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Abstract. In this paper we describe SCDBR, a system that is able to reason automatically from specifications of
database updates written in the situation calculus, a first–order language originally proposed by John McCarthy
for reasoning about actions and change. The specifications handled by the system are written in the formalism
proposed by Ray Reiter for solving the frame problem that appears when one expresses the effects on the database
predicates of the execution of atomic transactions. SCDBR is written in PROLOG, and can solve several reasoning
tasks, among others, it is able to derive the final specification from effect axioms, to answer queries to virtually
updated databases, to check legality of transactions, to prove integrity constraints from the specification, to modify
the specification in order to embed a desired integrity constraint, and to answer historical queries. For some of
these tasks SCDBR can call other systems, like relational database systems, automated theorem provers, and
constraint solvers.
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1. Introduction

We seek to apply logic programming and automated reasoning techniques, in particular,
theorem proving, for: (1) reasoning with the formal specification of the dynamics of a
database, and (2) reasoning with knowledge stored in the database. The specification and
the database content are given in first–order logic plus a small second–order extension that
allows reasoning by induction, what is needed for proving database integrity constraints
(ICs). To be more precise, in this paper we describe, SCDBR 1 (for situation-calculus-
based database reasoner), an automated reasoning system we have developed in the last
three years that has such reasoning capabilities. A preliminary report on SCDBR appeared
in (Bertossi & Ferretti, 1994) (see also (Bertossi et al., 1996a)).

In general, theories of change, such as the specification of the evolution of a database,
include sentences that state the changes that are introduced when transactions are executed.
In most cases, it is desirable to omit the sentences that describe the properties of the world
that remain unchanged as transactions are performed. However, from a logical point of view,
non change must be derivable from the logical specification. The problem of inferring non-
change from a logical specification of change is referred to as the frame problem and has
received a great deal of attention in the knowledge representation community (in fact, this
problem has motivated much of the research on non-monotonic formalisms).

In this work we start from Reiter’s solution to the frame problem (Reiter, 1991), that trans-
forms preliminary specifications about evolving worlds into monotonic specifications in
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the situation calculus (McCarthy & Hayes, 1969)2. In Reiter’s framework, the preliminary
specifications embody implicit common-sense assumptions about the possible explanations
for changes in truth values of fluents3. Once we have the transformed specifications, we
may do reasoning from them in first–order logic.

According to Reiter (Reiter, 1992, Reiter, 1995), the preliminary specification of the
transactions acting on a database includes details regarding their preconditions and their
effects on the world. Furthermore, the specification might consider a set of ICs, which
describe certain conditions that the database must always satisfy. For instance, in a personnel
system, we may require that no clerk be associated with two different departments. Thus,
the specification of a database system is composed of logical sentences that represent: (1)
the initial state of the database; (2) the possible transactions (including preconditions and
effects); and possibly, (3) integrity constraints. This preliminary specification is transformed
into a new specification as was mentioned before. This transformation process generates
the so–called successor state axioms4.

Our system, SCDBR automatically derives the final database specification of the database
dynamics, given in terms of successor state axioms, from a preliminary specification given
in terms of effect axioms. The specifications handled by the system are fully first–order.
SCDBR is also able to perform other reasoning tasks like: (1) Deciding about the legality
of sequences of transactions of the form do(α1, do(α2, do(α3, . . .) . . .))); (2) “Regress-
ing” queries posed to a virtually updated database to a query about the initial database
state. This task could be also seen as a form of hypothetical reasoning; (3) Interfacing
with theorem provers and database systems like: ORACLE, OTTER (McCune, 1994),
PROLOG, RRL (Kapur & Zhang, 1995), CLP(FD) (Codognet & Diaz, 1996, Diaz, 1994).
Among other things, those systems can be used for proving statements about the ini-
tial database; (4) Answering historical queries, when the specification plus a sequence
of transactions (executed or to be executed) is given (following the procedure described
in (Siu & Bertossi, 1996b, Siu & Bertossi, 1996a, Siu et al., 1996), (Siu & Bertossi, 1996c,
Zakinthinos, 1993)); (5) Mechanically modifying the initial specification in order to sub-
sume in the final specification a given integrity constraint (in some cases, this is possible
(Lin & Reiter, 1994b, Pinto, 1994)); (6) Physical update of the database from a virtual up-
date (Lin & Reiter, 1997) (see also (Lin & Reiter, 1994a, Lin & Reiter, 1995)) (i.e. from
the initial database, the successor state axioms and a given sequence of transactions);(7)
Automated proofs of integrity constraints. For this we interfaced the system with OTTER,
and RRL, which turned out to be very useful for generating appropriate induction schemas
(Bertossi et al., 1996b).

The system is written in SICSTUS PROLOG, which is used mainly as a programming
language; and can be run on the top of a database management system, like ORACLE,
adding new and important functionalities to traditional DBMS.

2. The Situation Calculus

Characteristic ingredients for a situation calculus language L, besides the usual symbols
of first–order languages for domain descriptions, are: (1) Sorts action , state , and object
(this last one for the objects in the domain; this sort could be split into sub–sorts if neces-
sary); (2) Predicate symbols of the sort (object , . . . , object , state) to denote fluents. These
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are predicates that depend on the state of the world; (3) Operation symbols of the sort
(object , . . . , object)→ action for denoting actions with objects as parameters (or applied
to objects); (4) A constant S0 to denote the initial state; (5) An operation symbol do of sort
(action, state)→ state , that executes an action at a given state producing a successor state.

In this first–order language there are variables for individuals of each sort, so it is possible
to quantify over objects, actions, and situations. We usually denote variables for actions
with a, α, . . ., and variables for states, with s, σ, . . ..

3. Reiter’s Solution to the Frame Problem and Databases

The specification of a dynamically changing world, by means of an appropriate language of
the situation calculus, consists in stating the laws of evolution of the world. This is typically
done by specifying: (1) Fixed, state independent, but domain dependent knowledge about
the objects of the world; (2) Knowledge about the state of the world at the initial situationS0,
that is given in terms of formulas that do not mention any state besidesS0; (3) Preconditions
for performing the different actions (or making their execution possible). We introduce a
predicate Poss in L of sort (action, state) to say that the execution of an action is possible
in a state; (4) The immediate (positive or negative) effects of actions in terms of the fluents
whose truth values we know are changed by their execution.

In Reiter’s formalism, the knowledge contained in items (1) and (2) above is considered
the initial database DS0

. The information given in item (3) is formalized by means of
a precondition axiom of the form Poss(A(~x), s) ≡ πA(~x, s), for each action name A.
Finally, item (4) is expressed by effect axioms for pairs (transaction, fluent).

Positive Effects Axioms: For some pairs formed by a fluent F and an action name A, an
axiom of the form:

Poss(A(~x), s) ∧ ε+
F (~x, ~y, s) ⊃ F (~y, do(A(~x), s)). (1)

Intuitively, if action A is possible, and the preconditions for fluent F represented by the
meta–formula ε+

F (~x, ~y, s) is true at state s, then fluent F becomes true at the successor state
do(A(~x), s) obtained after execution of action A at state s. Here, ~x, ~y are parameters for
the fluent and action.

Negative Effects Axioms: For some pairs formed by a fluent F and an action name A, an
axiom of the form:

Poss(A(~x), s) ∧ ε−F (~x, ~y, s) ⊃ ¬F (~y, do(A(~x), s)). (2)

This is the case where action A makes fluent F to become false in the successor state.

Example: Let us consider a library database. For simplicity, every book that can be or-
dered or appears in the initial database will be assumed to be included in a constant table,
BooksInPrint(isbn, title, author , editor , year , edition), which may be interpreted as a
predicate. There are classified and unclassified books. So, we have fluents
Classified(isbn, id , s), Unclassified(isbn, copies, s). Classified books have an id num-
ber assigned which includes the ISBN number of the book and the copy number (so that
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different copies of the same book have different id numbers). The unclassified books are
those that were ordered, but have not yet been classified; there may be several exemplars
of the same book waiting to be classified. There is a fluent which records the number of
exemplars available of each book that is classified, Stock(isbn, quantity , s). Finally, we
also have fluents SoldOut(isbn, s) and LostBook(id , s), with obvious meaning.

There are update actions (atomic transactions): (1) deleteBook(id), that decreases Stock
by one and only when the quantity is zero it deletes the book from the Classified , Stock
and LostBook tables; (2) classifyBook(isbn, id), which assigns an id to a book in the
Unclassified table, inserts it in the Classified , removes the book from Unclassified , and it
also updates the Stock according to the number of copies; (3) order(isbn, copies), which
adds an item that is not SoldOut in BooksInPrint to the Unclassified .

Initial Database 5:

• BooksInPrint(′3−540−18199−7′, ′Foundations of Logic Programming ′,
′Lloyd , J .W .′, ′Springer ′,′ 1987′,′ 2′)

• BooksInPrint(′0−7167−8162−X ′, ′Database and Knowledge−Base Systems ′,
′Ullman, J .D .′, ′Computer Science Press ′,′ 1989′,′ 1′)

• BooksInPrint(′0−412−14930−3′, ′The Theory of Computer Science ′,
′Brady , J .M .′, ′A Halsted Press Book ′,′ 1977′,′ 1′)

• Classified(isbn, id , S0) ≡ (isbn =′ 0−412−14930−3′ ∧ id =′ 10′) ∨
(isbn =′ 0−412−14930−3′ ∧ id =′ 11′) ∨
(isbn =′ 0−7167−8162−X ′ ∧ id =′ 12′)

• Stock(isbn, int , S0) ≡ (isbn =′ 0−412−14930−3′ ∧ int = 2) ∨
(isbn =′ 0−7167−8162−X ′ ∧ int = 1) ∨
(isbn =′ 3−540−18199−7′ ∧ int = 0)

• Unclassified(isbn, int , S0) ≡ (isbn =′ 0−412−14930−3′ ∧ int = 3) ∨
(isbn =′ 0−7167−8162−X ′ ∧ int = 2) ∨
(isbn =′ 3−540−18199−7′ ∧ int = 3)

Action Preconditions:

• Poss(deleteBook(id), s) ≡ LostBook(id , s)
• Poss(order(isbn, copies), s) ≡ (∃title, author , editor , year , edition)

BooksInPrint(isbn, title, author , editor , year , edition) ∧ copies > 0
• Poss(classifyBook(isbn, id), s) ≡ (∃copies)Unclassified(isbn, copies, s)

∧¬(∃isbn ′)Classified(isbn ′, id , s)

Effect Axioms:

• Poss(deleteBook(id), s) ⊃ ¬LostBook(id , do(deleteBook(id), s))
• Poss(deleteBook(id), s) ⊃ ¬Classified(isbn, id , do(deleteBook(id), s))
• Poss(deleteBook(id), s) ∧ Classified(isbn, id , s) ∧ Stock(isbn, quantity , s) ⊃

¬Stock(isbn, quantity , do(deleteBook(id), s))
• Poss(deleteBook(id), s) ∧ Classified(isbn, id , s) ∧ Stock(isbn, quantity , s) ∧

quantity > 1 ∧ quantity ′ = quantity−1 ⊃
Stock(isbn, quantity ′, do(deleteBook(id), s))

• Poss(order(isbn, copies), s) ∧ ¬SoldOut(isbn, s) ∧
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((Unclassified(isbn, copies ′, s) ∧ copies ′′′ = copies ′ + copies) ∨
(¬∃copies ′′ Unclassified(isbn, copies ′′, s) ∧ copies ′′′ = copies)) ⊃

Unclassified(isbn, copies ′′′, do(order(isbn, copies), s))
• Poss(order(isbn, copies), s) ∧ ¬SoldOut(isbn, s) ∧

Unclassified(isbn, copies ′, s) ⊃
¬Unclassified(isbn, copies ′, do(order(isbn, copies), s))

• Poss(classifyBook(isbn, id), s) ∧ Unclassified(isbn, copies, s) ∧ copies > 1 ∧
copies ′ = copies − 1 ⊃

Unclassified(isbn, copies ′, do(classifyBook(isbn, id), s)
• Poss(classifyBook(isbn, id), s) ∧ Unclassified(isbn, copies, s) ⊃

¬Unclassified(isbn, copies, do(classifyBook(isbn, id), s))
• Poss(classifyBook(isbn, id), s) ∧

((Stock(isbn, quantity , s) ∧ quantity ′ = quantity + 1) ∨
(¬∃quantity Stock(isbn, quantity , s) ∧ quantity ′ = 1)) ⊃

Stock(isbn, quantity ′, do(classifyBook(isbn, id), s))
• Poss(classifyBook(isbn, id), s) ∧ Stock(isbn, quantity , s) ⊃

¬Stock(isbn, quantity , do(classifyBook(isbn, id), s))
• Poss(classifyBook(isbn, id), s) ⊃ Classified(isbn, id , do(classifyBook(isbn, id), s)

2

The specification given in the example does not mention the usually many things (fluents)
that do not change when a specific action is executed. A solution to this problem, the
frame problem, is necessary in order to count on the persistence of many properties after
actions are performed. Many solutions have been given to the frame problem. Most of
them have a procedural component (Fikes & Nilsson, 1971, Kowalski, 1979) or are non-
monotonic (Reiter, 1987). See (Sandewall, 1994) for a systematic assessment of different
approaches to the problem of formalizing knowledge about dynamically changing worlds
with inertia. Nevertheless, in (Reiter, 1991), building on work by Haas (Hass, 1987), Ped-
nault (Pednault, 1989) and Schubert (Schubert, 1990), Reiter presents a simple solution to
the frame problem that that provides a first–order and monotonic specification. We sketch
this solution in the rest of this section.

For example, if we have only two positive effects laws for fluent F : (1) and

Poss(A′(~z), s) ∧ δ+
F (~z, ~y, s) ⊃ F (~y, do(A′(~x, s)), (3)

we may combine them into one general positive effect axiom for fluent F :

Poss(a, s) ∧ [∃~x (a = A(~x) ∧ ε+
F (~x, ~y, s))∨
∃~z (a = A′(~z) ∧ δ+

F (~z, ~y, s))] ⊃ F (~y, do(a, s)).
(4)

In this form we obtain, for each fluent F , a general positive effect law of the form:

Poss(a, s) ∧ γ+
F (a, s) ⊃ F (do(a, s)). (5)

In similar form, we obtain, for each fluent F , a general negative effect axiom of the form:

Poss(a, s) ∧ γ−F (a, s) ⊃ ¬F (do(a, s)). (6)
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For example, if we consider the fluent Unclassified , in our library database, we obtain the
following general effect axioms:

• Poss(a, s) ∧ [∃copies (a = order(isbn, copies) ∧ ¬SoldOut(isbn, s) ∧
(∃quantity ′ (Unclassified(isbn, quantity ′, s)∧ quantity = quantity ′+copies)∨
¬∃quantity ′ Unclassified(isbn, quantity ′, s) ∧ quantity = copies))) ∨
∃id (a = classifyBook(isbn, id) ∧∃quantity ′ (Unclassified(isbn, quantity ′, s)∧

quantity ′ > 1 ∧ quantity = quantity ′ − 1))] ⊃
Unclassified(isbn, quantity , do(a, s))

• Poss(a, s) ∧ [∃copies (a = order(isbn, copies) ∧ ¬SoldOut(isbn, s) ∧
Unclassified(isbn, quantity , s)) ∨

∃id (a = classifyBook(isbn, id) ∧ Unclassified(isbn, quantity , s))] ⊃
¬Unclassified(isbn, quantity , do(a, s))

The basic assumption underlying Reiter’s solution is that the general effect axioms, both
positive and negative, for a given fluentF , contain all the possibilities for fluentF to change
its truth value from a state to a successor state. Actually, for each fluent F we generate its
Successor State Axiom (SSA):

Poss(a, s) ⊃ [F (do(a, s)) ≡ γ+
F (a, s) ∨ (F (s) ∧ ¬γ−F (a, s))]. (7)

This axiom is tacitly universally quantified over actions. Intuitively, if action a is possible,
then fluent F is true at the successor state if and only if a is one of the actions leading to F ’s
truth (and the preconditions on the fluent are true), or F was already true when the action
was executed and a is not one of the actions that make F false (or the preconditions on the
fluent are not true). For example, we obtain the following SSA for the fluent Unclassified
in our library database:

• Poss(a, s) ⊃ Unclassified(isbn, quantity , do(a, s)) ≡
[∃copies (a = order(isbn, copies) ∧ ¬SoldOut(isbn, s) ∧

(∃quantity ′ (Unclassified(isbn, quantity ′, s) ∧ quantity = quantity ′ + copies) ∨
¬∃quantity ′ (Unclassified(isbn, quantity ′, s) ∧ quantity = copies)))) ∨

∃id (a = classifyBook(isbn, id) ∧ ∃quantity ′ (Unclassified(isbn, quantity ′, s) ∧
quantity ′ > 1 ∧ quantity = quantity ′− 1))] ∨

Unclassified(isbn, quantity , s) ∧ ¬[∃copies (a = order(isbn, copies) ∧
¬SoldOut(isbn, s) ∧ Unclassified(isbn, quantity , s)) ∨

∃id (a = classifyBook(isbn, id) ∧ Unclassified(isbn, quantity , s))]

In order for things to work properly, it is necessary to add unique names axioms for actions
and states: (1) For distinct action names A and A′, A(~x) 6= A′(~y); (2) For each action
name A, A(x1, . . . , xn) = A(y1, . . . , yn) ⊃ x1 = y1 ∧ · · · ∧ xn = yn; (3) S0 6= do(a, s);
(4) do(a, s) = do(a′, s′) ⊃ a = a′ ∧ s = s′.
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Figure 1. Interaction with SCDBR.

4. An Overview of SCDBR

Our system takes database specifications, given in terms of effect axioms, in a convenient
format (proto-specification) by means of an external interface, which translates this infor-
mation into SDCBR notation (pre-specification). Next, the system automatically derives the
final database specification given in terms of successor state axioms according to Reiter’s
solution. Then the system can take advantage of the generated specifications for performing
different reasoning tasks, for example:

1. In order to reason about the initial database, SCDBR can follow two different ap-
proaches: (1) If the initial database is relational, it uses SQL or PROLOG as query
languages; (2) If the initial database is first–order, it uses OTTER as theorem prover.

2. Temporal projection: Given the initial database and a query referred to a (future) state,
do(An, do(An−1 . . . do( A1, S0) . . .)), SCDBR is able to generate a new equivalent
query about the initial state, that is, the original query is regressed to the initial state.
The legality of the list of transactionsA1, . . . An can be previously checked by SCDBR.

3. Given a transaction α, SCDBR is able to physically update the database, incorporating
the changes due to the execution of α.

4. SCDBR can answer historical queries of the kind “Has a given property been true in
all states of the database” or “Has a given property been true in some states of the
database”, etc...
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5. SCDBR can handle Integrity Constraints (IC) in two ways: (1) Proving, from the
specification, that a given IC holds in all (legal) states of a database. (2) If an IC is not
entailed by the specification, in some cases, SCDBR modifies the initial specification
in order to subsume the IC.

For solving these tasks, the system is able to call relational database management systems
and theorem provers. Figure 1 shows the interaction with SCDBR.

5. The Database Specification in SCDBR

5.1. Information Provided by the User

The user’s proto specification, given to the system by means of an external interface, is the
following:

1. The similarity type of the first–order language, in particular, names for fluents, predi-
cates, actions and distinguished individuals.

2. For each action a definition of the form:

ACTION Action
PRECONDITION ActionPrecondition
EFFECTS Precondition1 : EffectPolarity1 Fluent1

...
Preconditionn : EffectPolarityn Fluentn

The first part of this declaration tells us that the ActionPrecondition needs to hold
when the Action is to be executed, the second part establishes that Action affects either
positively (+) or negatively (-) the Fluent i (at the successor state) if the Preconditioni
on the fluent holds at the current state, for each 1 ≤ i ≤ n. So, the EffectPolarity is
either + or -.

3. A set of formulas about the initial state (the initial database).

The external interface translates this information into SCDBR notation (logical formulas in
our system are written in prefix notation). In particular, it converts the knowledge contained
in item 2. into the following sets:

1. A set of binary tuples (Action,ActionPrecondition).

2. An incidence table, more precisely, a set of tuples of the form

( [ Action,
[ [ Fluent1, EffectPolarity1 ], Precondition1 ]
. . . ,
[ [ Fluentn, EffectPolarityn ], Preconditionn ])
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5.2. Representing and Processing the Specification Language

The formulas of language L are internally represented by PROLOG ground terms written
in prefix notation, and are processed by PROLOG procedures. In consequence, the system
uses two kinds of variables, on one side, the usual PROLOG variables (starting with upper-
case letters), and variables of the languageL, starting with lower–case letters, that PROLOG
considers as constants.

For a better readability of formulas, the system contains procedures for translating formu-
las in prefix notation into infix notation, p i(·,·), and in the other direction with i p(·,·).

5.3. Generating the Final Specification Axioms

In order to generate the final specification starting from the information provided by the
user, the system relies on unification. For example, for each fluent F , we know the general
syntactic form, (7), of its SSA. This structure is represented by the PROLOG procedure
(notice that the formula in this procedure is written in prefix notation):

ssa( F, all( a, implies( poss( a, STATE VAR ),
iff( FSUC, or( PT, and( FACT, not( NT ))))))) : − . . .

(8)

Here, the PROLOG variables F, FSUC, PT, FACT, NT stand for the fluent, the fluent at
the successor state, the positive gamma formula for F , the fluent at the current state,
and the negative gamma formula for F , respectively. The procedure is used as follows:
given a fluent name, we ask for its successor state axiom A, by posing the query | ?-

ssa(fluent-name, A). By unification, Awill turn out to be a PROLOG term representing
a formula, with concrete values for FSUC, PT, FACT, NT, obtained from the body of clause
(8), using other procedures that collect and process the information provided by the user.

In the following subsections we present the PROLOG predicates that allow to generate
the final specification axioms.

5.3.1. Computing Unique Names Axioms The una predicate generates the unique
names axioms (UNAs) for actions and states.

Example: Consider the library specification in section 3. The UNAs are obtained executing
| ?- una(U),p_i(U,UI). In this case, we are using the predicate p i for translating the
UNAs stored in U into infix notation. A part of the list is:

UI = [neg delete_book(id1) eq order(isbn1,int1),...,order(isbn1,int1)

eq order(isbn2,int2) => isbn1 eq isbn2 & int1 eq int2,...,do(a,

s) eq do(a1,s1) => a eq a1 & s eq s1]

This output corresponds to formulas:

• ¬deleteBook(id1) = order(isbn1, int1)
• order(isbn1, int1) = order(isbn2, int2) ⊃ isbn1 = isbn2 ∧ int1 = int2

• do(a, s) = do(a1, s1) ⊃ a = a1 ∧ s = s1.
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5.3.2. Computing Successor State Axioms The predicate ssa constructs the SSAs as
described in section 3 .

Example: Let us ask the system to compute the SSA for the fluent LostBook in the li-
brary database.

| ?- ssa(lost_book,F),p_i(F,R).

R = forall(a):(poss(a,s) => (lost_book(id1,do(a,s)) <=> lost_book(id1,

s) & neg a eq delete_book(id1)))

The answer is stored in the variable R, and represents the following axiom:

Poss(a, s) ⊃ LostBook(id1, do(a, s)) ≡
LostBook(id1, s) ∧ ¬a = deleteBook(id1).

(9)

5.3.3. Computing Action Precondition Axioms With the predicate ap, we can com-
pute the action precondition axioms (APs).

Example: Now we ask the system to compute the AP for action classifyBook .

| ?- ap(classify_book,F),p_i(F,R).

R = forall(s) : (poss(classify_book(isbn1,id1), s) <=> exists(int1) :

unclassified(isbn1,int1,s)& neg exists(isbn2) : classified(isbn2,

id1,s))

The answer, stored in the variable R, represents the following axiom:

Poss(classifyBook(isbn, id), s) ≡ ∃copies Unclassified(isbn, copies, s)
∧¬∃isbn1 Classified(isbn1, id , s).

(10)

6. Some Basic SCDBR Procedures

In this section we introduce some fundamental SCDBR procedures that will be used for
solving several reasoning tasks in section 7.

6.1. The Regression Operator

The regression operator (Reiter, 1991) applied to a formula evaluated at a successor state
returns an equivalent formula evaluated at the current state. This is done by using the SSAs.
More precisely, if fluent F , appearing in a formula ϕ, has the following SSA:

F (x1, x2, . . . , xn, do(a, s)) ≡ ΦF (x1, x2, . . . , xn, a, s), (11)

where the formula ΦF (x1, x2, . . . , xn, a, s) does not mention the state do(a, s), the op-
erator, R, applied to ϕ, replaces each occurrence of a term F (t1, t2, . . . , tn, do(α, δ)) by



SCDBR 263

ΦF |x1,x2,...,xn,a,s
t1,t2,...,tn,α,δ

. In the system, the regression operator is represented by the predicatereg.

Example: We can invoke the regression operator on the formula

LostBook(′0−7167−8162−X ′, do(deleteBook(′0−412−14930−3′), S0)), (12)

in which we find the fluent LostBook in a successor state.

| ?- reg(lost_book(’0-7167-8162-X’, do(delete_book(’0-412-14930-3’),

s0)),F),p_i(F,R).

R = lost_book(’0-7167-8162-X’,s0) & neg delete_book(’0-412-14930-3’)

eq delete_book(’0-7167-8162-X’)

The result is stored in variable R and represents the following formula:

LostBook(′0−7167−8162−X ′, S0) ∧
¬(deleteBook(′0−412−14930−3′) = deleteBook(′0−7167−8162−X ′)), (13)

which corresponds to the right–hand side of axiom (9), but with parameters id1, a and s
replaced by ′0−7167−8162−X ′, deleteBook(′0−412−14930−3′) and S0, respectively.

6.2. The Pruning Operators

When regression is applied to a formula as in the previous section, it is usually the case
that comparisons between actions and comparisons between individuals in the domain are
generated. In order to handle these comparisons, SCDBR has three pruning operators that
simplify formulas on the basis of the unique name axioms for actions, states and objects,
obtaining logically equivalent formulas. They are Puna, Puns and Puno, respectively. For
example, when the operator Puna is applied to a formula, it descends recursively until it
finds the atomic formulas involving equalities. The important base case is a comparison
between actions, in which case the operator is defined by:

Puna[A(t1, t2, . . . , tn) = B(t′1, t
′
2, . . . , t

′
m)] :=

{
false if A 6= B∧n
i=1 ti = t′i otherwise

In other atomic cases, the operator does not do anything.
The operator Puns has these relevant base cases: Puns[S0 = S0] := true, Puns[S0 =

do(a, s)] := false, Puns[do(a1, s1) = do(a2, s2)] := a1 = a2 ∧ Puns[s1 = s2].
Usually, the order in which the operators are applied is the following: first, Puns (if

necessary), next,Puna, because the first one may leave some comparisons between actions.
Optionally, the Puno operator can be applied if the assumption about unique names for in-
dividuals in the domain is made. As can be seen from the definitions, the resulting formula
may contain the atoms true and false. In order to get a simpler formula, it is possible to call
the predicate csf, that applies some logical rules of propositional and predicate calculus6.

Example: We want to simplify the formula (13) that we obtained in the previous section by
application of the regression operator.



264 BERTOSSI, ARENAS AND FERRETTI

| ?- i_p(lost_book(’0-7167-8162-X’,s0) & neg delete_book(’0-412-14930

-3’) eq delete_book(’0-7167-8162-X’),F),prune_una(F,A),prune_uno

(A,B),p_i(A,A1),p_i(B,B1).

A1 = (lost_book(’0-7167-8162-X’,s0) & neg ’0-412-14930-3’ eq ’0-7167-

8162-X’),

B1 = lost_book(’0-7167-8162-X’,s0)

Notice that we first applied Puna with the SCDBR predicate prune una to (13), obtaining
as an intermediate result, contained in the PROLOG variable A1, the expression:

LostBook(′0−7167−8162−X ′, S0) ∧ ¬(′0−412−14930−3′ =′ 0−7167−8162−X ′).

Finally, we applied Puno with the SCDBR procedure prune uno to this term. The final
answer is contained in B1.

6.3. PROLOG as Query Language

The system is able to transform a set of first–order formulas into a PROLOG program.
We will apply this functionality for solving several tasks. One of them consists in using
PROLOG as a query language. This is useful for checking formulas against the initial
database, what is needed in verification of legality of actions (section 7.1), proofs of integrity
constraints (section 7.4.1), etc.

Typically we will have a relational database (at the initial state) plus a first–order queryQ.
The query is transformed into a PROLOG program, including a top goal, that is run against
the relational database seen as a set of PROLOG facts. Our translation algorithm has two
steps, a first one consisting essentially of Lloyd and Topor’s algorithm for translating general
programs into normal programs (Lloyd, 1987). In Lloyd and Topor’s set up, a PROLOG
program would be generated from a single clause ← Q, a goal clause. The second step
reorders the generated subgoals in the resulting PROLOG rules in order to avoid floundering
of queries in the presence of negation as failure when possible (Lloyd, 1987) and to handle
arithmetical and comparison operators in subgoals.

The algorithm in the second step reorders the subgoals in the rule bodies with the following
strategy: put first the positive literals that are not comparisons, second, the comparisons
of the form X = a, third, comparisons of the form X = Y , fourth, equalities between
arithmetical terms (using the is built-in predicate if necessary, as in int1 = int2+int3, that
is transformed into Int1 is Int2 + Int3); next comparisons with order predicates, and
finally, negative literals. For example, ¬p(x) ∧ q(x) is transformed into q(X),not p(X),
avoiding floundering.

In order to obtain a correct answer with the whole translation and querying procedure,
the first–order input query posed to the initial database must be safe (Ullman, 1988). If
the formula is not safe, floundering queries in the presence of negation as failure may
be generated. A syntactic subclass of safe formulas consists of the safe DRC formulas
(Ullman, 1988). It can be proved that the program and the PROLOG query generated
by the algorithm from the original first–order query will not flounder if this query is safe
DRC (Saez, 1997). In this case, it is also possible to prove, using results appearing in
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(Lloyd, 1987, chap.4), that query Q has an answer θ wrt the relational database D iff the
generated program and goal P ∪ {G} have θ as a computed answer (Saez, 1997).

6.3.1. Querying the Initial Database The predicate prolog initial is run by the
system for answering first–order queries posed to an initial relational database (in section
6.4 we show how to call from SCDBR an automated theorem prover for checking queries
against a first–order initial database). As described above, given the input formula, this
procedure generates a PROLOG program plus an internal goal to be answered by the
program.

Example: We wish the system to return a list of the identifiers isbn of those books that
have at least one copy classified and one copy unclassified at the initial database. The
corresponding first–order query is:

∃id Classified(isbn, id , S0) ∧
∃quantity (Unclassified(isbn, quantity , S0) ∧ quantity > 0),

(14)

where the variable isbn appears free, because it will be instantiated with the answer. The
query is asked in this way:

| ?- i_p( exists(id1) : classified( isbn1, id1, s0 ) & exists(int1) :

(unclassified(isbn1,int1,s0) & int1 > 0), F ),prolog_initial(F).

The predicate prolog initial/2 transforms first the formula (14) into the following
PROLOG program:

pi_v1(Isbn1):-

pi_v1_0_0(Isbn1),

pi_v1_1_0(Isbn1).

pi_v1_0_0(Isbn1):-

classified(Isbn1,Id1,s0).

pi_v1_1_0(Isbn1):-

unclassified(Isbn1,Int1,s0),

>(Int1,0).

After that, calling the top level predicate pi v1/1, it gives as answer the lists of ISBNs:

[[isbn1,0-412-14930-3]]

[[isbn1,0-7167-8162-X]]

In this case, the values ′0−412−14930−3′ and ′0−7167−8162−X ′ satisfy the formula
(14).

6.4. Using a Theorem Prover

In the previous section we showed how to use PROLOG as a query language for relational
initial databases. In this section we will show how to call from SCDBR a more general
automated theorem prover, for solving different tasks. This is particularly useful when we
have a first–order initial database, and when we prove integrity constraints (see section
7.4.1). More specifically, we will call OTTER (McCune, 1994).



266 BERTOSSI, ARENAS AND FERRETTI

6.4.1. Verifying Formulas in the Initial Database OTTER can be used to check the truth
value of formulas of the form ϕ(S0), being S0 the only state term in the formula. That is,
we check the formula against the initial database, which in this case can be first–order. For
example, we can ask SCDBR, to call OTTER to find out if there is a book for which there
at least one copy classified at the initial state. The formula ϕ(S0) and the initial database,
DS0 , have to be translated into OTTER format, in particular, explicit unique names axioms
for objects, predicate closure axioms can be automatically generated with SCDBR. The
SCDBR predicate otter initial calls the internal translation procedures and runs OT-
TER in order to answer the query.

Example: Let us assume that in our initial database in section 3, instead of having an
explicit set of tuples in the Unclassified table, we now have the information that there is a
positive quantity of unclassified books with isbn identifiers ′0−412−14930−3′, but without
knowing how many of them. So, we have the following sentence in the specification:

∃quantity (Unclassified(′0−412−14930−3′, quantity , S0) ∧ quantity > 0).

We want to know if there is a book with at least one classified copy and one unclassified
copy at the initial state. This query is the first–order sentence

∃isbn (∃id Classified(isbn, id , S0) ∧
∃quantity (Unclassified(isbn, quantity , S0) ∧ quantity > 0)),

(15)

which in SCDBR can be asked and positively answered in this way:

| ?-i_p(exists(isbn1) : (exists(id1) : classified( isbn1, id1, s0 ) &

exists(int1) : ( unclassified( isbn1, int1, s0) & int1 > 0)), F),

otter_initial(F).

Proof for the initial database:

------------------------------

invoking otter. I’ll tell you when I’m done.

-------- PROOF --------

The proof can be found in temp/proof-s0

6.5. Connection of SCDBR to a RDBMS

We have seen in the previous section that SCDBR can be connected to a PROLOG database
consisting of facts. Nevertheless, in applications it is more common to have data stored in a
relational database management system (RDBMS). For this reason, we connected SCDBR
to ORACLE. In this way, the initial database can be physically stored as a database in that
system, and the first–order queries to the initial database can be translated into SQL queries
to be posed by the RDBMS to the its stored database. Another uses of this facility are: (a)
the possibility of having the facts for a PROLOG program stored as a relational database;
(b) the possibility of updating tables and generating auxiliary tables in the RDBMS as an
additional support to SCDBR for some of its reasoning tasks, e.g. answering historical
queries, where small auxiliary tables containing data that is relevant to the query have to
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be created and updated as the query is processed (see section 7.5); (c) checking integrity
constraints at the initial database; etc.

Making SCDBR interact with a RDBMS is much more efficient than translating the whole
relational database into the language of other reasoner like PROLOG or OTTER. In this
section we show the query translation mechanism, the connection of SCDBR to ORACLE,
and we discuss the coupling of PROLOG to a RDBMS.

6.5.1. Generating SQL Queries Suppose that we have a relational initial database. We
want to answer to a query ϕ(S0), written in first–order logic. For translating the query into
SQL, SCDBR contains a predicate fol2sql that, in its turn, calls three other predicates:
(1) normalize, that receives a formula ϕ(S0) and returns a logically equivalent first–order
formula ψ(S0) in or-free parts normal form; (2) alwd that checks the resulting formula for
tractability, a sufficient syntactical condition for safeness; and finally (3) trans query that
translates the formula into an SQL query if the formula is tractable. All these concepts and
translation algorithms are taken from (M. Böhlen, 1994).

For example, since the query ∀(isbn1, id1)(Classified(isbn1, id1, S0)) is not safe, we
obtain

| ?- i_p(forall(isbn1): forall(id1) : (classified(isbn1,id1,s0)),F),

fol2sql(F,FSQL).

formula is not allowed

Nevertheless, with the functional dependency (22), as a safe query, we obtain the normal
form:

¬∃(isbn1, isbn2, id1)(Classified(isbn1, id1, S0)∧
Classified(isbn2, id1, S0) ∧ isbn1 6= isbn2),

(16)

that can be translated into a SQL (predicate fol2sql suppresses state S0 as a first step):

| ?-fol2sql(all(isbn1,all(isbn2,all(id1,implies(and(classified(isbn1,

id1,s0),classified(isbn2, id1, s0)),equal(isbn1,isbn2))))),SQLF).

SELECT 1

FROM DUAL

WHERE NOT EXISTS (SELECT *

FROM classified a1,classified a0

WHERE a0.c1<>a1.c1 AND a1.c2=a0.c2)

A SCDBR predicate can transform this SQL query into a string that is apt to be given
directly to ORACLE. For this query, ORACLE returns 1 if it is true, and no tuples if it is
false7.

An alternative to this methodology for checking safeness and translating first–order formu-
las into SQL code is to implement the verification and transformation mechanisms presented
in (van Gelder & Topor, 1987) as done in the implementation described in
(Chomicki & Toman, 1995).
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6.5.2. Coupling SCDBR to a RDBMS We implemented a basic interface between OR-
ACLE and SICSTUS PROLOG with the purpose of asking SQL queries to ORACLE from
SCDBR (this is not a coupling (Ceri et al., 1990) of PROLOG to ORACLE in the sense we
will discuss in section 6.5.3). For achieving this, a couple of primitives, that use the ORA-
CLE Call Interfaces Library, were written in C. After that, these primitives were declared as
PROLOG predicates by means of the C interface provided by SICSTUS PROLOG. They are:
(1) ora open db: this predicate allows the connection to ORACLE. If, for some reason,
this is not possible, it prints an error message on screen and fails. This is example of call:
| ?- ora_open_db("scott/tiger"). (where scott and tiger are the account name
and password, respectively); (2) ora close db: this predicate causes disconnection from
the server. It is used this way: | ?- ora_close_db.; (3) ora sql(+QUERY,-RESULT):
this is the central predicate that asks the query to the ORACLE server. QUERY is a string
containing the query to be posed, whose result will be given in the list RESULT, that contains
all the tuples that satisfy the query. If the query is a sentence, then RESULT is true or false.
Finally, RESULT is an error message if the connection to the ORACLE server is interrupted.

The high level predicate sql initial is responsible for accepting an first-order formula
at S0 as a query, translating it into SQL, posing the query to the ORACLE database and
returning the answer. All this is done by calling the predicates previously defined. For
example, we can check the previous functional dependency at the initial database by calling:

| ?- i_p(forall(isbn1):forall(isbn2):forall(id1): (classified(isbn1,

id1, s0) & classified( isbn2, id1, s0 ) => isbn1 eq isbn2), F),

sql_initial(F).

If the ORACLE database corresponds to the initial database given in section 3, we obtain
the answer true.

6.5.3. Coupling other Reasoners with the RDBMS We have already seen that from
SCDBR it is possible to reason with PROLOG at the initial database level. This functionality
required having the initial relational database as a list of PROLOG facts. Nevertheless, as
pointed out at the beginning of this section, in applications it is most likely that the relational
data will be stored as tables in a RDBMS. So, in the most common scenario we will have
clauses to be used by an automated reasoner like PROLOG or OTTER plus a collection of
relational data in a RDBMS containing the facts that would be needed by the automated
reasoners. Since it is not practical to translate the whole contents of the relational system
into a file of facts to be appended to the clauses and further used by the automated reasoner, it
is necessary the coupling (Ceri et al., 1990) of the reasoners to the RDBMS. One possibility
would be to have a loose coupling, where data from the database is accessed at compilation
time. Another possibility would be to have a tight coupling, where data from the database is
requested at execution time according to the needs of the deductive process. This requires
submitting SQL queries from, e.g. PROLOG, to the database in an interactive way. The
first alternative makes fewer accesses to the database, but may retrieve too many facts. The
second alternative makes more, but more specific calls. For a discussion of the alternatives
and optimizations see (Ceri et al., 1990).



SCDBR 269

We will not attempt a full implementation of the coupling of PROLOG to ORACLE, but
rather use software that is already available for this specific task. The chosen system should
be called by SCDBR.

7. Reasoning with SCDBR

In this section we will show some reasoning tasks that SCDBR can perform from the
database specification.

7.1. Checking the Legality of Actions

A sequence of instantiated actions [A1(~t1), . . . , An(~tn)], to be executed in this order, is
legal if, for each action Ai, the precondition for its execution, say ΠAi , is satisfied in the
state that results from the execution ofA1, . . . , Ai−1. In order to check the precondition for
action Ai in the state resulting from the execution of the i− 1 preceding actions, we apply
i− 1 times the regression operator to the formula ΠAi(do([A1(~t1), . . . , Ai−1(~ti−1)], S0)).
This has to be done for each i. In this way, we get rid of the do symbol and the resulting
formulas are checked against the initial database. This algorithm was introduced by Reiter
((Reiter, 1992, Reiter, 1995)).

SCDBR has the predicate al (for action legality), that, given a list of transactions, returns
the formulas to be checked against the initial database.

Example: We will ask the system to verify if the sequence of transactions, executed from
S0, [order(′3−540−18199−7′, 1), classifyBook(′0−412−14930−3′,′ 4′)] is legal.

| ?- al([order(’3-540-18199-7’,1),classify_book(’0-412-14930-3’,’4’)]

,[F1,F2]),p_l([F1,F2], prune_una,[F3,F4]),p_l([F3,F4],prune_uno,

[F5,F6]),prolog_initial(and(F5,F6)).

true

The two formulas to be verified are stored in F1 and F2. The pruners based on unique
names for actions and objects are called, obtaining in F5 y F6 the following formulas:

• (∃title, author , editor , year , edition)

BooksInPrint(′3−540−18199−7′, title, author , editor , year , edition) ∧ 1 > 0
• (∃quantity) Unclassified(′0−412−14930−3′, quantity , S0) ∧

¬∃isbn Classified(isbn,′ 4′, S0),

Finally, the predicate prolog initial (see section 6.3.1) verifies if these formulas are
logical consequences of the initial database, what turns out to be true.
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7.2. Temporal Projection via Regression

We want to know if a formulaϕ is true in the database obtained after executing a sequence of
legal actionsA1, . . . , An, without having to physically update the database. More precisely,
we want to verify if

Σ |= ϕ(do(An, . . . , do(A1, S0) . . .)) (17)

holds, being Σ the specification of the database as given in section 3. In order to do this,
we first apply n times the regression operator to ϕ, as proposed by Reiter (Reiter, 1991),
so that the resulting expression only mentions the state S0. Next, we apply the pruning
operators, generating a new formula to be checked against the initial database. In SCDBR,
this can be done with PROLOG as a query language or with OTTER.

Example: We want to verify if there is a stock of books with isbn ′0−412−14930−3′

after executing the sequence of legal actions

[order(′3−540−18199−7′, 1), classifyBook(′0−412−14930−3′,′ 4′)].

This can be expressed with the following sentence:

∃n Stock(′0−412−14930−3′, n, do(classi fyBook(′0−412−14930−3′,′ 4′),
do(order(′3−540−18199−7′, 1), S0)))

(18)

To answer this query, we call the following procedures:

| ?- i_p( exists(int1) : stock(’0-412-14930-3’,int1,do(classify_book

(’0-412-14930-3’,’4’), do(order( ’3-540-18199-7’, 1), s0))),F),

reg_n(F,2, F1),prune_una(F1, F2),prune_uno(F2, F3),csf(F3, F4),

prolog_initial(F4).

true

In this case, the regression operator was applied twice (this is indicated to the system with
the second parameter of predicate reg n). Finally, the pruners based on unique names for
actions and objects, and the simplifier csfwere applied. As the result of all these operations
we obtain the following formula (stored in variable F4):

∃n (∃n1 (Stock(′0−412−14930−3′, n1, S0) ∧ n = n1 + 1) ∨
∀n2 ¬Stock(′0−412−14930−3′, n2, S0) ∧ n = 1)

(19)

Finally, with predicate prolog initial, we invoked PROLOG in order to verify if the
formula (19) is true in the initial database, what turned out to be the case.

7.3. Physical Update of the Database

SCDBR is able to physically update the initial database after a legal action has been per-
formed. The basic idea is to transform, first, the successor state axioms (SSAs) into PRO-
LOG clauses with the fluents at the successor state in their heads (this can be done automati-
cally the procedure described in section 6.3), and then to use the built–in predicate findall
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of PROLOG to find all the fluents that are true after executing an action. This idea was taken
from the “rolling–forward” module implemented in GOLOG (Lesperance et al., 1994).

A more efficient procedure is implemented in SCDBR for specifications that have context
free SSAs (Lin & Reiter, 1994a, Lin & Reiter, 1995, Lin & Reiter, 1997), that is, of the
form:

Poss(a, s) ⊃ [F (~x, do(a,s)) ≡ (∃~y1)a = A1(~u1) ∨ · · · ∨ (∃~ym)a = Am(~um)∨
F (~x, s) ∧ ¬(∃~z1)a = B1(~v1) ∧ · · · ∧ ¬(∃~zn)a = Bn(~vn)].

(20)

With this kind of SSAs it is easier to detect which are the tuples to be added or removed
to/from the current database (Lin & Reiter, 1995, Lin & Reiter, 1997). SCDBR, before
starting to progress the database, parses the SSAs in order to verify if they are context free.
If this is the case, it applies the more efficient updating algorithm. Otherwise, it applies the
general procedure.

Example: We wish to update the initial library database as the result of classifying a
new copy of the book with isbn number ′0−412−14930−3′:

| ?- progress(classify_book(’0-412-14930-3’,’13’)).

We obtain a new initial database, whose fluents (tables) have S0 as the state component, as
expected. So, we can use all the SCDBR functionalities with the new initial database. For
example, we can see that in the updated database we now have one more copy of the book
with isbn ′0−412−14930−3′:

| ?- prolog_initial(stock(’0-412-14930-3’,int1,s0)).

[[int1,3]]

7.4. Integrity Constraints

In this paper we will concentrate on static integrity constraints. That is, on sentences of the
form

∀s (S0 ≤ s ⊃ ϕ(s)), (21)

where s is the only state term mentioned in ϕ(s). S1 ≤ S2 means that S2 is of the form
do([A1, . . . , An], S1), where, for each i, Poss(Ai, do([A1, . . . , Ai−1], S1)) holds. This
relation is defined by induction on states in (Reiter, 1992, Reiter, 1995). In the rest of this
section we will talk about “the IC ϕ(s)”, tacitly assuming the condition S0 ≤ s.

Given an integrity constraint (IC), we would like to be sure that if it is true in all states that
are accessible from the initial state by means of a finite sequence of legal actions. This could
be established by proving the IC from the specification. Otherwise, we might feel tempted
to modify our specification so that the desired integrity is entailed by the new specification
(Lin & Reiter, 1994b).

SCDBR is able to solve these tasks, namely: (1) to automatically proof ICs that are logical
consequences of the the specification; and, with some qualifications, (2) to automatically
modify the specification in order to subsume the IC. In the next sections we describe these
two functionalities.
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7.4.1. Automated Proofs of Integrity Constraints We want to prove the IC (21) from
the specification Σ, This can be done by induction on states (Reiter, 1993). More precisely,
according to a result by Lin and Reiter (Lin & Reiter, 1994b), the following steps have to
be checked:

1. Σ |= ϕ(S0), that is, the IC hold at the initial state.

2. Σ |= ∀(a, s).ϕ(s)∧Poss(a, s) ⊃ ϕ(do(a, s)). This is the inductive step, proving that
the IC holds at every legal successor state do(a, s) of every state s at which the IC
holds.

In SCDBR, these two tasks are done with the predicate prove ic. The proof in the base
case, ϕ(S0), is done with PROLOG as a query language (see section 6.3) or with ORACLE
in case the initial database is a conventional relational database. The proof of the inductive
step is done with OTTER8.

Example: The specification of the library database entails the following functional de-
pendency:

Classified(isbn1, id , s) ∧ Classified(isbn2, id , s) ⊃ isbn1 = isbn2, (22)

which states that two different books cannot be classified with the same identifier id . We
will use predicate prove ic to prove this IC.

| ?- i_p( forall(isbn1) : forall(isbn2) : forall(id1) : (classified(

isbn1,id1,s) & classified(isbn2,id1,s) => isbn1 eq isbn2 ), F),

prove_ic(F).

Proof for the initial database:

------------------------------

The proof in the initial state was successful.

Inductive step:

--------------

invoking Otter. I’ll tell you when I’m done.

-------- PROOF --------

We have also used the term rewrite system RRL (Kapur & Zhang, 1995) to prove integrity
constraints. This system has powerful capabilities for automatically performing proofs by
induction, so it is not necessary to give explicitly to RRL the inductive step. The methodol-
ogy and results are reported in (Bertossi et al., 1996b). We are currently interfacing SCDBR
to RRL and implementing the general methodology.
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7.4.2. Modifying the Specification: Ramifications A first attempt to embed desired
ICs into the specification, in such a way that the IC is entailed by the new specification,
consists in modifying the effect axioms (or directly the SSAs). This can be seen as a way
of solving the ramification problem, that is, including the side effects of actions into the
specification given in terms of SSAs. To provide a general solution is an open problem.
Pinto (Pinto, 1994) gives a solution for a syntactical class of ICs, namely, binary ICs, that
is, ICs where the formula ϕ(s) in (21) is of the form:

[¬]F1( ~x1, s) ∨ [¬]F2( ~x2, s) ∨ ψ, (23)

where F1 and F2 are fluents in the specification; ψ is a formula without state terms; and [¬]
represent the fact that the fluents may be negated or not. Notice that functional dependencies
are a special cases of binary ICs.

We will briefly describe Pinto’s procedure. For simplicity, we will assume that the ICs
have the form:

F1( ~x1, s) ∨ F2( ~x2, s) ∨ ψ. (24)

For each negative effect axiom for F1, of the form

Poss(A(~x), s) ∧ ε−F1
(~x, ~y, s) ⊃ ¬F1(~y, do(A(~x), s)), (25)

the following new positive effect axiom for F2 is added to the specification:

Poss(A(~x), s) ∧ ε−F1
(~x, ~y, s) ∧ ¬ψ ⊃ F2(~y, do(A(~x), s)). (26)

The same is done for fluent F2. If negations appear in (24), the procedure works in a similar
way.

Example: Let us delete the following effect axiom from the library specification

Poss(classifyBook(isbn, id), s) ∧ Stock(isbn, quantity , s) ⊃
¬Stock(isbn, quantity , do(classifyBook(isbn, id), s)).

We obtain a new, but semantically incorrect, specification, in the sense that now we can
conclude that if, at a given state, we had quantity books in stock with identifier isbn , and
an extra copy was classified, then we will have both quantity + 1 and quantity copies of
the same book in stock, what is not intended. More precisely, the modified specification
does not satisfy the functional dependency:

Stock(isbn, quantity1, s) ∧ Stock(isbn, quantity2, s) ⊃ quantity1 = quantity2.

This IC is logically equivalent to the binary IC:

¬Stock(isbn, quantity1, s) ∨ ¬Stock(isbn, quantity2, s) ∨ quantity1 = quantity2.

The SCDBR procedure ramification will generate a new specification that entails the
functional dependency (actually, it will recover the original library specification). More
precisely, this is done in the system in this way:
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| ?- i_p(neg stock(isbn1,int1,s) v neg stock(isbn1,int2,s) v int1 eq

int2, R1),ramification(R1,R2),p_i(R2,R3).

The variable R2 contains the new set of effect axioms. The original and the new sets of
effect axioms differ by the following axiom provided by the procedure9:

Poss(classifyBook(isbn, id), s) ∧ ¬quantity1 = quantity2 ∧
((Stock(isbn, quantity3, s) ∧ quantity1 = quantity3 + 1) ∨

(∀quantity ¬Stock(isbn, quantity , s) ∧ quantity1 = 1)) ⊃
¬Stock(isbn, quantity2, do(classifyBook(isbn, id), s)).

Notice that this axiom is slightly more general than the original one. It says that: (1) If
there are quantity books with isbn in stock in the current state, then, after classifying an
extra copy, there will be no quantity of copies in stock different from quantity + 1; (2) If
the are no books with isbn in stock, then after classifying a book with this isbn , there is no
quantity in stock different from 1.

7.4.3. Modifying the Specification: Qualifications In (Lin & Reiter, 1994b), Lin and
Reiter give an alternative and general methodology for embedding an IC into a new speci-
fication, that will entail it. It consists in modifying the action precondition axioms, putting
further constraints on the actions that qualify to be executed. Given an action A, with
precondition axiom ΠA(s), and an IC, ϕ(s), if we want to be sure that ϕ(s) will hold after
executing A, it suffices to replace ΠA(s) by ΠA(s) ∧ ϕ(do(A, s)). In order to avoid the
occurrences of both s and do(A, s) in this formula, the regression operator can be applied,
so that the new precondition will be ΠA(s)∧R[ϕ(do(A, s))]. This is done for each named
action A. In this way the IC will hold after executing any legal action (now, satisfying the
new preconditions).

Based on this methodology, the SCDBR predicate, qualification, can compute a new
specification that satisfies a given IC.

Example: In the original library specification we will replace the precondition axiom for
the action classifyBook by the formula:

Poss(classifyBook(isbn, id), s) ≡ (∃copies)Unclassified(isbn, copies, s). (27)

Now we have an incorrect specification, because there may appear two different books with
the same id . More precisely, this specification does not entail the functional dependency:

Classified(isbn1, id , s) ∧ Classified(isbn2, id , s) ⊃ isbn1 = isbn2 (28)

The new specification, from which the IC does follow, can be computed in this way:

| ?- i_p( forall(isbn1) : forall(isbn2) : forall(id1) : ( classified

(isbn1,id1,s) & classified(isbn2,id1,s) => isbn1 eq isbn2 ), F),

qualification(F,R).



SCDBR 275

The new set of action precondition axioms is stored in the variable R. The predicate
qualification automatically simplifies the formula resulting from the regression accord-
ing to the unique names axioms for actions. The new precondition axiom for classifyBook
is the formula:

Poss(classifyBook(isbn, id), s) ≡ ∃copies Unclassified(isbn, copies, s) ∧
∀(isbn2, isbn3, id2) (( isbn = isbn3 ∧ id = id2 ∨ Classified(isbn3, id2, s)) ∧

( isbn = isbn2 ∧ id = id2 ∨ Classified(isbn2, id2, s))
⊃ isbn3 = isbn2),

which is equivalent to:

Poss(classifyBook(isbn, id), s) ≡ ∃copies Unclassified(isbn, copies, s) ∧ ϕ(s) ∧
∀isbn2 (Classified(isbn2, id , s) ⊃ isbn = isbn2).

Here, ϕ(s) is the IC (28). Notice that this formula can be eliminated from the precondition,
because the IC can be proved by induction without that extra condition (it is exactly the
induction hypothesis, see section 7.4.1).

The new axiom basically adds to (27) the fact that classifyBook can be executed if, among
other conditions, every time we try to classify an exemplar of a book, with an id that was
used before, then we must be classifying the same exemplar. This new precondition for
classifyBook is weaker than the original precondition we had in the specification in section
3. Before, it was impossible to execute twice the same classification action, that is, on
an already classified exemplar. Now, we are allowed to repeat the action (classifying an
already classified exemplar with the same id ), but there will be no new effects.

7.5. Historical Queries

SCDBR can answer historical queries (HQs). We have developed a methodology for posing
HQs to a virtually updated database and for answering them. The methodology is presented
in detail in (Siu et al., 1996, Siu & Bertossi, 1996a) (see also (Siu & Bertossi, 1996c)).

The most basic kind of query we can think of is “Given a formula ϕi(s) and two states
sLi , sUi along a legal transaction list T , does ϕi hold in all intermediate states between
sLi , sUi (including sLi and excluding sUi )?”. A query of this kind can be expressed by the
formula (∀s)sLi ≤ s < sUi ⊃ ϕi(s), and is called a universal query. The states sLi , sUi
are called the bounds of the HQ10. In SCDBR we can express queries that are existential
quantifications on the bounds of conjunctions of universal queries (plus restrictions on the
bounds). In the queries we find the accessibility relation, s1 ≤ s2 (see section 7.4).

A general algorithm for answering queries in this format consists basically in the following
steps: First, for every formula ϕi appearing in a universal query, obtain a list of states for
which the formula is true. This requires evaluation in all states along T . The outcome of
this module is what we call a map of the formulas ϕi.

Second, from the map and the restrictions on the bounds, that can be translated into nu-
merical constraints by introducing a signed distance function of pairs of accessible states,
a new query is generated that only mentions (in)equalities between pairs of integers. This
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new query can be seen as a Constraint Satisfaction Problem (CSP), for which we apply con-
straint logic programming, more precisely, CLP(FD) (Codognet & Diaz, 1996, Diaz, 1994).
There original query has positive answer iff the CSP has a solution.

This algorithm needs to keep the truth value of every formula ϕi in every state along T .
This process can be optimized: Only a few actions should be able to change the truth value
of the formulas ϕi from one state to another, because every formula ϕi mentions only a
few fluents. Moreover, only a few fluents should be “tracked” to answer the queries. We
will explain how to characterize those “relevant” actions and fluents, which can be used to
improve the algorithm for computing the map of the query by updating only a few tuples
in the database (other optimizations can be found in (Siu & Bertossi, 1996b)).

If a fluent F has the successor state axiom Poss(a, s) ⊃ F (do(a, s)) ≡ ΦF , every fluent
F ′ appearing in ΦF will be “relevant” to F , since the truth value of F in the successor
state “depends” on the truth value of F ′. Therefore, if we are interested in the truth value
of F along T , we must track any fluent mentioned in the SSA of F . We must repeat
this process for each F ′, looking recursively into the SSAs until no new fluents are found.
In (Siu & Bertossi, 1996b), a more refined and terminating version of this algorithm is
described.

To determine the relevant actions, we follow a similar approach: any actionA that affects
the truth value of F from a state s to state do(A, s) must be mentioned in ΦF , so all the
actions that are relevant to a fluent must be mentioned in the SSA of some fluent that is
relevant to the given fluent11.

Example: Let us consider the following legal transaction list:

T = [classifyBook(′0−412−14930−3′,′ 13′),
classifyBook(′0−412−14930−3′,′ 14′), deleteBook(′10′)]

(29)

We want to know if there is a state, along the current transaction list, such that there is a
book with more that three copies in stock. This is represented by the formula:

∃s(S0 ≤ s ≤ do(T, S0) ∧ ∃(isbn, int). Stock(isbn, int , s) ∧ int > 3) (30)

In SCDBR the query is posed as follows:

| ?- set_curr_trans([ classify_book( ’0-412-14930-3’, ’13’ ),

classify_book(’0-412-14930-3’,’14’),delete_book(’10’)]).

| ?- set_curr_query([[dist(su1,sl1)=1],[sl1,su1,some(isbn1,some(int1,

and(stock(isbn1,int1),int1>3)))]]).

| ?- process_curr_query.

The map is

[[[2,2]]]

.

Query succeeds. Possible bounds values are:

Sl1 : 2

Su1 : 3
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As expected, the answer is true (only in the state resulting from the execution of the first
two actions).

8. Conclusions and Related Work

We have presented an automated system written in SICSTUS PROLOG that is able to
perform several reasoning tasks when it is run with an initial input database and a preliminary
specification of the effects of transactions and their execution preconditions expressed in
a language of the situation calculus. First, the system generates a new specification that
solves the frame problem in the form proposed by Ray Reiter.

Having the new specification, the system is able to perform several reasoning tasks, like:
(1) checking legality of transactions by regression to the initial database, (2) answering
queries about a virtually updated database by regression to the initial database, (3) modifi-
cation of the specification in order to impose desirable integrity constraints, (4) automated
proofs of integrity constraints, (5) materialization of virtual updates, (6) answering queries
about the evolution of the database by goal-oriented progression of the database, (7) auto-
mated proofs at the initial database level.

For solving those tasks the system has been connected to other automated systems like:
RRL, OTTER, CLP(FD), ORACLE, PROLOG (as a theorem prover). The system has
some procedures to interact with these systems and the user like: conversion of first–order
sentences into PROLOG programs, SQL queries, clauses to be used by OTTER, conditional
equations to be used by RRL, automated generation of different domain closure axioms,
relaxation of formulas, etc.

We have achieved to develop a computational system that is able to reason from and with
relational databases (actually the system can also handle first–order databases, nevertheless
we have not emphasized this capability) plus a logical specification of the transactions
that may affect the tables. It is important to stress the fact that tables and specification of
updates coexist at the same object level with a clean and clear first–order semantics. This
is possible if one takes seriously Reiter’s proposal about a transaction based semantics of
database updates derived from specifications in the situation calculus. We have brought
this approach into practice.

Our approach can be seen as a logical reconstruction and implementation of the transaction
based approach presented in (Abiteboul & Vianu, 1989), but with basic transactions at a
higher level than those of insertion, deletion and modification. Our action preconditions are
also more general that the conditions allowed in that paper. It is interesting to realize that
our system brings into practice reasoning about the relationship and interaction between
transaction based and constraint based semantics for databases as discussed there.

Issues for further research and implementation around SCBDR are: (1) development of
a bigger and interesting application for SCDBR, in which its facilities for modeling and
reasoning can be better appreciated, (2) usage of SCDBR in combination with the RDBMS
to which it is coupled in order to answer historical queries in the spirit of section 7.5,
when one starts with a conventional relational database and makes partial progression of
the database by means of a RDBMS, (3) extension of the methodology for proving integrity
constraints with RRL and full integration of it into SCDBR.
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We have found many points in common with the implementations done by the Cogni-
tive Robotics Group at the University of Toronto (Lesperance et al., 1994). This is not
strange since both groups have as a starting point specifications of dynamic worlds in terms
of successor state axioms written in languages of the situation calculus. However, their
implementations and developments are focused on cognitive robotics and not on database
systems. Their specifications are written as logic programs and directly in terms of succes-
sor state axioms (translated into rules); instead we try to stay first–order as much as possible
having the freedom to commute to logic programming if desired. Furthermore, we start
from preliminary specification of effects from which we derive the necessary successor state
axioms. As far as we know, the Toronto group has not worked on implementations of proofs
of integrity constraints and answers to historical queries. On their side, they have done a lot
of interesting work on implementation of complex and epistemic (knowledge producing)
actions in their high level robot programming language GOLOG. We have considered the
case of basic transactions only.

An approach to database updates specifications that is close in spirit to ours is transaction
logic (Bonner & Kifer, 1994). They have developed powerful mechanisms for specifying
and executing complex transactions. Nevertheless, that approach concentrates on complex
actions, leaving basic actions not fully specified, in the sense that they do not provide an
explicit declarative solution to the frame problem for such actions. An implementation of
a Horn fragment of transaction logic is reported in (Hung, 1996).
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Notes

1. SCDBR is available from ftp://ing.puc.cl/pub/escuela/dcc/scdbr.

2. Although, Reiter’s transformation can also be seen as a particular form of non-monotonic reasoning. This
solution was carefully discussed and assessed in the context provided by Sandewall’s assessment methodology
(Sandewall, 1994) in (Bedrax & Bertossi, 1995).

3. Fluents are properties that may change as actions are performed. In the database context, fluents correspond
to the tables in the database.

4. In (Reiter, 1992, Reiter, 1995), and in contrast to the presentation in (Reiter, 1991), Reiter starts with specifi-
cations given in terms of successor state axioms.

5. Notice that the formulas in this database represent a relational database.

6. For example, it replaces a formula ϕ ∨ false by ϕ, and a formula ∃x (ϕ ∧ ψ(x)) by ϕ ∧ ∃x ψ(x), when x
does not appear in ϕ, etc.
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7. SCDBR automatically generates columns or attributes c1, c2, ... in the ORACLE database, corresponding to
the arguments in the first–order predicates.

8. For doing this, we put in the “usable list” the specification Σ and unique names axioms for actions and
individuals. The negated inductive implication is plugged into the “set of support”. Paramodulation, binary
resolution and hyperresolution are also set.

9. The system is able to realize when a fluent in a binary constraint subsumes the other one, as in functional
dependencies. In that case, it computes the new effect axiom for more general fluent.

10. In the literature it is possible to find this kind of queries about different states of the database under the name
of “temporal queries” (Snodgrass & Ahn, 1986).

11. There is a counterexample to this claim in (Siu & Bertossi, 1996b). However, the claim does hold for specifi-
cations generated from effect axioms.
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