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ABSTRACT
In this work, we study two simple yet general complexity
classes, based on logspace Turing machines, which provide
a unifying framework for efficient query evaluation in ar-
eas like information extraction and graph databases, among
others. We investigate the complexity of three fundamental
algorithmic problems for these classes: enumeration, count-
ing and uniform generation of solutions, and show that they
have several desirable properties in this respect.
Both complexity classes are defined in terms of nonde-

terministic logspace transducers (NL transducers). For the
first class, we consider the case of unambiguous NL trans-
ducers, and we prove constant delay enumeration, and both
counting and uniform generation of solutions in polyno-
mial time. For the second class, we consider unrestricted NL
transducers, and we obtain polynomial delay enumeration,
approximate counting in polynomial time, and polynomial-
time randomized algorithms for uniform generation. More
specifically, we show that each problem in this second class
admits a fully polynomial-time randomized approximation
scheme (FPRAS) and a polynomial-time Las Vegas algorithm
for uniform generation. Interestingly, the key idea to prove
these results is to show that the fundamental problem #NFA
admits an FPRAS, where #NFA is the problem of counting
the number of strings of length n accepted by a nondetermin-
istic finite automaton (NFA). While this problem is known
to be #P-complete and, more precisely, SpanL-complete, it
was open whether this problem admits an FPRAS. In this
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work, we solve this open problem, and obtain as a welcome
corollary that every function in SpanL admits an FPRAS.
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1 INTRODUCTION
Arguably, query answering is the most fundamental prob-
lem in databases. In this respect, developing efficient query
answering algorithms, as well as understanding when this
cannot be done, is of paramount importance in the area. In
the most classical view of this problem, one is interested in
computing all the answers, or solutions, to a query. How-
ever, as the quantity of data becomes enormously large, the
number of solutions to a query could also be enormous, so
computing the complete set of solutions can be prohibitively
expensive. In order to overcome this limitation, the idea of
enumerating the answers to a query with a small delay has
been recently studied in the database area [31]. More specifi-
cally, the idea is to divide the computation of the answers to
a query into two phases. In a preprocessing phase, some data
structures are constructed to accelerate the process of com-
puting answers. Then in an enumeration phase, the answers
are enumerated with a small delay between them. In partic-
ular, in the case of constant delay enumeration algorithms,
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the preprocessing phase should take polynomial time, while
the time between consecutive answers should be constant.
Constant delay enumeration algorithms allow users to

retrieve a fixed number of answers very efficiently, which
can give them a lot of information about the solutions to
a query. In fact, the same holds if users need a linear or a
polynomial number of answers. However, because of the data
structures used in the preprocessing phase, these algorithms
usually return answers that are very similar to each other
[11, 16, 31]; for example, tuples with n elements where only
the first few coordinates are changed in the first answers
that are returned. In this respect, other approaches can be
used to return some solutions efficiently but improving the
variety. Most notably, generating an answer uniformly, at
random, is a desirable condition if it can be done efficiently.
Notice that returning varied solutions has been identified
as an important property not only in databases, but also for
algorithms that retrieve information in a broader sense [1].
Efficient algorithms for either enumerating or uniformly

generating the answers to a query are powerful tools to
help in the process of understanding the answers to a query.
But how can we know how long these algorithms should
run, and how complete the set of computed answers is? A
third tool that is needed then is an efficient algorithm for
computing, or estimating, the number of solutions to a query.
Then, taken together, enumeration, counting and uniform
generation techniques form a powerful attacking trident
when confronting to the problem of answering a query.

In this paper, we follow a more principled approach to
study the problems of enumerating, counting and uniformly
generating the answers to a query. More specifically, we be-
gin by following the guidance of [22], which urges the use of
relations to formalize the notion of solution to a given input
of a problem (for instance, to formalize the notion of answer
to an input query over an input database). While there are
many other ways of formalizing this notion, most such for-
malizations only make sense for a specific kind of queries,
e.g. a subset of the integers is well-suited as the solution
set for counting problems, but not for sampling problems.
Thus, if Σ denotes a finite alphabet, then by following [22]
we represent a problem as a relation R ⊆ Σ∗ × Σ∗, and we
say that y is a solution for an input x if (x ,y) ∈ R. Note that
the problem of enumerating the solutions to a given input x
corresponds to the problem of enumerating the elements of
the set {y ∈ Σ∗ ⋃︀ (x ,y) ∈ R}, while the counting and uniform
generation problems correspond to the problems of comput-
ing the cardinality of {y ∈ Σ∗ ⋃︀ (x ,y) ∈ R} and uniformly
generating, at random, a string in this set, respectively.

Second, we study two simple yet general complexity classes
for relations, based on non-deterministic logspace transduc-
ers (NL transducers), which provide a unifying framework
for studying enumeration, counting and uniform generation.

More specifically, given a finite alphabet Σ, an NL-transducer
M is a nondeterministic Turing Machine with input and out-
put alphabet Σ, a read-only input tape, a write-only output
tape and a work-tape of which, on input x ∈ Σ∗, only the
first O(log(⋃︀x ⋃︀)) cells can be used. Moreover, a string y ∈ Σ∗
is said to be an output ofM on input x , if there exists a run
ofM on input x that halts in an accepting state with y as the
string in the output tape. Finally, assuming that all outputs of
M on input x are denoted byM(x), a relation of R ⊆ Σ∗ ×Σ∗
is said to be accepted byM if for every input x , it holds that
M(x) = {y ∈ Σ∗ ⋃︀ (x ,y) ∈ R}.
The first complexity class of relations studied in this pa-

per consists of the relations accepted by unambiguous NL-
transducers. More precisely, an NL-transducerM is said to be
unambiguous if for every input x and y ∈M(x), there exists
exactly one run of M on input x that halts in an accepting
state with y as the string in the output tape. For this class,
we are able to achieve constant delay enumeration, and both
counting and uniform generation of solutions in polynomial
time. For the second class, we consider (unrestricted) NL-
transducers, and we obtain polynomial delay enumeration,
approximate counting in polynomial time, and polynomial-
time randomized algorithms for uniform generation. More
specifically, we show that each problem in this second class
admits a fully polynomial-time randomized approximation
scheme (FPRAS) [22] and a polynomial-time Las Vegas algo-
rithm for uniform generation. It is important to mention that
the key idea to prove these results is to show that the funda-
mental problem #NFA admits an FPRAS, where #NFA is the
problem of counting the number of strings of length n (given
in unary) accepted by a non-deterministic finite automaton
(NFA). While this problem is known to be #P-complete and,
more precisely, SpanL-complete [3], it was open whether
it admits an FPRAS, and only quasi-polynomial time ran-
domized approximation schemata were known for it [19, 24].
In this work, we solve this open problem, and obtain as a
welcome corollary that every function in SpanL admits an
FPRAS. Thus, to the best of our knowledge, we obtain the
first complexity class with a simple definition based on Tur-
ing Machines, and where each problem admits an FPRAS.

Proviso. The main results of the paper are given in Section 3,
while the sketches of the proofs of these results are presented
in Sections 5 and 6. Due to the lack of space, the full proofs
will be given in the journal version of this article.

2 PRELIMINARIES
Relations and problems. Let Σ be a finite alphabet with at
least two symbols. As usual, we represent inputs as words
x ∈ Σ∗ and the length of x is denoted by ⋃︀x ⋃︀. A problem
is represented as a relation R ⊆ Σ∗ × Σ∗. For every pair
(x ,y) ∈ R, we interpret x as being the encoding of an input
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to some problem, and y as being the encoding of a solution
or witness to that input. For each x ∈ Σ∗, we define the set
WR(x) = {y ∈ Σ∗ ⋃︀ (x ,y) ∈ R}, and call it the witness set for
x . Also, if y ∈WR(x), we call y a witness or a solution to x .

This is a very general framework, so mostly we work with
relations that meet two additional properties. First, we only
work with relations where both the input and the witnesses
have a finite encoding. Second, weworkwithp-relations [22],
namely, each R satisfies that (1) there exists a polynomial
q such that (x ,y) ∈ R implies that ⋃︀y⋃︀ ≤ q(⋃︀x ⋃︀) and (2) there
exists a deterministic Turing Machine that receives as input
(x ,y) ∈ Σ∗ × Σ∗, runs in polynomial time and accepts if, and
only if, (x ,y) ∈ R. Without loss of generality, from now on
we assume that for a p-relation R, there exists a polynomial
q such that ⋃︀y⋃︀ = q(⋃︀x ⋃︀) for every (x ,y) ∈ R. This is not a
strong requirement, since all witnesses can be made to have
the same length through padding.

Enumeration, counting anduniformgeneration.Given
a p-relation R, we are interested in the following problems:

Problem: ENUM(R)
Input: A word x ∈ Σ∗
Output: Enumerate all y ∈WR(x)

without repetitions

Problem: COUNT(R)
Input: A word x ∈ Σ∗
Output: The size ⋃︀WR(x)⋃︀

Problem: GEN(R)
Input: A word x ∈ Σ∗
Output: Generate uniformly, at random,

a word inWR(x)

Given that ⋃︀y⋃︀ = q(⋃︀x ⋃︀) for every (x ,y) ∈ R, we have that
WR(x) is finite and these three problems are well defined.
Notice that in the case of ENUM(R), we do not assume a
specific order on words, so that the elementos of WR(x)
can be enumerated in any order (but without repetitions).
Moreover, in the case of COUNT(R), we assume that ⋃︀WR(x)⋃︀
is encoded in binary and, therefore, the size of the output
is logarithmic in the size ofWR(x). Finally, in the case of
GEN(R), we generate a word y ∈ WR(x) with probability

1
⋃︀WR(x)⋃︀

if the setWR(x) is not empty; otherwise, we return
a special symbol � to indicate thatWR(x) = ∅.
Enumeration with polynomial and constant delay. An
enumeration algorithm for ENUM(R) is a procedure that
receives an input x ∈ Σ∗ and, during the computation, it
outputs each word inWR(x), one by one and without repeti-
tions. The time between two consecutive outputs is called
the delay of the enumeration. In this paper, we consider two

restrictions on the delay: polynomial-delay and constant-
delay. Polynomial-delay enumeration is the standard notion
of polynomial time efficiency in enumeration algorithms [23]
and is defined as follows. An enumeration algorithm is of
polynomial delay if there exists a polynomial p such that for
every input x ∈ Σ∗, the time between the beginning of the
algorithm and the initial output, between any two consecu-
tive outputs, and between the last output and the end of the
algorithm, is bounded by p(⋃︀x ⋃︀).

Constant-delay enumeration is another notion of efficiency
for enumeration algorithms that has attracted a lot attention
in the last years [10, 13, 31]. This notion has stronger guaran-
tees compared to polynomial delay: the enumeration is done
in a second phase after the processing of the input and taking
constant-time between two consecutive outputs in a very
precise sense. Several notions of constant-delay enumeration
have been given, most of them in database theory where it
is important to divide the analysis between query and data.
In this paper, we want a definition of constant-delay that
is agnostic of the distinction between query and data (i.e.
combined complexity) and, for this reason, we use a more
general notion of constant-delay enumeration than the one
in [10, 13, 31].
As it is standard in the literature [31], for the notion of

constant-delay enumeration we consider enumeration algo-
rithms on Random Access Machines (RAM) with addition
and uniform cost measure [2]. Given a relation R ⊆ Σ∗ × Σ∗,
an enumeration algorithm E for R has constant-delay if E
runs in two phases over the input x .

(1) The first phase (precomputation), which does not pro-
duce output.

(2) The second phase (enumeration), which occurs im-
mediately after the precomputation phase, where all
words inWR(x) are enumerated without repetitions
and satisfying the following conditions, for a fixed
constant c:

(a) the time it takes to generate the first output y is
bounded by c ⋅ ⋃︀y⋃︀;

(b) the time between two consecutive outputs y and y′
is bounded by c ⋅ ⋃︀y′⋃︀ and does not depend on y; and

(c) the time between the final elementy that is returned
and the end of the enumeration phase is bounded
by c ⋅ ⋃︀y⋃︀,

We say that E is a constant delay algorithm for R with pre-
computation phase f , if E has constant delay and the pre-
computation phase takes time O(f (⋃︀x ⋃︀)). Moreover, we say
that ENUM(R) can be solved with constant delay if there
exists a constant delay algorithm for R with precomputation
phase p for some polynomial p.
Our notion of constant-delay algorithm differ from the

definitions in [31] in two aspects. First, as it was previously
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mentioned we relax the distinction between query and data
in the preprocessing phase, allowing our algorithm to take
polynomial time in the input (i.e. combined complexity).
Second, our definition of constant-delay is what in [10, 13]
is called linear delay in the size of the output, namely, writing
the next output is linear in its size and not depending on the
size of the input. This is a natural assumption, since each
output must at least be written down to return it to the user.
Notice that, given an input x and an output y, the notion of
polynomial-delay abovemeans polynomial in ⋃︀x ⋃︀ and, instead,
the notion of linear delay from [10, 13] means linear in ⋃︀y⋃︀.
Thus, we have decided to call the two-phase enumeration
from above “constant-delay”, as it does not depend on the
size of the input x , and the delay is just what is needed to
write the output (which is the minimum requirement for
such an enumeration algorithm).
Approximate counting. Given a relation R ⊆ Σ∗ × Σ∗, the
problem COUNT(R) can be solved efficiently if there exists
a polynomial-time algorithm that, given x ∈ Σ∗, computes
⋃︀WR(x)⋃︀. In other words, if we think of COUNT(R) as a func-
tion that maps x to the value ⋃︀WR(x)⋃︀, then COUNT(R) can
be computed efficiently if COUNT(R) ∈ FP, the class of func-
tions that can be computed in polynomial time. As such a
condition does not hold for many fundamental problems,
we also consider the possibility of efficiently approximat-
ing the value of the function COUNT(R). More precisely,
COUNT(R) is said to admit a fully polynomial-time random-
ized approximation scheme (FPRAS) [22] if there exists a
randomized algorithm𝒜 ∶ Σ∗ × (0, 1)→ N and a polynomial
q(u,v) such that for every x ∈ Σ∗ and δ ∈ (0, 1):

Pr(⋃︀𝒜(x ,δ) − ⋃︀WR(x)⋃︀⋃︀ ≤ δ ⋅ ⋃︀WR(x)⋃︀) ≥ 3
4

and the number of steps needed to compute 𝒜(x ,δ) is at
mostq(⋃︀x ⋃︀, 1δ ). Thus,𝒜(x ,δ) approximates the value ⋃︀WR(x)⋃︀
with a relative error of δ , and it can be computed in polyno-
mial time in the size of x and the value 1

δ .
Las Vegas uniform generation. The problem GEN(R) can
be solved efficiently if there exists a polynomial-time random-
ized algorithm that, given x ∈ Σ∗, generates an element of
WR(x) with uniform probability distribution (ifWR(x) = ∅,
then it returns �). However, as in the case of COUNT(R),
the existence of such a generator is not guaranteed for many
fundamental problems, so we also consider a relaxed no-
tion of generation that has a probability of failing in return-
ing a solution. More precisely, GEN(R) is said to admit a
polynomial-time Las Vegas uniform generator (PLVUG) if
there exists a randomized algorithm 𝒢 ∶ Σ∗ → Σ∗ ∪ {�, fail},
a polynomial q(u) and a function φ ∶ Σ∗ → (0, 1) such that
for every x ∈ Σ∗:
(1) Pr(𝒢(x) ≠ fail) ≥ 1

2 ;
(2) ifWR(x) ≠ ∅, then Pr(𝒢(x) = �) = 0;

(3) for every (x ,y) ∈ Σ∗ × Σ∗:
(a) if (x ,y) ⇑∈ R, then Pr(𝒢(x) = y) = 0;
(b) if (x ,y) ∈ R, then Pr(𝒢(x) = y) = φ(x);

(4) the number of steps needed to compute 𝒢(x) is at
most q(⋃︀x ⋃︀).

The invocation 𝒢(x) can fail in generating an element of
WR(x), in which case it returns fail. By condition (1), we
know that this probability of failing is smaller than 1

2 , so
that by invoking 𝒢(x) several times we can make this prob-
ability arbitrarily small (for example, the probability that
𝒢(x) returns fail in 100 consecutive independent invoca-
tions is at most ( 12)

100). Assume that the invocation 𝒢(x)
does not fail. IfWR(x) = ∅, then we have by condition 3 (a)
that 𝒢(x) = �, so the randomized algorithm indicates that
there is no witness for x in this case. IfWR(x) ≠ ∅, then we
have by conditions (2) and (3) that 𝒢(x) returns an element
y ∈WR(x). Moreover, we know by condition 3 (b) that the
probability of returning such an element y is φ(x). Thus, we
have a uniform generator in this case, as the probability of
returning each y ∈WR(x) is the same. Finally, we have that
𝒢(x) can be computed in polynomial time in the ⋃︀x ⋃︀.
It is important to notice that the notion of polynomial-

time Las Vegas uniform generator corresponds to the no-
tion of uniform generator used in [22]. However, we have
decided to use the term “Las Vegas” to emphasize the fact
that there is a probability of failing in returning a solution.
Moreover, the notion of polynomial-time Las Vegas uniform
generator imposes stronger requirements than the notion of
fully polynomial-time almost uniform generator introduced
in [22]. In particular, the latter not only has a probability
of failing, but also considers the possibility of generating a
solution with a probability distribution that is almost uni-
form, that is, an algorithm that generates a string y ∈WR(x)
with a probability in an interval (︀φ(x) − δ ,φ(x) + δ⌋︀ for a
given error δ ∈ (0, 1), where φ is defined as in the notion
of PLVUG.

3 NL TRANSDUCERS: DEFINITIONS AND
OUR MAIN RESULTS

The goal of this section is to provide simple yet general defi-
nitions of classes of relations with good properties in terms
of enumeration, counting and uniform generation. More pre-
cisely, we are first aiming at providing a class 𝒞 of relations
that has a simple definition in terms of Turing Machines and
such that for every relation R ∈ 𝒞, it holds that ENUM(R)
can be solved with constant delay, and both COUNT(R) and
GEN(R) can be solved in polynomial time. Moreover, as it
is well known that such good conditions cannot always be
achieved, we are then aiming at extending the definition
of 𝒞 to obtain a simple class, also defined in terms of Tur-
ing Machines and with good approximation properties. It is
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important to mention that we are not looking for an exact
characterization in terms of Turing Machines of the class of
relations that admit constant delay enumeration algorithms,
as this may result in an overly complicated model. Instead,
we are looking for simple yet general classes of relations with
good properties in terms of enumeration, counting and uni-
form generation, and which can serve as a starting point for
the systematic study of these three fundamental properties.
A key notion that is used in our definitions of classes of

relations is that of transducer. Given a finite alphabet Σ, an
NL-transducerM is a nondeterministic Turing Machine with
input and output alphabet Σ, a read-only input tape, a write-
only output tape where the head is always moved to the
right once a symbol is written in it (so that the output cannot
be read by M), and a work-tape of which, on input x , only
the first f (⋃︀x ⋃︀) cells can be used, where f (n) ∈ O(log(n)). A
string y ∈ Σ∗ is said to be an output ofM on input x , if there
exists a run ofM on input x that halts in an accepting state
with y as the string in the output tape. The set of all outputs
ofM on input x is denoted byM(x) (notice thatM(x) can
be empty). Finally, the relation accepted by M , denoted by
ℛ(M), is defined as {(x ,y) ∈ Σ∗ × Σ∗ ⋃︀ y ∈M(x)}.

Definition 3.1. A relation R is in RelationNL if, and only
if, there exists an NL-transducerM such thatℛ(M) = R.

The class RelationNL should be general enough to con-
tain some natural and well-studied problems. A first such
problem is the satisfiability of a propositional formula in DNF.
As a relation, this problem can be represented as follows:

SAT-DNF = {(φ,σ) ⋃︀ φ is a proposional formula in DNF,
σ is a truth assignment and σ(φ) = 1}.

Thus, we have that ENUM(SAT-DNF) corresponds to the
problem of enumerating the truth assignments satisfying a
propositional formula φ in DNF, while COUNT(SAT-DNF)
and GEN(SAT-DNF) correspond to counting and uniformly
generating such truth assignments, respectively. It is not dif-
ficult to see that SAT-DNF ∈ RelationNL. Hence, given that
COUNT(SAT-DNF) is a #P-complete problem, we cannot ex-
pect COUNT(R) to be solvable in polynomial time for every
R ∈ RelationNL. However, COUNT(SAT-DNF) admits an
FPRAS [25], so we can still hope for COUNT(R) to admit
an FPRAS for every R ∈ RelationNL. It turns out that prov-
ing such a result involves providing an FPRAS for another
natural and fundamental problem: #NFA. More specifically,
#NFA is the problem of counting the number of words of
length k accepted by a non-deterministic finite automaton
without epsilon transitions (NFA), where k is given in unary
(that is, k is given as a string 0k ). It is known that #NFA is
#P-complete [3], but it is open whether it admits an FPRAS;
in fact, the best randomized approximation scheme known

for #NFA runs in time nO(log(n)) [24]. In our notation, this
problem is represented by the following relation:

MEM-NFA = {((N , 0k),w) ⋃︀ N is an NFA with alphabet Σ,
w ∈ Σ∗, ⋃︀w ⋃︀ = k andw is accepted by N},

that is, we have that #NFA = COUNT(MEM-NFA). It is easy
to see that MEM-NFA ∈ RelationNL. Hence, we give a pos-
itive answer to the open question of whether #NFA admits
an FPRAS by proving the following general result about
RelationNL.

Theorem 3.2. If R ∈ RelationNL, then ENUM(R) can be
solved with polynomial delay, COUNT(R) admits an FPRAS,
and GEN(R) admits a PLVUG.

It is worth mentioning a fundamental consequence of this
result in computational complexity. The class of function
SpanL was introduced in [3] to provide a characterization of
some functions that are hard to compute. More specifically,
given a finite alphabet Σ, a function f ∶ Σ∗ → N is in SpanL
if there exists an NL-transducer M with input alphabet Σ
such that f (x) = ⋃︀M(x)⋃︀ for every x ∈ Σ∗. The class SpanL is
contained in #P, and it has been instrumental in proving that
some functions are difficult to compute [3, 8, 20, 26], as if a
function f is complete for SpanL and f ∈ FP, then P = NP [3].
Given that #NFA is SpanL-complete under parsimonious
reductions [3], and parsimonious reductions preserve the
existence of an FPRAS, we obtain the following corollary
from Theorem 3.2.

Corollary 3.3. Every function in SpanL admits an FPRAS.

Although some classes of functions 𝒞 for which every
f ∈ 𝒞 admits an FPRAS have been identified before [9, 29],
to the best of our knowledge this is the first such a class with
a simple and robust definition based on Turing Machines.
A tight relationship between the existence of an FPRAS

and the existence of a schema for almost uniform generation
was proved in [22], for the class of relations that are self-
reducible. Thus, one might wonder whether the existence of
a PLVUG for GEN(R) in Theorem 3.2 is a corollary of the
result in [22], as in this theorem we prove the existence of
an FPRAS for COUNT(R). Interestingly, the answer to this
question is no, as the notion of PLVUG ask for a uniform
generator without an error δ , whose existence cannot be
inferred from the results in [22]. Thus, we prove in Section
6 that COUNT(R) admits an FPRAS and GEN(R) admits a
PLVUG, for a relation R ∈ RelationNL, without relaying in
the aforementioned result from [22].
A natural question at this point is whether a simple syn-

tactic restriction on the definition of RelationNL gives rise
to a class of relations with better properties in terms of enu-
meration, counting and uniform generation. Fortunately, the
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answer to this question comes by imposing a natural and
well-studied restriction on Turing Machines, which allows us
to define a class that contains many natural problems. More
precisely, we consider the notion of UL-transducer, where
the letter “U” stands for “unambiguous”. Formally,M is an
UL-transducer ifM is an NL-transducer such that for every
input x and y ∈M(x), there exists exactly one run ofM on
input x that halts in an accepting state with y as the string in
the output tape. Notice that this notion of transducer is based
on well-known classes of decision problems (e.g. UP [32] and
UL [28]) and adapted for our case, namely, problems defined
as relations.

Definition 3.4. A relation R is in RelationUL if, and only
if, there exists an UL-transducerM such thatℛ(M) = R.
For RelationUL, we obtain the following result.

Theorem 3.5. If R ∈ RelationUL, then ENUM(R) can
be solved with constant delay, there exists a polynomial-time
algorithm for COUNT(R), and there exists a polynomial-time
randomized algorithm for GEN(R).

In particular, it should be noticed that given R in the class
RelationUL and an input x , the solutions for x can be enu-
merated, counted and uniformly generated efficiently.

Classes of problems definable by machine models and that
can be enumerated with constant delay have been proposed
before. In [4], it is shown that if a problem is definable by a d-
DNNF circuit, then the solutions of an instance can be listed
with linear preprocessing and constant delay enumeration.
Still, to the best of our knowledge, this is the first class with
a simple and robust definition based on Turing Machines.

4 APPLICATIONS OF THEMAIN RESULTS
Before providing proof sketches of Theorems 3.2 and 3.5,
we give some implications of these results. In particular,
we show how NL and UL transducers can be used to obtain
positive results on query evaluation in areas like information
extraction, graph databases, and binary decision diagrams.

4.1 Information extraction
In [15], the framework of document spanners was proposed
as a formalization of ruled-based information extraction.
In this framework, the main data objects are documents
and spans. Formally, given a finite alphabet Σ, a document
is a string d = a1 . . .an and a span is pair s = (︀i, j̃︀ with
1 ≤ i ≤ j ≤ n + 1. A span represents a continuous region of
the document d , whose content is the substring of d from
positions i to j−1. Given a finite set of variablesX, a mapping
µ is a function from X to the spans of d .

Variable set automata (VA) are one of the main formalisms
to specify sets of mappings over a document. Here, we use
the notion of extended VA (eVA) from [16] to state our main

results. Given the lack of space, we only recall the main defi-
nitions (see [15, 16] for more intuition and further details).
An eVA is a tuple 𝒜 = (Q,q0, F ,δ) such that Q is a finite
set of states, q0 is the initial state, and F is the final set of
states. Further, δ is the transition relation consisting of let-
ter transitions (q,a,q′), or variable-set transitions (q,S,q′),
where S ⊆ {x⊢,⊣ x ⋃︀ x ∈ X} and S ≠ ∅. The symbols x⊢
and ⊣ x are called markers, and they are used to denote
that variable x is open or close by 𝒜, respectively. A run
ρ over a document d = a1⋯an is a sequence of the form:
q0

X1Ð→ p0
a1Ð→ q1

X2Ð→ p1
a2Ð→ . . . anÐ→ qn

Xn+1Ð→ pn where each
Xi is a (possible empty) set of markers, (pi ,ai+1,qi+1) ∈ δ ,
and (qi ,Xi+1, pi) ∈ δ whenever Xi+1 ≠ ∅, and qi = pi other-
wise (that is, when Xi+1 = ∅). We say that a run ρ is valid
if for every x ∈ X there exists exactly one pair (︀i, j̃︀ such
that x⊢ ∈ Xi and ⊣x ∈ X j . A valid run ρ naturally defines
a mapping µρ that maps x to the only span (︀i, j̃︀ such that
x⊢ ∈ Xi and ⊣x ∈ X j . We say that ρ is accepting if pn ∈ F .
Finally, the semantics ⟦𝒜⟧(d) of 𝒜 over d is defined as the
set of all mappings µρ where ρ is a valid and accepting run
of 𝒜 over d .

In [17, 27], it was shown that the decision problem related
to query evaluation, namely, given an eVA𝒜 and a document
d deciding whether ⟦𝒜⟧(d) ≠ ∅, is NP-hard. For this reason,
in [16] a subclass of eVA is considered in order to recover
polynomial-time evaluation. A eVA 𝒜 is called functional
if every accepting run is valid. Intuitively, a functional eVA
does not need to check validity of the run given that it knows
that every run that reaches a final state will be valid.

For the query evaluation problem of functional eVA (i.e. to
compute ⟦𝒜⟧(d)), one can naturally associate the relation:

EVAL-eVA = {((𝒜,d), µ) ⋃︀ 𝒜 is a functional eVA,
d is a document, and µ ∈ ⟦𝒜⟧(d)}.

It is not difficult to show that EVAL-eVA is in RelationNL.
Hence, by Theorem 3.2 we get the following results.

Corollary 4.1. ENUM(EVAL-eVA) can be enumerated
with polynomial delay,COUNT(EVAL-eVA) admits an FPRAS,
and GEN(EVAL-eVA) admits a PLVUG.

In [5, 16], it was shown that every functional RGX or func-
tional VA (not necessarily extended) can be converted in poly-
nomial time into a functional eVA. Therefore, Corollary 4.1
also holds for these more general classes. Notice that in [18],
it was given a polynomial-delay enumeration algorithm for
⟦𝒜⟧(d). Thus, only the results about COUNT(EVAL-eVA)
and GEN(EVAL-eVA) are new.
Regarding efficient enumeration and exact counting, a

constant-delay algorithm with polynomial preprocessing
was given in [16] for the class of deterministic functional eVA.
Here, we can easily extend these results for a more general
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class, that we called unambiguous functional eVA. Formally,
we say that an eVA is unambiguous if for every two valid
and accepting runs ρ1 and ρ2, it holds that µρ1 ≠ µρ2 . In other
words, each output of an unambiguous eVA is witnessed
by exactly one run. As in the case of EVAL-eVA, we can
define the relation EVAL-UeVA, by restricting the input to
unambiguous functional eVA. By using UL-transducers and
Theorem 3.5, we can then extend the results in [16] for the
unambiguous case.

Corollary 4.2. ENUM(EVAL-UeVA) can be solved with
constant delay, there exists a polynomial-time algorithm for
COUNT(EVAL-UeVA), and there exists a polynomial-time
randomized algorithm for GEN(EVAL-UeVA).
Notice that this result give a constant-delay algorithm

with polynomial preprocessing for the class of unambigu-
ous functional eVA. Instead, the algorithm in [16] has lin-
ear preprocessing over documents, restricted to the case of
deterministic eVA. This leaves open whether there exists
a constant-delay algorithm with linear preprocessing over
documents for the unambiguous case.

4.2 Query evaluation in graph databases
Enumerating, counting, and generating paths are relevant
tasks for query evaluation in graph databases [7]. Given a
finite set Σ of labels, a graph databaseG is a pair (V ,E)where
V is a finite set of vertices and E ⊆ V × Σ ×V is a finite set of
labeled edges. Here, nodes represent pieces of data and edges
specify relations between them [7]. One of the core query
languages for posing queries on graph databases are regular
path queries (RPQ). An RPQ is a triple (x ,R,y) where x ,y
are variables and R is a regular expression over Σ. As usual,
we denote by ℒ(R) all the strings over Σ that conform to
R. Given an RPQ Q = (x ,R,y), a graph database G = (V ,E),
and nodes u,v ∈ V , one would like to retrieve, count, or
uniformly generate all paths1 in G going from u to v that
satisfiesQ . Formally, a path from u to v inG is a sequence of
vertices and labels of the form π = v0,p1,v1,p2, . . . ,pn ,vn ,
such that (vi ,pi+1,vi+1) ∈ E, u = v0, and v = vn . A path π
is said to satisfy Q = (x ,R,y) if the string p1p2⋯pn ∈ ℒ(R).
The length of π is defined as ⋃︀π ⋃︀ = n. Clearly, between u
and v there can be an infinite number of paths that satisfies
Q . For this reason, one usually wants to retrieve all paths
between u and v of at most certain length n, namely, one
usually considers the set ⟦Q⟧n(G,u,v) of all paths π from u
to v in G such that π satisfies Q and ⋃︀π ⋃︀ ≤ n. This naturally
defines the following relation representing the problem of

1Notice that the standard semantics for RPQs is to retrieve pair of nodes.
Here we consider a less standard semantics based on paths which is also
relevant for graph databases [7, 8, 26].

evaluating an RQP over a graph database:

EVAL-RPQ = {((Q, 0n ,G,u,v),π) ⋃︀ π ∈ ⟦Q⟧n(G,u,v)}.
Using this relation, fundamental problems for RPQs such as
enumerating, counting, or uniform generating paths can
be naturally represented. It is not difficult to show that
EVAL-RPQ is in RelationNL, from which the following
corollary can be obtained by using Theorem 3.2. Notice
that giving a polynomial-delay enumeration algorithm for
EVAL-RPQ is straightforward, but the existence of an FPRAS
and a PLVUG for EVAL-RPQ was not known before when
queries are part of the input (i.e. in combined complexity).

Corollary 4.3. COUNT(EVAL-RPQ) admits an FPRAS,
and GEN(EVAL-RPQ) admits a PLVUG.

4.3 Binary decision diagrams
Binary decision diagrams (OBDDs) are an abstract repre-
sentation of boolean functions which are widely used in
computer science and have found many applications in ar-
eas like formal verification [12]. A binary decision diagram
(BDD) is a directed acyclic graph D = (V ,E) where each
node v is labeled with a variable var(v) and has at most two
edges going to children lo(v) and hi(v). Intuitively, lo(v)
and hi(v) represent the next nodes when var(v) takes val-
ues 0 and 1, respectively. D contains only two terminal, or
sink nodes, labeled by 0 or 1, and one initial node called v0.
We assume that every path from v0 to a terminal node does
not repeat variables. Then given an assignment σ from the
variables in D to {0, 1}, we have that σ naturally defines a
path from v0 to a terminal node 0 or 1. In this way, D defines
a boolean function that gives a value in {0, 1} to each assign-
ment σ ; in particular, D(σ) ∈ {0, 1} corresponds to the sink
node reached by starting from v0 and following the values
in σ . For Ordered BDDs, we also have a linear order < over
the variables in D such that, for every v1,v2 ∈ V with v2 a
child of v1, it holds that var(v1) < var(v2). Notice that not
necessarily all variables appear in a path from the initial node
v0 to a terminal node 0 or 1. Nevertheless, the promise in an
OBDD is that variables will appear following the order <.
An OBDD D defines the set of assignments σ such that

D(σ) = 1. Then D can be considered as a succinct repre-
sentation of the set {σ ⋃︀ D(σ) = 1}, and one would like to
enumerate, count and uniformly generate assignments given
D. This motivates the relation:

EVAL-OBDD = {(D,σ) ⋃︀ D(σ) = 1}.
Given (D,σ) in EVAL-OBDD, there is exactly one path in
D that witnesses D(σ) = 1. Therefore, one can easily show
that EVAL-OBDD is in RelationUL, from which we obtain:

Corollary 4.4. ENUM(EVAL-OBDD) can be enumerated
with constant delay, there exists a polynomial-time algorithm
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for COUNT(EVAL-OBDD), and there exists a polynomial-
time randomized algorithm for GEN(EVAL-OBDD).

The above results are well known. Nevertheless, they show
how easy and direct is to use UL transducers to realize the
good algorithmic properties that a data structure has.

Some non-deterministic variants of BDDs have been stud-
ied in the literature [6]. In particular, an nOBDD extends
an OBDD with vertices u without variables (i.e. var(u) = �)
and without labels on its children. Thus, an nOBDD is non-
deterministic in the sense that given an assignment σ , there
can be several paths that bring σ from the initial nodev0 to a
terminal node with labeled 0 or 1. Without loss of generality,
nOBDDs are assumed to be consistent in the sense that, for
each σ , all paths of σ in D can reach 0 or 1, but not both.
As in the case of OBDDs, we can define a relation called

EVAL-nOBDD that pairs an nOBDD D with an assignment
σ that evaluate D to 1 (i.e. D(σ) = 1). Contrary to OB-
DDs, an nOBDD looses the single witness property, and
now an assignment σ can have several paths from the initial
node to the 1 terminal node. Thus, it is not clear whether
EVAL-nOBDD is in RelationUL. Still one can easily show
that EVAL-nOBDD ∈ RelationNL, from which the follow-
ing results follow.

Corollary 4.5. ENUM(EVAL-nOBDD) can be solvedwith
polynomial delay, COUNT(EVAL-nOBDD) admits an FPRAS,
and GEN(EVAL-nOBDD) admits a PLVUG.

It is important to stress that the existence of an FPRAS
and a PLVUG for EVAL-nOBDD was not known before.

5 A SIMPLE NOTION OF COMPLETENESS,
AND ITS APPLICATION TO RelationUL

The goal of this section is to define a simple notion of reduc-
tion for the classes RelationNL and RelationUL, and then
to show how it can be used to prove Theorem 3.5. In Section
6, we use this notion again when proving Theorem 3.2.
A natural question to ask is which notions of “complete-

ness” and “reduction” are appropriate for our framework.
Notions of reductions for relations have been proposed be-
fore, in particular in the context of search problems [14].
However, we do not intent to discuss them here; instead,
we use an idea of completeness that is very restricted, but
that turns out to be useful for the classes we defined. Let 𝒞
be a complexity class of relations, and let R,S ∈ 𝒞. We say
R is reducible to S if there exists a function f ∶ Σ∗ → Σ∗,
computable in polynomial time, such that for every x ∈ Σ∗:
WR(x) = WS(f (x)). Also, if T is reducible to S for every
T ∈ 𝒞, we say S is complete for 𝒞. Notice that this defini-
tion is very strict, since the notion of reduction requires the
witness set to be exactly the same for both relations (is not
sufficient that they have the same size, for example). The

benefit behind this kind of reduction is that it preserves all
the properties of efficient enumeration, counting and uni-
form generation that we introduced in Sections 2 and 3, as
stated in the following result.

Proposition 5.1. If a relation R can be reduced to a relation
S , then the following properties holds:

● If ENUM(S) can be solved with constant (resp. polyno-
mial) delay, then ENUM(R) can be solved with constant
(resp. polynomial) delay.
● If there exists a polynomial time algorithm (resp. an
FPRAS) for COUNT(S), then there exists a polynomial
time algorithm (resp. an FPRAS) for COUNT(R).
● If there exists a polynomial time randomized algorithm
(resp. a PLVUG) for GEN(S), then there exists a poly-
nomial time randomized algorithm (resp. a PLVUG) for
GEN(R).

Therefore, by finding a complete relation S for a class 𝒞,
we can just study the aforementioned problems for S , and we
know that the obtained results will extend to every relation
in the class 𝒞.

5.1 Complete problems for RelationNL
and RelationUL

The notion of reduction just defined above is useful for us
as RelationNL and RelationUL admit complete problems
under this notion. These complete relations are defined in
terms of NFAs, and the idea behind them is the following.
Take a relation R in RelationNL (the case for RelationUL
is very similar). We know there is an NL-transducerM that
characterizes it. Consider now some input x . Since M is a
non-deterministic logspace Turing Machine, there is only a
polynomial number of different configurations thatM can
be in (polynomial on ⋃︀x ⋃︀). So we can consider the set of pos-
sible configurations as the states of an NFA Nx , which has
polynomial size, and whose transitions are determined by
the transitions between the configurations ofM . Moreover,
whenever a symbol is output by the transducerM , that sym-
bol is read by the automaton Nx . In this way, Nx accepts
exactly the languageWR(x). We formalize this idea in the
following result, where

MEM-UFA = {((N , 0k),w) ⋃︀ N is an unambiguous NFA
with alphabet Σ,w ∈ Σ∗, ⋃︀w ⋃︀ = k andw is accepted by N},

and an NFA is said to be unambiguous if there exists exactly
one accepting run for every string accepted by it.

Proposition 5.2. MEM-NFA is complete for RelationNL
andMEM-UFA is complete for RelationUL.
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5.2 Algorithmic properties of RelationUL
Theorem 3.5 is a consequence of Propositions 5.1 and 5.2,
and the following result.

Proposition 5.3. ENUM(MEM-UFA) can be solved with
constant delay, there exists a polynomial time algorithm for
COUNT(MEM-UFA), and there exists a polynomial time ran-
domized algorithm for GEN(MEM-UFA).

The results for COUNT(MEM-UFA) is a corollary of the
fact that there exists a polynomial time algorithm that, given
an input string x , returns the number of accepting runs of a
non-deterministic logspace Turing Machine with input x [3].
Moreover, the result for GEN(MEM-UFA) can be obtained by
considering that COUNT(MEM-UFA) can be solved in poly-
nomial time and MEM-UFA is a self-reducible relation [22],
and then using a strategy similar to the one described in [22].
On the other hand, the result for ENUM(MEM-UFA) does
require a more elaborated proof that we we outline here.

Let (N , 0k) be an input of ENUM(MEM-UFA). In the pre-
processing phase of the constant-delay enumeration algo-
rithm for this problem, the NFA N is unrolled to get rid of
any cycles it might have, and keep only the accepted words
of length exactlyk , which are the ones wewant to enumerate.
For the unrolling, we create k + 1 layers of nodes, being each
layer a copy of the set of states of N . And for each transition
in N , we connect each layer with the next one, by joining the
corresponding nodes with a directed edge, and labeling the
edge according to the symbol in the transition. Given that
N is an unambiguous NFA, this gives us a directed acyclic
graph G, where each wordw of length k accepted by N has
a unique corresponding path between a fixed start node and
a fixed end node in G, such that the labels read along the
way form the string w . From that, it is not difficult to see
how to enumerate with constant delay. We just have to go
through G, beginning in the “start node”, and traversing it
in a depth-first search manner. During this process, we store
the symbols read, and output them any time we reach the
end node of G.

6 APPROXIMATE COUNTING AND
UNIFORM GENERATION OF RelationNL

The goal of this section is to provide a proof of Theorem
3.2, which considers the class RelationNL defined in terms
of NL-transducers. Given that we show in Proposition 5.2
that MEM-NFA is complete for RelationNL, we have by
Propositions 5.1 that Theorem 3.2 is a consequence of the
following result.

Theorem 6.1. ENUM(MEM-NFA) can be solved with poly-
nomial delay, COUNT(MEM-NFA) admits an FPRAS, and
GEN(MEM-NFA) admits a PLVUG

As mentioned in Section 5.2, we have that MEM-NFA is
a self-reducible relation [22]. Besides, the existence prob-
lem for MEM-NFA (that is, for a given input (N , 0k), decide
whether there are anywitnesses) can be solved in polynomial
time. With all that, we can derive the existence of a poly-
nomial delay algorithm for ENUM(MEM-NFA) as a direct
application of Theorem 4.9 from [30]. In this section, we fo-
cus on the remaining part of the proof of Theorem 6.1. More
specifically, we provide an algorithm that approximately
counts the number of words of a given length accepted by
an NFA, where this length is given in unary. This consti-
tutes an FPRAS for COUNT(MEM-NFA), as formally stated
in Theorem 6.6. As this algorithm works by simultaneously
counting and doing uniform generation of witnesses, its exis-
tence not only gives us an FPRAS for COUNT(MEM-NFA),
but also a PLVUG for GEN(MEM-NFA), as formally stated
in Corollary 6.7.

6.1 The Algorithm Template
As mentioned in Section 3, we consider the following ap-
proximation problem. The input of the problem is an NFA N
on the alphabet {0, 1} withm states (and no epsilon transi-
tions), a string 0n that represents an integer n ≥ 1 given in
unary, and an error δ ∈ (0, 1). The problem then is to return
R such that R is a (1 ± δ)-approximation of ⋃︀ℒn(N )⋃︀, that is,
(1−δ)⋃︀ℒn(N )⋃︀ ≤ R ≤ (1+δ)⋃︀ℒn(N )⋃︀, where ℒ(N ) is the set
of strings accepted by N and ℒn(N ) = {w ∈ {0, 1}∗ ⋃︀ w ∈
ℒ(N ) and ⋃︀w ⋃︀ = n}. Besides, such an approximation should
be returned in time polynomial inm, n and 1

δ (notice that
the size of NFA N isO(m2), so being polynomial inm means
being polynomial in the size of N ).

Our algorithm for approximating ℒn(N ) will involve the
construction of a directed acyclic graph from the NFA N .
We call this directed acyclic graph Nunroll, as it is obtained
by unrolling n times the NFA N . Formally, assume that
N = {s1, . . . , sm} and s1 is the initial state of N . Then for
every state si ∈ N create n states s1i , . . . , sni in Nunroll, and for
every transition si

bÐ→ sj in N and b ∈ {0, 1}, create the tran-
sition sti

bÐ→ st+1j for all t = 1, 2, . . . ,n − 1 in Nunroll. Moreover,

include a vertex sstart in Nunroll with transitions sstart
bÐ→ s1i

if there is a transition s1
bÐ→ si in N (recall that s1 is the ini-

tial state of N ). Finally, create a unique final state sfinal for
Nunroll, and for every accepting state sj ofN , add toNunroll the
transition snj

1Ð→ sfinal. We will use the terms vertex and state
interchangeably to refer to the vertices of Nunroll. We refer to
the set {st1, st2, . . . , stm} as the t-th layer of Nunroll. The vertex
set of Nunroll is precisely {sstart, sfinal}∪(⋃nt=1{st1, st2, . . . , stm}).

Remark 1. Notice that sfinal is included in Nunroll to have a
unique final state. Besides, notice that for each final state sj of
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N , the last occurrence of such a state when processing a string
of length n is connected with sfinal via the same symbol 1, that
is, the transition snj

1Ð→ sfinal is included in Nunroll. Hence, the
size of the accepted language is not changed, as the number of
distinct strings which give a path from sstart to sfinal in Nunroll
is precisely ⋃︀ℒn(N )⋃︀.
We say that a stringw is a member of a vertex s ∈ Nunroll

if there is a path from sstart to s in Nunroll where the string of
ordered labels of the edges is preciselyw . We write U (s) to
denote the set of strings which are members of a state s . Note
that ⋃︀U (sfinal)⋃︀ = ⋃︀ℒn(N )⋃︀, andU (sstart) = {ε}. Thus, our goal
is to produce a good estimate of the value ⋃︀U (sfinal)⋃︀. For a
stringw , letw(︀t⌋︀ denote the t-th bit inw . Thus ifw = 100101,
we havew(︀1⌋︀ = 1,w(︀2⌋︀ = 0,w(︀3⌋︀ = 0, and so on. For strings
w,v , letw ○v denote their concatenation.

Algorithm1: AlgorithmicTemplate for our FPRAS

(1) Construct the directed acyclic graph Nunroll from
the NFA N .

(2) For layers i = 1, 2, . . . ,n and j = 1, 2, . . . ,m:
(a) ComputeR(sij) given⋃i−1t=1⋃mj=1{R(stj ),X(stj )}.

For i = 1, we have that R(sij) is computed with-
out any additional information.

(b) Call a subroutine to sample k uniform elements
ofU (sij) using the value R(sij) and
⋃i−1t=1⋃mj=1{R(stj ), X(stj )}.

(c) Let X(sij) ⊆ U (sij) be the multi-set of the k
uniform samples obtained.

(3) Return R(sfinal).

The components of the main algorithm are as follows.
We set k = (nmδ )c for some sufficiently large constant c (to
be defined later). Then for each vertex s ∈ Nunroll (where
s = stj for some j ∈ {1, . . . ,m} and t ∈ {1, . . . ,n}), we store k
strings x1, . . . ,xk , such that each xi ∈U (s). Specifically, the
xi ’s are uniform samples of the setU (s). We denote this set
of k samples for the vertex s by X(s) ⊆ U (s) (if ⋃︀U (s)⋃︀ ≤ k ,
we set X(s) = U (s)). Since the samples will be uniform
and independent, it is possible that we will obtain duplicates
samples of a given x ∈U (s). Therefore, we allowX(s) to be a
multi-set (meaning that X(s) = {x1, . . . ,xk}, and the strings
xi are not necessarily distinct). Second, we store a value R(s)
which is a (1 ± δ)-approximation of ⋃︀U (s)⋃︀. The algorithm
proceeds like a dynamic programming algorithm, computing
R(s) and X(s) for every state s in Nunroll in a breadth-first
search ordering. We first compute R(s),X(s) for all states
s in layer 1, meaning {s11, s12, . . . , s1m}. Then for any layer i ,
given the values ⋃i−1t=1⋃mj=1{R(stj ),X(stj )}, we compute the
corresponding values R(sij),X(sij) for each vertex sij in layer
i . So the values R(s),X(s) are computed layer by layer. The

final estimate for ⋃︀ℒn(N )⋃︀ is R(sfinal). We summarize this
algorithmic template in Algorithm 1.

6.2 The Sampling Template
To carry out our main approximation algorithm, we must
implement the algorithmic template given in Algorithm 1.
In particular, we must implement the sampling subroutine
in step 2 (b). We begin by describing a generic sampling tem-
plate for this step, which will be used by our main algorithm
as a subroutine. The procedure is essentially that of [22],
but modified to suit our setting. The procedure to sample a
uniform element of a setU (sαj ) is as follows. We initialize a
string wα to be the empty string, we construct a sequence
of stringswα ,wα−1, . . .,w1,w0, where each stringwt is of
the form bt ○wt+1 with bt ∈ {0, 1}, and we define the result
of the sample procedure to be w0. To ensure that w0 is an
element ofU (sαj ) chosen with uniform distribution, we also
consider a sequence of sets of stringsW α ,W α−1, . . .,W 1,W 0

constructed as follows. We have thatW α =U (sαj ). Then we
partitionW α into two sets of strings: those with last bit equal
to 0 and with last bit equal to 1, which are calledW α

0 and
W α

1 , respectively. We estimate the size of each partition, and
choose one of them with probability proportional to its size,
sayW α

b . We then append the bit b the prefix ofwα to obtain
wα−1 = b○wα , we defineW α−1 as {x ⋃︀ x○b ∈W α and ⋃︀x ⋃︀ ≥ 1},
and we recurse onwα−1 andW α−1. Thus, in general, we have
thatW t is the set of strings x such that x ○wt ∈U (sαj ), and
we also have thatW 0 = ∅.

Since there could be an error in estimating the sizes of
the partitions, it may be the case that some items were cho-
sen with slightly larger probability than others. To remedy
this and obtain a perfectly uniform sampler, at every step
of the algorithm we store the probability with which we
chose a partition. Thus at the end, we have computed ex-
actly the probability φ with which we sampled the string
w . We can then reject this sample with probability propor-
tional to 1 − φ, which gives a perfect sampler. As long as
no string is too much more likely than another to be sam-
pled, the probability of rejection will be a constant, and we
can simply run our sampler O(log( 1

µ ))-times to get a sam-
ple with probability 1 − µ for every µ > 0. For the sake of
simplicity, we first assume that we have perfect estimates
of the sizes of the partitions in question. This procedure is
given below in Algorithm 2. We call it with the initial param-
eters SampleTemplate(W α , ε, φ0), where ε is the empty
string, corresponding to the goal of sampling a uniform ele-
ment ofW α = U (sαj ). Here, φ0 is a value that we will later
choose. Specifically, φ0 will be a constant times a (1 ± δ)-
approximation of ⋃︀U (sαj )⋃︀.
At every step j of Algorithm 2, we have that ⋃︀W j ⋃︀ is pre-

cisely the number of strings inW α which have the suffix
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w j , asW j is the set of strings x such that x ○w j ∈W α . Note
then that the setW j depends on the random stringw j , so in
fact we should writeW j

w j instead ofW j , but for notational
simplicity we omit the subscript, and it is then understood
thatW j is a function ofw j .

Now the probability of choosing a given element x ∈W α

can be computed as follows. Ignoring for a moment the
possibility of returning fail, we have that w0 is the string
returned by SampleTemplate(W α , ε, φ0) since W 0 = ∅.
Thus, we probability we chose x is:

Pr(w0 = x) = ⋃︀W α−1⋃︀
⋃︀W α ⋃︀ ⋅

⋃︀W α−2⋃︀
⋃︀W α−1⋃︀ ⋅ ⋯ ⋅

⋃︀W 1⋃︀
⋃︀W 2⋃︀ ⋅

1
⋃︀W 1⋃︀ =

1
⋃︀W α ⋃︀

Now at the point of return, we also have thatφ = φ0⇑Pr(w0 =
x). Thus, if φ0⇑Pr(w0 = x) ≤ 1, then the probability that x is
output is simply φ0. The following is then easily seen:

Fact 1. If 0 < φ0 ≤ 1
⋃︀W α ⋃︀

and w0 ≠ fail is the output of Algo-
rithm 2, then Pr(w0 = x) = φ0 for every x ∈W α . Moreover,
the algorithm outputsw0 = fail with probability 1 − ⋃︀W α ⋃︀φ0.

This shows that, conditioned on not failing, the above is
a uniform sampler. Repeating the procedure ℓ ⋅ (⋃︀W α ⋃︀φ0)−1
times, we get a sample with probability 1 − e−ℓ since:

(1 − ⋃︀W α ⋃︀φ0)ℓ⋅(⋃︀W
α
⋃︀φ0)

−1
≤ (e−⋃︀W

α
⋃︀φ0)ℓ⋅(⋃︀W

α
⋃︀φ0)

−1

= e−⋃︀W
α
⋃︀φ0⋅ℓ⋅(⋃︀W α

⋃︀φ0)
−1
= e−ℓ .

Algorithm 2: SampleTemplate(W j ,w j ,φ)

(1) If W j = ∅, then with probability φ return w j ,
otherwise return fail.

(2) Else, partitionW j into two sets, those with last
bit equal to 0, call thisW j

0 , and those with last bit
equal to 1, call thisW j

1 .
(3) Then choose partition b ∈ {0, 1} with probability

pb =
⋃︀W j

b ⋃︀

⋃︀W j ⋃︀
, and setW j−1 = {x ⋃︀ x○b ∈W j and ⋃︀x ⋃︀ ≥

1}, andw j−1 = b ○w j .
(4) Return SampleTemplate(W j−1,w j−1,

φ
pb
).

6.3 The Main Algorithm
We now describe our main algorithm formally. As previously
mentioned, the algorithm computes the values of R(s), X(s)
in a breadth-first search order on the graph Nunroll. Thus we
first compute R(s), X(s) for all s in layer i , and then move
on to layer i + 1. Our algorithm for computing the samples
needed in X(sαi ) for a fixed state sαi is given in Algorithm 3,
and our full FPRAS is given in Algorithm 4.

Base Case: For every state sαi such that ⋃︀U (sαi )⋃︀ ≤ k , com-
pute and store R(s) = ⋃︀U (s)⋃︀ exactly, and store the entire set

U (s) = X(s). We call these states exactly handled. To do this,
we perform a breadth-first search from sstart. At every new
state s we see, we check if all the states in the prior layer with
edges into s are exactly handled (if not, then s is not exactly
handled). If so, then we compute ⋃︀U (s)⋃︀ by computing the
union Y0 of all X(s′), where s′ ranges over all states with
edges into s labeled with a 0, and then computing the union
Y1 of all X(s′′), where s′′ ranges over all states with edges
into s labeled with a 1. If ⋃︀Y0⋃︀ + ⋃︀Y1⋃︀ is at most k , then we set
X(s) to be {x ○ 0 ⋃︀ x ∈ Y0} ∪ {x ○ 1 ⋃︀ x ∈ Y1}, and we set
R(s) = ⋃︀X(s)⋃︀. Otherwise, we conclude that ⋃︀U (s)⋃︀ > k , and
thus s is not exactly handled.
Inductive Case: Suppose we have a state sαi that is not

exactly handled, and for which we have not computedX(sαi ),
R(sαi ), but such that we have computed X(stj ), R(stj ) for
j = 1, 2, . . . ,m and t = 1, 2, . . . ,α − 1. To build the set of
samples X(sαi ), we call the procedure Sample(T ,w,φ) a
total of k times, where T is some subset of states (all in the
same layer),w is a string suffix, and φ > 0 is some small value
(T ,w and φ will be specified later). Notice that Sample is the
instantiation of the procedure SampleTemplate described
in the previous section to the specific requirements of our
main algorithm. Given any fixed arbitrary linear ordering ≺
on the states of Nunroll, the procedure Sample is defined as
shown in Algorithm 3.

Algorithm 3: Sample(T ,w,φ)

(1) If φ ∉ (0, 1) return fail.
(2) If T = {sstart}, then with probability φ return w .

Else, with probability 1 −φ, return fail.
(3) Else, define:

T0 = {sr−1j ∈ Nunroll ⋃︀ sr−1j
0Ð→ sri for some sri ∈ T}

T1 = {sr−1j ∈ Nunroll ⋃︀ sr−1j
1Ð→ sri for some sri ∈ T}

Note T0 ∩T1 may be non-empty. Then:
(a) For q ∈ {0, 1}, compute

W̃q = ∑
s∈Tq

R(s) ⋅
⋂︀X(s) ∖ (⋃s ′∈Tq ∶ s ′≺s U (s′))⋂︀

⋃︀X(s)⋃︀

(b) For q ∈ {0, 1}, set pq = (W̃q)⇑(W̃0 + W̃1), and
then choose b ∈ {0, 1} with probability pb .

(4) Return Sample(Tb ,b ○w, φpb )

It is important to note that X(s) ∖ (⋃s ′∈Tq,s ′≺s U (s′)) in
step 3 (a) can be computed in polynomial time by simply
iterating through each x ∈ X(s), and checking whether there
is a path from sstart to some s′ ∈ Tq , with s′ ≺ s , where the
string of ordered labels of the edges is precisely x , which can
be done by a breadth-first search.
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Algorithm 4: FPRAS to estimate ⋃︀ℒn(N )⋃︀ for a NFA N withm ≥ 1 states, n ≥ 1 given in unary and error δ ∈ (0, 1)

(1) If n ≤ 12, then return ⋃︀{x ∈ {0, 1}n ⋃︀ x ∈ ℒ(N )}⋃︀ (this can be done in polynomial time by an exhaustive search)
(2) Construct the directed acyclic graph Nunroll from N , and set k = [︂(nmδ )64⌉︂.
(3) For each vertex s ∈ Nunroll, if there is not a path from the starting vertex sstart to s , remove s from Nunroll.
(4) For layers α = 1, 2, . . . ,n and for i = 1, 2, . . . ,m:
(a) For b ∈ {0, 1}, let Tb(sαi ) = {s ∈ Nunroll ⋃︀ there is an edge s bÐ→ sαi in Nunroll}. Let T (sαi ) = T0(sαi ) ∪T1(sαi ), and for

b ∈ {0, 1}, assume that Tb(sαi ) = {vb1 , . . . ,vbrb } where rb = ⋃︀Tb(s
α
i )⋃︀.

(b) If T (sαi ) = {sstart} (meaning if α = 1), set X(sαi ) = {b ∈ {0, 1} ⋃︀ sstart
bÐ→ sαi is an edge in Nunroll}. Moreover, set

R(sαi ) = ⋃︀X(sαi )⋃︀, and declare the state sαi to be exactly handled.
(c) Else, if s is exactly-handled for all s ∈ T (sαi ), set

R(sαi ) = (
r0
∑
j=1

⋂︀X(v0
j ) ∖

j−1
⋃
t=1

X(v0
t )⋂︀) + (

r1
∑
j=1

⋂︀X(v1
j ) ∖

j−1
⋃
t=1

X(v1
t )⋂︀),

and then if R(sαi ) ≤ k , declare sαi to be exactly handled, and set

X(sαi ) = (
r0
⋃
t=1

{x ○ 0 ⋃︀ x ∈ X(v0
t )})⋃(

r1
⋃
t=1

{x ○ 1 ⋃︀ x ∈ X(v1
t )}).

Otherwise, (that is, if R(sαi ) > k), do nothing.
(d) Else (that is, if s is not exactly handled for at least one state s ∈ T (sαi )) do nothing.

(5) For layers α = 1, 2, . . . ,n and for i = 1, 2, . . . ,m:
(a) If sαi is exactly handled, then R(sαi ) and X(sαi ) are already computed. Otherwise, for b ∈ {0, 1} set

W̃b(sαi ) = ∑
s∈Tb(sαi )

R(s) ⋅
⋂︀X(s) ∖ (⋃s ′∈Tb(sαi ) ∶ s ′≺s U (s

′))⋂︀
⋃︀X(s)⋃︀

and R(sαi ) = W̃0(sαi ) +W̃1(sαi ).
(b) If R(sαi ) = 0, terminate the algorithm and output 0 as the estimate (failure event).
(c) Else, set X(sαi ) = ∅. Then while ⋃︀X(sαi )⋃︀ < k
(i) Setw = fail
(ii) Run Sample({sαi }, ε, e−4

R(sαi )
) until it returns a stringw ≠ fail, and at most [︂(nmδ )4⌉︂ times

(iii) If w = fail (that is, none of the [︂(nmδ )4⌉︂ calls returned a string w ≠ fail), then terminate the algorithm and
output 0 as the estimate (failure event).

(iv) Otherwise, a samplew ∈ {0, 1}∗ was returned, and set X(sαi ) as X(sαi )∪{w} (recall we allow X(sαi ) to contain
duplicates).

(6) Return R(sfinal) as an estimate for ⋃︀ℒn(N )⋃︀.

By calling the procedure Sample on ({sαi }, ε, φ0) until it
returns k samples (where ε the empty string, andφ0 is a value
we will later choose) we obtain the samples for X(sαi ). Note
that it is possible that duplicate samples will be returned
by the Sample procedure. This will not be an issue for us,
and we can instead assume that X(sαi ) is a multi-set (thus,
X(sαi ) can have more than one copy of the same element
in U (sαi )). The value of φ0 that we choose will depend on
our estimate R(sαi ), so before invoking the above recursive
procedure to obtain X(sαi ), we first show how to compute
R(sαi ). To do so, set T0(sαi ) = {sα−1q ∈ Nunroll ⋃︀ sα−1q

0Ð→ sαi },

and T1(sαi ) = {sα−1q ∈ Nunroll ⋃︀ sα−1q
1Ð→ sαi }, and define the

linear ordering ≺ as above. Then for b ∈ {0, 1}, compute

W̃b = ∑
s∈Tb(sαi )

R(s) ⋅
⋂︀X(s) ∖ (⋃s ′∈Tb(sαi ) ∶ s ′≺s U (s

′))⋃︀
⋃︀X(s)⋃︀ ,

and define R(sαi ) = W̃0 +W̃1. We then set the parameter φ0 =
e−4

R(sαi )
, which we use in our calls to Sample. This completes

the procedure to obtain the desired X(sαi ), R(sαi ) pair. After
computing X(sαi ), R(sαi ) for all states, the final output of the
algorithm is R(sfinal) as the approximation to ⋃︀ℒn(N )⋃︀.
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Summary: We compute the sample set and estimate pair
X(stj ), R(stj ) for all states sj in layers t = 1, 2, . . . ,α − 1. For
each state sαi such that ⋃︀U (sαi )⋃︀ ≤ k , we declare sαi to be
exactly handled. For such exactly handled states, we store
X(sαi ) = U (sαi ) and R(sαi ) = ⋃︀U (sαi )⋃︀ exactly. Otherwise,
we compute R(sαi ) from the samples and estimates in the
prior layers t < α . Finally, using R(sαi ) and X(sti ), R(sti ) for
all t < α , we invoke Sample({sαi }, ε, e−4

R(sαi )
) repeatedly to

obtain all k samples needed for X(sαi ). Once this has been
completed for all states in Nunroll, we output R(sfinal) as our
final estimate. Our full algorithm is given in Algorithm 4.

6.4 The Analysis of the Algorithm
We start by showing that our sampling algorithm Sample
of Algorithm 3 performs nearly the same procedure as the
one described in the template Algorithm 2. Consider the
notation used in these algorithms, and fix a state sαi in layer
α . Let T t , T t

0 and T t
1 be the set T , T0 and T1, respectively, in

the (α − t)-th recursive call to Sample, where the original
call to Sample({sαi }, ε, e−4

R(sαi )
) is counted as the first, that

is, t = 0. Moreover, let wt be the (possibly empty) string
in this call, and let W̃ t

q for q ∈ {0, 1} be the value of W̃q in
this call. Thus, we have that wα = ε , and T α = {sαi }. We
define the index t in this way so that T t is a subset of states
in the t-th layer (i.e. T t is a set of states of the form stj for
some j ∈ {1, . . . ,m}). Notice that the sets T t

0 and T t
1 will

be in layers t − 1 by definition, and R(sαi ) = W̃ α
0 +W̃ α

1 . By
construction, for t < α , we have the property that T t is the
set of states s in layer t such that there is an edge labeled with
the bitwα−t (︀1⌋︀ to some state s′ ∈ T t+1. Given this, the only
difference between our sampling algorithm of Algorithm 3
and the template Algorithm 2 is that the sizes of the sets ⋃︀W t ⋃︀
are replaced with approximations W̃ t , since we no longer
know ⋃︀W t ⋃︀ exactly. We now demonstrate that the procedure
of Algorithm 3 does in fact follow the template of Algorithm
2, up to the fact that it uses approximations W̃ t of ⋃︀W t ⋃︀.

Proposition 6.2. For every t , it holds that (⋃s∈T t U (s)) =
W t , whereW t is defined as in Algorithm 2 as the set of strings
x such that x ○wt ∈U (sαj ).

Recall that for q ∈ {0, 1}, we defined W t
q as the set of

strings inW t with last bit equal to q, and thatW t is the set
of strings x such that x ○wt ∈ U (sαi ). Also recall that we
initializedwα = ε , so in generalwα−i is a string of length i for
every i = 0, 1, 2, . . . ,α . As noted, the only difference between
our algorithm Sample and the template SampleTemplate
is that at any layer t , instead of choosingwt−1 to beq○wt and
recursing into the setW t

q with probability
⋃︀W t

q ⋃︀

⋃︀W t ⋃︀
exactly, we

choose q with the approximation probability
W̃ t
q

W̃ t
0 +W̃

t
1
(since

we do not know the exact value of
⋃︀W t

q ⋃︀

⋃︀W t ⋃︀
= ⋃︀W t

q ⋃︀

⋃︀W t
0 +W

t
1 ⋃︀
). Recall

that the approximation W̃ t
q of ⋃︀W t

q ⋃︀ is the value of W̃q in the
t-th call to Sample as in Algorithm 3. The following result
can be found in [22], however we provide a proof here to
consider the specificities of our setting. The result says that
at the point where we attempt to compute uniform samples
of the set U (sαi ), in order to build the sample set X(sαi ),
assuming that we have a good estimate R(sαi ) of ⋃︀U (sαi )⋃︀ and
good estimates W̃ t

q of the sizes of the partitions ⋃︀W t
q ⋃︀, our

sampling procedure will in fact output a uniformly random
sample ofU (sαi ) (and only output fail with at most 1−O(1)
probability).

Proposition 6.3. Set k = [︂(mn
δ )64⌉︂, where n ≥ 2, and

suppose that we have estimates W̃ t
q = (1 ± k−1⇑4)t ⋃︀W t

q ⋃︀ for
all t = 1, 2, . . . ,α and q ∈ {0, 1}, and an estimate R(sαi ) =
(1 ± k−1⇑4)α ⋃︀U (sαi )⋃︀. Ifw ≠ fail is the output of the procedure
Sample({sαi }, ε, e−4

R(sαi )
), then for every x ∈U (sαi ):

Pr(w = x) = e−4

R(sαi )
.

Moreover, it outputs fail with probability at most 1−e−5. Thus,
conditioned on not failing, Sample({sαi }, ε, e−4

R(sαi )
) returns a

uniform element x ∈U (sαi ).

Proposition 6.3 demonstrates that our sampler is indeed
uniform, provided our estimates R(sαi ) and W̃ t

q satisfy the
stated assumptions. Our next goal is to show that, when
tasked with computing samples for the set X(sαi ), the con-
ditions of Proposition 6.3 will indeed hold. Note that while
our sampler only returns a sample with probability e−5, by
repeating the procedure some τ times, at least one sample
will be returned with probability 1 − e−c ⋅τ , where c > 0 is a
fixed constant. Since our algorithm needs only nmk samples,
we can bound the probability of error by the union of getting
at least one sample out of every τ attempts. This blows up the
complexity of our algorithm by a τ factor only, preserving
the polynomial time if τ is polynomial in nm

δ .
To facilitate our analysis, we introduce two properties.

On termination of our algorithm, we define the following
properties for each state sαi :
Property 1: R(sαi ) = (1 ± k−1⇑4)α ⋃︀U (sαi )⋃︀,

Property 2: for every subset L ⊆ {1, . . . ,m}, it holds:

⋁︀
⋂︀X(sαi ) ∖ (⋃j∈LU (sαj ))⋂︀

⋃︀X(sαi )⋃︀
−
⋃︀U (sαi ) ∖ (⋃j∈LU (sαj ))⋃︀

⋃︀U (sαi )⋃︀
⋁︀ < k−1⇑3

In other words, Property 1 means that our estimate R(sαi )
for the size of the set U (sαi ) is within our desired error
bounds. Property 2 asserts that the sampled subset X(sαi ) ⊆
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U (sαi ) is a good approximation of the setU (sαi ) in the follow-
ing sense: for every set of the form U (sαi ) ∖ (⋃j∈LU (sαj ))
such that our algorithm may at some point attempt to es-
timate the ratio ⋃︀U (sαi ) ∖ (⋃j∈LU (sαj ))⋃︀⇑⋃︀U (sαi )⋃︀ as in step
3(a) of Algorithm 3, we will get a good approximation of
this ratio by using ⋂︀X(sαi ) ∖ (⋃j∈LU (sαj ))⋂︀⇑⋃︀X(sαi )⋃︀ instead.
We now consider a fixed point in the execution of the al-
gorithm, and show that if Properties 1 and 2 hold for all
nodes in Nunroll at depth t = 1, 2, . . . ,α − 1, then on a call to
sample a string fromU (sαi ) for a fixed sαi , the assumptions
of Proposition 6.3 will be satisfied.

Proposition 6.4. Fix a state sαi for i ∈ {1, . . . ,m} and
α ∈ {1, . . . ,n}, and set k = [︂(mm

δ )64⌉︂. Suppose that for every
t ∈ {1, . . . ,α −1} and j ∈ {1, . . . , ,m}, the states stj satisfy both
Properties 1 and 2. Then on query to Sample({sαi }, ε , e−4

R(sαi )
)

for each i ∈ {1, . . . ,m}, the conditions of Proposition 6.3 hold:
namely that W̃ t

q = (1 ± k−1⇑4)t ⋃︀W t
q ⋃︀ for every t ∈ {1, . . . ,α}

and q ∈ {0, 1}, and R(sαi ) = (1±k−1⇑4)α ⋃︀U (sαi )⋃︀. In particular,
this implies that sαi satisfies Property 1 for all i ∈ {1, . . . ,m}.

Let ℰr be the event that Properties 1 and 2 hold for srj
for all j ∈ {1, . . . ,m}. Note for every layer r where srj is
exactly handled for all j ∈ {1, . . . ,m}, the event ℰr holds
with probability 1. Call a layer exactly handled if all the
states in it are exactly handled.

The following Lemma, which is a consequence of Hoeffd-
ing inequality [21], demonstrates that if Properties 1 and
2 hold for all states stj in layers t = 1, 2, . . . ,α − 1, then af-
ter completion of the sampling procedure which constructs
X(sαi ) and the estimate R(sαi ) for a fixed state sαi , we will
have that sαi satisfies both Properties 1 and 2. This result will
allow us to inductively show that all vertices in the graph
Nunroll satisfy Properties 1 and 2. In particular, this means
that Property 1 will hold for the final state sfinal, which im-
plies that R(sfinal) = (1 ± k−1⇑4)n ⋃︀U (sfinal)⋃︀ = (1 ± δ)ℒn(N ),
which is our desired approximation.

Lemma 6.5. Conditioned on ℰ1 ∧ ⋯ ∧ ℰα−1, for every i ∈
{1, . . . ,m}, state sαi will satisfy Properties 1 and 2 with proba-
bility at least 1 − 2e−k1⇑3

. In other words,

Pr(ℰα ⋃︀ ℰ1 ∧ ⋅ ⋅ ⋅ ∧ ℰα−1) ≥ 1 − 2e−k
1⇑3

Putting together all the previous results, we obtain the
main result of this section.

Theorem 6.6. Given an NFA N withm ≥ 1 states over the
alphabet {0, 1}, an integer n ≥ 1 given in unary and δ ∈ (0, 1),
there exists a randomized algorithm that receives as input N ,
n and δ , and returns a value R such that:

Pr(⋂︀R − ⋃︀ℒn(N )⋃︀⋂︀ ≤ δ ⋃︀ℒn(N )⋃︀) ≥ 1 − e−τnm ,

where τ > 0 is a fixed constant. Moreover, the algorithm runs
in time O((nmδ )c), where c is a fixed constant. Thus, we have
that #NFA admits an FPRAS.

From the existence of Algorithm 4 and the form it is de-
fined, and from the proof of Theorem 6.6, it is possible to
conclude that GEN(MEM-NFA) admits a PLVUG. More pre-
cisely, we have the following result.

Corollary 6.7. Given an NFA N withm ≥ 1 states over
the alphabet {0, 1} and an integer n ≥ 1 given in unary, there
exists a polynomial q(u,v) and a randomized algorithm 𝒢
that receives as input N and n, and satisfies the following
conditions.

(1) IfWMEM-NFA((N , 0n)) = ∅, then 𝒢(N ,n) returns �.
(2) IfWMEM-NFA((N , 0n)) ≠ ∅, then
(a) 𝒢(N ,n) returns fail with a probability pN ,n < 1

2 .
(b) 𝒢(N ,n) returnsw ∈WMEM-NFA((N , 0n)) with a prob-

ability (1 − pN ,n)⇑⋃︀WMEM-NFA((N , 0n))⋃︀.
(3) The number of steps needed to compute 𝒢(N ,n) is at

most q(m,n).

7 CONCLUDING REMARKS
We consider this work as a first step towards the definition
of classes of problems with good properties in terms of enu-
meration, counting and uniform generation of solutions. In
this sense, there is plenty of room for extensions and im-
provements. In particular, the different components of the
FPRAS for #NFA were designed to facilitate its proof of cor-
rectness. As such, we already know of some optimizations
that significantly reduce its runtime, and we also plan on
developing more such optimizations so to make this FPRAS
usable in practice.
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