
Querying Semantic Web Data with SPARQL

Marcelo Arenas
Department of Computer Science

PUC Chile
marenas@ing.puc.cl

Jorge Pérez
Department of Computer Science

Universidad de Chile
jperez@dcc.uchile.cl

ABSTRACT

The Semantic Web is the initiative of the W3C to make infor-

mation on the Web readable not only by humans but also by

machines. RDF is the data model for Semantic Web data, and

SPARQL is the standard query language for this data model.

In the last ten years, we have witnessed a constant growth in the

amount of RDF data available on the Web, which have motivated

the theoretical study of some fundamental aspects of SPARQL

and the development of efficient mechanisms for implementing

this query language.

Some of the distinctive features of RDF have made the study

and implementation of SPARQL challenging. First, as opposed to

usual database applications, the semantics of RDF is open world,

making RDF databases inherently incomplete. Thus, one usually

obtains partial answers when querying RDF with SPARQL, and

the possibility of adding optional information if present is a cru-

cial feature of SPARQL. Second, RDF databases have a graph

structure and are interlinked, thus making graph navigational ca-

pabilities a necessary component of SPARQL. Last, but not least,

SPARQL has to work at Web scale!

RDF and SPARQL have attracted interest from the database

community. However, we think that this community has much

more to say about these technologies, and, in particular, about

the fundamental database problems that need to be solved in

order to provide solid foundations for the development of these

technologies. In this paper, we survey some of the main results

about the theory of RDF and SPARQL putting emphasis on some

research opportunities for the database community.

Categories and Subject Descriptors
H.2.3 [Database Management]: Query languages

General Terms
Algorithms, Theory

Keywords

SPARQL, RDF, RDFS, Semantic Web, Linked Data

1. INTRODUCTION
The Resource Description Framework (RDF) [26] is a data
model for representing information about World Wide Web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’11, June 13–15, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0660-7/11/06 ...$10.00.

resources. Jointly with its release in 1998 as Recommen-
dation of the W3C, the natural problem of querying RDF
data was raised. Since then, several designs and implemen-
tations of RDF query languages have been proposed. In
2004, the RDF Data Access Working Group, part of the
W3C Semantic Web Activity, released a first public work-
ing draft of a query language for RDF, called SPARQL [37].
Since then, SPARQL has been rapidly adopted as the stan-
dard for querying Semantic Web data. In January 2008,
SPARQL became a W3C Recommendation.

In the last ten years, we have witnessed a constant growth
in the amount of RDF data available on the Web, which has
motivated the theoretical study of some fundamental aspects
of SPARQL, and the development of efficient mechanisms for
implementing this query language. RDF and SPARQL have
attracted interest from the database community. However,
we think that this community has much more to say about
these technologies, and, in particular, about the fundamen-
tal database problems that need to be solved in order to
provide solid foundations for their development.

This paper is a compendium of the material to be pre-
sented in a tutorial about RDF and SPARQL, targeted to
database researchers that are new to Semantic Web data
management. Next, we briefly discuss the topics to be cov-
ered in this paper, putting an emphasis on the distinctive
features that make the problem of querying Semantic Web
data challenging.

RDF and SPARQL: An atomic piece of data in RDF
is a Uniform Resource Identifier (URI), which is syntac-
tically similar to a URL but identifies an abstract re-
source (which can be, literally, anything). For example,
http://dbpedia.org/resource/Ronald_Fagin is the URI used
by DBpedia (the Semantic Web version of Wikipedia [13])
to identify Ronald Fagin. In the RDF data model, URIs are
organized in the form of so called RDF graphs, which are
labeled directed graphs, where node labels and edge labels
are URIs. Formally, an RDF graph is a finite set of triples
of the form (subject, predicate, object). Figure 1 shows an ex-
ample of an RDF graph that stores data from DBpedia [13]
and an RDF representation of DBLP [24]. Shorthands for
URIs prefixes are usually defined to avoid overcrowding RDF
specifications and queries. In Figure 1, prefixes are shown at
the top of the figure. For example, the following is a triple
in the RDF graph in Figure 1:

(inPods:FaginLN01, dct:isPartOf, inPods:2001)

SPARQL is essentially a graph-matching query language.
A SPARQL query is composed of: (1) a body, which is a

305

rdfs:subClassOf

inPods:FaginLN01 :Moni_Naor

:Amnon_Lotem

:Ronald_Fagin

inPods:2001

"Optimal Aggregation ..."

dbpedia:Ronald_Fagin dbpedia:Oklahoma

inPods:2010 dct:isPartOf

dct:
isPa

rtOf

yago:ResearchWorker

dct:isPartOf

dc:title

foaf:homepage
<http://www.almaden...>

owl
:sa

meA
s

dbo:birthPlace

"Ronald Fagin"

foaf:name

dbo:nationality
dbpedia:United_States

dbo
:kn

own
For

dbpedia:Fagin’s_theorem

rdf:type

rdfs:subClassOf
yago:DatabaseResearchers yago:Scientist

.

.

.conf:pods

.

.

.

sw:series

sw:series foaf:homepage
<http://www.wisdom...>

foaf:name "Amnon_Lotem".
.
.

.

.

.

.

.

.conf:podc

conf:popl

dc:creator
dc:creator

dc:
cre

ato
r

DBpedia

DBLP

<http://dbpedia.org/ontology/>
owl: <http://www.w3.org/2002/07/owl#>

foaf: <http://xmlns/foaf/0.1/>
rdfs: <http://www.w3.org/2000/01/rdf-schema#>

yago: <http://dbpedia.org/class/yago>

<http://dblp.l3s.de/d2r/resource/publications/conf/pods/>

: <http://dblp.l3s.de/d2r/resource/authors/>

sw: <http://swrc.ontoware.org/ontology#>

dbpedia: <http://dbpedia.org/resource/>
dct: <http://purl.org/dc/terms/>
dc: <http://purl.org/dc/elements/1.1/>

conf: <http://dblp.l3s.de/d2r/resource/conferences/>
rdf:

inPods:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

dbo:

Figure 1: An RDF graph storing DBLP and DBpedia information.

complex RDF graph pattern-matching expression, and (2) a
head, which is an expression that indicates how to construct
the answer to the query. The following is an example of a
simple SPARQL query that retrieves the authors that have
published in PODS and were born in Oklahoma (prefixes are
the same as in Figure 1). The body of the query is just a set
of triples with variables, which are prefixed by the symbol ?,
and the head is a projection (via a SELECT operator):

SELECT ?Author
WHERE {

?Paper dc:creator ?Author .
?Paper dct:isPartOf ?InPods .
?InPods sw:series conf:pods .
?DbpPerson owl:sameAs ?Author .
?DbpPerson dbo:birthPlace dbpedia:Oklahoma . }

The evaluation of a query as the one shown above is done in
two steps. First, values are given to variables in such a way
that the triples in the body of the query match the triples
in the queried graph. Second, the values assigned to the
variables are processed to construct the answer. In this case,
some variables are projected out to keep only the authors.
According to the RDF graph in Figure 1, :Ronald_Fagin is an
answer to this query. SPARQL also considers the possibility
of adding optional information. For example, the following
query retrieves the authors that have published in PODS,
and their Web Pages if this information is available:

SELECT ?Author ?WebPage
WHERE {

?Paper dc:creator ?Author .
?Paper dct:isPartOf ?InPods .
?InPods sw:series conf:pods .
OPTIONAL { ?Author foaf:homePage ?WebPage . } }

In our example graph, the answer to the query is:

?Author ?WebPage

:Ronald_Fagin <http://www.almaden...>
:Moni_Naor <http://www.wisdom...>
:Amnon_Lotem

Notice that ?WebPAge is unbounded in the last answer. One
distinctive feature of SPARQL is that one naturally obtains
partial answers to queries. With SPARQL one can also make
queries with complex join sequences. For example, the fol-

lowing query retrieves the authors that have published in
PODS, PODC, and POPL conferences.1

SELECT ?Author
WHERE {

?Paper1 dc:creator ?Author .
?Paper1 dct:isPartOf ?InPods .
?InPods sw:series conf:pods .

?Paper2 dc:creator ?Author .
?Paper2 dct:isPartOf ?InPodc .
?InPodc sw:series conf:podc .

?Paper3 dc:creator ?Author .
?Paper3 dct:isPartOf ?InPopl .
?InPopl sw:series conf:popl . }

In Section 2, we give a formalization of RDF and SPARQL
that follows the approach proposed in [32, 33], and we present
some results regarding the complexity of evaluating SPARQL
queries. In Section 3, we study the expressiveness of SPARQL
and, in particular, we put forward the question of whether
SPARQL is the right query language for RDF data. As op-
posed to the usual database applications, the semantics of
RDF is open world, making RDF databases inherently in-
complete. Nevertheless, SPARQL has adopted a semantics
based on a closed world assumption. Thus, we explore in
Section 3 the relationship between the open nature of RDF
data and the closed-world semantics underlying SPARQL.

Vocabulary with predefined semantics: One of the dis-
tinctive features of the Semantic Web data is the existence
of vocabularies with predefined semantics: the RDF Schema
(RDFS [12]) and the Ontology Web Language (OWL [31]).
Both languages can be used to derive logical conclusions
from RDF graphs. For example, we have used some RDFS
and OWL special URIs in Figure 1 2: rdf:type to denote that
Ronald Fagin is a Database Researcher, and rdfs:subClassOf

to denote that the class of Database Researchers is a subclass
of Research Worker, which in turn is a subclass of Scientist.
The RDFS semantics allows one to conclude from these ex-
plicit data that Ronald Fagin is a Scientist. Notice that we

1
In fact, one can execute this query against real DBLP data at

http://dblp.l3s.de/d2r/, and obtain 17 authors (among them, Philip
Bernstein, Jeffrey Ullman, and Moshe Vardi).
2
Under the prefixes rdf:, rdfs: and owl:.

306

have also used owl:sameAs to indicate that the URIs used by
DBpedia and DBLP to represent Ronald Fagin denote the
same resource. Consider now the following SPARQL query:

SELECT ?Author
WHERE {

?Author rdf:type yago:Scientist .
?Author dbo:birthPlace dbpedia:Oklahoma .
?Paper dc:creator ?Author .
?Paper dct:isPartOf ?InPods .
?InPods sw:series conf:pods . }

This query intuitively asks for scientists that were born in
Oklahoma and that have published in PODS. When match-
ing the body of the above query against the graph in Fig-
ure 1, one obtains no valid binding of the variables. In fact,
there is no triple in the graph with rdf:type as predicate and
yago:Scientist as object, thus no URI assigned to variable
?Author could make the first triple in the query to match
the graph. Nevertheless, if one considers the predefined se-
mantics of RDFS and OWL (in particular, the semantics
of rdf:type, rdfs:subClassOf, and owl:sameAs), then one ob-
tains :Ronald_Fagin as an answer to the query. Evaluating
queries considering the semantics of RDFS and OWL is chal-
lenging, and there is not yet consensus in the Semantic Web
community on how to deal with this problem [39, 37, 35,
17]. In Section 5, we present a simple approach for querying
RDFS data that was proposed in [18, 29, 34]. Dealing with
queries that consider the OWL semantics is a very interest-
ing topic of research [39, 17, 25], but it is out of the scope
of this paper.

Navigating RDF graphs: As with any data model, a
natural question is what are the desired features for an
RDF query language. Among the multiple design issues to
be considered, it has been largely recognized that naviga-
tional capabilities are of fundamental importance for data
models with an explicit tree or graph structure (like XML
and RDF). However, SPARQL only provides limited navi-
gational functionalities, as recognized by the W3C and the
working group behind the upcoming specification of SPARQL
(SPARQL 1.1 [19]). In Section 5.2, we introduce the notion
of nested regular expression, which was proposed in [34] as
a language to specify how to navigate RDF data. Inter-
estingly, these expressions allows one to pose many natu-
ral queries, which do not seem to be expressible even in
classical path languages such as Conjunctive Regular Path
Queries (CRPQs) [10, 14] or the recently proposed language
of Extended CRPQs [5]. For example, there exists a nested
regular expression that can retrieve from the graph in Fig-
ure 1 the complete network of co-authorship of PODS pa-
pers: the expression retrieves all the pairs (a1, an) of authors
for which there exists a list of authors a2, . . . , an−1 such that
ai is a co-author of ai+1 (1 ≤ i < n) in a PODS paper (see
Example 5.1 for details). Another interesting property of
nested regular expressions is that they can be used to an-
swer queries considering the semantics of RDFS by directly
traversing the input graph. In fact, this was the motiva-
tion in [34] to propose nested regular expressions. We also
discuss this issue in Sections 5.2 and 5.3, and present the
language nSPARQL [34] which is obtained from SPARQL
by including nested regular expressions.

Linked Data: Most of the research on RDF and SPARQL
assumes a classical database perspective in which the RDF
data reside in a single repository to which queries have full
access. This assumption is becoming outdated with the ad-
vent of the Web of Linked Data [8]. The Web of Linked Data

is the materialization of a set of principles for publishing Se-
mantic Web data [6]. Essentially, these principles state that
each piece of data should be published as a Web-accessible
URI in such a way that when this URI is accessed by some
application, an RDF specification describing the URI should
be provided, which in turn should point to other accessible
URIs. URIs satisfying this principle are called dereference-
able. For example,

http://dblp.l3s.de/d2r/resource/publications/conf/pods/FaginLN01

is a dereferenceable URI currently published (April 2011)
as Linked Data. In fact, its description contains the links
inside the dashed area in Figure 1.

Linked Data poses many interesting research questions.
In particular, there is still plenty of room for research on
the foundations of querying Linked Data, although some
progress has been made in the area [20, 21, 9]. One partic-
ular open issue is the definition of the right querying model
for this highly distributed scenario, as it is not clear whether
SPARQL can deal with the features of Linked Data. Scala-
bility issues are also an imperative topic of research in this
context. As of May 2009, the Web of Linked Data was es-
timated to contain more than 4.7 billion RDF triples inter-
linked by approximately 142 million RDF links [8]. Today,
just the DBpedia project [13] describe more than 3.5 million
things (URIs), which descriptions sum-up to more than 600
million RDF triples containing 6.5 millions of links to other
RDF stores. In Section 6, we briefly describe Linked Data
and some of the research opportunities in this area.

Most of the material of this paper is the result of a fruitful
collaboration with our co-authors Claudio Gutierrez, Carlos
Hurtado, Alberto Mendelzon, and Sergio Muñoz. We also
want to thank Juan Sequeda for many insightful discussions
about Linked Data. Arenas was supported by FONDECYT
grant 1090565.

2. RDF AND SPARQL
The RDF specification considers two types of values: re-

source identifiers (in the form of URIs [7]) to denote Web
resources, and literals to denote values such as natural num-
bers, Booleans, and strings. In this paper, we use U to de-
note the set of all URIs and L to denote the set of all literals,
and we assume that these two sets are disjoint. RDF con-
siders also a special type of objects to describe anonymous
resources, called blank nodes in the RDF data model. Es-
sentially, blank nodes are existentially quantified variables
that can be used to make statements about unknown (but
existent) resources. In this paper, we do not consider blank
nodes, that is, we focus on what are called ground RDF
graphs. Formally, an RDF triple is a tuple:

(s, p, o) ∈ U × U × (U ∪ L),

where s is the subject, p the predicate and o the object. An
RDF graph is a finite set of RDF triples.

Figure 1 shows an example of an RDF graph with data
from DBpedia [13] and the RDF version of DBLP [24]. For
example, the graph states that Ronald Fagin is the author
of a paper with title “Optimal Aggregation Algorithms for
Middleware” by using the triples:

(inPods:FaginLN01, dc:creator, :Ronald_Fagin)
(inPods:FaginLN01, dc:title, "Optimal Aggregation ...")

307

For simplicity, and when there is no ambiguity, we will omit
the prefixes in URIs, and thus, we denote the last two triples
simply as:

(FaginLN01, creator, Ronald Fagin)
(FaginLN01, title, “Optimal Aggregation . . . ”)

Jointly with the release of RDF in 1999 as Recommendation
of the W3C, the natural problem of querying RDF data
was raised. Since then, several designs and implementa-
tions of RDF query languages have been proposed [15]. In
2004, the RDF Data Access Working Group released a first
public working draft of a query language for RDF, called
SPARQL [37]. Currently, SPARQL is a W3C recommen-
dation, and has become the standard language for querying
RDF data. In this section, we give an algebraic formaliza-
tion of the core fragment of SPARQL. Following [32, 33],
we focus on the body of SPARQL queries, i.e., in its graph
pattern matching facility.

2.1 Syntax of SPARQL graph patterns
The official syntax of SPARQL [37] considers operators

OPTIONAL, UNION, and FILTER, and concatenation via a point
symbol (.), to construct graph pattern expressions. The
syntax also considers { } to group patterns, and some im-
plicit rules of precedence and association. For example,
the point symbol (.) has precedence over OPTIONAL, and
OPTIONAL is left associative. In order to avoid ambiguities in
the parsing, we present the syntax of SPARQL graph pat-
terns in a more traditional algebraic formalism following [32,
33]. More specifically, we use binary operators AND (.),
UNION (UNION), OPT (OPTIONAL), and FILTER (FILTER),
and we fully parenthesize expressions making explicit the
precedence and association of operators.

Let V be an infinite set of variables disjoint from U and
L. In this paper, we assume that the elements from V are
prefixed by the symbol ?. Then SPARQL graph patterns
are recursively defined as follows:

1. A tuple from (U ∪ V) × (U ∪ V) × (U ∪ L ∪ V) is a
graph pattern (a triple pattern).

2. If P1 and P2 are graph patterns, then the expressions
(P1 AND P2), (P1 OPT P2), and (P1 UNION P2) are
graph patterns.

3. If P is a graph pattern and R is a SPARQL built-
in condition, then the expression (P FILTER R) is a
graph pattern.

A SPARQL built-in condition is a Boolean combination of
terms constructed by using equality (=) among elements in
(U∪L∪V), and the unary predicate bound over variables.
Formally,

• if ?X, ?Y ∈ V and c ∈ (U ∪ L), then bound(?X),
?X = c and ?X =?Y are built-in conditions; and

• if R1 and R2 are built-in conditions, then (¬R1), (R1∨
R2) and (R1 ∧ R2) are built-in conditions.

Example 2.1. The following is a SPARQL graph pattern

``

(?P, creator, ?A) AND (?A, name, ?N)
´

FILTER (?N =“Ronald Fagin”)
´

. (1)

Intuitively, it retrieves the papers of an author with name
“Ronald Fagin”.

Given a graph pattern P , we denote by var(P) the set of
variables occurring in P . In particular, if t is a triple pat-
tern, then var(t) denotes the set of variables occurring in
the components of t. Similarly, for a built-in condition R,
we use var(R) to denote the set of variables occurring in R.

2.2 Semantics of SPARQL graph patterns
To define the semantics of SPARQL graph pattern expres-

sions, we need to introduce some terminology from [32, 33].
A mapping µ is a partial function µ : V → (U∪L). Abusing
notation, for a triple pattern t such that var(t) ⊆ dom(µ), we
denote by µ(t) the triple obtained by replacing the variables
in t according to µ. The domain of µ, denoted by dom(µ),
is the subset of V where µ is defined. Two mappings µ1 and
µ2 are compatible when for all ?X ∈ dom(µ1) ∩ dom(µ2),
it is the case that µ1(?X) = µ2(?X), i.e. when µ1 ∪ µ2 is
also a mapping. Intuitively, µ1 and µ2 are compatibles if
µ1 can be extended with µ2 to obtain a new mapping, and
vice versa. Note that two mappings with disjoint domains
are always compatible, and that the empty mapping µ∅ (i.e.
the mapping with empty domain) is compatible with any
other mapping.

Let Ω1 and Ω2 be sets of mappings. We define the join of,
the union of and the difference between Ω1 and Ω2 as:

Ω1 1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and

µ1, µ2 are compatible mappings},

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | for all µ′ ∈ Ω2,

µ and µ′ are not compatible}.

Moreover, we define the left outer-join as:

Ω1 Ω2 = (Ω1 1 Ω2) ∪ (Ω1 r Ω2).

Intuitively, Ω1 1 Ω2 is the set of mappings that result from
extending mappings in Ω1 with their compatible mappings
in Ω2, and Ω1 r Ω2 is the set of mappings in Ω1 that cannot
be extended with any mapping in Ω2. The operation Ω1 ∪
Ω2 is the usual set theoretical union. A mapping µ is in
Ω1 Ω2 if it is the extension of a mapping of Ω1 with a
compatible mapping of Ω2, or if it belongs to Ω1 and cannot
be extended with any mapping of Ω2. These operations
resemble relational algebra operations over sets of mappings
(partial functions).

We are now ready to define the semantics of graph pattern
expressions as a function J · KG which takes a graph pattern
expression and returns a set of mappings. For the sake of
readability, the semantics of filter expressions is presented
in a separate definition.

Definition 2.2 ([32, 33]) The evaluation of a graph pat-
tern P over an RDF graph G, denoted by JP KG, is defined
recursively as follows:

1. if P is a triple pattern t, then JP KG = {µ | dom(µ) =
var(t) and µ(t) ∈ G}.

2. if P is (P1 AND P2), then JP KG = JP1KG 1 JP2KG.

3. if P is (P1 OPT P2), then JP KG = JP1KG JP2KG.

4. if P is (P1 UNION P2), then JP KG = JP1KG ∪ JP2KG.

The idea behind the OPT operator is to allow for optional
matching of graph patterns. Consider graph pattern ex-
pression (P1 OPT P2) and let µ1 be a mapping in JP1KG.

308

If there exists a mapping µ2 ∈ JP2KG such that µ1 and µ2

are compatible, then µ1 ∪ µ2 belongs to J(P1 OPT P2)KG.
But if no such a mapping µ2 exists, then µ1 belongs to
J(P1 OPT P2)KG. Thus, operator OPT allows information
to be added to a mapping µ if the information is available,
instead of just rejecting µ whenever some part of the pat-
tern does not match. This feature of optional matching is
crucial in Semantic Web applications, and more specifically
in RDF data management, where it is assumed that every
application have only partial knowledge about the resources
being managed.

It is evident from the definitions of the operators AND
and UNION that these two operators are associative and
commutative, thus permitting us to avoid parenthesis when
writing sequences of either AND operators or UNION opera-
tors. In the following sections, we show some other algebraic
properties of graph patterns.

The semantics of filter expressions is defined as follows.
Given a mapping µ and a built-in condition R, we say that
µ satisfies R, denoted by µ |= R, if (omitting the usual rules
for boolean connectives): (1) R is bound(?X) and ?X ∈
dom(µ); (2) R is ?X = c, ?X ∈ dom(µ) and µ(?X) = c;
and (3) R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and
µ(?X) = µ(?Y). Then we have that:

Definition 2.3 ([32, 33]) Given an RDF graph G and a
filter expression (P FILTER R),

J(P FILTER R)KG = {µ ∈ JP KG | µ |= R}.

From now on, we usually represent sets of mappings as tables
where each row represents a mapping in the set. We label
every row with the name of a mapping, and every column
with the name of a variable. If a mapping is not defined for
some variable, then we simply leave empty the corresponding
position. For instance, the table

?X ?Y ?Z
µ1 : a b
µ2 : c

represents the set Ω = {µ1, µ2} where (1) dom(µ1) = {?X,
?Y }, µ1(?X) = a, and µ1(?Y) = b, and (2) dom(µ2) = {?Y }
and µ2(?Y) = c. Sometimes we also use notation {{?X →
a, ?Y → b}, {?Y → c}} for the above set of mappings.

Example 2.4. The following are examples of SPARQL
graph patterns and their evaluations over the RDF graph in
Figure 1.

P1 =
`

(FaginLN01, creator, ?A) AND (?A, name, ?N)
´

?A ?N
Ronald Fagin “Ronald Fagin”
Amnon Lotem “Amnon Lotem”

P2 =
ˆ`

(FaginLN01, creator, ?A) OPT (?A, name, ?N)
´

OPT (?A, homePage, ?H)
˜

?A ?N ?H
Ronald Fagin “Ronald Fagin” http://www.almaden...
Amnon Lotem “Amnon Lotem”

Moni Naor http://www.wisdom...

P3 =
ˆ

(FaginLN01, creator, ?A) OPT
`

(?A, name, ?N) OPT (?A, homePage, ?H)
´˜

?A ?N ?H
Ronald Fagin “Ronald Fagin” http://www.almaden...
Amnon Lotem “Amnon Lotem”

Moni Naor

2.3 The complexity of evaluating SPARQL
A fundamental issue in every query language is the com-

plexity of query evaluation and, in particular, what is the
influence of each component of the language in this complex-
ity. In this section, we present a survey of the results on the
complexity of the evaluation of SPARQL graph patterns. In
this study, we consider several fragments of SPARQL built
incrementally, and present complexity results for each such
fragment. Among other results, we show that the complexity
of the evaluation problem for general SPARQL graph pat-
terns is PSPACE-complete [32], and that this high complex-
ity is obtained as a consequence of unlimited use of nested
optional parts.

As is customary when studying the complexity of the eval-
uation problem for a query language [40], we consider its
associated decision problem. We denote this problem by
Evaluation and we define it as follows:

Input : An RDF graph G, a graph pattern P
and a mapping µ.

Question : Does µ ∈ JP KG?

Notice that the pattern and the graph are both input for
Evaluation. Thus, we study the combined complexity of
the query language [40].

We start this study by considering the fragment consist-
ing of graph pattern expressions constructed by using only
the operators AND and FILTER. In what follows, we call
AND-FILTER to this fragment 3. This simple fragment is
interesting as it does not use the two most complicated oper-
ators in SPARQL, namely UNION and OPT. Given an RDF
graph G, a graph pattern P in this fragment and a mapping
µ, it is possible to efficiently check whether µ ∈ JP KG by us-
ing the following simple algorithm [32]. First, for each triple
t in P , verify whether µ(t) ∈ G. If this is not the case, then
return false. Otherwise, by using a bottom-up approach,
verify whether the expression generated by instantiating the
variables in P according to µ satisfies the FILTER condi-
tions in P . If this is the case, then return true, else return
false.

Theorem 2.5 ([32, 33]) Evaluation can be solved in time
O(|P | · |G|) for the AND-FILTER fragment of SPARQL.

We continue this study by adding the UNION operator to
the AND-FILTER fragment. It is important to notice that
the inclusion of UNION in SPARQL was one of the most
controversial issues in the definition of this language. The
following theorem shows that the inclusion of this opera-
tor makes the evaluation problem for SPARQL considerably
harder.

Theorem 2.6 ([32, 33]) Evaluation is NP-complete for
the AND-FILTER-UNION fragment of SPARQL.

In [38], the authors strengthen the above result by showing
that the complexity of evaluating graph pattern expressions

3We use a similar notation for other combinations of SPARQL
operators. For example, the AND-FILTER-UNION fragment of
SPARQL is the fragment consisting of all the graph patterns con-
structed by using only the operators AND, FILTER and UNION.

309

constructed by using only AND and UNION operators is
already NP-hard. Thus, we have the following result.

Theorem 2.7 ([38]) Evaluation is NP-complete for the
AND-UNION fragment of SPARQL.

We now consider the OPT operator. The following theorem
proved in [32] shows that when considering all the operators
in SPARQL graph patterns, the evaluation problem becomes
considerably harder.

Theorem 2.8 ([32, 33]) Evaluation is Pspace-complete.

To prove the Pspace-hardness of Evaluation, the authors
show in [33] how to reduce in polynomial time the quantified
boolean formula problem (QBF) to Evaluation. An in-
stance of QBF is a quantified propositional formula ϕ of the
form ∀x1∃y1∀x2∃y2 · · · ∀xm∃ym ψ, where ψ is a quantifier-
free formula of the form C1 ∧ · · · ∧ Cn, with each Ci (i ∈
{1, . . . , n}) being a disjunction of literals, that is, a dis-
junction of propositional variables xi and yj , and negations
of propositional variables. Then the problem is to verify
whether ϕ is valid. It is known that QBF is Pspace-complete
[16]. In the encoding presented in [33], the authors use a
fixed RDF graph G and a fixed mapping µ. Then they en-
code formula ϕ with a pattern Pϕ that uses nested OPT
operators to encode the quantifier alternation of ϕ, and a
graph pattern without OPT to encode the satisfiability of
formula ψ. By using a similar idea, it is shown in [38] how
to encode formulas ϕ and ψ by using only the OPT operator,
thus strengthening Theorem 2.8.

Theorem 2.9 ([38]) Evaluation is Pspace-complete even
for the OPT fragment of SPARQL.

When verifying whether µ ∈ JP KG, it is natural to assume
that the size of P is considerably smaller than the size of
G. This assumption is very common when studying the
complexity of a query language. In fact, it is named data
complexity in the database literature [40], and it is defined as
the complexity of the evaluation problem for a fixed query.
More precisely, for the case of SPARQL, given a graph pat-
tern expression P , the evaluation problem for P , denoted
by Evaluation(P), has as input an RDF graph G and a
mapping µ, and the problem is to verify whether µ ∈ JP KG.

Theorem 2.10 ([33]) Evaluation(P) is in Logspace for
every SPARQL graph pattern expression P .

3. IS SPARQL THE RIGHT QUERY LAN-

GUAGE FOR RDF?
As we pointed out in the introduction, one of the distinc-

tive features of RDF is the fact that its semantics is open
world, making RDF databases inherently incomplete. More
precisely, if we are given an RDF graph G, we know that all
the tuples in G hold, but we have no information about the
tuples that are not included in this graph. This gives rise to
the following notion of interpretation of an RDF graph G: If
H is an RDF graph such that G ⊆ H, then H is a possible
interpretation of G as all the tuples in G also hold in H.

The open nature of RDF leads to an infinite number of
possible interpretations for each RDF graph. However, the
semantics of SPARQL proposed by the W3C [37, 32, 33],
which is presented in Section 2, does not take into consid-
eration these possible interpretations. Thus, it is natural
to ask whether the semantics of SPARQL is appropriate for

the open-world semantics of RDF. In this section, we provide
both positive and negative answers to this question, depend-
ing on what SPARQL operators are considered. In particu-
lar, we show in Section 3.1 that the semantics of SPARQL
is appropriate for the open-world semantics of RDF if the
OPT operator is not considered, and we show in Section 3.2
that the situation is completely different if OPT is used.

3.1 A positive answer: SPARQL without the
OPT operator

As we mentioned above, the open nature of an RDF graph
G leads to an infinite number of possible interpretations
of G, which immediately raises the question of how a query
can be answered over such a graph. The standard way to
deal with this problem is to consider the answers to a query
that hold in every such interpretation. Formally, given an
RDF graph G and a SPARQL graph pattern P , define the
set of certain answers of P over G as follows:

CertainAnswers(P, G) =
\

H : G⊆H

JP KH .

According to the semantics of SPARQL defined by the W3C
[37, 32, 33], the answer to a query over an RDF graph G
should be computed by considering only the triples in G
(without taking into account the possible interpretations
of G). Thus, it is natural to ask what is the relationship
of this semantics with the certain answers semantics defined
above. Next we show that these two semantics coincide for
the AND-FILTER-UNION fragment of SPARQL.

In order to prove the equivalence of the two semantics,
we first provide a simple characterization of the notion of
certain answers in terms of the notion of monotonicity of a
query language. Following the usual database terminology,
a SPARQL graph pattern P is said to be monotone if for
every pair G1, G2 of RDF graphs such that G1 ⊆ G2, it
holds that JP KG1

⊆ JP KG2
. Then we have that:

Proposition 3.1 A SPARQL graph pattern P is monotone
if and only if JP KG = CertainAnswers(P, G) for every
RDF graph G.

It is straightforward to prove that every graph pattern in the
AND-FILTER-UNION fragment of SPARQL is monotone.

Lemma 3.2 Every graph pattern P in the AND-UNION-
FILTER fragment of SPARQL is monotone.

Thus, as a corollary of Proposition 3.1 and Lemma 3.2, we
obtain the following result:

Theorem 3.3 Let P be a graph pattern in the AND-UNION-
FILTER fragment of SPARQL. Then for every RDF graph
G, it holds that JP KG = CertainAnswers(P, G).

That is, when the semantics of SPARQL is restricted to
the AND-UNION-FILTER fragment, it properly handles the
possible interpretations of an RDF graph. In fact, Theorem
3.3 tells one that in order to compute the certain answers of
a graph pattern P in this fragment over an RDF graph G,
it is enough to compute the answers to P over G according
to the semantics proposed by the W3C.

3.2 A negative answer: The OPT operator
In the previous section, we show that the open-world se-

mantics of RDF is properly handled by the semantics of
SPARQL when restricted to the AND-UNION-FILTER frag-
ment of this query language. This fact, which is shown in

310

Theorem 3.3, holds essentially because the AND-UNION-
FILTER fragment of SPARQL is a positive query language;
because of monotonicity, it cannot represent a difference op-
erator between sets of mappings (like the MINUS operator
of SQL). Thus, one may be tempted to think that a graph
pattern including the OPT operator should also satisfy The-
orem 3.3, as OPT is, at least conceptually, a positive oper-
ator. However, we show in this section that the inclusion of
the OPT operator leads to a completely different scenario.

In the previous section, it was shown that the notion of
monotonicity characterizes the equivalence of the certain an-
swers semantics with the semantics of SPARQL proposed by
the W3C. However, this notion of monotonicity is not ap-
propriate for the OPT operator, as shown in the following
example.

Example 3.4. Assume that G1 is the RDF graph shown
in Figure 1, and let G2 be a graph obtained by adding to G1

the triple (Ronald Fagin, email, ron@fagin.com). Moreover,
let P be the following SPARQL graph pattern:

(Ronald Fagin, homepage, ?X) OPT

(Ronald Fagin, email, ?Y). (2)

The answer to this query in G1 is {µ1}, where µ1 is the
mapping {?X → <http://www.almaden...>}, while the an-
swer to this query in G2 is {µ2}, where µ2 is the mapping
{?X → <http://www.almaden...>, ?Y → ron@fagin.com}.
Hence, we have that JP KG1

6⊆ JP KG2
(since µ1 6∈ JP KG2

),
from which we conclude that P is not monotone as G1 ⊆ G2.

Graph pattern (2) in the previous example is not mono-
tone. However, one can claim that this pattern is at least
monotone in terms of the retrieved information; for the
graphs G1, G2 given in Example 3.4, we have that the infor-
mation in JP KG1

is contained in the information in JP KG2
, as

the latter set includes not only the homepage of Ronald Fagin
but also his email. This idea gives rise to a weaker notion
of monotonicity that is more appropriate for the study of
the OPT operator. Formally, given mappings µ1 and µ2,
we say that µ1 is subsumed by µ2, denoted by µ1 ¹ µ2,
if dom(µ1) ⊆ dom(µ2) and µ1(?X) = µ2(?X) for every
?X ∈ dom(µ1). Moreover, given sets of mappings Ω1 and
Ω2, we say that Ω1 is subsumed by Ω2, denoted by Ω1 ⊑ Ω2,
if for every for every µ1 ∈ Ω1, there exists µ2 ∈ Ω2 such that
µ1 ¹ µ2. Then a SPARQL graph pattern P is said to be
weakly monotone if for every pair G1, G2 of RDF graphs such
that G1 ⊆ G2, it holds that JP KG1

⊑ JP KG2
. For instance,

graph pattern (2) is weakly monotone.
The notion of weak monotonicity captures the intuition

that if some extra triples are included in an RDF graph,
then the use of the operator OPT should allows one to ex-
tend some mappings without losing any information. Thus,
in order to answer the question of whether the semantics
of SPARQL properly handles the open-world semantics of
RDF, and following the approach developed in Section 3.2,
we now look for a notion of certain answers that is properly
characterized by the notion of weak monotonicity. Formally,
let P be a SPARQL graph pattern, G an RDF graph, Ω a
set of mappings and Υ a family of sets of mappings. Then
Ω is said to be a lower bound of Υ w.r.t the preorder ⊑ if
Ω ⊑ Ω′ for every Ω′ ∈ Υ, and Ω is said to be a greatest lower
bound of Υ w.r.t. ⊑ if Ω is a lower bound of Υ w.r.t. ⊑,
and for every other lower bound Ω′ of Υ w.r.t. ⊑, it holds

that Ω′ ⊑ Ω. In the following proposition, we show that
there exists a tight connection between the notions of weak
monotonicity and greatest lower bound w.r.t. ⊑.

Proposition 3.5 A SPARQL query P is weakly monotone
if and only if for every RDF graph G, it holds that JP KG is
a greatest lower bound of {JP KH | G ⊆ H} w.r.t. ⊑.

Proposition 3.5 gives us a natural definition of what it means
for a SPARQL graph pattern to properly handle the open-
world semantics of RDF: Given a SPARQL graph pattern
P and an RDF graph G, JP KG should be the largest set in
terms of information content that is contained in the answer
to P over every possible interpretation of G. Thus, we have
a criteria to formally answer the question of whether the
semantics of SPARQL is appropriate for the open nature of
RDF. Unfortunately, the answer to this question is negative
as shown in the following example.

Example 3.6. Assume that G1 is the RDF graph shown
in Figure 1, and let G2 be a graph obtained by adding to G1

the triple (Ronald Fagin, email, ron@fagin.com). Moreover,
let P be the following SPARQL graph pattern:

»

(?X, name, “Moni Naor”) AND

„

(?Y, name, “Ronald Fagin”) OPT (?X, email, ?Z)

«–

(3)

Graph pattern P stores in variable ?X a URI with name
“Moni Naor”, in variable ?Y a URI with name “Ronald
Fagin”, and it optionally stores in ?Z the email of the
URI stored in ?X. The answer to this query in G1 is
{µ1}, where µ1 is the mapping {?X → Moni Naor, ?Y →
Ronald Fagin}. The answer to this query in G2 is the empty
set of mappings since (a) the answer to the triple pattern
(?X, name, “Moni Naor”) over G2 is {ν1}, where ν1 is the
the mapping {X → Moni Naor}, (b) the answer to the graph
pattern ((?Y, name, “Ronald Fagin”) OPT (?X, email, ?Z))
over G2 is {ν2}, where ν2 is the mapping {?Y →
Ronald Fagin, ?X → Ronald Fagin, ?Z → ron@fagin.com},
and (c) ν1 is not compatible with ν2. Hence, we have that
JP KG1

6⊑ JP KG2
, from which we conclude that P is not

weakly monotone as G1 ⊆ G2.

The idea behind the OPT operator is to allow for op-
tional matching of patterns, that is, to allow information to
be added if it is available, instead of just rejecting when-
ever some part of a pattern does not match. However, this
intuition fails in the simple graph pattern (3) given in Ex-
ample 3.6, as this pattern is not weakly monotone. And
not only that, it can also be shown that the intuition that
SPARQL is a positive query language fails, as OPT can
be used to express a difference operator between sets of
mappings. More precisely, given SPARQL graph patterns
P1, P2 and an RDF graph G, define operator MINUS as
J(P1 MINUS P2)KG = JP1KG r JP2KG, where r is the dif-
ference operator between sets of mappings defined in Sec-
tion 2.2. Then we have that:

Proposition 3.7 ([3]) Let P1 and P2 be SPARQL graph
patterns. Then (P1 MINUS P2) is equivalent to:

»„

P1 OPT (P2 AND (?X1, ?X2, ?X3))

«

FILTER

¬bound(?X1)

–

,

311

where ?X1, ?X2, ?X3 are fresh variables mentioned neither
in P1 nor in P2.

In light of these negative results, we present in Section 4 a
fragment of SPARQL that is defined by a syntactic restric-
tion (proposed in [32]) over the scope of the variables used
in the OPT operator. The graph patterns in this fragment
are shown to be weakly monotone in Section 4 and, thus,
the semantics of these patterns is appropriate for the open
nature of RDF.

4. WELL-DESIGNED GRAPH PATTERNS
One of the most delicate issues in the definition of a se-

mantics for graph pattern expressions is the semantics of
the OPT operator. As we have mentioned before, the idea
behind this operator is to allow for optional matching of
patterns, that is, to allow information to be added if it is
available, instead of just rejecting whenever some part of
a pattern does not match. However, this intuition fails in
some simple examples.

Example 4.1. Let P1 be the graph pattern:

((?X, name, “Moni Naor”) AND (?Y, name, “Ronald Fagin”)),

and P2 be the graph pattern (3), which is obtained by replac-
ing (?Y, name, “Ronald Fagin”) in P1 by optional pattern
((?Y, name, “Ronald Fagin”) OPT (?X, email, ?Z)). More-
over, let G be the RDF graph obtained by adding the triple
(Ronald Fagin, email, ron@fagin.com) to the RDF graph in
Figure 1. It is easy to see that JP1KG = {µ1}, where µ1 is
the mapping {?X → Moni Naor, ?Y → Ronald Fagin}. On
the other hand, although P2 is obtained by adding optional-
ity to P1, it is shown in Example 3.6 that JP KG is the empty
set of mappings

The graph pattern in the previous example is unnatural as
the triple pattern (?X, email, ?Z) seems to be giving optional
information for (?X, name, Moni Naor”) (they share variable
?X), but in the graph pattern appears as giving optional in-
formation for (?Y, name,“Ronald Fagin”). In fact, it is possi-
ble to find a common pattern in the examples that contradict
the intuition behind the definition of the OPT operator: A
graph pattern P mentions an expression P ′ = (P1 OPT P2)
and a variable ?X occurring both inside P2 and outside P ′,
but not occurring in P1.

In [32], the authors focus on the AND-FILTER-OPT frag-
ment of SPARQL and introduce a syntactic restriction that
forbids the form of interaction between variables discussed
above. Next we present this restriction, for which we need
to introduce some terminology. A graph pattern Q is said
to be safe if for every sub-pattern (P FILTER R) of Q, it
holds that var(R) ⊆ var(P).

Definition 4.2 ([32]) Let P be a graph pattern in the AND-
FILTER-OPT fragment of SPARQL. Then P is well de-
signed if (1) P is safe, and (2) for every sub-pattern P ′ =
(P1 OPT P2) of P and variable ?X, if ?X occurs both inside
P2 and outside P ′, then it also occurs in P1.

For instance, pattern (3) in Example 3.6 is not well designed.
The condition of being well-designed imposes a natural

restriction over the scope of variables in the OPT opera-
tor. In [32], the notion of being well designed was intro-
duced in an attempt to regulate the scope of variables in
the OPT operator and, in particular, to forbid some un-
natural SPARQL graph patterns that violate the intuition

1. Sub-property:

(a) (A,sp,B) (B,sp,C)
(A,sp,C)

(b) (A,sp,B) (X ,A,Y)
(X ,B,Y)

2. Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C)

(b) (A,sc,B) (X ,type,A)
(X ,type,B)

3. Typing:

(a) (A,dom,B) (X ,A,Y)
(X ,type,B)

(b) (A,range,B) (X ,A,Y)
(Y,type,B)

Table 1: RDFS inference rules.

behind the definition of the OPT operator. Next we show
that this restriction also leads to weak monotonicity, thus
showing that well-designed graph patterns are appropriate
for the open-world assumption underlying RDF.

Theorem 4.3 Every well-designed graph pattern is weakly
monotone.

Well-designed graph patterns also have good properties re-
garding the complexity of the evaluation problem. In [32, 33,
38], it was proved that the evaluation problem for SPARQL
is Pspace-complete, even if only the OPT operator is con-
sidered [38]. In these papers, the Pspace lower bounds were
proved by using graph patterns that are not well-designed.
Thus, an immediate question is whether the complexity of
evaluating well-designed graph pattern expressions is lower
than in the general case. In [33], the authors showed that
this is indeed the case.

Theorem 4.4 ([33]) Evaluation is coNP-complete for the
fragment of SPARQL consisting of well-designed patterns.

It is important to notice that it was also shown in [32, 33, 9]
that well-designed patterns are suitable for reordering and
optimization, demonstrating the significance of this class of
queries from the practical point of view.

Well-designed patterns form a well-behaved fragment of
SPARQL that we think deserves future investigation. In
particular, given the result in Theorem 4.3, it would be in-
teresting to explore whether weakly monotone graph pat-
terns coincide with well-designed graph patterns. The ques-
tion of whether an AND-FILTER-OPT SPARQL pattern
is weakly monotone if and only if it is well designed, re-
mains open. Notice that we are considering only AND-
FILTER-OPT SPARQL patterns, since the notion of being
well-designed is defined only for this fragment. Thus, an in-
teresting subject to explore is how to extend this notion to
patterns containing the UNION operator. A first proposal
is presented in [36], but the study of fundamental properties
such as weak monotonicity, complexity of evaluation, and
optimization has not been carried out.

5. RDFS VOCABULARY AND A NAVIGA-

TIONAL LANGUAGE FOR RDF
The RDF specification includes a set of reserved URIs

(reserved elements from U) with predefined semantics, the
RDFS vocabulary [12]. This set of reserved URIs is designed
to deal with inheritance of classes and properties, as well as
typing, among other features [12]. In Figure 1, we use two of
these URIs, namely rdf:type and rdfs:subClassOf, when
describing the resource dbpedia:Ronald_Fagin. Intuitively,

312

it is possible to conclude from the graph in Figure 1 that
“Ronald Fagin” is a “Scientist”, as it is stated in the graph
that “Ronald Fagin” is a “Database Researcher”, which is a
subclass of “Research Worker”, which in turn is a subclass
of “Scientist”.

RDFS was designed to deal with the the kind of deduc-
tions shown in the previous paragraph. In this section, we
present a formalization of RDFS taken from [18, 29], and
then we study the problem of answering queries over RDFS
data. In particular, we introduce the notion of nested regular
expression in Section 5.2, which has shown to be appropriate
to navigate RDF data [34], and then we introduce in Section
5.3 the query language nSPARQL, which extends SPARQL
with nested regular expressions and has shown to be appro-
priate to deal with the RDFS vocabulary [34]. Interestingly,
we also show that nSPARQL can be used to pose many in-
teresting and natural queries over RDF data, which require
of its navigational capabilities.

5.1 RDFS vocabulary
The semantics of RDFS was defined in [22] by borrowing

some notions from mathematical logic. We consider here
a simplified version of this semantics, which is obtained by
focusing on the subset of RDFS consisting of the reserved
URIs rdf:type, rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:range, and rdfs:domain. This fragment was stud-
ied in [29], where the authors provide a formal semantics for
it, and show it to be equivalent to the semantics of RDFS
defined in [22] (when restricted to the five keywords just
mentioned).

From now on, we use shorthands type, sc, sp, range,
dom for the reserved URIs rdf:type, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:range, and rdfs:domain, re-
spectively. The semantics of these keywords can be given
in terms of the rule system shown in Table 1. In every rule,
letters A, B, C, X , Y stand for variables to be replaced by
actual terms. Formally, an instantiation of a rule is a re-
placement of its variables by elements of (U ∪ L). Then
an RDF graph G′ is said to be obtained by an application
of a rule r to G, if there is an instantiation R

R′ of r such
that R ⊆ G and G′ = (G ∪ R′). Moreover, an RDF triple
t can be inferred from G, if there exists a graph G′ that is
obtained from G by successively applying the rules in Ta-
ble 1 and such that t ∈ G′. In [29], it is proved that the
rule system given in Table1 is sound and complete for the
inference problem in the presence of the vocabulary type,
sc, sp, range and dom.

When dealing with RDFS vocabulary, a particular prop-
erty that separates RDF graphs from standard graphs comes
into play: edge labels may also be considered as nodes in
the graph. For example, consider the RDF graph in Fig-
ure 2, which stores information about transportation ser-
vices between cities. It states that TGV provides a trans-
portation service from Paris to Calais by using the triple
(Paris, TGV, Calais). It also states that a TGV service is a
sub-property of train service by using the triple (TGV, sp,
train service). Thus, TGV is simultaneously acting as an
edge label and as a node label in the graph of Figure 2.

The RDF graph in Figure 2 also contains RDFS anno-
tations to describe the relationship between transportation
services. For instance, (Seafrance, sp, ferry service) states
that Seafrance is a sub-property of ferry service. Thus, by
using this triple and (Calais, Seafrance, Dover), we can con-

range

CalaisParis Dover London

SeeFrance

sp

TGV NatExpress

train service ferry service bus service

sp sp

transportation service

coastal city

domsp sp sp

Figure 2: RDF graph storing information about
cities and transportation services between cities.

clude that there is a ferry going from Calais to Dover. For-
mally, this conclusion can be obtained by a single appli-
cation of rule (1b) to triples (Seafrance, sp, ferry service)
and (Calais, Seafrance, Dover), from which we obtain
triple (Calais, ferry service, Dover). Moreover, by apply-
ing the rule (3b) to this last triple and (ferry service, range,
coastal city), we obtain triple (Dover, type, coastal city)
and, thus, we conclude that Dover is a coastal city.

For the RDFS vocabulary consisting of type, sc, sp, range
and dom, it was shown in [29] that one can determine whether
a triple is implied by a graph just by checking the existence
of some paths in the graph. For example, a query that asks
whether a resource A is a sub-class of a resource B can be
answered just by checking the existence of a path from A to
B in the graph where each edge has label sc. This obser-
vation has motivated the extension of SPARQL with path
expressions [2, 34, 19], that allow the user to specify ways to
navigate RDF graphs. For instance, in the query languages
proposed in [2, 34, 19], an extended triple pattern of the form
(A, sc+, B) can be used to check whether A is a sub-class
of B, as sc+ is a path expression denoting paths of length
at least 1 and where each edge has label sc. In the rest of
this section, we present the query language nSPARQL that
was introduced in [34], and which uses the notion of nested
regular expression to specify how to navigate an RDF graph.
More specifically, nested regular expressions are introduced
in Section 5.2, and nSPARQL is introduced in Section 5.3.

5.2 Nested regular expressions
The query language proposed in [34] uses, as usual for

graph query languages [28, 4], regular expressions to define
paths on graph structures, but taking into consideration the
special features of RDF graphs. In particular, the authors
extend in [34] regular expressions by borrowing the notion of
branching from XPath [11], to obtain the language of nested
regular expressions to specify how to navigate RDF data.

The navigation of a graph is usually done by using an
operator next, which allows one to move from a node to an
adjacent node. In our setting, we have RDF“graphs”, which
are sets of triples, not classical graphs. In particular, the sets
of node labels and edge labels of an RDF graph can have a
nonempty intersection. The notion of nested regular expres-
sion proposed in [34] takes into account the special features
of the RDF data model. In particular, nested regular ex-
pressions use three different navigation axes next, edge and
node, and their inverses next-1, edge-1 and node-1, to move
through an RDF triple. These axes are shown in Figure 3.

313

edge-1

b aa

p p

b

edge node

next next-1

node-1

Figure 3: Axes for an RDF triple (a, p, b).

In the language of nested regular expressions, a navigation
axis allows one to move one step forward (or backward) in
an RDF graph and, thus, a sequence of these axes defines
a path. Moreover, one can use classical regular expressions
over these axes to define a set of paths that can be used in a
query. Nested regular expressions also include an additional
axis self that is used not to actually navigate, but instead
to perform a test over a node in a path. Finally, the language
also allows nested expressions that can be used to test for the
existence of certain paths starting at any axis. The following
grammar defines the syntax of nested regular expressions:

exp := axis | axis::a (a ∈ U) | axis::[exp] |

exp/exp | exp|exp | exp∗ (4)

with axis ∈ {self, next, next-1, edge, edge-1, node, node-1}.
Before introducing the formal semantics of nested regular

expressions, we give some intuition about how these expres-
sions are evaluated in an RDF graph. The most natural
navigation axis is next::a, with a an element from U. Given
a graph G, the expression next::a is interpreted as the a-
neighbor relation in G, that is, the pairs of nodes (x, y) such
that (x, a, y) ∈ G. The language also allows one to navigate
from a node to one of its leaving edges by using the edge

axis. Formally, the interpretation of edge::a is the pairs of
nodes (x, y) such that (x, y, a) ∈ G. The nesting construc-
tion [exp] is used to check for the existence of a path defined
by expression exp. For instance, when evaluating nested ex-
pression next::[exp] in G, one retrieves the pairs of nodes
(x, y) such that there exists z satisfying that (x, z, y) ∈ G
and there exists a path in G starting in z and conforming to
expression exp.

The evaluation of a nested regular expression exp in an
RDF graph G is formalized as a binary relation JexpKG, de-
noting the pairs of nodes (x, y) such that y is reachable from
x in G by following a path that conforms to exp. The se-
mantics of the language is shown in Table 2. In this table,
G is an RDF graph, a ∈ U, voc(G) is the set of all the el-
ements from U that are mentioned in G, “axis” represents
any of the navigational axes in {next, node, edge}, and exp,
exp1, exp2 are nested regular expressions. Notice that the
semantics of our expressions considers only URIs (elements
in U), and not literals, as the navigation of an RDF graph
has to be done through the actual nodes in the graph, and
not through the data values. As is customary for regular
expressions, given a nested regular expression exp, we use
exp+ as a shorthand for the expression exp/exp∗.

Example 5.1. Let G be the graph in Figure 1, and con-
sider the following nested regular expression:

next::isPartOf/next::series

The evaluation of this expression over G is the set of all pairs
(x, y) such that x is a paper that was published in conference
y. For example (FaginLN01, pods) is in the evaluation of

JselfKG = {(x, x) | x ∈ voc(G)}
Jself::aKG = {(a, a)}

JnextKG = {(x, y) | there exists z s.t. (x, z, y) ∈ G}
Jnext::aKG = {(x, y) | (x, a, y) ∈ G}

JedgeKG = {(x, y) | there exists z s.t. (x, y, z) ∈ G}
Jedge::aKG = {(x, y) | (x, y, a) ∈ G}

JnodeKG = {(x, y) | there exists z s.t. (z, x, y) ∈ G}
Jnode::aKG = {(x, y) | (a, x, y) ∈ G}
Jaxis-1KG = {(x, y) | (y, x) ∈ JaxisKG}

Jaxis-1::aKG = {(x, y) | (y, x) ∈ Jaxis::aKG}
Jexp

1
/exp

2
KG = {(x, y) | there exists z s.t. (x, z) ∈ Jexp

1
KG

and (z, y) ∈ Jexp
2
KG}

Jexp
1
|exp

2
KG = Jexp

1
KG ∪ Jexp

2
KG

Jexp∗KG = JselfKG ∪ JexpKG ∪ Jexp/expKG ∪ · · ·
Jself::[exp]KG = {(x, x) | x ∈ voc(G) and there exists z

s.t. (x, z) ∈ JexpKG}
Jnext::[exp]KG = {(x, y) | there exist z, w s.t. (x, z, y) ∈ G

and (z, w) ∈ JexpKG}
Jedge::[exp]KG = {(x, y) | there exist z, w s.t. (x, y, z) ∈ G

and (z, w) ∈ JexpKG}
Jnode::[exp]KG = {(x, y) | there exist z, w s.t. (z, x, y) ∈ G

and (z, w) ∈ JexpKG}
Jaxis-1::[exp]KG = {(x, y) | (y, x) ∈ Jaxis::[exp]KG}

Table 2: Semantics of nested regular expressions.

the expression. One can use the self axis to test that the
conference in the above expression is actually PODS:

exp1 = next::isPartOf/next::series/self::pods

By using expression exp1, it is easy to construct a nested
regular expression that has as evaluation all the pairs (x, y)
such that x and y are co-authors of a PODS paper:

exp2 = next
-1::creator/self::[exp1]/next::creator

Notice that next-1::creator is used to navigate from an au-
thor x to a paper p created by x, then the nested expression
self::[exp1] is used to test that p is actually a PODS paper,
and then next::creator is used to navigate from p to one of its
authors y. For example, the pair (Ronald Fagin, Moni Naor)
is in Jexp2KG. Moreover, one can use the power of nested
regular expressions to obtain the complete network of co-
authorship of PODS papers as follows:

exp3 = (next-1::creator/self::[exp1]/next::creator)+

This expression defines the set of all pairs (x1, xk) for which
there exists a sequence x2, . . . , xk−1 of authors such that xi

is a co-author of xi+1 (1 ≤ i < k) in a PODS paper.

5.2.1 On the complexity and expressiveness of nested
regular expressions

In [34], the authors study several properties of nested regular
expressions. In the first place, they study the complexity of
evaluating these expressions, and considered two problems.
The first one is the standard decision problem considered
when studying the complexity of a query language:

Problem : Evaluation problem for nested regular
expressions.

Input : An RDF graph G, a nested regular ex-
pression exp, and a pair (a, b).

Question : Is (a, b) ∈ JexpKG?

The second problem considered in [34] is the following com-
putation problem associated to nested regular expressions:

314

Problem : Computation problem for nested reg-
ular expressions.

Input : An RDF graph G, a nested regular ex-
pression exp, and a node a.

Output : List all elements b s.t. (a, b) ∈ JexpKG.

It turns out that both problems can be solved efficiently.

Theorem 5.2 ([34]) The evaluation and computation prob-
lems for nested regular expressions can be solved in time
O(|G| · |exp|).

In the second place, it is studied in [34] whether nested regu-
lar expressions are expressive enough to deal with the RDFS
vocabulary. Interestingly, it is shown in [34] that this is in-
deed the case:

Theorem 5.3 ([34]) There exists a function Trans from
U to the set of nested regular expressions such that, for every
RDF graph G and triple (a, p, b) ∈ U × U × U, it holds
that (a, p, b) can be inferred from G according to the RDFS
semantics if and only if (a, b) ∈ JTrans(p)KG.

Due to the lack of space, we do not reproduce here the com-
plete definition of Trans (see [34] for details), and we only
show in an example the intuition behind this transformation.

Example 5.4. Let G be the RDF graph in Figure 2, and
consider the following nested regular expression:

exp = next::[(next::sp)∗/self::transportation service]

A pair (x, y) is in the evaluation of the expression exp over
G if there exists a triple (x, p, y) in G and a path from p to
transportation service where every edge has label sp. Thus,
nested expression [(next::sp)∗/self::transportation service]
is used to emulate the inferencing process in RDFS; it re-
trieves all the nodes that are sub-properties of transporta-
tion service (rule (1a) in Table 1). Therefore, we have that
the triple (x, transportation service, y) can be inferred from
G if and only if (x, y) is in JexpKG, which tells one that the
evaluation of expression exp results in the set of pairs of
cities that are connected by a transportation service (which
can be a train service, ferry service, bus service, etc). In fact,
in the example we have that (Calais, Dover) is in JexpKG.

We can also use nested regular expressions to obtain the
pairs of cities such that there is a way to travel from one city
to the other with any number of transportation services:

(next::[(next::sp)∗/self::transportation service])+

For example, the pair (Paris,London) is in the evaluation of
this last expression over G.

The previous example shows the power of nested regular
expressions not only to deal with the RDFS vocabulary, but
also to express interesting and natural queries over RDF
data (which require of navigational capabilities to be ex-
pressed).

5.3 nSPARQL
In this section, we give a brief overview of the query lan-

guage nSPARQL, which was proposed in [34] as an extension
of SPARQL with navigational capabilities, and was designed
to be able to answer queries considering the semantics of the
RDFS vocabulary.

Let the closure of a graph G, denoted by cl(G), be the
graph obtained from G by successively applying the rules in
Table 1 until the graph does not change. Then the RDFS

evaluation of a SPARQL graph pattern P over an RDF
graph G, denoted by JP Krdfs

G , is defined as JP Krdfs
G = JP Kcl(G).

As we have pointed out before, a SPARQL graph pat-
tern P treats the RDFS vocabulary without considering
its predefined semantics. Thus, we have in general that
JP KG 6= JP Krdfs

G , which immediately raises the question of
how the semantics of RDFS could be included into SPARQL.
A simple approach to do this could be based on the mate-
rialization of the closure of a graph; once this closure has
been computed, a query can be directly evaluated over it.
Unfortunately, this approach has some practical drawbacks;
among others, the closure of a graph can be of quadratic size
thus making its computation and storage too expensive. In
light of these limitations, it was proposed in [34] to replace
triple patterns in SPARQL by patterns using nested regular
expressions, which can be used to simulate the RDFS infer-
encing process without computing the closure of a graph (see
Theorem 5.2). The resulting language was called nSPARQL
in [34]. More specifically, nSPARQL is obtained by con-
sidering triple patterns with nested regular expressions in
the predicate position. The evaluation of an extended triple
pattern of the form (?X, exp, ?Y) over an RDF graph G is
defined just as the set of mappings µ = {?X → a, ?Y → b}
such that (a, b) ∈ JexpKG. The language nSPARQL also
includes the operators AND, FILTER, UNION and OPT,
whose semantics is inherited from SPARQL. In [34], the au-
thors showed that in order to evaluate a SPARQL graph
pattern P over an RDF graph G according to the RDFS
semantics, one does not need to materialize the closure of
G, but instead one can just rewrite P into an nSPARQL
pattern that is evaluated over the initial graph G. Formally,
the following theorem is proved in [34]:

Theorem 5.5 ([34]) Let P be a SPARQL graph pattern
constructed by considering only triple patterns without a vari-
able in the predicate position. Then there exists an nSPARQL
pattern Q, that can be computed in linear time from P , such
that for every RDF graph G: JP Krdfs

G = JQKG.

It should be noticed that Theorem 5.5 does not hold for
the triple pattern (?X, ?Y, ?Z) (which has a variable in the
predicate position), as the evaluation of (?X, ?Y, ?Z) over
an RDF graph G according to the RDFS semantics would
inevitably imply the computation of the closure of G, which
is something that cannot be computed by using the naviga-
tional approach of nSPARQL [34].

6. A BIG CHALLENGE: LINKED DATA
We conclude the paper by pointing out some challenges
for the database community that come from the Linked
Data project [6]. Up to this point, we have modeled RDF
data assuming a classical centralized database approach: the
data resides in a single repository to which queries have full
access. In fact, the normative specifications of RDF and
SPARQL follow the same assumption [22, 37]. The Web of
Linked Data [6, 8] is a shift towards a data model in which
every piece of RDF information describes itself (describes
its relations with other pieces of data) in a decentralized
way. Linked Data is based on the following set of principles
to publish Web data [6, 23]: (1) URIs should be used to
identify things, (2) URIs should be Web-accessible so that
people/machines can look up those URIs, (3) when some-
one/something looks up a URI, an RDF graph with useful
information should be provided, and (4) the RDF graph

315

should include links to other Web-accessible URIs so that
more things can be discovered.

There are several issues posed by these principles that are
not covered from a classical database point of view, among
the most important: data is highly distributed and at a
fine grain, any URI can make statements about (provide
links to) any other URI, and anyone can publish anything
about a resource. These issues together with the scalabil-
ity issues faced when querying Web data and the distinc-
tive features of RDF (such as the inherent incompleteness
of the information in an RDF database, the graph struc-
ture of RDF and the use of vocabularies with predefined
semantics) make Linked Data a very challenging scenario
from a database point of view. Although there has been
some work on querying Linked Data [20, 21, 9], little re-
search has been pursued towards the fundamental problems
of developing appropriate data models and query languages
in this context. Linked Data can be benefited from the large
body of work done in database areas such as semi-structured
data [41], graph databases [4], Web data models [27, 1] and
distributed databases [30]. Thus, we think that the database
community has much more to say about the fundamental da-
tabase problems that need to be solved in the context of the
Linked Data project.

The amount of Web data published following the Linked
Data principles has grown constantly since their proposal in
2006. With the advent of large projects such as data.gov

and data.gov.uk, whose purposes are to increase public ac-
cess to government data, we can only expect it to grow more
in the future. Thus, we expect that the interest in managing
highly-distributed large-scale RDF data will continue grow-
ing both in the Semantic Web and database communities.

7. REFERENCES
[1] S. Abiteboul and V. Vianu. Queries and computation on

the Web. Theor. Comput. Sci., 239(2):231–255, 2000.

[2] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Extending
SPARQL with regular expression patterns (for querying
RDF). J. Web Sem., 7(2):57–73, 2009.

[3] R. Angles and C. Gutierrez. The expressive power of
SPARQL. In ISWC, pages 114–129, 2008.

[4] R. Angles and C. Gutiérrez. Survey of graph database
models. ACM Comput. Surv., 40(1), 2008.

[5] P. Barceló, C. A. Hurtado, L. Libkin, and P. T. Wood.
Expressive languages for path queries over graph-structured
data. In PODS, pages 3–14, 2010.

[6] T. Berners-Lee. Design issues: Linked Data.
http://www.w3.org/DesignIssues/LinkedData.html, July
2006.

[7] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
resource identifier (URI): Generic syntax.
http://www.ietf.org/rfc/rfc3986.txt, 2005.

[8] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the
story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22,
2009.

[9] C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics and
optimization of the SPARQL 1.1 federation extension. In
ESWC, 2011.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y.
Vardi. Containment of conjunctive regular path queries
with inverse. In KR, 2000.

[11] J. Clark and S. DeRose. XML path language (XPath).
W3C recommendation. http://www.w3.org/TR/xpath,
November 2008.

[12] R.V. Guha D. Brickley. RDF vocabulary description
language 1.0: RDF schema, W3C recommendation,
February 2004.

[13] DBpedia. http://dbpedia.org/.

[14] A. Deutsch and V. Tannen. Optimization properties for
classes of conjunctive regular path queries. In DBPL, pages
21–39, 2001.

[15] T. Furche, B. Linse, F. Bry, D. Plexousakis, and
G. Gottlob. RDF querying: Language constructs and
evaluation methods compared. In Reasoning Web, pages
1–52, 2006.

[16] M. R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[17] B. Glimm and M. Krötzsch. SPARQL beyond subgraph
matching. In ISWC, pages 241–256, 2010.

[18] C. Gutierrez, C. A. Hurtado, A. O. Mendelzon, and
J. Pérez. Foundations of semantic web databases. J.
Comput. Syst. Sci., 77(3):520–541, 2011.

[19] S. Harris and A. Seaborne. SPARQL 1.1 query language.
W3C working draft.
http://www.w3.org/TR/sparql11-query/, October 2010.

[20] O. Hartig and A. Langegger. A database perspective on
consuming Linked Data on the Web. Datenbank-Spektrum,
10(2):57–66, 2010.

[21] O. Hartig, J. Sequeda, J. Taylor, and P. Sinclair. How to
consume Linked Data on the Web: tutorial description. In
WWW, pages 1347–1348, 2010.

[22] Pat Hayes. RDF semantics, W3C Recommendation,
February 2004.

[23] T. Heath and C. Bizer. Linked Data: Evolving the Web into
a Global Data Space. Morgan & Claypool Publishers, 2011.

[24] D2R DBLP Bibliography Database hosted at L3S
Research Center. http://dblp.l3s.de/d2r/.

[25] I. Kollia, B. Glimm, and I. Horrocks. SPARQL query
answering over OWL ontologies. In ESWC, 2011.

[26] F. Manola and E. Miller. RDF primer, W3C
recommendation, February 2004.

[27] A. O. Mendelzon and T. Milo. Formal models of Web
queries. Inf. Syst., 23(8):615–637, 1998.

[28] A. O. Mendelzon and P. T. Wood. Finding regular simple
paths in graph databases. In VLDB, pages 185–193, 1989.

[29] S. Muñoz, J. Pérez, and C. Gutiérrez. Minimal deductive
systems for RDF. In ESWC, pages 53–67, 2007.

[30] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems, Third Edition. Prentice-Hall, 2011.

[31] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL
semantics and abstract syntax. W3C recommendation.
http://www.w3.org/TR/owl-semantics/, February 2004.

[32] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. In ISWC, pages 30–43, 2006.

[33] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst.,
34(3), 2009.

[34] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A
navigational language for RDF. J. Web Sem., 8(4):255–270,
2010.

[35] A. Polleres. SPARQL1.1: New features and friends (OWL2,
RIF). In Rules and Reasoning, pages 23–26, 2010.

[36] Axel Polleres. From SPARQL to rules (and back). In
Proceedings of the International Conference on World
Wide Web (WWW), pages 787–796, 2007.

[37] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C recommendation.
http://www.w3.org/TR/rdf-sparql-query/, January 2008.

[38] M. Schmidt, M. Meier, and G. Lausen. Foundations of
SPARQL query optimization. In ICDT, pages 4–33, 2010.

[39] E. Sirin and B. Parsia. SPARQL-DL: SPARQL query for
OWL-DL. In OWLED, 2007.

[40] M. Y. Vardi. The complexity of relational query languages
(extended abstract). In STOC, pages 137–146, 1982.

[41] V. Vianu. A Web odyssey: from Codd to XML. SIGMOD
Record, 32(2):68–77, 2003.

316

