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ABSTRACT

The problem of querying RDF data is a central issue for the devel-
opment of the Semantic Web. The query language SPARQL has
become the standard language for querying RDF, since its stan-
dardization in 2008. However, the 2008 version of this language
missed some important functionalities: reasoning capabilities to
deal with RDFS and OWL vocabularies, navigational capabilities
to exploit the graph structure of RDF data, and a general form of
recursion much needed to express some natural queries. To over-
come these limitations, a new version of SPARQL, called SPARQL
1.1, was recently released, which includes entailment regimes for
RDFS and OWL vocabularies, and a mechanism to express navi-
gation patterns through regular expressions. Unfortunately, there
are still some useful navigation patterns that cannot be expressed
in SPARQL 1.1, and the language lacks of a general mechanism to
express recursive queries.

To the best of our knowledge, there is no RDF query language
that combines the above functionalities, and which can also be eval-
uated efficiently. It is the aim of this work to fill this gap. Towards
this direction, we focus on the OWL 2 QL profile of OWL 2, and
we show that every SPARQL query enriched with the above fea-
tures can be naturally translated into a query expressed in a lan-
guage which is based on an extension of Datalog which allows for
value invention and stratified negation. However, the query evalu-
ation problem for this language is highly intractable, which is not
surprising since it is expressive enough to encode some inherently
hard queries. We identify a natural fragment of it, and we show
it to be tractable and powerful enough to define SPARQL queries
enhanced with the desired functionalities.
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H.2.3 [Database Management]: Languages–Data manipulation

languages, query languages
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1. INTRODUCTION
The Resource Description Framework (RDF) is the W3C recom-

mendation data model to represent information about World Wide
Web resources. An atomic piece of data in RDF is a Uniform Re-

source Identifier (URI). In the RDF data model, URIs are organised
as RDF graphs, that is, labeled directed graphs where node labels
and edge labels are URIs. As with any data structure designed to
model information, the natural problem of querying RDF data has
been widely studied. Since its release in 1998, several designs and
implementations of RDF query languages have been proposed [16].
In 2004, a first public working draft of a language, called SPARQL,
was released by the W3C, which is in fact a graph-matching query
language. Since then, SPARQL has been adopted as the standard
language for querying the Semantic Web, and in 2008 it became a
W3C recommendation [29].

One of the distinctive features of Semantic Web data is the exis-
tence of vocabularies with predefined semantics: the RDF Schema

(RDFS) [7] and the Ontology Web Language (OWL) [24], which
can be used to derive logical conclusions from RDF graphs. Thus,
it would be desirable to have an RDF query language equipped with
reasoning capabilities to deal with these vocabularies. Besides, it
has also been recognised that navigational capabilities are of funda-
mental importance for data models with an explicit graph structure
such as RDF [2, 4, 5, 15, 27], and, more generally, it is also well-
accepted that a general form of recursion is a central feature for a
graph query language [5, 23, 30]. Thus, it would also be desirable
to have an RDF query language with such functionalities.

Unfortunately, the 2008 version of SPARQL missed the above
crucial functionalities. To overcome these limitations, a new ver-
sion of SPARQL, called SPARQL 1.1 [21], was recently released,
which includes entailment regimes for RDFS and OWL vocabular-
ies, and a mechanism to express navigation patterns through regular
expressions. However, it has already been proved that there exist
some very natural and useful queries that require of a more general
form of recursion and cannot be expressed in SPARQL 1.1 [23, 30].

To the best of our knowledge, there is no RDF query language
that combines all the functionalities mentioned above. Thus, it is
the precise aim of the current work to bridge the gap between the
existing RDF query languages and the three desired functionalities.
Our ultimate goal is to propose an expressive query language that
supports these features, and which can also be evaluated efficiently.
Towards this direction, we first need to answer the following key
question: what is the right syntax for such a language? Interest-
ingly, Datalog with stratified negation [1, 13] has been shown to
be expressive enough to represent every SPARQL query [2, 3, 4,
28, 31], so it has been used as a natural platform for the exten-
sions of SPARQL with richer navigation capabilities and recursion
mechanisms [23, 30]. Besides, some extensions of Datalog with



existential quantification in the heads of rules have shown to be
appropriate to encode some inferencing mechanisms in OWL [8].

Therefore, Datalog and some of its extensions – in particular,
the members of the recently introduced Datalog± family of knowl-
edge representation and query languages [10] – appear as a natural
option for our purposes. However, for the language obtained by
extending Datalog with existential quantification, the query evalu-
ation problem is undecidable (this is implicit in [6]). In fact, un-
decidability holds even in the case of data complexity [32], that is,
when the input query is fixed, and only the extensional database
(or the RDF graph) is considered as part of the input [8]. It is thus
a very important and challenging task to single out an expressive
RDF query language that: (1) is based on Datalog, and thus en-
ables a modular rule-based style of writing queries; (2) is expres-
sive enough for being useful in real Semantic Web applications,
and in particular to support reasoning and navigational capabilities,
as well as a general form of recursion; (3) ensures the decidabil-
ity of the query evaluation problem; and (4) has good complexity
properties in the case the input query is fixed. This latter issue is of
fundamental importance, as a low data complexity is considered to
be a key condition for a query language to be useful in practice.

Our contributions can be summarised as follows:

1. We introduce in Section 4 a modular query language where rea-
soning capabilities, navigation capabilities and recursion mech-
anisms can be placed in different modules. This language is
called triple query language (TriQ), and it is based on stratified
Datalog∃,¬,⊥, that is, Datalog extended with existential quanti-
fiers in the heads of rules, stratified negation, and negative con-
straints expressed by using the symbol ⊥ (false) in the heads
of rules. In Section 4, we show this language to be expressive
enough for encoding some useful but costly queries. In fact, we
show that the data complexity of the query evaluation problem
for this language is EXPTIME-complete.

2. We show that the modular structure of TriQ queries is very
convenient to deal with SPARQL queries over the OWL vocab-
ulary. More precisely, we focus in Section 5 on the profile of
OWL, called OWL 2 QL, that is designed to be used in appli-
cations where query answering is the most important reasoning
task. Then we prove that every SPARQL query under the entail-
ment regime for OWL 2 QL [17, 22] can be naturally translated
into a TriQ query. Moreover, we also show in Section 5 that
the use of TriQ allows us to formulate SPARQL queries in a
simpler way, as a more natural entailment regime described in
that section can be easily defined by using this query language.

3. Given the high data complexity of the query evaluation prob-
lem for TriQ, we investigate in Section 6 whether the results
proved in Section 5 can also be obtained for a tractable frag-
ment of this query language. More precisely, we identify in
Section 6 a natural restriction on TriQ queries that gives rise
to a language, called TriQ-Lite, with the desired properties. In
particular, we prove that the data complexity of the query eval-
uation problem for this language is PTIME-complete.

4. A key advantage of the modular nature of TriQ-Lite is the fact
that, whenever the user wants to pose a new query over an RDF
graph, (s)he does not need to modify the module which encodes
the OWL 2 QL ontology. In Section 7, we show that this fa-
vorable behaviour cannot be achieved if we consider modular
Datalog¬s,⊥. In particular, we introduce a novel notion of ex-
pressiveness which allows us to collect the queries that can be
answered via a fixed program, and we show that TriQ-Lite is
more expressive than modular Datalog¬s,⊥ under this notion.

Notice that the crucial feature to establish such a result is the
existential quantification.

The organisation of the paper is described in the summary of our
contributions. Let us just say that in Section 2 we give an example
which motivates our query languages, the notation used in the paper
is introduced in Section 3, and that some concluding remarks are
given in Section 8.

Due to lack of space, we do not give full proofs of the formal
results of this paper, however, we provide proof sketches and/or
sufficient evidence for the validity of the main results.

2. MOTIVATING EXAMPLE
The goal of this section is to show some of the difficulties en-

countered when querying RDF data with SPARQL, which moti-
vated us to design an RDF query language based on Datalog and
some of its extensions. Assume that G1 is an RDF graph contain-
ing the following triples:

(dbUllman, is_author_of, “The Complete Book")

(dbUllman, name, “Jeffrey Ullman").

The first triple indicates that the object with URI dbUllman is one
of the authors of the book “The Complete Book", while the second
triple indicates that the name of dbUllman is “Jeffrey Ullman".

To retrieve the list of authors mentioned in G1 we can use the
following SPARQL query:

SELECT ?X

(?Y, is_author_of, ?Z) AND(?Y, name, ?X). (1)

We use here the algebraic syntax for SPARQL introduced in [26],
which is formally defined in Section 3. In the query above, vari-
ables starts with the symbol ?. Thus, the triple (?Y, is_author_of,
?Z) is used to retrieve the pairs (a, b) of elements from G1, which
are stored in the variables ?Y and ?Z, such that a is an author of b.
In the same way, the triple (?Y, name, ?X) is used to retrieve the
pairs (a, c) of elements from G1, which are stored in the variables
?Y and ?X , such that c is the name of a. Moreover, the operator
AND in used to join the results of the triples, while SELECT ?X
indicates that we are only interested in the values stored in the vari-
able ?X .

As mentioned in Section 1, one of the distinctive features of Se-
mantic Web data is the use of the RDFS and OWL vocabularies.
As an example of this, assume that G2 is an RDF graph consisting
of the following triples:

(dbUllman, is_author_of, “The Complete Book")

(dbUllman, name, “Jeffrey Ullman")

(dbAho, is_coauthor_of, dbUllman)

(dbAho, name, “Alfred Aho")

(r1, rdf:type, owl:Restriction)

(r1, owl:onProperty, is_coauthor_of) (2)

(r1, owl:someValuesFrom, owl:Thing)

(r2, rdf:type, owl:Restriction)

(r2, owl:onProperty, is_author_of)

(r2, owl:someValuesFrom, owl:Thing)

(r1, rdfs:subClassOf, r2).

In G2, the URIs with prefix rdfs: are part of the RDFS vocabulary,
while the URIs with prefix owl: are part of the OWL vocabulary.
More precisely, the third triple above indicates that the object with
URI dbAho is a coauthor of the object with URI dbUllman. The



fifth, sixth and seventh triples of G2 define r1 as the class of URIs
a for which there exists a URI b such that (a, is_coauthor_of, b)
holds, while the following three triples of this graph define r2 as the
class of URIs a for which there exists a URI b such that the triple
(a, is_author_of, b) holds. Finally, the last triple of G2 indicates
that r1 is a subclass of r2.

The last seven triples of G2 indicate that for every pair a, b of
elements such that (a, is_coauthor_of, b) holds, it must be the case
that a is an author of some publication. Thus, if we want to re-
trieve the list of authors mentioned in G2, then we expect to find
dbAho in this list. However, the answer to the SPARQL query (1)
over G2 does not include this URI, and we are forced to encode
the semantics of the RDFS and OWL vocabularies in the query. In
fact, even if we try to obtain the right answer by using SPARQL
1.1 under the entailment regimes for these vocabularies, we are
forced by the restrictions of the language [17] to replace the triple
(?Y, is_author_of, ?Z) in (1) by:

(?Y, rdf:type, ?Z) AND

(?Z, rdf:type, owl:Restriction) AND

(?Z, owl:onProperty, is_author_of) AND

(?Z, owl:someValuesFrom, owl:Thing),

which indicates that we are looking for the objects that are authors
of some publication (that is, the objects of type r2).

As the reader may have noticed, the resulting query is very com-
plicated. In the query language proposed in this paper, the user can
use separate modules to encode reasoning capabilities and actual
queries. In particular, the user first needs to utilise a module for the
RDFS and OWL vocabularies (or for some fragment of them), that
could consist of Datalog∃,¬,⊥ rules such as the following:

triple(?X, rdf:type, ?Y ),

triple(?Y, rdf:type, owl:Restriction),

triple(?Y, owl:onProperty, ?Z),

triple(?Y, owl:someValuesFrom, ?U) →

∃?W triple(?X, ?Z, ?W ).

In this module, the predicate triple is used to store the triples of the
RDF graphs. Notice that the rules of the module are used to encode
the semantics of the respective vocabulary. Besides, these rules are
fixed, they do not depend on the query that the user is trying to
answer. Thus, to pose the desired query, the user just need to write
on top of this module a simple query similar to (1):

triple(?Y, is_author_of, ?Z),

triple(?Y, name, ?X) → query(?X). (3)

In particular, (s)he does not need any prior knowledge about the
semantics and inference rules for the respective vocabulary. In fact,
the module for encoding this vocabulary can be publicly available,
thus greatly simplifying the process of writing queries.

It is a very common practice in the Web to have several URIs
for the same object. For example, the following are URIs of Jef-
frey Ullman in DBpedia (the RDF version of Wikipedia) and the
semantic knowledge base YAGO:

http://dbpedia.org/resource/Jeffrey_Ullman,

http://yago-knowledge.org/resource/Jeffrey_Ullman,

respectively. To alleviate the issue of having pieces of information
about the same object that use distinct URIs for this object, the
OWL vocabulary includes the keyword owl:sameAs to indicate that
two URIs represent the same element. For example, this keyword

is used in the following RDF graph G3 to indicate that dbUllman
and yagoUllman are URIs for the same object:

(dbUllman, is_author_of, “The Complete Book")

(dbUllman, owl:sameAs, yagoUllman)

(yagoUllman, name, “Jeffrey Ullman").

Assume now that we want to retrieve the list of authors mentioned
in G3. If we try to use again the SPARQL query (1), then we obtain
the empty answer as the semantics of owl:sameAs is not taken into
consideration. To solve this problem, one has to use the following
query:

SELECT ?X
(

((?Y, is_author_of, ?Z) AND(?Y, name, ?X)) (4)

UNION

((?Y, is_author_of, ?Z) AND(?Y, owl:sameAs, ?W )

AND(?W, name, ?X))

)

,

where the operator UNION is used to obtain the union of the re-
sults of two queries, and the query after this operator is used to
encode the semantics of the owl:sameAs keyword. Thus, as in the
previous example, the user is forced to encode the semantics of the
OWL vocabulary in the SPARQL query. And, as the reader may
have noticed already, the situation gets even worse if we consider
the graph G2 in (2) but with the first two triples replaced by the
triples in G3. Fortunately, all these problems can be easily solved
in our framework by just incorporating a fixed module encoding
the semantics of the keyword owl:sameAs, which could consist of
Datalog∃,¬,⊥ rules of the form:

triple(?X1, owl:sameAs, ?X2),

triple(?Y1, owl:sameAs, ?Y2),

triple(?X1, ?U, ?Y1) →

triple(?X2, ?U, ?Y2),

and then using the same query (3) on top of the necessary modules.

3. DEFINITIONS AND BACKGROUND
Let U, B, V be pairwise disjoint infinite countable sets. The

elements of U are called URIs, the elements of B are called blank
nodes, and the elements of V are called variables and are assumed
to start with the symbol ?. The sets U and B are used when defin-
ing both relational databases and RDF graphs, and we also refer to
them as constants and (labeled) nulls, respectively.

RDF and the query language SPARQL. A triple (s, p, o) ∈
U ×U ×U is called an RDF triple. An RDF graph is a finite set
of RDF triples. We use here an algebraic formalisation of SPARQL
proposed in [26]. We start by defining the notion of SPARQL built-

in condition, which is used in filter expressions. Formally, (1) if
?X, ?Y ∈ V and c ∈ U, then ?X = c, ?X =?Y and bound(?X)
are (atomic) built in-conditions; and (2) if R1 and R2 are built-in
conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2) are built-in
conditions. Then the set of (SPARQL) graph patterns is defined
recursively as follows: (1) a set {t1, . . . , tn}, where every ti ∈
(U∪B∪V)×(U∪B∪V)×(U∪B∪V) (1 ≤ i ≤ n), is a graph
pattern (called a basic graph pattern); (2) if P1 and P2 are graph pat-
terns, then (P1 UNION P2), (P1 AND P2), (P1 OPT P2) are
graph patterns; (3) if P is a graph pattern and R is a SPARQL
built-in condition, then (P FILTER R) is a graph pattern; and



(4) if P is a graph pattern and W is a finite set of variables, then
(SELECT W P ) is a graph pattern. From now on, given a graph
pattern P , we define var(P ) as the set of variables occurring in
P , and likewise for var(R) for a built-in condition R. Moreover,
we assume that for every graph pattern (P FILTER R), it holds
that var(R) ⊆ var(P ). Finally, we usually omit curly brackets in
singleton basic graph patterns, that is, we replace {t} by t, where
t ∈ (U ∪B ∪V)× (U ∪B ∪V)× (U ∪B ∪V).

To define the semantics of SPARQL, we need to introduce some
extra terminology. A mapping µ is a partial function µ : V → U.
Abusing notation, for a basic graph pattern P = {t1, . . . , tn}, we
denote by µ(P ) the basic graph pattern obtained by replacing the
variables occurring in P according to µ. The domain of µ, denoted
by dom(µ), is the subset of V where µ is defined. Two mappings
µ1 and µ2 are compatible, denoted by µ1 ∼ µ2, when for all ?X ∈
dom(µ1) ∩ dom(µ2), it is the case that µ1(?X) = µ2(?X), i.e.
when µ1 ∪ µ2 is also a mapping. Moreover, given a mapping µ

and a set of variables W , the restriction of µ to W , denoted by
µ|W , is a mapping such that dom(µ|W ) = (dom(µ) ∩ W ) and
µ|W (?X) = µ(?X) for every ?X ∈ (dom(µ) ∩ W ). Finally,
given a function h : B → U, we denote by h(P ) the basic graph
pattern obtained from P by replacing the blanks nodes occurring in
P according to h.

To define the semantics of graph patterns, we first need to intro-
duce the notion of satisfaction of a built-in condition by a mapping,
and then we need to introduce some operators for mappings. More
precisely, given a mapping µ and a built-in condition R, we say
that µ satisfies R, denoted by µ |= R, if (omitting the usual rules
for Boolean connectives): (1) R is bound(?X) and ?X ∈ dom(µ);
(2) R is ?X = c, ?X ∈ dom(µ) and µ(?X) = c; and (3) R is
?X =?Y , ?X, ?Y ∈ dom(µ) and µ(?X) = µ(?Y ). Moreover,
given sets Ω1 and Ω2 of mappings, the join of, the union of, the
difference between and the left outer-join between Ω1 and Ω2 are
defined as follows:

Ω1 ✶ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2},

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | ∀µ′ ∈ Ω2 : µ 6∼ µ
′},

Ω1 Ω2 = (Ω1 ✶ Ω2) ∪ (Ω1 r Ω2).

Then given an RDF graph G and a graph pattern P , the evaluation
of P over G, denoted by JP KG, is recursively defined as follows:
(1) if P is a basic graph pattern, then JP KG = {µ | dom(µ) =
var(P ) and there exists h : B → U such that µ(h(P )) ⊆ G};
(2) if P is (P1 AND P2), then JP KG = JP1KG ✶ JP2KG; (3)
if P is (P1 OPT P2), then JP KG = JP1KG JP2KG; (4) if P
is (P1 UNION P2), then JP KG = JP1KG ∪ JP2KG; (5) if P is
(P1 FILTER R), then JP KG = {µ | µ ∈ JP1KG and µ |= R};
and (6) if P if (SELECT W P1), then JP KG = {µ|W | µ ∈
JP1KG}.

Notice that according to the semantics of SPARQL [21, 29], the
scope of an occurrence of a blank node in a graph pattern is the
basic graph pattern containing it. This is reflected in the item (1) of
the previous definition, where the existence of function h : B → U

is checked at the level of basic graph patterns. In fact, if P is a
graph pattern, P1 is a basic graph pattern occurring in P , B is a
blank node occurring in P1, and P ′ is the graph pattern obtained
from P by replacing every occurrence of B in P1 by a fresh blank
node B′, then P and P ′ are equivalent graph patterns according to
the previous definition.

Relational databases and Datalog∃,¬s,⊥ queries. A term t is
a constant (t ∈ U), labeled null (t ∈ B), or variable (t ∈ V).
An atom has the form p(t1, . . . , tn), where p is an n-ary predicate,

and t1, . . . , tn are terms. For an atom a, we denote by dom(a) and
var(a) the set of its terms and the set of its variables, respectively;
these notations extend to sets of atoms. We refer to the predicate
of an atom a by pred(a). An instance I is a (possibly infinite) set
of atoms p(t), where t is a tuple of constants and labeled nulls.
A database D is a finite instance where only constants occur; we
refer to the constants in D as dom(D).

A Datalog∃,¬ rule ρ is an expression of the form1

a1, . . . , an,¬b1, . . . ,¬bm → ∃?Y1 . . .∃?Yk c,

where: (1) n > 1 and m, k > 0; (2) every ai (1 ≤ i ≤ n) is
an atom with terms from (U ∪ V); (3) every bi (1 ≤ i ≤ m)
is an atom with terms from (U ∪ V); (4) var({b1, . . . , bm}) ⊆
var({a1, . . . , an}); (5) var({a1, . . . , an, b1, . . . , bm})∩{?Y1, . . . ,

?Yk} = ∅; and (6) c is an atom with terms from (U ∪ {?Y1,

. . . , ?Yk} ∪ var({a1, . . . , an})). The set {a1, . . . , an} is denoted
by body+(ρ), while {b1, . . ., bm} is denoted by body−(ρ). The
body of ρ, denoted body(ρ), is defined as (body+(ρ)∪body−(ρ)).
The atom c is the head of ρ, denoted by head(ρ). A Datalog∃,¬

program Π is a finite set of Datalog∃,¬ rules. Let sch(X), where X
is either a program or a set of atoms, be the set of predicates occur-
ring in X . A stratification of Π is a function σ : sch(Π) → [0, ℓ],
where ℓ > 0, such that, for each ρ ∈ Π with p = pred(head(ρ)):
(1) σ(p) > σ(p′), for each p′ ∈ sch(body+(ρ)); and (2) σ(p) >

σ(p′), for each p′ ∈ sch(body−(ρ)). For each i ∈ [0, ℓ], let
Πi = {ρ | ρ ∈ Π and σ(p) = i}. We say that Π is stratified

if there exists a stratification of Π.
A constraint ν is an assertion of the form a1, . . . , an → ⊥,

where n > 1 and every ai (1 ≤ i ≤ n) is an atom with terms from
U ∪ V. The body of ν, denoted body(ν), is the set {a1, . . . , an}.
A Datalog∃,¬,⊥ program Π is a finite set of Datalog∃,¬ rules and
constraints. Moreover, we denote by ex(Π) the set of Datalog∃,¬

rules in Π, and we say that Π is stratified if ex(Π) is stratified. An
answer rule w.r.t. a program Π is a Datalog∃,¬ rule ρ without ex-
istentially quantified variables and negated atoms (i.e., a plain Dat-
alog rule) such that sch(body(ρ)) ⊆ sch(Π) and pred(head(ρ)) 6∈
sch(Π). A stratified Datalog∃,¬,⊥ query Q is a pair (Π,Λ), where
Π is a stratified Datalog∃,¬,⊥ program, and Λ is a set of answer
rules w.r.t. Π. Henceforth, for brevity, we write Datalog∃,¬s,⊥ for
stratified Datalog∃,¬,⊥ programs and queries. Moreover, a supra-
index can be removed from Datalog∃,¬s,⊥ to indicate that the cor-
responding feature is disallowed. For example, in a Datalog¬s pro-
gram neither existential variables in the heads of rules nor con-
straints are allowed.

Due to the lack of space, we do not formally define the semantics
of a Datalog∃,¬s,⊥ query. Instead, we explain how the chase of a
database with a Datalog∃,¬s program is computed, and then how
the semantics of a Datalog∃,¬s,⊥ query can be defined in terms of
this chase. More precisely, a homomorphism from a set of atoms X
to a set of atoms X ′ is a partial function h : U∪B∪V → U∪B∪
V such that: (1) t ∈ U implies h(t) = t, and (2) p(t1, . . . , tn) ∈
X implies p(h(t1), . . . , h(tn)) ∈ X ′. Then a Datalog∃,¬s rule ρ

is said to be applicable to an instance I if there exists a homomor-
phism h such that h(body+(ρ)) ⊆ I and h(body−(ρ)) ∩ I = ∅.
Moreover, the result of applying ρ to I in this case is an instance
I ′ = I ∪ h′(head(ρ)), where h′ is a homomorphism such that
h′(?X) = h(?X) if ?X ∈ var(body(ρ)) ∩ var(head(ρ)) and
h′(?Y ) is a fresh null if ?Y ∈ var(head(ρ)) \ var(body(ρ)). Fi-
nally, the chase of a database D with a Datalog∃,¬s program Π is

1For the sake of brevity, in the rest of the paper we may write rules
with more than one atom in the head. This is not a problem as such
rules can be transformed into an equivalent set of rules with just
one head-atom; see, e.g., [11].



an instance chase(D,Π) constructed as follows. Let σ : sch(Π) →
[0, ℓ] be a stratification of Π, and let Π0, . . ., Πℓ be the partition
of Π induced by σ. To construct chase(D,Π), we first construct
I0 = chase(D,Π0) by exhaustively applying the rules of Π0 start-
ing from D. Then we construct I1 = chase(I0,Π1), but this time
by exhaustively applying the rules of Π1 starting from I0. In gen-
eral, we define Ii+1 = chase(Ii,Πi+1) for i ∈ {0, . . . , ℓ−1}, and
we define chase(D,Π) as Iℓ.

Let Q = (Π,Λ) be a Datalog∃,¬s,⊥ query and D a database.
The evaluation of Q over D, denoted by ans(Q,D), is defined as
follows. If there is a constraint ν in Π for which there exists a
homomorphism h such that h(body(ν)) ⊆ chase(ex(Π),D), then
D is inconsistent w.r.t. Q; otherwise, D is consistent w.r.t. Q. If
D is inconsistent w.r.t. Q, then we define ans(Q,D) as ⊤, where
⊤ is a special symbol used to indicate such inconsistency. If D is
consistent w.r.t. Q, which is the case we are really interested on,
then ans(Q,D) is defined as:
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The decision problem associated to query evaluation is as follows:
given an atom p(t), a Datalog∃,¬s,⊥ query Q, and a database D,
decide whether p(t) ∈ ans(Q,D). In this work we are interested
on the data complexity of this problem, i.e., the complexity calcu-
lated by considering Q as fixed.

Guardedness. The problem of evaluating Datalog∃,¬s,⊥ queries
is undecidable; this is implicit in [6, 8]. Several decidability restric-
tions have been proposed in the literature. The restriction which
is relevant for the present work is based on the notion of guard-
edness. Before we proceed further, let us recall the notion of the
affected position [8]. A position p[i] identifies the i-th attribute of
a predicate p. We refer to the arity of p by arity(p). Given a set of
predicates X , the set of positions of X , denoted pos(X), is the set
{p[i] | p ∈ sch(X) and i ∈ [1, arity(p)]}. Given a Datalog∃,¬s

program Π, the set of affected positions of sch(Π), denoted by
affected(Π), is defined as follows: (1) if there exists ρ ∈ Π such
that at position π an existentially quantified variable occurs, then
π ∈ affected(Π); and (2) if there exists ρ ∈ Π and a variable
?V that occurs in body+(ρ) only at positions of affected(Π), and
?V appears in head(ρ) at position π, then π ∈ affected(Π). Let
nonaffected(Π) be the set (pos(Π) \ affected(Π)).

Example 1. Consider the Datalog∃,¬s program Π:

p(?X, ?Y ), s(?Y, ?Z) → ∃?W t(?Y, ?X, ?W )

t(?X, ?Y, ?Z) → ∃?W p(?W, ?Z)

p(?X, ?Y ),¬r(?X) → ∃?Z q(?X, ?Z).

Due to the existentially quantified variables, we get that t[3], p[1]
and q[2] belong to affected(Π). Since the variable ?Z occurs in the
body-atom of the second rule at position t[3] which is affected, and
also at position p[2] in the head of the same rule, p[2] ∈ affected(Π).
Similarly, t[2] and q[1] are affected positions of sch(Π). Notice
that, although ?Y occurs in the body of the first rule at the af-
fected position p[2], and also at position t[1] in the head of the
same rule, t[1] is not affected since ?Y occurs also at position
s[1] 6∈ affected(Π). Finally, observe that q[1] is affected, even if
?X occurs in the body of the third rule at the non-affected position
r[1], since we consider only positive atoms.

A Datalog∃,¬s program Π is weakly-guarded if for each ρ ∈ Π,
there exists a ∈ body+(ρ), called weak-guard, which contains all

the variables of var(body(ρ)) that appear in body+(ρ) only at posi-
tions of affected(Π) [8]. Observe that the program Π in Example 1
is weakly-guarded. A weakly-guarded Datalog∃,¬s,⊥ query is a
Datalog∃,¬s,⊥ query (Π,Λ) where ex(Π) is weakly-guarded.

4. MODULAR QUERIES
The main goal of this paper is to construct a query language with

reasoning capabilities to deal with the OWL vocabulary, naviga-
tional capabilities to exploit the graph structure of RDF data, and
a general form of recursion much needed to express some natu-
ral and useful queries. To this end, we introduce in this section a
query language where these functionalities can be placed in differ-
ent modules. In this paper, we exploit this modular structure and
show it to be very convenient to deal with SPARQL queries over the
OWL vocabulary (Section 5) and to find a tractable query language
with the desired features (Section 6). Besides, this modularity al-
lows us, for example, to easily replace a translation of a SPARQL
query by a more efficient encoding if needed.

We now introduce our main language called triple query lan-

guage (TriQ). A modular Datalog∃,¬s,⊥ query M is a pair [Q1, Q2],
where both Q1 and Q2 are Datalog∃,¬s,⊥ queries. A TriQ query
is a modular Datalog∃,¬s,⊥ query [Q1, Q2], where both Q1 and
Q2 are weakly-guarded. In order to define the semantics of mod-
ular Datalog∃,¬s,⊥, we first need to define when a database D is
consistent w.r.t. a modular Datalog∃,¬s,⊥ query M = [Q1, Q2].
Formally, if D is inconsistent w.r.t. Q1 or ans(Q1, D) is incon-
sistent w.r.t Q2 in the sense defined in Section 3, then we say
that ans(M,D) = ⊤. Otherwise, the evaluation of M over D

is performed in a modular way, that is, ans(M,D) is defined as
ans(Q2, ans(Q1, D)).

In this paper, we consider modular queries with two modules, as
these are enough for our purpose. It should be noted that, however,
these queries can be easily extended to handle an arbitrary number
of modules. In particular, the semantics of a modular query of the
form M = [Q1, Q2, . . . , Qk] is defined by considering a sequence
D1, . . . , Dk of databases such that D1 = ans(Q1, D) and Di+1 =
ans(Qi+1, Di) (1 ≤ i < k), and then letting ans(M,D) be Dk.

A natural question at this point is how expressive TriQ is. Inter-
estingly, we show in the next example that this language is expres-
sive enough for encoding some very useful but costly queries; e.g.,
whether a graph contains a clique of size k.

Example 2. Let G = (V,E) be an undirected graph with n > 0
vertices, and let k > 0. We will construct a database D and a
TriQ query M = [(Πaux ,Λcopy ), (Πclique ,Λclique)] such that G
contains a k-clique iff yes() ∈ ans(M,D). The database D en-
codes the graph G and the value k. More precisely, for each node
c ∈ V , D contains atom node0(c), and for each edge (v, w) ∈ E,
D contains edge0(v, w). Moreover, number k is encoded in D by
using atoms succ0(0, 1), . . ., succ0(k−1, k). The set of rules Πaux

is used to compute some auxiliary relations that are needed when
checking whether G contains a k-clique. More precisely, Πaux con-
tains two rules to define the usual linear order on [0, k]:

succ0(?X, ?Y ) → less0(?X, ?Y )

succ0(?X, ?Y ), less0(?Y, ?Z) → less0(?X, ?Z),

and contains the following rules to define the minimum and maxi-
mum elements of this linear order:

less0(?X, ?Y ) → not_max(?X)

less0(?X, ?Y ) → not_min(?Y )

less0(?X, ?Y ),¬not_min(?X) → zero0(?X)

less0(?Y, ?X),¬not_max(?X) → max0(?X).



The set of answer rules Λcopy is just used to copy the atoms of D
and the results of Πaux into a new schema that can be queried by
(Πclique ,Λclique). In fact, for each predicate p0 occurring in D or
Πaux , we have a rule p0(X) → p(X).

Let us now give the key idea underlying Πclique . Intuitively,
Πclique constructs a tree of mappings (rooted at some dummy map-
ping), where a mapping at level i ∈ [1, k] actually maps the set of
integers [1, i] to the vertices of G. Each mapping µ at level i < k

has n child-mappings, one for each node of G. The child-mapping
µ′ of µ (for a node v) simply extends µ by mapping (i + 1) to
v. The k-th level of the tree contains all the possible nk mappings
µ : [1, k] → V . It is then easy to check whether there exists a
mapping that maps [1, k] to a clique of G.

Now we define Πclique . In this program, apart from the predi-
cates occurring in the head of the rules of Λcopy , we also have the
following predicates: (1) ism; the atom ism(µ, i) says that µ is a
mapping at level i of the tree; (2) map; the atom map(µ, i, v) says
that µ(i) = v; (3) next; the atom next(µ, v, µ′) encodes the fact
that µ′ is obtained from µ by mapping (i+ 1) to v (assuming that
µ is a mapping at level i); (4) noclique; the atom noclique(µ) says
that µ does not map to a clique; and (5) cliquek; which is a proposi-
tional predicate used to indicate that some k-clique has been found.
Moreover, the program Πclique consists of the following rules:

zero(?X) → ∃?Y ism(?Y, ?X)

ism(?X, ?Y ), succ(?Y, ?Z), node(?W ) →

∃?U next(?X, ?W, ?U), ism(?U, ?Z),map(?U, ?Z, ?W )

next(?X, ?Y, ?Z),map(?X, ?U, ?V ) → map(?Z, ?U, ?V )

less(?X, ?Y ),map(?Z, ?X, ?W ),

map(?Z, ?Y, ?U),¬edge(?W, ?U) → noclique(?Z)

less(?X, ?Y ),map(?Z, ?X, ?W ),

map(?Z, ?Y, ?W ) → noclique(?Z)

ism(?X, ?Y ),max(?Y ),¬noclique(?X) → cliquek()

Notice that the purpose of the fifth rule is to avoid that the same
node is used more than once in a clique (which can happen if G
contains self-loops). Finally, Λclique contains the single answer
rule cliquek() → yes(), which returns “yes” if a k-clique has been
found.

The previous example gives evidence that the data complexity of
the query evaluation problem for TriQ is intractable. In what fol-
lows, we show that this problem is indeed EXPTIME-complete. The
lower bound follows immediately from the fact that the same prob-
lem for weakly-guarded Datalog∃ queries is already EXPTIME-hard
in data complexity [8]. The problem of deciding whether a database
D is inconsistent w.r.t. a weakly-guarded Datalog∃,¬s,⊥ query can
be reduced to the problem of query evaluation for weakly-guarded
Datalog∃,¬s queries. Thus, to establish the desired upper bound,
it suffices to show that the evaluation problem for weakly-guarded
Datalog∃,¬s queries is feasible in EXPTIME. This can be estab-
lished by a careful extension of the existing alternating algorithm
for weakly-guarded Datalog∃ queries.

THEOREM 1. The query evaluation problem for TriQ is

EXPTIME-complete in data complexity.

It is important to mention that recently, independently from our
work, it has been shown that weakly-guarded Datalog∃,¬s can ex-
press all the queries that can be evaluated in exponential time in
data complexity [19]. Combining this result with the upper bound

in Theorem 1, we obtain that weakly-guarded Datalog∃,¬s cap-
tures EXPTIME. This result implies that TriQ and weakly-guarded
Datalog∃,¬s are equally expressive query languages. However, the
modular nature of TriQ allows us to write more intuitive and suc-
cinct queries than weakly-guarded Datalog∃,¬s.

5. FROM SPARQL OVER OWL 2 QL

TO TRIQ
The first version of the Web ontology language OWL was re-

leased in 2004 [24]. The second version of this language, which
is called OWL 2, was released in 2012 [20]. This new version in-
cludes three profiles that can be implemented more efficiently [25].
One of these profiles, called OWL 2 QL, is based on the descrip-
tion logic DL-LiteR [12] and is designed to be used in applications
where query answering is the most important reasoning task. As
the main goal of our paper is to design a query language that natu-
rally embeds the fundamental features for querying RDF, we focus
on OWL 2 QL in this section, and show that every SPARQL query
under the OWL 2 direct semantics entailment regime [17, 22] can
be naturally translated into a TriQ query. But not only that, a sec-
ond goal of this section is to show that the use of TriQ allows us
to formulate SPARQL queries in a simpler way, as a more natu-
ral notion of entailment can be easily encoded by using this query
language.

For the sake of presentation, we first disregard the direct seman-
tics entailment regime and show in Section 5.1 that each SPARQL
query can be translated into a modular Datalog¬s query. Then we
extend this translation in Section 5.2 to prove that every SPARQL
query under the direct semantics entailment regime can be trans-
formed into a TriQ query. Moreover, we show in Section 5.3 that a
more natural notion of entailment, which is obtained by removing
a restriction from the regime proposed in [17], can also be encoded
in TriQ. It should be noticed that it is known that SPARQL can be
translated into Datalog¬s [2, 3, 4, 28, 31], if one focuses on RDF
graphs with RDFS vocabulary extended with a special symbol to
represent the null value (and with a built-in predicate to check for
this symbol). Thus, the goal of Section 5.1 is not to prove that
SPARQL can be embedded into modular Datalog¬s, but instead to
propose a translation that does not need to use a special symbol
for the null value, and which can be easily extended to deal not
only with the RDFS vocabulary but also with the vocabulary used
in OWL 2 QL ontologies (as shown in Section 5.2).

5.1 Translating SPARQL into modular
Datalog¬s

In this section, we show that every SPARQL query can be easily
translated into a modular Datalog¬s query. The main ingredients of
this translation are shown in the following example. From now on,
given an RDF graph G, assume that τdb(G) is the instance of the
relational schema {triple(·, ·, ·)} naturally associated with G, that
is, a tuple (a, b, c) is in the relation triple in τdb(G) if and only if
(a, b, c) ∈ G.

Example 3. Let P1 be the graph pattern (?X, name, ?Y ), where
name is a constant, which is asking for the list of pairs (a, b) of
elements from an RDF graph G such that b is the name of a in G.
This graph pattern can be easily represented as a Datalog program
over τdb(G):

triple(?X, name, ?Y ) → queryP1
(?X, ?Y ).

The predicate queryP1
is used in this program to store the answer

to the graph pattern P1. Now assume that P2 is the graph pattern



(?X, name, B), where B is a blank node. This time we are asking
for the list of elements in an RDF graph G that have a name (the
blank node B is used in P2 to indicate that ?X has a name, but that
we are not interested in retrieving it). As in the previous case, this
graph pattern can be easily represented as a Datalog program over
τdb(G):

triple(?X, name, ?Y ) → queryP2
(?X). (5)

Given that blank nodes are used as existential variables in basic
graph patterns, variable ?Y is used in the previous rule to represent
blank node B. However, this time we do not include variable ?Y
in the head of the rule as we are not interested in retrieving names.
As a third example, consider the following graph pattern P3:

(?X, name, ?Y ) OPT (?X, phone, ?Z),

where phone is a constant. For every constant a in an RDF graph
G, this graph pattern is asking for the name and phone number of
a, if the information about the phone number of a is available in G,
and otherwise it is only asking for the name of a. To represent this
graph pattern in Datalog¬s, we first assume that Q1, Q2 are basic
graph patterns (?X, name, ?Y ) and (?X, phone, ?Z), respectively,
and we construct, as before, the following rules to represent them:

triple(?X, name, ?Y ) → queryQ1
(?X, ?Y ) (6)

triple(?X, phone, ?Z) → queryQ2
(?X, ?Z). (7)

Predicates queryQ1
and queryQ2

are used in the representation of
graph pattern P3 in Datalog¬s. More precisely, we first construct a
set of rules for the cases where the information about phone num-
bers is available:

queryQ1
(?X, ?Y ), queryQ2

(?X, ?Z) →

queryP3
(?X, ?Y, ?Z) (8)

queryQ1
(?X, ?Y ), queryQ2

(?X, ?Z) →

compatibleP3
(?X). (9)

As for the previous graph patterns, we use a predicate queryP3
to

store the answers to the query. But in this case, we also include a
predicate compatibleP3

, which is used to store the list of individuals
with phone numbers. This predicate is used in the definition of the
third rule utilised to represent graph pattern P3, which takes care
of the individuals without phone numbers:

queryQ1
(?X, ?Y ),¬compatibleP3

(?X) →

query
{3}
P3

(?X, ?Y ). (10)

Notice that in this case a binary predicate query
{3}
P3

is used to store
the answer, which has a supra-index {3} to indicate that the third
argument in the answer to P3 is missing (which is the phone num-
ber).

The approach shown in Example 3 can be generalised to repre-
sent any graph pattern. To formally prove this claim, we need to
introduce some terminology. Assume first that P = {t1, . . . , tn}
is a basic graph pattern such that ti = (ui, vi, wi) for every i ∈
{1, . . . , n}, and var(P ) = {?X1, . . ., ?Xk}. Then define as fol-
lows a Datalog program τbgp(P ) encoding P . Assume that ς is a
substitution such that for every symbol u occurring in P , it holds
that ς(u) = u if u ∈ (U ∪ V), and ς(u) is a fresh variable if u is
a blank node. Then τbgp(P ) is defined as:

triple(ς(u1), ς(v1), ς(w1)), . . . ,

triple(ς(un), ς(vn), ς(wn)) → queryP (?X1, . . . , ?Xk)

For example, if P2 is the basic graph pattern (?X, name,B) men-
tioned in Example 3, then τbgp(P2) consists of the rule (5). Now
assume that P is a graph pattern. Then define τbgp(P ) as the Dat-
alog program consisting of the rules τbgp(Q) for every basic graph
pattern Q occurring in P . For example, if P3 is the pattern

(?X, name, ?Y ) OPT (?X, phone, ?Z)

mentioned in Example 3, then τbgp(P3) consists of the rules (6)
and (7). Moreover, define τopr(P ) as a Datalog¬s program repre-
senting the non-basic graph patterns occurring in P . Due to the
lack of space, we do not provide these rules here, we just point out
that these rules are used to encode the semantics of the SPARQL
operators occurring in P as shown in Example 3. In fact, if P3

is again the graph pattern (?X, name, ?Y ) OPT (?X, phone, ?Z)
mentioned in this example, then τopr(P3) consists of the rules (8),
(9) and (10).

Let P be a graph pattern. The union of τbgp(P ) and τopr(P )
forms the translation of P . Notice that τbgp(P ) and τopr(P ) are kept
separately, as τbgp(P ) is used as a bridge from the data stored in an
RDF graph and the Datalog¬s program τopr(P ) used to compute
the answers to P . Thus, the modular Datalog¬s query representing
P is defined as:

τdat(P ) = [(∅, τbgp(P )), (τopr(P ), τout(P ))],

where τout(P ) is a set of answer rules for the Datalog¬s program
τopr(P ), which is defined as follows. Recall that some atoms of
the form queryJ

P (?X1, . . . , ?Xk) occur in τopr(P ), where J is a set
of indexes. For example, if P3 is defined as in the previous para-

graph, then queryP3
(?X, ?Y, ?Z) and query

{3}
P3

(?X, ?Y ) occur in
τopr(P3) (if J = ∅, then we use queryP (?X1, . . . , ?Xk) instead of
query∅

P (?X1, . . . , ?Xk)). Then for every atom queryJ
P (?X1, . . .,

?Xk) occurring in P , the following copying rule is included in
τout(P ):

queryJ
P (?X1, . . . , ?Xk) → answerJP (?X1, . . . , ?Xk).

In order to prove the correctness of our translation, we need to de-
fine one last term. Let P be a graph pattern, G an RDF graph
and a = answerJP (t1, . . . , tk) an atom in ans(τdat(P ), τdb(G)). By
construction, in the set of answer rules τout(P ) there is a single atom
answerJP (?X1, . . . , ?Xk) having answerJP as its predicate (which
may occur in several rules). Then define as follows a mapping µa,P

corresponding to a given P : dom(µa,P ) = {?X1, . . . , ?Xk} and
µa,P (?Xi) = ti for every i ∈ {1, . . . , k}. Moreover, define as
follows a set of mappings corresponding to the answers of τdat(P )
given τdb(G):

J(τdat(P ), τdb(G))K = {µa,P | a ∈ ans(τdat(P ), τdb(G))}.

With this notation, we are ready to prove that our translation is
correct.

THEOREM 2. For every graph pattern P and RDF graph G, it

holds that JP KG = J(τdat(P ), τdb(G))K.

5.2 SPARQL entailment regime and TriQ
As pointed out before, several functionalities were included in

SPARQL 1.1 [21] to overcome some of the limitations of the first
version of this language. In particular, SPARQL 1.1 includes an
entailment regime to deal with RDFS and OWL vocabularies [17,
22]. In this section, we show that this functionality can be encoded
by using TriQ.

We start by indicating how OWL 2 QL ontologies are stored as
RDF graphs in our setting. In the specification of OWL 2 [20], it is
defined a standard syntax to represent OWL 2 ontologies as RDF



triples. For the sake of readability, we use here a simplified version
of this syntax, having in mind that the results of this section can be
readily adapted to the standard syntax. More precisely, define the
vocabulary Σ of an OWL 2 QL ontology as a finite set of unary
and binary predicates, which are called classes and properties, re-
spectively. Moreover, define a basic property over Σ as either p or
p−, where p is a property in Σ, and define a basic class over Σ as
either a or ∃r, where a is a class in Σ and r is a basic property
over Σ. Then to represent an OWL 2 QL ontology over a vocab-
ulary Σ, we first include the following triples to indicate what the
classes and properties in Σ are. For every class a in Σ, we include
the triple (a, rdf:type, owl:Class). Notice that this triple uses the re-
served URIs rdf:type and owl:Class, and indicates that a is of type
(rdf:type) class (owl:Class). Moreover, for every property p in Σ,
we include the following triples:

(p, rdf:type, owl:Prop) (p, owl:inv, p−)
(p−, rdf:type, owl:Prop) (p−, owl:inv, p)
(∃p, owl:rest, p) (∃p, rdf:type, owl:Class)
(∃p−, owl:rest, p−) (∃p−, rdf:type, owl:Class)

The triples (p, rdf:type, owl:Prop), (p−, rdf:type, owl:Prop) indi-
cate that p and p− are properties (owl:Prop). It is important to
notice that p and p− are assumed to be (distinct) URIs. The triple
(p−, owl:inv, p) indicates that p− is the inverse property of p, while
triples (∃p, owl:rest, p), (∃p−, owl:rest, p−) indicate that ∃p and
∃p− are restrictions of p and p−, respectively, where ∃p and ∃p−

are also assumed to be URIs. Finally, (∃p, rdf:type, owl:Class) and
(∃p−, rdf:type, owl:Class) indicate that ∃p and ∃p− are classes. It
is important to notice that the notation used above is a simplifi-
cation of the notation used in OWL 2, as owl:Prop, owl:inv and
owl:rest correspond to the OWL 2 keywords owl:ObjectProperty,
owl:inverseOf and owl:Restriction, respectively. Besides, a triple
such as (∃p, owl:rest, p) is represented by means of several triples
in OWL 2, as shown in Section 2.

In order to represent the axioms in an OWL 2 QL ontology, we
include the following triples. To indicate that a basic class b1 is a
sub-class of a basic class b2, we include the triple (b1, rdfs:sc, b2).
Similarly, to indicate that a basic property r1 is a sub-property
of a basic property r2, we include the triple (r1, rdfs:sp, r2). Fi-
nally, to indicate that basic classes b1 and b2 are disjoint, we in-
clude the triple (b1, owl:disj, b2). It should be noticed that, as be-
fore, rdfs:sc, rdfs:sp and owl:disj are shorthands for the keywords
rdfs:subClassOf, rdfs:subPropertyOf and owl:disjointWith, respec-
tively, which can be used in OWL 2.

Finally, in order to represent the membership assertions in an
OWL 2 QL ontology, we include the following triples. To indicate
that a constant a belong to a basic class b, we include the triple
(a, rdf:type, b). Similarly, to indicate that a constant a1 is related to
a constant a2 through a property p, we include the triple (a1, p, a2).

From now on, we say that an RDF graph G represents an OWL 2
QL ontology if there exists an OWL 2 QL ontology O such that, the
translation into RDF of O according to the previous rules generates
G.

As a second step in our construction, we show how a graph pat-
tern is evaluated under the OWL 2 direct semantics entailment re-
gime defined in [17]. To compute the answer to a graph pattern, this
regime is first applied at the level of basic graph patterns, and then
the results of this step are combined using the standard semantics
for the SPARQL operators [22]. Thus, we only need to define the
OWL 2 direct semantics entailment regime for basic graph patterns.

Assume that P is a basic graph pattern. Under the OWL 2 di-
rect semantics entailment regime, the evaluation of P over an RDF
graph G adopts an active domain semantics, that is, it uses the no-

tion of entailment in OWL 2 QL (which corresponds to the notion
of entailment in DL-LiteR) but allowing the variables and blank
nodes in P to take only values from G. For example, assume that
we are given an RDF graph G consisting of the following triples:

(dog, rdf:type, animal) (animal, rdfs:sc,∃eats), (11)

which indicate that dog is an animal, and every animal eats some-
thing. Moreover, assume that we want to retrieve the list of el-
ements of G that eat something. The natural way to formulate
this query is by using a graph pattern of the form (?X, eats, B),
where B is a blank node. However, the answer to this query is
empty under the OWL 2 direct semantics entailment regime, as
there are no elements a, b in G that can be assigned to ?X and
B in such a way that the triple (a, eats, b) is implied by the axioms
in G. In other words, the answer to (?X, eats, B) is empty under
the active domain semantics adopted in SPARQL 1.1. To obtain
a correct answer in this case, we can consider the graph pattern
(?X, rdf:type,∃eats), as the triples in G can be used to infer the
triple (dog, rdf:type,∃eats), from which the correct answer dog is
obtained.

Let G be an RDF graph representing an OWL 2 QL ontology.
Given a triple t ∈ U × U × U, we use notation G |= t to indi-
cate that t is implied by G as defined in [25, 17], which in turn is
based on the notion of entailment for DL-LiteR [12]. Moreover,
given a basic graph pattern P , the evaluation of P over G under
the OWL 2 direct semantics entailment regime, denoted by JP KUG ,
is defined as:

{µ | dom(µ) = var(P ) and there exists h : B → U

such that for every t ∈ µ(h(P )): G |= t}. (12)

Notice that the supra-index U in JP KUG is used to indicate that every
variable and blank node in P has to be assigned a constant, as U is
the range of functions h and µ in the previous definition. Moreover,
the evaluation of a graph pattern P over an RDF graph G under the
OWL 2 direct semantics entailment regime, denoted by JP KUG , is
recursively defined as the usual semantics for graph patterns (which
is given in Section 3) but replacing the rule for evaluating basic
graph patterns by rule (12). In what follows, we define a fixed
Datalog∃,¬s,⊥ program τowl2ql that is used to encode the semantics
J·KUG . In this program, we first include a Datalog rule to store in
a unary predicate C all the URIs from the graph (recall that we
assume that an RDF graph does not contain any blank nodes):

triple(?X, ?Y, ?Z) → C(?X),C(?Y ),C(?Z). (13)

Then we define some Datalog rules that store the different elements
in the ontology:

triple(?X, rdf:type, ?Y ) → type(?X, ?Y )

triple(?X, rdfs:sp, ?Y ) → sp(?X, ?Y )

triple(?X, owl:inv, ?Y ) → inv(?X, ?Y )

triple(?X, owl:rest, ?Y ) → rest(?X, ?Y )

triple(?X, rdfs:sc, ?Y ) → sc(?X, ?Y )

triple(?X, owl:disj, ?Y ) → disj(?X, ?Y )

triple(?X, ?Y, ?Z) → triple1(?X, ?Y, ?Z)

If we have triples (a, rdf:type, b), (b, rdfs:sc,∃r) in an OWL 2 QL
ontology, then the Datalog∃,¬s,⊥ program τowl2ql will create a triple
of the form (a, r, z), where z is a null value. If (a, r, z) is stored
in the relation triple, then by using rule (13) we will conclude that
C(z) holds, violating the intended interpretation of predicate C.
To solve this problem, we include the last Datalog rule above to



produce a copy of the predicate triple in the predicate triple1. In
this way, the new values are added to triple1, that is, we do not
modify the predicate triple but instead we have that both triple1(a,
rdf:type, b) and triple1(b, rdfs:sc,∃r) hold, from which we con-
clude that triple1(a, r, z) also holds. Moreover, we include the fol-
lowing rules to reason about properties:

sp(?X1, ?X2), inv(?Y1, ?X1),

inv(?Y2, ?X2) → sp(?Y1, ?Y2)

type(?X, owl:Prop) → sp(?X, ?X)

sp(?X, ?Y ), sp(?Y, ?Z) → sp(?X, ?Z)

we include the following rules to reason about classes:

sp(?X1, ?X2), rest(?Y1, ?X1),

rest(?Y2, ?X2) → sc(?Y1, ?Y2)

type(?X, owl:Class) → sc(?X, ?X)

sc(?X, ?Y ), sc(?Y, ?Z) → sc(?X, ?Z)

and we include the following rule to reason about disjointness con-
straints:

disj(?X1, ?X2), sc(?Y1, ?X1),

sc(?Y2, ?X2) → disj(?Y1, ?Y2)

Finally, we include the following rules to reason about membership
assertions:

triple1(?X, ?U, ?Y ), sp(?U, ?V ) → triple1(?X, ?V, ?Y )

triple1(?X, ?U, ?Y ), inv(?U, ?V ) → triple1(?Y, ?V, ?X)

type(?X, ?Y ), rest(?Y, ?U) → ∃?Z triple1(?X, ?U, ?Z)

type(?X, ?Y ), sc(?Y, ?Z) → type(?X, ?Z)

triple1(?X, ?U, ?Y ), rest(?Z, ?U) → type(?X, ?Z)

type(?X, ?Y ), type(?X, ?Z), disj(?Y, ?Z) → ⊥

Given a graph pattern P and an RDF graph G, to compute JP KUG
we need to include τowl2ql in the modular Datalog¬s query τdat(P )
defined in Section 5.1. More precisely, assuming that τdat(P ) =
[(∅, τbgp(P )), (τopr(P ), τout(P ))], we need to replace ∅ by τowl2ql

in the first component of τdat(P ), but taking into consideration the
active domain semantics in the entailment regime just defined. For
example, assume that P is the basic graph pattern (?X, eats, B)
and G is the RDF graph in (11) storing information about animals.
Then we have that τbgp(P ) is the following answer rule:

triple(?X, eats, ?Y ) → queryP (?X). (14)

In order to combine this rule with τowl2ql, we first need to consider
the fact that all the triples inferred by using the axioms in G are
stored in the predicate triple1. Thus, we need to replace triple by
triple1 in the rule (14):

triple1(?X, eats, ?Y ) → queryP (?X).

Moreover, we need to enforce the constraint that every variable and
blank node in P can only take a value from G (the active domain
semantics restriction), which is done by including the predicate C:

triple1(?X, eats, ?Y ),C(?X),C(?Y ) → queryP (?X). (15)

Thus, given a graph pattern P , let τU

bgp(P ) be the set of answer
rules obtained from τbgp(P ) by first replacing triple by triple1 in
every rule of τbgp(P ), and then adding C(?X) in the body of ev-
ery resulting rule ρ if ?X occurs in ρ. Moreover, let τU

dat(P ) =
[(τowl2ql, τ

U

bgp(P )), (τopr(P ), τout(P ))]. Then it is possible to prove
that:

THEOREM 3. For every graph pattern P and RDF graph G, it

holds that JP KUG = J(τU

dat(P ), τdb(G))K.

Moreover, we have that:

PROPOSITION 4. For every graph pattern P , τU

dat(P ) is a TriQ

query.

5.3 Removing the active domain restriction
Consider the basic graph pattern:

Q0 = {(?X, eats, B), (B, rdf:type, plant_material)},

which is asking for the lists of animals that eat some plant mate-
rial, and assume that G is an RDF graph. Under the active do-
main semantics, a is an answer to Q0 over G if we can replace
blank node B by a specific plant material b such that G implies
(?X, eats, b). But what happens if such a concrete witness cannot
be found in G, and we can only infer that a is an answer to Q0 by
using the axioms in the ontology. For example, this could happens
if G stores information only about herbivores, so it includes the
axiom (∃eats−, rdfs:sc, plant_material). In this case, Q0 has to be
replaced by a basic graph pattern of the form:

{(?X, rdf:type,∃eats), (∃eats−, rdfs:sc, plant_material)}

in order to obtain the correct answers. And even worse, what hap-
pens if the query has to be distributed over several RDF graphs,
which is a very common scenario in the Web. Then the user is
forced to use a graph pattern of the form:

{(?X, eats, B), (B, rdf:type, plant_material)} UNION

{(?X, rdf:type,∃eats), (∃eats
−
, rdfs:sc, plant_material)},

in which some inferences have to be encoded. All these issues
can be solved if we do not force B to take values only in G, as
this allows us to use the initial basic graph pattern Q0. This gives
rise to the semantics JP KALL

G that is defined exactly as JP KUG , but
considering every basic graph pattern as a conjunctive query, and
treating blank nodes as existential variables that are not forced to
take only values in G (they can take values in the interpretations
of G).

At this point, one may be tempted to think that the semantics
J·KALL can be directly defined by transforming every basic graph
pattern into a conjunctive query, which has to be evaluated over
a DL ontology. In fact, this approach works well with our initial
query Q0, which can be transformed into the conjunctive query
∃Y eats(X,Y ) ∧ plant_material(Y ). However, there are simple
queries for which this approach does not work. For instance, con-
sider the basic graph pattern (?X, rdfs:sc,∃eats). Given that ?X is
used to store class names, this pattern cannot be transformed into a
conjunctive query in order to define its semantics; instead we need
to replace ?X by every class name C, and then verify whether the
inclusion C ⊑ ∃eats is implied by the DL ontology in order to
define its semantics. Thus, the goal of this section is to show that
the more natural semantics J·KALL can be easily defined by using
modular Datalog∃,¬s,⊥, without needing to differentiate between
variables that are used to store individuals, classes or properties.

Given a basic graph pattern Q, let τALL
bgp (Q) be the answer rule

obtained from τU

bgp(Q) by removing every atom of the form C(?X)
such that ?X 6∈ var(Q) (that is, every atom C(?X) such that ?X is
a variable associated to a blank node occurring in Q). For example,
assume that P is the basic graph pattern (?X, eats, B). Then we
have that τU

bgp(P ) is the rule (15), from which we conclude that

τALL
bgp (P ) is the following rule:

triple1(?X, eats, ?Y ),C(?X) → queryQ(?X).



Moreover, given a graph pattern P , define τALL
bgp (P ) as the Data-

log program consisting of the rules τALL
bgp (Q) for every basic graph

pattern Q occurring in P . Finally, define τALL
dat (P ) as [(τowl2ql,

τALL
bgp (P )), (τopr(P ), τout(P ))]. With this very simple modification

of τU

dat(P ), we can formally define the semantics J·KALL :

Definition 1. Given a graph pattern P and an RDF graph G, de-
fine JP KALL

G as J(τALL
dat (P ), τdb(G))K.

We conclude by pointing out that τALL
dat (P ) is a TriQ query, for

every graph pattern P . Thus, this query language is expressive
enough to represent the OWL 2 direct semantics entailment regime
for the case of OWL 2 QL ontologies, even if the active domain
restriction is not imposed.

6. A TRACTABLE QUERY LANGUAGE
TriQ forms a natural language which embeds the fundamental

features for querying RDF, as shown in Section 5. Unfortunately,
Theorem 1 shows that this language is highly intractable in data
complexity. Then the question that comes up is whether a fragment
of this language exists which is powerful enough for expressing
every SPARQL query under the entailment regime for OWL 2 QL,
and at the same time ensures the tractability of query evaluation.
Towards the identification of such a sublanguage, we single out a
fragment of TriQ for which the query evaluation problem can be
reduced in polynomial time to the query evaluation problem for
linear Datalog∃. Recall that a rule ρ is called linear if body(ρ)
contains only one atom. Interestingly, the query evaluation prob-
lem for linear Datalog∃ can be reduced to first-order query evalua-
tion [9]. Thus, our reduction allows us not only to find the desired
tractable fragment, but also to exploit the mature and efficient rela-
tional database technology to answer queries in this fragment.

6.1 The query language TriQ-Lite
After a careful analysis of ex(τowl2ql), that is, the program ob-

tained after eliminating the constraint occurring in τowl2ql, we ob-
served that it enjoys the following interesting property. Let D

be a database and ρ ∈ ex(τowl2ql). If ρ is triggered with a ho-
momorphism h during the construction of chase(ex(τowl2ql), D),
then for each body-variable ?V of ρ that participates in a join op-
eration (i.e., appears more than once in body(ρ)) we have that
h(?V ) ∈ dom(D). Inspired by this observation, we introduce a
syntactic condition that is sufficient to ensure the above semantic
property.

Let Π be a Datalog∃,¬s,⊥ program. Π is called constant-join

if for every ρ ∈ ex(Π) and every variable ?V ∈ var(body(ρ))
that occurs more than once in body(ρ), it holds that ?V appears in
body+(ρ) at a position of nonaffected(ex(Π)).

Example 4. Consider the Datalog∃,¬s program Π:

p(?X, ?Y ), s(?Y, ?Z) → ∃?W t(?Y, ?X, ?W )

t(?X, ?Y, ?Z) → ∃?W p(?W, ?Z)

s(?X, ?Y ),¬r(?X),¬r(?Y ) → ∃?Z q(?X, ?Z).

Clearly, affected(Π) = {t[3], p[1], q[2], p[2], t[2]}. The first rule
is constant-join since at least one occurrence of the variable ?Y
appears at the non-affected position s[1]. The second rule is triv-
ially constant-join since each variable occurs in its body only once.
Finally, the third rule is constant-join since both ?X and ?Y oc-
cur in a positive atom at a non-affected position. Therefore, Π is a
constant-join program.

A Datalog∃,¬s,⊥ query (Π,Λ) is constant-join if the program
Π is constant-join. A modular Datalog∃,¬s,⊥ query [Q1, Q2] is
called constant-join if both Q1 and Q2 are constant-join. Finally, a
TriQ-Lite query is defined as a constant-join TriQ query. Then we
have that:

PROPOSITION 5. For every graph pattern P , both τU

dat(P ) and

τALL
dat (P ) are TriQ-Lite queries.

By combining Theorem 3 and Proposition 5, we immediately get
that:

COROLLARY 6. Every SPARQL query under the entailment re-

gime for OWL 2 QL can be expressed as a TriQ-Lite query.

After posing the constant-join condition on TriQ, we obtain a
language for which the query evaluation problem is tractable in data
complexity:

THEOREM 7. Query evaluation for TriQ-Lite is PTIME-

complete in data complexity.

Since every Datalog program is a weakly-guarded constant-join
Datalog∃,¬s,⊥ program, every Datalog query can be rewritten as
an equivalent TriQ-Lite query. This allows us to deduce the lower
bound in Theorem 7, as the query evaluation problem for Datalog
is PTIME-hard in data complexity (see, e.g., [14]). Thus, the rest of
this section is devoted to establish the membership of our problem
in PTIME.

The problem of checking whether a database D is inconsistent
w.r.t. a TriQ-Lite query M = [Q1, Q2] can be reduced to the query
evaluation problem for weakly-guarded constant-join Datalog∃,¬s.
To check whether D is inconsistent w.r.t. Q1 = (Π1,Λ1), we
first construct the weakly-guarded constant-join Datalog∃,¬s query
Q′

1 = (ex(Π),Λ∪Γ), where Γ contains an answer rule body(ν) →
pν() for each constraint ν in Π (notice that these constraints are the
only source of inconsistency). Then we check whether an atom
pν() belongs to ans(Q′

1, D), which implies that ν is violated and,
thus, D is inconsistent w.r.t.Q1. In the same way, we check whether
the instance ans(Q1, D) is inconsistent w.r.t. Q2.

Whenever the input database is inconsistent with the given query
M , we return the symbol ⊤. Otherwise, we continue by focusing
on the query obtained from M by eliminating the constraints. By
definition of the semantics of modular queries, to show that the
query evaluation problem for TriQ-Lite is in PTIME in data com-
plexity, it suffices to show that the same problem is in PTIME for
weakly-guarded constant-join Datalog∃,¬s. Thus, Theorem 7 fol-
lows from the following result.

PROPOSITION 8. The query evaluation problem for weakly-

guarded constant-join Datalog∃,¬s is in PTIME in data complexity.

The key idea underlying the proof of this proposition is to con-
struct a polynomial-time reduction, from the query evaluation prob-
lem for weakly-guarded constant-join Datalog∃,¬s to the query eval-
uation problem for linear Datalog∃. This reduction is computed in
two steps. In the first step, we eliminate the negation from the given
query (Π,Λ) to produce (Π+,Λ). More specifically, assume that
ρ ∈ Π and ?V is a variable occurring in an atom of body−(ρ).
Then ?V must occur in an atom of body+(ρ) and, therefore, ?V
must appear at a non-affected position due to the constant-join con-
dition. Hence, in the computation of the chase of a database D with
Π, every predicate in body−(ρ) can store only constants occurring
in D. Thus, given that Π is stratified, Π+ can be computed from
Π in a standard way, by replacing each negated atom ¬p(t) with a
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Figure 1: (a) The part of chase(D,Π) which entails a = t(a);
(b) The proof-tree for a = t(a) w.r.t. D and Π.

positive atom p̄(t), where the relation p̄ stores the complement of
p with respect to the ground chase (that is, the atoms of the chase
with only constants).

The second step is to convert each non-linear rule in Π+ into a
linear one. Assume that ρ ∈ Π and a is the weak-guard of ρ. Since
Π+ is both weakly-guarded and constant-join, if ρ is triggered dur-
ing the construction of the chase, then every atom in body(ρ)\{a}
is mapped only to the ground chase. Thus, to convert ρ into a lin-
ear rule, we just need to keep the rule h(a) → h(head(ρ)), for
every homomorphism h that maps the atoms in body(ρ) \ {a} to
the ground chase. Let us now give some more details regarding the
two steps just described.

6.1.1 From Weakly-guarded constant-join
Datalog∃,¬s to linear Datalog∃

It is clear that the ground part of the chase plays a central role in
our reduction. In what follows, we first explain how this part of the
chase is computed. Then we explain more formally how negation
can be eliminated, and how non-linear rules can be transformed
into linear ones.

Computing the ground chase. The ground chase of a data-
base D with a Datalog∃ program Π, denoted by chase↓(D,Π), is
defined as {a ∈ chase(D,Π) | dom(a) ⊂ U}. This instance is
constructible in polynomial time w.r.t. D when Π is constant-join
(recall that Π is assumed to be fixed). To prove this, it suffices to
show that the problem of deciding whether a ground atom a belongs
to chase(D,Π) is feasible in polynomial time w.r.t. D. We propose
a recursive alternating algorithm, called Proof , which solves the
above problem by constructing a proof-tree of a w.r.t. D and Π (if
it exists). Such a proof-tree is a tree-like representation of the part
of the chase on which a depends on. For example, if Π is

ρ1 : p(?X, ?Y ) → ∃?Z p(?Y, ?Z)
ρ2 : p(?X, ?Y ), p(?Y, ?Z) → ∃?W s(?X, ?W )
ρ3 : s(?X, ?Y ) → t(?X),

D = {p(a, b)} and a = t(a), then the part of the chase on which
a depends on is depicted in Figure 1(a), while a proof-tree for a
w.r.t. D and Π is shown in Figure 1(b).

Proof(a,D,Π) constructs a proof-tree (if it exists) by starting
from a and applying resolution steps until the database D is reached.
Whenever a rule ρ is used in a resolution step, the variables of
body(ρ) which are not in a join and do not appear in head(ρ) are
replaced by the special symbol ⋆, which plays the role of a witness
for them. It is clear that for such non-join variables, what is impor-
tant is not their actual value but the existence of a witness. Then
each atom of body(ρ) is considered as a new ground atom which

is proved recursively in a universal branch (recall that Proof is an
alternating algorithm). At each step of the computation of Proof
at most polynomially many constants of dom(D) must be remem-
bered. This can be achieved using logarithmically many bits on
|dom(D)|, and thus Proof needs logarithmic space w.r.t. D at each
step of its computation. Since ALOGSPACE = PTIME, we immedi-
ately get that our algorithm describes a polynomial time procedure
w.r.t. D, and the next crucial technical result follows:

LEMMA 9. Consider a database D and a constant-join

Datalog∃ program Π. Then, chase↓(D,Π) is constructible in

polynomial time w.r.t. D.

Consider a weakly-guarded constant-join Datalog∃,¬s query Q =
(Π,Λ) and a database D. Having Lemma 9 in place, we are now
ready to show how negation can be eliminated, and how non-linear
rules can be transformed into linear ones, in order to obtain a linear
Datalog∃ query QL = (ΠL,Λ) and a database DL ⊇ D such that
ans(Q,D) = ans(QL, DL).

Eliminating negation. Since Π is stratified, there is a stratifica-
tion σ : sch(Π) → {0, . . . , k}. Let Π0, . . ., Πk be the partition of
Π induced by σ. Then we denote by Π+

i (i ∈ [1, k]) the program
obtained from Πi by replacing each negative atom ¬p(t) with the
positive atom p̄(t). Let sch−(Πi) be the set of predicates occur-
ring in Πi in at least one negative atom. We inductively define D⋆

k

and Π⋆
k as: (1) D⋆

0 = D and Π⋆
0 = Π0; and (2) for each i ∈ [1, k],

D⋆
i = (D⋆

i−1 ∪ Ci−1), where Ci is the set:
{

p̄(u)

∣

∣

∣

∣

p ∈ sch−(Πi),u ∈ (dom(D))arity(p)

and p(u) 6∈ chase↓(D
⋆
i−1,Π

⋆
i−1)

}

,

and Π⋆
i = Π⋆

i−1 ∪ Π+
i . For each i ∈ [1, k], Π⋆

i−1 is constant-
join. Thus, we have by Lemma 9 that Ci−1 can be constructed
in polynomial time. Hence, D⋆

k and Π⋆
k are both constructible in

polynomial time w.r.t. D. Let DL = D⋆
k. It is easy to verify that

ans(Q,D) = ans((Π⋆
k,Λ), DL).

Constructing linear Datalog∃ program ΠL. Observe that Π⋆
k

can be partitioned into {Π1,Π2}, where Π1 consists of the lin-
ear rules of Π⋆

k and Π2 = Π⋆
k \ Π1. Clearly, Π2 is a weakly-

guarded constant-join Datalog∃ program. For a rule ρ ∈ Π2, let
guard(ρ) be the weak-guard of ρ, and side(ρ) be the set of atoms
(body(ρ) \ {guard(ρ)}). For each ρ ∈ Π2, let Hρ be the set of
substitutions {h | h : var(side(ρ)) → dom(D)}. Moreover, let Π′

2

be the program {h(guard(ρ)) → h(head(ρ)) | ρ ∈ Π2, h ∈ Hρ

and h(side(ρ)) ⊆ chase↓(D
⋆
k,Π

⋆
k)}. We have that ΠL = Π1 ∪

Π′
2 is a linear Datalog∃ program such that ans((Π⋆

k,Λ), DL) and
ans((ΠL,Λ), DL) coincide. Clearly, for each ρ ∈ Π2, |Hρ| = nk,
where n = |dom(D)| and k = |var(side(ρ))|, which implies that
Hρ can be constructed in polynomial time w.r.t. D. Hence, ΠL is
of polynomial size w.r.t. D, and it can be constructed in polynomial
time w.r.t. D by Lemma 9.

Having the above reduction in place, it is easy to see that query
evaluation for weakly-guarded constant-join Datalog∃,¬s is feasi-
ble in polynomial time in data complexity. At this point, it is impor-
tant to clarify that the linear Datalog∃ program ΠL is not fixed since
it depends on the database D. However, the problem of computing
ans((ΠL,Λ), DL) is feasible in polynomial time as Λ is fixed (this
is implicit in [18]), from which the desired upper bound follows.

7. PROGRAM EXPRESSIVE POWER
We have shown that TriQ-Lite is expressive enough to repre-

sent the OWL 2 entailment regime for the case of OWL 2 QL.
In fact, as shown in Section 5, given a graph pattern P and an
RDF graph G, the natural semantics JP KALL

G can be computed via



the TriQ-Lite query τALL
dat (P ) = [(τowl2ql, τALL

bgp (P )), (τopr(P ),
τout(P ))]. Importantly, the program τowl2ql does not depend on
P . In other words, given a new graph pattern P ′, we just need
to construct the programs τALL

bgp (P ′), τopr(P
′) and τout(P

′) with-

out altering τowl2ql to compute JP ′KALL
G . This is quite beneficial

in practice since, whenever the user wants to pose a new query
over an RDF graph, (s)he does not need to change the part of the
modular query which encodes the OWL 2 QL ontology. A natu-
ral question at this point is whether this favorable behavior can be
achieved if τowl2ql is replaced by a Datalog¬s,⊥ program, i.e., with-
out allowing existentially quantified variables in the heads of rules
in this program. In this section, we give a negative answer to this
question. Given a Datalog¬s,⊥ program Π, define τALL

dat,Π(P ) as the

query [(Π, τALL
bgp (P )), (τopr(P ), τout(P ))], i.e., the query obtained

by replacing τowl2ql in τALL
dat (P ) with Π. Then we can show that:

THEOREM 10. There exist an RDF graph G and a graph pat-

tern P such that, for every Datalog¬s,⊥ program Π, JP KALL
G 6=

J(τALL
dat,Π(P ), τdb(G))K.

Let us construct an RDF graph G and a graph pattern P satisfy-
ing the statement of Theorem 10. Consider the basic classes b1 and
b2, and the basic property p. Let O be the OWL 2 QL ontology
which encodes the following:

1. b1 is a sub-class of b2;
2. b2 is a sub-class of ∃p;
3. ∃p− is a sub-class of b2; and
4. the constant a belongs to b1.

Assume that G is the RDF graph which encodes the ontology O
according to the rules given in Section 5.2. Moreover, consider the
graph pattern P :

{(?X, p,B1), (B1, p, B2)} UNION

{(?X, p,B3), (B3, p, ?Y )}

where each Bi (1 ≤ i ≤ 3) is a blank node. Recall that τALL
dat (P ) is

the TriQ-Lite query [(τowl2ql, τ
ALL
bgp (P )), (τopr(P ), τout(P ))], while

τdb(G) is the instance associated to G. It is not difficult to verify

that the atom a = answer
{2}
P (a) belongs to ans(τALL

dat (P ), τdb(G)),
which in turn implies that µa,P ∈ J(τALL

dat (P ), τdb(G))K. However,
for every ab = answerP (a, b), where b ∈ U, it holds that ab 6∈
ans(τALL

dat (P ), τdb(G)), and thus µa
b
,P 6∈ J(τALL

dat (P ), τdb(G))K. But,

we can show that for every Datalog¬s,⊥ program Π, a belongs to
ans(τALL

dat,Π(P ), τdb(G)) if and only if there exists b ∈ U such that

ab ∈ ans(τALL
dat,Π(P ), τdb(G)). From the previous discussion, we

conclude that for every Datalog¬s,⊥ program Π, it must be the case
that J(τALL

dat (P ), τdb(G))K 6= J(τALL
dat,Π(P ), τdb(G))K. Theorem 10

follows since JP KALL
G = J(τALL

dat (P ), τdb(G))K.
This result is a strong sign that the existential quantification in

rule-heads allows us to obtain a modular query language which
is more powerful than Datalog¬s,⊥. In what follows, we give a
formal proof of this fact. However, before showing this for mod-
ular query languages, we would like to concentrate first on non-
modular query languages, and show that weakly-guarded constant-
join Datalog∃,¬s,⊥ is more expressive than Datalog¬s,⊥ – towards
this direction, we introduce the notion of program expressive power.
This is an interesting result on its own, stressing out the importance
of the existentially quantified variables in rule-heads even for non-
modular query languages. Henceforth, given a (modular) query
language L, a program that can appear in a (modular) query which
falls in L is called L-program.

Consider a query language L, and a program Π. The program
expressive power of Π relative to L, denoted by PepL[Π], is de-
fined as the set of triples (D,Λ, a) such that (Π,Λ) is a query in
L, and a ∈ ans((Π,Λ), D). Notice that if Π is not an L-program,
then PepL[Π] = ∅. In fact, PepL[Π] encodes the set of atoms that
can be inferred from a database D via a query Q in L, where Π is
the program of Q. It is now natural to define the program expres-
sive power of L as Pep[L] = {PepL[Π] | Π is an L-program}. In
other words, Pep[L] is a family of sets of triples, where each of its
members encodes the program expressive power of an L-program
relative to L. Given two languages L and L′, we write L′ �Pep L
if Pep[L′] ⊆ Pep[L]. Finally, we say that L is more expressive
than L′ w.r.t. the program expressive power, written as L′ ≺Pep L,
if L′ �Pep L and L 6�Pep L′. By exploiting the construction given
in the proof of Theorem 10, we can show the following result:

THEOREM 11. It holds that,

Datalog
¬s,⊥ ≺Pep Weakly-guarded constant-join Datalog

∃,¬s,⊥
.

Notice that the same result can be shown for other Datalog-based
languages such as guarded Datalog∃,¬s,⊥ [9]. Let us now focus on
modular query languages. Before we formally state the desired re-
sult, we first need to adapt the notion of program expressive power
for modular query languages; this will give rise to the notion of
modular program expressive power.

Consider a modular query language L, a query language L′ and
a program Π. The modular program expressive power of Π rela-
tive to L and L′, denoted by MPepL,L′ [Π], is defined as the set
of 4-tuples (D,Λ, Q, a) such that M = [(Π,Λ), Q] is a mod-
ular query in L, Q is in L′, and a ∈ ans(M,D). Notice that
if Π is not an L-program, then MPepL,L′ [Π] = ∅. Intuitively,
MPepL,L′ [Π] encodes the set of atoms that can be inferred from
a database D via a modular query [Q1, Q2] in L, where Π is the
program of Q1 and Q2 is a query in L′. We now define the modu-
lar program expressive power of L relative to L′ as MPepL′ [L] =
{MPepL,L′ [Π] | Π is an L-program}. In other words, MPepL′ [L]
is a family of sets of 4-tuples, where each of its members encodes
the modular program expressive power of an L-program relative
to L and L′. Given two modular query languages L and L′, we
write L′ �MPep L if MPepL∩L′ [L′] ⊆ MPepL∩L′ [L]2. Finally,
we say that L is more expressive than L′ w.r.t. the modular pro-
gram expressive power, written as L′ ≺MPep L, if L′ �MPep L and
L 6�MPep L′. As for Theorem 11, by exploiting the construction
given in the proof of Theorem 10, we obtain that:

THEOREM 12. Modular Datalog¬s,⊥ ≺MPep TriQ-Lite.

Notice that modular Datalog¬s,⊥ and Datalog¬s,⊥ are equally
expressive in the classical sense. However, we need to use modular
Datalog¬s,⊥ in the statement of Theorem 12 as we are comparing
modular program expressive powers in this theorem.

Several query languages that enhance SPARQL with navigation
capabilities and/or recursion mechanisms have been proposed, most
notably nSPARQL [27], PSPARQL [2], recursive triple algebra [23],
and NEMODEQ [30]. Each one of these languages L is contained
in Datalog¬s,⊥, in the sense that every L-query can be expressed
as a Datalog¬s,⊥ query. Therefore, we can consider the Datalog
version Ldat of L, and then we can use Ldat (resp., modular Ldat)
in order to compare the program expressive power (resp., modular
program expressive power) of L and weakly-guarded constant-join
Datalog∃,¬s,⊥ (resp., TriQ-Lite); notice that modular Ldat is as
expressive as Ldat in the usual sense. Then, from Theorems 11
and 12 we obtain the following result:

2Notice that we also use L∩L′ as a (non-modular) query language.



COROLLARY 13. Assume that L is one of the query languages

nSPARQL, PSPARQL, recursive triple algebra and NEMODEQ.

Then, the following hold:

1. Ldat ≺Pep Weakly-guarded constant-join Datalog∃,¬s,⊥;

2. Modular Ldat ≺MPep TriQ-Lite.

8. CONCLUSIONS
We considered the problem of bridging the gap between the ex-

isting RDF query languages and key features for querying RDF
data such as reasoning capabilities, navigational capabilities, and a
general form of recursion. A modular query language has been pro-
posed which is expressive enough to encode every SPARQL query
under the entailment regime for OWL 2 QL. Moreover, this lan-
guage allows us to formulate SPARQL queries in a simpler way,
as it can easily encode a more natural notion of entailment. Inter-
estingly, the proposed language incorporates the main RDF query
languages that can be found in the literature.
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