
First-Order and Temporal Logics for Nested Words

Rajeev Alur Marcelo Arenas Pablo Barceló
University of Pennsylvania Pontificia Universidad Católica de Chile Universidad de Chile

Kousha Etessami Neil Immerman Leonid Libkin
University of Edinburgh University of Massachusetts University of Edinburgh

Abstract

Nested words are a structured model of execution paths
in procedural programs, reflecting their call and return
nesting structure. Finite nested words also capture the
structure of parse trees and other tree-structured data, such
as XML.

We provide new temporal logics for finite and infi-
nite nested words, which are natural extensions of LTL,
and prove that these logics are first-order expressively-
complete. One of them is based on adding a ”within”
modality, evaluating a formula on a subword, to a logic
CaRet previously studied in the context of verifying prop-
erties of recursive state machines. The other logic is based
on the notion of a summary path that combines the linear
and nesting structures. For that logic, both model-checking
and satisfiability are shown to be EXPTIME-complete.

Finally, we prove that first-order logic over nested words
has the three-variable property, and we present a tempo-
ral logic for nested words which is complete for the two-
variable fragment of first-order.

1 Introduction

An execution of a procedural program can reveal not just
a linear sequence of program states encountered during the
execution, but also the correspondence between each point
during the execution at which a procedure is called and the
point when we return from that procedure call. This leads
naturally to the notion of a finite or infinite nested word ([4,
3, 2]). A nested word is simply a finite orω-word supplied
with an additional binary matching relation which relates
corresponding call and return points (and of course satisfies
“well-bracketing” properties). Finite nested words offeran
alternative way to view any data which has both a sequential
string structure as well as a tree-like hierarchical structure.
Examples of such data are XML documents and parse trees.

Pushdown systems (PDSs), Boolean Programs, and Re-
cursive State Machines (RSMs), are equivalent abstract
models of procedural programs, with finite data abstrac-
tion but unbounded call stack. Software model checking
technology is by now thoroughly developed for checking
ω-regular properties of runs for these models, when the
runs are viewed as ordinary words (see [5, 8, 1]). Unfor-
tunately, temporal logic andω-regular properties over ordi-
nary words are inadequate for expressing a variety of prop-
erties of program executions that are useful in interproce-
dural program analysis and software verification. These in-
clude Hoare-like pre/post conditions on procedures, stack
inspection properties, and other useful program analysis
properties that go well beyondω-regular (see [2] for some
examples). On the other hand, many such program analy-
sis properties can easily be expressed when runs are viewed
as nested words. Runs of Boolean Programs and RSMs can
naturally be viewed as nested words once we add “summary
edges” between matching calls and returns, and we can thus
hope to extend model checking technology for procedural
programs using richer temporal logics over nested words
which remain tractable for analysis.

These considerations motivated the definition of Visibly
Pushdown Languages (VPLs) [3] and the call-return tempo-
ral logic CaRet [2]. CaRet is a temporal logic over nested
words which extends LTL with new temporal operators that
allow for navigation through a nested word both via its ordi-
nary sequential structure, as well as its matching call-return
summary structure. The standard LTL model checking al-
gorithms for RSMs and PDSs can be extended to allow
model checking of CaRet, with essentially the same com-
plexity [2]. VPLs [3] are a richer class of languages that
capture MSO-definable properties of nested words. Re-
cently, results about VPLs have been recast in light of
nested words, and in particular in terms of Nested Word Au-
tomata [4] which offer a machine acceptor for (ω-)regular
nested words, with all the expected closure properties.

Over ordinary words, LTL has long been considered the

1

temporal logic of choice for program verification, not only
because its temporal operators offer the right abstraction
for reasoning about events over time, but because it pro-
vides a good balance between expressiveness (first-order
complete), conciseness (can be exponentially more suc-
cinct compared to automata), and the complexity of model-
checking (linear time in the size of the finite transition sys-
tem, and PSPACE in the size of the temporal formula).

This raises the question:What is the right temporal logic
for nested words?

The question obviously need not have a unique answer,
particularly since nested words can arise in various appli-
cation domains: for example, program verification, as we
already discussed, or navigation and querying XML doc-
uments under “sequential” representation (see, e.g., [27]).
However, it is reasonable to hope that any good temporal
logic for nested words should possess the same basic quali-
ties that make LTL a good logic for ordinary words, namely:
(1) first-order expressive completeness:LTL has the same
expressive power as first-order logic over words, and we
would want the same over nested words; (2)reasonable
complexity for model checking and satisfiability;and (3)
nice closure properties: LTL is closed under boolean com-
binations including negation without any blow-up, and we
would want the same for a logic over nested words. Finally
(and perhaps least easy to quantify), we want (4)natural
temporal operators with simple and intuitive semantics.

Unfortunately, the logic CaRet appears to be deficient
with respect to some of these criteria: although it is easily
first-order expressible, proving incompleteness – a widely
believed conjecture – appears to be quite difficult. Also,
some temporal operators in CaRet (such as the past-time
call modalities), motivated by program analysis, may not be
viewed as particularly natural in other applications. There
is much related work in the XML community on logics for
trees (see, e.g., surveys [14, 15, 28]), but they tend to have
different kinds of deficiency for our purposes: they concen-
trate on the hierarchical structure of the data and largely
ignore its linear structure; also, they are designed for finite
trees.

We introduce and study new temporal logics over nested
words. The main logic we consider,Nested Word Tem-
poral Logic (NWTL) extends LTL with both a future and
past variant of the standard Until operator, which is inter-
preted oversummary pathsrather than the ordinary linear
sequence of positions. A summary path is the unique short-
est directed path one can take between a position in a run
and some future position, if one is allowed to use both
successor edges and matching call-return summary edges.
We show that NWTL possesses all the desirable proper-
ties we want from a temporal logic on nested words. In
particular, it is both first-order expressively complete and
has good model checking complexity. Indeed we provide

a tableaux construction which translates an NWTL formula
into a Nested Word Automaton, enabling the standard au-
tomata theoretic approach to model checking of Boolean
Programs and RSMs with complexity that is polynomial in
the size the model and EXPTIME in the size of the formula.

We then explore some alternative temporal logics, which
extend variants of CaRet with variants of unary “Within”
operators proposed in [2], and we show that these exten-
sions are also FO-complete. However, we observe that the
model checking and satisfiability problems for these logics
are 2EXPTIME-complete. These logics are – provably –
more concise than NWTL, but we pay for conciseness with
added complexity.

It follows from our proof of FO-completeness for NWTL
that over nested words, every first-order formula with one
free variable can be expressed using only 3 variables. More
generally, we show, using EF games, that 3 variables suffice
for expressing any first order formula with two or fewer free
variables, similarly to the case of words [13] or finite trees
[19]. Finally, we show that a natural unary temporal logic
over nested words is expressively complete for first-order
logic with 2 variables, echoing a similar result known for
unary temporal logic over ordinary words [9].
Related Work. VPLs and nested words were introduced
in [3, 4]. The logic CaRet was defined in [2] with the goal
of expressing and checking some natural non-regular pro-
gram specifications. The theory of VPLs and CaRet has
been recast in light of nested words in [4]. Other aspects of
nested words (automata characterizations, games, model-
checking) were further studied in [1, 4, 2, 16]. It was also
observed that nested words are closely related to a sequen-
tial, or “event-based” API for XML known as SAX [24] (as
opposed to a tree-based DOM API [7]). SAX representation
is very important in streaming applications, and questions
related to recognizing classes of nested words by the usual
word automata have been addressed in [27, 6].

While finite nested words can indeed be seen as XML
documents under the SAX representation, and while much
effort has been spent over the past decade on languages
for tree-structured data (see, e.g. [14, 15, 28] for surveys),
adapting the logics developed for tree-structured data is not
as straightforward as it might seem, even though from the
complexity point of view, translations between the DOM
and the SAX representations are easy [26]. The main prob-
lem is that most such logics rely on the tree-based repre-
sentation and ignore the linear structure, making the nat-
ural navigation through nested words rather unnatural un-
der the tree representation. Translations between DOM and
SAX are easy for first-order properties, but verifying nav-
igational properties expressed in first-order is necessarily
non-elementary even for words if one wants to keep the
data complexity linear [10]. On the other hand, logics for
XML tend to have good model-checking properties (at least

2

in the finite case), typically matching the complexity of
LTL [11, 21]. We do employ such logics (e.g., those in
[18, 19, 25]) in the proof of the expressive completeness of
NWTL, first by using syntactic translations that reconcile
both types of navigation, and then by combining them with
a composition game argument that extends the result to the
infinite case, which is not considered in the XML setting.
This, however, involves a nontrivial amount of work. Fur-
thermore, “within” operators do not have any natural analog
on trees, and the proof for them is done by a direct compo-
sition argument on nested words.

Organization. Basic notations are given in Section 2.
Section 3 defines temporal logics on nested words, and
Section 4 presents expressive completeness results. We
study model-checking in Section 5, and in Section 6 we
prove the 3-variable property and present a logic for the 2-
variable fragment. Due to space limitations, proofs are only
sketched here.

2 Nested Words

A matchingon N or an interval[1, n] of N consists of
a binary relationµ and two unary relationscall andret,
satisfying the following: (1) ifµ(i, j) holds thencall(i)
andret(j) andi < j; (2) if µ(i, j) andµ(i, j′) hold then
j = j′ and if µ(i, j) andµ(i′, j) hold theni = i′; (3) if
i ≤ j andcall(i) andret(j) then there existsi ≤ k ≤ j
such that eitherµ(i, k) or µ(k, j).

Let Σ be a finite alphabet. Afinite nested wordof length
n over Σ is a tuplew̄ = (w, µ, call, ret), wherew =
a1 . . . an ∈ Σ∗, and(µ, call, ret) is a matching on[1, n].
A nestedω-word is a tuplew̄ = (w, µ, call, ret), where
w = a1 . . . ∈ Σω, and(µ, call, ret) is a matching onN.

We say that a positioni in a nested word̄w is acall po-
sition if call(i) holds; areturn position if ret(i) holds;
and aninternal position if it is neither a call nor a return.
If µ(i, j) holds, we say thati is the matching call ofj,
andj is the matching return ofi, and writec(j) = i and
r(i) = j. Calls without matching returns arependingcalls,
and returns without matching calls arependingreturns. A
nested word is said to bewell-matchedif no calls or returns
are pending. Note that for well-matched nested words, the
unary predicatescall andret are uniquely specified by
the relationµ.

A nested wordw̄ = (w, µ, call, ret) is represented
as a first-order structure:〈U , (Pa)a∈Σ , < , µ , call , ret 〉,
whereU is {1, . . . , n} if w is a finite word of lengthn and
N if w̄ is a nestedω-word;< is the usual ordering,Pa is the
set of positions labeleda, and(µ, call, ret) is the match-
ing relation. When we talk about first-order logic (FO) over
nested words, we assume FO over such structures.

For a nested word̄w, and two elementsi, j of w̄, we
denote byw̄[i, j] the substructure of̄w (i.e. a finite nested

word) induced by elements̀such thati ≤ ` ≤ j. If j < i
we assume that̄w[i, j] is the empty nested word. For nested
ω-wordsw̄, w̄[i,∞] denotes the substructure induced by el-
ementsl ≥ i. When this is clear from the context, we do not
distinguish references to positions in subwordsw̄[i, j] and
w̄ itself, e.g. we shall often write(w̄[i, j], i) |= ϕ to mean
thatϕ is true at the first position of̄w[i, j].

3 Temporal Logics over Nested Words

We now describe our approach to temporal logics for
nested words. It is similar to the approach taken by the logic
CaRet [2]. Namely, we shall consider LTL-like logics that
define the next/previous and until/since operators for vari-
ous types of paths in nested words.

All the logics will be able to refer to propositional letters,
including the base unary relationscall andret, and will
be closed under all Boolean combinations. We shall write>
for true and⊥ for false. For all the logics we shall define the
notion of satisfaction with respect to a position in a nested
word, writing(w̄, i) |= ϕ when the formulaϕ is true in the
positioni of the wordw̄.

Since nested words are naturally represented as transi-
tion systems with two binary relations – the successor and
the matching relation – in all our logics we introducenext
operators© and©µ. The semantics of those is standard:
(w̄, i) |= ©ϕ iff (w̄, i+1) |= ϕ, (w̄, i) |= ©µϕ iff i is a call
with a matching returnj (i.e.µ(i, j) holds) and(w̄, j) |= ϕ.
Likewise, we shall havepastoperators� and�µ: that is,
�ϕ is true in positioni > 1 iff ϕ is true in positioni − 1,
and�µϕ is true in positionj if j is a return position with
matching calli andϕ is true ati.

The until/since operatorsdepend on what a path is. In
general, there are various notions of paths through a nested
word. We shall consider until/since operators for paths that
are unambiguous: that is, for every pair of positionsi andj
with i < j, there could be at most one path between them.
Then, with respect to any such given notion of a path, we
have the until and since operators with the usual semantics:

• (w̄, i) |= ϕUψ iff there is a positionj ≥ i and a path
i = i0 < i1 < . . . < ik = j between them such that
(w̄, j) |= ψ and(w̄, ip) |= ϕ for every0 ≤ p < k.

• (w̄, i) |= ϕSψ iff there is a positionj ≤ i and a path
j = i0 < i1 < . . . < ik = i between them such that
(w̄, j) |= ψ and(w̄, ip) |= ϕ for every0 < p ≤ k.

The approach of CaRet was to introduce three types of
paths, based on the linear successor (calledlinear paths),
the call-return relation (calledabstract paths), and the in-
nermost call relation (calledcall paths).

To define those, we need the notionsC(i) andR(i) for
each positioni – these are the innermost call within which

3

the current actioni is executed, and its corresponding re-
turn. Formally,C(i) is the greatest matched call position
j < i whose matching return is afteri (if such a call po-
sition exists), andR(i) is the least matched return position
` > i whose matching call is beforei.

Definition 3.1 (Linear, call and abstract paths) Given
positionsi < j, a sequencei = i0 < i1 < . . . < ik = j is

• a linear pathif ip+1 = ip + 1 for all p < k;

• a call pathif ip = C(ip+1) for all p < k;

• anabstract pathif

ip+1 =

{

r(ip) if ip is a matched call

ip + 1 otherwise.

We shall denote until/since operators corresponding to
these paths byU/S for linear paths,Uc/Sc for call paths,
andUa/Sa for abstract paths.1

Our logics will have some of the next/previous and un-
til/since operators. Some examples are:

• When we restrict ourselves to the purely linear frag-
ment, our operators are© and�, andU andS, i.e.
precisely LTL (with past operators).

• The logic CaRet [2] has the following operators: the
next operators© and©µ; the linear and abstract untils
(i.e.,U andUa), the call since (i.e.,Sc) and a previous
operator�c that will be defined in Section 4.2.

Another notion of a path combines both the linear and
the nesting structure. It is the shortest path between two
positionsi andj. Unlike an abstract path, it decides when
to skip a call based on positionj. Basically, a summary path
from i to j moves along successor edges until it finds a call
positionk. If k has a matching returǹsuch thatj appears
after`, then the summary path skips the entire call fromk
to ` and continues from̀; otherwise the path continues as a
successor path. Note that every abstract path is a summary
path, but there are summary paths that are not abstract paths.

Definition 3.2 A summary pathbetweeni < j in a nested
word w̄ is a sequencei = i0 < i1 < . . . < ik = j such that
for all p < k,

ip+1 =

{

r(ip) if ip is a matched call andj ≥ r(ip)

ip + 1 otherwise

The corresponding until/since operators are denoted byUσ

andSσ.
1Our definition of abstract path differs very slightly from that in [2]:

there ifip is not a call andip + 1 is a return, the path stops. This does not
affect the results in any significant way: in fact for summarypaths, to be
defined shortly, adding the same stopping condition resultsin an equivalent
logic that is used heavily in the proof of expressive completeness.

For example, in the figure below,〈2, 4, 5〉 is a call path,
〈3, 4, 6, 7, 8, 10〉 is both an abstract and a summary path;
and 〈3, 4, 6, 7, 8, 9〉 is a summary path but not an abstract
path (as9 occurs inside a callµ(8, 10), there is actually no
abstract path from3 to 9).

111 2 3 4 5 6 7 8 9 10

4 Expressive Completeness

In this section we study logics that are expressively com-
plete for FO, i.e. temporal logics that have exactly the same
power as FO formulas in one free variable over finite and
infinite nested words. In other words, for every formulaϕ
of an expressively complete temporal logic there is an FO
formulaϕ′(x) such that(w̄, i) |= ϕ iff w̄ |= ϕ′(i) for every
nested word̄w and positioni in it, and conversely, for every
FO formulaψ(x) there is a temporal formulaψ′ such that
w̄ |= ψ(i) iff (w̄, i) |= ψ′.

Our starting point is a logic NWTL (nested-word tempo-
ral logic) based on summary paths introduced in the previ-
ous section. We show that this logic is expressively com-
plete (and of course remains expressively complete under
the addition of operators present in logics inspired by veri-
fication of properties of execution paths in programs). This
latter remark will be of importance later, when we study the
complexity of model checking.

We then look at logics close to those in the verification
literature, i.e. with operators such as call and abstract until
and since, and ask what needs to be added to them to get
expressive completeness. We confirm a conjecture of [2]
that awithin operator is what’s needed: such an operator
evaluates a formula on a nested subword.

4.1 Expressive completeness and NWTL

The logic NWTL (nested words temporal logic) has next
and previous operators, as well as until and since with re-
spect to summary paths. That is, its formulas are given by:

ϕ,ϕ′ := > | a | call | ret | ¬ϕ | ϕ ∨ ϕ′ |
©ϕ | ©µϕ | �ϕ | �µϕ |
ϕUσϕ′ | ϕSσϕ′

where a ranges overΣ. We use abbreviationsint for
¬call ∧ ¬ret (true in an internal position). Note that in
the absence of pending calls and returns,call andret are
definable as©µ> and�µ>, respectively.

Theorem 4.1 NWTL = FO over both finite and infinite
nested words.

4

Proof sketch. Translation of NWTL into FO is quite
straightforward, but we show how to do it carefully, to get
the 3-variable property. For the converse, we define yet an-
other notion of path, called a strict summary path, that is
different from summary paths in two ways. First, if it skips
a call, it jumps fromi not tor(i) but r(i) + 1. Second, if it
reaches a matched return position, it stops. We then look at
the logic NWTLs in which the semantics of until and since
is modified so that they refer to strict summary paths. We
then show that NWTLs ⊆ NWTL andFO ⊆ NWTLs.

The former is by a direct translation. The proof of
FO ⊆ NWTLs is in two parts. First we deal with the fi-
nite case. We look at the standard translation from nested
words into binary trees. If a matched call positioni is trans-
lated into a nodes of a tree, then the first position inside
the call is translated into the right successor ofs, and the
linear successor ofr(i) is translated into the left successor
of s. If i is an internal position, or an unmatched call or
return position, its linear successor is translated into the left
successor ofs. With this translation, strict summary paths
become paths in a tree.

We next use until/since-based logics for trees from [18,
25]. By a slight adaptation of techniques from these papers
(in particular using the separation property from [18]), we
prove expressive completeness of a translation of NWTLs

into a tree logic, and then derive expressive completeness of
NWTLs for finite nested words.

In the infinite case, we combine the finite case and the
separation property of [18] with Kamp’s theorem and the
separation property of LTL. Note that a nestedω-word
is translated into an infinite tree with exactly one infinite
branch. A composition argument that labels positions of
that branch with types of subtrees reduces each FO formula
to an LTL formula over that branch in which propositions
are types of subtrees, expressible in NWTLs by the proof
in the finite case. Using the separation properties, we then
show how to translate such a description into NWTLs. 2

Recall thatFOk stands for a fragment of FO that consists
of formulas which use at mostk variables in total. First,
from our translation from NWTL to FO we get:

Corollary 4.2 Over nested words, everyFO formula with
at most one free variable is equivalent to anFO3 formula.

Furthermore, for FOsentences, we can eliminate the
since operator.

Corollary 4.3 For everyFO sentenceΦ over finite or in-
finite nested words, there is a formulaϕ of NWTL that
does not use the since operatorSσ such thatw̄ |= Φ iff
(w̄, 1) |= ϕ.

The previous operators� and�µ, however, are needed
even for FO sentences over nested words. This situation
is quite different thus from LTL, for which the separation

property says that FO sentences over the usual, unnested,
words can be evaluated without using the previous� and
since S operators. Let NWTLfuture be the fragment of
NWTL that does not useSσ and the operators� and�µ.

Proposition 4.4 There areFOsentences over nested words
that cannot be expressed inNWTLfuture.

Proof sketch. Let w̄1 andw̄2 be two well-matched nested
words, of lengthn1 andn2 respectively. We first show
that, for every NWTLfuture formula, there is an integerk
such thatw̄1[i1, n1] ≡k w̄2[i2, n2] implies(w̄1, i1) |= ϕ iff
(w̄2, i2) |= ϕ. Here≡k means that Player II has a win in
thek-round Ehrenfeucht-Fraı̈ssé game. This follows from
expressive-completeness and properties of future formulas.
Using this, we show that there is no NWTLfuture formula
equivalent to©µ> ∧ ©µ�a (checking whether the first
position is a call, and the position preceding its matching
return is labeleda). 2

Note also that adding all other until/since pairs to NWTL
does not change its expressiveness. That is, if we let
NWTL+ be NWTL+ {U,S,Uc,Sc,Ua,Sa}, then:

Corollary 4.5 NWTL+ = FO.

Later, when we deal with model-checking, we shall
prove upper bound results for NWTL+ that, while expres-
sively complete for FO, allows more operators.

4.2 The within operator

We now go back to the three until/since operators origi-
nally proposed for temporal logics on nested words, based
on the the linear, call, and abstract paths. In other words,
our basic logic, denoted by LTLµ, is

ϕ,ϕ′ := > | a | call | ret | ¬ϕ | ϕ ∨ ϕ′ |
©ϕ | ©µϕ | �ϕ | �µϕ |
ϕUϕ′ | ϕSϕ′ | ϕUcϕ′ | ϕScϕ′ | ϕUaϕ′ | ϕSaϕ′

We now extend this logic with the followingwithin op-
erator proposed in [2]. Ifϕ is a formula, thenWϕ is a for-
mula, and(w̄, i) |= Wϕ iff i is a call, and(w̄[i, j], i) |= ϕ,
wherej = r(i) if i is a matched call andj = |w̄| if i is
an unmatched call. In other words,Wϕ evaluatesϕ on a
subword restricted to a single procedure. We denote such
an extended logic by LTLµ + W .

Theorem 4.6 LTLµ+W = FO over both finite and infinite
nested words.

The inclusion of LTLµ + W into FO is routine. The con-
verse is done by encoding NWTL into LTLµ + W .

5

CaRet and other within operators The logic CaRet, as
defined in [2], did not have all the operators of LTLµ. In
fact it did not have the previous operators� and�µ, and
it only had linear and abstract until operators, and the call
since operator. That is, CaRet was defined as

ϕ,ϕ′ := > | a | call | ret | ¬ϕ | ϕ ∨ ϕ′ |
©ϕ | ©µϕ | �cϕ |
ϕUϕ′ | ϕUaϕ′ | ϕScϕ′ ,

and we assume thata ranges overΣ∪ {pret}, wherepret
is true in pending returns (which is not definable with the re-
maining operators). Here�c is the previous operator cor-
responding to call paths. Formally,(w̄, i) |= �cϕ if C(i) is
defined and(w̄, C(i)) |= ϕ.

A natural question is whether there is an expressively-
complete extension of this logic. It turns out that twowithin
operators based onC andR (the innermost call and its re-
turn) functions provide such an extension. We define two
new formulasCϕ andRϕ with the semantics as follows:

• (w̄, i) |= Cϕ iff w̄[j, i] |= ϕ, wherej = C(i) if C(i) is
defined, andj = 1 otherwise.

• (w̄, i) |= Rϕ if w̄[i, j] |= ϕ, wherej = R(i) if R(i)
is defined, andj = |w̄| (if w̄ is finite) or∞ (if w̄ is
infinite) otherwise.

Theorem 4.7 CaRet+ {C,R} = FO over both finite and
infinite nested words.

The proof of this result is somewhat involved, and relies
on different techniques. The operators used in CaRet do not
correspond naturally to tree translations of nested words,
and the lack of all until/since pairs makes a translation from
NWTL hard. We thus use a composition argumentdirectly
on nested words.

5 Model-Checking and Satisfiability

In this section we show that both model-checking and
satisfiability are single-exponential-time for NWTL. In fact
we prove this bound for NWTL+, an FO-complete exten-
sion of NWTL with all of U,S,Uc,Sc,Ua,Sa. We use
automata-theoretic techniques, by translating formula into
equivalent automata on nested words. We then show that
a different expressively complete logic based on adding the
within operator to CaRet requires doubly-exponential time
for model-checking, but is exponentially more succinct.

5.1 Nested word automata

A nondeterministic nested word automaton
(NWA) A over an alphabet Σ is a structure
(Q,Q0, F, Fc, δc, δi, δr, δpr) consisting of a finite set of

statesQ, a set of initial statesQ0 ⊆ Q, a set of (linear) ac-
cepting statesF ⊆ Q, a set of pending call accepting states
Fc ⊆ Q, a call-transition relationδc ⊆ Q × Σ × Q × Q,
an internal-transition relationδi ⊆ Q × Σ × Q, a
return-transition relationδr ⊆ Q × Q × Σ × Q, and a
pending-return-transition relationδpr ⊆ Q × Σ × Q. The
automatonA starts in the initial state and reads the nested
word from left to right. The state is propagated along
the linear edges as in case of a standard word automaton.
However, at a call, the nested word automaton propagates
states along the linear edges and also along the nesting edge
(if there is no matching return, then the latter is required
to be inFc for acceptance). At a matched return, the new
state is determined based on the states propagated along the
linear as well as the nesting incoming edges.

Formally, a run r of the automatonA over a nested
wordw̄ = (a1a2 . . . , µ, call, ret) is a sequenceq0, q1, . . .
of states along the linear edges, and a sequenceq′i, for
every call positioni, of states along nesting edges, such
that q0 ∈ Q0 and for each positioni, if i is a call then
(qi−1, ai, qi, q

′
i) ∈ δc; if i is internal, then(qi−1, ai, qi) ∈

δi; if i is a return such thatµ(j, i), then(qi−1, q
′
j , ai, qi) ∈

δr; and if i is an unmatched return then(qi−1, ai, qi) ∈ δpr.
The runr is accepting if (1) for all pending callsi, q′i ∈ Fc,
and (2) the final stateq` ∈ F for finite word of length`,
and for infinitely many positionsi, qi ∈ F , for nestedω-
words. The automatonA accepts the nested word̄w if it
has an accepting run over̄w.

Nested word automata have the same expressiveness as
the monadic second order logic over nested words, and the
language emptiness can be checked in polynomial-time [4].

5.2 Tableau construction

We now show how to build an NWA accepting the satis-
fying models of a formula of NWTL+. This leads to deci-
sion procedures for satisfiability and model checking.

Let us first consider special kinds of summary paths:
summary-downpaths are allowed to use only call edges
(from a call to the first position inside the call), nesting
edges (from a call to its matching return), and internal edges
(from an internal or return position to a call or internal po-
sition). Summary-uppaths are allowed to use only return
edges (from a position preceding a return to the return),
nesting edges and internal edges. We will useUσ↓ and
Uσ↑ to denote the corresponding until operators. Observe
thatϕUσψ is equivalent toϕUσ↑(ϕUσ↓ψ).

Given a formulaϕ, we wish to construct a nested word
automatonAϕ whose states correspond to sets of subformu-
las ofϕ. Intuitively, given a nested word̄w, a runr, which
is a linear sequenceq0q1 . . . of states and statesq′i labeling
nesting edges from call positions, should be such that each
stateqi is precisely the set of formulas that hold at position

6

i+1. The labelq′i is used to remember abstract-next formu-
las that hold at positioni and the abstract-previous formulas
that hold at matching return. For clarity of presentation, we
focus on formulas with next operators© and©µ, and until
over summary-down paths. It is easy to modify the con-
struction to allow other types of untils and past operators.

Given a formulaϕ, the closure ofϕ, denoted bycl(ϕ),
is the smallest set that satisfies the following properties:
cl(ϕ) containsϕ, call, ret, int, and©ret; if either
¬ψ, or ©ψ or ©µψ is in cl(ϕ) then ψ ∈ cl(ϕ); if
ψ ∨ ψ′ ∈ cl(ϕ), thenψ, ψ′ ∈ cl(ϕ); if ψUσ↓ψ′ ∈ cl(ϕ),
thenψ, ψ′, ©(ψUσ↓ψ′), and©µ(ψUσ↓ψ′) are incl(ϕ);
and if ψ ∈ cl(ϕ) andψ is not of the form¬θ (for anyθ),
then¬ψ ∈ cl(ϕ). It is straightforward to see that the size of
cl(ϕ) is only linear in the size ofϕ. Henceforth, we identify
¬¬ψ with the formulaψ.

An atomof ϕ is a setΦ ⊆ cl(ϕ) that satisfies:

• For everyψ ∈ cl(ϕ), ψ ∈ Φ iff ¬ψ 6∈ Φ .

• For every formulaψ ∨ ψ′ ∈ cl(ϕ), ψ ∨ ψ′ ∈ Φ iff
(ψ ∈ Φ orψ′ ∈ Φ).

• For every formulaψUσ↓ψ′ ∈ cl(ϕ), ψUσ↓ψ′ ∈ Φ
iff either ψ′ ∈ Φ or (ψ ∈ Φ and©ret 6∈ Φ and either
©(ψUσ↓ψ′) ∈ Φ or©µ(ψUσ↓ψ′) ∈ Φ).

• Φ contains exactly one of the elements in the set
{call, ret, int}.

These clauses capture local consistency requirements.
Given a formulaϕ, we build a nested word automaton

Aϕ as follows. The alphabetΣ is 2AP , whereAP is the set
of atomic propositions.

1. Atoms ofϕ are states ofAϕ;

2. An atomΦ is an initial state iffϕ ∈ Φ;

3. For atomsΦ,Ψ and a symbola ⊆ AP , (Φ, a,Ψ) is an
internal transition ofAϕ iff (a) int ∈ Φ; and (b) for
p ∈ AP , p ∈ a iff p ∈ Φ; and (c) for each©ψ ∈
cl(ϕ), ψ ∈ Ψ iff ©ψ ∈ Φ; (d) for each©µψ ∈ cl(ϕ),
©µψ 6∈ Φ.

4. For atomsΦ,Ψl,Ψh and a symbola ⊆ AP ,
(Φ, a,Ψl,Ψh) is a call transition ofAϕ iff (a) call ∈
Φ; and (b) forp ∈ AP , p ∈ a iff p ∈ Φ; and (c) for
each©ψ ∈ cl(ϕ), ψ ∈ Ψl iff ©ψ ∈ Φ; and (d) for
each©µψ ∈ cl(ϕ), ©µψ ∈ Ψh iff ©µψ ∈ Φ.

5. For atomsΦl,Φh,Ψ and a symbola ⊆ AP ,
(Φl,Φh, a,Ψ) is a return transition ofAϕ iff (a) ret ∈
Φl; and (b) forp ∈ AP , p ∈ a iff p ∈ Φl; and (c) for
each©ψ ∈ cl(ϕ), ψ ∈ Ψ iff ©ψ ∈ Φl; and (d) for
each©µψ ∈ cl(ϕ), ©µψ ∈ Φh iff ψ ∈ Φl.

6. For atomsΦ,Ψ and a symbola ⊆ AP , (Φ, a,Ψ) is a
pending-return transition ofAϕ iff (a) ret ∈ Φ; and
(b) for p ∈ AP , p ∈ a iff p ∈ Φ; and (c) for each

©ψ ∈ cl(ϕ), ψ ∈ Ψ iff ©ψ ∈ Φ; (d) for each©µψ ∈
cl(ϕ), ©µψ 6∈ Φ.

The transition relation ensures that the current symbol is
consistent with the atomic propositions in the current state,
and next operators requirements are correctly propagated.

An atom Φ belongs to the setFc iff Φ does not con-
tain any abstract-next formula, and this ensures that, in an
accepting run, at a pending call, no requirements are prop-
agated along the nesting edge. For each until-formulaψ in
the closure, letFψ be the set of atoms that either do not con-
tainψ or contain the second argument ofψ. Then a nested
word w̄ over the alphabet2AP satisfiesϕ iff there is a run
r of Aϕ overw̄ such that for each until-formulaψ ∈ cl(ϕ),
for infinitely many positionsi, qi ∈ Fψ. Thus,

Theorem 5.1 For a formulaϕ of NWTL+, one can effec-
tively construct a nondeterministic Büchi nested word au-
tomatonAϕ of size2O(|ϕ|) accepting the models ofϕ.

Since the automatonAϕ is exponential in the size ofϕ,
we can check satisfiability ofϕ in exponential-time by test-
ing emptiness ofAϕ. EXPTIME-hardness follows from the
corresponding hardness result for CaRet.

Corollary 5.2 The satisfiability problem forNWTL+ is
EXPTIME-complete.

When programs are modeled by nested word automata
A (or equivalently, pushdown automata, or recursive state
machines), and specifications are given by formulasϕ of
NWTL+, we can use the classical automata-theoretic ap-
proach: negate the specification, build the NWAA¬ϕ ac-
cepting models that violateϕ, take the product with the pro-
gramA, and test for emptiness ofL(A)∩L(A¬ϕ). Note that
the program typically will be given more compactly, say, as
a Boolean program [5], and thus, the NWAA may itself be
exponential in the size of the input.

Corollary 5.3 Model checkingNWTL+ specifications with
respect to Boolean programs isEXPTIME-complete.

5.3 Checking within operator

We now show that addingwithin operators makes model-
checking doubly exponential. Given a formulaϕ of NWTL
or NWTL+, let pϕ be a special proposition that does not
appear inϕ. Let Wϕ be the language of nested wordsw̄
such that for each positioni, (w̄, i) |= pϕ iff (w̄, i) |= Wϕ.
We construct a doubly-exponential automatonB that cap-
turesWϕ. First, using the tableau construction for NWTL+,
we construct an exponential-size automatonA that captures
nested words that satisfyϕ. Intuitively, every time a propo-
sitionpϕ is encountered, we want to start a new copy ofA,
and a state ofB keeps track of states of multiple copies of

7

A. At a call,B guesses whether the call has a matching re-
turn or not. In the latter case, we need to maintain pairs of
states ofA so that the join at return positions can be done
correctly. A state ofB, then, is either a set of states ofA or a
set of pairs of states ofA. We explain the latter case. A pair
(q, q′) belongs to the state ofB, while reading positioni of a
nested word̄w, if the subword fromi to the first unmatched
return can takeA from q to q′. When reading an internal
symbola, a summary(q, q′) in the current state can be up-
dated to(u, q′), providedA has an internal transition fromq
to u ona. LetB read a call symbola. Consider a summary
(q, q′) in the current state, and a call-transition(q, a, ql, qh)
ofA. ThenB guesses the return transition(ul, qh, b, u) that
will be used byA at the matching return, and sends the
summary(ql, ul) along the call edge and the triple(b, u, q′)
along the nesting edge. While processing a return symbol
b, the current state ofB must contain summaries only of
the form (q, q) where the two states match, and for each
summary(b, u, q′) retrieved from the state along the nesting
edge, the new state contains(u, q′). Finally,B must enforce
thatWϕ holds whenpϕ is read. Only a call symbola can
containpϕ, and when reading such a symbol,B guesses a
call transition(q0, a, ql, qh), whereq0 is the initial state of
A, and a return transition(ul, qh, b, qf), whereqf is an ac-
cepting state ofA, and sends the summary(ql, ul) along the
call edge and the symbolb along the nesting edge.

Lemma 5.4 For every formulaϕ of NWTL+, there is a
nested word automaton that accepts the languageWϕ and
has size doubly-exponential in|ϕ|.

Consider a formulaϕ of NWTL++W . For every within-
subformulaWϕ of ϕ, let ϕ′ be obtained fromϕ by substi-
tuting each top-level subformulaWψ in ϕ by the propo-
sition pψ. Each of these primed formulas is a formula of
NWTL+. Then, if we take the product of the nested word
automata acceptingWϕ′ corresponding to all the within-
subformulasϕ, together with the nested word automaton
Aϕ′ , the resulting language captures the set of models of
ϕ. Intuitively, the automaton forWϕ′ is ensuring that the
truth of the propositionpϕ reflects the truth of the subfor-
mulaWϕ. If ϕ itself has a within-subformulaWψ, then the
automaton forϕ treats it as an atomic propositionpψ, and
the automaton checkingpψ, running in parallel, makes sure
that the truth ofpψ correctly reflects the truth ofWψ.

For the lower bound, the decision problem for LTL
games can be reduced to the satisfiability problem for for-
mulas with linear untils and within operators [17], and this
shows that for CaRet extended with the within operator, the
satisfiability problem is 2EXPTIME-hard. We thus obtain:

Proposition 5.5 For the logicNWTL+ extended with the
within operatorW the satisfiability problem and the model
checking problem with respect to Boolean programs, are
both 2EXPTIME-complete.

Remark: checking w̄ |= ϕ for finite nested words For
finite nested words, one evaluates the complexity of check-
ing whether the given word satisfies a formula, in terms
of the length|w̄| of the word and the size of the formula.
A straightforward recursion on subformulas shows that for
NWTL formulas the complexity of this check isO(|w̄|·|ϕ|),
and for both logics withwithin operators, CaRet+ {C,R}
and LTLµ + W , it isO(|w̄|2 · |ϕ|).

5.4 On within and succinctness

We saw that adding within operators to NWTL+ in-
creases the complexity of model-checking by one exponent.
In particular, there could be no polynomial-time translation
from NWTL+ + W to NWTL+. We now prove a stronger
result that gives a space bound as well: while NWTL+ +W
has the same power as NWTL+, its formulae can be ex-
ponentially more succinct than formulas NWTL+. That is,
there is a sequenceϕn, n ∈ N, of NWTL+ + W formulas
such thatϕn is of sizeO(n), and the smallest formula of
NWTL+ equivalent toϕn is of size2Ω(n). For this result,
we require nestedω-words to be over the alphabet2AP .

Theorem 5.6 NWTL+ +W is exponentially more succinct
thanNWTL+.

The proof is based upon succinctness results in [9, 22],
by adapting their examples to nested words.

6 Finite-Variable Fragments

We have already seen that FO formulas in one free vari-
able over nested words can be written using just three dis-
tinct variables, as in the case of the usual, unnested, words.
For finite nested words this is a consequence of a tree rep-
resentation of nested words and the three-variable property
for FO over finite trees [19], and for infinite nested words
this is a consequence Theorem 4.1.

In this section we prove two results. First, we give a
model-theoretic proof that FO formulas with zero, one, or
two free variables over nested words (finite or infinite) are
equivalent toFO3 formulas. Given theFO = FO3 col-
lapse, we ask whether there is a temporal logic expressively
complete forFO2, the two-variable fragment. We adapt
techniques from [9] to find a temporal logic that has the
same expressiveness asFO2 over nested words (in a vo-
cabulary that has successor relations corresponding to the
“next” temporal operators).

6.1 The three-variable property

We give a model-theoretic, rather than a syntactic, argu-
ment, that uses Ehrenfeucht-Fraı̈ssé games and shows that

8

over nested words, formulas with at most two free vari-
ables are equivalent toFO3 formulas. Note that for finite
nested words, the translation into trees, already used in the
proof of Theorem 4.1, can be done using at most three vari-
ables. This means that the result of [19] establishing the
3-variable property for finite ordered unranked trees gives
us the 3-variable property for finite nested words. We prove
thatFO = FO3 over arbitrary nested words.

Theorem 6.1 Over finite or infinite nested words, everyFO
formula with at most2 free variables is equivalent to an
FO3 formula.

Proof: We look at infinite nested words since the finite
case was settled in [19]. It is more convenient to prove the
result for ordered unranked forests in which every subtree
is finite. We translate a nestedω-word into such a forest as
follows: whenµ(i, j) holds, the subword,̄w[i, j] is mapped
to a subtree with rooti, i + 1 as the first child ofi, and
j + 1 as i’s next sibling (note that this is different from
the translation into binary trees we used before). Ifi is an
internal position, or a pending call or return position, then it
has no descendants and its next sibling isi+ 1.

It is routine to define, in FO, relations�desc and�sib for
descendant and younger sibling in such a forest. Further-
more, from these relations, we can define the usual≤ and
µ in nested words using at most3 variables as follows. The
formulas forx ≤ y andµ(x, y) are given by

(y �desc x) ∨ ∃z
(

x �desc z ∧ ∃x (z ≺sib x ∧ y �desc x)
)

(y �desc x) ∧ ∀z
(

(z �desc x) → z ≤ y)
)

.

Thus, it suffices to prove the three-variable property for
such ordered forests, which will be referred to asA, B, etc.
We shall use pebble games. LetGv

m(A, a1, b1,B, b1, b2) be
them-move,v-pebble game on structuresA andB where
initially pebblesxi are placed onai in A and bi in B.
Player II has a winning strategy forGv

m(A, a1, b1,B, b1, b2)
iff A, a1, a2 and B, b1, b2 agree on all formulas with at
mostv variables and quantifier-depthm. We know from
[13] that to prove Theorem 6.1, it suffices to show that,
for all k, if Player II has a winning strategy for the game
G3

3k+2(A, a1, a2;B, b1, b2), then she also has a winning
strategy for the gameGk

k(A, a1, a2;B, b1, b2).
We show that Player II can win thek-pebble game by

maintaining a set of 3-pebble subgames on which she copies
Player I’s moves and decides on responses using her win-
ning strategy for these smaller 3-pebble games. The choice
of these sub-games will partition the universe|A| ∪ |B| so
that each play by Player I in thek-pebble game will be an-
swered in one3-pebble game. This is similar to the proof
that linear orderings have the 3-variable property [13].2

6.2 The two-variable fragment

In this section, we construct a temporal logic that cap-
tures the two-variable fragment of FO. Note that for fi-
nite unranked trees, a navigational logic capturingFO2 is
known [20, 19]: it corresponds to a fragment of XPath.
However, translating the basic predicates over trees into the
vocabulary of nested words requires3 variables, and thus
we cannot apply existing results even in the finite case.

SinceFO2 over a linear ordering cannot define the suc-
cessor relation but temporal logics have next operators, we
explicitly introduce successors into the vocabulary ofFO.
These successor relations in effect partition the linear edges
into three disjoint types;interior edges,call edges, andre-
turn edges, and the nesting edges (except those from a po-
sition to its linear successor) into two disjoint types;call-
returnsummaries, andcall-interior-returnsummaries.

• Si(i, j) holds iff j = i+ 1 and eitherµ(i, j) or i is not
a call andj is not a return.

• Sc(i, j) holds iff i is a call andj = i+1 is not a return;

• Sr(i, j) holds iff i is not a call andj = i+1 is a return.

• Scr(i, j) holds iff µ(i, j) and there is a path fromi to
j using only call and return edges.

• Scir(i, j) holds iff µ(i, j) and neitherj = i + 1 nor
Scr(i, j).

Let T denote the set{c, i, r, cr, cir} of all edge types. In
addition to the built-in predicatesSt for t ∈ T , we add the
transitive closureof all unions of subsets of these relations.
That is, for each non-empty setΓ ⊆ T of edge types, let
SΓ stand for the union∪t∈ΓS

t, and let≤Γ be the reflexive-
transitive closure ofSΓ. Now when we refer toFO2 over
nested words, we mean FO in the vocabulary of the unary
predicates plus all the≤Γ’s, the five successor relations, and
the built-in unarycall andret predicates.

We define a temporal logic unary-NWTL that has future
and past versions of next operators parameterized by edge
types, and eventually operators parameterized by a set of
edge types. Its formulas are given by:

ϕ := > | a | call | ret | ¬ϕ | ϕ ∨ ϕ′ |

©t
ϕ | �

t
ϕ | 3Γϕ |

Γ
ϕ

wherea ranges overΣ, t ranges overT , andΓ ranges over
non-empty subsets ofT . The semantics is defined in the
obvious way; for example,(w̄, i) |= 3Γϕ iff for some po-
sition i ≤Γ j, (w̄, j) |= ϕ.

For anFO2 formulaϕ(x) with one free variablex, let
qdp(ϕ) be its quantifier depth, and for a unary-NWTL for-
mulaϕ′, let odp(ϕ′) be its operator depth.

Theorem 6.2 1. unary-NWTL is expressively complete
for FO2.

9

2. If formulas are viewed as DAGs (i.e identical sub-
formulas are shared), then everyFO2 formula ϕ(x)
can be converted to an equivalent unary-NWTL for-
mula ϕ′ of size 2O(|ϕ|(qdp(ϕ)+1)) and odp(ϕ′) ≤
10 qdp(ϕ). The translation is computable in time
polynomial in the size ofϕ′.

3. Model checking of unary-NWTL can be carried out
with the same worst case complexity as for NWTL.

Proof sketch. The translation from unary-NWTL intoFO2

is standard. For the other direction we adapt techniques of
[9]. Given anFO2 formulaϕ(x), the translation works a
follows. Whenϕ(x) is of the forma(x), for a proposi-
tion a, it outputsa. The cases of Boolean connectives are
straightforward. The two cases that remain are whenϕ(x)
is of the form∃xϕ∗(x) or ∃y ϕ∗(x, y). In both cases, we
say thatϕ(x) is existential. In the first case,ϕ(x) is equiv-
alent to∃y ϕ∗(y) and, viewingx as a dummy free variable
in ϕ∗(y), this reduces to the second case.

In the second case, we can rewriteϕ∗(x, y) as
β(χ0(x, y), . . . , χr−1(x, y), ξ0(x), . . . , ξs−1(x), ζ0(y),
. . . , ζt−1(y)), whereβ is a propositional formula, eachχi
is an atomic order formula, andξi’s andζi’s are atomic or
existentialFO2 formulas with quantifier depth< qdp(ϕ).
In order to be able to recurse on subformulas ofϕ we have
to separate theξi’s from theζi’s. For that, we consider mu-
tually exclusive and completeorder typesthat enumerate
possible order relations betweenx and y with respect to
differentSt’s. Under each order type, each atomic order
formula evaluates to either> or ⊥. Furthermore, ifτ is
an order type,ψ(x) anFO2 formula, andψ′ an equivalent
unary-NWTL formula, one can obtain a unary-NWTL for-
mulaτ〈ψ〉 equivalent to∃y(τ ∧ ψ(y)). Using this and the
hypothesis forξ′i for i < s andζ′i(x) we can computeϕ′.

Model checking for unary-NWTL can be carried out
with the same complexity as NWTL, by adapting the
tableaux construction in Section 5. 2

AcknowledgmentsThe authors were supported by: Alur –
NSF CPA award 0541149; Arenas – FONDECYT grants 1050701,
7060172 and 1070732; Arenas and Barceló – grant P04-067-F
from the Millennium Nucleus Centre for Web Research; Immer-
man – NSF grants CCF-0541018 and CCF-0514621; Libkin – the
EC grant MEXC-CT-2005-024502, EPSRC grant E005039, and a
grant from NSERC (while on leave from U. of Toronto).

References

[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps,
M. Yannakakis. Analysis of recursive state machines.ACM
TOPLAS27(4): 786–818 (2005).

[2] R. Alur, K. Etessami and P. Madhusudan. A temporal logic
of nested calls and returns. InTACAS’04, pages 467–481.

[3] R. Alur and P. Madhusudan. Visibly pushdown languages.
In STOC’04, pages 202–211.

[4] R. Alur and P. Madhusudan. Adding nesting structure to
words. InDTL’06, pages 1–13.

[5] T. Ball and S. Rajamani. Bebop: A symbolic model checker
for boolean programs. InSPIN’00, pages 113–130.

[6] V. Bárány, C. Lóding, O. Serre. Regularity problems for vis-
ibly pushdown languages.STACS 2006, pages 420–431.

[7] Document Object Model DOM. http://www.w3.org/DOM.

[8] J. Esparza and S. Schwoon. A BDD-based model checker
for recursive programs. InCAV’01, pages 324–336.

[9] K. Etessami, M. Vardi, and T. Wilke. First-order logic with
two variables and unary temporal logic.Information and
Computation179(2): 279–295, 2002.

[10] M. Frick, M. Grohe. The complexity of first-order and
monadic second-order logic revisited.LICS 2002, 215–224.

[11] G. Gottlob, C. Koch. Monadic datalog and the expressive
power of languages for web information extraction.Journal
of the ACM51 (2004), 74–113.

[12] H.W. Kamp. Tense Logic and the Theory of Linear Order.
Ph.D. Thesis, UCLA, 1968.

[13] N. Immerman and D. Kozen. Definability with bounded
number of bound variables.Information and Computation,
83 (1989), 121-139.

[14] N. Klarlund, T. Schwentick and D. Suciu. XML: model,
schemas, types, logics, and queries. InLogics for Emerg-
ing Applications of Databases, Springer, 2003, pages 1–41.

[15] L. Libkin. Logics for unranked trees: an overview. InICALP
2005, pages 35-50.

[16] C. Löding, P. Madhusudan, O. Serre. Visibly pushdown
games. InFSTTCS 2004, pages 408–420.

[17] P. Madhusudan, personal communication.

[18] M. Marx. Conditional XPath, the first order complete XPath
dialect. InPODS’04, pages 13–22.

[19] M. Marx. Conditional XPath. TODS 30(4): 929–959, 2005.

[20] M. Marx and M. de Rijke. Semantic characterizations of
navigational XPath. InTDM’04, pages 67–73.

[21] F. Neven, T. Schwentick. Expressive and efficient pattern
languages for tree-structured data.PODS’00, pages 145-156.

[22] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal
logic with forgettable past. InLICS’02, pages 383–392.

[23] F. Neven and T. Schwentick. Query automata over finite
trees.Theor. Comput. Sci.275(1-2): 633–674, 2002.

[24] SAX: A Simple API for XML.
http://www.saxproject.org.

[25] B.-H. Schlingloff. Expressive completeness of temporal
logic of trees.J. Appl. Non-Classical Log.2: 157-180, 1992.

[26] L. Segoufin. Typing and querying XML documents: some
complexity bounds. InPODS’03, pages 167–178.

[27] L. Segoufin, V. Vianu. Validating streaming XML docu-
ments. InPODS’02, pages 53–64.

[28] V. Vianu. A web Odyssey: from Codd to XML. InACM
PODS’01, pages 1–15.

10

