
Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Faceted search over RDF-based knowledge graphs✩

Marcelo Arenas a, Bernardo Cuenca Grau b, Evgeny Kharlamov b, Šarūnas Marciuška b,
Dmitriy Zheleznyakov b,∗

a Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Edificio San Agustin, Macul 7820436 Santiago, Chile
b University of Oxford, Department of Computer Science, Information Systems Group, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

a r t i c l e i n f o

Article history:
Received 22 April 2015
Received in revised form
3 September 2015
Accepted 22 December 2015
Available online 31 December 2015

Keywords:
Faceted search
Ontology
OWL 2
RDF
SPARQL
Algorithms

a b s t r a c t

Knowledge graphs such as Yago and Freebase have become a powerful asset for enhancing search, and
are being intensively used in both academia and industry. Many existing knowledge graphs are either
available as Linked Open Data, or they can be exported as RDF datasets enhanced with background
knowledge in the form of an OWL 2 ontology. Faceted search is the de facto approach for exploratory
search in many online applications, and has been recently proposed as a suitable paradigm for querying
RDF repositories. In this paper, we provide rigorous theoretical underpinnings for faceted search in the
context of RDF-based knowledge graphs enhanced with OWL 2 ontologies. We identify well-defined
fragments of SPARQL that can be naturally captured using faceted search as a query paradigm, and
establish the computational complexity of answering such queries. We also study the problem of
updating faceted interfaces, which is critical for guiding users in the formulation of meaningful queries
during exploratory search. We have implemented our approach in a fully-fledged faceted search system,
SemFacet, which we have evaluated over the Yago knowledge graph.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge graphs are large collections of interconnected enti-
ties enrichedwith semantic annotations, which have become pow-
erful assets for enhancing search and are now widely used in both
academia and industry. Prominent examples of large-scale knowl-
edge graphs include Yago [1], Freebase [2], Google’s Knowledge
Graph [3], Facebook’s Graph Search [4], Microsoft’s Satori [5], and
Yahoo’s Knowledge Graph [6]. Many existing knowledge graphs
are either available as Linked Open Data, or they can be exported
as RDF datasets [7] enhanced with OWL 2 ontologies [8] capturing
the relevant domain background knowledge.

SPARQL [9] has become the standard language for querying RDF
data and OWL ontologies, and an increasing number of applica-
tions are relying on RDF, OWL 2, and SPARQL for storing, publish-
ing, and querying data; in particular, access to knowledge graphs

✩ This research was supported by the Royal Society, the EPSRC projects Score!,
DBOnto, and MaSI3 and the EU FP7 project Optique (n. 318338).
∗ Corresponding author.

E-mail addresses:marenas@ing.puc.cl (M. Arenas),
bernardo.cuenca.grau@cs.ox.ac.uk (B. Cuenca Grau),
evgeny.kharlamov@cs.ox.ac.uk (E. Kharlamov), sarunas.marciuska@cs.ox.ac.uk
(Š. Marciuška), dmitriy.zheleznyakov@cs.ox.ac.uk (D. Zheleznyakov).

http://dx.doi.org/10.1016/j.websem.2015.12.002
1570-8268/© 2016 Elsevier B.V. All rights reserved.
is often provided by a SPARQL endpoint. Writing SPARQL queries,
however, requires some proficiency in the query language and is
not well-suited for the majority of users [10,11]. Thus, an impor-
tant challenge that has attracted a great deal of attention in the
Semantic Web community is the development of simple yet pow-
erful query interfaces for non-expert users [12–17]. This challenge
becomes even more critical in the context of knowledge graphs
such as Yago or Freebase, which are typically oriented towards
end-users search.

Faceted search is a prominent approach for querying collections
of entities where users can narrow down the search results
by progressively applying filters, called facets [18]. A facet
typically consists of a predicate (e.g., ‘gender’ or ‘occupation’ when
querying entities about people) and a set of possible string values
(e.g., ‘female’ or ‘research’), and entities in the collection are
annotated with predicate-value pairs. During faceted search users
iteratively select facet values and the entities annotated according
to the selection are returned as the search result.

Faceted search in the context of RDF has received signifi-
cant attention and a number of systems have been developed
[19–27]. Furthermore, several such systems have been successfully
exploited for performing exploratory search over large knowledge
graphs such as Freebase [28].

The theoretical underpinnings of faceted search in the context
of RDF and knowledge graphs, however, remain relatively

http://dx.doi.org/10.1016/j.websem.2015.12.002
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2015.12.002&domain=pdf
mailto:marenas@ing.puc.cl
mailto:bernardo.cuenca.grau@cs.ox.ac.uk
mailto:evgeny.kharlamov@cs.ox.ac.uk
mailto:sarunas.marciuska@cs.ox.ac.uk
mailto:dmitriy.zheleznyakov@cs.ox.ac.uk
http://dx.doi.org/10.1016/j.websem.2015.12.002

56 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
unexplored [10,29,30]. In particular, the following key questions
have not been satisfactorily addressed in the literature (see our
Related Work section):

(Q1) What fragments of SPARQL can be naturally captured using
faceted search as a query paradigm?

(Q2) What is the complexity of answering such queries?
(Q3) What does it mean to generate and interactively update an

interface according to a given RDF graph?

Questions 1 and 2 correspond to the study of the expressive
power and complexity of query languages. These are central topics
in data management, and addressing them is a key requirement
to develop information systems that can provide correctness,
robustness, scalability, and extensibility guarantees. Moreover,
update (Question 3) is a key task in information systems where
query formulation is fundamentally interactive. Our first goal
is to answer these questions, thus providing rigorous and solid
foundations for faceted search over RDF data.

Our second aim is to provide a framework for faceted search
that is also applicable to the wider setting of OWL 2 and hence
to ontology-enriched knowledge graphs such as Freebase and
Yago. Existing works have focused mostly on RDF, thus essentially
disregarding the role of OWL 2 ontologies. We see this as an
important limitation. Ontological axioms not only can be used to
enrich query answers over RDF datasets with implicit information,
but also to enhance the navigation process by providing rich
schema-level structure. Furthermore, RDF-based faceted search
systems are data-centric and hence cannot be exploited to
browse large ontologies such as SNOMED CT [31] or to formulate
meaningful queries at the schema level.

More specifically, we formalise in Section 3 our notions of
faceted interface and query, which are tailored towards RDF and
OWL 2. Our notion of interface enables navigation across intercon-
nected collections of entities, which is inherent to faceted search
over RDF data. Furthermore, it abstracts from considerations spe-
cific to GUI design (e.g., facet and value ranking), while at the same
time reflecting the core functionality of existing systems. Specif-
ically, our interfaces capture both the combination of facets dis-
played during search and the facet values selected by users. The
latter determine a faceted query, whose answers constitute the
current results of the search.Wedescribe suchqueries both as first-
order logic queries satisfying certain restrictions as well as a frag-
ment of SPARQL.

In Section 4, we study the problem of answering faceted
queries over RDF graphs and ontologies captured by the OWL 2
profiles [32]—language fragments with favourable computational
properties that are sufficiently powerful to capture the ontologies
underpinning most existing knowledge graphs. For each of these
profiles we establish tight complexity bounds and propose query
answering algorithms.

In Section 5, we focus on interface generation and update.
Existing techniques for RDF are based on exploration of the
underlying RDF graph. We lift this approach by proposing a
graph-based representation of OWL 2 ontologies and their logical
entailments for the purpose of faceted navigation, which we refer
to as a facet graph. Then, we characterise what it means for an
interface to conform to an ontology, in the sense that every facet
and facet value in the interface is justified by an edge in the graph
(and hence by an entailment of the ontology). Finally, we propose
generic interface generation and update algorithms that rely on the
information in the graph, and show tractability of these tasks for
ontologies in the OWL 2 profiles.

In Section 6, we present our faceted search system SemFacet
and report on a proof of concept performance evaluation as well as
on our practical experience with Yago.

This paper extends our conferencepublication [33] byproviding
(i) detailed proofs of our technical results; (ii) a precise account of
the connection between our theoretical results in terms of first-
order logic and the SPARQL standard; (iii) a detailed description
of our system SemFacet; and (iv) a concrete case study based on
Yago.1

2. Preliminaries

We use standard notions from first-order logic. We assume
pairwise disjoint infinite sets of constants C, unary predicates UP,
and binary predicates BP. A signature is a subset of C ∪ UP ∪ BP.
W.l.o.g., we assume all formulae to be rectified, that is, no variable
appears free and quantified in a first-order formula ϕ, and every
variable is quantified at most once in ϕ. The set of free variables of
a formula ϕ is denoted as fvar(ϕ).

A fact is a ground relational atom and a dataset is a finite set
of facts. A rule is a sentence ∀x∀z [ϕ(x, z) → ∃yψ(x, y)], where
x, z, and y are pairwise disjoint variable tuples, the body ϕ(x, z)
is a conjunction of atoms with variables in x ∪ z, and the head
∃yψ(x, y) is an existentially quantified non-empty conjunction
of atoms ψ(x, y) with variables in x ∪ y. Note that we consider
only rules that are Horn (i.e., disjunction-free), which is sufficient
to capture all three profiles of OWL 2. As usual, we assume rules
to be safe; that is, every universally quantified variable in the rule
occurs in a body atom. Universal quantifiers in rules are omitted
for brevity. We say that a rule is Datalog if its head has at most
one atom and all variables are universally quantified. Finally, we
define an ontology as a finite set of rules and facts. Note that the
restriction of rule heads being non-empty ensures satisfiability of
any ontology, which makes query results meaningful.

We treat⊤ as a special symbol inUP, which is used to represent
a tautology, and assume that any ontology with signature V
mentioning ⊤ includes also the following rules:

A(x) → ⊤(x) for each A ∈ UP ∩ V ,
R(x, y) → ⊤(z) for each z ∈ {x, y} and R ∈ BP ∩ V .

This treatment of ⊤ allows us to ensure safety of rules obtained
from OWL 2 ontologies. Similarly, we treat equality ≈ as an
ordinary predicate in BP, and assume that any ontology with
signature V mentioning equality contains the following rules
axiomatising its meaning:

x ≈ y → y ≈ x,
x ≈ y ∧ y ≈ z → x ≈ z,

R(x, y) → z ≈ z for all z ∈ {x, y}, R ∈ BP ∩ V ,
A(x) → x ≈ x for all A ∈ UP ∩ V ,

A(x) ∧ x ≈ y → A(y) for all A ∈ UP ∩ V ,
R(x, y) ∧ x ≈ z → R(z, y) for all R ∈ BP ∩ V ,
R(x, y) ∧ y ≈ z → R(x, z) for all R ∈ BP ∩ V .

OWL 2 defines three profiles: weaker languages with favourable
computational properties [32]. Each profile ontology can be
normalised as rules and facts using the correspondence of OWL 2
and first-order logic and a variant of the structural transformation.2
An ontology where all rules are of the form given in Table 1 is

• RL if it does not contain rules (3);
• EL if it does not contain rules (1), (9), and (13); and

1 Some of the material in this paper has also been presented at workshops
without formal proceedings [34–36]; a preliminary version of SemFacet was
presented as a poster [37] and a short demo paper [38].
2 Note that the profiles provide the special concept ⊥, which is immaterial to

query answering over satisfiable profile ontologies.

M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74 57
Table 1
Rules corresponding to OWL 2 profiles.

(1) A(x) ∧ R(x, y1) ∧ B(y1) ∧ R(x, y2) ∧ B(y2) → y1 ≈ y2 , (2) R(x, y) → S(x, y),
(3) A(x) → ∃y[R(x, y) ∧ B(y)], (4) A(x) → x ≈ a, (5) R(x, y) ∧ S(y, z) → T (x, z),
(6) A(x) → B(x), (7) A(x) ∧ B(x) → C(x), (8) R(x, y) → A(x),
(9) A(x) ∧ R(x, y) → B(y), (10) A(x) → R(x, a), (11) R(x, a) → B(x),
(12) R(x, y) → A(y), (13) R(x, y) → S(y, x), (14) R(x, y) ∧ B(y) → A(x)
• QL if it does not contain rules (1), (4), (5), (7), (9), (10), (11),
and (14).

Let V be a signature, at(V) the set of equality-free and constant-
free atoms over V , and eq(V) the set of atoms x ≈ c with x a
variable and c a constant from V . A positive existential query (PEQ)
Q (x) is a formula with free variables x, constructed using∧,∨ and
∃ from atoms in at(V) ∪ eq(V). A PEQ Q is monadic if fvar(Q) is
a singleton. It is a conjunctive query (CQ) if it is ∨-free, and it is a
union of conjunctive queries (UCQ) if it is of the form

n
i=1 Q

′

i (x)
where each Q ′

i is a CQ with the same free variables x as Q .
We consider two different semantics for query answering.

Under the classical semantics, a tuple t of constants is an answer
to PEQ Q (x) w.r.t. an ontology O if O |= Q (t). Under the active
domain semantics, t is an answer to Q w.r.t. O if there is a tuple t′
of constants from O s.t. O |= ϕ(t, t′), where ϕ(x, y) is the formula
obtained from Q by removing all quantifiers.

The evaluation problem under classical (resp. active domain)
semantics is to decide, given a tuple of constants t, a PEQ Q and
an ontology O in a language L, whether t is an answer to Q
w.r.t. O under the given semantics. The classical semantics is the
default in first-order logic, whereas active domain is the default
semantics of the SPARQL entailment regimes [39]. The latter can
be seen as an approximation of the former (an active domain
answer is also an answer under classical semantics, but not vice
versa). The differences manifest themselves only in the presence
of existentially quantified rules and queries; thus, both semantics
coincide if either the input ontology is Datalog (and, in particular,
if there is no ontology and we consider only RDF data), or if all
variables in the input query are free.

3. Faceted interfaces and queries

In this section we provide rigorous logic-based foundations for
faceted search over RDF data and OWL 2 ontologies. Specifically,
we formalise our notions of faceted interface and faceted query.
Furthermore, we describe faceted queries both in terms of first-
order logic and as a fragment of the SPARQL query language. To
motivate our definitions we use an example based on an excerpt
of DBpedia, where our goal is to find US presidents who graduated
fromHarvard or Georgetown and have a childwho graduated from
Stanford.

Example 1. The URIs :tr and :bc for Theodore Roosevelt and Bill
Clinton are annotatedwith the category ‘president’. Roosevelt’s son
Kermit :kr and Clinton’s daughter Chelsea :cc are categorised as
‘person’. Georgetown :g , Harvard :h, and Stanford :s are categorised
under ‘university’, and the USA :us and UK :uk as ‘country’. These
annotations are given in RDF and correspond to the following
facts:

President(:tr), President(:bc), Person(:kr),
Person(:cc), Country(:us), Country(:uk),
Univ(:h), Univ(:g), Univ(:s).

Specific information about entities is represented by literals.
For example, Theodore Roosevelt’s date of birth is encoded as
dateOfBirth(:tr, 1858-10-27). Most importantly, entities are also
annotated with other entities; such annotations are given in RDF
and correspond to the following facts relating people to their
citizenship and to the university they graduated from:

citiz(:tr, :us), citiz(:bc, :us), child(:tr, :kr), child(:bc, :cc),
grad(:tr, :h), grad(:bc, :g), grad(:kr, :h), grad(:cc, :s).

Finally, DBpedia can be extended with ontological rules, which
describe the meaning of the predicates and constants in the
vocabulary. Consider for example the rules given next, which can
be captured by the EL profile of OWL 2:

President(x) ∧ citiz(x, :us) → USpres(x), (1)
USpres(x) → President(x) ∧ citiz(x, :us), (2)

grad(x, y) → Person(x) ∧ Univ(y), (3)

Person(x) → ∃y

citiz(x, y) ∧ Country(y)

. (4)

Rules (1) and (2) define US presidents as presidents with US
nationality. Rule (3) specifies that the predicate grad relates people
to the universities they graduated from. Finally, (4) mandates that
each person has a (possibly unspecified) nationality.

Analogously to traditional faceted search, we represent facets
as pairs of a predicate and a set of values. In the context of
RDF, however, entities can be used to annotate other entities, and
thus annotations form a graph, rather than a tree. Thus, facet
values can be either entity URIs or literals. Examples of facet
predicates are the ‘graduated from’ and ‘date of birth’ relations,
and example values are the URI for Stanford or literals such as
Theodore Roosevelt’s date of birth. Selection of multiple values
within a facet can be interpreted conjunctively or disjunctively,
and hence we distinguish between conjunctive and disjunctive
facets. We also distinguish a special facet type, whose values are
categories (i.e., unary predicates) rather than entities or literals.
Finally, a special value any denotes the set of all values compatible
with the facet predicate.

Definition 2. Let type and any be symbols not occurring in C ∪

UP ∪BP. A facet is a pair (X, ◦Γ), with ◦ ∈ {∧,∨}, Γ a non-empty
set, and either (i) X = type and Γ ⊆ UP, or (ii) X ∈ BP, any ∈ Γ

and either Γ ⊆ C ∪ {any} or Γ ⊆ UP ∪ {any}. A facet of the
form (X,∧Γ) is conjunctive, and a facet of the form (X,∨Γ) is
disjunctive. In a facet F = (X, ◦Γ), X is the facet predicate, denoted
by F |1, and Γ contains the facet values and it is denoted by F |2.

Example 3. The following facets are relevant to our example:

F1 = (type,∨{USpres,Country}),

F2 = (child,∨{any, :kr, :cc}),
F3 = (grad,∨{any, :h, :s, :g}),
F4 = (citiz,∧{any, :us, :uk}),
F5 = (citiz,∨{any, :us, :uk}).

The disjunctive facet F1 can be exploited to select the categories
to which the relevant entities belong. Facet F2 can be used to
narrow down search results to those individuals with children.
In particular, given that F2 is a disjunctive facet, if the values :kr
and :cc are selected in F2, then we narrow down the search to
those individuals that have Kermit Roosevelt or Chelsea Clinton as
children. Furthermore, the value any in F2 can be used to state that

58 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
Fig. 1. Left: a visualisation the faceted interface from Example 5 in our SemFacet system; Centre and Right: refocusing of this faceted interface on universities and children
of US presidents (as in Example 13).
we are not looking for any specific child. The intuition behind F3
and F5 is analogous. Similarly, F4 is a facet that can also be used to
reduce search results. However, if values :us and :uk are selected
in this conjunctive facet, then we narrow down the search to those
individuals which are citizens of both the US and the UK.

3.1. The notion of faceted interface

We next move on to the definition of a faceted interface, which
encodes a query (the answers to which determine the search
results) as well as the choices of facet values available for further
refinement.

Definition 4. A basic faceted interface (BFI) is a pair (F ,Σ), with F
a facet and Σ ⊆ F |2 the set of selected values. The set of faceted
interfaces (or interfaces, for short) is defined as follows, where I0
and I1 = (F ,Σ) are BFIs and F |1 ∈ BP:

I ::= path | (path ∧ path) | (path ∨ path),
path ::= I0 | (I1/I).

A BFI encodes user choices for a specific facet, e.g., the BFI
(F1, {USpres}) selects the entities categorised as US presidents.
BFIs are put together in paths: sequences of nested facets that
capture navigation between sets of entities annotated with other
entities by means of binary relations (e.g., child connects parents
to their children); thus, nesting (I1/I) requires the BFI I1 to have
a binary relation as facet predicate. With nesting we can capture
queries such as ‘people with a child who graduated from Stanford’
by using the interface (F2, {any})/(F3, {:s}) which first selects
people having (any) children and then those children with a
Stanford degree. Finally, two types of branching can be applied:
(path1 ∧ path2) indicates that search results must satisfy the
conditions specified by both path1 and path2, while (path1∨ path2)
indicates that they must satisfy those in path1 or path2.

Example 5. Consider the following interface Iex, which is depicted
in our system as on the left-hand side of Fig. 1.
(F1, {USpres}) ∧ (F3, {:h, :g})

∧

(F2, {any})/(F3, {:s})

.

The interface consists of three paths connected by ∧-branching.
The first path selects US presidents. The second path selects
graduates of Harvard or Georgetown. The third path selects
individuals with a child who is a Stanford graduate. Since paths are
combined conjunctively their constraints apply simultaneously.
Thus, we obtain the US presidents who graduated from either
Harvard or Georgetown and who have a child who graduated from
Stanford.
Our notion of interface abstracts from several considerations
that are critical to GUI design. For instance, it is insensitive to
the order of BFIs composed by ∧- or ∨-branching, as well as to
the order of facet values (which are carefully ranked in practice).
Furthermore, we model type-facet values as ‘flat’, whereas in
applications categories are organised hierarchically. Although
these issues are important from a front-end perspective, they are
immaterial to our technical results.

3.2. Faceted queries

The query encoded by the selected values in an interface is
formally specified in terms of first-order logic as given next.

Definition 6. Let I be an interface, and let each xw with w ∈

{0, 1, . . . , 9}∗ be a variable. The query of I is the formula Q [I] =

[[I, xε, x0]] with free variable xε defined as in Table 2.

Our semantics assigns to each interface a PEQ with one free
variable. For each facet F we have [[(F ,∅), v, xw]] = ⊤(v),
indicating that no restriction is imposed by F if no value is
selected. BFIs with a type-facet are interpreted as the conjunction
(disjunction) of unary atoms over the same variable. BFIs having as
facet predicate a binary predicate result in either an atom whose
second argument is existentially quantified (if any is selected), or
in a conjunction (disjunction) of binary atoms having a variable
as second argument that must be equal to a constant or belong
to a unary predicate. Branching (path1 ◦ path2) with ◦ ∈ {∧,∨}

is interpreted by constructing the conjunction (disjunction) of the
queries for each pathi; furthermore, if for some pathi we have that
[[pathi, v, xw]] = ⊤(v), indicating that no value from the facets
occurring in pathi is selected, then pathi is ignored. Finally, nesting
involves a ‘shift’ of variable from the parent BFI to the nested sub-
expression.

Example 7. Interface Iex encodes the following query:

Qex(x) = USpres(x) ∧

∃y1 (grad(x, y1) ∧ y1 ≈ :h)

∨ ∃y2 (grad(x, y2) ∧ y2 ≈ :g)

∧ ∃z

child(x, z) ∧ ∃w(grad(z, w) ∧ w ≈ :s)

.

If we consider only facts, the answer set is empty (no entity is
categorised as ‘US president’). If we also consider the ontology
rules, however, we obtain Bill Clinton as the only answer under
both classical and active domain semantics.

We can now identify the class of faceted queries as the class of
first-order queries that can be captured by faceted interfaces.

M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74 59
Table 2
Semantics of faceted interfaces.

Basic Faceted Interfaces
If F = (X, ◦Γ), then [[(F ,Σ), v, xw]] =

⊤(v) ifΣ = ∅

∃xw X(v, xw) if any ∈ Σ

◦
C∈Σ

C(v) if X = type andΣ ≠ ∅

◦
ti∈Σ

∃xwi X(v, xwi) ∧ xwi ≈ ti if X ≠ type, any ∉ Σ,Σ ≠ ∅ andΣ ⊆ C

◦
Ci∈Σ

∃xwi X(v, xwi) ∧ Ci(xwi) if X ≠ type, any ∉ Σ,Σ ≠ ∅ andΣ ⊆ UP

Nesting
If F = (X, ◦Γ), then [[((F ,Σ)/I), v, xw]] =

⊤(v) ifΣ = ∅

∃xw X(v, xw) ∧ [[I, xw, xw0]] if any ∈ Σ

◦
ti∈Σ

∃xwi X(v, xwi) ∧ xwi ≈ ti ∧ [[I, xwi, xwi0]] if any ∉ Σ,Σ ≠ ∅ andΣ ⊆ C

◦
Ci∈Σ

∃xwi X(v, xwi) ∧ Ci(xwi) ∧ [[I, xwi, xwi0]] if any ∉ Σ,Σ ≠ ∅ andΣ ⊆ UP

Branching
[[(path1 ◦ path2), v, xw]] =

([[path1, v, xw0]] ◦ [[path2, v, xw1]]) if [[path1, v, xw0]] ≠ ⊤(v) [[path2, v, xw1]] ≠ ⊤(v)

[[path1, v, xw0]] if [[path1, v, xw0]] ≠ ⊤(v) [[path2, v, xw1]] = ⊤(v)

[[path2, v, xw1]] if [[path1, v, xw0]] = ⊤(v) [[path2, v, xw1]] ≠ ⊤(v)

⊤(v) if [[path1, v, xw0]] = ⊤(v) [[path2, v, xw1]] = ⊤(v)
Definition 8. A first-order formula ϕ is a faceted query if there
exists a faceted interface I such that ϕ and Q [I] are identical
modulo renaming of variables.

3.3. Faceted queries as restricted PEQs

Faceted queries correspond to PEQs of a rather restricted shape,
which is determined by Table 2. We next specify such restrictions,
which we exploit later on in Section 4 to establish tractability
results for query evaluation.

The first observation we can make in Table 2 is that variables in
a faceted query can be arranged in a tree with root xε and where
each variable xw.i is a child of xw . The tree-shaped nature of faceted
queries is captured by the following definition, and we can readily
check that query Qex(x) in Example 7 is indeed tree-shaped.

Definition 9. Let Q (x) be a monadic PEQ. The graph of Q is the
smallest directed graph GQ with a node for each variable inQ and a
directed edge (y, y′) for each atom R(y, y′) occurring in Q where R
is different from≈.Moreover,Q is tree-shaped if (i)GQ is a (possibly
empty) directed tree rooted at x; (ii) for each edge (y, y′) there is
at most one binary atom in Q of the form R(y, y′).

The second important observation in Table 2 is that disjunction
in a faceted query originates from either a disjunctive facet or from
∨-branching between paths. In either case, disjunctive subqueries
are monadic tree-shaped PEQs.

These observations are reflected in the following proposition.

Proposition 10. Every faceted query Q is amonadic tree-shaped PEQ
with the following property: if ϕ = (ϕ1 ∨ ϕ2) is a subformula of Q ,
then fvar(ϕ1) = fvar(ϕ2) = {x} for some variable x.

Proof. The claim in the proposition follows by a simple induction
on the structure of faceted queries. We show that for every
interface I the query [[I, xε, x0]] is a monadic tree-shaped PEQ with
a single free variable xε at the root of the tree and satisfying the
property stated in the proposition.

Consider Table 2. For the base case consider BFIs. It can be
immediately seen that all queries are monadic PEQs with free
variable v. Furthermore, they are tree-shaped with v at the root
of the tree and (existentially quantified) variables xw and xw.i as
children of v in the graph of the query.
Let us now consider nesting. The first case is direct. For the
remaining cases we know, by the induction hypothesis, that
[[I, xw, xw0]] and [[I, xwi, xwi0]] are monadic tree-shaped PEQs with
free variable xw (resp. xwi) at the root of the tree, and satisfying the
property in the proposition. Since variable xw (resp. xwi) becomes
existentially quantified, then [[((F ,Σ)/I), v, xw]] has v as a free
variable; furthermore, it is tree-shaped with v the new root of the
tree. Again, a disjunctive formula is introduced if ◦ is∨ and each of
the disjuncts has v as common free variable.

The case for branching of paths also follows directly from the
inductive hypothesis. �

3.4. Expressing faceted queries in SPARQL

We have shown how faceted queries can be seen in terms of
first-order logic as a restricted form of PEQs. In practice, however,
we need to specify such queries in SPARQL, as they will be
executed over an RDF graph. In this section, we show how faceted
queries can be expressed in SPARQL by slightly modifying the
transformation rules given in Table 2. We will use an example
to explain the main ideas behind this modified transformation
and to provide a cleaner picture of the features of SPARQL that
are needed to capture faceted queries; the construction sketched
by our example can be easily generalised to all the cases given
in Table 2. Throughout this section we assume basic familiarity
with SPARQL, and refer the reader to the normative documents for
further details [9].

Consider the facets defined in Example 3 and the interface Iex in
Example 5. To encode the corresponding query in SPARQL, we first
need to translate unary and binary relational atoms into SPARQL
triple patterns. More precisely, an atom of the form A(x), where x
is a variable, is translated into a triple pattern ?x rdf:type :A,
where ?x is a SPARQL variable representing variable x, :A is a URI
representing unary predicate A, and rdf:type is a reserved URI
used to indicate that ?x is of type of :A. Thus, the previous triple
pattern asks for all the values for variable x that are elements of A,
which is the intended meaning of A(x). Similarly, an atom of the
form R(x, y), where x and y are variables, is translated into a triple
pattern: ?x :R ?y, where :R is a URI representing the binary
predicate R.

Let us consider the interface (F1, {USpres}), which is the first
component of Iex, and its corresponding first-order logic query

60 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
USpres(x). We capture this query in SPARQL by means of the
following query:

SELECT ?x
WHERE { ?x rdf:type :USpres . }

In this case, we first translate the atom USpres(x) into a triple
pattern, and then we indicate that we want to retrieve the value
of variable x by using the query form SELECT ?x.

Let us consider the interface (F2, {any}) in our example, whose
query is encoded as ∃y child(x, y) in first-order logic. We encode
such query in SPARQL as follows:

SELECT ?x
WHERE { ?x :child ?y . }

As in the previous case, we first translate child(x, y) into a triple
pattern, and then we indicate that we want to retrieve all persons
who have a child by using the query form SELECT ?x.

Consider the interface ((F2, {any})/(F3, {:s})), which is trans-
lated recursively into first-order logic. Following Table 2, we
first construct a query of the form ∃y (child(x, y) ∧ ϕ(y)) from
(F2, {any}), and then replace ϕ(y) by the query encoding (F3, {:s}),
namely ∃z(grad(y, z) ∧ z ≈ :s). This recursive procedure can be
easily adapted to generate a SPARQL query. For this, we first con-
struct a template of the form:

SELECT ?x
WHERE { ?x :child ?y. ϕ(?y) . }
and then we recursively invoke the procedure to replace ϕ(?y)
by a SPARQL query for the interface (F3, {:s}). Finally, the SPARQL
query corresponding to ((F2, {any})/(F3, {:s})), which retrieves all
persons having a child who graduated from Stanford, is as follows:

SELECT ?x
WHERE {

?x :child ?y .
{

SELECT ?y
WHERE {

?y :grad ?z .
FILTER (?z = :s) }

}
}

Note that the FILTER operator is used to indicate that the value of
variable ?zmust be equal to the URI :s. Furthermore, observe that
the translation of the interface nesting construct in our language
requires the use of nested queries, whichwere introduced as a new
feature in SPARQL 1.1 [9].

So far we have shown four key features of SPARQL needed to
encode faceted queries, namely triple patterns to encode unary
and binary relational atoms, the query form SELECT to provide the
output variable, nested queries to encode interface nesting and the
FILTER operator to encode equality atoms. We are only missing
one additional feature that is needed for the transformation rules
in Table 2: a restricted form of use of the SPARQL operator
UNION. Consider the faceted interface (F3, {:h, :g}) in our running
example. As F3 is a disjunctive facet, (F3, {:h, :g}) is encoded as
follows in first-order logic:

∃y1 (grad(x, y1) ∧ y1 ≈ :h) ∨ ∃y2 (grad(x, y2) ∧ y2 ≈ :g).

The two disjuncts of this first-order query are translated into
SPARQL as shown before, and are then combined by means of the
UNION operator as follows:
SELECT ?x
WHERE {

{
SELECT ?x
WHERE {

?x :grad ?y1 .
FILTER (?y1 = :h) }

}
UNION
{

SELECT ?x
WHERE {

?x :grad ?y2 .
FILTER (?y2 = :g) }

}
}

Notice that the operator UNION must be used in SPARQL inside
a query form, which is why in this case we need to include
the outermost query form SELECT ?x. More importantly, for
every sub-query of the form P1 UNION P2 it holds that both
P1 and P2 have exactly one output variable, which must be the
same. This restriction in the use of UNION corresponds to that in
Proposition 10 in the context of first-order logic.

3.5. Faceted interfaces with refocusing

The interface in Example 5 finds presidents (such as Bill Clinton)
who graduated from either Harvard or Georgetown and have
children who graduated from Stanford. If we want to know who
these children are (i.e., see Chelsea Clinton as an answer), we
must provide refocusing (or pivoting) functionality [26,27].Wenow
extend faceted interfaces with such functionality.

Definition 11. Let focus be a symbol not in Cv ∪ UP ∪ BP. An
extended basic faceted interface (EBFI) is either a BFI or a pair (F ,Σ ∪

{focus}), where (F ,Σ) is a BFI and F |1 ∈ BP. Moreover, the set of
extended faceted interfaces (EFIs) is defined by the same grammar
given in Example 5, but where I0 is a BFI and I1 = (F ,∆) is an EBFI
with F |1 ∈ BP. Finally, each EFI I must have atmost one occurrence
of the symbol focus.

The value focus is used to change the free variable of the query
Q , which determines the kinds of objects returned as answers.
Thus, refocusing is used over a facet that introduces new variables
in the query, which by Table 2 requires F |1 ∈ BP.

The query encoded by an extended interface can be specified in
terms of first-order logic as given next.

Definition 12. Let I be an EFI and [[I, xε, x0]] be a formula defined
by the extension of Table 2with the rules in Table 3. Then the query
of I is the formula Q [I] defined as follows:

Q [I] =

[[I, xε, x0]] if focus does not occur in I,
∃xε [[I, xε, x0]] otherwise.

A formula ϕ is an extended faceted query if there is an EFI I s.t. ϕ and
Q [I] are identical modulo renaming of variables.

Example 13. For example, consider the following EFI I , which is
focused on the children of the US presidents:
(F1, {USpres}) ∧ (F3, {:h, :g})

∧

(F2, {focus})/(F3, {:s})

.

Then, Q [I] is obtained from Qex(x) in Example 7 by first dropping
the existential quantifier ∃z from Qex(x), and then adding ∃x to the

M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74 61
Table 3
Semantics of extended faceted interfaces.

Extended Basic Faceted Interfaces
If F = (X, ◦Γ), then [[(F ,Σ ∪ {focus}), v, xw]] =

X(v, xw) ifΣ = ∅

[[(F , {focus}), v, xw]] ifΣ ≠ ∅ andΣ ⊆ C ∪ {any}
[[

(F , {focus})/((type,∨Γ),Σ)

, v, xw]] ifΣ ≠ ∅ andΣ ⊆ UP ∪ {any}

Nesting
If F = (X, ◦Γ), then [[((F ,Σ ∪ {focus})/I), v, xw]] =

X(v, xw) ∧ [[I, xw, xw0]] ifΣ = ∅

[[((F , {focus})/I), v, xw]] ifΣ ≠ ∅ andΣ ⊆ C ∪ {any}
[[

(F , {focus})/

((type,∨Γ),Σ) ∧ I

, v, xw]] ifΣ ≠ ∅ andΣ ⊆ UP ∪ {any}
resulting query, thus obtaining Q ′
ex(z):

∃x

USpres(x) ∧

∃y1 (grad(x, y1) ∧ y1 ≈ :h)

∨ ∃y2 (grad(x, y2) ∧ y2 ≈ :g)

∧

child(x, z) ∧ ∃w(grad(z, w) ∧ w ≈ :s)

.

The answer to Qex(z) is precisely Chelsea Clinton.

We conclude this section by pointing out that PEQs obtained
from faceted interfaces extended with refocusing also satisfy
Proposition 10, with the only difference that the corresponding
query graph is no longer rooted in the answer variable. Conse-
quently, as we will see later on, refocusing does not increase the
complexity of query evaluation.

4. Answering faceted queries

A faceted search system must compute the answers to a query
each time that a user selects a facet value to refine the search
results. Thus, query evaluation is a key reasoning problem for the
development of efficient and robust faceted search systems.

As discussed in Section 3, faceted queries are monadic positive
existential queries resulting from the selection of facet values
in an interface. By standard results for relational databases, PEQ
evaluation is an NP-hard problem, even if we restrict ourselves to
CQs and ontologies consisting of just a dataset.

In this section we show that, in contrast to PEQs (and even
CQs), faceted query evaluation over datasets is tractable due to the
restrictions in the structure of queries imposed by Proposition 10.
Furthermore, the problem remains tractable in most cases if we
consider ontologies in the OWL 2 profiles. Our tractability results
concern combined complexity, which takes into account the size of
the entire input (i.e., ontological rules, RDF data and queries).

4.1. Faceted query answering over datasets

We next show how the restricted shape of faceted queries
can be exploited to make query answering more efficient under
both classical and active domain semantics. We start by providing
a polynomial time algorithm for answering faceted queries over
datasets.3 The key observation is that the disjunctive subqueries
ϕ = ϕ1 ∨ ϕ2 in the input query Q can be evaluated w.r.t. the input
data in a bottom-up fashion. To answer one such ϕ, we solve ϕ1
and ϕ2 independently and store the answers as facts in the dataset
using a fresh unary predicate Cϕ associated to ϕ.

Example 14. Query Qex in Example 7 can be answered over the
dataset in our running example as follows. First, solve the subquery
ϕ asking for graduates from either Harvard or Georgetown;

3 Note that both semantics coincide in this case.
Algorithm 1: Answer-FQ
INPUT : D a dataset; Q a faceted query
OUTPUT: Answers to Q w.r.t. D

1 S := Set of disjunctive subformulas of Q
2 ≼:= partial order on S s.t. ϕ ≼ ϕ′ iff ϕ is a subformula of ϕ′

3 for each ϕ = (ϕ1 ∨ ϕ2) ∈ S listed in ascending ≼-order do
4 for each 1 ≤ i ≤ 2 do
5 ϕ′

i := Rewrite(ϕi)
6 Ansi := Answer-Tree-CQ(ϕ′

i ,D)

7 D := D ∪ {Cϕ1∨ϕ2 (d) | d ∈ Ans1 ∪ Ans2}
8 Q ′

:= Rewrite(Q)
9 Ans := Answer-Tree-CQ(Q ′,D)

10 return Ans

Function REWRITE

INPUT : ϕ a faceted query
OUTPUT: A conjunctive query

1 case ϕ an atom return ϕ
2 case ϕ = ∃z ϕ′ return ∃z Rewrite(ϕ′)
3 case ϕ = ϕ1 ∧ ϕ2 return Rewritex(ϕ1) ∧ Rewrite(ϕ2)
4 case ϕ = ϕ1 ∨ ϕ2 return Cϕ1∨ϕ2 (y)with y = fvar(ϕi)

each disjunct is a tree-shaped CQ, and we obtain Bill Clinton,
Theodore Roosevelt andKermit Roosevelt as answers. Then, extend
the dataset with facts Cϕ(:bc), Cϕ(:tr) and Cϕ(:kr) over a fresh
predicate Cϕ . Finally, rewrite Qex by replacing ϕ(x)with Cϕ(x) and
answer the rewritten query over the extended dataset. We obtain
the empty set of answers since no entity is explicitly categorised
as US president.

Algorithm 1 implements these ideas. The algorithm relies on a
specialised algorithm Answer-Tree-CQ to answer (monadic) tree-
shaped CQs, which is used as a ‘black box’. The following theorem
establishes correctness of our algorithm.

Theorem 15. Algorithm 1 computes all answers to Q w.r.t. D .

Proof. First, note that the properties of faceted queries given in
Proposition 10 and the definition of the function Rewrite ensure
that the input passed to Answer-Tree-CQ in each call is indeed a
tree-shaped conjunctive query.

Correctness of the algorithm follows directly from the following
property, which holds in each iteration of the main loop.

(⋆) Let ϕ = (ϕ1 ∨ ϕ2) ∈ S be as in Line 3. Then, the answers to ϕ
w.r.t. the input ontology are precisely Ans1 ∪ Ans2 as in Line 7.

In what follows, we show that (⋆) indeed holds. Consider the case
where ϕ = ϕ1 ∨ ϕ2 is ≼-minimal. Then, neither ϕ1 nor ϕ2 are
disjunctive. In this case, ϕ′

i in Line 5 is precisely ϕi, and Property
(⋆) holds directly by the semantics of first-order logic and the fact
that datasets have a single minimal model: d is an answer to ϕ iff
it is an answer to either of its disjuncts.

Consider the case ϕ = ϕ1 ∨ϕ2 is not≼-minimal. For each ϕi we
have two possibilities: (i) ϕi is not disjunctive, in which case ϕ′

i in

62 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
Algorithm 2: Answer-FQ-Active
INPUT : O an ontology; Q a faceted query
OUTPUT : Active domain answers to Q w.r.t. O

1 D := Compute-Entailed-Facts(O)
2 Ans := Answer-FQ(Q ,D)
3 return Ans

Line 5 is precisely ϕi and thus the answers to ϕ′

i coincide with the
answers to ϕi; (ii) ϕi contains disjunctive sub-formulas, in which
case the definition of Rewrite ensures that ϕi will be rewritten
as disjunction-free by replacing each ≼-maximal disjunctive sub-
formula γ of ϕi with Cγ (y). But then, since each such γ ≼ ϕi we
have that the modified dataset includes the answers to γ as facts
over Cγ . �

Thus, faceted queries can be evaluated in polynomial time
with an oracle for the evaluation of tree-shaped CQs. By a classic
result in database theory, acyclic CQs (and hence also tree-shaped
CQs as in Definition 9) can be answered in polynomial time [40].
Thus, tractability of tree-shaped CQ evaluation transfers to the
evaluation of faceted queries.

Corollary 16. Faceted query evaluation over datasets is feasible in
polynomial time.

In what follows we study query answering over ontologies
(and not just datasets) under both active domain and classical
semantics.

4.2. Active domain semantics

In practice, queries over ontology-enhanced RDF data are
typically represented in SPARQL and executed using off-the-shelf
reasoning engines with SPARQL support. The specification of
SPARQL under entailment regimes [39] is based on active domain
semantics, which requires existentially quantified variables in the
query Q to map to actual constants in the input ontology O. In this
case, we can answer queries using Algorithm 2, which computes
the datasetD of all facts entailed byO and then answersQ w.r.t.D .
The correctness of Algorithm 2 follows from Theorem 15 and the
following lemma.

Lemma 17. Let Q be a PEQ, let O be an ontology, and let D be the
set of all facts α such that O |= α. Then, the answer sets to Q w.r.t. O
and w.r.t. D coincide under active domain semantics.

Proof. First, note that since O |= D and D is a dataset, every
answer to Q w.r.t. D is an answer to Q w.r.t. O. To show the
converse, pick an active domain answer to Q w.r.t. O. By the
definition of active domain semantics, there must exist a tuple
t′ of constants from O such that O |= ϕ(c, t′), where ϕ is the
formula obtained from Q by removing all quantifiers. Clearly,
ϕ(c, t′) is a Boolean combination of facts. Since we consider
only Horn rules in this paper, we can transform O into a Logic
Program PO by Skolemising existentially quantified variable in
rules using functional terms (note that standard Skolemisation
preserves entailment). Program PO has a (possibly infinite)
Herbrand model H that can be homomorphically embedded into
any other Herbrand model of PO [41]. Furthermore, H coincides
with D when restricted to constants. We have that O |= ϕ(c, t′)
iff PO |= ϕ(c, t′) iff H |= ϕ(c, t′) iff D |= ϕ(c, t′). Hence, we can
conclude that c is also an answer to Q w.r.t. D . �

By showing that fact entailment is tractable for all the profiles,
we can immediately prove tractability of faceted query evaluation
under active domain semantics. Thus, by committing to the active
domain semantics of SPARQL we achieve tractability without
emasculating the ontology language.
Theorem 18. Active domain evaluation of faceted queries is in Ptime
w.r.t. all normative OWL 2 profiles. Furthermore, it is Ptime-complete
w.r.t. the EL and RL profiles.

Proof. Ptime-hardness for EL and RL follows from the known
hardness result for fact entailment in these profiles [32]. We
next show membership in Ptime for all profiles. By Lemma 17, it
suffices to show tractability of fact entailment. We first observe
that entailment of unary facts is feasible in polynomial time since
instance checking for atomic class expressions is tractable for each
of the profiles [32].

We now argue that checking O |= α with α a binary fact of the
form R(c, d) is also tractable. IfO is an OWL 2 EL ontology, then this
is the case iff the following holds,whereA is a fresh unary predicate

O ∪ {R(x, d) → A(x)} |= A(c)

which can be checked in polynomial time. If O is in OWL 2 RL, then
O |= R(c, d) iff R(c, d) the fact holds in the Least Herbrand Model
of O, which can be computed in polynomial time given that O has
at most three variables per rule. Finally, if O is in OWL 2 QL, then
O |= R(c, d) iff OP does, where OP is the subset of facts and rules
of Type (2), (10), (12), and (16) (from Table 1) in O. Since OP is also
an OWL 2 RL ontology then the check is also feasible in polynomial
time. �

4.3. Classical semantics

Classical and active domain semantics coincide if we restrict
ourselves to Datalog ontologies. Thus, Algorithm 2 can also be
used for faceted query answering under classical semantics if the
input ontology is Datalog. Since OWL 2 RL ontologies are Datalog
it follows that our results in Theorem 18 transfer to OWL 2 RL
ontologies under classical semantics.

In contrast to RL, the EL andQL profiles can capture existentially
quantified knowledge and hence active domain and classical
semantics may diverge for queries with existentially quantified
variables.

To deal with EL ontologies, we exploit techniques developed for
the combined approach to CQ answering [42–44]. As a first step, we
rewrite rules of Type (3) in Table 1 into Datalog by Skolemising
existentially quantified variables into constants.

Definition 19. Let O be in EL. The ontologyΞ(O) is obtained from
O by replacing each rule A(x) → ∃y[R(x, y) ∧ B(y)] with rules
A(x) → P(x, cR,B), P(x, y) → R(x, y), and P(x, y) → B(y), where
P is a fresh predicate and cR,B is a globally fresh constant uniquely
associated with R and B.

Although this transformation strengthens the ontology, it
preserves the entailment of all facts [42,45].

Lemma 20 (Implicit in [44,45]). Let O be an EL ontology and let α
be a fact mentioning only constants and predicates from O. Then,
Ξ(O) |= α implies O |= α.

As we show in the following lemma, this result extends to
monadic tree-shaped CQs.

Lemma 21. Let O be an EL ontology, let c be a constant from O,
and Q (x) a monadic tree-shaped CQ. Then, Ξ(O) |= Q (c) implies
O |= Q (c).

Proof. For each constant a in O, let Aa be a fresh unary predicate
associated to a. Let O1 be obtained from O by adding the fact Aa(a)
for each constant a in O. Also, let Q1 be the CQ obtained from Q by
replacing each equality atom y ≈ a in Q with Aa(y). It is routine to
show that the following holds:

M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74 63
1. The answers to Q w.r.t. O coincide with the answers to Q1
w.r.t. O1;

2. The answers to Q w.r.t. Ξ(O) coincide with the answers to Q1
w.r.t.Ξ(O1).

Consider the Datalog rule ϕ(x, y) → AQ1(x), where AQ1 is
fresh and ϕ(x, y) is the conjunction of atoms in Q1. Since Q1 is
tree-shaped, then the given rule can be written as the ontology
O2 which we define next. Let GQ1 be the tree associated to Q1
(c.f. Definition 9), and let Pz be a fresh unary predicate for each
variable z in GQ1 . If z is a leaf of GQ1 , let Oz be as follows:

Oz =

Ai(z) in Q1

Ai(z) → Pz(z)

.

If z is not a leaf, then Oz is defined as follows, where z1, . . . , zn
are the children of z in GQ1 and Rj(z, zj) is the unique binary atom
involving z and zj in Q1:

Oz =

Ai(z) in Q1

Ai(z) ∧

n
j=1

[Rj(z, zj) ∧ Pzj(zj)] → Pz(z)

.

Then, O2 is defined as follows:

O2 =

z in Q1

Oz

∪

Px(x) ∧

Ai(x) in Q1

Ai(x) → AQ1(x)

.

Clearly, the ontology O2 can be normalised into both EL and RL.
Furthermore, the following holds:

3. The answers to Q1 w.r.t. O1 and the instances of AQ1 w.r.t. O1 ∪

O2 coincide.
4. The answers to Q1 w.r.t. Ξ(O1) and the instances of AQ1

w.r.t.Ξ(O1 ∪ O2) coincide.

Assume thatΞ(O) |= Q (c). Then, by Property 2 be haveΞ(O1) |=

Q1(c) and by Property 4Ξ(O1∪O2) |= AQ1(c). But then, Lemma 20
gives us O1 ∪ O2 |= AQ1(c). Thus, by Properties 3 and 1 we obtain
O |= Q (c), as required. �

Using Lemma 21, we can show that the evaluation of faceted
queries w.r.t. EL ontologies is also preserved underΞ .

Lemma 22. Let Q be a faceted query, O an EL ontology, and let c be
a constant in O. Then, O |= Q (c) iff Ξ(O) |= Q (c).

Proof. The left-to-right implication is trivial sinceΞ(O) |= O.
Assume now that Ξ(O) |= Q (c). Since Q (c) is a PEQ, there

is a (maybe exponentially larger) UCQ U(c) =
n

i=1 Q
′

i (c) that
is logically equivalent to Q (c). Consequently, Ξ(O) |= Q (c) iff
Ξ(O) |= U(c). Since Ξ(O) is a Datalog ontology, we have that
Ξ(O) |= U(c) iff Ξ(O) entails some CQ Q ′

i (c) occurring as a
disjunct in U(c). Hence, it suffices to show that O |= Q ′

i (c). Since
Q (c) is tree-shaped, so is U(c) (DNF normalisation does not affect
the arrangement of variables), and thus so is Q ′

i (c). By Lemma 21
we have that O |= Q ′

i (c), as required. �

It follows that faceted queries over an EL ontology O can be
answered under classical semantics by applying Algorithm 2 to
Ξ(O). Since Ξ is a linear transformation and Ξ(O) is an RL
ontology, tractability of faceted query evaluation follows.4

Theorem 23. Faceted query evaluation under classical semantics is
Ptime-complete for RL ontologies and EL ontologies.

Proof. As in the case of active domain semantics, hardness fol-
lows from the known hardness result for fact entailment in these

4 This result is consistent with existing results for acyclic CQs in EL [46].
profiles. Since each RL ontology O is a Datalog program, classical
and active domain semantics coincide; hence, we can use Algo-
rithm 2 to evaluate faceted queries under classical semantics as
well. Program O contains at most 3 variables per rule and hence
procedure Compute-Entailed-Facts can be implemented in poly-
nomial time. Corollary 16 ensures that Answer-FQ is feasible in
polynomial time over datasets. In the case of EL, Lemma 22 ensures
that we can apply Algorithm 2 to Ξ(O). Since Ξ(O) is RL and can
be constructed in linear time, tractability for RL implies tractability
for EL. �

In contrast, the evaluation of acyclic CQs is already NP-hard for
OWL 2 QL [47] and the proof in [47] can be adapted to also show
NP-hardness of faceted query evaluation. Furthermore, we can also
show membership in NP, and hence NP-completeness of faceted
query evaluation for OWL 2 QL.

Theorem 24. Faceted query evaluation under classical semantics is
NP-complete for QL ontologies.

Proof. We first prove membership in NP. We say that faceted
query Q1 is more specific than Q2 if Q1 can be obtained from Q2 by
replacing a subformula (ϕ1∨ϕ2) ofQ2 by eitherϕ1 orϕ2. Moreover,
we define E as the reflexive and transitive closure of the relation
of being more specific, and given a faceted query Q , we define the
determinisation of Q , denoted by det(Q), as the set of all CQs Q ′

such that Q ′ E Q . Determinisation satisfies the following property
(⋆).
(⋆) For every faceted query Q , QL ontology Q and constant c , it

holds that O |= Q (c) if and only if there exists Q ′
∈ det(Q)

such that O |= Q ′(c).
It is well-known that evaluation of arbitrary CQs is in NP for

QL ontologies. From this and (⋆) we obtain that faceted query
evaluation under classical semantics is in NP for QL ontologies.

We show hardness by adapting the proof of Theorem 1 in [47],
which shows NP-hardness of CQ evaluation w.r.t. OWL 2 QL
ontologies by reduction from propositional satisfiability. Consider
a propositional formula in CNF α =

m
j=1 Dj over variables

p1, . . . , pn where each Dj is a propositional clause. Next, consider
the following OWL 2 QL ontology O consisting of the following
axioms for i ∈ [1, n], j ∈ [1,m] and k = 0, 1:

Cj(x) → A0(x),
Cj(x) → Ai(x),

Xk
i (x) → Ai(x),

Ai(x) → ∃y(R(x, y) ∧ Ai−1(y)),

Ai−1(x) → ∃y(S(x, y) ∧ Xk
i (y)),

S(x, y) → R(y, x),

X0
i (x) → ∃y(R(x, y) ∧ Cj(y)) if ¬pi ∈ Dj,

X1
i (x) → ∃y(R(x, y) ∧ Cj(y)) if pi ∈ Dj,

Cj(x) → ∃y(R(x, y) ∧ Cj(y)),
A0(a).

Further, when writing faceted interfaces, we will omit sets of
selected values for simplicity, that is, wewill write (X, ◦Γ) instead
of ((X, ◦Γ),Σ), assuming that Σ = Γ . Moreover, (X, v) will
designate the facet (X,∨{v}). Consider now the following family
of sub-interfaces for j ∈ [1,m].

Ej = (R, any)/

(type, An−1)∧

(R, any)/

(type, An−2) ∧ . . .

∧ ((R, any)/(type,∧{A0, Cj}))

.

64 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
Next consider the following faceted interface I:

I = (type, A0) ∧

(S, any)/

(type, A1) ∧ . . .

(S, any)

/((type, An) ∧ E1 ∧ . . . ∧ En)

.

Furthermore, Q [I] is isomorphic to the following query, where
y = (y1, . . . , yn) and zj = (z j0, . . . , z

j
n−1) for j ∈ [1,m].

∃y∃z1 . . . ∃zm

A0(y0) ∧

n
i=1

S(yi−1, yi) ∧ Ai(yi)

∧

m
j=1

R(yn, z

j
n−1) ∧ A0(z

j
0) ∧ C(z j0) ∧

1
i=n−1

Ai(z
j
i) ∧ R(z ji , z

j
i−1)

.

It can be checked that a is an answer to Q [I] w.r.t. O iff the
propositional formula α is satisfiable. �

4.4. Extended faceted queries

We conclude by arguing that the refocusing functionality does
not increase complexity of query evaluation. PEQs obtained from
EFIs satisfy Proposition 10, with the only difference that the
corresponding query graph is no longer rooted in the answer
variable. Algorithm 1 can be extended to prove that Corollary 16
also holds for extended faceted queries. From this, and using the
same techniques as in the proofs of Theorems 18 and 24, we obtain
the following result.

Theorem 25. Extended faceted query evaluation under classical
semantics is (i) Ptime-complete for RL and EL; and (ii) NP-complete
for QL.

Moreover, active domain evaluation of extended faceted queries is
in Ptimew.r.t. all normative OWL 2 profiles, and it is Ptime-complete
for RL and EL.

Proof. Note that the complexity results we have obtained for
faceted queries apply to the class of PEQs satisfying the properties
given in Proposition 10 as we did not make in our proofs any
further assumptions about the structure of faceted queries.

Let us now consider extended faceted queries and their se-
mantics as in Definition 12. Their structure is exactly the same as
regular faceted queries with the only difference that the answer
variable does not need to be rooted in variable xε . Suppose the an-
swer variable to such queryQ is y. To checkwhether some constant
c is an answer to Q we simply add the equality atom y ≈ c to Q
and existentially quantify y. The result is a Boolean query that is
tree-shaped (if we take xε as root) and which satisfies the prop-
erty stated in Proposition 10 for disjunctive subformulas. Hence,
the complexity of faceted query evaluation is exactly the same as
the complexity of evaluating extended faceted queries. �

5. Interface generation & update

Faceted navigation is an interactive process. Starting with an
initial interface generated from a keyword search, users select or
unselect facet values and the system reacts to these user actions by
updating the search results (query answers) as well as the facets
available for further navigation.

Example 26. Consider the interactive construction of our interface
Iex from Example 5. Navigation starts with an interface with no
selected value, which may have been generated as a response to
a keyword search (facets Fi are given in Example 3):

I0 = (F1,∅) ∧ (F3,∅) ∧ (F2,∅) ∧ (F5,∅).

We may then select the category USpres in F1, which narrows
down the search to US presidents. In response, the system may
construct the following new interface I1:

I1 = (F1, {USpres}) ∧ (F3,∅) ∧ (F2,∅).

Interface I1 incorporates the required filter on US presidents.
Furthermore, it no longer includes facet F5 sinceUS presidents have
only US nationality and hence any filter over this facet becomes
redundant. Next, we select Harvard and Georgetown in facet F3,
which narrows down the search to US presidents with either a
Harvard or Georgetown degree and yields the following interface:

I2 = (F1, {USpres}) ∧ (F3, {:h, :g}) ∧ (F2,∅).

Next, we select any in facet F2 to look for presidents with children.
In response, the system constructs the following interface:

I3 = (F1, {USpres}) ∧ (F3, {:h, :g}) ∧

(F2, {any})/(F3,∅)

.

Interface I3 provides a nested BFI (F3,∅), which allows us to select
the university that children of US presidents attended. We pick
Stanford, and the system finally constructs Iex.

We next propose interface generation and update algorithms
that are guided by the (explicit and implicit) information in O. Our
algorithms are based on the same unifying principle: each element
of the initial interface (resp. each change in response to an action)
must be ‘justified’ by an entailment in O. In this way, by exploring
the ontology, we guide users in the formulation of meaningful
queries.

There is an inherent degree of non-determinism in faceted
navigation: if a user selects a facet value, it is unclear whether
the next facet generated by the system should be conjunctive or
disjunctive, and whether it should be incorporated in the interface
by means of conjunctive or disjunctive branching. In many
applications, however, different values in a facet are interpreted
disjunctively, whereas constraints imposed by different facets are
interpreted conjunctively. Thus, to resolve such ambiguities and
devise fully deterministic algorithms, we focus on a restricted class
of interfaces where conjunctive facets and disjunctive branching
are disallowed.

Definition 27. A faceted interface I is simple if all facets occurring
in I are disjunctive, and it does not contain sub-interfaces of the
form (path1 ∨ path2).

5.1. The ontology facet graph

We capture the facets that are relevant to an ontology O in a
facet graph, which can be seen as a concise representation of O.
Our interface generation and update algorithms are parameterised
by such graph rather than by O itself.

The nodes of a facet graph are possible facet values (unary
predicates and constants), and edges are labelled with possible
facet predicates (binary predicates and type). The key property of
a facet graph is that every X-labelled edge (v,w) is justified by a
rule or fact entailed by O which semantically relates v to w via X .
We distinguish three kinds of semantic relations: existential, where
X is a binary predicate and (each instance of) v must be X-related
to (an instance of) w in the models of O; universal, where (each
instance of) v is X-related only to (instances of)w in the models of
O; and typing where X is type and constant v is entailed to be an
instance of the unary predicatew.

M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74 65
Definition 28. A facet graph forO is a directed labelledmultigraph
G having as nodes unary predicates or constants from O and
s.t. each edge is labelled with a binary predicate from O or type.
Each edge e is justified by a fact or rule αe s.t. O |= αe and αe is of
the formgiven next, where c, d are constants, A, B unary predicates
and R a binary predicate:

(i) if e is c
R
−→ d, then αe is of the form

R(c, d) or R(c, y) → y ≈ d;

(ii) if e is c
R
−→ A, then αe is a rule of the form

⊤(c) → ∃y[R(c, y) ∧ A(y)] or R(c, y) → A(y);

(iii) if e is A
R
−→ c , then αe is a rule of either of the form

A(x) → R(x, c) or A(x) ∧ R(x, y) → y ≈ c;

(iv) if e is A
R
−→ B, then αe is a rule of the form

A(x) → ∃y[R(x, y) ∧ B(y)] or A(x) ∧ R(x, y) → B(y);

(v) if e is c
type
−−→ A, then αe = A(c).

Moreover, rangeG(R) denotes the set of nodes in G with an
incoming R-labelled edge.

The first (resp. second) option for each αe in (i)–(iv) encodes the
existential (resp. universal) R-relation betweennodes in e, whereas
(v) encodes typing. A graph may not contain all justifiable edges,
but rather those that are deemed relevant to the given application.

Example 29. Recall our ontology in Example 1. A facet graph may
contain nodes for :bc (Bill Clinton) and :cc (Chelsea Clinton), as
well as for predicates such as USpres and Univ. Example edges
are: (i) a child-edge linking Bill Clinton to Chelsea Clinton, which
is justified by the fact child(:bc, :cc); (ii) a citiz-edge from Person
to Country justified by Rule (4); and (iii) a grad-edge from :cc to
Univ since Chelsea Clinton graduated from Stanford and therefore
the ontology entails the sentence Person(:cc) → ∃y(grad(:cc, y)∧
Univ(y)).

It follows from the following proposition that facet graph
computation can be efficiently implemented. In practice, the graph
can be precomputed offline when first loading data and ontology.
It can then be stored in RDF and accessed using SPARQL queries
during search.

Proposition 30. Checking whether a directed labelled multigraph is
a facet graph for O is feasible in polynomial time if O is in any of the
OWL 2 profiles.

Proof. It suffices to show that checking whether an edge in the
graph is justified is feasible in polynomial time. We show that
checking entailment for each different type of rule or fact α is
feasible in polynomial time for all profiles.

• αe = R(c, d) and αe = A(c). As already discussed, fact
entailment is tractable for all profiles.

• αe is a Datalog rule γ1 . . . γn → η. Consider a substitution
σ = {x → e, y → f } with e and f fresh constants not occurring
in O. Then, O |= αe iff O ∪ {σ(γi)}

n
i=1 |= σ(η). Tractability of

checking O |= αe then follows immediately from tractability of
fact entailment in the profiles.

• αe = A(x) → ∃y[R(x, y) ∧ B(y)]. Tractability of checking
O |= αe follows from tractability of subsumption checking
for EL and QL. In the case of RL we have that O |= αe iff
O ∪ {A(e)} |= ∃y[R(e, y) ∧ B(y)], in which case tractability
follows from tractability of tree-shaped CQ evaluation for RL.
• αe = ⊤(c) → ∃y[R(c, y) ∧ A(y)]. We have that O |= αe iff
O ∪ {⊤(c)} |= ∃y[R(c, y) ∧ A(y)]. The argument is then the
same as in the previous case for RL. If we consider EL and QL, we
have that O ∪ {⊤(c)} |= ∃y[R(c, y) ∧ A(y)] iff c is an instance
of the concept ∃R.Aw.r.t.O, a tractable problem for both EL and
QL. �

To realise the idea of ontology-guided faceted navigation, we
require that interfaces conform to the facet graph, in the sense that
the presence of every facet and value in the interface is supported
by a graph edge. In this way, we ensure that interfaces mimic
the structure of (and implicit information in) the ontology and
the interface does not contain irrelevant (combinations of) facets.
Since a given facet or value can occur in many different places in
an interface, we need a mechanism for unambiguously referring
to each element in the interface. To this end, we introduce an
alternative representation of interfaces in the form of a tree. This
representation will also be instrumental to our notions of update
in Section 5.3.

Definition 31. The node-labelled tree tree(I) = (N, E, λ) of a
simple EFI I is recursively defined as follows.

(i) If I is an EBFI, then N = {ε}, E = ∅, and λ(ε) = I .
(ii) If I = (I0 ∧ I1)where tree(Ii) = (Ni, Ei, λi), then

N = {ε} ∪ {0w | w ∈ N0} ∪ {1w | w ∈ N1},

E = {(ε, 0), (ε, 1)} ∪ {(iu1, iu2) | (u1, u2) ∈ Ei}.

Furthermore, λ(w) = ε if w = ε, and λ(w) = λi(u) if w of
the form iuwith i ∈ {0, 1}.

(iii) If I = (I0/I1), where tree(I1) = (N1, E1, λ1), then

N = {ε} ∪ {0w | w ∈ N1},

E = {(ε, 0)} ∪ {(0u1, 0u2) | (u1, u2) ∈ E1}.

Furthermore, λ(ε) = I0, and for eachw ∈ N \ {ε} it holds that
λ(w) = λ1(u)wherew = 0u.

A position in I is a pair (w, v)wherew is a node in tree(I)with label
an EBFI (F ,Σ) and v ∈ F |2 ∪ {focus}.

We can now define conformance of interfaces to facet graphs.

Definition 32. Let G be a facet graph for O and I a simple EFI. Let
(w1, v1) and (w2, v2) be distinct positions in I , where λ(wi) in
tree(I) is (Fi,Σi) and Fi|1 = Xi for i = 1, 2. Position (w2, v2) is
justified by (w1, v1) in G if w1 is the least ancestor of w2 in tree(I)
with λ(w1) ≠ ε and one of the following properties holds: (i) there
is an X2-labelled edge from v1 to v2; or (ii) v1 = any and there is an
X2-labelled edge from some u ∈ rangeG(X1) to v2; or (iii) v2 = any
and v1 has an outgoing X2-edge; or (iv) v1 = v2 = any and u has
an outgoing X2-edge for some u ∈ rangeG(X1).

Interface I conforms to G if for each position (w, v) in I , either (i)
there is no ancestor w′ of w in tree(I) with λ(w) ≠ ε; or (ii) there
is a position (w′, v′) in I s.t. λ(w′) is (F ′,Σ ′), v′

∈ Σ ′ and (w, v) is
justified by (w′, v′) in G.

Intuitively, (w2, v2) is justified by (w1, v1) if there is an edge
from v1 to v2 labelled with the facet predicate X2 of F2. This
indicates that there is an entailment in O that justifies the
appearance of v2 given v1 and X2. Our definition, however, must
also consider that v1 can be any, which indicates that any value
reachable by using the facet predicate X1 of facet F1 can be used
to justify v2. Analogously, v2 can also be any, in which case it is
enough to use v1 to justify any value reachable by using the facet
predicate X2.

66 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
Algorithm 3: CreateInterface
INPUT : A facet graph G = (V , E) for O, a set S of nodes in G
OUTPUT : A simple faceted interface

1 Υ = {w | v
type
−−→ w ∈ E and v ∈ S}

2 I = ((type,∨Υ),∅)
3 for each R ∈ BP do
4 Γ ,Υ ′

:= ∅

5 for each v ∈ S and v
R
−→ w ∈ E do

6 ifw is a constant then Γ := Γ ∪ {w}

7 else Υ ′
:= Υ ′

∪ {w}

8 if Γ ≠ ∅ then I := I ∧ ((R,∨(Γ ∪ {any})),∅)
9 if Υ ′

≠ ∅ then I := I ∧ ((R,∨(Υ ′
∪ {any})),∅)

10 return I

5.2. Interface generation

Algorithm 3 shows how a fresh interface can be generated from
a starting set S of nodes in a facet graph G. The algorithm starts
by grouping all unary predicates categorising the constants in S
in a BFI (Lines 1–2). Then, for each binary predicate R and each
v ∈ S, the algorithm collects the nodeswwith an incoming R-edge
from v and groups them in sets Γ and Υ ′ depending on whether
they are constants or unary predicates (Lines 3–7). All constants
in Γ (resp. predicates in Υ ′) are put together in a BFI with facet
predicate R, which is coupled to the interface using ∧-branching
(Lines 8–9).

Algorithm 3 can be directly exploited to generate an initial
interface from a set of keywords. A faceted search back-end would
first compute an initial set D of entities relevant to the keywords
(e.g., using a text search engine), and then generate an initial
interface by calling Algorithm 3 with input D and a facet graph
for O. The resulting interface I has no selected facet values or
nested facets, which reflects that I constitutes the starting point
to navigation. Furthermore, I is conformant to the input graph G.

Proposition 33. On input G and S, Algorithm 3 outputs a simple
interface that conforms to G.

Proof. By construction, the output interface I contains only
disjunctive facets and does not contain subfacets of the form
(path1 ∨ path2); thus the algorithm outputs a simple interface.
Now, note that I is a conjunction of BFIs and hence no position in
I has an ancestorw′ with λ(w′) ≠ ε. This proves the conformance
of I to G and concludes the proof. �

5.3. Interface update

The initial interface where no facet value has been yet
selected marks the start of the navigation process. We define
the elementary operations on facet values by exploiting the tree
representation of interfaces (c.f. Definition 31). We start with the
selection operation.

Definition 34. The action Select is applicable to a simple EFI I , a
position (w, v) in I , and a facet graph G for O under the following
preconditions: (i) v is not selected in λ(w) and (ii) if an ancestorw′

of w in tree(I) is labelled with an EBFI (F ′,Σ ′), then Σ ′
≠ ∅. The

result is the interface computed by Algorithm 4.

Algorithm Select starts by checking whether the value v is
focus, in which case it adds v to Σ and removes all other
occurrences of focus in I (Lines 1–2). Otherwise, it generates a fresh
EFI I1 from I by adding v toΣ (Line 4), and constructs a new EFI I2
that collects all the values adjacent to v in G (Line 5). Notice that
if v = any, then the value v itself is not considered; instead, v
is replaced by the values in G with an incoming F |1-labelled edge.
Algorithm 4: Select
INPUT : I, (w, v), and G as in Def. 34, with λ(w) = (F ,Σ)
OUTPUT : A simple EFI

1 if v = focus then
2 Iout := remove all occurrences of focus in I , and then replaceΣ

in λ(w)withΣ ∪ {focus}
3 else
4 I1 := replaceΣ in I withΣ ∪ {v}
5 if v ∈ C ∪ UP then I2 := CreateInterface(G, {v})
6 else I2 := CreateInterface(G, rangeG(F |1))
7 ifw is a leaf in tree(I1) then
8 Iout := replace λ(w) in I1 with (λ(w)/I2)
9 else Iout := replace λ(w0) in I1 with (λ(w0) ∧ I2)

10 return Iout

Algorithm 5: Unselect
INPUT : I, (w, v) and G as in Def. 36, with λ(w) = (F ,Σ)
OUTPUT : A simple EFI

1 if v = focus then Iout := replaceΣ in I withΣ \ {focus}
2 else
3 S := {(w′, v′) | (w′, v′) is uniquely justified by (w, v) in G,

λ(w′) = (F ′,Σ ′) and v′
∈ Σ ′

}

4 for each (w′, v′) ∈ S do I := Unselect(I, (w′, v′),G)
5 Iout := replaceΣ in I withΣ \ {v}

6 λout := labelling function of tree(Iout)
7 for each nodew′ in tree(Iout) do
8 (F ′,Σ ′) := λout(w

′)
9 if λout(w′′) = (F ′′,∅) for some ancestorw′′ ofw′ in

tree(Iout) then Iout := replaceΣ ′ in Iout with ∅

10 return Iout

Finally, Algorithm Select includes in I1 the navigation alternatives
encoded in I2 by considering two cases. Ifw is a leaf in tree(I1), then
we incorporate I2 via nesting by replacingλ(w) in I1 with (λ(w)/I2)
(Line 7); otherwise, w has a nested child w0 in tree(I1), in which
case the navigation alternatives encoded in I2 are included in w0
by replacing λ(w0) in I1 with (λ(w0) ∧ I2).

Proposition 35. Assume that I, (w, v) and G are as in Definition 34.
If I conforms to G, then Select(I, (w, v),G) is a simple EFI that also
conforms to G.

Proof. Clearly, the output interface Iout is simple since (i) the input
interface I is simple, (ii) themodifications in Lines 1–6 do not affect
the simplicity, (iii) the only new subinterface I2 which is added in
Line 8 or 9 consists of disjunctive facets, and (iv) no subinterface of
the form (path1 ∨ path2) is added.

Nowwe turn to the conformance toG. Since the input interface I
conforms to G, we need to check the conformance conditions only
for those positions in Iout that correspond to I2. Let (w2, v2) be a
such position; then it is easy to see that (w, v) justifies (w2, v2).
Indeed, if v ≠ any, then (i) the least ancestor of w2 is w, (ii) if
v2 ≠ any, then it occurs in I2 only if there is a F |1-labelled edge
from v to v2, where F is a facet in λ(w) (see Lines 5–7 in Algorithm
3), and (iii) if v2 = any, then it occurs in I2 only if v has an outgoing
F |1-labelled edge (see Lines 8–9 in Algorithm 3). The case v = any
is analogous. �

We next define what it means to unselect a facet value.
Intuitively, when unselecting v in a given position of an interface
all values that were justified by v (and only by v) should also be
unselected. In particular, we say that (w2, v2) is uniquely justified
by (w1, v1) in G if (w2, v2) is justified by (w1, v1) in G and (w2, v2)
is not justified in G by any pair other than (w1, v1).

Definition 36. The action Unselect is applicable to a simple EFI I ,
a position (w, v) in I and a facet graphG for an ontologyO, if v ∈ Σ

M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74 67
with (F ,Σ) the label of w in tree(I). The result is the interface
computed by Algorithm 5.

Algorithm Unselect considers two cases depending on what
kind of value v is unselected. If v is focus, then the value is simply
unselected (Line 1). Otherwise, not only Σ must be replaced in I
withΣ\{v}, but also all the positions in I that are uniquely justified
by (w, v) have to be unselected (Lines 2–5). Unselecting a value
propagates recursively along the tree of I since positions deeper
down the tree could ultimately be affected. Finally, the algorithm
makes sure that no selected value remains disconnected to the rest
(Lines 7–9).

Proposition 37. Assume that I, (w, v) and G are as in Definition 36.
If I conforms to G, then Unselect(I, (w, v),G) is a simple EFI that
also conforms to G.

Proof. Note that the algorithm modifies only sets of selected
values Σ in some EBFIs occurring in the input interface I ,
which immediately yields that Iout inherits simplicity and the
conformance to G from I . �

5.4. Minimising interfaces

An important issue in the design of faceted interfaces is to
avoid the overload of users with redundant facets or facet values.
Intuitively, an (unselected) facet value v is redundant if selecting v
either leads to a ‘dead end’ (i.e., an empty set of answers) or it does
not have an effect on query answers. Then, a faceted interface is
minimal if none of its component BFIs contains redundant values.

Definition 38. Let I be a simple EFI and G a facet graph for
O. Then I is minimal w.r.t. G if for each position (w, v) in I
s.t. Select is applicable to I, (w, v) and G, the following holds: (i)
Q [Select(I, (w, v),G)] has a non-empty answer set w.r.t. O; and
(ii) the answers to Q [Select(I, (w, v),G)] w.r.t. O are different
from the answers to Q [I] w.r.t. O.

Example 39. The transition from interface I0 to I1 in Example 26
involves a minimisation step. The BFI in I0 involving F5 is pruned
since selecting a value will either not affect the search results (if
any or :us is selected) or yield an empty set of answers (if :uk is
selected).

To avoid overwhelming users with irrelevant information,
systems can minimise the output of Algorithm 4 before showing
it to the user.

6. SemFacet: a faceted search system

We next describe our faceted search system SemFacet, which
is implemented in Java and available for download under an
academic licence. The system can be obtained from our project
website [48], where we also provide a collection of test data
and detailed installation and configuration instructions.5 In this
section, we also report on a proof of concept performance
evaluation as well as on our practical experience with Yago.

6.1. System description

System overview. SemFacet’s workflow is summarised in Fig. 2(a),
where the steps relevant to users’ activity are depicted as ovals,
and those relevant to system’s activity are represented as boxes
(double-lined for front-end tasks and single-lined for back-end

5 SemFacet is also available on GitHub [49].
tasks). Users initiate the search by entering a set of keywords,
which are then matched to textual information associated to
URIs in the data (such as labels and descriptions) resulting in an
initial set of relevant URIs.6 SemFacet then computes the initial
interface (with no value selections) based on these relevant URIs,
which constitutes the starting point for faceted navigation. We
now provide further details on how the main tasks performed by
SemFacet are realised in the system.

• Matching of keywords. SemFacet exploits the values of annota-
tion properties to determinewhether a URI is relevant to a set of
keywords. Roughly speaking, a URI u is relevant to a keyword k
w.r.t. an annotation property R if the input data contains a triple
of the form (u, R, w), wherew is a string containing k. Further-
more, u is relevant to a set of keywords if at least one of themoc-
curs in w. To implement keyword search, SemFacet constructs
an inverted index on the strings occurring in the values of these
annotation properties. Alternatively, the system can be config-
ured to rely on existing search engines such as Lucene [50] and
delegate keyword search to them.

• Interface generation and update. SemFacet relies on a facet
graph G of the input RDF data and ontology to generate and
update faceted interfaces. The part of the graph corresponding
to entailed facts (i.e, edges of Type (i) and (v) in Definition 28)
is materialised offline at loading time. Edges of Types (ii)–(iv) in
Definition 28 are computed in the online phase by querying the
materialised graph. The initial interface is generated according
to Algorithm 3 by isolating in G the nodes corresponding to
the URIs returned by the keywords, the edges outgoing from
them, and the nodes reached by these edges. Faceted interfaces
are updated in response to user actions using Algorithms 4
and 5; moreover, SemFacet relies on the strategies described in
Section 5.4 for interface minimisation. Specifically, our system
executes each possible expansion of an EFI in the background
by calling the reasoner, and prunes all facet values that either
do not change query answers, or make them empty. Finally, the
current version of the system can be customised so that facet
values are hierarchically arranged according to a user-specified
predicate, which greatly facilitates navigation in the presence
of a large number of values per facet.

• Query generation and execution. SemFacet compiles faceted
queries obtained from user selections in an interface into
SPARQL queries, which are then evaluated using a reasoner.
Our system currently bundles several reasoning engines with
different capabilities, and users can select the reasoner that
is deemed more appropriate for their application at hand.
Answers to SPARQL queries are typically returned by reasoners
in the form of a URI. This may not be very informative for end
users; hence,SemFacet also displays the annotations associated
to the answer URIs and displays them in the form of a snippet.

System architecture. Our system is based on amodular architecture,
which is depicted in Fig. 2(b). On the client side, SemFacet
implements a GUI developed using HTML 5 consisting of three
main parts: a free text search box for keywords, a hierarchically
organised faceted interface, and a scrollable panel containing
snippet-shaped answers. User keywords are sent by the client
to the server where they are processed by the search engine.
For efficiency reasons, we implemented our own simple engine
based on an inverted index, and also allowed for the possibility of
delegating keyword search to Lucene [50].

6 If the given set of keywords is empty, the system considers all URIs in the data
as relevant.

68 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
(a) Workflow diagram of SemFacet (FI stands for Faceted Interface). (b) Architecture of SemFacet.

Fig. 2. Workflow diagram and architecture.
User selections in the faceted interface are compiled into a
SPARQL query using the query converter and then sent to the back-
end reasoner for evaluation. The snippet and interface composers
receive information about facets and answers that should be dis-
played to the user and update the currently displayed interface
and query answers. The system updates the faceted interface in-
crementally: only the parts of the interface that are affected by
users’ actions are updated, which allows for a significantly faster
response time. On the server side, the system relies on an in-
memory triple store to store the inverted index, input data and
ontology, facet graph, and query answers. The current implemen-
tation bundles JRDFox [51,52],7 Sesame [53,54],8 Stardog [55,56],9
PAGOdA [57–59],10 andHermiT [60].11 Any other in-memory triple
store providing similar functionality can be seamlessly integrated
with SemFacet. Please note that SemFacet requires that all data
be stored in main memory, which may limit the applicability of
the system. We are currently working on scalable solutions that
would involve access to secondary storage; a first step in this

7 JRDFox is an in-memory RDF triple store that supports shared memory parallel
Datalog reasoning. It is written in C++ and comes with a Java wrapper allowing for
a seamless integration with Java-based applications.
8 Sesame is a widely-used Java framework for processing RDF data. It offers an

easy-to-use API that can be connected to all leading RDF storage solutions.
9 Stardog is a Java-based triple store providing reasoning support for all OWL 2

profiles as well as a SPARQL implementation.
10 PAGOdA is a query answering system that exploits a hybrid approach to answer
CQs over OWL 2 ontologies and combines a Datalog reasoner with a fully-fledged
OWL 2 reasoner in order to provide scalable ‘pay as you go’ performance.
11 HermiT is the first publicly-available OWL reasoner based on a novel
‘hypertableau’ calculus which provides much more efficient reasoning than any
previously-known algorithm.
direction would be to store on disk the inverted index used for
keyword matching as well as the annotations relevant to snippet
generation.

The facet generator is the back-end component responsible for
constructing the interface in response to user actions, while the
query answering component of the back-end executes the SPARQL
query obtained from the query converter using the reasoning
engine selected by the user.
Configuring the system. SemFacet offers a range of options for sys-
tem administrators to deploy and configure the system (see Fig. 3
for a screenshot of the system’s configuration manager). These in-
clude (i) the reasoning engine of choice (JRDFox, PAGOdA, Sesame,
Stardog, orHermiT); (ii) the annotation properties relevant for key-
word search and displaying of query answers; and (iii) the facet
that is first displayed to the user. By default, values within a facet
are interpreted disjunctively; however, SemFacet provides ad-
vanced configuration capabilities for specifying which facets must
be interpreted conjunctively. Additionally, the hierarchical display
of facet values can also be configured by specifying the property
used to construct the hierarchy (typically rdfs:subClassOf or a prop-
erty capturing a partonomy relation).

6.2. Performance evaluation

Wehave evaluated the performance of interface generation and
update in SemFacet using different triple stores on the system’s
back-end. The main goal of our experiments was to assess the
practical feasibility of our approach when implemented on top of
widely-used triple stores with reasoning capabilities, rather than
to benchmark the triple stores themselves.
Performancemetrics. Interface generation as described inAlgorithm
3 requires computing all triples (v,w, u) in the facet graph G for

M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74 69
Fig. 3. Configuration manager of SemFacet.

Algorithm 6: CreateInterfaceNaive
INPUT : G: facet graph; S: set of nodes in G
OUTPUT: A simple faceted interface

1 I := Empty interface
2 for each v ∈ S do
3 Pairsv := Select ?y,?z From GWhere (v, ?y, ?z)
4 for each t ∈ Pairsv do I := ComposeInterface(t, I)

each v in the input nodes S, and then iterating over the results to
compose the interface. Thus, performance of our system critically
depends on the following parameters of the underlying triple store,
which can be estimated empirically by benchmarking the triple
store over the dataset of interest:

• t[run query]: time to execute an atomic query; and
• t[look up]: time to iterate over query results.

We implemented Algorithm 3 using two approaches: naive and
lazy. A naive approach is described in Algorithm 6: for each v ∈ S,
it retrieves relevant pairs (w, u) by a single SPARQL query to the
store on the server side, and it uses a routine ComposeInterface
to construct the faceted interface on the client side. For improved
efficiency, our system implements a variation of Algorithm6where
facets are computed lazily: facet predicates are computed first, and
values are computed on demand when users click on a facet. For
this, we modify the query in Line 3 such that ?y is the only answer
variable.

To estimate the cost of interface generation (tCI), we estimate
the cost of Algorithm 6 and its lazy version. We are interested
only in the cost of the server computations and thus assume
constant time for the call to ComposeInterface. The cost can then
be estimated as follows:

tCI = (|S| × t[run query])+ (#[answers] × t[look up]). (5)

In this expression, #[answers] is the union of all sets Pairsv for each
v ∈ S. In the worst-case, #[answers] is |G|, whereas in the best-
case it corresponds to |S|. Then, #[answers] is estimated as follows,
where the number of facet predicates corresponds to the number
of different edge labels in G, and the number of facet values to the
number of nodes:

#[answers]naive = O(#[facet predicates])× O(#[facet values]),
#[answers]lazy = O(#[facet predicates]).
The cost tCI in Eq. (5) can also be used to estimate the cost of
interface updates. Algorithm 4 for selecting a facet value can be
seen as a variant of Algorithm 6 with S the set of values relevant
to the selection. In the case of unselecting a value, the worst-case
cost for Algorithm 5 is estimated as k × tCI , with k the number of
selected values in the interface. Indeed, kmeasures the worst-case
number of recursive calls to Unselect, whereas tCI estimates the
cost of a single recursive call.

Experimental setup. To estimate the parameters t[run query] and
t[look up], thus also estimating the cost tCI of interface generation,
we have conducted experiments over a fragment of DBpedia
enriched with RL rules and we have used JRDFox, Stardog,
and Sesame as underpinning triple stores. All experiments were
conducted on aMacBook Pro laptopwith OS X 10.8.5, 2.4 GHz Intel
Core i5 processor, and 8 GB 1333 MHz DDR3 memory. Since the
triple stores bundled inSemFacet operate inmainmemory, andwe
wanted to test our algorithms on stock hardware, we considered a
fragment that covers 20%ofDBpedia (3.5million triples) andwhich
can be loaded with 8 GB of RAM. Each experiment was executed
100 times; we measured average and median running time for
each experiment. Since results never differ in more than 5% for a
single experiment, we report only average times. Please note that
our experiments were conducted locally on a single machine and
hence do not take into account important factors in client–server
architectures such as number of clients, or network usage and
bandwidth. In this sense, our experimental results reflect a best
possible scenario in terms of performance.

Evaluation results. Results are summarised in Fig. 4. Fig. 4(a)
estimates #[answers] × t[look up] by measuring time required to
iterate over an answer set of a given size. In turn, Fig. 4(b) estimates
|S| × t[run query] by computing the times required for the triple
store to answer a given number of atomic queries. We can make
the following observations:

• The time needed to iterate over query results is small in
comparison to query execution times. For example, to run
10,000 queries, JRDFox requires 0.498 s, whereas to iterate over
10,000 answers it requires 0.002 s. This should be taken into
account when optimising interface generation.

• In some triple stores (i.e., Stardog and Sesame), iteration and
query answering times do not grow linearly, and they have
to be determined empirically. In contrast, JRDFox shows linear
behaviour.

We first discuss query execution times. To generate the initial
interface, the size of S is determined by the number of relevant
results returned by the search engine fromkeywords. If the ranking
algorithm of the search engine produces high quality results, one
can establish a cap on S and the system allows for this cap to be set
via its Configuration Manager (see the screenshot in Fig. 3 where
the cap is set to 1000). As shown in Fig. 4(b), obtaining a reasonable
cap is important since query execution is expensive. For example
with a cap of 1000 results in S, JRDFox would execute the queries
necessary for interface generation almost instantaneously.

Concerning iteration times over query results, JRDFox could
perform this task in 0.2 s for 1million results and 2 s for 10million.
We could not conduct experiments with 10 million answers
over Stardog and Sesame since loading the data in our machine
consumed all RAM and system behaviour became unstable. The
facet graph for the whole of DBpedia contains 24 million facet
values and 1843 facet predicates [21]. JRDFox would require 5 s
in the worst-case to iterate through that many values using the
exhaustive algorithm. When computing interfaces lazily, all triple
stores would complete the required iteration over facet predicates
instantaneously.

70 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
(a) Average runtime in seconds for lookup in a set of query answers. (b) Average runtime in seconds for processing a set of queries.

Fig. 4. Experimental results for JRDFox, Stardog, and Sesame.
Fig. 5. Distribution of triples in our Yago slice with 96,794,447 triples, before
computation of facet graph.

6.3. Faceted search over Yago

We have investigated faceted navigation over Yago as a use
case. Since the current version of SemFacet relies onmainmemory
triple stores, we did experiments with slices of Yago that could
fit in the main memory of our machine. We used the Taxonomy
slice, which consists of domain and range restrictions as well as
subclass relations, and the Core slice, which contains instances
of object and annotation properties. The axioms from Taxonomy
constitute the ontology that we used for experiments. We refer
to this ontology together with the data slice we used as FYago. To
generate snippets,we also includedDBpedia abstracts, thumbnails,
and links to Wikipedia articles.
Statistics relevant to faceted search. FYago contains 97million triples
involving over 3million URIs. Fig. 5 shows that 55% of triples relate
entities via object properties, 16% relate entities to numbers, 2%
relate entities to dates, and 27% relate entities to other kinds of
strings. FYago involves 89 predicate URIs: an upper bound to the
number of facet predicates. We analysed the following measures
for each facet predicate P:

• popularity: the number of entities annotated with P , i.e., those
to which facets with predicate P are applicable;

• value load: the maximum number of facet values that a facet
with predicate P can contain; and

• filtering power: the average number of answers to expect when
a value in a facet with predicate P is selected.

Popularity determines the number of nodes in the facet graph
with outgoing N-edges, and hence how often a facet predicate
occurs in an interface. Value load determines the number of nodes
with an incoming N-edge, and hence the maximum number of
values in a facet. Finally, the filtering power is associated to the
Fig. 6. Distribution of popularity across 89 facet predicates in FYago. On the
horizontal axis: popularity values divided in 7 groups; on the vertical axis: number
of facets that fell into each group.

average number of nodes with outgoing N-edges pointing to the
samevalue, andhence determines thenumber of answers obtained
after selecting a facet value.
Popularity of facet predicates. FYago contains 8 facet predicates
with popularity exceeding 1million entities; thus, a facet involving
such predicate will occur in most search sessions. Additionally, 12
facet predicates with popularity between 100,000 and 1 million,
which implies that they will occur rather often. The remaining 69
facet predicates have popularity below 100,000, and thus they will
occur rarely; for instance, a facet predicate with popularity 1000 is
relevant to 1000 entities only, and hence only to 0.025% of all data
triples. A detailed distribution of popularity across facets in Fig. 6.
Table 4 depicts the top 20 facets together with their popularity
rating. Observe that only 3 out of the top 8 facet predicates
(hasLongitude, hasLatitude, and rdf:type) are meaningful for faceted
navigation. The remaining facet predicates are either annotations
used for keyword search and/or displaying query answers, or they
involve URIs from the reserved vocabulary other than rdf:type. The
latter URIs can be used to improve the GUI (e.g., rdfs:subClassOf
is used to organise values of type-facets into hierarchies). The
remaining 12 predicates in Table 4 are highly relevant for faceted
navigation over Yago. Finally, 65 out of the 69 least frequent
predicates are also meaningful for faceted navigation. Based on
these observations, we prepared three inputs for facet graph
computation: (i) FYago as is (with no pre-processing); (ii) the
subset of FYago involving only meaningful facets; and (iii) the
subset of FYago involving only the 15 most popular meaningful
facets. The latter one, which contains 68% of FYago, is the most
attractive for navigation since any interface will contain at most
15 facet predicates.
Value load for facet predicates. We computed statistics for the facet
predicates from Table 4. The three facet predicates with popularity

M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74 71
Table 4
Statistics on top-20 facet predicates: their popularity, value load (with and without classes), and filtering power.

Facet predicate Facet values Popularity Value load +Classes Filtering power

hasLongitude number 4,775,113 2,419,609 +0 1.97
hasLatitude Number 4,774,930 1,822,094 +0 2.62
rdfs:subClassOf – 4,654,976 – – –
hasGeonamesEntityID – 4,615,914 – – –
rdfs:label – 4,084,428 – – –
prefLabel – 2,954,875 – – –
isPreferredMeaningOf – 2,943,554 – – –
rdf:type Class 2,886,451 374,204 +2 7.71

hasGender Object 923,364 2 +7 461,682.00
hasFamilyName String 838,669 282,537 +0 2.97
hasGivenName String 827,681 77,804 +0 10.64
wasBornOnDate Date 796,090 72,457 +0 10.99
isLocatedIn Object 668,010 59,245 +19,843 11.28
wasCreatedOnDate Date 638,398 38,209 +0 16.71
diedOnDate Date 359,532 56,400 +0 6.37
hasNumberOfPeople Number 223,079 41,762 +0 5.34
hasWebSite String 191,952 217,283 +0 1.00
wasBornIn Object 189,092 13,385 +6,928 14.13
isAffiliatedTo Object 147,003 18,915 +6,569 7.77
hasArea Number 129,715 29,137 +0 4.45

Min 2 9 1.00
Max 2,419,609 2,419,609 461,682.00
Average 368,203 370,426 30,785.72
Median 59,245 72,457 7.74
exceeding a million are overloaded with values (e.g., there are
millions of different longitudes and latitudes). We do not see this
as a limitation from the perspective of usability since these values
can be compactly represented using intervals, where the user can
perform selection using sliders. In the system’s GUI we follow this
approach and display numerical values as intervals. Most other
facet predicates can potentially involve thousands of values, but
only in the worst-case where no keywords are used and users did
not use an initial facet such as rdf:type to initially prune the search
space. We have experimented with a range of relevant keywords
and found that on average they prune over 99% of possible search
results; consequently, the number of possible values per facet is
considerably reduced. Moreover, these estimations on value load
are for facets that are not nested; the deeper the nesting of a facet
in an interface, the fewer values it will have. Thus, when the user
starts faceted navigation using keywords with good selectivity and
then refines the search with nested facets, the value load of facets
in the interface is expected to be of manageable size. In Table 4, we
present two statistics for value load. The first one corresponds to
the case where only the data slice of FYago is taken into account.
The second corresponds to the case where we take into account
the facts derived using the ontology axioms as well. Clearly in
the latter case the number of values per facet increases, and the
number of extra values per facet predicate is presented in the
column +Class. Observe that there is no significant difference in
the value load between both cases. In Table 4 we also provide
minimum, maximum, average, and median values for value load
for both cases.
Filtering power. Observe that most values have good filtering
power; that is, selecting such value would result in a small number
of answers. The only exception is hasGender, which only has two
values associated to it. Also observe that the values of hasWebSite
uniquely determine an entity (i.e., entities in FYago have at most
one website).

7. Related work

In this section we review the literature on semantic faceted
search and describe other approaches to query formulation for RDF
and OWL ontologies.
7.1. Semantic faceted search

Faceted search in the context of RDF was pioneered by
the Ontogator system [61]. Ontogator was further developed in
[62,63] and found applications in the cultural heritage domain [64],
as well as in the clinical sciences [65]. In the last few years
faceted search has become a popular paradigm for querying RDF
data, and many systems have been developed. Prominent exam-
ples include mSpace [22], /facet [24], Piggy Bank [25], Tabula-
tor [19], gFacet [23], tfacet [66], Humboldt [26], Parallax [27],
Nested Faceted Browser [67], Longwell [68], faceted DBpedia [21],
Sewelis [30], X-ENS [20], Broccoli [28], among others [69,70].

Research in this area has so far been systems-centric and
has predominantly been driven by efficiency, effectiveness, and
usability concerns. In particular, the focus has been on problems
such as facet indexing [21,71], ranking of facets and their
values [21,71], value grouping [21,71], or visualisation [23,66].
In contrast to most of existing work, we have investigated the
theoretic underpinnings of RDF faceted search and developed a
comprehensive logic-based framework which accounts for the
graph-based nature of the RDF data model, and formally captures
the query languages underlying the aforementioned systems.
Furthermore, our framework goes beyond RDF and also describes
the impact of ontologies on faceted search.

Although previous research has focused largely on systems,
there have also been several attempts of formalisation [10,29,30,
72–74]. Oren et al. [29] provide an algebraic definition of faceted
interfaces by means of operators on sets of entities. Wagner
et al. [10] define facets procedurally fromagiven conjunctive query
and dataset. Roughly speaking, a facet for a variable corresponds to
the outgoing edges of the data nodes where the variable is mapped
when evaluating the query. To formalise faceted navigation, they
introduce operations on queries that can be used to add or
remove constraints, as well as to capture refocusing. Ferré and
Hermann [30] define facets where values are either queries or
operators, rather than individuals or literal values. Then, value
selection amounts to a syntactic query transformation, rather than
to a filter on a set of entities.

We next compare these approaches to ours based on the
underlying query languages and the available mechanisms for
interface generation and update.

72 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
Query languages. None of the aforementioned formalisations
provides a precise characterisation of their query language in terms
of first-order logic. From the description in Oren et al. [29] we
gather that their queries correspond to monadic tree-shaped CQs
with the root variable as output, and enhanced with a limited
form of epistemic negation. Thus, their language is incomparable
to ours sincewe allow for disjunction, while they support a form of
negation. The language of [10] corresponds to tree-shaped CQs and
hence it is strictly contained in ours. Finally, Ferre et al. [30,72–74]
allow queries as facet values, and these queries can be constrained
to any fragment of SPARQL.

The query language underpinning the faceted search systems
mentioned in the beginning of this section is rather difficult to
understand, given that their description is informal. To the best of
our knowledge, most systems support some form of conjunctive
nesting, branching, and refocusing [27,28]. A few systems also
support a limited form of disjunction [20,21].

Finally, we are not aware of any paper on RDF-based faceted
search where the computational complexity of query evaluation is
studied. The typical assumption in existingwork is that queries are
compiled into SPARQL [30] or Prolog [24], and executed by means
of an off-the-shelf query evaluation engine.
Interface generation and update. A common approach in existing
systems, including [10,29], is to generate and update interfaces
from RDF datasets under the assumption that URIs in predicate
position correspond to facet predicates while those in object
position are facet values. Facets are typically arranged as trees [10,
11,24,29,68] ormore complex graphs [23]. Such trees or graphs are,
however, defined on RDF data only, and they are also dependent
on search results, or the specific GUI of the system. In contrast,
our notions of interface and facet graph account for both data
and ontologies, and they are independent from search results
as well as from the system’s GUI. Thus, we see our approach
as a generalisation of existing work. Finally, to the best of our
knowledge, the complexity of interface generation and update has
not been studied in the literature.

7.2. Other query formulation approaches

In recent years, query formulation has been extensively studied
by the SemanticWeb community.Most of the research has focused
on Visual Query Systems (VQS), while natural language interfaces
have also attracted a considerable attention.
Visual query systems. VQS [75] rely on a visual representation
paradigm for constructing and modifying queries. Many VQS pro-
vide a set of graphical primitives (e.g., boxes, circles, arrows) for
query elements (e.g., variables, relations), and a mechanism for
combining such primitives into queries. Thus, in VQS, the user is in-
volved in the explicit construction of a query. In contrast, in faceted
search, the main focus is on exploration of the underlying data and
ontology, rather than on the deliberate construction of a query.
Prominent examples of VQS are NITELIGHT [12], SEWASIE [76],
iSPARQL [13], OntoVQL [77], Wonder [78], OptiqueVQS [79,80],
LUPOSDATE-VEdit [81], and QueryVOWL [14].
Natural language. These systems offer a different approach to query
formulation and can be divided in two groups: QuestionAnswering
and Controlled Natural Language. The former systems allow users
to pose a free text question (or just a set of keywords) and
then interpret the input as a formal query. Such systems include
FALCON [15], AquaLog [82], AutoSPARQL [83], QuestIO [84],
Siemens’ query system [85], and SPARK [16]. Systems in the second
group, such as Quelo [17], allow for natural language expressions
to be used at each step during query construction. Regarding
comparison with faceted search, recall that free text in faceted
search is only used to initiate the search (indeed, many papers do
not discuss text search); in contrast, in natural language systems
the text determines the query.

8. Conclusion and future work

In this paper, we have proposed a rigorous theoretical frame-
work for faceted search in the context of RDF-based knowledge
graphs enhanced with OWL 2 ontologies. Our framework has al-
lowed us to identify fragments of SPARQL that can be naturally
captured using faceted search as a query paradigm, and for which
query answering is tractable. Additionally, we have studied the
problemof updating faceted interfaces, which is critical for guiding
users in the formulation of meaningful queries during exploratory
search, and implemented our techniques in a fully-fledged faceted
search system.

We see many directions for future work, which we briefly
summarise next.

• Keyword search could be enhanced by explicitly taking into
account the structure of the graph data; this would allow us to
compute more suitable initial interfaces. A possible approach
in this direction would be to also exploit SPARQL queries for
keyword matching.

• Ranking of facet values. In our work, we have so far abstracted
from GUI-specific considerations; as a next step, we are
planning to experiment with a number of ranking algorithms
for displaying facets and their values.

• Formalisation of advanced functionality. A number of advanced
features implemented in existing systems, such as hierarchical
facets and epistemic negation, are not currently taken into
account in our formal framework. We are planning to extend
our results in Sections 3–5 to also capture such features.

• Query optimisation is a key challenge; faceted navigation is an
interactive process, where instant system response is often
required.

• Expressible queries. Our algorithms are generic, and they have
been designed to query arbitrary RDF-based knowledge graphs.
When it comes to specific applications, however, our algorithms
do not guarantee that all queries deemed relevant can be
effectively constructed via faceted search. This may be because
such queries cannot be captured by tree-shaped positive
existential formulas, or because they are not easily ‘reachable’
using the information available in the knowledge graph. Thus,
it would be interesting to investigate richer notions of interface
that lead to more expressive query languages, as well as
techniques for optimising faceted navigation given a set of
application-specific queries that are deemed relevant.

Finally, we are currently working with our collaborators at
EDF Energy [86], Siemens [87,88], and Statoil [89–91] in the
development of faceted search solutions for their semantics-
based data management systems. We expect that our interaction
with these industrial partners will also provide us with large
repositories of realistic queries that we could subsequently use for
evaluation and optimisation purposes.

References

[1] F.M. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge,
in: Proc. of WWW, 2007, pp. 697–706.

[2] Freebase: an open, shared database of the world’s knowledge, http://www.
freebase.com/.

[3] Google’s Knowledge Graph, http://www.google.co.uk/insidesearch/features/
search/knowledge.html.

http://www.freebase.com/
http://www.freebase.com/
http://www.freebase.com/
http://www.freebase.com/
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html
http://www.google.co.uk/insidesearch/features/search/knowledge.html

M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74 73
[4] Facebook’s Graph Search, https://www.facebook.com/graphsearcher.
[5] Microsoft’s Satori, http://blogs.bing.com/search/2013/03/21/understand-

your-world-with-bing/.
[6] Yahoo’s Knowledge Graph, www.technobuffalo.com/2014/04/21/yahoo-

testing-its-own-version-of-googles-knowledge-graph/.
[7] W3C: Resource Description Framework (RDF), http://www.w3.org/RDF/.
[8] W3C: OWL 2 Web Ontology Language, http://www.w3.org/TR/owl2-

overview/.
[9] S. Harris, A. Seaborne, SPARQL 1.1 Query language, W3C Recommendation (21

March 2013).
[10] A.Wagner, G. Ladwig, T. Tran, Browsing-oriented Semantic Faceted Search, in:

Proc. of DEXA, 2011, pp. 303–319.
[11] P. Heim, T. Ertl, J. Ziegler, Facet graphs: Complex semantic queryingmade easy,

in: Proc. of ESWC, 2010, pp. 288–302.
[12] A. Russell, P.R. Smart, NITELIGHT: A graphical editor for SPARQL queries, in:

Proc. of ISWC (Posters and Demos), 2008.
[13] iSPARQL QBE, http://dbpedia.org/isparql/.
[14] F. Haag, S. Lohmann, S. Siek, T. Ertl, Visual querying of linked data with

QueryVOWL, in: Joint Proceedings of SumPre 2015 and HSWI 2014-15, CEUR-
WS, 2015.

[15] S.M. Harabagiu, D.I. Moldovan, M. Pasca, R. Mihalcea, M. Surdeanu, R.C.
Bunescu, R. Girju, V. Rus, P. Morarescu, FALCON: boosting knowledge for
answer engines, in: Proc. of TREC, 2000.

[16] Q. Zhou, C. Wang, M. Xiong, H. Wang, Y. Yu, SPARK: adapting keyword query
to semantic search, in: Proc. of ISWC, 2007, pp. 694–707.

[17] E. Franconi, P. Guagliardo, M. Trevisan, S. Tessaris, Quelo: an ontology-driven
query interface, in: Proc. of DL, 2011.

[18] D. Tunkelang, Faceted Search, Synthesis Lectures on Information Concepts,
Retrieval, and Services, Morgan & Claypool Publishers, 2009.

[19] T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Prudhommeaux, M.M.C.
Schraefel, Tabulator redux: Browsing and writing linked data, in: Proc. of
LDOW, 2008.

[20] P. Fafalios, Y. Tzitzikas, X-ENS: Semantic enrichment of web search results at
real-time, in: Proc. of SIGIR, 2013, pp. 1089–1090.

[21] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, M. Bürgle, H. Düwiger, U.
Scheel, Faceted Wikipedia search, in: Proc. of BIS, 2010, pp. 1–11.

[22] m.c. schraefel, D.A. Smith, A. Owens, A. Russell, C. Harris, M.L. Wilson, The
volving mSpace platform: Leveraging the semantic web on the trail of the
memex, in: Proc. of Hypertext, 2005, pp. 174–183.

[23] P. Heim, J. Ziegler, S. Lohmann, gFacet: A browser for the web of data, in: Proc.
of IMC-SSW, 2008, pp. 49–58.

[24] M. Hildebrand, J. van Ossenbruggen, L. Hardman, /facet: A browser
for heterogeneous semantic web repositories, in: Proc. of ISWC, 2006,
pp. 272–285.

[25] D. Huynh, S. Mazzocchi, D.R. Karger, Piggy Bank: Experience the semantic web
inside your web browser, J. Web Semant. 5 (1) (2007) 16–27.

[26] G. Kobilarov, I. Dickinson, Humboldt: Exploring linked data, in: Proc. of LDOW,
2008.

[27] D.F. Huynh, D.R. Karger, Parallax and companion: Set-based browsing for the
data web, 2013. www.davidhuynh.net.

[28] H. Bast, F. Bäurle, B. Buchhold, E. Haußmann, Easy access to the freebase
dataset, in: Proc. of WWW, 2014, pp. 95–98.

[29] E. Oren, R. Delbru, S. Decker, Extending faceted navigation for RDF data, in:
Proc. of ISWC, 2006, pp. 559–572.

[30] S. Ferré, A. Hermann, Semantic search: Reconciling expressive querying and
exploratory search, in: Proc. of ISWC, 2011, pp. 177–192.

[31] SNOMED CT, http://www.ihtsdo.org/snomed-ct.
[32] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL 2 web

ontology language profiles, W3C Recommendation.
[33] M. Arenas, B. Cuenca Grau, E. Kharlamov, Š Marciuška, D. Zheleznyakov,

Faceted search over ontology-enhanced RDF data, in: Proc. of CIKM, 2014,
pp. 939–948.

[34] B. Cuenca Grau, E. Kharlamov, D. Zheleznyakov, M. Arenas, Š Marciuška, On
faceted search over knowledge bases, in: Proc. of DL, 2014, pp. 153–156.

[35] M. Arenas, B. Cuenca Grau, E. Kharlamov, Š Marciuška, D. Zheleznyakov,
Enabling faceted search over OWL 2 with SemFacet, in: Proc. of OWLED, 2014,
pp. 121–132.

[36] B. CuencaGrau, E. Kharlamov, ŠMarciuška, D. Zheleznyakov, Y. Zhou, Querying
life science ontologies with SemFacet, in: Proc. of SWAT4LS, 2014.

[37] M. Arenas, B.C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov, Towards
semantic faceted search, in: Proc. of WWW (Companion Volume), 2014,
pp. 219–220.

[38] M. Arenas, B. Cuenca Grau, E. Kharlamov, Š Marciuška, D. Zheleznyakov, E.
Jiménez-Ruiz, SemFacet: Semantic faceted search over Yago, in: Proc. ofWWW
(Companion Volume), 2014, pp. 123–126.

[39] W3C: SPARQL 1.1 Entailment Regimes, www.w3.org/TR/sparql11-
entailment/.

[40] M. Yannakakis, Algorithms for acyclic database schemes, in: Proc. of VLDB,
1981, pp. 82–94.

[41] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power
of logic programming, ACM Comput. Surv. 33 (3) (2001) 374–425.

[42] G. Stefanoni, B. Motik, I. Horrocks, Introducing nominals to the combined
query answering approaches for EL, in: Proc. of AAAI, 2013, pp. 1177–1183.
[43] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Zakharyaschev, The
combined approach to ontology-based data access, in: Proc. of IJCAI, 2011,
pp. 2656–2661.

[44] G. Stefanoni, B.Motik, Answering conjunctive queries over EL knowledge bases
with transitive and reflexive roles, in: Proc. of AAAI, 2015.

[45] M. Krötzsch, S. Rudolph, P. Hitzler, ELP: Tractable rules for OWL 2, in: Proc. of
ISWC, 2008, pp. 649–664.

[46] M. Bienvenu, M. Ortiz, M. Simkus, G. Xiao, Tractable queries for lightweight
description logics, in: Proc. of IJCAI, 2013, pp. 768–774.

[47] S. Kikot, R. Kontchakov, M. Zakharyaschev, On (in)tractability of OBDA with
OWL 2 QL, in: Proc. of DL, 2011.

[48] SemFacet Project Page, http://www.cs.ox.ac.uk/isg/tools/SemFacet/.
[49] GitHub of SemFacet, https://github.com/semfacet.
[50] Lucene, www.lucene.apache.org/.
[51] B. Motik, Y. Nenov, R. Piro, I. Horrocks, D. Olteanu, Parallel materialisation of

datalog programs in centralised, main-memory RDF systems, in: Proc. of AAAI,
2014, pp. 129–137.

[52] RDFox, www.cs.ox.ac.uk/isg/tools/RDFox/.
[53] J. Broekstra, A. Kampman, F.v. Harmelen, Sesame: A generic architecture for

storing and querying RDF and RDF schema, in: Proc. of ISWC, 2002, pp. 54–68.
[54] Sesame, http://rdf4j.org.
[55] H. Pérez-Urbina, E. Rodríguez-Díaz, M. Grove, G. Konstantinidis, E. Sirin, Eval-

uation of query rewriting approaches for OWL 2, in: Proc. of SSWS+HPCSW,
2012.

[56] Stardog, http://stardog.com/.
[57] Y. Zhou, Y. Nenov, B.C. Grau, I. Horrocks, Pay-as-you-go OWL query answering

using a triple store, in: Proc. of AAAI, 2014.
[58] PAGOdA, http://www.cs.ox.ac.uk/isg/tools/PAGOdA/.
[59] Y. Zhou, B.C. Grau, Y. Nenov, I. Horrocks, Pagoda: Pay-as-you-go abox

reasoning, in: Proceedings of the 28th International Workshop on Description
Logics, Athens, Greece, June 7–10, 2015.

[60] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, HermiT: An OWL 2
reasoner, J. Automat. Reason. 53 (3) (2014) 245–269.

[61] E. Hyvönen, S. Saarela, K. Viljanen, Ontogator: Combining view- and ontology-
based search with semantic browsing, in: Proc. of XML Finland, 2003.

[62] O. Suominen, K. Viljanen, E. Hyvönen, User-centric faceted search for semantic
portals, in: Proc. of ESWC, 2007, pp. 356–370.

[63] J. Kurki, E. Hyvönen, Collaborative metadata editor integrated with ontology
services and faceted portals, in: Proc. of ORES, 2010.

[64] E. Hyvönen, E. Mäkelä, M. Salminen, A. Valo, K. Viljanen, S. Saarela, M. Junnila,
S. Kettula, Museumfinland—finnish museums on the semantic web, J. Web
Semant. 3 (2–3) (2005) 224–241.

[65] E. Hyvönen, K. Viljanen, O. Suominen, Healthfinland—finnish health informa-
tion on the semantic web, in: Proc. of ISWC, 2007, pp. 778–791.

[66] S. Brunk, P. Heim, tfacet: Hierarchical faceted exploration of semantic data
using well-known interaction concepts, in: Proc. of International Workshop
on Data-Centric Interactions on the Web, 2011.

[67] D.F. Huynh, The Nested Faceted Browser, 2013.
people.csail.mit.edu/dfhuynh/projects/nfb/.

[68] C. Veres, K. Johansen, A.L. Opdahl, Browsing and visualizing semantically
enriched information resources, in: Proc. of CISIS, 2010, pp. 968–973.

[69] P. Haase, D.M. Herzig, M.A. Musen, T. Tran, Semantic Wiki search, in: Proc. of
ESWC, 2009, pp. 445–460.

[70] S. Buschbeck, A. Jameson, R. Troncy, H. Khrouf, O. Suominen, A. Spirescu, A
demonstrator for parallel faceted browsing, in: Proc. of EKAW, 2012.

[71] H. Bast, B. Buchhold, An index for efficient semantic full-text search, in: Proc.
of CIKM, 2013, pp. 369–378.

[72] S. Ferré, A. Hermann, Reconciling faceted search and query languages for the
semantic web, Int. J. Metadata Semant. Ontol. 7 (1) (2012) 37–54.

[73] S. Ferré, Expressive and scalable query-based faceted search over SPARQL
endpoints, in: Proc. of ISWC, 2014, pp. 438–453.

[74] S. Ferré, SPARKLIS: a SPARQL endpoint explorer for expressive question
answering, in: Proc. of ISWC, 2014, pp. 45–48.

[75] T. Catarci, M.F. Costabile, S. Levialdi, C. Batini, Visual query systems for
databases: A survey, J. Vis. Lang. Comput. 8 (2) (1997) 215–260.

[76] D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini, The SEWASIE network
of mediator agents for semantic search, J. UCS 13 (12) (2007) 1936–1969.

[77] A. Fadhil, V. Haarslev, OntoVQL: A graphical query language for OWL
ontologies, in: Proc. of DL, 2007.

[78] D. Calvanese, M. Keet, W. Nutt, M. Rodriguez-Muro, G. Stefanoni, Web-based
graphical querying of databases through an ontology: the wonder system, in:
Proc. of SAC, 2010, pp. 1388–1395.

[79] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jiménez-Ruiz, M. Giese, I. Horrocks,
OptiqueVQS: Visual query formulation for OBDA, in: DL, 2014, pp. 725–728.

[80] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks,
OptiqueVQS: Towards an ontology-based visual query system for big data, in:
Proc. of MEDES, 2013, pp. 119–126.

[81] J. Groppe, S. Groppe, A. Schleifer, Visual query system for analyzing social
semantic web, in: Proc. of WWW (Companion Volume), 2011, pp. 217–220.

https://www.facebook.com/graphsearcher
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
http://www.technobuffalo.com/2014/04/21/yahoo-testing-its-own-version-of-googles-knowledge-graph/
http://www.technobuffalo.com/2014/04/21/yahoo-testing-its-own-version-of-googles-knowledge-graph/
http://www.technobuffalo.com/2014/04/21/yahoo-testing-its-own-version-of-googles-knowledge-graph/
http://www.w3.org/RDF/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://dbpedia.org/isparql/
http://refhub.elsevier.com/S1570-8268(15)00143-2/sbref18
http://refhub.elsevier.com/S1570-8268(15)00143-2/sbref25
http://www.davidhuynh.net
http://www.ihtsdo.org/snomed-ct
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-entailment/
http://refhub.elsevier.com/S1570-8268(15)00143-2/sbref41
http://www.cs.ox.ac.uk/isg/tools/SemFacet/
https://github.com/semfacet
http://www.lucene.apache.org/
http://www.cs.ox.ac.uk/isg/tools/RDFox/
http://rdf4j.org
http://stardog.com/
http://www.cs.ox.ac.uk/isg/tools/PAGOdA/
http://refhub.elsevier.com/S1570-8268(15)00143-2/sbref60
http://refhub.elsevier.com/S1570-8268(15)00143-2/sbref64
http://www.people.csail.mit.edu/dfhuynh/projects/nfb/
http://refhub.elsevier.com/S1570-8268(15)00143-2/sbref72
http://refhub.elsevier.com/S1570-8268(15)00143-2/sbref75
http://refhub.elsevier.com/S1570-8268(15)00143-2/sbref76

74 M. Arenas et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 55–74
[82] V. Lopez, V.S. Uren, E. Motta, M. Pasin, Aqualog: An ontology-driven question
answering system for organizational semantic intranets, J. Web Semant. 5 (2)
(2007) 72–105.

[83] J. Lehmann, L. Bühmann, Autosparql: Let users query your knowledge base, in:
Proc. of ESWC, 2011, pp. 63–79.

[84] D. Damljanovic, V. Tablan, K. Bontcheva, A text-based query interface to OWL
ontologies, in: Proc. of LREC, 2008.

[85] M. Sander, U. Waltinger, M. Roshchin, T. Runkler, Ontology-based translation
of natural language queries to SPARQL, in: Proc. of Natural Language Access to
Big Data, AAAI 2014 Fall Symposium, 2014.

[86] P. Chaussecourte, B. Glimm, I. Horrocks, B. Motik, L. Pierre, The energy
management adviser at EDF, in: ISWC, 2013, pp. 49–64.

[87] E. Kharlamov, N. Solomakhina, Ö.L. Özçep, D. Zheleznyakov, T. Hubauer, S.
Lamparter, M. Roshchin, A. Soylu, S. Watson, How semantic technologies can
enhance data access at siemens energy, in: ISWC, 2014, pp. 601–619.
[88] E. Kharlamov, S. Brandt,M. Giese, E. Jimenez-Ruiz, S. Lamparter, C. Neuenstadt,
Ö.L. Özçep, C. Pinkel, A. Soylu, D. Zheleznyakov, M. Roshchin, S. Watson, I.
Horrocks, Semantic access to siemens streaming data: the optique way, in:
ISWC (Posters and Demos), 2015.

[89] E. Kharlamov, D. Hovland, E. Jimenez-Ruiz, D. Lanti, H. Lie, C. Pinkel, M.
Rezk, M.G. Skjæveland, E. Thorstensen, G. Xiao, D. Zheleznyakov, I. Horrocks,
Ontology based access to exploration data at statoil, in: ISWC, 2015.

[90] E. Kharlamov, E. Jimenez-Ruiz, C. Pinkel, M. Rezk, M.G. Skjæveland, A. Soylu,
G. Xiao, D. Zheleznyakov, M. Giese, I. Horrocks, A. Waaler, Optique: Ontology-
based data access platform, in: ISWC (Posters and Demos), 2015.

[91] E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M.G. Skjæveland, A. Soylu, D.
Zheleznyakov, T. Bagosi, M. Console, P. Haase, I. Horrocks, et al. Optique 1.0:
Semantic access to big data: The case of Norwegian Petroleum Directorate’s
FactPages, in: ISWC (Posters and Demos), 2013, pp. 65–68.

http://refhub.elsevier.com/S1570-8268(15)00143-2/sbref82

	Faceted search over RDF-based knowledge graphs
	Introduction
	Preliminaries
	Faceted interfaces and queries
	The notion of faceted interface
	Faceted queries
	Faceted queries as restricted PEQs
	Expressing faceted queries in SPARQL
	Faceted interfaces with refocusing

	Answering faceted queries
	Faceted query answering over datasets
	Active domain semantics
	Classical semantics
	Extended faceted queries

	Interface generation & update
	The ontology facet graph
	Interface generation
	Interface update
	Minimising interfaces

	 SemFacet : a faceted search system
	System description
	Performance evaluation
	Faceted search over Yago

	Related work
	Semantic faceted search
	Other query formulation approaches

	Conclusion and future work
	References

