

𝛿sum-min(𝑆) ∶= ∑
𝑎∈𝑆

d(𝑎, 𝑆 ∖ {𝑎}) = ∑
𝑎∈𝑆

min

𝑏∈𝑆 ∶𝑏≠𝑎
d(𝑎,𝑏).

Intuitively, 𝛿sum-min is summing the contribution of each element 𝑎 ∈ 𝑆 to the diversity of 𝑆 , namely,

how far is 𝑎 from the other elements in 𝑆 . One can see 𝛿sum-min as a non-recursive version of the

Weitzman diversity function. Like the other diversity functions used before, we can prove that

𝛿sum-min is also a weakly subset-monotone diversity function.

Proposition 6.2. 𝛿sum-min is weakly subset-monotone if it extends an ultrametric.

As we show next, 𝛿sum-min serves as an example of a weakly subset-monotone diversity function

that extends an ultrametric u for which one can find an implicit representation that admits an

implicit ultrametric tree, but where it is hard to find a 𝑘-diverse subset.

Theorem 6.3. There exists an implicit schema (ℐ, ⎜⋅⨆︁) and an ultrametric u over a common universe
𝒰 which admit an implicit ultrametric tree but for which DiversityImplicit(︀𝛿sum-min⌋︀ is NP-hard.

A natural question is whether a relaxed notion of tractability in the form of fixed-parameter

tractable (FPT) can lead to algorithm for DiversityImplicit(︀𝛿sum-min⌋︀. We conclude this section

by providing an answer to this question. The crucial property of 𝛿sum-min is incremental monotonicity,
which we define next.

Definition 6.4 (Incremental monotonicity). A diversity function 𝛿 extending a metric d over a

universe 𝒰 is incrementally monotone if, and only if, for every set 𝐴 ⊆ 𝒰 and pair 𝑏,𝑏′ ∈ 𝒰 such that

𝐴 ∩ {𝑏,𝑏′} = ∅ and d(𝑎,𝑏) ≤ d(𝑎,𝑏′) for every 𝑎 ∈ 𝐴, it holds that 𝛿(𝐴 ∪ {𝑏}) ≤ 𝛿(𝐴 ∪ {𝑏′}).

In other words, if we want to grow a set𝐴 with 𝑏 or 𝑏′, then𝐴∪{𝑏′} will be at least as diverse as
𝐴∪{𝑏} given that 𝑏′ is farther from𝐴 than 𝑏. Every subset-monotone function is also incrementally

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:14 Marcelo Arenas et al.

Algorithm 2: For fixed ultrametric u and implicit representation (ℐ, ⎜⋅⨆︁) over a common

universe 𝒰 , implicit ultrametric tree (Root, Children, Member), incrementally monotone

diversity function 𝛿 extending u, and instance 𝐼 ∈ ℐ , compute a 𝑘-diverse subset of ⎜𝐼⨆︁.
Input: An instance 𝐼 ∈ ℐ and 𝑘 ∈ N.
Output: A 𝑘-diversity set 𝑆 ′ ⊆ ⎜𝐼⨆︁ with respect to 𝛿 .

1 𝐵root ← Root(𝐼)
2 𝑆 ← 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , 𝐵root, 𝑘)
3 return arg max𝑆′⊆𝑆,⋃︀𝑆′⋃︀=𝑘 𝛿(𝑆 ′)
4 Function 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , 𝐵, 𝑘):
5 if 𝑘 = 1 or ⋃︀𝐵⋃︀ = 1 then
6 return {Member(𝐼 , 𝐵)}
7 Children(𝐼 , 𝐵).init
8 𝐶 ← {Children(𝐼 , 𝐵).current}
9 while Children(𝐼 , 𝐵).next = true ∧ ⋃︀𝐶 ⋃︀ < 𝑘 do
10 𝐶 ← 𝐶 ∪ {Children(𝐼 , 𝐵).current}
11 𝑆 ← {}
12 for 𝐵child ∈ 𝐶 do
13 𝑆 ← 𝑆 ∪ 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , 𝐵child, 𝑘 − ⋃︀𝐶 ⋃︀ + 1)
14 return 𝑆

monotone, but weak subset-monotonicity does not necessarily imply incremental monotonicity.

However, one can check that all diversity functions used in this paper are incrementally monotone,

in particular, 𝛿sum-min.

Theorem 6.5. For every implicit schema (ℐ, ⎜⋅⨆︁) and ultrametric u over a common universe 𝒰
which admits an implicit ultrametric tree, and for every computable incrementally monotone diversity
function 𝛿 extending u, the problem DiversityImplicit(︀𝛿⌋︀ is fixed-parameter tractable in 𝑘 .

Proof sketch. The FPT computation of the DiversityImplicit(︀𝛿⌋︀ problem is realized in

Algorithm 2. We have the same input and output as in Algorithm 1 (apart for the diversity function

now being incrementally monotone), and we again assume an iterator interface for Children,
i.e., with methods init, next, and current. Furthermore, Root, Children, Member all run in time

𝑂(𝑓𝒯 (𝐼)) with 𝑓𝒯 (𝐼) ≤ ⋃︀𝐼 ⋃︀ℓ for some constant ℓ .

Intuitively, Algorithm 2 navigates the ultrametric tree top-down by using its implicit representa-

tion, but this time it considers balls up to distance 𝑘 from the root. Moreover, it selects one solution

from each ball. In this way, we get a set of “relevant elements” 𝑆 ⊆ ⎜𝐼⨆︁ such that there exists a

𝑘-diverse subset 𝑆 ′ of ⎜𝐼⨆︁ which is also a subset of 𝑆 .

To compute 𝑆 , the algorithm proceeds recursively, starting with 𝐵root = ⎜𝐼⨆︁ for which we are

looking for elements such that the 𝑘 most diverse ones are among them (call in line 2). In the

recursion, instead of 𝐵root we could have any ball 𝐵 ∈ ℬ⎜𝐼⨆︁.
Then, if 𝑘 = 1, it does not matter which element 𝑎 ∈ 𝐵 is selected. Or, if ⋃︀𝐵⋃︀ = 1, we can simply

select the 𝑎 ∈ 𝐵 as it is the only element we have at our disposal (lines 5-6).

Otherwise, there are at least 2 children of 𝐵. To that end, let 𝐵1, . . . , 𝐵𝑙 be the children of 𝐵. In

that case, we recurse on the children 𝐵𝑖 with 𝑖 ∈ {1, . . . ,min{𝑘, 𝑙}} and we are looking for elements

of 𝐵𝑖 such that the 𝑘 −min{𝑘, 𝑙} + 1 most diverse ones are among them (the children as collected in

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:15

lines 7-10 and the recursion happens in line 13). The reason behind this is that (due to incremental

monotonicity) there exists a 𝑘-diverse subset 𝑆 ′ of 𝐵 such that 𝑆 ′ has at least 1 element from each

of the children 𝐵𝑖 with 𝑖 ∈ {1, . . . ,min{𝑘, 𝑙}}. Intuitively, if 𝑆 ′ does not intersect some 𝐵𝑖 , we can

simply replace any 𝑎 ∈ 𝑆 ′ ∩𝐵 𝑗 from any 𝐵 𝑗 ≠ 𝐵𝑖 with any 𝑎′ ∈ 𝐵𝑖 . The union of the elements deemed

relevant for the children 𝐵𝑖 are then together the elements deemed relevant for 𝐵 (lines 11-14).

For the correctness of the algorithm, it remains to show that, if 𝛿 is incrementally monotone,

then a 𝑘-diverse subset of 𝑆 is a 𝑘-diverse subset of ⎜𝐼⨆︁. For the FPT running time, we note that,

in the worst case, the ultrametric tree is binary and we have to consider all balls up to depth 𝑘 .

However, this means that the size of 𝑆 is bounded by 2
𝑘
and, thus, computing a 𝑘-diverse subset of

𝑆 is possible in time 𝑂((2
𝑘

𝑘
) ⋅ 𝑓𝛿(𝑘)). □

7 Efficient computation of diverse answers to ACQs
In this section, we use the results for implicit representations from the previous section to obtain

efficient algorithms for finding 𝑘-diverse subsets of the answers to acyclic CQ (ACQ) with respect

to the ultrametric u
rel

over tuples presented in Section 4. Note that here we study algorithms for

ACQ in combined complexity (i.e., the query 𝑄 is not fixed), in contrast to Corollary 5.5 whose

analysis is in data complexity (i.e., 𝑄 is fixed). In the following, we start by recalling the definition

of ACQ and discussing the ultrametric u
rel
. Then, we show our main results concerning computing

diverse query answers for ACQ.

Acyclic CQ is the prototypical subclass of conjunctive queries that allow for tractable query

evaluation (combined complexity) [5, 39]. We therefore also take ACQ as the natural starting point

in our effort to develop efficient algorithms for finding 𝑘-diverse sets. Let𝑄 be a CQ like in (†). A join
tree for𝑄 is a labeled tree𝑇 = (𝑉 , 𝐸, 𝜆)where (𝑉 , 𝐸) is a undirected tree and 𝜆 is a bijective function

from 𝑉 to the atoms {𝑅1(𝑥1), . . . , 𝑅𝑚(𝑥𝑚)}. Further, a join tree 𝑇 must satisfy that each variable

𝑥 ∈ 𝒳 forms a connected component in 𝑇 , namely, the set {𝑣 ∈ 𝑉 ⋃︀ 𝑥 appears in the atom 𝜆(𝑣)} is
connected in𝑇 . Then𝑄 is acyclic iff there exists a join tree for𝑄 . Also, we say that𝑄 is a free-connex
ACQ iff 𝑄 is acyclic and the body together with the head of 𝑄 is acyclic (i.e., admits a join tree).

For our algorithmic results over ACQ, we restrict to the ultrametric u
rel

over tuples of a schema 𝜎 ,

previously defined in Section 4. Arguably, u
rel

is a natural ultrametric for comparing tuples of

relations that has been used for computing diverse subsets in previous work [33, 34]. Let𝑄 be a CQ

with head 𝑄(𝑥). Note that the variable order 𝑥 in 𝑄(𝑥) is important for measuring the diversity of

subsets of ⎜𝑄⨆︁(𝐷) for some database 𝐷 . Concretely, if we have two CQ 𝑄 and 𝑄 ′ with the same

body but with different orders in their heads, then diversity of the subsets of ⎜𝑄⨆︁(𝐷) and ⎜𝑄 ′⨆︁(𝐷)
could be totally different. Furthermore, u

rel
allows us to characterize balls in ℬ⎜𝑄⨆︁(𝐷) by their

common prefix. This property will be crucial in the following and the developed proof techniques

can, therefore, be naturally adapted to any ultrametric with this property.

By using Theorem 6.1 over ACQ and the ultrametric u
rel
, we can find quasilinear time algorithms

with respect to ⋃︀𝐷 ⋃︀ for finding 𝑘-diverse sets of query answers.

Theorem 7.1. Let 𝛿 be a subset-monotone diversity function extending the ultrametric u
rel

such
that the running time of computing 𝛿 over a set of size 𝑘 is bounded by 𝑂(𝑓𝛿(𝑘)). Given an ACQ 𝑄 , a
relational database 𝐷 , and a value 𝑘 (in unary), a 𝑘-diverse subset of ⎜𝑄⨆︁(𝐷) with respect to 𝛿 can be
computed in time 𝑂(𝑘 ⋅ ⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀) + 𝑘2 ⋅ 𝑓𝛿(𝑘)).
Proof Sketch. To apply Theorem 6.1, we need to describe an implicit ultrametric tree for tuples

in ⎜𝑄⨆︁(𝐷). To that end, we use the fact that for u
rel
, the balls in ℬ⎜𝑄⨆︁(𝐷) can be represented by

the common prefix of their tuples. More specifically, for every ball 𝐵 ∈ ℬ⎜𝑄⨆︁(𝐷) there exist values
𝑐1, . . . , 𝑐𝑖 such that 𝐵 = {𝑄(𝑎) ∈ ⎜𝑄⨆︁(𝐷) ⋃︀ ∀ 𝑗 ≤ 𝑖 . 𝑎(︀ 𝑗⌋︀ = 𝑐 𝑗}. Then, we can traverse the ultrametric

tree of u
rel

over ⎜𝑄⨆︁(𝐷), by managing partial outputs (i.e., prefixes) of ⎜𝑄⨆︁(𝐷).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:16 Marcelo Arenas et al.

Let𝑄 be an ACQ like (†). To arrive at the methods Root, Children, and Member, we modify Yan-

nakakis algorithm [39] to find the following data values that extend a given prefix. Concretely, given

values 𝑐1, . . . , 𝑐𝑖 that represent a ball𝐵, wewant to find all values 𝑐 such that 𝑐1, . . . , 𝑐𝑖 , 𝑐 is the prefix of

a tuple in ⎜𝑄⨆︁(𝐷). For this, we can consider the subquery𝑄 ′(𝑥(︀𝑖+1⌋︀)) ← 𝑅1(ℎ(𝑥1)), . . . , 𝑅𝑚(ℎ(𝑥𝑚))
where ℎ is a partial assignment that maps ℎ(𝑥(︀ 𝑗⌋︀) = 𝑐 𝑗 for every 𝑗 ≤ 𝑖 and ℎ(𝑥) = 𝑥 for any other

variable 𝑥 ∈ 𝒳 . The subquery 𝑄 ′ is also acyclic and returns all the desired values 𝑐 , such that

𝑐1 . . . , 𝑐𝑖 , 𝑐 represents a child of 𝐵. Thus, running Yannakakis algorithm over 𝑄 ′ and 𝐷 , we can

compute Children in time𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀)) and similarly for the methods Root or Member. □

A natural next step to improve the running time of Theorem 7.1 is to break the dependency

between 𝑘 and ⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀). Towards this goal, we build on the work of Carmeli et al. [7],

which studied direct access to ranked answers of conjunctive queries. In this work, the algorithmic

results also depend on the attribute order, characterizing which CQs and orders admit direct access

to the results. For this characterization, the presence of a disruptive trio in the query is crucial. Let

𝑄 be a CQ like (†). We say that two variables 𝑥 and 𝑦 in 𝑄 are neighbors if they appear together in

𝑄 in some atom. Then we say that three positions 𝑖, 𝑗, 𝑘 (i.e., variables 𝑥(︀𝑖⌋︀, 𝑥(︀ 𝑗⌋︀, and 𝑥(︀𝑘⌋︀) in the

head of 𝑄 form a disruptive trio iff 𝑥(︀𝑖⌋︀ and 𝑥(︀ 𝑗⌋︀ are not neighbors in 𝑄 , and 𝑥(︀𝑘⌋︀ is a neighbor of
𝑥(︀𝑖⌋︀ and 𝑥(︀ 𝑗⌋︀ in 𝑄 , but 𝑖 < 𝑘 and 𝑗 < 𝑘 (i.e., 𝑥(︀𝑘⌋︀ appears after 𝑥(︀𝑖⌋︀ and 𝑥(︀ 𝑗⌋︀). For example, for the

query 𝑄(𝑥1, 𝑥2, 𝑥3, 𝑥4) ← 𝑅(𝑥1, 𝑥2), 𝑆(𝑥2, 𝑥4),𝑇 (𝑥4, 𝑥3), the positions 2, 3, 4 form a disruptive trio,

but 1, 2, 3 do not.

In the following result, we show that free-connex ACQ and the absence of a disruptive trio are

what we need to get better algorithms for computing 𝑘-diverse subsets.

Theorem 7.2. Let 𝛿 be a subset-monotone diversity function extending the ultrametric u
rel

such
that the running time of computing 𝛿 over a set of size 𝑘 is bounded by𝑂(𝑓𝛿(𝑘)). Given a free-connex
ACQ 𝑄 without a disruptive trio, a relational database 𝐷 , and a value 𝑘 (in unary), a 𝑘-diverse subset
of ⎜𝑄⨆︁(𝐷) with respect to 𝛿 can be computed in time 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀) + 𝑘 ⋅ ⋃︀𝑄 ⋃︀ + 𝑘2 ⋅ 𝑓𝛿(𝑘)).

Proof Sketch. Similar to Theorem 7.1, we use the prefix of tuples to represent balls and take

advantage of the structure of a join tree and the absence of disruptive trios to implement an index

over 𝐷 . By [7], the absence of disruptive trios ensures the existence of a layered join tree whose
layers follow the order of the variables in the head of 𝑄 and which can be computed in time

𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀)). Then, by building on this constructed layered join tree, we can set up an index

structure that we can use to calculate the next data value for a given prefix, like in Theorem 7.1,

but now in time 𝑂(⋃︀𝑄 ⋃︀). Thus, after a common preprocessing phase, Root, Children and Member
run in time 𝑂(⋃︀𝑄 ⋃︀). □

Note that in data complexity, the only remaining non-(quasi)linear term in Theorem 7.2 is

𝑘2 ⋅ 𝑓𝛿(𝑘) which arises since we have to reevaluate 𝛿 at each step to find the next greedily best pick.

For some specific diversity function this may not be necessary. As an example, for the Weitzman

diversity function 𝛿W we can get rid of this term 𝑘2 ⋅ 𝑓𝛿(𝑘) by smartly keeping track of which

answer maximizes the diversity next.

Theorem 7.3. Let 𝛿W be the Weitzman diversity function extending the ultrametric u
rel
. Given

a free-connex ACQ 𝑄 without a disruptive trio, a relational database 𝐷 , and a value 𝑘 (in unary), a
𝑘-diverse subset of ⎜𝑄⨆︁(𝐷) with respect to 𝛿W can be computed in time𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀) +𝑘 ⋅ ⋃︀𝑄 ⋃︀).

8 Related work

Diversification. Aiming for a small, diverse subset of the solutions has been adopted in many areas

as a viable strategy of dealing with a solution space that might possibly be overwhelmingly big.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:17

This is, in particular, the case in data mining, information retrieval, and web science, where the

term “diversification of search results” is commonly used for the process of extracting a small diverse

subset from a huge set of solutions, see e.g., [8, 12, 27, 28, 31] and the surveys [37, 40]. The diversity

of solutions has also been intensively studied by the Artificial Intelligence (AI) community. Notably,

this is the case in subfields of AI which are most closely related to database research, namely

constraint satisfaction (recall that, from a logical point of view, solving constraint satisfaction

problems and evaluating conjunctive queries are equivalent tasks) [14, 15, 17, 26] and answer

set programming (which corresponds to datalog with unrestricted negation under stable model

semantics) [10]. In the database community, the diversification of query answers has been on the

agenda for over a decade: the computation of diverse query results was studied in [33, 34] for

relational data and in [21] for XML data. In [35], a system was presented with an extension of SQL

to allow for requesting diverse answers. In [9], query result diversification is studied as a “bi-criteria”

optimization problem that aims at finding 𝑘 query answers that maximize both, the diversity and

the relevance of the answers. Recent publications witness the renewed interest in the diversity of

query answers by the database systems [18, 25] and the database theory community [3, 22].

Measuring diversity. In [17], a whole framework for dealing with the diversity of subsets of the

solutions has been proposed. There, diversity is defined by first defining the distance between two

solutions and then combining the pairwise distances via an aggregate function such as, for instance,

sum, min, or max. In [36], a more sophisticated way of aggregating pairwise distances has led to

the definition of the diversity function 𝛿W, which we have had a closer look at in our work. Yet

more complexity was introduced in [29], where the diversity of a subset of solutions not only takes

the relationships between the chosen solutions into account but also their relationship with the

solutions excluded from the subset.

For the distance between two solutions, any metric can be used. As is argued in [36], it ultimately

depends on the application context which distance function (and, consequently, which diversity

function) is appropriate. Note that diversity and similarity can be seen as two sides of the same

medal. Hence, all kinds of similarity measures studied in the data mining and information retrieval

communities are, in principle, also candidates for the distance function; e.g., the Minkowski distance

with Manhattan and Euclidean distance as important special cases as well as Cosine distance when

solutions are represented as vectors, the edit distance for solutions as strings, or the Jaccard Index

for solutions as sets, etc., see e.g., [11, 38].

Ultrametrics. The study of ultrametrics started in various areas of mathematics (such as real

analysis, number theory, and general topology – see [20]) in the early 20th century. Ultrametrics

are particularly well suited for hierarchical clustering and, as such, they have many applications in

various sciences such as psychology, physics, and biology (see, e.g., [19, 24, 36]) and, of course, also

in data mining, see e.g., [30]. Ultrametrics have also been used in database research and related

areas: in [16], several convergence criteria for the fixed-point iteration of datalog programs (or,

more generally, logic programs) with negation are defined. To this end, the set of possible ground

atoms is divided into levels and two sets of ground atoms are considered as more diverse if they

differ on an earlier level. Clearly, this is an ultrametric. In [33, 34], the distance between tuples is

defined by imposing an order on the attributes and considering two tuples as more diverse if they

differ on an earlier attribute in this ordering (see also Example 4.1 in the current paper). Again, this

is clearly an ultrametric, even though it was not explicitly named as such in [33, 34].

Computing diversity. It should be noted that searching for diverse sets is, in general, an intractable
problem. For instance, in [22], NP-completeness of the DiversityExplicit(︀𝛿⌋︀ problem3

was

3
Strictly speaking, in [22], 𝑆 was defined as the result set of an FO-query. However, since data complexity was considered,

we can of course compute 𝑆 upfront in polynomial time and may, therefore, assume 𝑆 to be explicitly given.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:18 Marcelo Arenas et al.

proved even for the simple setting where 𝑆 is a set of tuples of arity five and defining the diversity

via the sum or min of the pairwise Hamming distances. Consequently, approximations or heuristics

are typically proposed to compute diverse sets (see [37] for a very recent survey on diversification

methods). In [6], the parameterized version of the DiversityExplicit(︀𝛿⌋︀ problem was studied for

cases where the problem of deciding the existence of a solution is fixed-parameter tractable (FPT)

w.r.t. the treewidth. As a prototypical problem, the Vertex Cover problem was studied and it was

shown that, when defining the diversity as the sum of the pairwise Hamming distances, then the

DiversityExplicit(︀𝛿⌋︀ problem is FPT w.r.t. the treewidth𝑤 and the size 𝑘 of the desired diversity

set. Moreover, it was argued in [6] that analogous FPT-results for the DiversityExplicit(︀𝛿⌋︀
problem apply to virtually any problem where the decision of the existence of a solution is FPT

w.r.t. the treewidth. In [22], the DiversityExplicit(︀𝛿⌋︀ problem was shown FPT w.r.t. the size 𝑘

of the desired diversity set, when considering 𝑆 as a set of tuples and defining the diversity via a

monotone aggregate function over the pairwise Hamming distances of the tuples.

However, tractable, exact methods for computing diverse sets are largely missing with one

notable exception: in [34], an efficient method for solving the DiversityExplicit(︀𝛿⌋︀ problem in

a very specific setting is presented, where the diversity 𝛿 is defined as the sum over the ultrametric

defined via an ordering of the attributes as recalled in Example 4.1. Assuming the existence of

a tree representation of the relation 𝑆 in the style of a Dewey tree known from XML query

processing [32], the algorithm in [34] finds a 𝑘-diverse set in 𝑂(𝑘) time. Other than that, the field

of tractable diversity computation is wide open and the main goal of this work is to fill this gap.

9 Conclusions
In this work, we have studied the complexity of 3 levels of diversity problems. For the most

basic problem DiversityComputation(︀𝛿⌋︀ of computing the diversity 𝛿(𝑆) for a given set 𝑆 of

elements, we have closed a problem left open in [36] by proving intractability of this problem

in case of the Weitzman diversity measure 𝛿W. We have then pinpointed the boundary between

tractability and intractability for both, the DiversityExplicit(︀𝛿⌋︀ and the DiversityImplicit(︀𝛿⌋︀
problems (i.e., the problems of maximizing the diversity of an explicitly or implicitly given set 𝑆 ,

respectively) in terms ofmonotonicity properties of the diversity function 𝛿 extending an ultrametric.

In particular, this has allowed us to identify tractable cases of the DiversityImplicit(︀𝛿⌋︀ problem
when considering acyclic conjunctive queries.

There are several natural directions of generalizing our results: clearly, they are naturally extended

to more general query classes than acyclic CQs such as CQs with bounded (generalized or fractional)

hypertree-width [13]. Less obvious is the extension of our tractability results to more general

ultrametrics, which – in addition to determining the first attribute (in a given order) where two
tuples differ – also introduce a measure by how much (again expressed as an ultrametric) the tuples

differ in that attribute. Other directions of future work are concerned with studying other query

languages over other data models such as (possibly restricted forms of) RPQs over graph data.

Acknowledgements
The work of Merkl and Pichler was funded by the Vienna Science and Technology Fund (WWTF)

[10.47379/ICT2201]. The work of Arenas and Riveros was funded by ANID – Millennium Science

Initiative Program – Code ICN17002. The work of Riveros was also funded by ANID Fondecyt

Regular project 1230935. Part of this work was done when Arenas, Merkl and Pichler were visiting

the Simons Institute for the Theory of Computing.

References
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:19

[2] P. Alimonti and V. Kann. Hardness of approximating problems on cubic graphs. In G. C. Bongiovanni, D. P. Bovet, and

G. D. Battista, editors, Algorithms and Complexity, Third Italian Conference, CIAC ’97, Rome, Italy, March 12-14, 1997,
Proceedings, volume 1203 of Lecture Notes in Computer Science, pages 288–298. Springer, 1997.

[3] M. Arenas, L. A. Croquevielle, R. Jayaram, and C. Riveros. #NFA admits an FPRAS: efficient enumeration, counting,

and uniform generation for logspace classes. J. ACM, 68(6):48:1–48:40, 2021.

[4] M. Arenas, T. C. Merkl, R. Pichler, and C. Riveros. Towards tractability of the diversity of query answers: Ultrametrics

to the rescue. CoRR, abs/2408.01657, 2024.
[5] G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay enumeration. In J. Duparc

and T. A. Henzinger, editors, Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference
of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Computer
Science, pages 208–222. Springer, 2007.

[6] J. Baste, M. R. Fellows, L. Jaffke, T. Masarík, M. de Oliveira Oliveira, G. Philip, and F. A. Rosamond. Diversity of

solutions: An exploration through the lens of fixed-parameter tractability theory. Artif. Intell., 303:103644, 2022.
[7] N. Carmeli, N. Tziavelis, W. Gatterbauer, B. Kimelfeld, and M. Riedewald. Tractable orders for direct access to ranked

answers of conjunctive queries. ACM Trans. Database Syst., 48(1):1:1–1:45, 2023.
[8] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl. DivQ: diversification for keyword search over structured databases.

In F. Crestani, S. Marchand-Maillet, H. Chen, E. N. Efthimiadis, and J. Savoy, editors, Proceeding of the 33rd International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, Geneva, Switzerland, July
19-23, 2010, pages 331–338. ACM, 2010.

[9] T. Deng and W. Fan. On the complexity of query result diversification. ACM Trans. Database Syst., 39(2):15:1–15:46,
2014.

[10] T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer set programming. Theory
Pract. Log. Program., 13(3):303–359, 2013.

[11] G. Gan, C. Ma, and J. Wu. Data Clustering: Theory, Algorithms, and Applications, volume 20 of ASA-SIAM Series on
Statistics and Applied Probability. SIAM, 2007.

[12] S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In J. Quemada, G. León, Y. S. Maarek,

and W. Nejdl, editors, Proceedings of the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain,
April 20-24, 2009, pages 381–390. ACM, 2009.

[13] G. Gottlob, G. Greco, N. Leone, and F. Scarcello. Hypertree decompositions: Questions and answers. In T. Milo and

W. Tan, editors, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 57–74. ACM, 2016.

[14] E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar solutions in constraint programming. In

M. M. Veloso and S. Kambhampati, editors, Proceedings, The Twentieth National Conference on Artificial Intelligence and
the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania,
USA, pages 372–377. AAAI Press / The MIT Press, 2005.

[15] E. Hebrard, B. O’Sullivan, and T. Walsh. Distance constraints in constraint satisfaction. In M. M. Veloso, editor, IJCAI
2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,
2007, pages 106–111, 2007.

[16] P. Hitzler and A. K. Seda. Generalized metrics and uniquely determined logic programs. Theor. Comput. Sci., 305(1-
3):187–219, 2003.

[17] L. Ingmar, M. G. de la Banda, P. J. Stuckey, and G. Tack. Modelling diversity of solutions. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 1528–1535. AAAI Press, 2020.

[18] M. M. Islam, M. Asadi, S. Amer-Yahia, and S. B. Roy. A generic framework for efficient computation of top-k diverse

results. VLDB J., 32(4):737–761, 2023.
[19] S. V. Kozyrev. Methods and applications of ultrametric and p-adic analysis: From wavelet theory to biophysics.

Proceedings of the Steklov Institute of Mathematics, 274(1):1–84, 2011.
[20] A. J. Lemin. On ultrametrization of general metric spaces. Proceedings of the American Mathematical Society, 131(3):979–

989, 2001.

[21] Z. Liu, P. Sun, and Y. Chen. Structured search result differentiation. Proc. VLDB Endow., 2(1):313–324, 2009.
[22] T. C. Merkl, R. Pichler, and S. Skritek. Diversity of answers to conjunctive queries. In F. Geerts and B. Vandevoort,

editors, 26th International Conference on Database Theory, ICDT 2023, March 28-31, 2023, Ioannina, Greece, volume 255

of LIPIcs, pages 10:1–10:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[23] T. C. Merkl, R. Pichler, and S. Skritek. Diversity of answers to conjunctive queries. CoRR, abs/2301.08848, 2023.
[24] F. Murtagh. Ultrametric model of mind, ii: Application to text content analysis. p-Adic Numbers, Ultrametric Analysis

and Applications, 4(3):207–221, 2012.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:20 Marcelo Arenas et al.

[25] S. Nikookar, M. Esfandiari, R. M. Borromeo, P. Sakharkar, S. Amer-Yahia, and S. B. Roy. Diversifying recommendations

on sequences of sets. VLDB J., 32(2):283–304, 2023.
[26] T. Petit and A. C. Trapp. Finding diverse solutions of high quality to constraint optimization problems. In Q. Yang

and M. J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 260–267. AAAI Press, 2015.

[27] R. L. T. Santos, C. Macdonald, and I. Ounis. Exploiting query reformulations for web search result diversification. In

M. Rappa, P. Jones, J. Freire, and S. Chakrabarti, editors, Proceedings of the 19th International Conference on World Wide
Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages 881–890. ACM, 2010.

[28] R. L. T. Santos, C. MacDonald, and I. Ounis. Search result diversification. Found. Trends Inf. Retr., 9(1):1–90, 2015.
[29] N. Schwind, T. Okimoto, M. Clement, and K. Inoue. Representative solutions for multi-objective constraint optimization

problems. In C. Baral, J. P. Delgrande, and F. Wolter, editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016, pages 601–604.
AAAI Press, 2016.

[30] D. A. Simovici. Data mining algorithms i: Clustering. In A. Nayak and I. Stojmenovic, editors, Handbook of Applied
Algorithms: Solving Scientific, Engineering and Practical Problems, pages 10:1–10:19. Wiley-IEEE Press, 2007.

[31] Z. Su, Z. Dou, Y. Zhu, and J. Wen. Knowledge enhanced search result diversification. In A. Zhang and H. Rangwala,

editors, KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
August 14 - 18, 2022, pages 1687–1695. ACM, 2022.

[32] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang. Storing and querying ordered

XML using a relational database system. In M. J. Franklin, B. Moon, and A. Ailamaki, editors, Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA, June 3-6, 2002, pages 204–215.
ACM, 2002.

[33] E. Vee, J. Shanmugasundaram, and S. Amer-Yahia. Efficient computation of diverse query results. IEEE Data Eng. Bull.,
32(4):57–64, 2009.

[34] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Amer-Yahia. Efficient computation of diverse query

results. In G. Alonso, J. A. Blakeley, and A. L. P. Chen, editors, Proceedings of the 24th International Conference on Data
Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico, pages 228–236. IEEE Computer Society, 2008.

[35] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou, D. Srivastava, C. T. Jr., and V. J. Tsotras. Divdb: A

system for diversifying query results. Proc. VLDB Endow., 4(12):1395–1398, 2011.
[36] M. L. Weitzman. On diversity. The quarterly journal of economics, 107(2):363–405, 1992.
[37] H. Wu, Y. Zhang, C. Ma, F. Lyu, X. Liu, B. He, B. Mitra, and X. Liu. Result diversification in search and recommendation:

A survey. IEEE Trans. Knowl. Data Eng. (Early Access), 2024.
[38] D. Xu and Y. Tian. A comprehensive survey of clustering algorithms. Ann. Data. Sci., 2(2):165–193, 2015.
[39] M. Yannakakis. Algorithms for acyclic database schemes. In Very Large Data Bases, 7th International Conference,

September 9-11, 1981, Cannes, France, Proceedings, pages 82–94. IEEE Computer Society, 1981.

[40] K. Zheng, H. Wang, Z. Qi, J. Li, and H. Gao. A survey of query result diversification. Knowl. Inf. Syst., 51(1):1–36, 2017.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:21

A Additional Details for Section 5
Proof of Theorem 5.4

Proof. Let 𝑆 be a finite subset of the universe𝒰 ,u an ultrametric over𝒰 , and𝛿 a subset-monotone

diversity function of u. By Proposition 3, we can construct an ultrametric tree 𝒯𝑆 of 𝑆 in time

𝑂(⋃︀𝑆 ⋃︀2). For each vertex 𝐵 (i.e., a ball) of 𝒯𝑆 , we maintain a function C𝐵 ∶ {0, . . . ,min{𝑘, ⋃︀𝐵⋃︀}} → 2
𝐵

where C𝐵(𝑖) is a candidate diverse subset of 𝐵 of size 𝑖 . Formally, for every 𝑖 ∈ {0, . . . ,min{𝑘, ⋃︀𝐵⋃︀}}
we define:

C𝐵(𝑖) ∶= arg max

𝐴⊆𝐵∶⋃︀𝐴⋃︀=𝑖
𝛿(𝐴).

Clearly, if we can compute C𝑆 for the root 𝑆 of 𝒯𝑆 , then C𝑆(𝑘) is a diverse subset of 𝑆 of size 𝑘 . We

can compute these functions 𝐶𝐵 in polynomial time using a dynamic programming approach. To

that end, we compute C𝐵 for each 𝐵 ∈ ℬ𝑆 in a bottom-up fashion over 𝒯𝑆 . For every ball 𝐵, we can

easily check thatC𝐵(0) = ∅ andC𝐵(1) = {𝑎} for some 𝑎 ∈ 𝐵. In particular,C{𝑎} = {0↦ ∅, 1↦ {𝑎}}
is our base case for every leaf {𝑎} of 𝒯𝑆 . For an inner vertex 𝐵 of 𝒯𝑆 , the process is a bit more

involved. Let 𝐵1, . . . , 𝐵𝑙 the children of 𝐵 in 𝒯𝑆 and assume that we already computed C𝐵1
, . . . ,C𝐵𝑙

.

We can now construct (see below) a binary tree𝑇𝐵 with vertices 𝐵1, . . . , 𝐵𝑙 , 𝐵
2

1
∶= ⋃2

𝑖=1
𝐵𝑖 , . . . , 𝐵

𝑙
1
∶=

⋃𝑙
𝑖=1

𝐵𝑖 = 𝐵 and edges from 𝐵𝑚
1
= ⋃𝑚𝑖=1

𝐵𝑖 to 𝐵𝑚−1

1
= ⋃𝑚−1

𝑖=1
𝐵𝑖 and 𝐵𝑚 for 1 <𝑚 ≤ 𝑙 . Thus, 𝐵1, . . . , 𝐵𝑙

are the leaves and 𝐵 is the root of 𝑇𝐵 .

𝐵

𝐵1
. . . 𝐵𝑙

Ô⇒

𝐵 = 𝐵𝑙
1

𝐵𝑙−1

1

. . .

𝐵2

1

𝐵1 𝐵2

𝐵𝑙−1

𝐵𝑙

To construct C𝐵 , we first construct intermediate results C𝐵𝑚
1

with

C𝐵𝑚
1

(𝑖) ∶= arg max

𝐴⊆𝐵𝑚
1
∶⋃︀𝐴⋃︀=𝑖

𝛿(𝐴).

We claim that, for every 𝑖 ∈ {0, . . . ,min{𝑘, ⋃︀𝐵𝑚
1
⋃︀}}, we can calculateC𝐵𝑚

1

(𝑖) asC𝐵𝑚
1

(𝑖) = C𝐵𝑚−1

1

(𝑖1)∪
C𝐵𝑚(𝑖2) where:

(𝑖1, 𝑖2) = arg max

(𝑗1, 𝑗2)∶𝑗1+𝑗2=𝑖
𝛿(C𝐵𝑚−1

1

(𝑗1) ∪C𝐵𝑚(𝑗2)).

To see that the claim holds, let 𝐴 be a subset of 𝐵𝑚
1
with 𝑖-elements maximizing 𝛿(𝐴). Define

𝐴1 ∶= 𝐴 ∩ 𝐵𝑚−1

1
and 𝐴2 ∶= 𝐴 ∩ 𝐵𝑚 , and their sizes 𝑖1 ∶= ⋃︀𝐴1⋃︀ and 𝑖2 ∶= ⋃︀𝐴2⋃︀, respectively. Due to the

correctness of C𝐵𝑚−1

1

, we know that 𝛿(𝐴1) ≤ 𝛿(C𝐵𝑚−1

1

(𝑖1)). Further, u(𝑎1, 𝑎2) = u(𝑎′1, 𝑎2) = r𝑆(𝐵)
for every 𝑎1 ∈ 𝐴1, 𝑎

′
1
∈ C𝐵𝑚−1

1

(𝑖1), 𝑎2 ∈ 𝐴2 by Property 2. Then the conditions of weak subset-

monotonicity are satisfied and 𝛿(𝐴1 ∪𝐴2) ≤ 𝛿(C𝐵𝑚−1

1

(𝑖1) ∪𝐴2). Following the same argument, we

can conclude that 𝛿(C𝐵𝑚−1

1

(𝑖1) ∪𝐴2) ≤ 𝛿(C𝐵𝑚−1

1

(𝑖1) ∪C𝐵𝑚(𝑖2)), proving that C𝐵𝑚−1

1

(𝑖1) ∪C𝐵𝑚(𝑖2)
is optimal.

Thus, given C𝐵𝑚−1

1

and C𝐵𝑚 , computing C𝐵𝑚
1

takes time 𝑂(𝑘2 ⋅ 𝑓𝛿(𝑘)). Consequently, given
C𝐵1

, . . . ,C𝐵𝑙
, computing C𝐵 requires time 𝑂(𝑘2 ⋅ 𝑓𝛿(𝑘) ⋅ 𝑙). In total, given the ultrametric tree 𝒯𝑆

and proceeding bottom-up, we can compute C𝑆 in time 𝑂(𝑘2 ⋅ 𝑓𝛿(𝑘) ⋅ ⋃︀𝑆 ⋃︀). □

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:22 Marcelo Arenas et al.

B Additional Details for Section 6
Proof of Theorem 6.1

Proof. It remains to prove the correctness of Algorithm 1. We proceed in three steps. For the

first step, we prove that, at the beginning of each iteration (line 6), 𝑆 and 𝐿 cover all solutions ⎜𝐼⨆︁,
i.e., 𝑆 ∪⋃𝐵∈𝐿 𝐵 = ⎜𝐼⨆︁. We show this by induction on the number of iterations. This is certainly true

before the first iteration, since 𝐵root is the root of the ultrametric tree and 𝐵root = ⎜𝐼⨆︁. For any
iteration, 𝑆 only grows while 𝐿 only changes if Children(𝐼 , 𝐵).next = false (line 9). Then, the

algorithm removes 𝐵 from 𝐿 and adds all 𝐵′ ∈ Children(𝐼 , 𝐵) to 𝐿 for which ⋃︀𝐵′⋃︀ > 1. Note that,

if ⋃︀𝐵′⋃︀ = 1, then 𝐵′ ⊆ 𝑆 as at least one element 𝑎 ∈ 𝐵′ of each child 𝐵′ of 𝐵 was added to 𝑆 . Given

that Children(𝐼 , 𝐵) forms a partition of 𝐵, we can assert that 𝐵 ⊆ 𝑆 ∪⋃𝐵′∈Children(𝐼 ,𝐵),⋃︀𝐵′⋃︀>1
𝐵′. We

conclude that 𝑆 ∪⋃𝐵∈𝐿 𝐵 = ⎜𝐼⨆︁ still holds.
For the second step, we show that, at the beginning of each iteration, for any 𝑎 ∈ ⎜𝐼⨆︁ ∖ 𝑆 , there

exists 𝐵 ∈ 𝐿 such that 𝛿(𝑆 ∪{𝑎}) ≤ 𝛿(𝑆 ∪{𝑏}) for 𝑏 = Member(𝐼 , Children(𝐼 , 𝐵).current). In other

words, in steps 7 and 8 the algorithm chooses an element that maximizes the incremental diversity

of 𝑆 . To prove this, take any 𝑎 ∈ ⎜𝐼⨆︁ ∖ 𝑆 . By the first step, there must exists 𝐵 ∈ 𝐿 such that 𝑎 ∈ 𝐵.
Let 𝐵′ = Children(𝐼 , 𝐵).current and 𝑏 = Member(𝐼 , 𝐵′). On the one hand, for every 𝑠 ∈ 𝑆 ∩ 𝐵, it

holds that u(𝑠, 𝑎) ≤ 𝑟(𝐵). Given that 𝑆 ∩𝐵′ = ∅ (i.e., 𝐵′ has not been considered yet), u(𝑠,𝑏) = 𝑟(𝐵)
(by Property 2). In particular, u(𝑠, 𝑎) ≤ u(𝑠,𝑏). On the other hand, for every 𝑠 ∈ 𝑆 ∖ 𝐵, it holds

that u(𝑠, 𝑎) = u(𝑠,𝑏) given that 𝑎,𝑏 ∈ 𝐵. Combining both cases, we have that u(𝑠, 𝑎) ≤ u(𝑠,𝑏) for
every 𝑠 ∈ 𝑆 . Now, if we choose 𝐴 = 𝑆 , 𝐵 = {𝑎}, and 𝐵′ = {𝑏}, we conclude by subset-monotonicity

that 𝛿(𝑆 ∪ {𝑎}) ≤ 𝛿(𝑆 ∪ {𝑏}).
For the last step, we prove that the algorithm always outputs a 𝑘-diverse set with respect to 𝛿 .

Let 𝑆 = {𝑠1, . . . , 𝑠𝑘} be the output of the algorithm where 𝑠1, . . . , 𝑠𝑘 is the order how the algorithm

added the elements to 𝑆 . Towards a contradiction, assume that there exists 𝑆 ′ ⊆ ⎜𝐼⨆︁ of size 𝑘 such

that 𝛿(𝑆) < 𝛿(𝑆 ′). Let 𝑀 be the set of all 𝑆 ′ such that 𝛿(𝑆) < 𝛿(𝑆 ′) and ⋃︀𝑆 ′⋃︀ = 𝑘 . Pick one 𝑆∗ ∈ 𝑀
that contains the longest prefix of 𝑠1, . . . , 𝑠𝑘 , namely, 𝑆∗ = arg max𝑆′∈𝑀{𝑚 ⋃︀ 𝑠1, . . . , 𝑠𝑚 ∈ 𝑆 ′}. Then
𝑠1, . . . , 𝑠𝑚 ∈ 𝑆∗ but 𝑠𝑚+1 ∉ 𝑆∗. Also, let 𝑠∗ ∈ 𝑆∗ be such that u(𝑠𝑚+1, 𝑆

∗ ∖ {𝑠1, . . . , 𝑠𝑚}) = u(𝑠𝑚+1, 𝑠
∗)

(i.e., 𝑠∗ is one of the closest elements to 𝑠𝑚+1 in 𝑆∗ ∖ {𝑠1, . . . , 𝑠𝑚}). Define 𝐴 = 𝑆∗ ∖ {𝑠1, . . . , 𝑠𝑚, 𝑠
∗},

𝐵 = {𝑠1, . . . , 𝑠𝑚, 𝑠
∗}, and 𝐵′ = {𝑠1, . . . , 𝑠𝑚, 𝑠𝑚+1}. By the second step, we know that 𝛿(𝐵) ≤ 𝛿(𝐵′).

Furthermore, for every 𝑎 ∈ 𝐴 we have that:

u(𝑎, 𝑠∗) ≤ max{u(𝑎, 𝑠𝑚+1),u(𝑠𝑚+1, 𝑠
∗)} = max{u(𝑎, 𝑠𝑚+1),u(𝑠𝑚+1, 𝑆

∗∖{𝑠1, . . . , 𝑠𝑚})} = u(𝑎, 𝑠𝑚+1).

The remaining elements 𝐵∖{𝑠∗} are the same as 𝐵′∖{𝑠𝑚+1} and u(𝑎, 𝑠𝑖) = u(𝑎, 𝑠𝑖). Then, applying
subset-monotonicity, we get that:

𝛿(𝑆∗) = 𝛿(𝐴 ∪ 𝐵) ≤ 𝛿(𝐴 ∪ 𝐵′)

This means that𝐴∪𝐵′ ∈𝑀 but𝐴∪𝐵′ has a longer prefix of 𝑠1, . . . , 𝑠𝑘 than 𝑆
∗
, which is a contradiction.

We conclude that the output 𝑆 of Algorithm 1 is a 𝑘-diverse set of ⎜𝐼⨆︁ with respect to 𝛿 . □

Proof of Theorem 6.5
Proof. It remains to prove the correctness and the FPT running time of Algorithm 2. To that

end, we verify the following condition for any 𝐼 ∈ ℐ, 𝐵 ∈ ℬ⎜𝐼⨆︁, 𝑘 ′ ≤ 𝑘 by induction on 𝑘 ′: Let

𝑆 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , 𝐵,𝑘 ′). For any 𝑘-subset 𝑆 ′ ⊆ ⎜𝐼⨆︁ with ⋃︀𝑆 ′ ∩ 𝐵⋃︀ =∶ 𝑚 ≤ 𝑘 ′, there exists a
𝑚-subset 𝐴 ⊆ 𝑆 such that 𝛿(𝑆 ′) ≤ 𝛿(𝑆 ′ ∖ 𝐵 ∪𝐴) (‡).

For ⋃︀𝐵⋃︀ = 1 we have 𝑆 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , 𝐵,𝑘 ′) = 𝐵 and thus we can simply select 𝐴 ∶= 𝐵.
For 𝑘 ′ = 1 we have 𝑆 = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , 𝐵,𝑘 ′) = {𝑎} where 𝑎 = Member(𝐼 , 𝐵). Then, let

𝑆 ′ ⊆ ⎜𝐼⨆︁ be as required. If𝑚 = 0 we can again simply select 𝐴 ∶= ∅. Thus, assume𝑚 = 1 and let 𝑏 be

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:23

such that 𝑆 ′ ∩ 𝐵 = {𝑏}. Now consider 𝐴 = {𝑎}. For any 𝑠 ∈ 𝑆 ′ ∖ 𝐵 = 𝑆 ′ ∖ {𝑏} we have

u(𝑏, 𝑠) ≤ max{u(𝑏, 𝑎),u(𝑎, 𝑠)} = u(𝑎, 𝑠)

since 𝑎,𝑏 are in the same ball 𝐵 ∈ ℬ⎜𝐼⨆︁ but 𝑠 is not in 𝐵. Thus, due to incremental monotonicity,

𝛿(𝑆 ′) ≤ 𝛿(𝑆 ′ ∖ 𝐵 ∪𝐴)
Now consider a 𝐼 ∈ ℐ, 𝐵 ∈ ℬ⎜𝐼⨆︁, 1 < ⋃︀𝐵⋃︀, 1 < 𝑘 ′ ≤ 𝑘 and assume (‡) holds for any 𝑘 ′′ < 𝑘 ′. Let

𝐵1, . . . , 𝐵𝑙 be the children of 𝐵. Furthermore, let 𝑆 ′ ⊆ ⎜𝐼⨆︁ be as required. We define 𝑆 ′𝐼 ∶= 𝑆 ′ ∖ 𝐵 and

𝑆 ′𝐵 ∶= 𝑆 ′ ∩𝐵. Let 𝐵𝑖 be a child of 𝐵 such that 𝐵𝑖 ∩𝑆 ′𝐵 = ∅. Then, for any 𝑎 ∈ 𝐵𝑖 , 𝑏 ∈ 𝑆 ′𝐵 and 𝑠 ∈ 𝑆 ′ ∖{𝑏},
again

u(𝑏, 𝑠) ≤ max{u(𝑏,𝑎),u(𝑎, 𝑠)} = u(𝑎, 𝑠).
Thus, 𝛿(𝑆 ′) ≤ 𝛿(𝑆 ′∖{𝑏}∪{𝑎}). It suffices to showCondition (‡) for 𝑆 ′∖{𝑏}∪{𝑎} (playing the role of
𝑆 ′) as this is strictly harder to achieve. Thus, we can require, w.l.o.g., 𝑆 ′∩𝐵1 ≠ ∅, . . . , 𝑆 ′∩𝐵min{𝑙,𝑚} ≠ ∅.
Furthermore, ⋃︀𝑆 ′ ∩ 𝐵𝑖 ⋃︀ ≤𝑚 −min{𝑙,𝑚} + 1 ≤ 𝑘 ′ −min{𝑙, 𝑘 ′} + 1 < 𝑘 ′ for all 𝑖 ≤ min{𝑙,𝑚}. Thus, by
the Condition (‡), there exist (⋃︀𝑆 ′ ∩ 𝐵𝑖 ⋃︀)-subsets 𝐴𝑖 ⊆ 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , 𝐵𝑖 , 𝑘 ′ −min{𝑙, 𝑘 ′} + 1)
for which

𝛿(𝑆 ′ ∖ 𝐵 ∪⋃
𝑗<𝑖

𝐴 𝑗 ∪⋃
𝑖≤𝑗
(𝑆 ′ ∩ 𝐵 𝑗)) ≤ 𝛿(𝑆 ′ ∖ 𝐵 ∪⋃

𝑗≤𝑖
𝐴 𝑗 ∪⋃

𝑖<𝑗
(𝑆 ′ ∩ 𝐵 𝑗)).

Applying this from 𝑖 = 1 to 𝑖 = min{𝑙,𝑚} and defining

𝐴 ∶=
min{𝑙,𝑚}
⋃
𝑖=1

𝐴𝑖 ⊆
min{𝑙,𝑚}
⋃
𝑖=1

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , 𝐵𝑖 , 𝑘 ′ −min{𝑙, 𝑘 ′} + 1) = 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , 𝐵,𝑘 ′)

this gives us

𝛿(𝑆 ′) = 𝛿(𝑆 ′ ∖ 𝐵 ∪ ⋃
1≤𝑗

(𝑆 ′ ∩ 𝐵 𝑗)) ≤ ⋅ ⋅ ⋅ ≤ 𝛿(𝑆 ′ ∖ 𝐵 ∪ ⋃
𝑗≤min{𝑙,𝑚}

𝐴 𝑗) = 𝛿(𝑆 ′ ∖ 𝐵 ∪𝐴)

as required.

We can conclude that Condition (‡) holds for 𝐵 = ⎜𝐼⨆︁ and 𝑘 ′ = 𝑘 . Thus, for any 𝑘-subset 𝐴 ⊆ ⎜𝐼⨆︁,
there exists a 𝑘-subset 𝑆 ′ ⊆ 𝑆 ∶= 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐼 , ⎜𝐼⨆︁, 𝑘) such that 𝛿(𝐴) ≤ 𝛿(𝑆 ′). Consequently,
𝑆 contains at least one 𝑘-diverse subset of ⎜𝐼⨆︁. □

C Additional Details for Section 7
Proof of Theorem 7.1

Proof. We want to apply Theorem 6.1 and, therefore, we need to give an implicit ultrametric tree

(Root, Children, Member) which runs in time𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀)). To that end, we first define IDs
for the balls ℬ⎜𝑄⨆︁(𝐷) which will be subsequently used by the implicit ultrametric tree. Concretely,

for every ball 𝐵 ∈ ℬ⎜𝑄⨆︁(𝐷), there exists values 𝑐1, . . . , 𝑐𝑖 such that 𝐵 = {𝑄(𝑎) ∈ ⎜𝑄⨆︁(𝐷) ⋃︀ ∀ 𝑗 ≤
𝑖 . 𝑎(︀ 𝑗⌋︀ = 𝑐 𝑗}. This means that all answers in 𝐵 agree on the values 𝑐1, . . . , 𝑐𝑖 and these form a

common prefix. Moreover, these prefixes are as long as possible, i.e., 𝑖 is as big as possible, and we

can use 𝑐1, . . . , 𝑐𝑖 to uniquely identify 𝐵.

To implement the methods Root, Children, and Member, we modify Yannakakis algorithm [39].

Recall that Yannakakis algorithm proceeds in the following manner (we only sketch the prepro-

cessing phase) on an ACQ 𝑄(𝑥) ← 𝑅1(𝑥1), . . . , 𝑅𝑚(𝑥𝑚):
(1) The 𝑅𝑖 are arranged in a tree structure (in a join tree).

(2) Each 𝑅𝑖 gets assigned a unique copy 𝑅𝐷
𝑖 of the corresponding table in 𝐷 .

(3) The 𝑅𝐷
𝑖 are semijoined as to delete dangling tuples.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:24 Marcelo Arenas et al.

Thus, after the preprocessing phase, 𝑅𝑖(ℎ(𝑥𝑖)) ∈ 𝑅𝐷
𝑖 for some ℎ𝑖 ∶𝑥𝑖 → D if and only if ℎ𝑖 can be

extended to a ℎ∶ 𝒳 → D such that 𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷). Thus, the admissible values

𝑎𝑑(𝑥) ∶= {𝑑 ∈ D ⋃︀ ∃ℎ∶ 𝒳 → D s.t., ℎ(𝑥) = 𝑑 and 𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷)}

of a variable 𝑥 ∈ 𝒳 can be compute in time 𝑂(⋃︀𝐷 ⋃︀) by inspecting a table 𝑅𝐷
𝑖 where 𝑥 appears in

𝑥𝑖 . Therefore, to compute the common prefix of 𝐵root ∶= ⎜𝑄⨆︁(𝐷), we simply have to iteratively go

through 𝑥(︀1⌋︀, . . . , 𝑥(︀⋃︀𝑥 ⋃︀⌋︀ to find the first 𝑥(︀𝑖⌋︀ such that ⋃︀𝑎𝑑(𝑥(︀𝑖⌋︀)⋃︀ ≠ 1. The common prefix of 𝐵root

then is 𝑐1, . . . , 𝑐𝑖−1 where {𝑐1} = 𝑎𝑑(𝑥(︀1⌋︀), . . . , {𝑐𝑖−1} = 𝑎𝑑(𝑥(︀𝑖 − 1⌋︀) (for 𝑖 = 1 the common prefix

is the empty prefix 𝜖). Computing this prefix takes time 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀)) and is exactly what

Root does.

To compute the children of a ball 𝐵 ∈ ℬ⎜𝑄⨆︁(𝐷) with common prefix 𝑐 = (𝑐1, . . . , 𝑐𝑖−1) we can do

the following: Consider the query 𝑄 ′(𝑥(︀𝑖⌋︀, . . . , 𝑥(︀⋃︀𝑥 ⋃︀⌋︀) ← 𝑅1(ℎ(𝑥1)), . . . , 𝑅𝑚(ℎ(𝑥𝑚)) where ℎ is an

partial assignment that maps ℎ(𝑥(︀ 𝑗⌋︀) = 𝑐 𝑗 for every 𝑗 ≤ 𝑖 − 1 and ℎ(𝑥) = 𝑥 for any other variable

𝑥 ∈ 𝒳 . I.e., we plugged the prefix 𝑐 into the query 𝑄 . We can then compute the admissible values of

the next variable 𝑥(︀𝑖⌋︀ for the prefix 𝑐 , i.e., the set

𝑎𝑑𝑐(𝑥(︀𝑖⌋︀) ∶= {𝑑 ∈ D ⋃︀ ∃ℎ∶ 𝒳 → D s.t., ℎ(𝑥(︀𝑖⌋︀) = 𝑑 and 𝑄 ′(ℎ(𝑥(︀𝑖⌋︀, . . . , 𝑥(︀⋃︀𝑥 ⋃︀⌋︀)) ∈ ⎜𝑄 ′⨆︁(𝐷)}.

This may take time up to 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀)). Note that ⋃︀𝑎𝑑𝑐(𝑥(︀𝑖⌋︀)⋃︀ ≥ 1 as otherwise the prefix of

𝐵 would have been longer. Then, to enumerate the children we iterate through 𝑐𝑖 ∈ 𝑎𝑑𝑐(𝑥(︀𝑖⌋︀). For a
𝑐𝑖 , we plug in the new prefix (𝑐, 𝑐𝑖) into 𝑄 which results in the query 𝑄 ′𝑐𝑖 (𝑥(︀𝑖 + 1⌋︀, . . . , 𝑥(︀⋃︀𝑥 ⋃︀⌋︀) ←
𝑅1(ℎ(𝑥1)), . . . , 𝑅𝑚(ℎ(𝑥𝑚)). Then, let 𝐵𝑐𝑖 be the answers ⎜𝑄 ′𝑐𝑖 ⨆︁(𝐷) prepended by the prefix (𝑐, 𝑐𝑖).
Note that 𝐵𝑐𝑖 is a child of 𝐵 and we can compute the prefix of it as the prefix 𝑐′𝑐𝑖 of ⎜𝑄

′
𝑐𝑖
⨆︁(𝐷)

prepended by the prefix (𝑐, 𝑐𝑖), i.e., it is (𝑐, 𝑐𝑖 , 𝑐′𝑐𝑖) (𝑐
′
𝑐𝑖
may be the empty prefix). All of this takes

time 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀)) for each 𝑐𝑖 and, thus, this is also the delay we get for Children.
Lastly, given a ball 𝐵 ∈ ℬ⎜𝑄⨆︁(𝐷) with common prefix 𝑐 = (𝑐1, . . . , 𝑐𝑖−1) we can easily compute a

𝑏 ∈ 𝐵 by computing any answer 𝑎 ∈ ⎜𝑄 ′⨆︁(𝐷) with Yannakakis algorithm and prepend it with 𝑐 .

Thus, Member also only requires time 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀)). □

Proof of Theorem 7.2
Proof. We proceed similar to the proof of Theorem 7.1 but in the absence of a disruptive trio

we can move to an extension of Yannakakis algorithm developed in [7] which takes the order

of the head variables 𝑥 in consideration. Intuitively, the absence of a disruptive trio ensures the

existence of a layered join tree whose layers follow the order of the variables in the head of 𝑄 .

This will allow us to improve the runtime of Root, Children and Member to 𝑂(⋃︀𝑄 ⋃︀) if we allow a

common preprocessing of 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀)). Thus, be inspecting how we arrive at the run time

in Theorem 6.1 this then totals to the run time as required.

We start by recalling the steps taken by the algorithm presented in [7] (we only sketch the

preprocessing phase) on a free-connex ACQ 𝑄(𝑥) ← 𝑅1(𝑥1), . . . , 𝑅𝑚(𝑥𝑚) without a disruptive trio:
(1) Projections of some 𝑅𝑖(𝑥𝑖) are possibly added to the query such that the resulting query has

a layered join tree. However, the semantics of the query remains unchanged and, thus, we

assume that 𝑄 already includes all of these projections needed.

(2) The 𝑅𝑖 are arranged in a rooted tree structure 𝑇 (a layered join tree). As 𝑄 is free-connex we

assume that the free variables 𝑥 appear in a subtree which includes the root.

(3) Each 𝑅𝑖 gets assigned a unique copy 𝑅𝐷
𝑖 of the corresponding table in 𝐷 .

(4) The 𝑅𝐷
𝑖 are semijoined as to delete dangling tuples. Furthermore, for each 𝑅𝑖 with child 𝑅 𝑗 ,

indexes are created such that we can access the join partners 𝑡 𝑗 ∈ 𝑅𝐷
𝑗 of each 𝑡𝑖 ∈ 𝑅𝐷

𝑖 in

constant time and with constant delay.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

Towards Tractability of the Diversity of Query Answers: Ultrametrics to the Rescue 215:25

(5) As 𝑄 is free-connex, we can now remove the bounded variables. Thus, w.l.o.g., we may

assume 𝑄 to be a full CQ, i.e., all 𝑥𝑖 are all sequences of variables in 𝑥 .

All of this preprocessing only requires 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀ ⋅ log(⋃︀𝐷 ⋃︀)) time. Furthermore, due to the layered

join tree we can assume, w.l.o.g., that 𝑅𝑖 is the root of the subtree of 𝑇 containing the variable 𝑥(︀𝑖⌋︀
and if 𝑅𝑖 is the parent of 𝑅 𝑗 that 𝑖 < 𝑗 . Also, to simplify the subsequent presentation we assume the

variables in 𝑥𝑖 to be ordered according to 𝑥 and that variables are not repeated within 𝑥𝑖 nor 𝑥 .

Now, we can proceed to define the algorithms (Root, Children, Member) similar to the proof of

Theorem 7.1 but it will no longer be necessary to recompute join trees and we can always remain

in𝑇 . To that end, recall the definition of the prefix of a ball 𝐵 ∈ ℬ⎜𝑄⨆︁(𝐷) as the values 𝑐1, . . . , 𝑐𝑖 such

that 𝐵 = {𝑄(𝑎) ∈ ⎜𝑄⨆︁(𝐷) ⋃︀ ∀ 𝑗 ≤ 𝑖 . 𝑎(︀ 𝑗⌋︀ = 𝑐 𝑗}, and the admissible values for a variable 𝑥 ∈ 𝒳 , i.e.,
𝑎𝑑(𝑥) ∶= {𝑑 ∈ D ⋃︀ ∃ℎ∶ 𝒳 → D s.t., ℎ(𝑥) = 𝑑 and 𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷)}.

Furthermore, we also define the admissible values of a variable 𝑥 ∈ 𝒳 given a prefix 𝑐 = (𝑐1, . . . , 𝑐𝑖−1).
Slightly different to before, we define

𝑎𝑑𝑐(𝑥(︀𝑖⌋︀) ∶= {𝑑 ∈ D ⋃︀ ∃ℎ∶ 𝒳 → D s.t., ℎ((𝑥(︀1⌋︀, . . . , 𝑥(︀𝑖−1⌋︀)) = 𝑐,ℎ(𝑥(︀𝑖⌋︀) = 𝑑 and 𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷)}.
Note that computing 𝑎𝑑(𝑥(︀1⌋︀) is easy as 𝑥1 can only contain the variable 𝑥(︀1⌋︀ due to the fact

that 𝑅1 is the root of𝑇 but only the root of the subtree containing the variable 𝑥(︀1⌋︀. Thus, 𝑅1(𝑥(︀1⌋︀)
is part of the query and 𝑎𝑑(𝑥(︀1⌋︀) = 𝑅𝐷

1
. If ⋃︀𝑅𝐷

1
⋃︀ = ⋃︀𝑎𝑑(𝑥(︀1⌋︀)⋃︀ > 1, the prefix of 𝐵root ∶= ⎜𝑄⨆︁(𝐷) is the

empty prefix 𝜖 and there is nothing more to do for Root. Otherwise, we proceed to 𝑎𝑑(𝑥(︀2⌋︀).
To that end, let in general {𝑐1} = 𝑎𝑑(𝑥(︀1⌋︀), . . . , {𝑐𝑖−1} = 𝑎𝑑(𝑥(︀𝑖 − 1⌋︀) and we are looking at

whether 𝑎𝑑(𝑥(︀𝑖⌋︀) is of size 1 or greater than 1. To that end, consider 𝑅𝑖 which is the root of the

subtree of 𝑇 containing the variable 𝑥(︀𝑖⌋︀. Hence, in 𝑄 , it may only appear together with variables

𝑥(︀ 𝑗⌋︀ with 𝑗 ≤ 𝑖 . But we know all of them only have 1 admissible value, thus, 𝑅𝐷
𝑖 is the same as

𝑎𝑑(𝑥(︀𝑖⌋︀)where values 𝑐 𝑗 for the 𝑥(︀ 𝑗⌋︀which appear in 𝑥𝑖 and where 𝑗 < 𝑖 are prepended to 𝑎𝑑(𝑥(︀𝑖⌋︀).
I.e., for ℎ∶ {𝑥(︀1⌋︀, . . . , 𝑥(︀𝑖 − 1⌋︀} → D, ℎ(𝑥(︀𝑙⌋︀) ∶= 𝑐𝑙

𝑅𝐷
𝑖 = {(ℎ(𝑥𝑖 ∖ {𝑥(︀𝑖⌋︀}), 𝑑) ⋃︀ 𝑑 ∈ 𝑎𝑑(𝑥(︀𝑖⌋︀)}.

Thus, if ⋃︀𝑅𝐷
𝑖 ⋃︀ = ⋃︀𝑎𝑑(𝑥(︀𝑖⌋︀)⋃︀ > 1, the prefix of 𝐵root ∶= ⎜𝑄⨆︁(𝐷) is (𝑐1, . . . , 𝑐𝑖−1) and there is nothing

more to do for Root. Otherwise, we proceed to 𝑎𝑑(𝑥(︀𝑖 + 1⌋︀).
In total, applying the preprocessing as sketched above, Root only requires 𝑂(⋃︀𝑄 ⋃︀) time.

Now lets proceed to computing the children of a ball 𝐵 ∈ ℬ⎜𝑄⨆︁(𝐷). To that end, let 𝑐 = (𝑐1, . . . , 𝑐𝑖−1)
be the common prefix of 𝐵. We go to 𝑅𝑖 and its parent 𝑅 𝑗 where 𝑗 < 𝑖 . Similar to before, we can

determine 𝑎𝑑𝑐(𝑥(︀𝑖⌋︀) by inspecting 𝑅𝑖 . To that end, let ℎ∶ {𝑥(︀1⌋︀, . . . , 𝑥(︀𝑖 − 1⌋︀} → D, ℎ(𝑥(︀𝑙⌋︀) ∶= 𝑐𝑙 .
Then,

{(ℎ(𝑥𝑖 ∖ {𝑥(︀𝑖⌋︀}), 𝑑) ∈ 𝑅𝐷
𝑖 } = {(ℎ(𝑥𝑖 ∖ {𝑥(︀𝑖⌋︀}), 𝑑) ⋃︀ 𝑑 ∈ 𝑎𝑑𝑐(𝑥(︀𝑖⌋︀)}.

The left hand side are the tuples of 𝑅𝐷
𝑖 that adhere to the prefix 𝑐 while the right hand side are the

admissible values of 𝑥(︀𝑖⌋︀ given the prefix 𝑐 prepended by the values of 𝑐 that correspond to variables

appearing in 𝑥𝑖 . However, given the indexes on the parent 𝑅 𝑗 , we can compute the left hand side

with constant delay. To see let consider 𝑡 𝑗 ∶= ℎ(𝑥 𝑗) ∈ 𝑅𝐷
𝑗 and notice that {(ℎ(𝑥𝑖 ∖ {𝑥(︀𝑖⌋︀}), 𝑑) ∈ 𝑅𝐷

𝑖 }
are exactly the join partners of 𝑡 𝑗 in 𝑅𝐷

𝑖 . Thus, we can iterate through 𝑐𝑖 ∈ 𝑎𝑑𝑐(𝑥(︀𝑖⌋︀) with constant

delay.

Now let 𝐵𝑐𝑖 ∈ ℬ⎜𝑄⨆︁(𝐷) be the answers with prefixes (𝑐, 𝑐𝑖). Note that 𝐵𝑐𝑖 is a child of 𝐵 but we still

have to extend this prefix to the maximal prefix for 𝐵𝑐𝑖 . To that end, we have to inspect 𝑎𝑑(𝑐,𝑐𝑖)(𝑥(︀𝑖+
1⌋︀). However, we already know how to compute this by following the same argumentation as

for 𝑎𝑑𝑐(𝑥(︀𝑖⌋︀). If ⋃︀𝑎𝑑(𝑐,𝑐𝑖)(𝑥(︀𝑖 + 1⌋︀)⋃︀ > 1 we stop and assert that (𝑐, 𝑐𝑖) is the correct maximal

prefix. Otherwise, we continue to a 𝑙 > 1 such that {𝑐𝑖+1} = 𝑎𝑑(𝑐,𝑐𝑖)(𝑥(︀𝑖 + 1⌋︀), . . . , {𝑐𝑖+𝑙−1
} =

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

215:26 Marcelo Arenas et al.

𝑎𝑑(𝑐,𝑐𝑖)(𝑥(︀𝑖 + 𝑙 − 1⌋︀) and ⋃︀𝑎𝑑(𝑐,𝑐𝑖)(𝑥(︀𝑖 + 𝑙⌋︀)⋃︀ > 1. Then, (𝑐, 𝑐𝑖 , . . . , 𝑐𝑖+𝑙−1
) is the maximal prefix of 𝐵𝑐𝑖 .

In total, Children has a delay of at most 𝑂(⋃︀𝑄 ⋃︀).
Lastly, given a ball 𝐵 ∈ ℬ⎜𝑄⨆︁(𝐷) with common prefix 𝑐 = (𝑐1, . . . , 𝑐𝑖−1)we can easily compute a 𝑏 ∈

𝐵. To do that, we iterate through 𝑅𝑖 , . . . , 𝑅𝑚 in this order. Letℎ∶ {𝑥(︀1⌋︀, . . . , 𝑥(︀𝑖−1⌋︀} → D, ℎ(𝑥(︀𝑙⌋︀) ∶= 𝑐𝑙 .
We process 𝑅𝑖 with parent 𝑅 𝑗 by considering the tuple 𝑡 𝑗 ∶= ℎ(𝑥 𝑗) ∈ 𝑅𝐷

𝑗 and simply select the first

join partner 𝑡𝑖 ∈ 𝑅𝑖 . Then, 𝑡𝑖 assigns a value to 𝑥(︀𝑖⌋︀ which we call 𝑐𝑖 . Now we can proceed to 𝑅𝑖+1

with the prefix (𝑐1, . . . , 𝑐𝑖), i.e., the previous prefix extended by 𝑐𝑖 . Also this process, i.e., Member,
only requires 𝑂(⋃︀𝑄 ⋃︀) time.

By reinspecting how we arrive at the run time in Theorem 6.1 – in particular what role the run

times of (Root, Children, Member) play – this then totals to the run time as required. □

Proof of Theorem 7.3
Proof. Let us reconsider the proof of Theorem 7.2 and the definitions used there. Furthermore,

let us consider the execution of Algorithm 1 using the implicit ultrametric tree developed in the

proof of Theorem 7.2. To that end, let 𝑆, 𝐿 be as they are at the start of some loop iteration, i.e., in

line 6. Moreover, let 𝐿 = {𝐵1, . . . , 𝐵𝑙} and let 𝑝𝑖 be the prefix corresponding to the ball 𝐵𝑖 ∈ ℬ⎜𝑄⨆︁(𝐷)
and 𝑐𝑖 be the prefix corresponding to the current children, i.e., of the ball Children(𝐼 , 𝐵𝑖).current.
This means that there is an answer ℎ ∈ 𝑆 ⊆ ⎜𝑄⨆︁(𝐷) with the prefix 𝑝𝑖 for any 𝑖 = 1, . . . , 𝑙 but there

is no answer with the prefix 𝑐𝑖(︀1⌋︀, . . . , 𝑐𝑖(︀⋃︀𝑝𝑖 + 1⋃︀⌋︀. Therefore, the incremental diversity of each

𝑏𝑖 ∶= Member(𝐼 , Children(𝐼 , 𝐵𝑖).current) is
𝛿(𝑆 ∪ {𝑏𝑖}) − 𝛿(𝑆) = urel

(𝑏𝑖 , 𝑆) = 2
−⋃︀𝑝𝑖 ⋃︀−1.

Thus, by storing 𝐿 as an array (of length ⋃︀𝑄 ⋃︀) of sets with 𝐵𝑖 in the set at position ⋃︀𝑝𝑖 + 1⋃︀, we can
find a 𝐵 as required in line 7 in time ⋃︀𝑄 ⋃︀.
By reinspecting how we arrive at the run time in Theorem 6.1 – in particular why the term

𝑘2 ⋅ 𝑓 (𝑘) arises – this then totals to the run time as required. □

Received May 2024; accepted August 2024

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 215. Publication date: November 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Computing diversity is hard
	4 Ultrametrics to the rescue
	5 Ultrametrics for explicit representation
	6 Ultrametrics for implicit representations
	7 Efficient computation of diverse answers to ACQs
	8 Related work
	9 Conclusions
	References
	A Additional Details for Section 5
	B Additional Details for Section 6
	C Additional Details for Section 7

