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ABSTRACT
In recent years, there has been a growing interest in developing
methods to explain individual predictions made by machine learn-
ing models. This has led to the development of various notions of
explanation and scores to justify a model’s classification. However,
instead of struggling with the increasing number of such notions,
one can turn to an old tradition in databases and develop a declara-
tive query language for interpretability tasks, which would allow
users to specify and test their own explainability queries. Not sur-
prisingly, logic is a suitable declarative language for this task, as it
has a well-understood syntax and semantics, and there are many
tools available to study its expressiveness and the complexity of
the query evaluation problem. In this talk, we will discuss some
recent work on developing such a logic for model interpretability.

CCS CONCEPTS
• Information systems→Query languages for non-relational
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1 MOTIVATION
The growing necessity to understand the reasoning behind deci-
sions made by machine learning (ML) models has catalyzed signifi-
cant research in explainable AI (XAI) methods [27]. This research
has led to the development of various queries and metrics designed
to understand the individual predictions of these models. For in-
stance, a number of techniques have been developed to assess the
impact of one or more features on the output of an MLmodel. These
methods help users identify the key features that predominantly
influence the model’s decision regarding a specific input [14, 25, 28].

Nevertheless, it is frequently not a single query or metric, but
rather a combination of them, that yields the most comprehensive
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explanation [12, 26]. Additionally, research has demonstrated that
some explainability metrics, despite being considered theoretically
sound and robust, can exhibit unexpected behavior under certain
circumstances [7, 16, 17, 19, 24, 31]. These findings have prompted
the proposal for the development of “explainability languages”.
These general-purpose languages would provide users with the
flexibility to interact with an ML model by posing various queries
in pursuit of the optimal explanation.

Building on the momentum about the potential of explainabil-
ity languages to enhance interactions with ML models, the data
management community is well-positioned to make substantial
contributions. Their extensive background in query language devel-
opment offers significant insights into structuring complex systems
that are both efficient and user-friendly. As we explore the intro-
duction of an explainability language designed to facilitate under-
standing of ML decisions, defining a clear set of criteria—or desider-
ata—becomes crucial. These criteria should draw from proven strate-
gies in database query development to ensure the language is robust,
accessible, and effective. Below are key points of these desiderata,
outlining the fundamental features and capabilities an ideal explain-
ability language should possess:

• Declarative: The language should allow users to articulate
what explanation they need without detailing the compu-
tational method to achieve it. This characteristic enables
users to focus on interpreting results rather than navigating
complex computational processes, making the system easier
to use.

• Simple syntax and semantics: The explainability language
should be built with simple syntax and semantics, leveraging
well-known database query languages. This simplicity will
make the language easier to learn and use, broadening its
appeal to a diverse range of users, including those without
specialized knowledge in machine learning.

• Specific query capability for explainability: The lan-
guage must have the capability to consistently define expla-
nation concepts across different models, irrespective of their
size or the type of classificationmodel employed. This crucial
feature should guarantee that a given explanation concept
can be effectively represented by a single, fixed query, in-
dependent of any specific characteristics of the model. This
ensures the language’s adaptability and effectiveness across
a broad spectrum of applications.

• Expressiveness: To effectively serve its purpose, the lan-
guage must be able to represent a wide array of common
explanation concepts [2, 4, 11, 15, 18, 21, 30].

• Exploratory operators: Including operators that enable ex-
ploration within a model is crucial. These operators should

1

https://orcid.org/0003-3678-1868
https://doi.org/10.1145/3635138.3654762
https://doi.org/10.1145/3635138.3654762
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3635138.3654762&domain=pdf&date_stamp=2024-06-09


PODS Companion ’24, June 9–15, 2024, Santiago, AA, Chile Marcelo Arenas

facilitate the investigation of various aspects of an expla-
nation, allowing users to refine their understanding incre-
mentally. For instance, a classification model may yield a
large number of possible explanations for a given result. The
language should allow users to retrieve these explanations,
filtering them according to various criteria.

• Combination of explanations: The language should sup-
port the combination of different explanation approaches
through specific operators. This capability allows for richer,
more nuanced insights by integrating multiple explanatory
perspectives.

• Efficient data complexity:As an explanation notion should
be representable in the language by a fixed query, the ap-
propriate way to measure the evaluation complexity of the
language is through the concept of data complexity [32].
Although we expect the data complexity of certain frag-
ments of the language to be polynomial, we must be more
permissive given the inherently high complexity of certain
explanation tasks [3, 4]. In particular, a data complexity such
as PNP would still be desirable, as this level would enable the
use of SAT solvers for query evaluation. SAT solvers are a
mature technology that has proven effective in computing
explanations for various ML models [20, 23, 33].

• Verification versus computation: Beyond the ability to ef-
ficiently verify whether a possible explanation indeed meets
certain criteria, it should also be feasible to compute these
explanations efficiently. In this regard, we expect the lan-
guage to demonstrate efficient data complexity for both the
verification and computation problems.

Several questions arise from the previous desiderata. Should the lan-
guage be model agnostic, so that it does not depend on the specific
type of ML model being employed? If this is the case, the language
can be used to provide explanations for any ML model, treating
it merely as a black box. However, this approach will inevitably
lead to higher complexity, as it limits the ability to develop more
efficient evaluation algorithms for the language that are tailored to
specific features of the ML model being used.

If we move away from the model-agnostic approach, which ML
models should we consider? A natural starting point would be to
focus on decision trees, as they have been extensively studied for
explainability in the literature [2–4, 21–23]. Following this, various
forms of decision diagrams and circuits could be considered, particu-
larly ordered binary decision diagrams (OBDDs), which, along with
decision trees, are regarded as easily interpretable [8, 10, 13, 27, 29].
Other more expressive forms of decision diagrams and circuits with
advantageous properties should also be explored, especially those
that are decomposable and deterministic [1], if we aim to achieve
efficient data complexity. Clearly, many more alternatives should
be explored, particularly probabilistic ML models [9].

How should an explanation be presented to the user, and how can
it be proved that such an explanation is trustworthy? The database
community has much to contribute here, particularly since many
concepts developed in this area, such as data provenance [5, 6],
could be helpful in addressing these questions. It is also important
to note that different levels of detail may be required by different

users; this too needs to be considered when responding to a query
in the explainability language.

We are convinced that incorporating the aforementioned desider-
ata and addressing the aforementioned questions could be instru-
mental in the development of powerful explainability languages
that enhance the transparency and accessibility of ML models. This
would help bridge the gap between complex algorithmic decisions
and actionable, understandable insights. In this talk, we will discuss
some recent work on developing such an explainability language
that tries to meet the criteria discussed in this article.
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