
Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17
Contents lists available at SciVerse ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Federating queries in SPARQL 1.1: Syntax, semantics and evaluation✩

Carlos Buil-Aranda a,b,∗, Marcelo Arenas b, Oscar Corcho a, Axel Polleres c

a Ontology Engineering Group, Facultad de Informática, UPM, Spain
b Department of Computer Science, PUC, Chile
c Siemens AG Österreich, Siemensstraße 90, 1210 Vienna, Austria

a r t i c l e i n f o

Article history:
Received 23 December 2011
Received in revised form
2 October 2012
Accepted 23 October 2012
Available online 22 November 2012

Keywords:
SPARQL 1.1
Distributed data management
Distributed query processing
RDF

a b s t r a c t

Given the sustained growth that we are experiencing in the number of SPARQL endpoints available,
the need to be able to send federated SPARQL queries across these has also grown. To address this use
case, the W3C SPARQL working group is defining a federation extension for SPARQL 1.1 which allows
for combining graph patterns that can be evaluated over several endpoints within a single query. In this
paper, we describe the syntax of that extension and formalize its semantics. Additionally, we describe
how a query evaluation system can be implemented for that federation extension, describing some static
optimization techniques and reusing a query engine used for data-intensive science, so as to deal with
large amounts of intermediate and final results. Finally we carry out a series of experiments that show
that our optimizations speed up the federated query evaluation process.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Recent years have witnessed a large and constant growth in
the amount of RDF data available on the Web, exposed by means
of Linked Data-enabled dereferenceable URIs in various formats
(such as RDF/XML, Turtle, RDFa, etc.) and – of particular interest for
the present paper – by SPARQL endpoints. Several non-exhaustive,
and sometimes out-of-date or not continuously maintained, lists
of SPARQL endpoints or data catalogs are available in different
formats like CKAN,1 The Data Hub,2 the W3C wiki,3 etc. Most
of these datasets are interlinked, as depicted graphically in the
well-known Linked Open Data Cloud diagram,4 which allows
navigating through them and facilitates building complex queries

✩ This work has been performed in the context of the ADMIRE project (EU FP7
ICT-215024), and was supported by the Science Foundation Ireland project Lion-
2 (Grant No. SFI/08/CE/I1380), as well as the Net 2 project (FP7 Marie Curie IRSES
247601).Wewould like to thank, amongmanyothers, theOGSA-DAI team, specially
to Ally Hume, for their advice in the development of the data workflows. Marc-
Alexandre Nolin for his help with the bio2rdf queries and Jorge Pérez for his advice
in theorem proving.
∗ Corresponding author at: Ontology Engineering Group, Facultad de Informática,

UPM, Spain.
E-mail addresses: carlos.buil.aranda@gmail.com, cbuil@ing.puc.cl

(C. Buil-Aranda), marenas@ing.puc.cl (M. Arenas), ocorcho@fi.upm.es (O. Corcho),
axel.polleres@siemens.com (A. Polleres).
1 http://ckan.org/.
2 http://thedatahub.org/.
3 http://www.w3.org/wiki/SparqlEndpoints.
4 http://lod-cloud.net.

1570-8268/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2012.10.001
by combining data from different, sometimes heterogeneous and
often physically distributed datasets.

SPARQL endpoints are RESTful services that accept queries
over HTTP written in the SPARQL query language [1,2] adhering
to the SPARQL protocol [3], as defined by the respective
W3C recommendation documents. However, the current SPARQL
recommendation has an important limitation in terms of defining
and executing queries that span across distributed datasets, since
it hides the physical distribution of data across endpoints, and has
normally been used for querying isolated endpoints. Hence users
willing to federate queries across a number of SPARQL endpoints
have been forced to create ad-hoc extensions of the query language
and protocol, to include additional information about data sources
in the configuration of their SPARQL endpoint servers [4–6] or to
devise engineering solutions where data from remote endpoints
is copied into the endpoint being queried. Given the need to
address these types of queries, the SPARQL working group has
proposed a query federation extension for the upcoming SPARQL
1.1 language [7]which is nowunder discussion in order to generate
a newW3C recommendation in the coming months.5

The federated query extension of SPARQL 1.1 includes the new
SERVICE operator which can also be used in conjunction with
another new operator in the main SPARQL 1.1 query document:
VALUES.

Firstly, the SERVICE operator allows for specifying, inside a
SPARQL query, a SPARQL query endpoint to which a portion of the

5 It is expected that SPARQL 1.1 will be released in June 2012 for most of the
documents. As this will be most probably done during the reviewing time for this
paper, we will update the paper accordingly in case it is accepted.

http://dx.doi.org/10.1016/j.websem.2012.10.001
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
mailto:carlos.buil.aranda@gmail.com
mailto:cbuil@ing.puc.cl
mailto:marenas@ing.puc.cl
mailto:ocorcho@fi.upm.es
mailto:axel.polleres@siemens.com
http://ckan.org/
http://thedatahub.org/
http://www.w3.org/wiki/SparqlEndpoints
http://lod-cloud.net
http://dx.doi.org/10.1016/j.websem.2012.10.001

2 C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17
query will be delegated. This query endpoint may be known at the
time of building the query, and hence the SERVICE operator will
already specify the IRI of the SPARQL endpoint where it will be
executed; or may be a variable that gets bound at query execution
time after executing an initial SPARQL query fragment in one of
the aforementioned RDF-enabled data catalogs, so that potential
SPARQL endpoints that can answer the rest of the query can be
obtained and used.

Secondly, the VALUES operator allows transferring results that
are used to constrain a query, and which may come for instance
from constraints specified in user interfaces that then transform
these into SPARQL queries or – particularly, this may be usedwhen
implementing federated queries through scripting – from previous
executions of other queries.

In this paper, we propose a syntax and a formalization of the
semantics of these federation extensions of SPARQL 1.1 and define
the constraints that have to be considered in their use in order to
be able to provide pragmatic implementations of query evaluators.
To this end, we define notions of service-boundedness and service-
safeness, which ensure that the SERVICE operator can be safely
evaluated.

We implement the static optimizations proposed in [8], using
the notion of well-designed patterns, which prove to be effective
in the optimization of queries that contain the OPTIONAL operator,
the most costly operator in SPARQL [8,9]. This also has important
implications in the number of tuples being transferred and joined
in federated queries, and hence our implementation benefits from
this. Other works have analyzed adaptive query processing [10,11]
which optimize SPARQL queries by adapting them depending on
the specific conditions of the query/execution environment.

As a result of our work, we have not only formalized the se-
mantics of the SPARQL 1.1 Federated Query extension, but we have
also implemented a system that supports these extensions and
makes use of the discussed optimizations. This system, SPARQL-
DQP (which stands for SPARQL Distributed Query Processing), is
built on top of the OGSA-DAI and OGSA-DQP infrastructures [12,
13] that allow dealing with large amounts of data in distributed
settings, supporting for example an indirect access mode that is
normally used in the development of data-intensive workflows. In
summary, the main contributions of this paper are:

• A formalization of the semantics of the federation extension of
SPARQL 1.1, based on the current SPARQL semantics.

• A definition of service-boundedness and service-safeness
conditions so as to ensure a pragmatic evaluation of these
queries.

• A set of static optimizations for these queries, in the presence
of OPTIONAL operators.

• An implementation suited to deal with large-scale RDF datasets
distributed over federated query endpoints.

Organization of the paper. In Section 2, we describe the syntax
and semantics of the SPARQL 1.1 federation extension. In Section 3,
we introduce the notions of service-boundedness and service-
safeness, which ensures that the SERVICE operator can be safely
evaluated. In Section 4, we present some optimization techniques
for the evaluation of the SPARQL 1.1 Federated Query extension.
Finally, in Sections 5 and 6, we present our implementation as well
as an experimental evaluation of it.

2. Syntax and semantics of SPARQL including the SPARQL 1.1
Federated Query

In this section, we give an algebraic formalization of SPARQL 1.1
including the SPARQL 1.1 FederatedQuery.We restrict ourselves to
SPARQL over simple RDF, that is, we disregard higher entailment
regimes (see [14]) such as RDFS or OWL. Our starting point is the
existing formalization of SPARQL described in [8], to which we add
the operators SERVICE proposed in [7] and VALUES proposed in [2].

We introduce first the necessary notions about RDF (taken
mainly from [8]). Assume there are pairwise disjoint infinite sets
I, B, and L (IRIs [15], Blank nodes, and Literals, respectively). Then
a triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple,
where s is called the subject, p the predicate and o the object. An RDF
graph is a set of RDF triples.

Moreover, assume the existence of an infinite set V of variables
disjoint from the above sets, and leave UNBOUND to be a reserved
symbol that does not belong to any of the previously mentioned
sets.

2.1. Syntax

Theofficial syntax of SPARQL [1] considers operatorsOPTIONAL,
UNION, FILTER, GRAPH, SELECT and concatenation via a point
symbol (.), to construct graph pattern expressions. Operators
SERVICE is introduced in the SPARQL 1.1 Federated Query ex-
tension and VALUES is introduced in the main SPARQL 1.1 query
document, the former for allowing users to direct a portion of a
query to a particular SPARQL endpoint, and the latter for transfer-
ring results that are used to constrain a query. The syntax of the
language also considers { } to group patterns and some implicit
rules of precedence and association. In order to avoid ambigui-
ties in the parsing, we follow the approach proposed in [8], and
we first present the syntax of SPARQL graph patterns in a more
traditional algebraic formalism, using operators AND (.), UNION
(UNION), OPT (OPTIONAL), FILTER (FILTER), GRAPH (GRAPH) and
SERVICE (SERVICE), then we introduce the syntax of VALUES
queries, which use the VALUES operator (VALUES), and we con-
clude by defining the syntax of SELECT queries, which use the
SELECT operator (SELECT). More precisely, a SPARQL graph pat-
tern expression is defined recursively as follows:

(1) A tuple from (I∪L∪V)×(I∪V)×(I∪L∪V) is a graph pattern
(a triple pattern).

(2) If P1 and P2 are graph patterns, then expressions (P1 AND P2),
(P1 OPT P2), and (P1 UNION P2) are graph patterns.

(3) If P is a graph pattern and R is a SPARQL built-in condition, then
the expression (P FILTER R) is a graph pattern.

(4) If P is a graph pattern and a ∈ (I ∪ V), then (GRAPH a P) is a
graph pattern.

(5) If P is a graph pattern and a ∈ (I ∪ V), then (SERVICE a P) is a
graph pattern.

As we will see below, despite the similarity between the syntaxes
of GRAPH and SERVICE operators, they behave semantically quite
differently.

For the exposition of this paper, we leave out further more
complex graph patterns from SPARQL 1.1 including aggregates,
property paths, and subselects, but only mention one additional
feature which is particularly relevant for federated queries,
namely, VALUES queries. A SPARQL VALUES query is defined as
follows:

(6) If P is a graph pattern, W⃗ ∈ V n is a nonempty sequence of
pairwise distinct variables of length n > 0 and {A⃗1, . . . , A⃗k} is
a nonempty set of sequences A⃗i ∈ (I ∪ L∪ {UNBOUND})n, then
(P VALUES W⃗ {A⃗1, . . . , A⃗k}) is a VALUES query.

Finally, a SPARQL SELECT query is defined as:

(7) If P is either a graph pattern or a VALUES query, andW is a set
of variables, then (SELECTW P) is a SELECT query.

C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17 3
It is important to notice that the rules (1)–(4) above were
introduced in [8], while we formalize in the rules (5)–(7) the
federation extension of SPARQL proposed in [7].

We used the notion of built-in conditions for the FILTER
operator above. A SPARQL built-in condition is constructed using
elements of the set (I ∪ L ∪ V) and constants, logical connectives
(¬, ∧, ∨), the binary equality predicate (=) as well as unary
predicates like bound, isBlank, isIRI , and isLiteral.6 That is: (1) if
?X, ?Y ∈ V and c ∈ (I ∪ L), then bound(?X), isBlank(?X),
isIRI(?X), isLiteral(?X), ?X = c and ?X = ?Y are built-in
conditions, and (2) if R1 and R2 are built-in conditions, then
(¬R1), (R1 ∨ R2) and (R1 ∧ R2) are built-in conditions.

Let P be either a graph pattern or a VALUES query or a SELECT
query. In what follows, we use var(P) to denote the set of variables
occurring in P . In particular, if t is a triple pattern, then var(t)
denotes the set of variables occurring in the components of t .
Similarly, for a built-in condition R, we use var(R) to denote the
set of variables occurring in R.

2.2. Semantics

To define the semantics of SPARQL queries, we need to
introduce some extra terminology from [8]. A mapping µ from
V to (I ∪ B ∪ L) is a partial function µ : V → (I ∪ B ∪ L).
Abusing notation, for a triple pattern t , we denote by µ(t) the
pattern obtained by replacing the variables in t according to µ.
The domain of µ, denoted by dom(µ), is the subset of V where
µ is defined. We sometimes write down concrete mappings in
square brackets, for instance, µ = [?X → a, ?Y → b] is the
mapping with dom(µ) = {?X, ?Y } such that, µ(?X) = a and
µ(?Y) = b. Two mappings µ1 and µ2 are compatible, denoted by
µ1 ∼ µ2, when for all ?X ∈ dom(µ1) ∩ dom(µ2), it is the case that
µ1(?X) = µ2(?X), i.e. when µ1 ∪µ2 is also a mapping. Intuitively,
µ1 and µ2 are compatible if µ1 can be extended with µ2 to obtain
a new mapping, and vice versa [8]. We will use the symbol µ∅ to
represent the mapping with empty domain (which is compatible
with any other mapping).

Let Ω1 and Ω2 be sets of mappings.7 Then the join of, the union
of, the difference between and the left outer-join between Ω1 and
Ω2 are defined as follows [8]:

Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2},

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | ∀µ′
∈ Ω2 : µ � µ′

},

Ω1 Ω2 = (Ω1 on Ω2) ∪ (Ω1 r Ω2).

Next we use these operators to give semantics to graph pattern ex-
pressions, VALUES queries and SELECT queries. More specifically,
we define this semantics in terms of an evaluation function [[·]]

DS
G ,

which takes as input any of these types of queries and returns a
set of mappings, depending on the active dataset DS and the active
graph Gwithin DS.

Here, we use the notion of a dataset from SPARQL, i.e. a dataset
DS = {(def ,G), (g1,G1), . . . , (gk,Gk)}, with k ≥ 0 is a set
of pairs of symbols and graphs associated with those symbols,
where the default graph G is identified by the special symbol
def ∉ I and the remaining so-called ‘‘named’’ graphs (Gi) are

6 For simplicity, we omit here other features such as comparison operators (‘<’,
‘>’, ‘≤’, ‘≥’), data type conversion and string functions, see [1, Section 11.3] for
details. It should be noted that the results of the paper can be easily extended to
the other built-in predicates in SPARQL.
7 As in [8], for the exposition in this paper, we consider a set-based semantics,

whereas the semantics of [1] considers duplicate solutions, i.e., multisets of
mappings.
identified by IRIs (gi ∈ I). Without loss of generality (there are
other ways to define the dataset such as via explicit FROM and
FROM NAMED clauses), we assume that any query is evaluated
over a fixed dataset DS and that any SPARQL endpoint that is
identified by an IRI c ∈ I evaluates its queries against its own
fixed dataset DSc = {(def ,Gc), (gc,1,Gc,1), . . . , (gc,kc ,Gc,kc)}. That
is, we assume given a partial function ep from the set I of IRIs
such that for every c ∈ I , if ep(c) is defined, then ep(c) = DSc
is the dataset associated with the endpoint accessible via IRI c .
Moreover, we assume (i) a function graph(g,DS) which – given a
dataset DS = {(def ,G), (g1,G1), . . . , (gk,Gk)} and a graph name
g ∈ {def , g1, . . . , gk} – returns the graph corresponding to symbol
g within DS, and (ii) a function names(DS) which given a dataset
DS as before returns the set of names {g1, . . . , gk}.

The evaluation of a graph pattern P over a datasetDSwith active
graph G, denoted by [[P]]

DS
G , is defined recursively as shown in

Fig. 1. In this figure, the definition of the semantics of the FILTER
operator is based on the definition of the notion of satisfaction of a
built-in condition by a mapping. More precisely, given a mapping
µ and a built-in condition R, we say that µ satisfies R, denoted by
µ |H R, if8:

– R is bound(?X) and ?X ∈ dom(µ);
– R is isBlank(?X), ?X ∈ dom(µ) and µ(?X) ∈ B;
– R is isIRI(?X), ?X ∈ dom(µ) and µ(?X) ∈ I;
– R is isLiteral(?X), ?X ∈ dom(µ) and µ(?X) ∈ L;
– R is ?X = c, ?X ∈ dom(µ) and µ(?X) = c;
– R is ?X = ?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) =

µ(?Y);
– R is (¬R1), and it is not the case that µ |H R1;
– R is (R1 ∨ R2), and µ |H R1 or µ |H R2;
– R is (R1 ∧ R2), µ |H R1 and µ |H R2.

Moreover, the semantics of VALUES queries is defined as follows.
Given a sequence W⃗ = [?X1, . . . , ?Xn] of pairwise distinct
variables, where n ≥ 1, and a sequence A⃗ = [a1, . . . , an] of
values from (I ∪ L ∪ {UNBOUND}), let µW⃗ →A⃗ be a mapping with
domain {?Xi | i ∈ {1, . . . , n} and ai ∈ (I ∪ L)} and such that
µW⃗ →A⃗(?Xi) = ai for every ?Xi ∈ dom(µW⃗ →A⃗). Then

(8) If P = (P1 VALUES W⃗ {A⃗1, . . . , A⃗k}) is a VALUES query:

[[P]]
DS
G = [[P1]]

DS
G on {µW⃗ →A⃗1

, . . . , µW⃗ →A⃗k
}.

Finally, the semantics of SELECT queries is defined as follows. Given
a mapping µ : V → (I ∪ B ∪ L) and a set of variables W ⊆ V ,
the restriction of µ to W , denoted by µ|W , is a mapping such that
dom(µ|W) = (dom(µ) ∩ W) and µ|W (?X) = µ(?X) for every
?X ∈ (dom(µ) ∩ W). Then

(9) If P = (SELECTW P1) is a SELECT query, then:

[[P]]
DS
G = {µ|W | mu ∈ [[P1]]

DS
G }.

It is important to notice that the rules (1)–(5) and (7) in Fig. 1 and
the previous rule (9) were introduced in [8], while we propose in
the rules (6) and (8) a semantics for the operators SERVICE and
VALUES introduced in [7]. Intuitively, if c ∈ I is the IRI of a SPARQL
endpoint, then the idea behind the definition of (SERVICE c P1)
is to evaluate query P1 in the SPARQL endpoint specified by c .
On the other hand, if c ∈ I is not the IRI of a SPARQL endpoint,
then (SERVICE c P1) leaves all the variables in P1 unbound, as this
query cannot be evaluated in this case. This idea is formalized by

8 For the sake of presentation, we use here the two-valued semantics for built-
in conditions from [8], instead of the three-valued semantics including errors used
in [1]. It should be noticed that the results of the paper can be easily extended to
this three-valued semantics.

4 C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17
Fig. 1. Definition of [[P]]
DS
G for a graph pattern P .
making µ∅ the only mapping in the evaluation of (SERVICE c P1)
if c ∉ dom(ep). In the same way, (SERVICE ?X P1) is defined
by considering that variable ?X is used to store IRIs of SPARQL
endpoints. That is, (SERVICE ?X P1) is defined by assigning to ?X
all the values s in the domain of function ep (in this way, ?X is
also used to store the IRIs from where the values of the variables
in P1 are coming from). Finally, the idea behind the definition
of (P1 VALUES W⃗ {A⃗1, . . . , A⃗k}) is to constrain the values of the
variables in W⃗ to the values specified in A⃗1, . . . , A⃗k.

The goal of the rules (6) and (8) is to define in an unambiguous
way what the result of evaluating an expression containing
the operators SERVICE and VALUES should be. As such, these
rules should not be considered as a straightforward basis for an
implementation of the language. In fact, a direct implementation
of the rule (6), that defines the semantics of a pattern of the form
(SERVICE ?X P1), would involve evaluating a particular query in
every possible SPARQL endpoint, which is obviously infeasible in
practice. In the next section, we face this issue and, in particular,
we introduce a syntactic condition on SPARQL queries that ensures
that a pattern of the form (SERVICE ?X P1) can be evaluated by
only considering a finite set of SPARQL endpoints, whose IRIs
are actually taken from the RDF graph where the query is being
evaluated.

3. On evaluating the SERVICE operator

As we pointed out in the previous section, the evaluation
of a pattern of the form (SERVICE ?X P) is infeasible unless
the variable ?X is bound to a finite set of IRIs. This notion of
boundedness is one of the most significant and unclear concepts
in the SPARQL federation extension. In fact, since agreement
on such a boundedness notion could not yet be found, the
current version of the specification of this extension [7] does not
specify a formalization of the semantics of queries of the form
(SERVICE ?X P). Here, we provide a formalization of this concept,
and we study the complexity issues associated with it.

3.1. The notion of boundedness

Assume that G is an RDF graph that uses triples of the form
(a, service_address, b) to indicate that a SPARQL endpoint with
name a is located at the IRI b. Moreover, let P be the following
SPARQL query:

(SELECT {?X, ?N, ?E}((?X, service_address, ?Y) AND
(SERVICE ?Y (?N, email, ?E)))).
Query P is used to compute the list of names and email addresses
that can be retrieved from the SPARQL endpoints stored in an
RDF graph. In fact, if µ ∈ [[P]]

DS
G , then µ(?X) is the name of a

SPARQL endpoint stored in G, µ(?N) is the name of a person stored
in that SPARQL endpoint and µ(?E) is the email address of that
person. It is important to notice that there is a simple strategy that
ensures that query P can be evaluated in practice: first compute
[[(?X, service_address, ?Y)]]

DS
G , and then for every µ in this set,

compute [[(SERVICE a (?N, email, ?E))]]
DS
G with a = µ(?Y). More

generally, SPARQL pattern (SERVICE ?Y (?N, email, ?E)) can be
evaluated over DS in this case as only a finite set of values from the
domain ofG need to be considered as the possible values of ?Y . This
idea naturally gives rise to the following notion of boundedness
for the variables of a SPARQL query. In the definition of this notion,
dom(G) refers to the domain of a graphG, that is, the set of elements
from (I∪B∪L) that arementioned inG; dom(DS) refers to the union
of the domains of all graphs in the dataset DS; and finally, dom(P)
refers to the set of elements from (I ∪ L) that are mentioned in P .

Definition 1 (Boundedness). Let P be a SPARQL query and ?X ∈

var(P). Then ?X is bound in P if one of the following conditions
holds:

• P is either a graph pattern or a VALUES query, and for every
dataset DS, every RDF graph G in DS and every µ ∈ [[P]]

DS
G :

?X ∈ dom(µ) and µ(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P)).
• P is a SELECT query (SELECTW P1) and ?X is bound in P1.

In the evaluation of a graph pattern (GRAPH ?X P) over a dataset
DS, variable ?X necessarily takes a value from names(DS). Thus,
the GRAPH operator makes such a variable ?X to be bound. Given
that the values in names(DS) are not necessarily mentioned in the
dataset DS, the previous definition first imposes the condition that
?X ∈ dom(µ), and then not only considers the case µ(?X) ∈

dom(DS) but also the case µ(?X) ∈ names(DS). In the same way,
the VALUES operator can make a variable ?X in a query P to be
bound by assigning to it a fixed set of values. Given that these
values are not necessarily mentioned in the dataset DS where P
is being evaluated, the previous definition also considers the case
µ(?X) ∈ dom(P). As an example of the above definition, we note
that variable ?Y is bound in the graph pattern

P1 = ((?X, service_address, ?Y) AND
(SERVICE ?Y (?N, email, ?E))),

as for every datasetDS, every RDF graphG inDS and everymapping
µ ∈ [[P1]]

DS
G , we know that ?Y ∈ dom(µ) and µ(?Y) ∈

dom(DS). Moreover, we also have that variable ?Y is bound in
(SELECT {?X, ?N, ?E} P1) as ?Y is bound in graph pattern P1.

C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17 5
A natural way to ensure that a SPARQL query P can be evaluated
in practice is by imposing the restriction that for every sub-pattern
(SERVICE ?X P1) of P , it holds that ?X is bound in P . However, in the
following theorem we show that such a condition is undecidable
and, thus, a SPARQL query engine would not be able to check it in
order to ensure that a query can be evaluated.

Theorem 1. The problem of verifying, given a SPARQL query P and a
variable ?X ∈ var(P), whether ?X is bound in P is undecidable.

Proof. The satisfiability problem for relational algebra is the
problem of verifying, giving a relational expression ϕ, whether
there exists a (finite) database instance I such that the set of
answers of ϕ over I is not empty. Given that this problem is
undecidable [16], it is possible to prove from the results in [17] the
following result about the complexity of the satisfiability problem
for SPARQL. A graph pattern P is said to be satisfiable if there exists
a dataset DS and RDF graph G in DS such that [[P]]

DS
G ≠ ∅.

Claim 1. The problem of verifying, given a graph pattern P, whether
P is satisfiable is undecidable.

Next we show that the complement of the previous problem can
be reduced to the problem of verifying, given a graph pattern P
and a variable ?X ∈ var(P), whether ?X is bound in P , from which
we conclude that the theorem holds. Let P be a graph pattern and
?X, ?Y , ?Z be variables that are not mentioned in P . Then define a
graph pattern Q as:

Q = ((?X, ?Y , ?Z) UNION P).

It is easy to see that variable ?X is bound in Q if and only if graph
pattern P is not satisfiable, which was to be shown. �

The fact that the notion of boundedness is undecidable prevents
one from using it as a restriction over the variables in SPARQL
queries. To overcome this limitation, we introduce here a syntactic
condition that ensures that a variable is bound in a pattern and that
can be efficiently verified.

Definition 2 (Strong Boundedness). Let P be a SPARQL query. Then
the set of strongly bound variables in P , denoted by SB(P), is
recursively defined as follows:

• if P = t , where t is a triple pattern, then SB(P) = var(t);
• if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2);
• if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2);
• if P = (P1 OPT P2), then SB(P) = SB(P1);
• if P = (P1 FILTER R), then SB(P) = SB(P1);
• if P = (GRAPH c P1), with c ∈ I ∪ V , then

SB(P) =

∅ c ∈ I,
SB(P1) ∪ {c} c ∈ V ;

• if P = (SERVICE c P1), with c ∈ I ∪ V , then SB(P) = ∅;
• if P = (P1 VALUES W⃗ {A⃗1, . . . , A⃗n}), then

SB(P) = SB(P1) ∪ {?X | ?X is included in W⃗ and for
every i ∈ {1, . . . , n} : ?X ∈ dom(µW⃗ →A⃗i

)};

• if P = (SELECT W P1), then SB(P) = (W ∩ SB(P1)).

The previous definition recursively collects from a SPARQL query
P a set of variables that are guaranteed to be bound in P . For
example, if P is a triple pattern t , then SB(P) = var(t) as one
knows that for every variable ?X ∈ var(t), every dataset DS and
every RDF graph G in DS, if µ ∈ [[t]]

DS
G , then ?X ∈ dom(µ) and

µ(?X) ∈ dom(G) (which is a subset of dom(DS)). In the same way,
if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2) as one knows
that if ?X is bound in P1 or in P2, then ?X is bound in P . As a final
example, notice that if P = (P1 VALUES W⃗ {A⃗1, . . . , A⃗n}) and ?X is
a variable mentioned in W⃗ such that ?X ∈ dom(µW⃗ →A⃗i
) for every

i ∈ {1, . . . , n}, then ?X ∈ SB(P). In this case, one knows that ?X
is bound in P since [[P]]

DS
G = [[P1]]

DS
G on {µW⃗ →A⃗1

, . . . , µW⃗ →A⃗n} and
?X is in the domain of each one of the mappings µW⃗ →A⃗i

, which
implies thatµ(?X) ∈ dom(P) for everyµ ∈ [[P]]

DS
G . In the following

proposition, we formally show that our intuition about SB(P) is
correct, in the sense that every variable in this set is bound in P
(the proof of this proposition can be found in Appendix A).

Proposition 1. For every SPARQL query P and variable ?X ∈ var(P),
if ?X ∈ SB(P), then ?X is bound in P.

Given a SPARQL query P and a variable ?X ∈ var(P), it can be
efficiently verified whether ?X is strongly bound in P . Thus, a
natural and efficiently verifiableway to ensure that a SPARQLquery
P can be evaluated in practice is by imposing the restriction that for
every sub-pattern (SERVICE ?X P1) of P , it holds that ?X is strongly
bound in P . However, this notion still needs to bemodified in order
to be useful in practice, as shown by the following examples.

Example 1. Assume first that P1 is the following graph pattern:

P1 = [(?X, service_description, ?Z) UNION
((?X, service_address, ?Y) AND
(SERVICE ?Y (?N, email, ?E)))].

That is, either ?X and ?Z store the name of a SPARQL endpoint
and a description of its functionalities, or ?X and ?Y store the
name of a SPARQL endpoint and the IRI where it is located (to-
gether with a list of names and email addresses retrieved from
that location). Variable ?Y is neither bound nor strongly bound
in P1. However, there is a simple strategy that ensures that P1
can be evaluated over a dataset DS and an RDF graph G in DS:
first compute [[(?X, service_description, ?Z)]]

DS
G , then compute

[[(?X, service_address, ?Y)]]
DS
G , and finally for every µ in the set

[[(?X, service_address, ?Y)]]
DS
G , compute [[(SERVICE a (?N, email,

?E))]]
DS
G with a = µ(?Y). In fact, the reason why P1 can be evalu-

ated in this case is that ?Y is bound (and strongly bound) in the sub-
pattern ((?X, service_address, ?Y) AND (SERVICE ?Y (?N, email,
?E))) of P1.

As a second example, assume that DS is a dataset and G is an
RDF graph in DS that uses triples of the form (a1, related_with, a2)
to indicate that the SPARQL endpoints located at the IRIs a1 and a2
store related data. Moreover, assume that P2 is the following graph
pattern:

P2 = [(?U1, related_with, ?U2) AND
(SERVICE ?U1((?N, email, ?E) OPT
(SERVICE ?U2 (?N, phone, ?F))))].

When this query is evaluated over the dataset DS and the RDF
graph G in DS, it returns for every tuple (a1, related_with, a2) in
G, the list of names and email addresses that can be retrieved
from the SPARQL endpoint located at a1, together with the
phone number for each person in this list for which this
data can be retrieved from the SPARQL endpoint located at
a2 (recall that graph pattern (SERVICE ?U2 (?N, phone, ?F)) is
nested inside the first SERVICE operator in P2). To evaluate this
query over an RDF graph, first it is necessary to determine
the possible values for variable ?U1, and then to submit the
query ((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F))) to
each one of the endpoints located at the IRIs stored in ?U1. In
this case, variable ?U2 is bound (and also strongly bound) in
P2. However, this variable is not bound in the graph pattern
((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F))), which has
to be evaluated in some of the SPARQL endpoints stored in the RDF

6 C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17
Fig. 2. Parse tree T (Q) for the graph pattern Q = ((?Y , a, ?Z) UNION ((?X, b, c)
AND (SERVICE ?X (?Y , a, ?Z)))).
graph where P2 is being evaluated, something that is infeasible in
practice. It is important to notice that the difficulties in evaluating
P2 are caused by the nesting of SERVICE operators (more precisely,
by the fact that P2 has a sub-pattern of the form (SERVICE ?X1 Q1),
where Q1 has in turn a sub-pattern of the form (SERVICE ?X2 Q2)
such that ?X2 is bound in P2 but not in Q1). �

In the following section, we use the concept of strongly
boundedness to define a notion that ensures that a SPARQL query
containing the SERVICE operator can be evaluated in practice, and
which takes into consideration the ideas presented in the above
examples.

3.2. The notion of service-safeness: considering sub-patterns and
nested SERVICE operators

The goal of this section is to provide a condition that ensures
that a SPARQL query containing the SERVICE operator can be safely
evaluated in practice. To this end, we first need to introduce some
terminology. Given a SPARQL query P , define T (P) as the parse tree
of P . In this tree, every node corresponds to a sub-pattern of P . An
example of a parse tree of a pattern Q is shown in Fig. 2. In this
figure, u1, u2, u3, u4, u5, u6 are the identifiers of the nodes of the
tree, which are labeled with the sub-patterns of Q . It is important
to notice that in this tree we do not make any distinction between
the different operators in SPARQL, we just use the child relation to
store the structure of the sub-patterns of a SPARQL query.

Tree T (P) is used to define the notion of service-boundedness,
which extends the concept of boundedness, introduced in the
previous section, to consider variables that are bound inside sub-
patterns and nested SERVICE operators. It should be noticed that
these two features were identified in the previous section as
important for the definition of a notion of boundedness (see
Example 1).

Definition 3 (Service-Boundedness). A SPARQL query P is service-
bound if for every node u of T (P) with label (SERVICE ?X P1), it
holds that:
(1) there exists a node v of T (P) with label P2 such that v is an

ancestor of u in T (P) and ?X is bound in P2;
(2) P1 is service-bound.

For example, query Q in Fig. 2 is service-bound. In fact, condi-
tion (1) of Definition 3 is satisfied as u5 is the only node in T (Q)
having as label a SERVICE graph pattern, in this case (SERVICE ?X
(?Y , a, ?Z)), and for the node u3, it holds that: u3 is an an-
cestor of u5 in T (P), the label of u3 is P = ((?X, b, c)AND
(SERVICE ?X (?Y , a, ?Z))) and ?X is bound in P . Moreover, condi-
tion (2) of Definition 3 is satisfied as the sub-pattern (?Y , a, ?Z) of
the label of u5 is also service-bound.

The notion of service-boundedness captures our intuition about
the condition that a SPARQLquery containing the SERVICE operator
should satisfy. Unfortunately, the following theorem shows that
such a condition is undecidable and, thus, a SPARQL query engine
would not be able to check it in order to ensure that a query can be
evaluated.
Theorem 2. The problem of verifying, given a SPARQL query P,
whether P is service-bound is undecidable.

Proof. As in the proof of Theorem 1, we use the undecidability
of the satisfiability problem for SPARQL to show that the theorem
holds. Let P be a SPARQL graph pattern and ?X, ?Y , ?Z, ?U, ?V , ?W
be variables that are not mentioned in P , and assume that P does
not mention the operator SERVICE (recall that the satisfiability
problem is already undecidable for the fragment of SPARQL
consisting of the operators AND,UNION,OPT and FILTER). Then
define a SPARQL query Q as:

Q = (((?X, ?Y , ?Z) UNION P) AND
(SERVICE ?X (?U, ?V , ?W))).

Next we show that Q is service-bound if and only if P is not
satisfiable.

(⇐) If P is not satisfiable, then Q is equivalent to the pattern:

Q ′
= ((?X, ?Y , ?Z) AND (SERVICE ?X (?U, ?V , ?W))),

which is service-bound since variable ?X is bound in Q ′.
(⇒) Assume that P is satisfiable. Then given that variable ?X is not

mentioned in P , we have that ?X is not bound in the graph
pattern ((?X, ?Y , ?Z)UNION P). Thus, given that ?X is neither
bound in (SERVICE ?X (?U, ?V , ?W)), we deduce that query
Q is not service-bound since ?X is not a bound variable in Q .

Therefore, we have shown that the complement of the satisfiability
problem for SPARQL can be reduced to the problem of verifying,
given a SPARQL query P , whether P is service-bound. From this we
conclude that the theorem holds. �

As for the case of the notion of boundedness, the fact that
the notion of service-boundedness is undecidable prevents one
from using it as a restriction over the variables used in SERVICE
calls. To overcome this limitation, in the definition of service-
boundedness, we replace the restriction that the variables used
in SERVICE calls are bound by the decidable restriction that they
are strongly bound. In this way, we obtain a syntactic condition
over SPARQL patterns that ensures that they are service-bound,
and which can be efficiently verified.

Definition 4 (Service-Safeness). A SPARQL query P is service-safe if
for every node u of T (P) with label (SERVICE ?X P1), it holds that:

(1) there exists a node v of T (P) with label P2 such that v is an
ancestor of u in T (P) and ?X ∈ SB(P2);

(2) P1 is service-safe.

As a corollary of Proposition 1,we obtain the following proposition.

Proposition 2. If a SPARQL query P is service-safe, then P is service-
bound.

C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17 7
Prior to starting with the most technological part of this article,
we describe to the reader an algorithm for SERVICE safeness
checking. Our system uses a bottom-up algorithm over the parse
tree T (Q) of a SPARQL query Q for validating the service-safeness
condition. This procedure traverses the parse tree T (Q) twice for
ensuring thatQ can be correctly evaluated. In the first traversal, for
each node identifier u of T (Q), the algorithm computes the set of
strongly bound variables for the label P of u. For example, in the
parse tree shown in Fig. 2, the variable ?X is identified as the only
strongly bound variable for the label of the node with identifier
u3. In the second traversal, the bottom-up algorithm uses these
sets of strongly bound variables to check two conditions for every
node identifier u of T (Q) with label of the form (SERVICE ?X P):
whether there exists a node v ofT (Q)with label P ′ such that v is an
ancestor of u in T (Q) and ?X is strongly bound in P ′, and whether
P is itself service-safe. If these two conditions are fulfilled, then the
algorithm returns true to indicate thatQ is service-safe. Otherwise,
the procedure returns false.

4. Optimizing the evaluation of the OPTIONAL operator in
SPARQL Federated Queries

If a SPARQL query Q including the SERVICE operator has to
be evaluated in a SPARQL endpoint A, then some of the sub-
queries of Q may have to be evaluated in some external SPARQL
endpoints. Thus, the problem of optimizing the evaluation of Q
in A, and, in particular, the problem of reordering Q in A to
optimize this evaluation, becomes particularly relevant in this
scenario, as in some cases one cannot rely on the optimizers of the
external SPARQL endpoints. Motivated by this, we present in this
section some optimization techniques that extend the techniques
presented in [8] to the case of SPARQL queries using the SERVICE
operator, and which can be applied to a considerable number of
SPARQL federated queries.

4.1. Optimization via well-designed patterns

In [8,9], the authors study the complexity of evaluating a
pattern in the fragment of SPARQL consisting of the operators
AND,UNION,OPT and FILTER. One of the conclusions of these
papers is that the main source of complexity in SPARQL comes
from the use of the OPT operator. In fact, it is proved in [8] that
the complexity of the problem of verifying, given a mapping µ, a
SPARQL pattern P , a dataset DS and an RDF graph G in DS, whether
µ ∈ [[P]]

DS
G is PSPACE-complete, and it is proved in [9] that this

bound remains the same if only the OPT operator is allowed in
SPARQL patterns. In light of these results, in [8] a fragment was
introduced of SPARQL that forbids a special form of interaction
between variables appearing in optional parts, which rarely occurs
in practice. The patterns in this fragment, which are called well-
designed patterns [8], can be evaluated more efficiently and are
suitable for reordering and optimization. In this section, we extend
the definition of the notion of being well-designed to the case
of SPARQL patterns using the SERVICE operator, and prove that
the reordering rules proposed in [8], for optimizing the evaluation
of well-designed patterns, also hold in this extension. The use of
these rules allows to reduce the number of tuples being transferred
and joined in federated queries, and hence our implementation
benefits from this as shown in Section 5.

Let P be a graph pattern constructed by using the operators
AND, OPT, FILTER and SERVICE, and assume that P satisfies the
safety condition that for every sub-pattern (P1 FILTER R) of P , it
holds that var(R) ⊆ var(P1). Then, by following the terminology
introduced in [8], we say that P is well-designed if for every sub-
pattern P ′

= (P1 OPT P2) of P and for every variable ?X occurring
in P: If ?X occurs both inside P2 and outside P ′, then it also occurs
in P1. All the graph patterns given in the previous sections arewell-
designed. On the other hand, the following pattern is not well-
designed:

P = ((?X, nickname, ?Y) AND
(SERVICE c
((?X, email, ?U) OPT (?Y , email, ?V))))

as for the sub-pattern P ′
= (P1 OPT P2) of P with P1 = (?X, email,

?U) and P2 = (?Y , email, ?V), we have that ?Y occurs in P2
and outside P ′ in the triple pattern (?X, nickname, ?Y), but it
does not occur in P1. Given an RDF graph G, graph pattern
P retrieves from G a list of people with their nicknames, and
retrieves from the SPARQL endpoint located at the IRI c the email
addresses of these people and, optionally, the email addresses
associated to their nicknames. What is unnatural about this
graph pattern is the fact that (?Y , email, ?V) is giving optional
information for (?X, nickname, ?Y), but in P appears as giving
optional information for (?X, name, ?U). In fact, it could happen
that some of the results retrieved by using the triple pattern
(?X, nickname, ?Y) are not included in the final answer of P , as
the value of variable ?Y in these intermediate results could be
incompatible with the values for this variable retrieved by using
the triple pattern (?Y , email, ?V). To overcome this limitation,
one should use instead the following well-designed SPARQL graph
pattern:

[((?X, nickname, ?Y) AND
(SERVICE c (?X, email, ?U))) OPT
(SERVICE c (?Y , email, ?V))].

In the following proposition, we show that well-designed patterns
including the SERVICE operator are suitable for reordering and,
thus, for optimization.

Proposition 3. Let P be a well-designed pattern and P ′ a pattern
obtained from P by using one of the following reordering rules:

((P1 OPT P2) FILTER R) −→ ((P1 FILTER R) OPT P2),
(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3),
((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2).

Then P ′ is a well-designed pattern equivalent to P.

The proof of this proposition is a simple extension of the proof of
Proposition 4.10 in [8].

In our federated SPARQL query engine (SPARQL-DQP), we have
implemented the rewriting rules shown in Proposition 3 with a
bottom-up algorithm for checking the condition of being well-
designed. In the following section, we describe the details of
the implementation of these algorithms and the architecture of
SPARQL-DQP.

5. Implementation of SPARQL-DQP and well-designed patterns
optimization

In this section, we describe the implementation details of
the SPARQL-DQP system and, in particular, we describe how
we implemented the optimization techniques for well-designed
SPARQL graph patterns (which are presented in Section 4).

We base our implementation on the use of Web Service-
based access to data sources. WS-based access is a widely used
technology in the data intensive scientific workflow community,
and several systems for accessing large amounts of data already
use this approach in their implementation. Some of these data
workflow systems are presented in [18,12,19]. These systems have
been successfully used in a variety of data intensive scenarios
like analyzing data from the Southern California Earthquake

8 C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17
Center [20], data from biological domains like post genomic
research [21], analysis of proteins and peptides from tandem
mass spectrometry data [22], cancer research [23], meteorological
phenomena [24] or used in the German grid platform [25]. In these
scenarios, the systems accessed and processed petabytes of data,
and we are convinced that the approach they use is the most
suitable formanaging the large amounts of data present in the LOD
cloud.

We will provide some background on WS-based access to data
sources, before describing in more detail our implementation. But
first we will briefly introduce the reader to the state of the art of
distributed query systems.

5.1. Introduction to data integration and query federation

There are several approaches for integrating heterogeneous
data sources. In [26], the author provides an initial classification
of different architectures for this purpose. One of the architectures
is a mediator–wrapper architecture [27] which provides an
integrated view of the data that resides in multiple databases. A
schema for the integrated view is available from the mediator,
and queries can be made against that schema. This schema can
be generated in two different ways, using a Global as View
(GAV) [28] or a Local as View (LAV) [29] approach. One example
of a mediator system based on the GAV approach is Garlic [30].
Besides of Garlic, other mediator systems that pioneered the work
on distributed query processing and data integration were the
TSIMISS project [31] and the Information Manifold [32], among
others.

Another type of architecture for accessing distributed data
are query federation systems. Federated architectures provide a
framework in which several databases can join in a federation.
As members of the federation, each database extends its schema
to incorporate subsets of the data held in the other member
databases. In most cases, a virtualized approach is supported for
this approach [33]. In [34], a general architecture9 is presented
with the following components: query parser, query rewriter,
query optimizer, plan refinement component and query execution
engine.

We base our approach on extending a query federation system
(OGSA-DQP [13]) built on top of a data workflow system (OGSA-
DAI [12]) targeted at dealing with large amounts of data in e-
Science applications [35,36], as we mentioned before. In the next
subsection we describe the architecture of the extended system
and the specific characteristics for dealing with large amounts of
data: data streaming and process parallelization.

5.2. OGSA-DAI and OGSA-DQP

OGSA-DAI10 is a framework that allows access, transformation,
integration and delivery of distributed data resources. The data
resources supported by OGSA-DAI are relational databases, XML
databases and file systems. These features are collectively enabled
through the use of data workflows which are executed within the
OGSA-DAI framework. The components of the data workflows are
activities: well-defined functional units (data goes in, the data is
operated on, data comes out), and can be viewed as equivalent
to programming language methods. One key characteristic of the
architecture is that data is streamed between activities so these
data can be consumed by the next activity on theworkflow as soon

9 In fact, this architecture is generic to all kind of query processing systems, not
only distributed query processors.
10 http://www.ogsadai.org.uk/.
as it is outputted. The other key feature of the workflow execution
engine is that all activities within a data workflow are executed in
parallel: data streams go through activities in a pipeline-like way
(as soon as a data unit is processed by an activity this data unit
is buffered or sent to the next activity in the pipeline), and each
activity operates on a different portion of a data stream at the same
time.

The distributed query processor (DQP) [13] is a set of activities
within the OGSA-DAI framework that execute SQL queries on a set
of distributed relational databases managed by OGSA-DAI. OGSA-
DQP receives as input an SQL query addressed to a set of distributed
databases. It parses the query identifying towhich of the databases
in the federation these queries are addressed, and creates a data
workflow using the OGSA-DAI activities. This data workflow is
executed within the OGSA-DAI workflow execution engine and
results are sent back to the client.

The deployment of OGSA-DAI/DQP can be done in several
Web application servers, depending on how much we want to
distribute the processing and howmany remote datasets we want
to access. The standard configuration is of an OGSA-DAI instance
running in a Web server for each data source we want to access,
but other configurations are available. For instance, it could be
possible to configure OGSA-DAI with a single server which would
be in charge of accessing all datasets in the federation. Fig. 3
shows a possible deployment configuration of OGSA-DAI. In that
Figure, there is a main node (HQResource) which is in charge
of coordinating the federation of data sources. At startup, this
node gathers information about the existing data sources that
are wrapped at the remote OGSA-DAI. In the Figure there are
two other OGSA-DAI nodes which expose the remote data. In this
example we expose an RDF database and two SPARQL endpoints.
SPARQL endpoints aremanaged in a slightly differentmanner than
the other data resources (SQL and RDF databases): they can be
loaded dynamically in the remote data nodes without previously
configuring them. The processing of a distributed SPARQL query is
presented in the next section.

5.3. SPARQL-DQP implementation

From a high level point of view, SPARQL-DQP can be defined
as an extension of OGSA-DQP that considers an additional query
language: SPARQL. The design of SPARQL-DQP follows the idea of
adding a new type of data source (RDFdata sources) to the standard
data sources managed by OGSA-DAI, and extending the parsers,
planners, operators and optimizers that are handled by OGSA-DQP
in order to handle the SPARQL query language.

We extend OGSA-DQP to accept, optimize and distribute
SPARQL queries across different data nodes. SPARQL-DQP reads
the SPARQL query, it creates a basic logical query plan (LQP),
optimizes it, next it selects in which nodes is going to be executed
that query plan, and finally it executes the query plan using the
workflow engine. For that, a new coordinator of the distributed
query processor is needed (HQResource in Fig. 3). This coordinator
extends the original OGSA-DQP coordinator in such a way that
accepts SPARQL queries. Also, other components are extended or
developed like the new OGSA-DQP’s data dictionary that contains
information about the federation nodes, the SPARQL query parser
and the SPARQL LQP builder plus its optimizer. At initialization
time the SPARQL-DQP resource checks the availability of the
data nodes in which the federation will be executed, and
obtains their characteristics which are stored in a data dictionary.
These characteristics are information about ad-hoc functions
implemented by the remote RDF resource, data node information
(like security information, connection information and data node
address) and table metadata (currently only the RDF repository
name, to be extendedwith statistics about the data in the datasets).

http://www.ogsadai.org.uk/

C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17 9
Fig. 3. Deployment of OGSA-DAI.
This information is used to build the SPARQL LQP and to configure
the federation.

The SPARQL LQP Builder takes the abstract syntax tree
generated by the SPARQL parser and produces a logical query
plan. The logical query plan follows the semantics defined by
the SPARQL-WG11 in the SPARQL 1.1 Federated Query extension
specification [7], which is also formalized in Section 2.2. The
query plan produced represents the SPARQL query using a mix of
operators and activities coming from the existing ones in OGSA-
DQP and the newly added SPARQL operators (like the SPARQL
union, filters, the specific SPARQL optimizations, scans, etc.).

Next, the OGSA-DQP chain of optimizers is applied, and
we add rewriting rules based on well-designed pattern based
optimizations. Besides, safeness rules have to be checked as we
described in Section 4.1, since some SQL optimizers can only be
applied to safe SPARQL patterns.

In the final stage of the query processing, the generated remote
requests and local sub-workflows are executed and the results
collected, and returned by the activity.

5.4. Other federated SPARQL querying processing systems

In this section, we briefly describe similar systems that provide
some support for SPARQL query federation. Some of the existing
engines supporting the SPARQL 1.1 Federated Query extension are
ARQ,12 RDF-Query,13 Rasqal RDF query Library14 and ANAPSID [10]
among others. There are also other systems which implement a
distributed query processing system for SPARQL like DARQ [4],
Networked Graphs [5], SPLENDID [37], FedX 1.1 [6], the system by
Ladwig et al. [38] and SemWIQ [39], but they do not follow the
official SPARQL 1.1 Federation specification. Another system that
supports distributed RDF querying is presented in [40]. However,
we do not consider it here as it uses the query language SeRQL
instead of SPARQL.

We will now describe briefly each of these systems. ANAPSID
implements two adaptive operators: the agjoin and the adjoin

11 http://www.w3.org/2009/sparql/wiki/.
12 http://jena.sourceforge.net/ARQ/.
13 http://search.cpan.org/dist/RDF-Query/.
14 http://librdf.org/rasqal.
operators. The agjoin operator uses a hash join along with
storing join tuples for speeding up join operators. The adjoin
operator, hides delays coming from the data sources and perform
dereferences for certain predicates.

The system by Ladwig et al. [38] implements a join operator
called Symmetric Index Hash Join (SIHJoin), which combines
queries to remote SPARQL endpointswith queries to local RDF data
stores. When this situation happens, data retrieved from the local
RDF dataset is stored in an index hash structure for faster access
when performing a joinwith remote data. The authors also provide
cost models and the use of non-blocking operators for joining data.

FedX also extends Sesame15 and bases its optimizations in
grouping joins that are directed to the same SPARQL endpoints and
rule join optimizer using a heuristics-based cost estimation. FedX
also reduces the number of intermediate joins by grouping sets of
mappings in a single subquery (exclusive groups) and also bound
joins, a technique that uses the results from one remote exclusive
group to constrain the next grouped query using SPARQL UNION.

SPLENDID extends Sesame16 adding a statistics-based join
reordering system. SPLENDID bases its optimizations in join
reordering rules based in a cost model described in [37]. The
statistics are collected fromVoIDdescriptions and allow toperform
join reordering in an efficient manner.

SemWIQ is amediator–wrapper based system,where heteroge-
neous data sources (available as CSV files, RDFdatasets or relational
databases) are accessed by a mediator through wrappers. Queries
are expressed in SPARQL and consider OWL as the vocabulary for
the RDF data. SemWIQ uses the Jena’s SPARQL processor ARQ to
generate query plans and it applies its own optimizers. These op-
timizers mainly consist in rules to move down filters or unary op-
erators in the query plan, together with join reordering based on
statistics. The system has a registry catalog that indicates where
the sources to be queried are and the vocabulary to be used. Cur-
rently, the system does not handle SPARQL endpoints but this is
being updated at the time of writing this paper.

DARQ extends the Jena’s SPARQL processor ARQ. This extension
requires attaching a configuration file to the SPARQL query,
with information about the SPARQL endpoints, vocabulary and
statistics. DARQ applies logical and physical optimizations, focused

15 A framework for processing RDF data.
16 http://www.openrdf.org/.

http://www.w3.org/2009/sparql/wiki/
http://jena.sourceforge.net/ARQ/
http://search.cpan.org/dist/RDF-Query/
http://librdf.org/rasqal
http://www.openrdf.org/

10 C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17
on using rules for rewriting the original query before query
planning (so as to merge basic graph patterns as soon as possible)
and moving value constrains into subqueries to reduce the size of
intermediate results. Other important drawback of DARQ is that
it can only execute queries with bound predicates. Unfortunately,
DARQ is no longer maintained.

Networked Graphs creates graphs for representing views,
content or transformations from other RDF graphs, and allowing
the composition of sets of graphs to be queried in an integrated
manner. The implementation considers optimizations such as the
application of distributed semi-join optimization algorithms.

6. Evaluation

The objective of our evaluation is to show that the architecture
chosen (the extension of a well-known data workflow processing
system) is more suitable for processing the large amounts of
RDF data that are available in the Web, specially when remote
SPARQL endpoints do not impose any kind of restriction over
the amount of results returned. For that, we decided to run the
experiments in an uncontrolled environment such as the Web.
In this uncontrolled environment the behavior of endpoints and
latencies can vary largely among executions, hence leading to
evaluation results that are not clearly comparable across systems
and replicable. In despite of that, these evaluation results provide
some indications about the behaviors of these systems that will be
important for characterizing each tool. We also run the evaluation
in a controlled environment using synthetic data which will be
distributed across several SPARQL endpoints. In this evaluation we
will show the behavior of the optimization techniques proposed
in Section 4.1, and how these optimization techniques reduce the
amount of intermediate results of the SPARQL queries and thus
how its use actually reduces the time needed to process queries
when compared to non optimized approaches.

6.1. Note on other systems’ evaluation

We compared our system with FedX 1.1 and FedX 1.1 using
SERVICE, ARQ (2.8.8) and RDF::Query (2.908). We chose these
systems because two of them are part of the official SPARQL
implementations and FedX is based in Sesame using an endpoint
virtualization approach. Also, FedX 1.1 adds statistical models for
join reordering and the SERVICE keyword to its normal federated
query processing engine. When FedX is not using SERVICE, it uses
the predicates in the query for identifying the right dataset to
which the queries should be directed which makes the system to
query more SPARQL endpoints than the other systems. In order
to provide a more fair comparison when querying synthetic data,
we adapted the datasets described in the next section so the
predicates in each SPARQL endpoint are not repeated across them.
In this way FedX can uniquely identify each dataset by looking
at the triple pattern predicates so a more fair comparison can
be done. Thus, we compare twice to FedX: first we compare to
FedX using the SERVICE operator and next to FedX using the
virtualization of remote SPARQL endpoints. Regarding the query
execution, ARQ differs with the other implementations of SPARQL
1.1, since it generates bind join queries like FedX, which also
results in the generation of many SPARQL queries to the same
remote endpoint and sometimes many connection errors from
these servers. RDF::Query is the last system evaluated and the one
that follows more closely the algorithms described in the official
SPARQL 1.1 document.

In this evaluation we opted for a representative set of systems
butwithout fully covering the state of the art in distributed SPARQL
query processing systems. The aim of this section is to provide an
overview of the most common system architectures to federate
SPARQL queries, not to perform an exhaustive evaluation of the
existing SPARQL query federation systems.
6.2. Query selection

We reuse many of the queries proposed in Fedbench [41].
Fedbench proposes three sets of queries: a cross domain set of
queries which distributes queries across widely used SPARQL
endpoints such as DBpedia17 and the LinkedMDB endpoint18; life
sciences set of queries which evaluate how systems query one
of the largest domain in the LOD cloud; finally Fedbench also
proposes the use of the SP2Bench [42] evaluation benchmark,
focused on evaluating the robustness and performance of RDF data
stores.

However, the queries in the Fedbench evaluation framework
do not take into account the SPARQL 1.1 Federated Query
extension. That means that the queries do not contain the SERVICE
keyword, instead, the query engines have to identify to which
endpoint direct each part of those queries. We modified manually
the queries adding the SERVICE keyword where necessary.
Furthermore, Fedbench does not contain many SPARQL patterns
that are common in most of the user queries like FILTER or
OPTIONAL [43].

Looking carefully, the queries in the original Cross Domain
query set did not contain any SPARQL pattern that used either
OPTIONAL or the FILTER operators. From the total of queries
submitted to DBpedia in a month the OPTIONAL operator is used
in 39% of these queries and the FILTER operator is used in a 46%
of them [43]. Thus, we decided to complement the query set
with queries containing combinations of these missing patterns
(FILTER and OPTIONAL). The life sciences domain queries contain
a variety of SPARQL queries, including OPTIONAL, FILTER and
UNION operators, thus, we decided not to add any new query
to the existing ones. The SP2Bench queries are taken from the
original benchmark targeted at measuring the performance of RDF
databases, and thus, some adaptations have to be done if we want
to use it within distributed SPARQL query processors. In this set of
queries also some important query patterns are missing, and thus
we added some queries to solve this problem.

For evaluating the previous systems in an uncontrolled
environment like the Web of data, we run all described queries
five times and we apply an arithmetic mean to the results of these
five queries. In this way, we provide a more homogenized set of
results that reflect better the systems’ real performance. We also
perform two warm-up queries to avoid initial delay of the systems
configuration on their first run.

6.2.1. New queries used in the evaluation
We added three queries to the cross domain query set and

five more queries to the SP2Bench set of queries. The new cross
domain queries are query CDQ4b, CDQ8 and CDQ9 in Appendix C.
In CDQ4b we added a new FILTER to the original query (cross
domain query 4 in [41]), asking now for those actors that appear
in any NY Times news, filtering for the film ‘Tarzan’. Queries, CDQ8
and CDQ9 are completely new. In CDQ8 we query DBpedia and
the El Viajero [44] SPARQL endpoint19 for data about countries
and existing travel books, we filter for countries with a surface
greater than 20,000 km2. In CDQ9 we query DBpedia for countries
and optionally we get the existing travel books for these countries
from the El Viajero endpoint, completing this information with the
climate data at the CIAworld factbook SPARQL endpoint.20 Nextwe
show CDQ9 to give the reader an idea of the type of queries that we
are considering:

17 http://dbpedia.org/sparql.
18 http://data.linkedmdb.org/sparql.
19 http://webenemasuno.linkeddata.es/sparql.
20 http://www4.wiwiss.fu-berlin.de/factbook/sparql.

http://dbpedia.org/sparql
http://data.linkedmdb.org/sparql
http://webenemasuno.linkeddata.es/sparql
http://www4.wiwiss.fu-berlin.de/factbook/sparql

C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17 11
Fig. 4. Cross domain query results.
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX imdb: <http://data.linkedmdb.org/resource/movie>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?title ?actor ?news ?director ?film WHERE {
SERVICE <http://data.linkedmdb.org/sparql> {
?film dcterms:title ?title .
?film imdb:actor ?actor .
?film imdb:production_company
<http://data.linkedmdb.org/resource/production_company/15>.

?actor owl:sameAs ?x .
} OPTIONAL {
SERVICE<http://api.talis.com/stores/nytimes/services/sparql>{

?y owl:sameAs ?x .
?y <http://data.nytimes.com/elements/topicPage> ?news

}
}
FILTER (?title="Tarzan")

We also added five queries to the SP2Bench set of queries
in Fedbench, which are an extension of the SP2Bench queries 7
and 8, that ask for proceedings or journals and their authors. We
added an extra level of complexity first by adding OPTIONAL to
those queries. SP2BQ7b asks for journals, optionally it obtains the
authors’ publications in a conference, and later it obtains also
the authors’ names. We modified SP2BQ8 to ask for papers in
some collection of papers instead of asking for journal papers
since SP2BQ7 already asks for that. SP2BQ8b asks for all people
and optionally obtains all the papers these people published in a
conference for later on joining the results with the people that
published a paper in a collection. SP2BQ7c asks for all journals,
obtaining their authors with an optional and filtering for the
number of pages. Query SP2BQ8c is the most complex query since
it queries 4 different SPARQL endpoints. In this query, we query
for all papers in a conference, optionally obtaining the people
who wrote them, next asking for those authors that also wrote a
journal paper and also the paper which is in a paper collection.
Query SP2BQ8d asks for all the papers in conference proceedings,
optionally obtaining their authors and limiting the output data to
those proceedings from the year 1950.

To the previous queries we add the queries in [45]. These
queries follow the following path: first, querying GeneId endpoint
we obtain Pubmed which we use to access the Pubmed endpoint
(queries Q1 and Q2). In these queries, we retrieve information
about genes and their references in the Pubmed dataset. From
Pubmed we access the information in the National Library of
Medicine’s controlled vocabulary thesaurus (queries Q3 and Q4),
stored at MeSH endpoint, so we have more complete information
about such genes. Finally, to increase the data retrieved by our
queries, we also access the HHPID endpoint (queries Q5, Q6 and
Q7), which is the knowledge base for the HIV-1 protein. These
queries can be found in [45].
6.3. Datasets description

For the cross domain queries mentioned in [41] we used
the datasets available at the DBpedia, LinkedMDB, Geonames,
the New York Times and El Viajero SPARQL endpoints. We did
not download any data to a local server, instead we queried
directly these endpoints. We did similarly for the life sciences
queries, accessing the default SPARQL endpoints (which are
Drugbank, Kegg and DBpedia). For the SP2Bench queries, we
generated a dataset of 1.000.000 triples which we clustered into
5 different SPARQL endpoints in a local server. The local SPARQL
endpoints were Journal (410.000 triples), InCollections (8.700
triples), InProceedings (400.000 triples), People (170.000 triples)
and Masters (5.600 triples).

6.4. Results

Our evaluation was done on a Pentium Xeon with 4 cores
and 8 GB of memory run by an Ubuntu 11.04. The data and the
queries used in this evaluation can be found in http://www.oeg-
upm.net/SparqlDQP/jws. The results of our evaluation are shown
in Figs. 4–6 for the Fedbench sets of queries in Appendix C. The
data for generating these charts can also be found in Appendix B.
In that appendix Tables B.1–B.3 present the results of the query
executions. For the life sciences set of queries we refer to Table B.2
and also to the previous work present in [45]. We represent
as 600,000 ms those queries that need more than 10 min to
be answered by the evaluated systems (SPARQL-DQP, SPARQL-
DQP optimized, ARQ, RDF::Query and FedX 1.1 with SERVICE and
without it). The results are presented in a logarithmic scale.

The results presented in Fig. 4 show how the evaluated systems
performed in the Cross domain set of queries. These queries show
how the systems behave in a typical situation, inwhich users query
some of the most common SPARQL endpoints. These endpoints,
as commented before have been DBpedia, the NYTimes endpoint,
LinkedMDB, Geonames, El Viajero and the CIA world factbook.
These remote endpoints usually return between 10.000 and 2.00
results. Thismakes all systems answer queries in reasonable times.

One of the problems when querying remote SPARQL endpoints
is the update rate of the data contained in the datasets. Sometimes,
when querying these endpoints the data may have been updated
and the queries used previously may not return the same results
(or any) again. This is the situation in queries 5, 6 and 7, in which
there are no results returned. In the evaluation of these queries,
FedX 1.1 without using the SERVICE keyword is the fastest since
it uses first an ask query to know there will be any result or not.
Regarding the execution of the rest of the queries, all systems
performed similarly, especially in the first four queries and in
query 4b. For the same query 4b, all systems returned the same

http://www.oeg-upm.net/SparqlDQP/jws
http://www.oeg-upm.net/SparqlDQP/jws
http://www.oeg-upm.net/SparqlDQP/jws

12 C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17
Fig. 5. Life science query results.
Fig. 6. SP2Bench query results.
amount of results, except for both FedX versions: FedX 1.1 using
SERVICE returns 84 results while the FedX version that virtualizes
a list of SPARQL endpoints if they were a single one returns no
results. In query 8, FedX using SERVICE gives an evaluation error
due to the use of statistical-based pattern reordering (‘‘it is not
supported filter reordering without statistics’’) and FedX without
SERVICE returns no results. The difference in the amount of
results between both FedX flavours is that they use a different
approach for querying the remote SPARQL endpoints. While the
FedX flavour that implements the SERVICE operator queries only
the specifiedRDFdatasets, the other FedXversion virtualizes all the
RDF datasets in its list and thus uses a different query evaluation
strategy (FedX without SERVICE queries all SPARQL endpoints in
its list retrieving as much data as possible). The other systems
performed similarly but ARQ needed more time than the others,
almost one order of magnitude. ARQ also inserted the FILTER
expression in the SERVICE call, giving a different amount of results
that the other systems implementing SPARQL 1.1 Fed. In the last
query, SPARQL-DQP performs better than the others which either
do not halt (RDF::Query and ARQ do not finish their processing)
or give an error in the query execution (FedX with SERVICE: ‘‘left
join nor supported for cost optimization’’). We think that SPARQL-
DQP performed better because of the architecture chosen. Some
of the endpoints queried in CDQ9 returned 10,000 results, which
is a significant increase comparing to the other endpoints queried
(normally they returned 2000 results). When the amount of data
increased, our system performed better, as query CDQ9 showed.
The amount of results returned for these queries was of 8.604 for
the systems following the SPARQL 1.1 Federation document. The
optimizations presented in Section 4.1 were applied in queries
CDQ4b, CDQ8 and CDQ9 but they did not reduce the final result
times. This is due to the fact that the amount of data transferred
between the query operators was not significant enough.

Fig. 5 shows the times needed for evaluating the Life Science
domain queries. We did not add any extra query to the evaluation,
since the query set already contains the most common patterns
used in SPARQL queries, and a more complete evaluation in the
Life Science domain can be found in [45]. As in the previous
set of queries, the RDF datasets were updated and some queries
(LSQ4 and LSQ5) did not return any result. In general, all systems
behaved similarly in this set of queries. ARQ performed a bit
worse, mainly due to the way it manages the connections with
the remote SPARQL endpoints (ARQ generates a set of values
queries restricting some of the remote SPARQL queries which
generates an overload over the remote endpoints, which was a
commonproblem for all systems). The Life Science domain SPARQL
endpoints usually reject queries from a host when too many
connections are asked, which in the case of an intense evaluation
may be a common problem. Life sciences servers behavedworse in
our evaluation returning server errors, specially when the bound
join query technique was used. Regarding SPARQL-DQP and the
other systems, they performed similarly but when data increased
in query LS7. In that situation, SPARQL-DQP worked better than
other systems. The implemented optimizations (specially the
implementation of the pattern reordering rules described in
Section 4.1) are less noticeable when the amount of transferred
data (and number of intermediate results) is lower, but there is no
loosing of performance in the applications of the rules.

The results represented in Fig. 6 show how the evaluated
systems behaved with larger amounts of data. In this evaluation,

C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17 13
the SPARQL endpoints do not have any result limit restriction,
which is of key importance in the evaluation. The configuration of
the endpoints is as follows: the People endpoint contains 82.685
persons with name, the InProceedings endpoint contains 65.863
in proceedings with author, the InCollections contains 615 papers
in belonging to a collection of papers with author, and the Journal
endpoint contains 83.706 journals with author. In total we used
1.000.000 triples distributed in the previous endpoints. From a
results point of view, all the systems that implement the SPARQL
1.1 Federated Query extension returned the same amount of
results in the first set of queries (SP2BQ1–SP2BQ5). In the rest of the
queries, again the systems implementing the SPARQL federation
extension returned the same amount of results, while FedX (not
using SERVICE) returned (when possible) different amounts due
to FedX accesses the SPARQL endpoints virtualizing all of them
rather than pointing each portion of the query to the dataset
the user specifies. Regarding the times needed for executing the
evaluation queries, all systems performed similarly in the first
five queries, being SPARQL-DQP a bit worse than the others but
better than RDF::Query which was the worse system in queries
SP2BQ3, SP2BQ4 and SP2BQ5. In these queries, both versions of
FedX performed better than the other systems. We think that this
is due to the use of its architecture design which parallelizes the
execution of the queries and the use of the BIND JOIN technique.
In SP2BQ6 none of the systems returned results in reasonable
times, not because of the amount of data transferred but because
of the time needed for the processing of these data. In the rest
of the queries (SP2BQ7, SP2BQ7b, SP2BQ7c, SP2BQ8, SP2BQ8b,
SP2BQ8c, SP2BQ8d) only SPARQL-DQP and SPARQL-DQP without
optimizations return results in time. The reason for SPARQL-DQP
return results in reasonable times is the selection of its base
architecture. We extend an architecture designed for working in
data intensive scenarios (like [24]), which is based on a data
workflow system using a streaming model for transferring the
data. In that architecture each query/data processing activity is
executed concurrently, in either a remote node in the federation
or in the main node in the configuration [13] and the data is also
consumed as soon as it is generated.

Regarding the optimizations described in Section 4.1, it is
possible to notice their effect specially in queries SP2BQ7b,
SP2BQ8b, SP2BQ8c in which rule 2 is applied. Rule 1 is also applied
in queries SP2BQ7c and SP2BQ8d, in which it can also be noticed a
minor reduction of the execution times.

Looking at the evaluation performed as a whole, it is possible to
observe three different sets of results from this evaluation (notice
that in Figs. 4–6 results are represented in logarithmic scale and
thus for more accurate results we refer the reader to Appendix B).
The first set (standard Fedbench Life Sciences domain, Cross
domain and SP2 queries) are those that are not optimized because
the reordering rules in Section 4.1 are not applicable. The second
query group represents the class of queries that can be optimized
using our approach, but where the difference is not too relevant,
because the less amount of transferred data (notice that the rules
are applied but their execution time is negligible). In this query
group we identify query 7 in the Life Sciences domain (LSQ7), Q4
in [45], queries CDQ4b, CDQ8 and CDQ9 in the cross domain query
set and queries SP2BQ7c and SP2BQ8d in the SP2Bench evaluation.
The last group of queries (queries SP2BQ7b, SP2BQ8c and SP2BQ8d
of the SP2bench queries) shows a clear optimization when using
the well-designed patterns rewriting rules. These optimizations
are better noticed when looking at the result tables in Appendix B.
In there query execution times of queries SP2B8b and SP2B8c
are reduced in a 50% of its non optimized time. This is even
more noticeable when normalizing the time results and using a
geometricmean for representing these results, as described in [46].
In our previouswork presented in [45] similar resultswere noticed,
specially when always querying remote SPARQL endpoints, since
the amount of time for transferring data from several nodes to
another will be much higher. In query SP2BQ8b the reduction of
intermediate results is done by joining first the SERVICE call to
the endpoint containing the collection of scientific papers with
the first solution mappings from the SERVICE call to the endpoint
containing data about people. The amount of intermediate results
is reduced significantly which is specially noted in the execution
of the OPTIONAL part of the query, when optionally adding the
solution mappings from a SERVICE call to the endpoint containing
conference papers.

This evaluation complements the evaluation results from [45]
inwhichwe evaluated the system (SPARQL-DQP) and the rewriting
rules in a similar way but focusing only in a Life Science domain.
In that evaluation the same result patterns are observed, in which
three sets of results are observed, all similar to the ones observed in
this work. From that paper we highlight the usefulness of applying
the rewriting rules described in Section 4.1: in query 6 in [45] the
amount of transferred data varies from a join of 150,000 × 10,000
tuples to a join of 10,000 × 23,841 tuples (using Entrez, Pubmed
and MeSH endpoints), which highly reduced the global processing
time of the query.

Regarding the other systems, they all behaved similarly. ARQ
and RDF::Query query evaluation times were similar giving the
same results as SPARQL-DQP since they implement the same
SPARQL specification. They did not return results in the same
queries in the SP2B evaluation and performed similarly in the Life
Science evaluation, noticing the same problem with the remote
server overloads. FedX and FedX with SERVICE also performed
similarly to the other systems, but in general FedX was faster than
the other systems.

7. Conclusions

In this paper, we first proposed a formal syntax for the SPARQL
1.1 Federated Query extension, along with a formalization of
its semantics. In this study, we identified the problems when
evaluating the pattern SERVICE ?X , which requires the variable
?X to be bound before the evaluation of the entire pattern. Thus,
we proposed syntactic restrictions for assuring the boundedness of
SERVICE ?X , which allows us to safely execute such patterns. We
also extended the well-designed patterns definition [8] with the
SERVICE operator, which allows to reorder SPARQL queries. This
last result is of key importance since it allows to reduce the amount
of intermediate results in the query execution.We implemented all
these notions in the SPARQL-DQP system andwe evaluated it using
an existing evaluation framework, whichwe extended for covering
a broader range of common SPARQL queries.

The first conclusion we want to highlight is the importance
of using a specific architecture for dealing with large amounts
of data. As we have seen in the evaluation section, all systems
were not able to process from query 5 in the SP2B query set
onwards. All the systems needed more than 10 min to answer
themwhile our system, SPARQL-DQP finished in reasonable times.
This is due to the architecture chosen, in which the data transfer
is done by using streams of data between OGSA-DAI nodes (data
is consumed as soon as it is generated) and the data processing
is done concurrently in each of these nodes. OGSA-DAI and
OGSA-DQP architectures have been highly used in data intensive
applications [13,36] and certainly the Web of data is a data
intensive scenario. Thus, the approach to follow should be one
that deals with such amounts of data. We also highlight that
this architecture is targeted at dealing with SPARQL endpoints
with no result limitation, which is not the common case in the
current endpoints available to common users. But if a more
experienced users want to access unrestricted remote SPARQL

14 C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17
endpoints, a more robust approach than the existing ones will
be needed. Although the architecture is focused for dealing with
large amounts of data, SPARQL-DQP does not perform badly when
dealing with restricted SPARQL endpoints.

The next conclusion we want to highlight is the applicability
of the rewriting rules presented in Section 4.1. As we have seen
in the evaluation section, the application of these rules reduce
the execution time when a well-designed pattern of the form
((P1 OPT P2) AND P3) or ((P1 FILTER R) AND P2) is present in the
SPARQL query. This situation is shown in query SP2BQ8c.rq, in
which there are four remote SERVICE calls joined together with
an OPTIONAL operator and two join operators. The amount of
intermediate results in this query is highly reduced when the
first rewriting pattern is applied at the beginning of the query
execution. We also highlight that these rewriting rules can be
applied to any well-designed pattern, and the cost of applying
them is negligible inmost of the scenarios. Also, to checkwhether a
SPARQL query iswell-designed and to check the safeness condition
mentioned previously may produce some overhead, but it is
negligible as well, specially when SPARQL queries scale out in the
amount of returned results. Besides of this small proof of concept,
we refer the reader to [45]. In that work the rewriting rules are
more intensively used, and the results highlighted here can also be
observed in that work.

Tools for federating queries across the Web of Data are
being released frequently. These increase of tools for accessing
distributed RDF datasets are only the first step towards a more
important goal: to efficiently and effectively query theWebofData.
Currently there are thousands of datasets, and to select to which
ones point the SPARQL queries is a complicated task, and part of
the research of distributed SPARQL query processing should aim
towards solving such great problem.

Focusing more in specific aspects of SPARQL query federation,
one of the most common problems we had to deal with was
the instability of network connections. Data transfer may be
interrupted frequently thus making difficult to query the LOD
cloud. We believe that one approach for solving these problems
that we experienced is the implementation of adaptive query
processing techniques [47] like the ones present in [10]. Also,
exploration of the datasets dynamics is an important issue to deal
with [48] since data changed during our evaluations. Focusing
more in the theoretical aspects of this researchwork, an interesting
contribution would be the analysis of the applicability of the well-
designed patterns to SPARQL subqueries. Some work about this
research topic has already been carried out [49,50] but there is still
space for improvement.

Acknowledgments

We would like to thank the anonymous reviewers and the
editors for their feedback which helped to improve this paper.
We would also like to thank the OGSA-DAI team (specially Ally
Hume) for their support in extending OGSA-DAI and OGSA-DQP.
C. Buil-Aranda and O. Corcho have been funded by the ADMIRE
project FP7 ICT-215024, the myBigData Spanish project TIN2010-
17060. M. Arenas was supported by FONDECYT grant 1110287.
Carlos Buil-Aranda was also supported by the School of Engineer-
ing at Pontificia Universidad Católica de Chile.

Appendix A. Proof of Proposition 1

Let P be a SPARQL query and ?X ∈ var(P). Next we show that if
?X ∈ SB(P), then ?X is bound in P .

The proof is by induction on the structure of P . If P is a
triple pattern the proposition trivially holds. Now assume that the
proposition holds for patterns P1 and P2 and consider the following
cases:
• Assume that P = (P1 AND P2) and ?X ∈ SB(P). Then we
have that SB(P) = SB(P1) ∪ SB(P2) and, therefore, ?X ∈

SB(P1) or ?X ∈ SB(P2). Without loss of generality assume
that ?X ∈ SB(P1). Now, let DS be a dataset, G an RDF graph
in DS and µ a mapping such that µ ∈ [[P]]

DS
G . In order to

prove that ?X is bound in P , we have to demonstrate that
?X ∈ dom(µ) and µ(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P)).
Given that µ ∈ [[P]]

DS
G , we have that µ = µ1 ∪ µ2, where

µ1 ∈ [[P1]]
DS
G and µ2 ∈ [[P2]]

DS
G . By induction hypothesis,

we have that ?X is bound in P1 since ?X ∈ SB(P1). Hence,
given that µ1 ∈ [[P1]]

DS
G , we conclude that ?X ∈ dom(µ1) and

µ1(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P1)). Thus, given that
µ(?X) = µ1(?X), dom(µ1) ⊆ dom(µ) and dom(P1) ⊆ dom(P),
we conclude that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS) ∪

names(DS) ∪ dom(P)), which was to be shown.
• Assume that P = (P1 UNION P2) and ?X ∈ SB(P). Then we have

that SB(P) = SB(P1) ∩ SB(P2) and, therefore, ?X ∈ SB(P1) and
?X ∈ SB(P2). Now, let DS be a dataset, G an RDF graph in DS
and µ a mapping such that µ ∈ [[P]]

DS
G . In order to prove that

?X is bound in P , we have to demonstrate that ?X ∈ dom(µ)
and µ(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P)). Given that
µ ∈ [[P]]

DS
G , we have that µ ∈ [[P1]]

DS
G or µ ∈ [[P2]]

DS
G . Assume

without loss of generality that µ ∈ [[P1]]
DS
G . By induction

hypothesis, we have that ?X is bound in P1 since ?X ∈ SB(P1).
Hence, given that µ ∈ [[P1]]

DS
G , we conclude that ?X ∈ dom(µ)

and µ(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P1)). Thus, given
that dom(P1) ⊆ dom(P), we conclude that ?X ∈ dom(µ) and
µ(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P)), which was to be
shown.

• Assume that P = (P1 OPT P2) and ?X ∈ SB(P). Then we have
that SB(P) = SB(P1) and, therefore, ?X ∈ SB(P1). Now, let DS
be a dataset, G an RDF graph in DS and µ a mapping such that
µ ∈ [[P]]

DS
G . In order to prove that ?X is bound in P , we have

to demonstrate that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS) ∪

names(DS) ∪ dom(P)). Given that µ ∈ [[P]]
DS
G , we have that

either µ = µ1 ∪ µ2, where µ1 ∈ [[P1]]
DS
G and µ2 ∈ [[P2]]

DS
G ,

or µ ∈ [[P1]]
DS
G and µ is not compatible with any mapping in

[[P2]]
DS
G .

– In the first case, given that ?X is bound in P1 (since ?X ∈

SB(P1)) and µ1 ∈ [[P1]]
DS
G , we have that ?X ∈ dom(µ1)

and µ1(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P1)). Thus,
given that µ(?X) = µ1(?X), dom(µ1) ⊆ dom(µ) and
dom(P1) ⊆ dom(P), we conclude that ?X ∈ dom(µ) and
µ(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P)), which was to
be shown.

– In the second case, given that ?X is bound in P1 (since ?X ∈

SB(P1)) and µ ∈ [[P1]]
DS
G , we have that ?X ∈ dom(µ) and

µ(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P1)). Thus, given
that dom(P1) ⊆ dom(P), we conclude that ?X ∈ dom(µ) and
µ(?X) ∈ (dom(DS)∪ names(DS)∪ dom(P)), which was to be
shown.

• Assume that P = (P1 FILTER R), where R is a built-in condition,
and that ?X ∈ SB(P). Then we have that SB(P) = SB(P1) and,
therefore, ?X ∈ SB(P1). Now, let DS be a dataset, G an RDF
graph in DS and µ a mapping such that µ ∈ [[P]]

DS
G . In order

to prove that ?X is bound in P , we have to demonstrate that
?X ∈ dom(µ) and µ(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P)).
Given that µ ∈ [[P]]

DS
G , we have that µ ∈ [[P1]]

DS
G and µ |H R.

By induction hypothesis, we have that ?X is bound in P1 since
?X ∈ SB(P1). Hence, given that µ ∈ [[P1]]

DS
G , we conclude that

?X ∈ dom(µ) and µ(?X) ∈ (dom(DS)∪ names(DS)∪ dom(P1)).
Thus, given that dom(P1) ⊆ dom(P), we conclude that ?X ∈

dom(µ) andµ(?X) ∈ (dom(DS)∪names(DS)∪dom(P)), which
was to be shown.

C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17 15
Table B.1
Results of cross domain queries (evaluation times in milliseconds).

CD Q1 CD Q2 CD Q3 CD Q4 CD Q4b CD Q5 CD Q6 CD Q7 CD Q8 CDQ9

SPARQL-DQP NO OPT 4489 2404.6 11580 10645 14725 925 3206.8 9966.6 15993.4 32345
SPARQL-DQP 2685.2 2429.8 9734.6 12076.4 13717.2 1866.2 872 8607.2 18270.6 31744
ARQ 5657.6 3139.6 20407.6 2147.2 40864 32739.4 2734.8 577.6 118788.4 600000
RDF::Query 2310.6 2119.6 19777 19893.8 1155.2 7854.2 783.2 21129.2 9007.3 600000
FedX SERVICE 2312.5 4329 3682.1 1401 28327.8 2571.1 784 783.6 0 0
FedX NO SERVICE 2258.8 2570.6 4997 3018.2 1388.4 15.6 15 15 43292.6 0
Table B.2
Results of life sciences domain queries (evaluation times in milliseconds).

LS Q1 LS Q2 LS Q3 LS Q4 LS Q5 LS Q6 LS Q7

SPARQL-DQP NO OPT 9497.8 3000.4 132935.6 35558 10458 13586 12640.8
SPARQL-DQP 5667.6 2320.4 83830.4 14822.4 6011 10052 10425
ARQ 4689.7 3300 47204.9 13325.7 13391.4 5390.9 4479.9
RDF::Query 5100.2 2119.4 89275.4 61663.8 570.4 43575.2 58824.6
FedX SERVICE 6134.2 2391 141365.4 364.2 22011 1662.8 24652
FedX NO SERVICE 16427.4 4817.2 0 15 23858.6 1662.8 24652
Table B.3
Results of SP2B domain queries (evaluation times in milliseconds).

SP2BQ1 SP2BQ2 SP2BQ3 SP2BQ4 SP2BQ5 SP2BQ6 SP2BQ7 SP2BQ7b SP2BQ7c SP2B Q8 SP2BQ8b SP2BQ8c SP2BQ8d

SPARQL-DQPNOOPT 511 25275 9717.8 495.4 358.2 600000 62710.6 92543.6 30066.2 46535.6 61154 100220.4 29533
SPARQL-DQP 476.4 24386 9204 495.4 358.2 600000 60433 77217.6 30471.6 45867.2 25287.6 42877.6 27851.2
ARQ 77 48262.2 196549.8 233497.6 4935.8 600000 33768.8 600000 600000 600000 600000 600000 600000
RDF::Query 165.25 21232.75 8578.25 226.75 169 600000 600000 600000 600000 90751.6 600000 600000 600000
FedX SERVICE 106.2 20949 8296 351.4 490 600000 600000 0 0 239535.75 0 0 0
FedX NO SERVICE 125.8 54224 6699.6 375.8 466 600000 600000 600000 600000 600000 600000 600000 600000
• If P = (GRAPH a P1), where a ∈ I , thenwe have that SB(P) = ∅,
and we conclude that the property trivially holds. Thus, assume
that P = (GRAPH?Y P1) and?X ∈ SB(P), and letDS be adataset,
G an RDF graph in DS and µ a mapping such that µ ∈ [[P]]

DS
G . In

order to prove that ?X is bound in P , we have to demonstrate
that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS) ∪ names(DS) ∪

dom(P)), for which we consider two cases. Notice that in these
cases, we assume that DS = {(def ,G0), (g1,G1), . . . , (gk,Gk)}
with k ≥ 1, as if we have thatDS = {(def ,G)}, then [[P]]

DS
G = ∅,

which contradicts the fact that µ ∈ [[P]]
DS
G .

– Assume that ?X ≠ ?Y . Then we have that there exists g ∈

names(DS) such that µ ∈ [[P1]]
DS
graph(g,DS). Moreover, we also

have that SB(P) = SB(P1) ∪ {?Y }, from which we conclude
that ?X ∈ SB(P1). Thus, we have by induction hypothesis that
?X is bound in P1. Therefore, given that µ ∈ [[P1]]

DS
graph(g,DS),

we have that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS) ∪

names(DS)∪dom(P1)). Hence, given that dom(P1) = dom(P),
we conclude that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS) ∪

names(DS) ∪ dom(P)), which was to be shown.
– Assume that ?X = ?Y . Then by definition of the semantics

of the GRAPH operator, we have that there exists g ∈

names(DS) such thatµ(?X) = g . Therefore, we conclude that
?X ∈ dom(µ) andµ(?X) ∈ (dom(DS)∪names(DS)∪dom(P)),
which was to be shown.

• Assume that P = (SERVICE c P1), where c ∈ I ∪ V . Then given
SB(P) = ∅, we conclude that the property trivially holds.

• Assume that P = (P1 VALUES W⃗ {A⃗1, . . . , A⃗n}) and ?X ∈ SB(P).
Then given that

SB(P) = SB(P1) ∪ {?Y | ?Y is included in W⃗ and for
every i ∈ {1, . . . , n} : ?Y ∈ dom(µW⃗ →A⃗i

)},

we conclude that either ?X ∈ SB(P1) or ?X is included in W⃗
and for every i ∈ {1, . . . , n}, it holds that ?X ∈ dom(µW⃗ →A⃗i

).
Now, let DS be a dataset, G an RDF graph in DS andµ amapping
such that µ ∈ [[P]]

DS
G . In order to prove that ?X is bound in

P , we have to demonstrate that ?X ∈ dom(µ) and µ(?X) ∈

(dom(DS) ∪ names(DS) ∪ dom(P)). Given that µ ∈ [[P]]
DS
G , we

have that there exist µ1 ∈ [[P1]]
DS
G and k ∈ {1, . . . , n} such that

µ = µ1 ∪ µW⃗ →A⃗k
. Next we consider two cases to prove that

?X ∈ dom(µ) andµ(?X) ∈ (dom(DS)∪names(DS)∪dom(P)).
– First, assume that ?X ∈ SB(P1). Then by induction hypothesis

we have that ?X is bound in P1. Thus, given thatµ1 ∈ [[P1]]
DS
G ,

we conclude that ?X ∈ dom(µ1) and µ1(?X) ∈ (dom(DS) ∪

names(DS) ∪ dom(P1)). Therefore, given that dom(µ1) ⊆

dom(µ), µ(?X) = µ1(?X) and dom(P1) ⊆ dom(P), we
conclude that ?X ∈ dom(µ) and µ(?X) ∈ (dom(DS) ∪

names(DS) ∪ dom(P)), which was to be shown.
– Second, assume that ?X is included in W⃗ and for every i ∈

{1, . . . , n}, it holds that ?X ∈ dom(µW⃗ →A⃗i
). Then we have

that ?X ∈ dom(µW⃗ →A⃗k
), which implies that µ(?X) ∈ dom(P)

(since µ = µ1 ∪ µW⃗ →A⃗k
, and if a ∈ (I ∪ L) is mentioned

in A⃗k, then a is in dom(P)). Thus, given that dom(µW⃗ →A⃗k
) ⊆

dom(µ) and µ(?X) = µW⃗ →A⃗k
(?X), we conclude that ?X ∈

dom(µ) and µ(?X) ∈ (dom(DS) ∪ names(DS) ∪ dom(P)),
which was to be shown.

• Assume that P = (SELECTW P1) and ?X ∈ SB(P). Thenwe have
that SB(P) = (W ∩ SB(P1)) and, therefore, ?X ∈ W and ?X ∈

SB(P1). Thus, we conclude by induction hypothesis that ?X is
bound in P1. Therefore, we have by definition of boundedness
that ?X is bound in P , which was to be shown.

Appendix B. Query result tables

See Tables B.1–B.3.

16 C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17
Appendix C. New queries used in the evaluation

SP2BQ7b PREFIX bench: <http://localhost/vocabulary/bench/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?article ?inproc ?person ?name
WHERE {
SERVICE <http://localhost:3030/Journal/sparql> {
?article rdf:type bench:Article .
?article dc:creator ?person .

}
OPTIONAL {
SERVICE <http://localhost:3030/InProceedings/sparql> {
?inproc rdf:type bench:/Inproceedings> .
?inproc dc:creator ?person .

}
}
SERVICE <http://localhost:3030/People/sparql> {
?person foaf:name ?name .

}
}

SP2BQ7c PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX swrc: <http://swrc.ontoware.org/ontology#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?article ?inproc ?person ?name ?title ?pages
WHERE {
SERVICE <http://localhost:3030/Journal/sparql> {
?article rdf:type <http://localhost/vocabulary/bench/Article> .
?article dc:creator ?person .
?article swrc:pages ?pages

}
OPTIONAL {
SERVICE <http://localhost:3030/People/sparql> {
?person foaf:name ?name .

}
}
FILTER (?pages = 200)

SP2BQ8b PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX bench: <http://localhost/vocabulary/bench/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?person ?name ?incol ?inproc
WHERE {
SERVICE <http://localhost:3030/People/sparql> {
?person foaf:name ?name

}
OPTIONAL {
SERVICE <http://localhost:3030/InProceedings/sparql> {
?inproc rdf:type bench:Inproceedings .
?inproc dc:creator ?person .

}
}
SERVICE <http://localhost:3030/InCol/sparql> {
?incol rdf:type bench:Incollection .
?incol dc:creator ?person .

}

SP2BQ8c PREFIX dcInproc: <http://purl.org/dc/elements/1.1/Inproc/>
PREFIX dcJournal: <http://purl.org/dc/elements/1.1/Journal/>
PREFIX dcIncol: <http://purl.org/dc/elements/1.1/Incol/>
PREFIX benchInproc: <http://localhost/vocabulary/bench/Inproc/>
PREFIX benchIncol: <http://localhost/vocabulary/bench/Incol/>
PREFIX benchJournal:<http://localhost/vocabulary/bench/Journal/>
PREFIX dctermsInproc: <http://purl.org/dc/terms/Inproc/>
PREFIX rdfInproc: <http://www.example.org/rdf/type/rdfinproc#>
PREFIX rdfIncol: <http://www.example.org/rdf/type/rdfincol#>
PREFIX rdfJournal: <http://www.example.org/rdf/type/rdfjournal#>
PREFIX foafPeople: <http://xmlns.com/foaf/0.1/People/>
PREFIX foafInproc: <http://xmlns.com/foaf/0.1/Inpror
PREFIX swrcInproc: <http://inproc.swrc.ontoware.org/ontology#>
PREFIX rdfsInproc:<http://www.w3.org/2000/01/inproc-rdf-schema#>
SELECT DISTINCT ?person ?incol ?inproc ?title ?article
WHERE {
SERVICE <http://localhost:3030/Journal/sparql> {

?article rdfJournal:type benchJournal:Article .
?article dcJournal:creator ?person .

}
SERVICE <http://localhost:3030/InProceedings/sparql> {
?inproc rdfInproc:type benchInproc:Inproceedings .

?inproc dcInproc:creator ?person .
?inproc benchInproc:booktitle ?booktitle
OPTIONAL {

?inproc benchInproc:abstract ?abstract
}

}
OPTIONAL {
SERVICE <http://localhost:3030/People/sparql> {

?person foafPeople:name ?name
}

}
SERVICE <http://localhost:3030/InCol/sparql> {

?incol rdfIncol:type benchIncol:Incollection .
?incol dcIncol:creator ?person .

}
}

SP2BQ8d PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

SELECT DISTINCT ?title ?name
WHERE {
SERVICE <http://localhost:3030/InProceedings/sparql> {
?inproc rdf:type
<http://localhost/vocabulary/bench/Inproceedings> .
?inproc dc:creator ?person .
?inproc dc:title ?title .
?inproc dcterms:issued ?yr

}
OPTIONAL {
SERVICE <http://localhost:3030/People/sparql> {
?person foaf:name ?name

}
}
FILTER (?yr="1950")

CDQ8 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbprop: <http://dbpedia.org/property/>
PREFIX dbprop: <http://dbpedia.org/property/>
PREFIX viajero:
<http://webenemasuno.linkeddata.es/ontology/OPMO/>
SELECT ?Book ?Country ?Area
WHERE {
SERVICE <http://dbpedia.org/sparql> {
?Country rdf:type <http://dbpedia.org/ontology/Country> .
?Country dbprop:areaKm ?Area

}
OPTIONAL {
SERVICE <http://webenemasuno.linkeddata.es/sparql> {
?Book viajero:refersTo ?Country . }

}
FILTER(?Area < "20000"^^xsd:integer)

CDQ9 PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbprop: <http://dbpedia.org/property/>
PREFIX viajero:
<http://webenemasuno.linkeddata.es/ontology/OPMO/>
PREFIX factbook: <http://www4.wiwiss.fu-berlin.de/factbook/ns#>

SELECT ?Book ?Country ?Area ?climate
WHERE {
SERVICE <http://dbpedia.org/sparql> {
?Country rdf:type <http://dbpedia.org/ontology/Country> .
?Country dbprop:areaKm ?Area .
?Country rdfs:label ?countryLabel

}
OPTIONAL {
SERVICE <http://webenemasuno.linkeddata.es/sparql> {
?Book viajero:refersTo ?Country .

}
}
SERVICE <http://www4.wiwiss.fu-berlin.de/factbook/sparql> {
?CountryCIA rdfs:label ?countryLabel .
?CountryCIA rdf:type
<http://www4.wiwiss.fu-berlin.de/factbook/ns#Country> .
?CountryCIA factbook:climate ?climate

}

References

[1] E. Prud’hommeaux, A. Seaborne, SPARQL query language for RDF, January
2008.

[2] S. Harris, A. Seaborne, SPARQL 1.1 query language, January 2012.
[3] K.G. Clark, L. Feigenbaum, E. Torres, SPARQL protocol for RDF, w3C

Recommendation, January 2008. http://www.w3.org/TR/rdf-sparql-protocol/.
[4] B. Quilitz, U. Leser, Querying distributed RDF data sources with SPARQL, in:

ESWC, 2008, pp. 524–538.
[5] S. Schenk, S. Staab, Networked graphs: a declarative mechanism for SPARQL,

rules, SPARQL views and RDF data integration on the web, in: WWW, 2008,
pp. 585–594.

[6] A. Schwarte, P. Haase, K. Hose, R. Schenkel, M. Schmidt, FedX: optimization
techniques for federated query processing on linked data, in: Proceedings of
the 10th International Semantic Web Conference, ISWC, 2011.

[7] E. Prud’hommeaux, C. Buil-Aranda, SPARQL 1.1 federated query, November
2011.

[8] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL, ACM
Transactions on Database Systems (TODS) 34 (3) (2009).

[9] M. Schmidt, M. Meier, G. Lausen, Foundations of SPARQL query optimization,
in: ICDT, 2010, pp. 4–33.

[10] M. Acosta, M.E. Vidal, T. Lampo, J. Castillo, E. Ruckhaus, ANAPSID: an adaptive
query processing engine for SPARQL endpoints, in: Proceedings of the 10th
International Semantic Web Conference, ISWC, 2011.

[11] S.J. Lynden, I. Kojima, A. Matono, Y. Tanimura, ADERIS: an adaptive query
processor for joining federated SPARQL endpoints, in: OTM Conferences (2),
2011, pp. 808–817.

[12] M. Jackson, M. Antonioletti, B. Dobrzelecki, N. Hong, Distributed data
management with OGSA-DAI, in: S. Fiore, G. Aloisio (Eds.), Grid and Cloud
Database Management, Springer, Berlin, Heidelberg, 2011, pp. 63–86.

[13] B. Dobrzelecki, A. Krause, A.C. Hume, A. Grant, M. Antonioletti, T.Y. Alemu,
M. Atkinson, M. Jackson, E. Theocharopoulos, Integrating distributed data
sources with OGSA-DAI DQP and views, Phil. Trans. R. Soc. Ser. A (2010).

[14] B. Glimm, C. Ogbuji, SPARQL 1.1 entailment regimes, January 2012.
[15] M. Durst, M. Suignard, RFC 3987, internationalized resource identifiers, IRIs,

2005.

http://www.w3.org/TR/rdf-sparql-protocol/

C. Buil-Aranda et al. / Web Semantics: Science, Services and Agents on the World Wide Web 18 (2013) 1–17 17
[16] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley,
1995.

[17] R. Angles, C. Gutierrez, The expressive power of SPARQL, in: International
Semantic Web Conference, 2008, pp. 114–129.

[18] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, S. Koranda, A. Lazzarini, G. Mehta,
M. Papa, K. Vahi, Pegasus and the pulsar search: frommetadata to execution on
the grid, in: R. Wyrzykowski, J. Dongarra, M. Paprzycki, J. Wasniewski (Eds.),
Parallel Processing and Applied Mathematics, in: Lecture Notes in Computer
Science, Springer, 2004.

[19] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, T. Oinn, Taverna:
a tool for building and runningworkflows of services, Nucleic Acids Res. (2006)
729–732.

[20] S. Callaghan, P. Maechling, P. Small, K. Milner, G. Juve, T.H. Jordan, E. Deelman,
G. Mehta, K. Vahi, D. Gunter, K. Beattie, C. Brooks, Metrics for heterogeneous
scientific workflows: a case study of an earthquake science application, Int. J.
High Perform. Comput. Appl. 25 (3) (2011) 274–285.

[21] P. Li, J. Castrillo, G. Velarde, I. Wassink, S. Soiland-Reyes, S. Owen,
D.Withers, T. Oinn,M. Pocock, C. Goble, S. Oliver, D. Kell, Performing statistical
analyses on quantitative data in Taverna workflows: an example using r and
maxdbrowse to identify differentially-expressed genes from microarray data,
BMC Bioinformatics (2008).

[22] A. Nagavaram, G. Agrawal, M.A. Freitas, K.H. Telu, G. Mehta, R.G. Mayani,
E. Deelman, A cloud-based dynamic workflow for mass spectrometry data
analysis, in: Proceedings of the 2011 IEEE Seventh International Conference
on eScience, 2011, pp. 47–54.

[23] W. Tan, R. Madduri, A. Nenadic, S. Soiland-Reyes, D. Sulakhe, I. Foster,
C.A. Goble, Cagrid workflow toolkit: a Taverna based workflow tool for cancer
grid, BMC Bioinformatics (2010).

[24] J. Bartoka, O. Habalab, P. Bednarc, M. Gazaka, L. Hluchb, Data mining
and integration for predicting significant meteorological phenomena, in:
International Conference on Computational Science, ICCS 2010.

[25] W. Buehler, O. Dulov, A. Garcia, T. Jejkal, F. Jrad, H. Marten, X. Mol, D. Nilsen,
O. Schneider, Reference installation for the German grid initiative D-grid,
J. Phys. Conf. Ser. (2010).

[26] R. Hull, Managing semantic heterogeneity in databases: a theoretical
prospective, in: Proceedings of the sixteenth ACM Symposium on Principles
of Database Systems, 1997, pp. 51–61.

[27] G. Wiederhold, Mediators in the architecture of future information systems,
Computer 25 (1992) 38–49.

[28] A.Y. Levy, Answering queries using views: a survey, Tech. Rep., VLDB Journal,
2001.

[29] J.D. Ullman, Information integration using logical views, in: Proceedings of the
6th International Conference on Database Theory, Springer-Verlag, London,
UK, 1997, pp. 19–40.

[30] M.T. Roth, M. Arya, L. Haas, M. Carey, W. Cody, R. Fagin, P. Schwarz, J. Thomas,
E. Wimmers, The garlic project, SIGMOD Rec. 25 (2) (1996) 557.

[31] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,
J. Ullman, V. Vassalos, J. Widom, The TSIMMIS approach to mediation: data
models and languages, J. Intell. Inf. Syst. 8 (2) (1997) 117–132.

[32] A.Y. Levy, The information manifold approach to data integration, IEEE Intell.
Syst. 13 (1998) 12–16.
[33] A.P. Sheth, J.A. Larson, Federated database systems for managing distributed,
heterogeneous, and autonomous databases, ACM Comput. Surv. 22 (3) (1990)
183–236.

[34] D. Kossmann, The state of the art in distributed query processing, ACM
Comput. Surv. 32 (2000) 2000.

[35] T. Blanke, M. Hedges, A data research infrastructure for the arts and
humanities, in: S.C. Lin, E. Yen (Eds.), Managed Grids and Cloud Systems in
the Asia-Pacific Research Community, Springer, US, 2010, pp. 179–191.

[36] A. Shaon, A. Woolf, S. Crompton, R. Boczek, W. Rogets, M. Jackson, An open
source linked data framework for publishing environmental data under the
UK location strategy, in: Terra Cognita Workshop in International Semantic
Web Conference, ISWC2011.

[37] O. Görlitz, S. Staab, SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions, in: COLD 2011—Consuming Linked Data Workshop.

[38] G. Ladwig, T. Tran, SIHJoin: querying remote and local linked data,
in: Proceedings of the 8th Extended Semantic Web Conference on the
SemanticWeb: Research and Applications—Volume Part I, ESWC’11, Springer-
Verlag, Berlin, Heidelberg, 2011, pp. 139–153.

[39] A. Langegger, Virtual data integration on theweb: novelmethods for accessing
heterogeneous and distributed data with rich semantics, in: Proceedings
of the 10th International Conference on Information Integration and Web-
based Applications & Services, IIWAS’08, ACM, New York, NY, USA, 2008,
pp. 559–562.

[40] H. Stuckenschmidt, R. Vdovjak, H. Geert-Jan, J. Broekstra, Index structures and
algorithms for querying distributed RDF repositories, in: WWW, 2004, pp.
631–639.

[41] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, T. Tran, FedBench: a
benchmark suite for federated semantic data query processing, in: Proceed-
ings of the 10th International Conference on the Semantic Web—Volume Part
I, ISWC’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 585–600.

[42] M. Schmidt, T. Hornung, G. Lausen, C. Pinkel, SP2Bench: a SPARQL performance
benchmark, in: ICDT, 2010, pp. 4–33.

[43] F. Picalausa, S. Vansummeren,What are real SPARQL queries like? in: Proceed-
ings of the International Workshop on Semantic Web Information Manage-
ment, SWIM’11, ACM, New York, NY, USA, 2011, pp. 7:1–7:6.

[44] D. Garijo, B. Villazón, O. Corcho, A provenance-aware linked data application
for trip management and organization, in: 7th International Conference on
Semantic Systems, iSemantics, 2011.

[45] C. Buil-Aranda, M. Arenas, O. Corcho, Semantics and optimization of the
SPARQL 1.1 federation extension, in: 8th Extended Semantic Web Conference,
ESWC2011, 2011.

[46] P.J. Fleming, J.J. Wallace, How not to Lie with statistics: the correct way to
summarize benchmark results, Commun. ACM 29 (3) (1986) 218–221.

[47] A. Deshpande, Z. Ives, V. Raman, Adaptive query processing, Found. Trends
Databases 1 (1) (2007) 1–140.

[48] J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, S. Decker, Towards dataset
dynamics: change frequency of linked open data sources, in: LDOW, 2010.

[49] R. Angles, C. Gutierrez, SQL nested queries in SPARQL, in: Alberto Mendelzon
Workshop, AMW, 2010.

[50] R. Angles, C. Gutierrez, Subqueries in SPARQL, in: Alberto Mendelzon
Workshop, AMW, 2011.

	Federating queries in SPARQL 1.1: Syntax, semantics and evaluation
	Introduction
	Syntax and semantics of SPARQL including the SPARQL 1.1 Federated Query
	Syntax
	Semantics

	On evaluating the SERV ICE operator
	The notion of boundedness
	The notion of service-safeness: considering sub-patterns and nested SERV ICE operators

	Optimizing the evaluation of the OPTIONAL operator in SPARQL Federated Queries
	Optimization via well-designed patterns

	Implementation of SPARQL-DQP and well-designed patterns optimization
	Introduction to data integration and query federation
	OGSA-DAI and OGSA-DQP
	SPARQL-DQP implementation
	Other federated SPARQL querying processing systems

	Evaluation
	Note on other systems' evaluation
	Query selection
	New queries used in the evaluation

	Datasets description
	Results

	Conclusions
	Acknowledgments
	Proof of Proposition 1
	Query result tables
	New queries used in the evaluation
	References

