
Data Exchange beyond Complete Data

Marcelo Arenas
Department of Computer Science

PUC Chile
marenas@ing.puc.cl

Jorge Pérez
Department of Computer Science

Universidad de Chile
jperez@dcc.uchile.cl

Juan Reutter
School of Informatics

University of Edinburgh
juan.reutter@ed.ad.uk

ABSTRACT

In the traditional data exchange setting, source instances are restricted to be

complete in the sense that every fact is either true or false in these instances.

Although natural for a typical database translation scenario, this restriction

is gradually becoming an impediment to the development of a wide range of

applications that need to exchange objects that admit several interpretations.

In particular, we are motivated by two specific applications that go beyond

the usual data exchange scenario: exchanging incomplete information and

exchanging knowledge bases.

In this paper, we propose a general framework for data exchange that can

deal with these two applications. More specifically, we address the problem

of exchanging information given by representation systems, which are es-

sentially finite descriptions of (possibly infinite) sets of complete instances.

We make use of the classical semantics of mappings specified by sets of

logical sentences to give a meaningful semantics to the notion of exchang-

ing representatives, from which the standard notions of solution, space of

solutions, and universal solution naturally arise. We also introduce the no-

tion of strong representation system for a class of mappings, that resembles

the concept of strong representation system for a query language. We show

the robustness of our proposal by applying it to the two applications men-

tioned above: exchanging incomplete information and exchanging knowl-

edge bases, which are both instantiations of the exchanging problem for

representation systems. We study these two applications in detail, present-

ing results regarding expressiveness, query answering and complexity of

computing solutions, and also algorithms to materialize solutions.

Categories and Subject Descriptors

H.2.5 [Heterogeneous Databases]: Data translation

General Terms

Algorithms, Theory

Keywords

Data exchange, knowledge exchange, data integration, representation sys-

tem, metadata management, schema mapping

1. INTRODUCTION
In the typical data exchange setting, one is given a source schema

and a target schema, a schema mapping M that specifies the rela-
tionship between the source and the target, and an instance I of the
source schema. The basic problem then is how to materialize an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’11, June 13–15, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0660-7/11/06 ...$10.00.

instance of the target schema that reflects the source data as accu-
rately as possible [13]. In data exchange terms, the problem is how
to materialize the best solution for I under M.

In this traditional setting, source instances are restricted to be
complete: every fact in them is either true or false. While natural
in many scenarios, this restriction cannot capture a wide range of
applications dealing with objects that admit several interpretations.
We are motivated by two such applications: exchanging incomplete

information and exchanging knowledge bases.

Exchanging Incomplete Information. Universal solutions have
been proposed as the preferred solutions for data exchange. Given
a source instance I and a schema mapping M, a universal solu-
tion J is a target instance that represents, in a precise sense, all
the possible solutions for I [13]. Even in the scenario in which
mappings are specified by source-to-target tuple-generating depen-
dencies (st-tgds), it has been noted that universal solutions need
null values to correctly reflect the data in the source [13]. Thus, the
preferred solutions in this scenario are incomplete databases [20].
But what if one needs to exchange data from these instances with
null values? What is the semantics of data exchange in this case?
This issue has been raised before by Afrati et al. in the context of
query answering [2] and also by Fagin et al. in the context of meta-
data management [16]. But the problem is much wider, as it is not
even clear what a good translation is for a source instance with
null values, even in the most simplest data exchange settings. Just
as an example of the questions that need to be answered, given a
source instance with null values, is a target instance with null val-
ues enough to correctly represent the source information?

Exchanging Knowledge Bases. Nowadays several applications
use knowledge bases to represent their data. A prototypical exam-
ple is the Semantic Web, where repositories store information in
the form of RDFS graphs [19] or OWL specifications [24]. In both
cases, we have not only data but also rules that allow one to infer
new data. Thus, in a data exchange application over the Seman-
tic Web, one would naturally have as input a schema mapping and
a source specification consisting of data together with some rules,
and then one would like to create a target specification materializ-
ing data and creating new rules to correctly represent the knowl-
edge in the source. But what does it mean for a target knowledge
base to be a valid translation of a source knowledge base? Or, in
data exchange terms, when does a target knowledge base can be
considered a solution for a source knowledge base under a schema
mapping? And more importantly, what constitutes a good solution
for a source knowledge base? These questions motivate the devel-
opment of a general knowledge exchange framework.

In this paper, we propose a general framework for data exchange
that can deal with the above two applications. More specifically, we
address the problem of exchanging information given by represen-

83

tation systems, which are essentially finite descriptions of (possibly
infinite) sets of complete instances. We make use of the classi-
cal semantics of mappings specified by sets of logical sentences to
give a meaningful semantics to the notion of exchanging represen-
tatives, thus not altering the usual semantics of schema mappings.
From this, the standard notions of solution, space of solutions, and
universal solution naturally arise. We also introduce the notion of
strong representation system for a class of mappings, which re-
sembles the concept of strong representation system for a query
language [20, 17]. A strong representation system for a class C of
mapping is, intuitively, a closed system in the sense that for every
representative I in the system and mapping M in C, the space of
solutions of I under M can be represented in the same system.

As our first application, we study the exchange of incomplete
information. One of the main issues when managing incomplete
information is that most of its associated tasks, in particular query
answering, are considerably harder than in the classical setting of
complete data [20, 17]. Thus, it is challenging to find representation
systems that are expressive enough to deserve investigation, while
admitting efficient procedures for practical data exchange purposes.

In this paper, we study the representation system given by posi-

tive conditional tables, which are essentially conditional tables [20]
that do not use negation. For positive conditional tables we show
that, given a mapping specified by st-tgds, it is possible to mate-
rialize universal solutions and compute certain answers to unions
of conjunctive queries in polynomial time, thus matching the com-
plexity bounds of traditional data exchange. But more importantly,
we show that positive conditional tables are expressive enough to
form a strong representation system for the class of mappings spec-
ified by st-tgds. We prove that this result is optimal in the sense
that the main features of positive conditional tables are needed to
obtain a strong representation system for this class of mappings.
Moreover, we prove that instances with null values, that have been
widely used as a representation system in data exchange [13, 21, 2,
22, 16], do not form a strong representation system for the class of
mappings specified by st-tgds, and thus, cannot correctly represent
the space of solutions of a source instance with null values. Finally,
we show that positive conditional instances can be used in schema
mapping management to solve some fundamental and problematic
issues that arise when combining the composition and inverse op-
erators [7, 8].

We then apply our framework to knowledge bases. A knowl-
edge base is composed of explicit data, in our context a relational
database, plus implicit data given in the form of a set of logical
sentences Σ. This set Σ states how to infer new data from the
explicit data. The semantics of a knowledge base is given by its
set of models, which are all the instances that contain the explicit
data and satisfy Σ. In this sense, a knowledge base is also a rep-
resentation system and, thus, can be studied in our general frame-
work. In fact, by applying this framework we introduce the notion
of knowledge exchange, which is the problem of materializing a
target knowledge base that correctly represents the source infor-
mation. We then study several issues including the complexity of
recognizing knowledge-base solutions, the problem of character-
izing when a knowledge base can be considered a good solution,
and the problem of computing such knowledge-base solutions for
mappings specified by full st-tgds (which are st-tgds that do not use
existential quantification). Our results are a first step towards the
development of a general framework for exchanging specifications
that are more expressive than the usual database instances. In par-
ticular, this framework can be used in the exchange of RDFS graphs
and OWL specifications, a problem becoming more and more im-
portant in Semantic Web applications.

We have structured the paper into three parts. We present some
terminology and our general exchange framework for representa-
tion systems in Sections 2 and 3. In Sections 4, 5 and 6, we present
our results regarding the exchange of incomplete information. Fi-
nally, in Sections 7 and 8, we introduce and study the problem of
exchanging knowledge bases.

2. PRELIMINARIES
A schema S is a finite set {R1, . . . , Rk} of relation symbols,

with each Ri having a fixed arity ni ≥ 0. Let D be a countably
infinite domain. An instance I of S assigns to each relation symbol
Ri of S a finite relation RI

i ⊆ D
ni . INST(S) denotes the set of all

instances of S. We denote by dom(I) the set of all elements that
occur in any of the relations RI

i . We say that Ri(t) is a fact of I if
t ∈ RI

i . We sometimes denote an instance by its set of facts.
Given schemas S1 and S2, a schema mapping (or just mapping)

from S1 to S2 is a subset of INST(S1) × INST(S2). We say that
J is a solution for I under M whenever (I, J) ∈ M. The set of
all solutions for I under M is denoted by SOLM(I). Let S1 and
S2 be schemas with no relation symbols in common and Σ a set of
first-order logic (FO) sentences over S1 ∪S2. A mapping M from
S1 to S2 is specified by Σ, denoted by M = (S1,S2, Σ), if for
every (I, J) ∈ INST(S1) × INST(S2), we have that (I, J) ∈ M
if and only if (I, J) satisfies Σ. Notice that mappings are binary
relations, and thus we can define the composition of mappings as
for the composition of binary relations. Let M12 be a mapping
from schema S1 to schema S2 and M23 a mapping from S2 to
schema S3. Then M12 ◦ M23 is a mapping from S1 to S3 given
by the set {(I, J) ∈ INST(S1) × INST(S3) | there exists K such
that (I, K) ∈ M12 and (K, J) ∈ M23} [14].

Dependencies: A relational atom over S is a formula of the form
R(x̄) with R ∈ S and x̄ a tuple of (not necessarily distinct) vari-
ables. A tuple-generating dependency (tgd) over a schema S is a
sentence of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)), where ϕ(x̄, ȳ)
and ψ(x̄, z̄) are conjunctions of relational atoms over S. The left-
hand side of the implication in a tgd is called the premise, and the
right-hand side the conclusion. A full tgd is a tgd with no existen-
tially quantified variables in its conclusion. We usually omit the
universal quantifier when writing tgds.

Given disjoint schemas S1 and S2, a source-to-target tgd (st-
tgd) from S1 to S2 is a tgd in which the premise is a formula over
S1 and the conclusion is a formula over S2. As for the case of
full tgds, a full st-tgd is an st-tgd with no existentially quantified
variables in its conclusion. In this paper, we assume that all sets of
dependencies are finite.

Queries and certain answers: A k-ary query Q over a schema
S, with k ≥ 0, is a function that maps every instance I ∈ INST(S)
into a k-relation Q(I) ⊆ dom(I)k. In this paper, CQ is the class
of conjunctive queries and UCQ is the class of unions of conjunc-
tive queries. If we extend these classes by allowing equalities or
inequalities, then we use superscripts = and 6=, respectively. Thus,
for example, UCQ 6= is the class of union of conjunctive queries
with inequalities. Let M be a mapping from a schema S1 to a
schema S2, I an instance of S1 and Q a query over S2. Then
certainM(Q, I) denotes the set of certain answers of Q over I
under M, that is, certainM(Q, I) =

T
J∈SOLM(I) Q(J).

3. SCHEMA MAPPINGS AND REPRESEN-

TATION SYSTEMS
A (usual) database instance I is said to contain complete informa-
tion as every fact R(t) is either true or false in I . In that sense,
there is a single possible interpretation of the information in I . On

84

the other hand, in a database instance with incomplete information
some values are unknown (which are usually represented by null
values) and, hence, one is not certain about its content. In that
sense, one has several possible interpretations for the information
in such instances. In the same spirit, a knowledge base usually has
several models, which represent different ways to interpret the rules
or axioms in the knowledge base. In this section, we present the no-
tion of representation system [20, 3], which is a general way to deal
with objects that admit different interpretations, and then we show
how to extend a schema mapping to deal with representation sys-
tems. This extension is fundamental for our study as it allows us to
extend, in a simple and natural way, the data exchange framework
proposed by Fagin et al. [13] to the case of database instances with
incomplete information as well as to the case of knowledge bases.

3.1 Exchanging information given by repre-
sentation systems

A representation system is composed of a set W of represen-

tatives and a function rep that assigns a set of instances to ev-
ery element in W. We assume that every representation system
(W, rep) is uniform in the sense that for every W ∈ W, there ex-
ists a relational schema S, that is called the type of W , such that
rep(W) ⊆ INST(S) [20]. Representation systems are used to de-
scribe sets of possible interpretations in a succinct way. Typical
examples of representation systems are Codd tables, naive tables,
conditional tables [20], and world-set decompositions [3].

Assume that M is a mapping from a schema S1 to a schema
S2. Given a set X of instances of S1, define SOLM(X) asS

I∈X SOLM(I). That is, SOLM(X) is the set of possible solu-
tions for the instances in X . In the following definition, we use
SOLM(·) to extend the notion of solution to the case of representa-
tion systems.

Definition 3.1 Let R = (W, rep) be a representation system, M
a mapping from a schema S1 to a schema S2 and V,W elements

of W of types S1 and S2, respectively. Then W is an R-solution

for V under M if rep(W) ⊆ SOLM(rep(V)).

In other words, given a representation system R = (W, rep) and
V,W ∈ W, it holds that W is an R-solution for V under a map-
ping M if for every J ∈ rep(W), there exists I ∈ rep(V) such that
(I, J) ∈ M.

Assume given a representation system R = (W, rep) and a
mapping M. An element of W can have a large number of R-
solutions under M, even an infinite number in some cases, and,
thus, it is natural to ask what is a good solution for this element
under M. Next we introduce the notion of universal R-solution,
which is a simple extension of the concept of R-solution introduced
in Definition 3.1.

Definition 3.2 Let R = (W, rep) be a representation system, M
a mapping from a schema S1 to a schema S2 and V,W elements

of W of types S1 and S2, respectively. Then W is a universal

R-solution for V under M if rep(W) = SOLM(rep(V)).

This new notion captures the intuition of exactly representing the
space of possible solutions of the interpretations of an element of a
representation system.

3.2 Strong representation systems for a class
of mappings

The classical work on incomplete databases [20] defines the no-
tion of strong representation system for a class of queries. In fact,
the classical result in [20] about these systems states that condi-
tional tables are a strong representation system for relational al-

gebra. In our context, we are interested in defining the notion of
strong representation system for a class of mappings.

Definition 3.3 Let C be a class of mappings and (W, rep) a repre-

sentation system. Then (W, rep) is a strong representation system

for C if for every mapping M ∈ C from a schema S1 to a schema

S2, and for every U ∈ W of type S1, there exists W ∈ W of type

S2 such that rep(W) = SOLM(rep(U)).

In other words, a representation system R = (W, rep) is a strong
representation system for a class of mappings C if for every map-
ping M ∈ C from a schema S1 to a schema S2, and for every
U ∈ W of type S1, a universal R-solution for U under M can
be represented in the same system (it is an element of W). Notice
that if C allows for mappings in which no solution exist for some
of their instances, then any strong representation system for C must
be able to represent the empty set of instances.

4. STRONG REPRESENTATION SYS-

TEMS FOR ST-TGDS
As pointed out before, one of the goals of this paper is to study

the problem of exchanging databases with incomplete information.
To this end, we first borrowed from [20, 3] the notion of represen-
tation system, which gives us a way to represent databases with in-
complete information, and then we introduced the notion of strong
representation system for a class of mappings, which essentially tell
us that a particular way of representing databases with incomplete
information is appropriate for a class of mappings. In this section,
we apply these concepts to the widely used class of mappings spec-
ified by st-tgds and, in particular, we answer the question of what
is a good representation system for this class. Notice that our map-
pings only contain instances with complete information. Thus, as
opposed to previous work [13, 21, 16], we make a clear distinc-
tion between instances participating in a mapping and incomplete
instances that are used as representatives for spaces of solutions.

The starting points for our study are naive tables, which are
widely used in the data exchange context [13, 21, 16], and condi-
tional tables, which are known to be an expressive way to represent
databases with incomplete information [20]. In Section 4.1, we de-
fine the representation systems based on these two types of tables,
together with a representation system based on positive conditional
tables, a fragment of conditional tables proposed in this paper. In
Section 4.2, we show that both conditional tables and positive con-
ditional tables form strong representation systems for the class of
mappings given by st-tgds, and we also show that naive tables are
not expressive enough to form such a system. Finally, in Section
4.3, we give strong evidence that positive conditional tables are
the right representation system for the class of mappings specified
by st-tgds, by proving that the main features in these instances are
needed to obtain a strong representation system for this class.

4.1 Naive and conditional instances
Our database instances are constructed by using elements of a

countably infinite set D. To represent incomplete information we
assume the existence of a countably infinite set N of labeled nulls,
disjoint with D. To differentiate from nulls we call constant values

the elements in D. Fix a relational schema S for this section. Then
a naive instance I of S assigns to each relation symbol R ∈ S

of arity k, a finite k-ary relation RI ⊆ (D ∪ N)k, that is, a k-ary
relation including constants and null values. A conditional instance

extends the notion of naive instance with a local condition attached
to each fact. More precisely, an element-condition is a positive
Boolean combination (only connectives ∧ and ∨ are allowed) of
formulas of the form x = y and x 6= y, with x ∈ N and y ∈ (D ∪

85

N). Then a conditional instance I of S assigns to each relation
symbol R of arity k, a pair (RI , ρI

R), where RI ⊆ (D ∪ N)k and
ρI

R is a function that associates to each tuple t ∈ RI an element-
condition ρI

R(t) (the local condition of the fact R(t) [20]).
To define the sets of interpretations associated to naive and con-

ditional instances, we need to introduce some terminology. Given
a naive or conditional instance I, define nulls(I) as the set of
nulls mentioned in I (if I is a conditional instance, nulls(I)
also includes the nulls mentioned in the local conditions of I).
Moreover, given a null substitution ν : nulls(I) → D, define
ν(RI) = {ν(t) | t ∈ RI}, where ν(t) is obtained by replacing
every null n in t by its image ν(n). Then for every naive instance
I, and slightly abusing notation, define the set of representatives of
I, denoted by repnaive(I), as:

{I ∈ INST(S) | there exists ν : nulls(I) → D

such that for every R ∈ S, it holds that ν(RI) ⊆ RI}

Moreover, for every conditional instance I, define the set of rep-
resentatives of I, denoted by repcond(I), as follows. Given an
element-condition ϕ and a null substitution ν : V → D, where
V is a set of nulls that contains every null value mentioned in ϕ,
notation ν |= ϕ is used to indicate that ν satisfies ϕ in the usual
sense. Moreover, given a null substitution ν : nulls(I) → D and
R ∈ S, define ν(RI , ρI

R) as {ν(t) | t ∈ RI and ν |= ρI
R(t)}.

Then repcond(I) is the following set of instances:

{I ∈ INST(S) | there exists ν : nulls(I) → D

such that for every R ∈ S, it holds that ν(RI , ρI
R) ⊆ RI}.

We use repnaive and repcond to define two fundamental representation
systems. Assume that Wnaive and Wcond are the set of all possible
naive instances and conditional instances (over all possible rela-
tional schemas), respectively. Then Rnaive = (Wnaive, repnaive) and
Rcond = (Wcond, repcond) are representation systems.

We conclude this section by introducing a fragment of the class
of conditional instances that will be extensively used in this paper.
We say that an element-condition is positive if it does not mention
any formula of the form x 6= y. Then a conditional instance I of
S is said to be positive if for every R ∈ S and t ∈ RI , it holds
that ρI

R(t) is a positive element-condition. We denote by Wpos the
set of all positive conditional instances, by reppos the restriction of
function repcond to the class of positive conditional instances, and
by Rpos the representation system (Wpos, reppos). When it is clear
from the context, we just use rep instead of repnaive, repcond or reppos.

4.2 Building a strong representation system
for st-tgds

Fagin et al. showed in [13] that for the class of mappings spec-
ified by st-tgds, naive instances are enough to represent the space
of solutions of any complete database. More precisely, assuming
that M = (S1,S2, Σ12), where Σ12 is a set of st-tgds, we have
that for every instance I1 of S1, there exists a naive instance I2

of S2 such that rep(I2) = SOLM(I1). Thus, given that the tar-
get data generated by a mapping can be used as the source data in
other mappings, it is natural to ask whether the same result holds
when naive instances are considered as source instances. That is,
it is natural to ask whether for every mapping M specified by a
set of st-tgds and for every source naive instance I1, there exists
a target naive instance I2 such that rep(I2) = SOLM(rep(I1)).
Unfortunately, the following example shows that it is not the case.

Example 4.1. Let S1 = {P (·, ·)}, S2 = {T (·), R(·, ·)} and Σ12 a

set consisting of the following st-tgds:

P (x, y) → R(x, y),

P (x, x) → T (x).

Moreover, let I be a naive instance of S1 such that P I = {(n, a)},
where n is a null value and a is a constant. It is not difficult to prove
that if J is a naive instance of S2, then rep(J) 6= SOLM(rep(I)).
The reason for this is that a naive instance cannot represent the fact
that if n is given value a in some representative of I, then T (a)
holds in every solution for that representative.

From the previous example, we conclude that:

Proposition 4.2 Naive instances do not form a strong representa-

tion system for the class of mappings specified by st-tgds.

What should be added to naive instances to obtain a strong rep-
resentation system for the class of mapping given by st-tgds? A
natural candidate are the local conditions presented in Section 4.1,
as shown in the following example. In this example, and in the rest
of the paper, we assume that ⊤ is an arbitrary element-condition
that always holds (for example, n = n with n ∈ N).

Example 4.3. Let M and I be as in Example 4.1, and J be a con-
ditional instance that contains the following facts and conditions in
the relations R and T :

R(n, a) ⊤
T (n) n = a

Then it can be proved that rep(J) = SOLM(rep(I)).

In the previous example, we use only positive element-
conditions to represent the space of solutions of the source naive
instance. Thus, it is natural to ask whether this is a general phe-
nomenon, or whether one needs to consider non-positive element-
conditions of the form x 6= y to find a strong representation system
for the class of mappings specified by st-tgds. In the following the-
orem, we prove that positive conditions are indeed enough.

Theorem 4.4 Positive conditional instances form a strong repre-

sentation system for the class of mappings specified by st-tgds.

We conclude this section by showing that conditional instances also
form a strong representation system for the class of mappings spec-
ified by st-tgds, thus giving us an alternative system to deal with
incomplete information in schema mappings.

Theorem 4.5 Conditional instances form a strong representation

system for the class of mappings specified by st-tgds.

4.3 Positive conditional instances are the
needed fragment

In the previous section, we show that both conditional instances
and positive conditional instances form strong representation sys-
tems for the class of mappings specified by st-tgds. Given these
alternatives, it is natural to ask whether there exist other possible
strong representation systems for this class of mappings and which
one could be considered as the right system for this class. In this
section, we give strong evidence that positive conditional instances
are the right representation system for mappings specified by st-
tgds, by proving that the main features in these instances are needed
to obtain a strong representation system for this class of mappings.

In a positive conditional instance, a local condition is attached
to each fact. The distinctive features of these local conditions
are the use of disjunction, equalities of the form n1 = n2, with
n1, n2 ∈ N, and equalities of the form n = c, with n ∈ N and
c ∈ D. In this section, we show that if one removes any of these
features and keeps the other two, then the resulting representation

86

system does not form a strong representation system for the class
of mappings specified by st-tgds. More precisely, given a positive
conditional instance I of a relational schema S, we say that I is
null-comparison free if no local condition in I mentions a formula
of the form n1 = n2 with n1, n2 ∈ N, and we say that I is
null-constant-comparison free if no local condition in I mentions
a formula of the form n = c with n ∈ N and c ∈ D. Moreover,
we say that I is disjunction free if for every R ∈ S and t ∈ RI , it
holds that ρI

R(t) does not mention Boolean connective ∨.

Theorem 4.6 None of the following form a strong representation

system for the class of mappings specified by st-tgds: (1) null-

comparison free positive conditional instances, (2) null-constant-

comparison free positive conditional instances and (3) disjunction

free positive conditional instances.

5. DATA EXCHANGE WITH POSITIVE

CONDITIONAL INSTANCES
In the data exchange setting, one is given a mapping M from a

source schema to a target schema and a source instance I , and the
goal is to materialize a solution J for I under M. This setting has
been widely studied in the literature, where many important prob-
lems have been addressed in order to develop data exchange tools.
In this section, we focus on three of the most important tasks in
data exchange: materializing solutions, computing certain answers
to target queries, and checking whether a target instance is a so-
lution for a source instance under a mapping [13], and show how
these tasks are performed in the presence of positive conditional
instances. In particular, we prove that the fundamental problems
of materializing solutions and computing certain answers to target
queries can be solved efficiently in this extended data exchange
scenario, thus showing that positive conditional instances not only
allow a uniform way of dealing with the exchange of incomplete
information, but also that they can be used in practice.

5.1 Materializing solutions
The most important problem in data exchange is the problem

of materializing a good solution for a given source instance. For
mappings specified with st-tgds, these are the universal solutions.
Polynomial-time algorithms have been developed to compute these
solutions [13], which have allowed the construction of practical
data exchange tools. In the context of a representation system R,
universal R-solutions are the preferred option as they are able to
exactly represent the spaces of solutions of the source data. Thus,
to show that positive conditional instances can be used in practice,
one needs to develop an efficient algorithm for computing univer-
sal Rpos-solutions. In the following theorem, we show that such an
algorithms exists.

Theorem 5.1 Let M = (S1,S2, Σ12), where Σ12 is a set of st-

tgds. Then there exists a polynomial-time algorithm that, given a

positive conditional instance I of S1, computes a universal Rpos-

solution for I under M.

It is important to notice that in the previous result the set of st-
tgds defining a schema mapping is assumed to be fixed. This is the
usual assumption when studying the complexity of materializing
solutions in data exchange [13].

The algorithm in Theorem 5.1 is based on the chase procedure,
as usual in data exchange [13]. In particular, our procedure is based
on the chase algorithms presented in [17], and is similar to the one
recently proposed in [18]. Notice that, as shown in Section 4.2,
the straightforward application of the chase may not deliver the ex-
pected result, as naive instances do not form a strong representation

system for the class of mappings specified by st-tgds. Thus, one
needs to modify the chase procedure to take into consideration the
element-conditions in positive conditional instances. In particular,
one has to consider that some relationships between null values can
fire the application of a dependency, and one has to make explicit
these relationships in the generated tuples by using new element-
conditions. Due to the lack of space, we do not present this chase
procedure in detail but show the basic ideas behind our algorithm
in the following example.

Example 5.2. Let S1 = {P (·, ·), R(·, ·)}, S2 = {S(·, ·), T (·)}
and Σ12 a set consisting of the following st-tgds:

P (x, y) → S(x, y),

R(x, x) → T (x).

Moreover, let I be a positive conditional instance given by:

P (n1, n2) ⊤
R(n1, n2) (n1 = a),

where n1 and n2 are null values and a is a constant. To create
a universal Rpos-solution J , the procedure works as follows. For
the first dependency, it works as the classical chase, that is, it adds
tuple (n1, n2) to SJ with ⊤ as local condition. For the second
dependency, the procedure considers that this dependency should
be fired when condition n1 = n2 holds. In this case, the procedure
also needs to carry along the element-condition n1 = a. Thus, it
adds the tuple (n1) to TJ , but this time the local condition consists
of the conjunction of (n1 = a) with (n1 = n2). Summing up, the
following instance is constructed:

S(n1, n2) ⊤
T (n1) (n1 = a) ∧ (n1 = n2)

It can be shown that this instance is a universal Rpos-solution for I
under M.

5.2 Computing certain answers
A second fundamental problem in data exchange is the task of

computing certain answers to target queries. In our context, this
problem is defined as follows. Given a positive conditional in-
stance I of a schema S and a query Q over S, define Q(I) asT

I∈rep(I) Q(I). Moreover, given a mapping M from a schema
S1 to a schema S2, a positive conditional instance I of S1 and a
query Q over S2, the set of certain answers of Q over I under M,
denoted by certainM(Q, I), is defined as:

\

J : J is an Rpos-solution for I under M

Q(J).

It should be noticed that this definition of certain answers, in the
presence of an incomplete source instance I, coincides with the
definition in [2] for the case of naive instances (which is the repre-
sentation system used in [2]).

Given a data exchange setting M from a schema S1 to a schema
S2, and a k-ary query Q over S2, we consider in this section the
following decision problem:

Problem: CERTAINANSWERS(M, Q)
Input: A positive conditional instance I of S1 and a k-

tuple t of elements from D.
Question: Does t belong to certainM(Q, I)?

In the previous problem, we assume that the data exchange setting
M and the query Q are fixed. Thus, we are interested in the data
complexity of the problem of computing certain answers.

87

It was proved in [13] that for the class of mappings specified
by st-tgds, each universal solution of an instance I can be directly
used to compute the certain answers of any unions of conjunctive
queries. In the following proposition, we show that this result can
be extended to any query if one considers universal Rpos-solutions.

Proposition 5.3 Let M = (S1,S2, Σ12), where Σ12 is a set of

st-tgds, I a positive conditional instance of S1 and Q an arbitrary

query over S2. Then for every universal Rpos-solution J for I
under M, it holds that certainM(Q, I) = Q(J).

In Theorem 5.1, we showed that if a mapping M is specified by
a set of st-tgds, then there exists a polynomial time algorithm that,
given a source instance I, computes a universal Rpos-solution J
for I under M. Moreover, from the results in [17], it is possible
to conclude that for every unions of conjunctive queries Q, there
exists a polynomial time algorithm that, given a positive conditional
instance I, computes Q(I). From these results, we conclude that:

Theorem 5.4 Let M = (S1,S2, Σ12), where Σ12 is a set of st-

tgds, and Q be a union of conjunctive queries over S2. Then

CERTAINANSWERS(M, Q) can be solved in polynomial time.

This result matches the upper bound in [13] for the problem of
computing certain answers to a union of conjunctive queries in a
usual data exchange setting, thus giving more evidence that positive
conditional instances can be used in practical data exchange tools.

We conclude this section by pointing out that Fagin et al. also
showed in [13] that the above polynomial-time upper bound holds
if one considers unions of conjunctive queries with at most one
inequality per disjunct. Here we show the corresponding result for
our framework, which is proved by a nontrivial extension of the
techniques in [13] for the case of positive conditional instances.

Theorem 5.5 Let M = (S1,S2, Σ12), where Σ12 is a set of st-

tgds, and Q be a union of conjunctive queries over S2 with at most

one inequality per disjunct. Then CERTAINANSWERS(M, Q) can

be solved in polynomial time.

5.3 Complexity of recognizing solutions
Let M be a mapping from S1 to S2, and R = (W, rep) a rep-

resentation system. In this section, we study the complexity of ver-
ifying, given a pair (U ,W) of representatives, whether W is an
R-solution of U under a mapping M. That is, we consider the
following decision problem:

Problem: CHECKSOLUTION(M,R)
Input: A pair of representatives U ,W ∈ W of types S1

and S2, respectively.
Question: Is W an R-solution for U under M?

In a traditional data exchange setting, deciding whether an
instance J is a solution for I under a fixed mapping M =
(S1,S2, Σ12) can be solved by checking if (I, J) |= Σ12, which
gives a straightforward polynomial-time procedure when Σ12 is a
set of FO sentences. For the case of naive, positive conditional
and conditional instances, this problem becomes more interesting.
Our first result shows that the complexity for positive conditional
instances is no more than for naive instances, in both cases NP.

Theorem 5.6 Let M = (S1,S2, Σ12), where Σ12 is a

set of st-tgds. Then CHECKSOLUTION(M,Rnaive) and

CHECKSOLUTION(M,Rpos) are both NP-complete.

The following theorem shows that the complexity of the problem
is higher for conditional instances. This gives evidence in favor of
using positive conditional instances instead of conditional instances
as a representation system for st-tgds.

Theorem 5.7 Let M = (S1,S2, Σ12), where Σ12 is a set of st-

tgds. Then CHECKSOLUTION(M,Rcond) is ΠP
2 -complete.

It should be noticed that this result cannot be directly obtained
from [1], since in that paper conditional instances allow global con-

ditions that we do not consider in this paper.

6. METADATA MANAGEMENT WITH

POSITIVE CONDITIONAL INSTANCES
In the previous sections, we have presented a number of results

that give evidence that positive conditional instances are appropri-
ate for data exchange purposes. In this section, we give a step for-
ward in this direction, and show that they are also appropriate for
metadata management purposes.

In the data exchange setting proposed by Fagin et al in [13]
two types of schemas are considered: source and target schemas.
In the former, only the usual instances with complete information
are allowed, while in the latter naive instances are also considered.
This setting has played a key role in the study and development of
schema mapping operators, which are of fundamental importance
in metadata management [7, 8].

Two of the most fundamental operations in metadata manage-
ment are the composition and inversion of schema mappings. The
problem of composing schema mappings was solved in [14] for the
class of mappings specified by st-tgds. More precisely, Fagin et
al. proposed in [14] the language of SO tgds (see Section 6.1 for a
formal definition of this language), and showed that it is the min-

imal class of mappings capable of expressing the composition of
mappings specified by st-tgds [14]. On the other hand, the defi-
nition of an inverse operator has turned out to be a very difficult
problem, and even the definition of a good semantics for this oper-
ator has been the main topic of several papers in the area [12, 15, 6,
16, 5]. Furthermore, people have also realized that the composition
and inverse operators have to be used together in many metadata
management tasks, such as schema evolution [8]. This has brought
more complexity into the picture, as the combined use of the com-
position and inverse operators requires that the target data gener-
ated by a mapping could be used by other mappings as the source
data. This was recognized by Fagin et al. in [16], where the notion
of inversion proposed in [6] was extended to deal with source naive
instances. Nevertheless, even though the language of SO tgds has
proved to be the right language for composing mappings specified
by st-tgds, none of the proposed inverse operators has been prop-
erly assembled with the language of SO tgds. Indeed, SO tgds do
not always admit an inverse under the notions of inversion defined
in [12, 15, 6, 5], and it is not clear whether the notion of inversion
introduced in [16] is appropriate for the language of SO tgds.

Why does the problem of combining the composition and inverse
operators seem to be so difficult? We give strong evidence here that
the reason is that naive instances are not expressive enough to deal
with the spaces of solutions of SO tgds. But, most significantly,
we show here that positive conditional instances can be used to
overcome this limitation, as we prove that they form a strong rep-
resentation system for the class of mappings given by SO tgds, and
that SO tgds admit an inverse under the notion proposed in [6],
if positive conditional instances are allowed in source and target
schemas. It remains an open problem to show whether this inverse
can always be specified with an SO tgd or not.

6.1 Positive conditional instances form a
strong representation system for SO-tgds

A fundamental tool in the study of the composition of schema
mappings is the language of second-order st-tgds (SO tgds [14]),

88

that we define next. Given schemas S1 and S2, an SO tgd from S1

to S2 is a second-order formula of the form:

∃f1 · · · ∃fℓ

`
∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)

´
,

where (1) each fi is a function symbol, (2) each ϕi is a conjunction
of relational atomic formulas of S1 and equality atoms of the form
t = t′, where t and t′ are terms built from x̄i and f1, . . ., fℓ, (3)
each ψi is a conjunction of relational atomic formulas of S2 men-
tioning terms built from x̄i and f1, . . ., fℓ, and (4) each variable in
x̄i appears in some relational atomic formula of ϕi. For example,
the following is an SO tgd:

∃f
`
∀x (E(x) → R(x, f(x))) ∧

∀x (E(x) ∧ x = f(x) → T (x))
´
. (1)

A mapping M from a schema S1 to a schema S2 is said to be
specified by an SO tgd σ12 from S1 to S2

∗, denoted by M =
(S1,S2, σ12), if for every pair of instances I1, I2 of S1 and S2,
respectively, it holds that (I1, I2) ∈ M if and only if (I1, I2) satis-
fies σ12 in the usual second-order logic sense (see [14] for a precise
definition of the semantics of SO tgds).

As our first result, we show that one can efficiently materialize
positive conditional instances for a mapping given by an SO tgd.

Theorem 6.1 Let M = (S1,S2, σ12), where σ12 is an SO tgd.

Then there exists a polynomial-time algorithm, that given a positive

conditional instance I of S1, computes a universal Rpos-solution

for I under M.

As a corollary, we obtain that positive conditional instances are
appropriate for representing the spaces of solutions of SO tgds.

Corollary 6.2 Positive conditional instances form a strong repre-

sentation system for the class of mappings specified by SO tgds.

An important remark about the previous results is that they fol-
low directly from the fact that positive conditional instances form a
strong representation system for the class of mappings specified by
st-tgds (see Theorems 4.4 and 5.1), and the fact that for every map-
ping M = (S1,S2, σ12), where σ12 is an SO tgd, there exists a
finite sequence of mappings M1, . . . ,Mk, each specified by a set
of st-tgds, such that M = M1 ◦ · · · ◦Mk [14]. Indeed, in order to
obtain a universal Rpos-solution for a positive conditional instance
I under M, one can use the techniques described in Section 5 to
construct a sequence I1, . . . , Ik of positive conditional instances
such that: (1) I1 is a universal Rpos-solution for I under M1 and
(2) Ii is a universal Rpos-solution for Ii−1 under Mi, for every
i ∈ {2, . . . , k}. In this case one concludes that Ik is a universal
Rpos-solution for I under M since M = M1 ◦ · · · ◦Mk. Notice
that this approach cannot be used to prove similar results within
the data exchange setting proposed by Fagin et al. [13], as naive
instances do not form a strong representation system for the class
of mappings specified by st-tgds.

6.2 Positive conditional instances as first class
citizens

In the next sections, we study the composition and inversion of
schema mappings in the presence of positive conditional instances.
But for doing this, we have to show first how positive conditional
instances are included as first class citizens in schema mappings.

We have defined mappings as sets of pairs of instances with com-
plete information. Here we do not deviate from this definition and,

∗
We consider a single SO tgd in this definition as this class of dependencies

is closed under conjunction (thus, a finite set of SO tgds is equivalent to a
single SO tgd).

thus, we introduce a new terminology to refer to mappings that also
contain positive conditional instances. In general, a positive condi-

tional mapping, or just PC-mapping, from a schema S1 to a schema
S2 is a set of pairs (I1, I2), where I1 is a positive conditional in-
stance of S1 and I2 is a positive conditional instance of S2. In
this section, we will be mostly dealing with PC-mappings that are
generated from a usual mapping by using the notion of solution for
positive conditional instances. More precisely, given a (usual) map-
ping M from a schema S1 to a schema S2, define the PC-mapping
generated from M, denoted by PC(M), as:

{(I1, I2) | I1, I2 are positive conditional

instances of S1 and S2, respectively, and

I2 is an Rpos-solution for I1 under M}.

That is, PC(M) is obtained from M by including the pairs (I1, I2)
of positive conditional instances such that I2 is a solution for I1

under M, according to the notion of solution for instances with
incomplete information introduced in this paper.

Given a mapping M, PC(M) only includes positive conditional
instances in the source and target schemas. We have decided to ex-
clude the usual instances with complete information from PC(M),
as if M is specified by a set of st-tgds (and, more generally, by an
SO tgd), then the relationship between the usual instances accord-
ing to M is captured by PC(M). More precisely, an instance I
of a schema S can be considered as a positive conditional instance
without null values and with the element-condition ⊤ associated to
every fact. Then it is possible to prove the following.

Proposition 6.3 Let M be a mapping from a schema S1 to a

schema S2 that is closed-down on the left and closed-up on the

right. Then for every pair of instances I1, I2 of S1 and S2, respec-

tively, it holds that (I1, I2) ∈ M iff (I1, I2) ∈ PC(M).

In this proposition, a mapping M is said to be closed-down on the
left if for every (I, J) ∈ M and instance I ′ such that I ′ ⊆ I ,
it holds that (I ′, J) ∈ M, and it is said to be closed-up on the
right if for every (I, J) ∈ M and instance J ′ such that J ⊆ J ′, it
holds that (I, J ′) ∈ M. For example, every mapping specified by
a set of st-tgds satisfies these conditions, as well as every mapping
specified by an SO tgd.

6.3 Composition in the presence of positive
conditional instances

In [14], SO tgds were introduced to deal with the problem of
composing schema mappings. In fact, it was proved in [14] that (1)
the composition of a finite number of mappings specified by st-tgds
can always be specified by an SO tgd, (2) that SO tgds are closed
under composition, and (3) that every SO tgd specifies the compo-
sition of a finite number of mappings specified by st-tgds. Thus,
SO tgds are a natural candidate to study the composition of schema
mappings including positive conditional instances. We confirm this
intuition by showing that SO tgds satisfy the conditions (1), (2) and
(3) for the case of PC-mappings. Notice that for mappings M12

and M23, PC(M12) and PC(M23) are binary relations and, thus,
the composition PC(M12)◦PC(M23) is defined as the usual com-
position of binary relations. More precisely, PC(M12)◦PC(M23)
is the set of all pairs of positive conditional instances (I1, I3)
for which there exists a positive conditional instance I2 such that
(I1, I2) ∈ PC(M12) and (I2, I3) ∈ PC(M23). In this study, the
following lemma is the key ingredient.

Lemma 6.4 Let M12 = (S1,S2, σ12) and M23 = (S2,S3,

σ23), where σ12 and σ23 are SO tgds. Then PC(M12 ◦ M23) =
PC(M12) ◦ PC(M23).

89

From the results in [14] and Lemma 6.4, it is straightforward to
prove the desired results.

Corollary 6.5

(1) For every i ∈ {1, . . . , k − 1}, let Mi i+1 = (Si,Si+1,

Σi i+1) with Σi i+1 a set of st-tgds. Then there exists a map-

ping M1k = (S1,Sk, σ1k), where σ1k is an SO tgd, such

that PC(M12) ◦ · · · ◦ PC(Mk−1 k) = PC(M1k).

(2) Let M12 = (S1,S2, σ12) and M23 = (S2,S3, σ23), where

σ12 and σ23 are SO tgds. Then there exists a mapping

M13 = (S1,S3, σ13), where σ13 is an SO tgd, such that

PC(M12) ◦ PC(M23) = PC(M13).

(3) Let M = (S1,S2, σ12), where σ12 is an SO tgd. Then

there exists a sequence M1, M2, . . ., Mk of mappings,

each specified by a set of st-tgds, such that PC(M) =
PC(M1) ◦ PC(M2) ◦ · · · ◦ PC(Mk).

We have shown that SO tgds are the right language to deal with
the composition of schema mappings including positive conditional
instances. Interestingly, we show in the following section that the
inclusion of this type of instances also allow mappings specified
with SO tgds to become invertible.

6.4 Inversion in the presence of positive con-
ditional instances

We consider in this section the notion of mapping inversion in-
troduced in [6]. In that paper, the authors give a formal definition
for what it means for a mapping M′ to recover sound information

with respect to a mapping M. Such a mapping M′ is called a re-
covery of M in [6]. Given that, in general, there may exist many
possible recoveries for a given mapping, an order relation on re-
coveries is introduced in [6] that naturally gives rise to the notion
of maximum recovery, which is a mapping that brings back the
maximum amount of sound information.

Let S1, S2 be relational schemas, P12 a PC-mapping from S1

to S2 and P21 a PC-mapping from S2 to S1. Then P21 is said to
be a recovery of P12 if for every positive conditional instance I1

of S1, it holds that (I1, I1) ∈ P12 ◦ P21. Moreover, P21 is said
to be a maximum recovery of P12 if P21 is a recovery of P12 and
for every PC-mapping P ′

21 that is a recovery of P12, it holds that
P12 ◦ P21 ⊆ P12 ◦ P

′
21. That is, the smaller the space of solutions

generated by P12 ◦ P21, the more informative P21 is about the
initial source instances.

It was shown in [5] that there exist mappings specified by SO
tgds that admit neither a Fagin-inverse [12] nor a quasi-inverse [15]
nor a maximum recovery [6]. The same has been shown for the no-
tion of CQ-maximum recovery studied in [5], and it is not clear
whether the notion of inversion introduced in [16] is appropriate
for the language of SO tgds. Thus, up to this point, no inverse no-
tion has shown to be appropriate for the fundamental language of
SO tgds. As our most important result regarding metadata manage-
ment, we show that the situation is completely different if positive
conditional instances are allowed in source and target schemas.

Theorem 6.6 Let M = (S1,S2, σ12), where σ12 is an SO tgd.

Then PC(M) admits a maximum recovery.

7. KNOWLEDGE BASES
In this section, we apply our framework for representation sys-

tems to knowledge bases. In particular, we introduce the novel no-
tion of exchanging implicit knowledge via a schema mapping. A
knowledge base is composed of explicit data, in our context given
by a database instance, and implicit data usually given by a set of

rules specified in some logical formalism. Examples of knowledge
bases are Datalog programs (where the explicit data is called ex-

tensional database and the implicit data intentional database), and
Description Logics specifications (where the explicit data is called
ABox and the implicit data TBox). Let us motivate this section with
a simple example.

Example 7.1. Consider a schema S1 consisting of relations F (·, ·),
M(·, ·), P (·, ·) and GP(·, ·), which are used to store genealogical
data (F stands for father, M for mother, P for parent, and GP for
grandparent). Consider the following set Σ1 of rules that states
some natural implicit knowledge over S1:

F (x, y) → P (x, y)

M(x, y) → P (x, y)

P (x, y) ∧ P (y, z) → GP(x, z)

Thus, if I = {F (a, b), M(c, b), F (b, d)}, then from I and Σ1 one
can infer that a and c are parents of b, and that a and c are grand-

parents of d. That is, one can infer the atoms P (a, b), P (c, b),
GP(a, d), and GP(c, d). Now assume that one needs to exchange
data from S1 to a new schema S2 = {F ′(·, ·), GP′(·, ·)} by using
the following set Σ12 of st-tgds:

F (x, y) → F ′(x, y),

GP(x, y) → GP
′(x, y)

In this case, one would like to create a knowledge base over S2 that
represents both the explicit data in I and the implicit data given by
Σ1. Thus, one could try first to represent Σ1 over S2 according to
the relationship established by Σ12. Given that one is copying F
and GP through Σ12, the following rule over S2 is a natural way of
representing the implicit knowledge in Σ1 that is transferred to S2

through Σ12:

F ′(x, y) ∧ F ′(y, z) → GP
′(x, z),

This dependency states that if in schema S2 we have that x is the
father of y and that y is the father of of z, then x should be a grand
parent of z. Let Σ2 be consisting of the above rule. If one considers
Σ2 as the implicit knowledge over S2, then one can materialize the
instance J = {F ′(a, b), F ′(b, d), GP′(c, d)} to obtain a natural
knowledge base over S2 that represents the initial knowledge base
given by I and Σ1. Notice that the fact GP′(c, d) needs to be ex-
plicitly included in J , since it comes from an atom that is inferred
from predicate M in S1, and one does not have any information
about M in S2. On the other hand, one does not need to include in
J the fact GP′(a, d), as it can be inferred from J and Σ2.

This example shows that for the case of knowledge bases, one
might be interested in exchanging not only explicit data but also
the implicit information in the source knowledge base. As we will
see, in general one would have many possibilities when deciding
what to make explicit and what to keep implicit when exchanging
knowledge bases.

Next we formalize the notion of knowledge base used in this pa-
per, and introduce the notion of knowledge-base solution for a map-
ping. A knowledge base over a schema S is a pair (I, Σ), where
I ∈ INST(S) and Σ is a set of logical sentences over S. Given a
knowledge base (I, Σ), we denote by MOD(I, Σ) the set of possi-
ble models of this base, which are all the instances that contain the
explicit data in I and satisfy Σ:

MOD(I, Σ) = {K ∈ INST(S) | I ⊆ K and K |= Σ}.

Let K be the class of all knowledge bases (over all possible re-
lational schemas). Then the pair K = (K, MOD) is a represen-
tation system, and thus, we can apply Definition 3.1 to obtain a

90

notion of solution for knowledge bases. More precisely, given a
mapping M from S1 to S2 and knowledge bases (I, Σ1), (J, Σ2)
over S1 and S2, respectively, we have that (J, Σ2) is a K-solution
for (I, Σ1) under M if for every L ∈ MOD(J, Σ2) there exists an
instance K ∈ MOD(I, Σ1) such that (K, L) ∈ M, or equivalently
MOD(J, Σ2) ⊆ SOLM(MOD(I, Σ1)). In this case, we also call
call (J, Σ2) a knowledge-base solution of (I, Σ1) under M.

Example 7.2. Let (I, Σ1), (J, Σ2) and M = (S1,S2, Σ12) be
defined as in Example 7.1. Then it can be shown that (J, Σ2) is a
knowledge-base solution of (I, Σ1) under the mapping M.

Many algorithmic problems arise in the context of knowledge
bases and schema mappings. In Section 7.1, we study the fun-
damental problem of checking, given a schema mapping M and
knowledge bases K1 and K2, whether K2 is a knowledge-base so-
lution for K1 under M. In Section 8, we study the novel notion of
exchanging knowledge, that is, the problem of materializing (good)
target knowledge bases. But before considering these problems, we
introduce some notation that will be extensively used in the rest of
the paper. We use the standard notion of chase of an instance with
a set of full tgds (see [23] for a formalization of the chase). Let
S1 and S2 be disjoint schemas, and let I be an instance of S1. For
a set of full tgds Σ1 over a schema S1, we denote by chaseΣ1

(I)
the result of chasing I with Σ1. Moreover, let Σ12 be a set of full
st-tgds from S1 to S2, and J∅ the empty instance of S2. Notice
that the result of chasing (I, J∅) with Σ12 is an instance (I, J⋆)
of S1 ∪ S2. We denote by chaseΣ12

(I) the resulting instance J⋆

(which is the standard notation in the data exchange context [13]).
Thus, chaseΣ1

(I) is an instance of S1, while chaseΣ12
(I) is an

instance of S2.

7.1 Complexity of recognizing solutions
Given a mapping M from S1 to S2, and a representation sys-

tem R = (W, rep), the problem CHECKSOLUTION(M,R) was
defined in Section 5.3 as the problem of verifying, given U ∈ W

of type S1 and V ∈ W of type S2, whether V is an R-solution
of U under M. In this section, we study the complexity of this
problem for the class of mappings specified by st-tgds and for the
representation system K of knowledge bases.

Two representation systems that are of particular interest in our
study are the systems of tgds knowledge bases and full-tgds knowl-

edge bases, denoted by Ktgd = (Ktgd, MOD), and Kfull-tgd =
(Kfull-tgd, MOD), respectively. More specifically, Ktgd is the sys-
tem obtained by restricting K to the class of all knowledge bases
(I, Σ) with Σ a set of tgds, and Kfull-tgd the representation system
obtained by restricting K to the class of knowledge bases (I, Σ)
with Σ a set of full tgds.

Our first theorem is an undecidability result for knowledge bases
that are specified by general tgds. The undecidability result holds
even for a fixed schema mapping M specified by full st-tgds.

Theorem 7.3 There exists a mapping M = (S1,S2, Σ12), with

Σ12 a set of full st-tgds, for which CHECKSOLUTION(M,Ktgd) is

undecidable.

Theorem 7.3 tells us that to obtain decidability results, we
have to focus on some fragments of Ktgd. In what follows, we
study the complexity of the problem for the class of knowledge
bases given by full tgds. We start by stating the complexity of
CHECKSOLUTION(M,Kfull-tgd) when the source implicit knowl-
edge or the target implicit knowledge is assumed to be fixed. In the
former case, we assume that we are given a fixed set Σ1 of full tgds
over the source schema and the problem is to check, given a source
instance I and a target knowledge base (J, Σ2), whether (J, Σ2) is

a knowledge-base solution for (I, Σ1) under M. The latter case is
defined analogously.

Theorem 7.4 Let M = (S1,S2, Σ12), where Σ12 is a set of st-

tgds. Then the problem CHECKSOLUTION(M,Kfull-tgd) is: (1) in

PTIME if both source implicit knowledge and target implicit knowl-

edge are fixed, (2) NP-complete if source implicit knowledge is

fixed, (3) coNP-complete if target implicit knowledge is fixed.

In the general case, where the implicit knowledge is not assumed to
be fixed, we obtain that the problem is complete for ∆P

2 [O(log n)],
which is the class of all problems that can be decided in polynomial
time by a deterministic Turing machine that is allowed to make a
logarithmic number of calls to an NP oracle [25].

Theorem 7.5 Let M = (S1,S2, Σ12), where Σ12 is a set of

st-tgds. Then CHECKSOLUTION(M,Kfull-tgd) is ∆P
2 [O(log n)]-

complete. The problem is ∆P
2 [O(log n)]-hard even if M is speci-

fied by a set of full st-tgds.

There are only a few natural problems that are complete for
∆P

2 [O(log n)]. It is interesting that a complete problem for this
class arises in the simple framework of data exchange. Some other
problems in the context of databases and logic programming that
are complete for this class can be found in [11, 9].

A natural question at this point is whether one can obtain decid-
ability for a representation system that is in between Kfull-tgd and
Ktgd. An obvious candidate would be the class of knowledge bases
defined by weakly acyclic sets of tgds [10, 13]. We leave for future
research the study of the complexity in this case.

8. KNOWLEDGE EXCHANGE
The most important problem in data exchange is the problem

of materializing a target solution for a given source instance. In
the previous section, we have extended the notion of solution for
knowledge bases and, thus, it is natural to consider the problem of
knowledge exchange, that is, the problem of materializing a target
knowledge base that correctly represents a source knowledge base
according to a given mapping. To this end, the first question to an-
swer is what is a good knowledge base to materialize. In Section
8.1, we consider the notion of universal K-solution that is obtained
by applying Definition 3.2 to the representation system K of knowl-
edge bases. In Section 8.2, we show that there are other natural
K-solutions that extend universal K-solutions and that can also be
considered good alternatives to materialize. We present algorithms
for computing such solutions in Section 8.3.

Given the undecidability results about knowledge bases specified
by (non-full) tgds, proved in Section 7.1, we focus our investigation
on full tgds. It is important to notice that this case includes some
of the motivating scenarios for our investigation, such as RDFS
graphs [19].

8.1 Universal K-solutions
Let K = (K, MOD) be the representation system of knowledge

bases. We can directly apply the notion of universal K-solution to
define a class of good solutions. More precisely, we obtain from
Definition 3.2 that (J, Σ2) is a universal K-solution of (I, Σ1) un-
der a mapping M if

MOD(J, Σ2) = SOLM(MOD(I, Σ1)). (2)

It is easy to show that for M = (S1,S2, Σ12), where Σ12 is a set
of full st-tgds, and for every set Σ1 of full tgds over S1, the knowl-
edge base (chaseΣ12

(chaseΣ1
(I)), Σ2) with Σ2 = ∅, is always a

universal K-solution of (I, Σ1). Notice that this induces a straight-

91

forward procedure to compute a good solution: we just chase I
with Σ1 and then with Σ12. Thus we obtain the following result.

Proposition 8.1 Let M = (S1,S2, Σ12), with Σ12 a set of full

st-tgds. There exists an exponential-time algorithm that, given a

knowledge base (I, Σ1) over S1, with Σ1 a set of full tgds, pro-

duces a polynomial-size universal K-solution of (I, Σ1) under M.

Moreover, it immediately follows from equation (2) that universal
K-solutions can be used to compute the certain answers of an arbi-
trary query Q over (I, Σ1) under a mapping M.

8.2 Minimal knowledge-base solutions
The universal K-solutions generated in the previous section use

the empty set as the implicit knowledge in the target. We argue in
this section that there could be other natural K-solutions that may
not be universal but still desirable to materialize, mostly because
they make good use of the implicit knowledge in the target schema.

Example 8.2. In Example 7.1, we give a K-solution (J, Σ2) that
can be considered as a good solution. However, we have that
MOD(J, Σ2) Ã SOLM(MOD(I, Σ1)) and, thus, (J, Σ2) is not a
universal K-solution for (I, Σ1). The reason is that mapping M
is closed-up on the right and, hence, if K ∈ SOLM(MOD(I, Σ1))
and K ⊆ K′, then K′ ∈ SOLM(MOD(I, Σ1)). On the other hand,
MOD(J, Σ2) does not satisfy this property. To see why this is the
case, consider the instance K = J ∪ {GP′(a, d)}. It is easy to see
that K ∈ MOD(J, Σ2). But if we now consider the instance K′ =
K∪{F ′(b, e)}, then we have that K ⊆ K′ but K′ /∈ MOD(J, Σ2)
since K′ does not satisfy rule F ′(x, y) ∧ F ′(y, z) → GP′(x, z)
(given that F ′(a, b), F ′(b, e) ∈ K′ but GP′(a, e) /∈ K′).

In what follows, we introduce a new class of good K-solutions
that captures the intuition in Example 7.1. But before we need to
introduce some terminology. Let X be a set of instances over a
schema S. We say that X is closed-up if whenever K ∈ X and
K′ is an instance of S such that K ⊆ K′, we have that K′ ∈ X .
Moreover, we define the set of minimal instances of X as:

Min(X) = {K ∈ X | there is no K′ ∈ X such that K′
Ã K}.

A closed-up set of instances is characterized by its set of minimal
instances, as if X and Y are closed-up, then X = Y if and only if
Min(X) = Min(Y).

For every mapping M specified by a set of st-tgds, and more
generally for every mapping that is closed-up on the right, and for
every knowledge base (I, Σ1), it holds that SOLM(MOD(I, Σ1))
is a closed-up set. Thus, since SOLM(MOD(I, Σ1)) is essen-
tially characterized by its minimal instances, we can naturally re-
lax equation (2) by not requiring that MOD(J, Σ2) is equal to
SOLM(MOD(I, Σ1)), but instead that both sets coincide in their
sets of minimal instances. Notice that by doing this we retain the
same query answering properties as universal K-solutions when
considering monotone queries. All the above discussion suggests
the following definition of minimal knowledge-base solution. In the
definition, we use X ≡Min Y to denote that Min(X) = Min(Y).

Definition 8.3 Let M be a mapping from a schema S1 to a schema

S2, and (I, Σ1), (J, Σ2) knowledge bases over S1 and S2, re-

spectively. Then (J, Σ2) is a minimal knowledge-base solution for

(I, Σ1) under M if:

MOD(J, Σ2) ≡Min SOLM(MOD(I, Σ1)).

The following result is a simple yet useful characterization of mini-
mal knowledge-base solutions for the case of full tgds. It also gives
evidence of the naturalness of our definition of good solution.

Proposition 8.4 Let M = (S1,S2, Σ12), and (I, Σ1), (J, Σ2) be

knowledge bases over S1 and S2, respectively. If Σ12, Σ1 and Σ2

are sets of full tgds, then the following are equivalent:

(1) (J, Σ2) is a minimal knowledge-base solution of (I, Σ1).

(2) chaseΣ12
(chaseΣ1

(I)) = chaseΣ2
(J).

Notice that every universal K-solution is a minimal knowledge-
base solution, but, as the following example shows, the opposite
does not hold in general.

Example 8.5. Let M = (S1,S2, Σ12), (I, Σ1), and (J, Σ2) be as
in Example 7.1. We have that chaseΣ1

(I) is the instance:

I ′ = { F (a, b), M(c, b), F (b, d), P (a, b),
P (c, b), P (b, d), GP(a, d), GP(c, d) }.

If we compute chaseΣ12
(I ′), we obtain the instance {F ′(a, b),

F ′(b, d), GP′(a, d), GP′(c, d)}. If we now compute chaseΣ2
(J),

we obtain the instance {F ′(a, b), F ′(b, d), GP′(a, d), GP′(c, d)}.
Thus, given that chaseΣ12

(chaseΣ1
(I)) = chaseΣ2

(J), we con-
clude from Proposition 8.4 that (J, Σ2) is a minimal knowledge-
base solution for (I, Σ1) .

8.3 Computing minimal knowledge-base
solutions

As we pointed out in the previous section, when doing knowl-
edge exchange, it is desirable to materialize target knowledge bases
with as much implicit knowledge as possible. Yet there is another
requirement that one would like to impose to this process. Consider
a mapping M and a source knowledge base (I, Σ1). In the compu-
tation of a solution (J, Σ2) for (I, Σ1), it would be desirable that
the resulting set Σ2 depends only on Σ1 and M, that is, one would
like that the implicit knowledge in the target depends only on the
mapping and the implicit knowledge in the source. This motivates
the following definition of a safe set of dependencies.

Definition 8.6 Let M = (S1,S2, Σ12), where Σ12 is a set of full

st-tgds, and Σ1 be a set of full tgds over S1. Then a set Σ2 of

dependencies over S2 is safe for Σ1 and M if for every instance

I of S1, there exists an instance J of S2 such that (J, Σ2) is a

minimal knowledge-base solution of (I, Σ1) under M.

There are many safe sets. In particular, Σ2 = ∅ is safe for every
Σ1 and M, but it is obviously useless as implicit knowledge. In
general, one would like to materialize a safe set Σ2 that is as in-
formative as possible. In this section, we show how to compute
such safe sets and how to use them to materialize knowledge-base
solutions. More specifically, we show in Section 8.3.1 that there
exists an algorithm that computes optimal safe sets; with input Σ1

and M, the algorithm computes a set Σ2 such that Σ2 is safe for
Σ1 and M, and for every other safe set Σ′

2 for Σ1 and M, it holds
that Σ2 logically implies Σ′

2. The output of the algorithm is a set
of second-order logic sentences, which motivate us to consider in
Section 8.3.1 the problem of generating nontrivial safe sets that, al-
though not optimal, can be expressed in a much simpler language.
Finally, we propose in Section 8.3.2 a strategy that uses safe sets to
compute minimal knowledge-base solutions.

8.3.1 Computing safe implicit knowledge

Let M be a mapping from S1 to S2, Σ1 a set of full tgds over S1

and Σ2 an arbitrary set of dependencies over S2. From now on, we
say that Σ2 is optimal-safe for Σ1 and M if: (1) Σ2 is safe for Σ1

and M, and (2) for every Σ′
2 that is safe for Σ1 and M, it holds

that Σ2 implies Σ′
2. In our first result, we show that there exists an

algorithm for computing optimal-safe sets.

92

Theorem 8.7 There exists a polynomial-time algorithm OPTI-
MALSAFE that, given M = (S1,S2, Σ12), where Σ12 is a set of

full st-tgds, and a set Σ1 of full tgds over S1, computes a set Σ2 of

second-order logic sentences that is optimal-safe for Σ1 and M.

A natural question at this point is whether one could modify
OPTIMALSAFE to return a set of FO-sentences. Unfortunately, the
following theorem gives a negative answer to this question.

Theorem 8.8 There exist M = (S1,S2, Σ12), where Σ12 is a set

of full st-tgds, and a set Σ1 of full tgds over S1 such that there is

no set Σ2 of FO-sentences that is optimal-safe for Σ1 and M.

Theorem 8.8 shows that FO is not enough, in general, to specify
an optimal-safe set of dependencies. Nevertheless, in practice one
might be more interested in generating nontrivial safe sets that, al-
though not optimal, can be expressed in a simple language. The
ideal would be to have nontrivial safe sets specified by full tgds or
a mild extension of full tgds. In what follows, we present an algo-
rithm that, given a mapping M specified by a set of full st-tgds and
an acyclic set Σ1 of full tgds over the source schema, generates a
set Σ2 that is safe for Σ1 and M, and which is specified by a set of
full tgds with inequalities in their premises.

A set Σ of full tgds is acyclic if there exists a function that assigns
a natural number to each predicate symbol in Σ in such a way that
for every σ ∈ Σ, if P is a relation symbol in the premise of σ and R
is the relation symbol in the conclusion of σ, then f(P) < f(R).
A well-know property of an acyclic set Σ of full tgds is that it has
a finite unfolding; for every relational atom R(x̄) in the conclusion
of a dependency of Σ, there exists a formula α(x̄) in UCQ= such
that for every instance I , it holds that R(ā) is in chaseΣ(I) if and
only if α(ā) holds in I . The unfolding of Σ, that we denote by
Σ+, is constructed by first computing α(x̄) for every R(x̄) in the
conclusion of a tgd in Σ, then adding β(x̄) → R(x̄) to Σ+ for
every β(x̄) in CQ= that is a disjunct in α(x̄), and then eliminating
equalities by using variable substitutions.

To present our algorithm, we need to introduce some terminol-
ogy. Given a mapping M = (S1,S2, Σ12) and a query Q over
S1, we say that Q is target rewritable under M if there exists a
query Q′ over S2 such that for every instance I of S1, it holds that
Q(I) = certainM(Q′, I). It is implicit in [4] that if Σ12 is a set of
full tgds and Q is a conjunctive query, then it is decidable in coN-
EXPTIME whether Q is target rewritable (see Theorems 4.1 and
4.3 in [4]). Moreover, from the results in [4], we know that there ex-
ists a procedure TREW(M, Q) that computes a query in UCQ=,6=

that is a target rewriting of Q under M (if such a rewriting exists).
Besides, we also need a procedure to compose full st-tgds. In [14],
the authors show that there exists a procedure COMPOSEFULL that
given sets Σ12 and Σ23 of full st-tgds from a schema S1 to a schema
S2 and from S2 to a schema S3, respectively, computes a set Σ13

of full st-tgds from S1 to S3 such that (I, J) |= Σ13 if and only if
there exists K such that (I, K) |= Σ12 and (K, J) |= Σ23. It can
be easily shown that if Σ12 is a set of full st-tgds with inequalities in
the premises, then COMPOSEFULL returns a set of full st-tgds with
inequalities in the premises that defines the composition of Σ12 and
Σ23. With procedures TREW and COMPOSEFULL, we have all the
necessary ingredients for our algorithm.

Algorithm: FULLSAFE(M, Σ1)

Input: M = (S1,S2, Σ12), where Σ12 is a set of full st-tgds, and
an acyclic set Σ1 of full tgds over S1.

Output: A set Σ2 of full tgds with inequalities over S2 that is safe for
Σ1 and M.

1. Construct a set of formulas Σ+
1 by unfolding Σ1.

2. Construct a set Σ′ of full st-tgds with inequalities from S2 to S1 as

follows. Begin with Σ′ = ∅. For every tgd α(x̄) → R(x̄) in Σ+
1 do

the following:
2.1. If α(x̄) is target rewritable under M, then let β(x̄) be the query in

UCQ=,6= over S2 that is the output of TREW(M, α(x̄)). For every
disjunct γ(x̄) in β(x̄) add to Σ′ the dependency γ(x̄) → R(x̄) (and
eliminate equalities by using variable substitutions).

3. Let Ŝ2 be a copy of S2, and Σ′
12 the set of full st-tgds from S1 to Ŝ2

obtained from Σ12 by replacing every R ∈ S2 by R̂.
4. Let Σ′′ be the set of full st-tgds with inequalities from S2 to Ŝ2 that is

obtained as the output of COMPOSEFULL(Σ′, Σ′
12).

5. Let Σ2 be the set of formulas over S2 obtained from Σ′′ by replacing

every R̂ ∈ Ŝ2 by R. Return Σ2.

Theorem 8.9 FULLSAFE(M,Σ1) computes a set Σ2 of full tgds

with inequalities in the premises which is safe for Σ1 and M.

Example 8.10. Let M = (S1,S2, Σ12) and Σ1 be as defined in
Example 7.1. It is not difficult to see that dependency σ given by

∃y(F (x, y) ∧ F (y, z)) → GP(x, z)

is in Σ+
1 . Now the query given by ∃y (F (x, y)∧ F (y, z)) is target

rewritable under M, and its rewriting is ∃y (F ′(x, y) ∧ F ′(y, z)).
Thus, in Step 2 of FULLSAFE, we add dependency:

∃y(F ′(x, y) ∧ F ′(y, z)) → GP(x, z)

to Σ′. In the set Σ′
12 created in Step 3, we have the dependency:

GP(x, z) → dGP′(x, z).

Thus, the output of COMPOSEFULL(Σ′, Σ′
12) contains the depen-

dency ∃y(F ′(x, y) ∧ F ′(y, z)) → dGP′(x, z), which implies that:

∃y(F ′(x, y) ∧ F ′(y, z)) → GP
′(x, z) (3)

is in the output of FULLSAFE(M,Σ1). In fact, it can be proved
that the set Σ2 returned by FULLSAFE(M, Σ1) is logically equiv-
alent to the set consisting of dependency (3).

8.3.2 Using safe implicit knowledge to compute min-
imal knowledge-base solutions

For a mapping M and a source knowledge base (I, Σ1), a minimal
knowledge-base solution of (I, Σ1) consists of an instance J and
a set Σ2 of dependencies. Up to this point, we have described two
alternative algorithms that compute the set Σ2 from Σ1 and M. In
this section, we propose a strategy to compute instance J .

Let M = (S1,S2, Σ12), where Σ12 is a set of full st-tgds, and
(I, Σ1) a knowledge base over S1, where Σ1 is a set of full tgds.
As we pointed out before, J = chaseΣ12

(chaseΣ1
(I)) can always

be used as the explicit data in a minimal knowledge-base solution
of (I, Σ1). However, such an instance does not need to make use
of any implicit knowledge and, thus, it does not take advantage of
any of the algorithms proposed in the previous section for com-
puting safe sets. In fact, given these algorithms, one would expect
that some parts of the instance chaseΣ1

(I) are not necessary given
the target implicit knowledge. In what follows, we propose an ap-
proach that given (I, Σ1), M and a safe set Σ2 for Σ1 and M,
computes an instance J that makes use of the implicit knowledge
in Σ2. More precisely, the approach first constructs a minimal set
Σ′

1 of full tgds such that for every instance I1 of S1, it holds that:

(C1) chaseΣ′
1
(I1) is contained in chaseΣ1

(I1), and

(C2) (chaseΣ12
(chaseΣ′

1
(I1)), Σ2) is a minimal knowledge-base

solution of (I1, Σ1).

Then for the input knowledge base (I, Σ1), it materializes knowl-
edge base (chaseΣ12

(chaseΣ′
1
(I)), Σ2). Notice that in the previ-

ous approach, the minimal set Σ′
1 can be used for any source knowl-

edge base (I, Σ1). This is an important feature of our proposal, as

93

the computation of Σ′
1 only depends on Σ1, M and Σ2, which are

usually much smaller than the source explicit data. Besides, this is
the most typical scenario in practice [19, 24], where for a specific
domain the rules in a knowledge base remains unchanged, while
the explicit data changes from one repository to another.

We now present the algorithm that given M, Σ1 and Σ2 as
above, returns a set Σ′

1 of full tgds satisfying conditions (C1) and
(C2). In the algorithm, we assume that Σ1 is an acyclic set of full
tgds, as in this case the problem of verifying whether conditions
(C1) and (C2) hold for every instance I1 of S1 is decidable in ex-
ponential time.

Algorithm: MINIMIZE(M, Σ1, Σ2)

Input: M = (S1,S2, Σ12), where Σ12 is a set of full st-tgds, an
acyclic set Σ1 of full tgds, and a set Σ2 of full tgds with
inequalities that is safe for Σ1 and M.

Output: A minimal set Σ′
1 that satisfies conditions (C1) and (C2) for

every instance I1 of S1.

1. Let Σ+
1 be the set obtained by unfolding Σ1, and Γ = Σ+

1 .
2. If there exists σ ∈ Γ such that the set Σ′

1 = Γr{σ} satisfies conditions
(C1) and (C2) for every instance I1 of S1, then remove σ from Γ and
repeat Step 2.

3. Let Σ′
1 = Γ, and return Σ′

1.

Notice that algorithm MINIMIZE can compute different outputs de-
pending on the order in which the dependencies in Γ are chosen in
Step 2. Also notice that we are searching for a minimal set in order
to minimize the explicit data materialized in the target. Putting to-
gether procedures FULLSAFE and MINIMIZE, we can give a com-
plete strategy to compute minimal knowledge-base solutions.

Theorem 8.11 Let M = (S1,S2, Σ12), where Σ12 is a set of

full st-tgds, and Σ1 an acyclic set of full tgds over S1. Moreover,

let Σ2 be the output of FULLSAFE(M, Σ1), and Σ′
1 the output of

MINIMIZE(M, Σ1, Σ2). Then for every instance I of S1 it holds

that
`
chaseΣ12

(chaseΣ′
1
(I)), Σ2

´
is a minimal knowledge-base

solution of (I, Σ1) under M.

Example 8.12. Let M = (S1,S2, Σ12) and Σ1 be as in
Example 7.1. From Example 8.10, we know that the output
of FULLSAFE(M,Σ1) is the set Σ2 consisting of dependency
F ′(x, y) ∧ F ′(y, z) → GP′(x, z). It can be proved that there ex-
ists an order over the dependencies in Σ+

1 such that the output of
MINIMIZE(M,Σ1, Σ2) is the following set Σ′

1 of dependencies:

M(x, y) → P (x, y)

P (x, y) ∧ P (y, z) → GP(x, z)

F (x, y) ∧ P (y, z) → GP(x, z)

P (x, y) ∧ F (y, z) → GP(x, z)

Consider now the source instance I of Example 7.1, that is,
I = {F (a, b), M(c, b), F (b, d)}. If we chase I with Σ′

1, we ob-
tain instance I ′ = {F (a, b), M(c, b), F (b, d), P (c, b), GP(c, d)}.
If we now chase I ′ with Σ12, we obtain the instance J =
{F ′(a, b), F ′(b, d), GP′(c, d)}. Thus, we conclude from Theo-
rem 8.11 that (J, Σ2) is a minimal knowledge-base solution for
(I, Σ1) under M. Notice that this is exactly the solution that we
considered as a good solution in Example 7.1.

9. CONCLUDING REMARKS
We have presented a framework to exchange data beyond the usual
setting in which instances are considered to have complete infor-
mation. We showed the robustness of our proposal by applying
it to the problems of exchanging incomplete information and ex-
changing knowledge bases. In the former case, we proved several
results regarding expressiveness, query answering and complexity

of materializing solutions. In particular, we made the case that posi-
tive conditional instances are the right representation system to deal
with the inherent incompleteness that emerges when exchanging
data by using st-tgds. We also applied our framework to define the
novel notion of knowledge exchange. This can be considered as
a starting point for formalizing and studying the exchange of data
in the Semantic Web, in particular, the exchange of RDFS graphs
and OWL specifications. Many problems remain open. In partic-
ular, we would like to study knowledge exchange under mappings
defined by non full st-tgds, which will probably require combining
the results for knowledge bases and positive conditional instances.

Acknowledgments: We thank the anonymous referees for many helpful

comments. Arenas was supported by Fondecyt grant 1090565, and Reutter

by EPSRC grant G049165 and FET-Open project FoX.

10. REFERENCES
[1] S. Abiteboul, P. C. Kanellakis, and G. Grahne. On the representation

and querying of sets of possible worlds. TCS, 78(1):158–187, 1991.

[2] F. Afrati, C. Li, and V. Pavlaki. Data exchange: Query answering for
incomplete data sources. In InfoScale, 2008.

[3] L. Antova, C. Koch, and D. Olteanu. 10106

worlds and beyond:
Efficient representation and processing of incomplete information.
In ICDE, pages 606–615, 2007.

[4] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros. Foundations of
schema mapping management. In PODS, pages 227–238, 2010.

[5] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros. Inverting schema
mappings: Bridging the gap between theory and practice. PVLDB,
2(1):1018–1029, 2009.

[6] M. Arenas, J. Pérez, and C. Riveros. The recovery of a schema
mapping: Bringing exchanged data back. TODS, 34(4), 2009.

[7] P. Bernstein. Applying model management to classical meta data
problems. In CIDR, 2003.

[8] P. Bernstein and S. Melnik. Model management 2.0: manipulating
richer mappings. In SIGMOD, pages 1–12, 2007.

[9] G. Brewka and T. Eiter. Preferred answer sets for extended logic
programs. Artif. Intell., 109(1-2):297–356, 1999.

[10] A. Deutsch and V. Tannen. Reformulation of XML queries and
constraints. In ICDT, pages 225–241, 2003.

[11] T. Eiter and G. Gottlob. On the complexity of propositional
knowledge base revision, updates, and counterfactuals. In PODS,
pages 261–273, 1992.

[12] R. Fagin. Inverting schema mappings. TODS, 32(4), 2007.

[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:
semantics and query answering. TCS, 336(1):89–124, 2005.

[14] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing schema
mappings: Second-order dependencies to the rescue. TODS,
30(4):994–1055, 2005.

[15] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Quasi-inverses of
schema mappings. In PODS, pages 123–132, 2007.

[16] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Reverse data
exchange: coping with nulls. In PODS, pages 23–32, 2009.

[17] G. Grahne. The Problem of Incomplete Information in Relational

Databases. Springer, 1991.

[18] G. Grahne, A. Onet. Closed World Chasing. In LID 2011.

[19] P. Hayes. RDF Semantics, W3C Recommendation. February 2004.

[20] T. Imielinski and W. Lipski. Incomplete information in relational
databases. Journal of the ACM, 31(4):761–791, 1984.

[21] L. Libkin. Data exchange and incomplete information. In PODS,
pages 60–69, 2006.

[22] L. Libkin and C. Sirangelo. Data exchange and schema mappings in
open and closed worlds. In PODS, pages 139–148, 2008.

[23] D. Maier, A. Mendelzon, and Y. Sagiv. Testing implications of data
dependencies. TODS, 4(4):455–469, 1979.

[24] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web
Ontology Language, W3C Recommendation. February 2004.

[25] K. W. Wagner. More complicated questions about maxima and
minima, and some closures of NP. TCS, 51:53–80, 1987.

94

