First-Order and Temporal Logics for Nested Words
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Abstract Pushdown systems (PDSs), Boolean Programs, and Re-

cursive State Machines (RSMs), are equivalent abstract

Nested words are a structured model of execution pathsmodels of procedural programs, with finite data abstrac-
in procedural programs, reflecting their call and return tion but unbounded call stack. Software model checking
nesting structure. Finite nested words also capture the technology is by now thoroughly developed for checking
structure of parse trees and other tree-structured datahsu w-regular properties of runs for these models, when the
as XML. runs are viewed as ordinary words (see [5, 8, 1]). Unfor-

We provide new temporal logics for finite and infi- tunately, temporal logic and-regular properties over ordi-
nite nested words, which are natural extensions of LTL, hary words are inadequate for expressing a variety of prop-
and prove that these logics are first-order expressively- erties of program executions that are useful in interproce-
complete. One of them is based on adding a "within” dural program analysis and software verification. These in-
modality, evaluating a formula on a subword, to a logic clude Hoare-like pre/post conditions on procedures, stack
CaRet previously studied in the context of verifying prop- inspection properties, and other useful program analysis
erties of recursive state machines. The other logic is basedproperties that go well beyond-regular (see [2] for some
on the notion of a summary path that combines the linear examples). On the other hand, many such program analy-
and nesting structures. For that logic, both model-chegkin sis properties can easily be expressed when runs are viewed
and satisfiability are shown to be EXPTIME-complete. as nested words. Runs of Boolean Programs and RSMs can

Finally, we prove that first-order logic over nested words Naturally be viewed as nested words once we add “summary
has the three-variable property, and we present a tempo_edges” between matching calls and returns, and we can thus
ral logic for nested words which is complete for the two- hope to extend model checking technology for procedural
variable fragment of first-order. programs using richer temporal logics over nested words

which remain tractable for analysis.

These considerations motivated the definition of Visibly
1 Introduction Pushdown Languages (VPLSs) [3] and the call-return tempo-
ral logic CaRet [2]. CaRet is a temporal logic over nested
An execution of a procedural program can reveal not just words which_ext_ends LTL with new temporal operat_ors th{?‘t
allow for navigation through a nested word both via its ordi-

a linear sequence of program states encountered during the

execution, but also the correspondence between each poinrt]ary sequential structure, as well as its matching callfnet

during the execution at which a procedure is called and theSummary structure. The standard LTL model checking al-

point when we return from that procedure call. This leads %Oorgzr::i(fe?:[(ilr:\:sl\)ﬂfsczrlfef SVIS; gggeggaﬁXttehne(jzgr;Z iltl)?r\ﬁ
naturally to the notion of a finite or infinite nested word ([4, 9 ' y

3, 2]). A nested word is simply a finite ar-word supplied plexity [2]. VPLs [3] are a richer class of languages that

with an additional binary matching relation which relates capture MSO-definable properties of nested words. Re-

: . ... cently, results about VPLs have been recast in light of
corresponding call and return points (and of course saisfie . . .
“ > . o nested words, and in particular in terms of Nested Word Au-
well-bracketing” properties). Finite nested words oféer

. . . ._tomata [4] which offer a machine acceptor far-Jregular
alternative way to view any data which has both a sequential . .
) . . : nested words, with all the expected closure properties.
string structure as well as a tree-like hierarchical strrect

Examples of such data are XML documents and parse trees. Over ordinary words, LTL has long been considered the



temporal logic of choice for program verification, not only a tableaux construction which translates an NWTL formula
because its temporal operators offer the right abstractioninto a Nested Word Automaton, enabling the standard au-
for reasoning about events over time, but because it pro-tomata theoretic approach to model checking of Boolean
vides a good balance between expressiveness (first-ordePrograms and RSMs with complexity that is polynomial in

complete), conciseness (can be exponentially more sucthe size the model and EXPTIME in the size of the formula.
cinct compared to automata), and the complexity of model-  \we then explore some alternative temporal logics, which
checking (linear time in the size of the finite transition-sys extend variants of CaRet with variants of unary “Within”

tem, and PSPACE in the size of the temporal formula). operators proposed in [2]’ and we show that these exten-
This raises the questiolVhat is the right temporal logic  sions are also FO-complete. However, we observe that the
for nested words? model checking and satisfiability problems for these logics

The question obviously need not have a unique answerare 2EXPTIME-complete. These logics are — provably —
particularly since nested words can arise in various appli- more concise than NWTL, but we pay for conciseness with
cation domains: for example, program verification, as we added complexity.
already discussed, or navigation and querying XML doc- It follows from our proof of FO-completeness for NWTL
uments under “sequential” representation (see, e.g.).[27] that over nested words, every first-order formula with one
However, it is reasonable to hope that any good temporalfree variable can be expressed using only 3 variables. More
logic for nested words should possess the same basic qualigenerally, we show, using EF games, that 3 variables suffice
ties that make LTL a good logic for ordinary words, namely: for expressing any first order formula with two or fewer free
(2) first-order expressive completene4g.L has the same  variables, similarly to the case of words [13] or finite trees
expressive power as first-order logic over words, and we[19]. Finally, we show that a natural unary temporal logic
would want the same over nested words; @asonable  over nested words is expressively complete for first-order
complexity for model checking and satisfiabilignd (3) logic with 2 variables, echoing a similar result known for
nice closure propertiesd TL is closed under boolean com- unary temporal logic over ordinary words [9].
binations including negation without any blow-up, and we Related Work. VPLs and nested words were introduced
would want the same for a logic over nested words. Finally in [3, 4]. The logic CaRet was defined in [2] with the goal
(and perhaps least easy to quantify), we wantr@ural  of expressing and checking some natural non-regular pro-
temporal operators with simple and intuitive semantics ~ gram specifications. The theory of VPLs and CaRet has

Unfortunately, the logic CaRet appears to be deficient been recast in light of nested words in [4]. Other aspects of
with respect to some of these criteria: although it is easily nested words (automata characterizations, games, model-
first-order expressible, proving incompleteness — a widely checking) were further studied in [1, 4, 2, 16]. It was also
believed conjecture — appears to be quite difficult. Also, observed that nested words are closely related to a sequen-
some temporal operators in CaRet (such as the past-timdial, or “event-based” API for XML known as SAX [24] (as
call modalities), motivated by program analysis, may not be opposed to a tree-based DOM API [7]). SAX representation
viewed as particularly natural in other applications. Eher is very important in streaming applications, and questions
is much related work in the XML community on logics for related to recognizing classes of nested words by the usual
trees (see, e.g., surveys [14, 15, 28]), but they tend to havevord automata have been addressed in [27, 6].

different kinds of deficiency for our purposes: they concen-  \While finite nested words can indeed be seen as XML
trate on the hierarchical structure of the data and largely documents under the SAX representation, and while much
ignore its linear structure; also, they are designed fotefini effort has been spent over the past decade on languages
trees. for tree-structured data (see, e.g. [14, 15, 28] for suiyeys
We introduce and study new temporal logics over nestedadapting the logics developed for tree-structured datatis n
words. The main logic we consideested Word Tem-  as straightforward as it might seem, even though from the
poral Logic (NWTL) extends LTL with both a future and complexity point of view, translations between the DOM
past variant of the standard Until operator, which is inter- and the SAX representations are easy [26]. The main prob-
preted ovelsummary pathsather than the ordinary linear lem is that most such logics rely on the tree-based repre-
sequence of positions. A summary path is the unique short-sentation and ignore the linear structure, making the nat-
est directed path one can take between a position in a rurural navigation through nested words rather unnatural un-
and some future position, if one is allowed to use both der the tree representation. Translations between DOM and
successor edges and matching call-return summary edgesSAX are easy for first-order properties, but verifying nav-
We show that NWTL possesses all the desirable proper-igational properties expressed in first-order is necdgsari
ties we want from a temporal logic on nested words. In non-elementary even for words if one wants to keep the
particular, it is both first-order expressively completelan data complexity linear [10]. On the other hand, logics for
has good model checking complexity. Indeed we provide XML tend to have good model-checking properties (at least



in the finite case), typically matching the complexity of word) induced by elementssuch that < ¢ < j. If j < i

LTL [11, 21]. We do employ such logics (e.g., those in we assume thab|i, j] is the empty nested word. For nested
[18, 19, 25]) in the proof of the expressive completeness of w-wordsw, w[i, oo] denotes the substructure induced by el-
NWTL, first by using syntactic translations that reconcile ementd > i. When this is clear from the context, we do not

both types of navigation, and then by combining them with

distinguish references to positions in subwotgls, j] and

a composition game argument that extends the result to ther itself, e.g. we shall often writéw|:, j],7) E ¢ to mean

infinite case, which is not considered in the XML setting.
This, however, involves a nontrivial amount of work. Fur-
thermore, “within” operators do not have any natural analog

on trees, and the proof for them is done by a direct compo-

sition argument on nested words.
Organization. Basic notations are given in Section 2.

Section 3 defines temporal logics on nested words, and

W‘aefine the next/previous and until/since operators for-vari

Section 4 presents expressive completeness results.
study model-checking in Section 5, and in Section 6 we
prove the 3-variable property and present a logic for the 2-
variable fragment. Due to space limitations, proofs arg onl
sketched here.

2 Nested Words

A matchingon N or an interval[l, n] of N consists of
a binary relatiory, and two unary relationsall andret,
satisfying the following: (1) ifu(7, j) holds thencall(s)
andret(j) andi < j; (2) if u(i,5) andu(i, j') hold then
j = 7 and if u(i,j) andu(i’, j) hold theni = i’; (3) if
i < jandcall(i) andret(j) then there exists < k < j
such that eitheg (i, k) or u(k, 7).

Let X be a finite alphabet. Ainite nested woraf length
n overY is a tuplew = (w, u,call, ret), wherew =
aj...a, € ¥*, and(u, call, ret) is a matching onl, n].
A nestedv-word is a tuplew = (w, u, call, ret), where
w=aj... € XY and(y, call, ret) is a matching omN.

We say that a positiohin a nested wordv is acall po-
sition if call(s) holds; areturn position if ret(i) holds;
and aninternal position if it is neither a call nor a return.
If u(i,5) holds, we say that is the matching call ofj,
andj is the matching return of, and writec(j) = ¢ and
r(i) = j. Calls without matching returns apendingcalls,
and returns without matching calls geendingreturns. A
nested word is said to lveell-matchedf no calls or returns

are pending. Note that for well-matched nested words, the

unary predicatesall andret are uniquely specified by
the relationu.

A nested wordw = (w, u,call,ret) is represented
as afirst-order structurélU , (P, )4ex , <, ,call, ret),
whereU is {1,...,n} if w is a finite word of lengtm and
Nif w is a nested>-word; < is the usual ordering?, is the
set of positions labeled, and(u, call, ret) is the match-
ing relation. When we talk about first-order logic (FO) over
nested words, we assume FO over such structures.

For a nested wordo, and two elements, j of w, we
denote byw|[i, j] the substructure of (i.e. a finite nested

thaty is true at the first position afi[¢, j].

3 Temporal Logics over Nested Words

We now describe our approach to temporal logics for
nested words. It is similar to the approach taken by the logic
CaRet [2]. Namely, we shall consider LTL-like logics that

ous types of paths in nested words.

All the logics will be able to refer to propositional letters
including the base unary relatiorall andret, and will
be closed under all Boolean combinations. We shall wirite
for true andl for false. For all the logics we shall define the
notion of satisfaction with respect to a position in a nested
word, writing (@, i) = ¢ when the formulap is true in the
position: of the worduw.

Since nested words are naturally represented as transi-
tion systems with two binary relations — the successor and
the matching relation — in all our logics we introduoext
operatorsO and(O),,. The semantics of those is standard:
(w,i) = Opiff (w,i+1) | ¢, (0,1) E O,piff iisacall
with a matching returr (i.e. (4, j) holds) andw, j) E .
Likewise, we shall havpastoperators>) and©),,: that is,

O is true in positioni > 1 iff ¢ is true in position — 1,
and© ¢ is true in positioryj if j is a return position with
matching calk andy is true ati.

The until/since operatorslepend on what a path is. In
general, there are various notions of paths through a nested
word. We shall consider until/since operators for paths tha
are unambiguous: that is, for every pair of positioasd;
with i < j, there could be at most one path between them.
Then, with respect to any such given notion of a path, we
have the until and since operators with the usual semantics:

(w,i) = U iff there is a positionj > ¢ and a path

i =19 < i1 < ...< i = j between them such that

j) =v¢ and(w, i) = ¢ forevery0 < p < k.

w,1) E ¢Sy iff there is a positionj < ¢ and a path
=49 < i1 < ... < 1, = 1 between them such that

w,7) = ¢ and(w, i,) = ¢ forevery0 < p < k.

The approach of CaRet was to introduce three types of
paths, based on the linear successor (cdliezhr pathg,
the call-return relation (calledbstract pathy and the in-
nermost call relation (callechll paths.

To define those, we need the notiadh@) andR(:) for
each position — these are the innermost call within which



the current action is executed, and its corresponding re-
turn. Formally,C(7) is the greatest matched call position
j < i whose matching return is after(if such a call po-
sition exists), andi (7) is the least matched return position
¢ > i whose matching call is befoie

Definition 3.1 (Linear, call and abstract paths) Given
positionsi < j, asequence=ig < iy <...<ix =jIS
e alinear pathif i, | =i, 4+ 1 forall p < k;
e acall pathif i, = C(ip41) forall p < k;
e anabstract patlif

. r(ip) if i, is @ matched call
(3 = .
7717 )i, + 1 otherwise.

We shall denote until/since operators corresponding to
these paths byJ /S for linear paths,U¢/S¢ for call paths,
andU®/S¢ for abstract paths?

Our logics will have some of the next/previous and un-
til/since operators. Some examples are:

e When we restrict ourselves to the purely linear frag-
ment, our operators af® and©, andU andS, i.e.
precisely LTL (with past operators).

e The logic CaRet [2] has the following operators: the
next operator§) andO,,; the linear and abstract untils
(i.e.,U andU?), the call since (i.e $¢) and a previous
operator©,. that will be defined in Section 4.2.

Another notion of a path combines both the linear and

For example, in the figure belo\2, 4, 5) is a call path,
(3,4,6,7,8,10) is both an abstract and a summary path;
and(3,4,6,7,8,9) is a summary path but not an abstract
path (a9 occurs inside a cafk(8, 10), there is actually no
abstract path frorfi to 9).

8 9 10 11

4 Expressive Completeness

In this section we study logics that are expressively com-
plete for FO, i.e. temporal logics that have exactly the same
power as FO formulas in one free variable over finite and
infinite nested words. In other words, for every formuyla
of an expressively complete temporal logic there is an FO
formulay’(x) such tha(w, i) = ¢ iff @ | ¢’ (i) for every
nested wordo and position in it, and conversely, for every
FO formulay(z) there is a temporal formula’ such that
@ = (i) iff (w,7) F .

Our starting pointis a logic NWTL (nested-word tempo-
ral logic) based on summary paths introduced in the previ-
ous section. We show that this logic is expressively com-
plete (and of course remains expressively complete under
the addition of operators present in logics inspired by-veri
fication of properties of execution paths in programs). This
latter remark will be of importance later, when we study the
complexity of model checking.

We then look at logics close to those in the verification

the nesting structure. It is the shortest path between tWOliterature, i.e. with operators such as call and abstratit un

positions: andj. Unlike an abstract path, it decides when
to skip a call based on positign Basically, a summary path
from i to 5 moves along successor edges until it finds a call
positionk. If k has a matching returfisuch thatj appears
after?, then the summary path skips the entire call frem
to ¢ and continues frord; otherwise the path continues as a

successor path. Note that every abstract path is a summary
path, but there are summary paths that are not abstract paths

Definition 3.2 A summary pattbetween < j in a nested
wordw is a sequence=ip < i1 < ... < i = j such that
forall p < k,

ipy1 = {

The corresponding until/since operators are denote@l§y
andSe.

1our definition of abstract path differs very slightly fromathin [2]:
there ifi, is not a call and,, + 1 is a return, the path stops. This does not
affect the results in any significant way: in fact for summpaghs, to be
defined shortly, adding the same stopping condition resuéta equivalent
logic that is used heavily in the proof of expressive congriess.

r(ip) if i, is @ matched call ang > r (i)
ip + 1 otherwise

and since, and ask what needs to be added to them to get
expressive completeness. We confirm a conjecture of [2]
that awithin operator is what’s needed: such an operator
evaluates a formula on a nested subword.

Expressive completeness and NWTL

The logic NWTL (ested words temporal logibas next
and previous operators, as well as until and since with re-
spect to summary paths. That is, its formulas are given by:

Tlalcall | ret | ~p | pV¢' |
OSO | O;LSO | @SO | @;L(p |
(pUa(pl | (,OSU(PI

PP

where a ranges over. We use abbreviationsnt for
—call A —ret (true in an internal position). Note that in
the absence of pending calls and returag,1 andret are
definable a&§), T and©,, T, respectively.

Theorem 4.1 NWTL
nested words.

FO over both finite and infinite



Proof sketch Translation of NWTL into FO is quite
straightforward, but we show how to do it carefully, to get
the 3-variable property. For the converse, we define yet an-
other notion of path, called a strict summary path, that is
different from summary paths in two ways. First, if it skips
a call, it jumps fromi not tor(¢) butr(i) + 1. Second, if it

property says that FO sentences over the usual, unnested,
words can be evaluated without using the previgisind
since S operators. Let NWTL™'® be the fragment of
NWTL that does not us8” and the operator® and©,,.

Proposition 4.4 There areFO sentences over nested words

reaches a matched return position, it stops. We then look athat cannot be expressed MV TL e,

the logic NWTL® in which the semantics of until and since
is modified so that they refer to strict summary paths. We
then show that NWTE. C NWTL andFO C NWTL?®.

The former is by a direct translation. The proof of
FO C NWTL? is in two parts. First we deal with the fi-
nite case. We look at the standard translation from neste
words into binary trees. If a matched call positide trans-
lated into a node of a tree, then the first position inside
the call is translated into the right successorpfind the
linear successor of(¢) is translated into the left successor
of s. If 4 is an internal position, or an unmatched call or
return position, its linear successor is translated inedeft
successor of. With this translation, strict summary paths
become paths in a tree.

We next use until/since-based logics for trees from [18,
25]. By a slight adaptation of techniques from these papers
(in particular using the separation property from [18]), we
prove expressive completeness of a translation of NWTL
into a tree logic, and then derive expressive completerfess o
NWTL? for finite nested words.

In the infinite case, we combine the finite case and the
separation property of [18] with Kamp’s theorem and the
separation property of LTL. Note that a nesteewvord
is translated into an infinite tree with exactly one infinite
branch. A composition argument that labels positions of

that branch with types of subtrees reduces each FO formula

to an LTL formula over that branch in which propositions

are types of subtrees, expressible in NWTy the proof

in the finite case. Using the separation properties, we then

show how to translate such a description into NWTL O
Recall thattO* stands for a fragment of FO that consists

of formulas which use at mogt variables in total. First,

from our translation from NWTL to FO we get:

Corollary 4.2 Over nested words, eveRO formula with
at most one free variable is equivalent to B&® formula.

Furthermore, for FOsentenceswe can eliminate the
since operator.

Corollary 4.3 For everyFO sentenceb over finite or in-
finite nested words, there is a formuja of NWTL that
does not use the since operat®f such thatw = @ iff

(@,1) .

The previous operatofs) and©,,, however, are needed

Proof sketch Let w; andwy be two well-matched nested
words, of lengthn; andns respectively. We first show
that, for every NWTI“"® formula, there is an integet

dSUCh thato, [il, nl] =i ﬁ}g[ig, ng] |mp||es (ﬂ}l,il) ): ) iff

(w2,i2) E . Here=; means that Player Il has a win in
the k-round Ehrenfeucht-Fraissé game. This follows from
expressive-completeness and properties of future fosnula
Using this, we show that there is no NW¥t"™ formula
equivalent toO, T A O,Oa (checking whether the first
position is a call, and the position preceding its matching
return is labeled). ]

Note also that adding all other until/since pairs to NWTL
does not change its expressiveness. That is, if we let
NWTL™' be NWTL+ {U, S, U¢, S¢, U%, S}, then:

Corollary 4.5 NWTL*" = FO.

Later, when we deal with model-checking, we shall
prove upper bound results for NWTLthat, while expres-
sively complete for FO, allows more operators.

4.2 The within operator

We now go back to the three until/since operators origi-
nally proposed for temporal logics on nested words, based
on the the linear, call, and abstract paths. In other words,
our basic logic, denoted by L1, is

@, =T | a|call | ret | ~p [ p V¢ |
Op | Oup | O | Ouep |
eU" | pS¢’ | U | ¢8%" | ¢U%" | 8%’

We now extend this logic with the followingithin op-
erator proposed in [2]. I is a formula, theWWy is a for-
mula, and(w, i) = We iff iis a call, and @]z, j],%) = ¢,
wherej = r(i) if ¢ is a matched call angl = || if i is
an unmatched call. In other wordg/p evaluatesp on a
subword restricted to a single procedure. We denote such
an extended logic by LTL+ W.

Theorem 4.6 LTL*+W = FO over both finite and infinite
nested words.

even for FO sentences over nested words. This situationThe inclusion of LTI* 4+ W into FO is routine. The con-

is quite different thus from LTL, for which the separation

verse is done by encoding NWTL into LTL+ W.



CaRet and other within operators The logic CaRet, as  states, a set of initial state§)q C @, a set of (linear) ac-
defined in [2], did not have all the operators of ITLIn cepting state$” C @, a set of pending call accepting states
fact it did not have the previous 0perat®and@#, and F, C @, a call-transition relation, C Q x ¥ x Q x Q,

it only had linear and abstract until operators, and the call an internal-transition relatio; C Q x ¥ x @, a

since operator. That is, CaRet was defined as return-transition relatiod, C Q x Q x ¥ x @, and a
. ) pending-return-transition relatiaf, C @ x 3 x Q. The
g, = T la]|call|ret| ¢ |pVy | automatonA starts in the initial state and reads the nested
Op | Oup | Ocp | word from left to right. The state is propagated along
U | U | o8%, the linear edges as in case of a standard word automaton.

However, at a call, the nested word automaton propagates
states along the linear edges and also along the nesting edge
(if there is no matching return, then the latter is required
to be in F, for acceptance). At a matched return, the new
state is determined based on the states propagated along the
linear as well as the nesting incoming edges.
Formally, arun r of the automatondA over a nested
wordw = (ajaz ..., u, call ret) is a sequence, qi, - - -
of states along the linear edges, and a sequehcéor
every call positioni, of states along nesting edges, such
thatqy € Qo and for each position, if 7 is a call then
e (w,i) = Cyiff w[j,i] = ¢, wherej = C(i) if C(i) is (qi—1,0ai,qi,q;) € O if i is internal, then(q;—1, a;, ;) €
defined, ang = 1 otherwise. d;; if 4 is a return such thai(j, ), then(g;—1, q.;-, ai,q;) €
_ . . N ) d,; and ifi is an unmatched return thég,_1, a;, ¢;) € py.
[ ] =
i(sw(’jle)firiwze;?ﬁ: (;Ui’ Tiv,z(n? g{gi:ﬁﬁe) 07?(&? (Ilff 75_)(2 The runr is a_ccepting if (1) for all pgnding calisg; € I,
infinite) otherwise. and (2) _th(_e flnal statg, € F for_ finite word of lengtht,
and for infinitely many positions, ¢; € F, for nestedo-

Theorem 4.7 CaRet+ {C,R} = FO over both finite and words. The automatod accepts the nested word if it
infinite nested words. has an accepting run over
Nested word automata have the same expressiveness as

The proof of this result is somewhat involved, and relies the monadic second order logic over nested words, and the
on different techniques. The operators used in CaRet do notanguage emptiness can be checked in polynomial-time [4].
correspond naturally to tree translations of nested words,
and the lack of all until/since pairs makes a translatiomfro 5 2 Tableau construction
NWTL hard. We thus use a composition argumaingctly
on nested words.

and we assume thatranges oveE U {pret}, wherepret

is true in pending returns (which is not definable with the re-
maining operators). Her@), is the previous operator cor-
responding to call paths. Formallys, i) = O if C(i) is
defined andw, C(7)) = ¢.

A natural question is whether there is an expressively-
complete extension of this logic. It turns out that twibhin
operators based ahandR (the innermost call and its re-
turn) functions provide such an extension. We define two
new formulag¢ andR¢ with the semantics as follows:

We now show how to build an NWA accepting the satis-
. o fying models of a formula of NWTL. This leads to deci-
5 Model-Checking and Satisfiability sion procedures for satisfiability and model checking.
Let us first consider special kinds of summary paths:
In this section we show that both model-checking and summary-dowrpaths are allowed to use only call edges
satisfiability are single-exponential-time for NWTL. Ircta (from a call to the first position inside the call), nesting
we prove this bound for NWTL, an FO-complete exten-  edges (from a call to its matching return), and internal edge
sion of NWTL with all of U, S, U¢, 8¢, U% 8% We use (from an internal or return position to a call or internal po-
automata-theoretic techniques, by translating formuia in  sition). Summary-ugpaths are allowed to use only return
equivalent automata on nested words. We then show thakdges (from a position preceding a return to the return),
a different expressively complete logic based on adding thenesting edges and internal edges. We will Usé' and
within operator to CaRet requires doubly-exponential time U’ to denote the corresponding until operators. Observe
for model-checking, but is exponentially more succinct. thatU? 1 is equivalent tap U1 (o U7 ).
Given a formulap, we wish to construct a nested word
5.1 Nested word automata automatord, whose states correspond to sets of subformu-
las of . Intuitively, given a nested word, a runr, which
A nondeterministic nested word automaton is a linear sequenagyg; . .. of states and stateg labeling
(NWA) A over an alphabetX is a structure nesting edges from call positions, should be such that each
(Q,Qo, F, Fe,6c,0;,0r, ) consisting of a finite set of  stateg; is precisely the set of formulas that hold at position



i+ 1. The labely, is used to remember abstract-next formu-
las that hold at positiohand the abstract-previous formulas
that hold at matching return. For clarity of presentatioa, w
focus on formulas with next operatdts andO,,, and until
over summary-down paths. It is easy to modify the con-
struction to allow other types of untils and past operators.

Given a formulap, the closure ofp, denoted byel(p),
is the smallest set that satisfies the following properties:
cl(p) containsy, call, ret, int, and Oret; if either
=, or Oy or Op1p is in cl(p) theny € cl(yp); if
YV € c(p), theny, ' € cl(p); if » Uk € cl(yp),
theny, v/, Oy Uty'), andO,, (v UHy') are incl(p);
and if¢p € cl(y) andy is not of the form—6 (for any9),
then—y € cl(yp). Itis straightforward to see that the size of
cl(y) is only linear in the size ap. Henceforth, we identify
=) with the formulag).

An atomof p is a setd C cl(p) that satisfies:

e Foreveryy € cl(p),p € Diff v &€ D .

e For every formulay vV ¢’ € cl(p), v V' € D iff
(v € ®ory’ € ).

e For every formulay ULy’ € cl(p), p Uy € @
iff either ¢’ € ® or (y € ® andOret ¢ ® and either
O U7Hy') € @ or O, (v U7y € ).

e & contains exactly one of the elements in the set
{call ret,int}.

These clauses capture local consistency requirements.

Given a formulap, we build a nested word automaton
A, as follows. The alphabét is 247, whereAP is the set
of atomic propositions.

1. Atoms ofyp are states ofl,;
2. An atom® is an initial state iffp € ®;

3. Foratomsb, ¥ and a symbok C AP, (®,a, V) is an
internal transition of4,, iff (a) int € ®; and (b) for
p € AP, p € aiff p € ®; and (c) for eactOy ¢
cl(p), ¢ € Viff Oy € ®; (d) foreachO ¢ € cl(p),
O;ﬂ/] ¢ P.

For atoms®, ¥, , ¥, and a symbola C AP,

(®,a,¥,;,¥,) is acall transition ofd,, iff () call €

®; and (b) forp € AP, p € aiff p € ®; and (c) for
eachOy € cl(yp), v € U, iff Oy € ®; and (d) for
eachO ¢ € cl(p), Oup € Uy, iff O € ®.

For atoms®;,®,,¥ and a symbola C AP,

(®y, @1, a, T) is areturn transition ofl, iff (a) ret €

®;; and (b) forp € AP, p € aiff p € ®;; and (c) for
eachOy € cl(yp), v € Y iff Oy € &;; and (d) for
eachO ¢ € cl(p), Oup € @y iff 1 € ©;.

For atomsp, ¥ and a symbolk C AP, (®,a,V)is a
pending-return transition ofl, iff (a) ret € ®; and
(b) forp € AP, p € aiff p € ®; and (c) for each

Oy € c(p), v € iff Oy € ®; (d) foreachD ¢ €
cl(p), Ouh € @.

The transition relation ensures that the current symbol is

consistent with the atomic propositions in the currentstat

and next operators requirements are correctly propagated.
An atom ® belongs to the sef, iff ® does not con-

tain any abstract-next formula, and this ensures that, in an

accepting run, at a pending call, no requirements are prop-

agated along the nesting edge. For each until-formuia

the closure, lef’,, be the set of atoms that either do not con-

tain+ or contain the second argumentf Then a nested

word w over the alphabe?*” satisfiesy iff there is a run

r of A, overw such that for each until-formula € cl(y),

for infinitely many positions, ¢; € F;. Thus,

Theorem 5.1 For a formulay of NWTL™, one can effec-
tively construct a nondeterministidiBhi nested word au-
tomatonA,, of size2©(I¥l) accepting the models of

Since the automatod,, is exponential in the size aj,
we can check satisfiability af in exponential-time by test-
ing emptiness ofA,,. EXPTIME-hardness follows from the
corresponding hardness result for CaRet.

Corollary 5.2 The satisfiability problem foNWTL™" is
ExpPTIME-complete.

When programs are modeled by nested word automata
A (or equivalently, pushdown automata, or recursive state
machines), and specifications are given by formuylasf
NWTL™, we can use the classical automata-theoretic ap-
proach: negate the specification, build the N\WMA, , ac-
cepting models that violate, take the product with the pro-
gramA, and test for emptiness @ A)NL(A-,). Note that
the program typically will be given more compactly, say, as
a Boolean program [5], and thus, the NWAmay itself be
exponential in the size of the input.

Corollary 5.3 Model checking\WTL " specifications with
respect to Boolean programsExpTIME-complete.

5.3 Checking within operator

We now show that addingithin operators makes model-

checking doubly exponential. Given a formyaf NWTL

or NWTL™, let p,, be a special proposition that does not
appear inp. Let W, be the language of nested words
such that for each positian (w, ¢) |= p, iff (w,7) = We.
We construct a doubly-exponential automat®rihat cap-
turesW.,,.. First, using the tableau construction for NWTL
we construct an exponential-size automatotinat captures
nested words that satisfy. Intuitively, every time a propo-
sition p,, is encountered, we want to start a new copylof
and a state oB3 keeps track of states of multiple copies of



A. At a call, B guesses whether the call has a matching re- Remark: checking @ = ¢ for finite nested words For
turn or not. In the latter case, we need to maintain pairs of finite nested words, one evaluates the complexity of check-
states ofA so that the join at return positions can be done ing whether the given word satisfies a formula, in terms
correctly. A state of3, then, is either a set of states4br a of the length|w| of the word and the size of the formula.
set of pairs of states of. We explain the latter case. A pair A straightforward recursion on subformulas shows that for
(g, ¢') belongsto the state &, while reading positionof a NWTL formulas the complexity of this check(|w|-|¢|),
nested word, if the subword from to the first unmatched  and for both logics wittwithin operators, CaRet {C, R}
return can taked from ¢ to ¢’. When reading an internal  and LTL* + W, itis O(|w|? - ||).

symbola, a summary(q, ¢’) in the current state can be up-

dated to(u, ¢'), providedA has an internal transition from 5.4 On within and succinctness

tou ona. Let B read a call symbat. Consider a summary

(¢,¢') in the current state, and a call-transiti@na, q:, qn) We saw that adding within operators to NWTLin-

of A. ThenB guesses the return transitiom, g, b, u) that  creases the complexity of model-checking by one exponent.
will be used byA at the matching return, and sends the |n particular, there could be no polynomial-time transiati
summary(q;, w;) along the call edge and the triple v, ¢') ~ from NWTL™ + W to NWTL*. We now prove a stronger
along the nesting edge. While processing a return symbolresyit that gives a space bound as well: while NWTFLW

b, the current state oB must contain summaries Only of has the same power as NWTthS formulae can be ex-
the form (¢, ¢) where the two states match, and for each ponentially more succinct than formulas NWTLThat is,
summary(b, u, ¢') retrieved from the state along the nesting there is a sequence,, n € N, of NWTL* + W formulas
edge, the new state contaifis ¢'). Finally, B mustenforce  sych thaty,, is of sizeO(n), and the smallest formula of
thatWe holds wherp,, is read. Only a call symbal can ~ NWTL* equivalent tap,, is of size2?(™). For this result,

containp,,, and when reading such a symbsl,guesses a  we require nested-words to be over the alphabt?.
call transition(qo, a, ¢;, gr.), Wheregy is the initial state of

A, and a return transitiofw, ¢x, b, g¢5), wheregy is an ac- Theorem 5.6 NWTL ™ 4+ W is exponentially more succinct
cepting state ofl, and sends the summa(ig, ;) alongthe  thanNWTL™.

call edge and the symbablalong the nesting edge.

The proof is based upon succinctness results in [9, 22],

Lemma 5.4 For every formulap of NWTL™, there is a by adapting their examples to nested words.

nested word automaton that accepts the languageand

has size doubly-exponential jip|. . )
6 Finite-Variable Fragments
Consider a formula of NWTL " +W. For every within-

subformulaWp of ¢, let ¢’ be obtained fromp by substi-
tuting each top-level subformul&/y in ¢ by the propo-
sition p,,. Each of these primed formulas is a formula of

We have already seen that FO formulas in one free vari-
able over nested words can be written using just three dis-
NWTL". Then, if we take the product of the nested word tinct _va_lriables, asin the case of the usual, unnested, words

' ’ For finite nested words this is a consequence of a tree rep-

aug}zmatal acceptmg!;w co.rrhestﬁ)ondlng (th all éhe within- resentation of nested words and the three-variable pyppert
subformulasy, together with the nested word automaton ¢, r gyer finite trees [19], and for infinite nested words
Ay, the resulting language captures the set of models ofthiS is a consequence Theorem 4.1

- Intuitively, the automaton forl’, is ensuring that the In this section we prove two results. First, we give a
truth of the prqposﬂmrpw re.ﬂ?CtS the truth of the subfor- model-theoretic proof that FO formulas with zero, one, or
mulayVep. If i itself ha§ awnhm—subformulﬁV% thenthe 5 free variables over nested words (finite or infinite) are
automaton fory treats it as an atomic propositih,, and equivalent toFO® formulas. Given th&"O = FO? col-
the automaton checking;, running in parallel, makes sure lapse, we ask whether there is a temporal logic expressively
that the truth of,, correctly reﬂects_the truth oV, complete forFO?, the two-variable fragment. We adapt
For the lower bound, the deqsyon_ .problem for LTL techniques from [9] to find a temporal logic that has the
games can be reduced to the satisfiability problem for for- same expressiveness B&? over nested words (in a vo-

rr;}ulas V‘;]'th lllneca:tr untils anddwghlr) t?pr(]arat(_)rhs_ [17], and thﬁ cabulary that has successor relations corresponding to the
shows that for CaRet extended with the within operator, the « o temporal operators).

satisfiability problem is 2EpPTIME-hard. We thus obtain:

Proposition 5.5 For the logicNWTL* extended with the 6.1 The three-variable property

within operator)V the satisfiability problem and the model

checking problem with respect to Boolean programs, are  \We give a model-theoretic, rather than a syntactic, argu-
both ZEXPTIME-complete. ment, that uses Ehrenfeucht-Fraissé games and shows that



over nested words, formulas with at most two free vari- 6.2 The two-variable fragment
ables are equivalent B80® formulas. Note that for finite
nested words, the translation into trees, already useckin th  In this section, we construct a temporal logic that cap-
proof of Theorem 4.1, can be done using at most three vari-tures the two-variable fragment of FO. Note that for fi-
ables. This means that the result of [19] establishing thenite unranked trees, a navigational logic captudit@? is
3-variable property for finite ordered unranked trees gives known [20, 19]: it corresponds to a fragment of XPath.
us the 3-variable property for finite nested words. We prove However, translating the basic predicates over trees firgo t
thatFO = FO?® over arbitrary nested words. vocabulary of nested words requirdwvariables, and thus
we cannot apply existing results even in the finite case.
SinceFO? over a linear ordering cannot define the suc-
cessor relation but temporal logics have next operators, we
explicitly introduce successors into the vocabularyFof.
These successor relations in effect partition the linegesd
into three disjoint typesinterior edgesgall edges, ande-

Proof: We look at infinite nested words since the finite turnedges, and the nesting edges (except those from a po-
case was settled in [19]. It is more convenient to prove the Sition to its linear successor) into two disjoint typesil-
result for ordered unranked forests in which every subtreereturnsummaries, andall-interior-return summaries.
is finite. We translate a nestedword into such a forest as
follows: wheny(i, j) holds, the subwordy|i, 5] is mapped
to a subtree with root, i + 1 as the first child ofi, and
j + 1 asi's next sibling (note that this is different from S¢(i, j) holdsiffiis a calland = i+ 1is notareturn;
the translation into binary trees we used before). iff an e S7(i,7) holdsiffiis notacallang = i+ 1is areturn.
internal position, or a pending call or return position ftlite
has no descendants and its next sibling-is1.

Itis routine to define, in FO, relationsy.s. and=g, for
descendant and younger sibling in such a forest. Further-

Theorem 6.1 Over finite or infinite nested words, evef®
formula with at mos® free variables is equivalent to an
FO? formula.

e Si(i,7) holdsiff j = i + 1 and eithep(i, j) ori is not
a call andj is not a return.

S (i, 7) holds iff u(i, j) and there is a path fromto
4 using only call and return edges.

S¢r (i, 4) holds iff u(i, j) and neitherj = i + 1 nor

more, from these relations, we can define the usuahd S( 5)-
1 in nested words using at mdstariables as follows. The Let T denote the sefic, i, , cr, cir} of all edge types. In
formulas forz < y andu(z, y) are given by addition to the built-in predicates! for ¢ € T', we add the

transitive closurenf all unions of subsets of these relations.
(4 Zdese ) V 32(% Zdesc 2 A3 (2 <sib TAY Zdesc ©))  That is, for each non-empty sEt C T of edge types, let
(y Rdese ) AV2Z((2 Rdese ) — 2 < ). ST stand for the union;<St, and let<” be the reflexive-
transitive closure of”. Now when we refer t&O? over
Thus, it suffices to prove the three-variable property for nested words, we mean FO in the vocabulary of the unary

such ordered forests, which will be referred ta4s3, etc. predicates plus all the™s, the five successor relations, and
We shall use pebble games. 1@}, (A, a1,b1,B,b1,b2) be  the built-in unarycall andret predicates.

the m-move,v-pebble game on structures and 3 where We define a temporal logic unary-NWTL that has future
initially pebblesz; are placed om; in A andb; in B. and past versions of next operators parameterized by edge
Player Il has awinning strategy f6}, (A, a1, b1, B, b1, b2) types, and eventually operators parameterized by a set of

iff A, a1,a2 and B,b;,b, agree on all formulas with at  edge types. Its formulas are given by:

mostv variables and quantifier-depth. We know from

[13] that to prove Theorem 6.1, it suffices to show that, ¢ == T |alcall [ret | o[V |
for all &, if Player 1l has a winning strategy for the game Otga | @tw | <>ng | @ng
G§,€+2(A7 a1,as; B,b1,bs), then she also has a winning

k .
strategy for the gamer (A, a1, aQ’_B’ by, ba). non-empty subsets &f. The semantics is defined in the
We show that Player Il can win the-pebble game by  jpvious way; for exampld, i) = T iff for some po-
maintaining a set of 3-pebble subgames on which she copiegjion ; <, (@,5) E .
Player I's moves and decides on responses using her win- .. a_nF62 férmulacp(x) with one free variable:. let
ning strategy for these smaller 3-pebble games. The choice dp() be its quantifier depth, and for a unary-NWTL for-

of these sub-games will partition the univefsg U | B| so mulay’, letodp(¢') be its operator depth.
that each play by Player | in thepebble game will be an- '

swered in on&-pebble game. This is similar to the proof Theorem 6.2 1. unaryNWTL is expressively complete
that linear orderings have the 3-variable property [13[1 for FO2.

wherea ranges ovek, ¢ ranges ovef’, andI’ ranges over



2. If formulas are viewed as DAGs (i.e identical sub-

formulas are shared), then eveRO? formula o(z)
can be converted to an equivalent unaWwTL for-
mula ¢’ of size 20U#l(adr(¥)+1) and odp(y’) <
10 qdp(e).
polynomial in the size af’.

3. Model checking of unarfdWTL can be carried out
with the same worst case complexity as for NWTL.

Proof sketch The translation from unary-NWTL intBO?

The translation is computable in time

(3]
(4]
(5]
(6]

(7]
(8]

is standard. For the other direction we adapt techniques of 9]

[9]. Given anFO? formula ¢ (z), the translation works a

follows. Wheny(z) is of the forma(x), for a proposi-

tion a, it outputsa. The cases of Boolean connectives are [10]

straightforward. The two cases that remain are when)
is of the form3x ¢*(z) or Jy p*(x,y). In both cases, we
say thaty(x) is existential In the first casep(z) is equiv-

alent tody ¢*(y) and, viewingz as a dummy free variable

in *(y), this reduces to the second case.
In the second case, we can rewritg"(z,y) as
5()(0(1'73/)’ T Xr—l(xay)a 50(1')7 T gs—l(x)7 CO(y)a
.., Gt—1(y)), wheref is a propositional formula, each
is an atomic order formula, ar@d’s and(;’s are atomic or
existentialFO? formulas with quantifier depth: qdp(y).
In order to be able to recurse on subformulagatfie have

to separate thg;’s from the(;’s. For that, we consider mu-

tually exclusive and completerder typesthat enumerate
possible order relations betweenand y with respect to

[11]

[12]

[13]

[14]

[15]

different S*’s. Under each order type, each atomic order [16]

formula evaluates to either or L. Furthermore, ifr is
an order typesy)(x) anFO? formula, andy’ an equivalent

unary-NWTL formula, one can obtain a unary-NWTL for-

mular(y) equivalent tody(r A ¥(y)). Using this and the
hypothesis fog; for i < s and¢/(z) we can compute’.

[17]
(18]

[19]

Model checking for unary-NWTL can be carried out [20]

with the same complexity as NWTL, by adapting the

tableaux construction in Section 5. O
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