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The problems of composing and inverting schema mappings specified by source-to-target
tuple-generating dependencies (st-tgds) have attracted a lot of attention, as they are
of fundamental importance for the development of Bernstein’s metadata management
framework. In the case of the composition operator, a natural semantics has been proposed
and the language of second-order tuple generating dependencies (SO-tgds) has been
identified as the right language to express it. In the case of the inverse operator, several
semantics have been proposed, most notably the maximum recovery, the only inverse
notion that guarantees that every mapping specified by st-tgds is invertible. Unfortunately,
less attention has been paid to combining both operators, which is the motivation of this
paper. More precisely, we start our investigation by showing that SO-tgds are not good
for inversion, as there exist mappings specified by SO-tgds that are not invertible under
any of the notions of inversion proposed in the literature. To overcome this limitation, we
borrow the notion of CQ-composition, which is a relaxation obtained by parameterizing
the composition of mappings by the class of conjunctive queries (CQ), and we propose
a restriction over the class of SO-tgds that gives rise to the language of plain SO-tgds.
Then we show that plain SO-tgds are the right language to express the CQ-composition
of mappings given by st-tgds, in the same sense that SO-tgds are the right language
to express the composition of st-tgds, and we prove that every mapping specified by a
plain SO-tgd admits a maximum recovery, thus showing that plain SO-tgds have a good
behavior w.r.t. inversion. Moreover, we show that the language of plain SO-tgds shares
some fundamental structural properties with the language of st-tgds, but being much more
expressive, and we provide a polynomial-time algorithm to compute maximum recoveries
for mappings specified by plain SO-tgds (which can also be used to compute maximum
recoveries for mappings given by st-tgds). All these results suggest that the language
of plain SO-tgds is a good alternative to be implemented in data exchange and data
integration applications.
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1. Introduction

A schema mapping is a specification that describes how data from a source schema is to be mapped to a target schema.
These specifications have been essential for several data-interoperability tasks such as data exchange [12] and data inte-
gration [20]. However, the need for manipulating these artefacts has been recently pointed out in the literature [6,23,24,7].
Thus, schema mappings have become an object of study as first class citizens in a framework where they are expressed in
a declarative form and high level algebraic operators are used to manipulate them [6].

Consequently, the study of algebraic operators between schema mappings has become crucial for metadata management.
Following Bernstein’s framework [6], most of the work in metadata management has focused on the definition of the se-
mantics of algebraic operators that are used to manipulate schema mappings. Among the most important schema mapping
operators, we find the composition and inverse operators. Both have been studied thoroughly, resulting on a clear under-
standing on the definability of these operators, and the existence of mappings satisfying the definition of these operators,
for a wide variety of classes of schema mappings [14,10,15,5,3]. The basis of this work has invariantly been mappings that
are defined by sets of source-to-target tuple-generating dependencies (st-tgds), the most commonly used mapping language
for data exchange and integration [12,20]. Nevertheless, less attention has been paid to schema mapping languages that
are good for both operators, composition and inversion. In this paper, we explore the relationship between good mapping
languages that extend st-tgds and have good properties regarding both composition and inversion.

In [14], Fagin et al. show that the language of SO-tgds, an extension of st-tgds with second-order existential quantifica-
tion, is closed under composition and prove several results that show that it is the right language to compose mappings.
In particular, they show that SO-tgds are the smallest language capable of expressing the composition of st-tgds, since for
every SO-tgd λ one can find a sequence of st-tgds such that their composition is specified precisely by λ. Despite the good
properties of SO-tgds with respect to composition, none of the notions of inverse proposed for schema mappings [10,15,5,3]
have been considered together with the composition of schema mappings, that is, for the case of SO-tgds. In this paper,
we show that, unfortunately, SO-tgds are not appropriate for our study; there exist mappings specified by SO-tgds that
have no CQ-maximum recoveries, which is the weakest notion of inverse defined in the literature [4], implying that there
exist mappings specified by SO-tgds that are not suitable for inversion under any of the notions of inverse proposed until
now [3]. Thus, although the language of SO-tgds is the right language for composition, its behavior is not the ideal regarding
inversion. Moreover, since every SO-tgd is known to represent a composition of a finite number of st-tgds, we conclude that,
in general, the composition of st-tgds cannot be inverted under any of the notions of inverse proposed in the literature.

To overcome the limitations of SO-tgds with respect to inversion, we borrow the notion of composition w.r.t. conjunctive
queries (CQ-composition), introduced by Madhavan and Halevy [22] and show that the CQ-composition of any number of
st-tgds is guaranteed to have a maximum recovery. To do this, we propose to study the language of plain SO-tgds, a slightly
restricted version of SO-tgds. In particular, we show that this language can specify the CQ-composition of st-tgds and,
moreover, that every mapping given by plain SO-tgds is invertible when the notion of inverse considered is the notion of
maximum recovery [5].

The good behavior of plain SO-tgds for combining composition and inversion raises questions regarding the possibility
that this mapping language behaves just as good when performing other data interoperability tasks. In order to further study
this language, we follow the approach of ten Cate and Kolaitis [26,27], and analyze the structural properties of plain SO-tgds,
comparing them with the properties of other common mapping languages such as st-tgds and SO-tgds. We show that, in
terms of ten Cate and Kolaitis taxonomy [26], the behavior of plain SO-tgds can be considered closer to st-tgds than to
SO-tgds, in the sense that plain SO-tgds share with st-tgds all the properties of mapping languages that were noted in [27]
as crucial for data exchange and data integration; plain SO-tgds allow for rewriting of conjunctive queries, they always admit
universal solutions, and are closed under target homomorphisms. We also show that plain SO-tgds are strictly more expressive
than other well-behaved mapping languages such as st-tgds and the language of nested tgds defined in [19]. It is interesting
to note that plain SO-tgds are, to the best of our knowledge, the most expressive mapping language that enjoys all three
aforementioned properties. This gives a negative answer to the question raised in [26] of whether all mappings that allow
for conjunctive query rewriting, admit universal solutions, and are closed under target homomorphisms can be specified
with nested tgds. Therefore, this allows us to restate this question by putting the language of plain SO-tgds as the main
candidate for a positive answer.

Towards the end of the paper we show our most interesting algorithmic result regarding inversion; we provide the first
polynomial-time algorithm to compute maximum recoveries of mapping specified by plain SO-tgds. Specifically, given a
mapping M specified by a set of plain SO-tgds, our algorithm returns a maximum recovery of M specified in a language
that extends the class of plain SO-tgds. This result is interesting in its own right since our algorithm is the first polynomial-
time algorithm for inverting schema mappings and, in particular, for inverting mappings given by st-tgds in polynomial time.
It should be noticed that it is open whether the language needed to specify the maximum recovery of a plain SO-tgds is
also invertible or closed under composition. However, the study of plain SO-tgds opens new possibilities for studying closure
properties of the composition and inversion of st-tgds, which we believe are interesting problems for future research.

The rest of the paper is organized as follows. In Section 2, we give the basic notation used in the paper, while in Section 3
we show the negative result regarding SO-tgds, composition and inversion. In Section 4, we present the mapping language of
plain SO-tgds as a solution to the problem of combining composition with inversion, and show its good structural properties.
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In Section 5, we provide a polynomial-time algorithm to compute maximum recoveries for mappings given by plain SO-tgds.
Finally, we give some concluding remarks in Section 6.

Before continuing with the paper, we describe the new material in this article, compared with our previous conference
paper [4], and discuss some related work.

1.1. New material in this paper

Preliminary versions of some of the results in this paper appeared in [4]. Nevertheless, this paper contains substantial
new material. The negative result regarding the inversion of SO-tgds (presented in Section 3) is new and was informally
mentioned in [4]. All the results on the structural properties of plain SO-tgds and, in particular, the relationship with the
work by ten Cate and Kolaitis [27] were not included in [4] and are presented in this paper for the first time. These results
are included in Section 4. Besides, in this paper we include new examples and also detailed proofs which are not included
in [4].

1.2. Related work

In the recent years, there has been a lot of work about the composition and inversion of schema mappings [23,14,10,
15,5,4,3,17,1,16,2]. As most of the investigations in data exchange, data integration and schema mapping management, we
make the assumption that source instances contain only constant values, while target instances contain constant and null
values, the latter to represent missing (incomplete) information (see Section 2 for a formalization of our setting).

While almost no research has been made regarding the inversion of SO-tgds in this scenario, there have been at least
two investigations that relax the assumption mentioned above in order to study schema mapping operators. In [16], the au-
thors study a setting in which both source and target instances contain null values, and make the case that inverses should
be studied in this symmetric setting. Similarly, in [2] the authors study the problem of exchanging incomplete information
in a more general setting not only including nulls in the source data, but also considering general representation systems
to exchange data. In [2], the authors prove that under this new expressive semantics for mappings in which instances are
allowed to specify incomplete information in a general way, mappings specified by SO-tgds always have inverses under
the notion of maximum recovery. Nonetheless, neither [16] nor [2] provide algorithms for computing inverses of mappings
specified by SO-tgds, thus leaving open the issue of computing inverses of mappings that result from composing st-tgds. In
this paper, we follow an alternative approach. Instead of making mappings more expressive (by adding incomplete informa-
tion in source and target instances), we study the weaker language of plain SO-tgds under the typical semantics in which
source instances only contain constant values. We show that mappings given by plain SO-tgds always admit inverses under
the notion of maximum recovery, and also provide an efficient algorithm to compute maximum recoveries of mappings
specified in this language. This approach can be considered complementary to the approaches proposed in [16,2], as we
expect that our results on the classical scenario of data exchange can also be useful in the future research on mappings for
databases with incomplete information.

Regarding algorithms for efficiently inverting mappings given by st-tgds, Fagin et al. presented in [16] a polynomial-time
algorithm to compute inverses for such mappings in the scenario where incomplete information is considered in both source
and target instances. The algorithm proposed in [16] follows a similar approach to ours, using second-order quantification
to efficiently express inverses.

The previous works on inversion of schema mappings have mainly focused on inverting mappings specified by st-tgds.
The first of these works was by Fagin [10], where the author proposes a notion that was rather restrictive [15] as most
mappings specified by st-tgds do not admit an inverse under this notion. Subsequent works [15,2,4] have searched for more
relaxed notions of inversion. This approach has been successful for mappings specified by st-tgds, and the literature now
provides notions of inversion under which every mapping specified by st-tgds is invertible [2,4,3]. One of the motivations of
our work is the need of integrating inversion and composition, i.e. the need of inverting the output of the composition of
two mappings specified by st-tgds. Given that SO-tgds are not invertible under any of the main notions proposed so far in
the literature (see Theorem 6 and Corollary 7), one possible path is to search for an even weaker notion for inverting SO-
tgds. To the best of our knowledge there is no investigation in the literature following this last approach. In this paper, we
have decided to follow a different approach as instead of weakening the notion of inversion, we have weakened the notion
of composition by considering the CQ-composition. Since we prove that CQ-composition can always be represented in a less
expressive mapping language, the language of plain SO-tgds, our approach to investigate the interplay between composition
and inversion amounts to investigate of the inversion of plain SO-tgds, which is one of the main topics considered in this
paper.

2. Preliminaries

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having a fixed arity ni � 1. Let D be a countably
infinite domain. An instance I of R assigns to each relation symbol Ri of R a finite ni -ary relation R I

i ⊆ Dni . The domain
dom(I) of instance I is the set of all elements that occur in any of the relations R I . Inst(R) is defined to be the set of all
i
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instances of R. If a tuple ā belongs to R I
i , we say that Ri(ā) is a fact in I . We sometimes describe an instance as a set of

facts.
As is customary in the data exchange literature, we consider instances with two types of values: constants and nulls

[12,10,15]. More precisely, let C and N be infinite and disjoint sets of constants and nulls, respectively, and assume that
D = C ∪ N. If we refer to a schema S as a source schema, then Inst(S) is defined to be the set of all instances of S that
are constructed by using only elements from C, and if we refer to a schema T as a target schema, then instances of T are
constructed by using elements from both C and N. Source instances are instances of a source schema, and target instances
are instances of a target schema.

2.1. Schema mappings and universal solutions

We use a general representation of mappings; given two schemas R1 and R2, a mapping M from R1 to R2 is a set of
pairs (I, J ), where I is an instance of R1, and J is an instance of R2. Our results are mainly focused on a special class of
mappings that we call source-to-target mappings (st-mappings). A mapping M from R1 to R2 is an st-mapping, if R1 is a
source schema (that is, instances of R1 are constructed using only elements from C) and R2 is a target schema (that is,
instances of R2 are constructed by using elements from C and N). Unless otherwise noted, we always assume that mappings
are st-mappings. Thus, we often abuse the notation and speak of R1 as the source schema of M and R2 as the target schema
of M. Likewise, when M is understood from context, we refer to instances of R1 as source instances, and instances of R2 as
target instances. The class of target-to-source mappings, or ts-mappings, is defined analogously.

Given a mapping M, we say that J is a solution for I under M, if (I, J ) is in M. We denote by SolM(I) the set of
all solutions for I under M. A special class of solutions, denoted as universal solutions, has been pointed out as one of
the preferred classes of solutions to materialize in the data exchange scenario. To define them, we need the notion of
homomorphisms. Given instances J1 and J2 of the same schema, a homomorphism h from J1 to J2 is a function that is the
identity over constants (h(a) = a for every a ∈ C) maps null values to null or constant values, and for every fact R(a1, . . . ,an)

in J1, it holds that R(h(a1), . . . ,h(ak)) is a fact in J2. If there exist homomorphisms from J1 to J2 and from J2 to J1, then
we say that J1 and J2 are homomorphically equivalent. Then, an instance J is said to be a universal solution for an instance
I under a mapping M if J ∈ SolM(I) and for every J ′ ∈ SolM(I), there exists a homomorphism from J to J ′ [12].

2.2. Queries and certain answers

A k-ary query Q over a schema R, with k � 0, is a function that maps every instance I ∈ Inst(R) into a k-relation
Q (I) ⊆ dom(I)k . Notice that if k = 0 (Q is a Boolean query), then the answer to Q is either the set with one 0-ary tuple
(denoted by true), or the empty set (denoted by false). Thus, if Q is a Boolean query, then Q (I) is either true or false. As
is customary, we assume that queries are closed under isomorphisms, and we use CQ to denote the class of conjunctive
queries (that is, queries formed using conjunctions of relational atoms) and UCQ to denote the class of unions of conjunctive
queries. If we extend these classes by allowing equalities, then we use superscript =.

As usual, the semantics of queries in the presence of schema mappings is defined in terms of the notion of certain
answer. Assume that M is a mapping from a schema R1 to a schema R2. Then given an instance I of R1 and a query Q
over R2, the certain answer of Q for I under M, denoted by certainM(Q , I), is the set of tuples that belong to the evaluation
of Q over every possible solution for I under M, that is,

certainM(Q , I) =
⋂

J∈SolM(I)

Q ( J ).

2.3. Dependencies and definability of mappings

A relational atom over R is a formula of the form R(x̄) with R ∈ R and x̄ a tuple of (not necessarily distinct) variables.
Given disjoint schemas R1 and R2, a source-to-target tgd (st-tgd) from R1 to R2 is a sentence of the form:

∀x̄∀ ȳ
(
ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
,

where (a) ϕ(x̄, ȳ) is a conjunction of relational atoms over R1, and (b) ψ(x̄, z̄) is a conjunction of relational atoms
over R2. The left-hand side of the implication in a st-tgd is called the premise, and the right-hand side the conclusion.
We usually omit the outermost universal quantifier in st-tgds and thus, for a dependency as the above, we just write
ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄).

A second-order tuple-generating dependency (SO-tgd) from R1 to R2 is a formula of the form:

∃ f̄
(∀x̄1 (ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n (ϕn → ψn)

)
, (1)

where (a) each member of f̄ is a function symbol; (b) each formula ϕi (1 � i � n) is a conjunction of relational atoms
of the form S(y1, . . . , yk) and equality atoms of the form t = t′ , where S is a k-ary relation symbol of R1 and y1, . . . , yk
are (not necessarily distinct) variables in x̄i , and t , t′ are terms built from x̄i and f̄ ; (c) each formula ψi (1 � i � n) is
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a conjunction of relational atomic formulas over R2 mentioning terms built from x̄i and f̄ ; and (d) each variable in x̄i
(1 � i � n) appears in some relational atom of ϕi . As was noted in [14,25], there is a subtlety in the semantics of SO-tgds,
namely, the semantics of existentially quantified function symbols. In particular, in deciding whether (I, J ) satisfies an SO-
tgd λ, what should the domain and range of the functions instantiating the existentially quantified function symbols be?
The obvious choice is to let the domain and range be dom(I) ∪ dom( J ), but it is shown in [14,25] that this does not work
properly. Instead, the solution in [14,25] is as follows. Let λ be an SO-tgd from a source schema R1 to a target schema R2.
Then given an instance I of R1 and an instance J of R2, instance (I, J ) is converted into a structure (D; I, J ), which is just
like (I, J ) except that it has universe D. The domain and range of the functions in λ is then taken to be D. The intuition
is that the universe contains the domain of (I, J ) along with an infinite set of extra values. Then (I, J ) is said to satisfy λ,
denoted by (I, J ) |� λ, if (D; I, J ) |� λ under the standard notion of satisfaction in second-order logic (see, for example, [9]).
It should be noticed that it is shown in [14] that in the case of SO-tgds, instead of taking the universe D, one can take a
“sufficiently large” finite universe.

Let R1 and R2 be schemas with no relation symbols in common and Σ a set of sentences over R1 and R2. Then we say
that a mapping M from R1 to R2 is specified by Σ , denoted by M = (R1,R2,Σ), if for every instance I of R1 and instance
J of R2, it holds that (I, J ) ∈ M if and only if (I, J ) satisfies the dependencies in Σ . Notice that SO-tgds are closed under
conjunction (that is, if σ1 and σ2 are SO-tgds, then σ1 ∧ σ2 is logically equivalent to an SO-tgd). Thus, when specifying
mappings, we talk about a mapping specified by an SO-tgd (instead of a set of SO-tgds).

We conclude this section by pointing out that every finite set Σ of st-tgds can be transformed into an equivalent SO-tgd
by Skolemizing the existentially quantified variables in the conclusions of the dependencies in Σ . For example, a set Σ

consisting of the following st-tgds:

A(x, y) → ∃z
(

R(x, z) ∧ T (z, y)
)
,

B(x, y) → R(x, y)

is logically equivalent to the following SO-tgd:

∃ f
(∀x∀y

(
A(x, y) → R

(
x, f (x, y)

)) ∧ ∀x∀y
(

A(x, y) → T
(

f (x, y), y
)) ∧ ∀x∀y

(
B(x, y) → R(x, y)

))
. (2)

3. Composition, inversion, and how the composition of st-tgds is not always invertible

Two of the most important schema mapping operators that have been considered in the literature are the composition
and inversion. In this section, we first recall the definitions of these operators, and show a negative result regarding the
combination of both operators for mappings given by st-tgds.

3.1. Composition

The composition of mappings M1 and M2 is a mapping that intuitively has the same effect as the application of M1
and M2 one after the other. The formalization of mappings as just pairs of database instances allows for a clean definition
of the semantics of the composition of mappings, based on the composition of binary relations [23,14]. Formally, given
schemas R1, R2, and R3, and mappings M1 from R1 to R2 and M2 from R2 to R3, the composition of M1 and M2,
denoted by M1 ◦M2, is defined as:

M1 ◦M2 = {
(I, K ) ∈ Inst(R1) × Inst(R3)

∣∣ there exists J ∈ Inst(R2) such that (I, J ) ∈ M1 and ( J , K ) ∈ M2
}
.

Notice that this definition of composition ensures that for mappings M1 and M2, the composition M1 ◦M2 is unique.
Once the notion of composition is clearly defined, the natural problem of how to specify the composition arises. This

problem was throughly studied by Fagin et al. in [14]. In that paper, the authors first show a negative result regarding the
composition of mappings specified by st-tgds, namely that there exist mappings M1 and M2 both specified by st-tgds such
that the composition M1 ◦M2 cannot be specified in first-order logic [14]. On the positive side, Fagin et al. show in [14]
that the language of SO-tgds is a well-behaved language regarding composition. In particular, they show that SO-tgds are
closed under composition:

Theorem 1. (See [14].) Let M12 and M23 be mappings specified by SO-tgds. Then the composition M12 ◦M23 can also be specified
by an SO-tgd.

It is important to notice that Theorem 1 implies that the composition of a finite number of mappings specified by st-tgds
can be defined by an SO-tgd, as every finite set of st-tgds can be expressed as an SO-tgd.

Theorem 2. (See [14].) The composition of a finite number of mappings, each specified by a finite set of st-tgds, can be specified by an
SO-tgd.
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In [14], Fagin et al. show several other desirable properties of SO-tgds, being one of the most important that SO-tgds
are the minimal language capable of expressing the composition of st-tgds. In particular, they show that every mapping
specified by an SO-tgd is equivalent to the composition of a finite number of mappings, each specified by a finite set of
st-tgds. This result was later improved by Arenas et al. in [1], where the authors prove that every mapping specified by an
SO-tgd is equivalent to the composition of two mappings specified by st-tgds.

3.2. Inversion

In contrast with the case of the composition of schema mappings, whose semantics can be defined in a clean way in
terms of the composition of binary relations, the inverse operator for schema mappings has turned out to be far more diffi-
cult to define. In fact, there is not yet consensus on a semantics for this operator, so we review in this section some of the
main alternatives that have been studied in the literature: Fagin-inverse [10], quasi-inverse [15], maximum recovery [5], and
C-maximum recovery [4]. Recall that we are mainly interested in computing inverses of st-mappings, that is, of mappings
from a schema S to a schema T in which instances of S are assumed to contain only constant values while instances of T
contain constant and nulls. Notice that the inverse of an st-mapping is a ts-mapping. (To see some recent notions of inverse
that relax this assumption, we refer the reader to [16] and [2].)

Fagin [10] gave a first formal semantics for the inversion of schema mappings. Intuitively, Fagin’s definition was based on
the idea that any mapping composed with its inverse should be equal to the identity. Since we already have a clear notion
of what composition is, it is only needed to define a meaningful notion of identity in the context of schema mappings. Fagin
does so by introducing the following notion. Let S be a schema and consider the mapping IdS = {(I, J ) | I, J ∈ Inst(S) and
I ⊆ J }. In [10], Fagin made the case that IdS is a natural identity mapping in the context of st-tgds (which was the main
language considered in [10]). Thus, given a mapping M from S to T, a mapping M′ from T to S is a Fagin-inverse of M if
M ◦M′ = IdS [10].

It is observed in [15] that the notion of Fagin-inverse is very restricted as it is rare that a mapping possesses a Fagin-
inverse. For this reason, Fagin et al. [15] introduced the notion of a quasi-inverse of a schema mapping. We do not introduce
the formalization of this notion here and refer the reader to [15] for details. We only mention that the notion of quasi-
inverse is a strict generalization of notion of Fagin-inverse, as if M′ is a Fagin-inverse of a mapping M, then M′ is also
a quasi-inverse of M [15]; and, on the other side, there are mappings specified by st-tgds that have quasi-inverses but
do not have Fagin-inverses [15]. It was also shown in [15] that there exist simple mappings specified by st-tgds for which
quasi-inverses do not exist.

In view of the aforementioned results, Arenas et al. introduced the notion of maximum recovery in [5]. Consider the
mapping IdS given by IdS = {(I, I) | I ∈ Inst(S)}. Notice the difference between IdS and IdS; mapping IdS is the classical
identity of binary relations. When trying to invert a mapping M from S to T, the ideal would be to find a mapping M′
from T to S such that M ◦M′ = IdS . If such a mapping exists, we know that if we use M to exchange data, the application
of M′ gives as result exactly the initial source instance. Unfortunately, in most cases this ideal is impossible to reach. The
intuition behind the notion of maximum recovery is that we want to find a mapping M′ such that M ◦ M′ is as close as
possible to IdS . The following definition formalizes this idea.

Definition 3. (See [5].) Let M be a mapping from S to T. A mapping M′ is a recovery of M if IdS ⊆ M ◦ M′ . Moreover,
mapping M′ is a maximum recovery of M, if M′ is a recovery of M and for every other recovery M′′ of M, it holds that
M ◦M′ ⊆M ◦M′′.

One of the main results in [5] is that every st-mapping specified by a finite set of st-tgds has a maximum recovery. The
authors also prove the following result that states the relationship between Fagin-inverses, quasi-inverses and maximum
recoveries. We first need to introduce some terminology. We say that a mapping M from S to T is total if for every
I ∈ Inst(S), it holds that SolM(I) = ∅. Moreover, M is said to be closed-down on the left [10,27] if for every (I, J ) ∈ M and
K ⊆ I , we have that (K , J ) ∈ M. It should be noticed that every mapping specified by an SO-tgd is total and closed-down
on the left (and, thus, every mapping specified by a finite set of st-tgds is also total and closed-down on the left).

Proposition 4. (See [5].) Let M be a total mapping that is closed-down on the left.

1. If M has a Fagin-inverse, then M has a maximum recovery and every maximum recovery M′ of M is also a Fagin-inverse of M.
2. If M has a quasi-inverse, then M has a maximum recovery and every maximum recovery M′ of M is also a quasi-inverse of M.

Finally, we also consider in this section the notion of C-maximum recovery, which is a relaxation of the notion of
maximum recovery w.r.t. a class of queries C .

Definition 5. (See [4].) Let M be a mapping from a schema S to a schema T, and C a class of queries. A mapping M′ is a
C-recovery of M if for every query Q ∈ C over S and every instance I ∈ Inst(S):

certainM◦M′(Q , I) ⊆ Q (I).
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Moreover, mapping M′ is a C-maximum recovery of M, if M′ is a C-recovery of M and for every other C-recovery M′′
of M, it holds that:

certainM◦M′′(Q , I) ⊆ certainM◦M′(Q , I),

for every query Q ∈ C over S and every instance I ∈ Inst(S).

It is not difficult to show that if M′ is a maximum recovery of M, then M′ is a C-maximum recovery of M for every
possible class of queries C [4]. In [4], the authors show several properties of C-maximum recoveries when CQ is considered
as the class of queries C . In particular, it is proved in [4] that there exist mappings M and M′ specified by st-tgds such
that M′ is a CQ-maximum recovery of M but M′ is not a maximum recovery of M, thus, showing that the notion of
CQ-maximum recovery strictly generalizes the notion of maximum recovery.

3.3. The composition of st-tgds is not always invertible

Recall that every st-mapping specified by a finite set of st-tgds admits a maximum recovery [5]. Our next result shows
that, unfortunately, SO-tgds are not appropriate for inversion, as there exist mappings specified by SO-tgds that do not
admit maximum recoveries. More precisely, we show something stronger, namely that there exists a mapping specified by
an SO-tgd that does not even admit a CQ-maximum recovery.

Theorem 6. There exists a mapping M specified by an SO-tgd that has no CQ-maximum recovery.

Proof. Let S be a source schema {A(·), B(·), C1(·), C2(·)}, T be target schema {R(·, ·), S(·)}, and M = (S,T,Σ) a mapping
specified by the following SO-tgd λ:

∃ f ∃g
[ ∀x

(
B(x) ∧ C1(x) ∧ x = f (x) → S(x)

)

∧ ∀x
(

B(x) ∧ C1(x) → R
(
x, f (x)

))

∧ ∀x
(

B(x) ∧ C2(x) → R(x, x)
)

∧ ∀x
(

A(x) → R
(
x, g(x)

))]
.

We show next that M does not have a CQ-maximum recovery. In order to obtain a contradiction, assume that M′ is a
CQ-maximum recovery of M.

We construct two mappings M1 and M2 from T to S to derive a contradiction. Let M1 be the mapping from T to S
given by the dependencies:

∃y
(

R(x, y) ∧ x = y
) → B(x) ∧ C1(x),

R(x, x) ∧ S(x) → B(x) ∧ C1(x),

and M2 the mapping from T to S given by the dependency:

R(x, x) → B(x) ∧ C2(x).

We next show that M1 and M2 are CQ-recoveries of M. We begin by showing this property for M1. Let I be an arbitrary
instance of S, and f � : D → D a function such that for every element a ∈ dom(I), it holds that f �(a) = a. Consider now the
instance J of T constructed as follows:

J = {
R
(
a, f �(a)

) ∣∣ B(a) ∈ I and C1(a) ∈ I
}

∪ {
R(a,a)

∣∣ B(a) ∈ I and C2(a) ∈ I
}

∪ {
R(a,a)

∣∣ A(a) ∈ I
}
.

It is not difficult to see that (I, J ) |� λ by using f � as the interpretation for f and the identity function to interpret g .
Thus we have that J ∈ SolM(I). Moreover, by the definition of J and M1 it holds that I ∈ SolM1 ( J ), thus we have that
I ∈ SolM◦M1 (I). This last fact implies that certainM◦M1 (Q , I) ⊆ Q (I) for every query Q , and, in particular, for every query
Q in CQ. Thus we obtain that M1 is a CQ-recovery of M.

For the case of M2, let I be an arbitrary instance of S and f � a function as defined above. Consider now the instance J
of T such that:

J = {
R(a,a)

∣∣ B(a) ∈ I and C2(a) ∈ I
}

∪ {
R
(
a, f �(a)

) ∣∣ B(a) ∈ I and C1(a) ∈ I
}

∪ {
R
(
a, f �(a)

) ∣∣ A(a) ∈ I
}
.
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We have that (I, J ) |� λ (this time interpreting both f and g as f �), and following a similar argument as in the previous
paragraph we can use J to show that I ∈ SolM◦M2 (I). Thus we obtain that certainM◦M2 (Q , I) ⊆ Q (I) for every query Q ,
and, in particular, for every query Q in CQ, implying that M2 is a CQ-recovery of M.

Now given that M′ is a CQ-maximum recovery of M, and since M1 and M2 are CQ-recoveries of M, we have that for
every instance I of S and conjunctive query Q , it holds that:

certainM◦M1(Q , I) ⊆ certainM◦M′(Q , I) ⊆ Q (I), (3)

certainM◦M2(Q , I) ⊆ certainM◦M′(Q , I) ⊆ Q (I). (4)

We show next that (3) and (4) lead to a contradiction.
Consider the instance I1 = {B(a), C1(a)}. We next argue that by the definition of M and M1, we have that for every

K ∈ SolM◦M1 (I1) it holds that I1 ⊆ K . Assume that (I1, J ) |� λ. Thus, since dom(I1) = {a} we have only two possibilities:
either f is interpreted as a function f � such that f �(a) = a, or f is interpreted as a function f � such that f �(a) = a.
In the first case we have that R(a, f �(a)) ∈ J , and in the second case we have that R(a,a), S(a) ∈ J and thus, in both
cases we have that every solution for J under M1 contains the facts B(a) and C1(a). Moreover, it is not difficult to see
that I1 ∈ SolM◦M1 (I1). All the previous discussion implies that for the query Q 1 given by formula B(x) ∧ C1(x), it holds
that certainM◦M1 (Q 1, I1) = Q 1(I1) = {a}. Thus, from (3) we obtain that certainM◦M′ (Q 1, I1) = {a}. Therefore, for every
instance K ∈ SolM◦M′ (I1) it holds that B(a) and C1(a) are facts in K .

Consider now the instance I2 = {B(a), C2(a)}. Similarly as in the previous paragraph, we can show that for the
query Q 2 given by B(x) ∧ C2(x), it holds that certainM◦M2 (Q 2, I2) = Q 2(I2) = {a}. Thus, from (4) we obtain that
certainM◦M′ (Q 2, I2) = {a}. Therefore, for every instance K ∈ SolM◦M′ (I2) it holds that B(a) and C2(a) are facts in K .

Finally, consider instance I3 = {A(a)}. Notice that an instance J is a solution of I3 under M if and only if J contains a
fact of the form R(a,b) with b an arbitrary element. From this it is easy to conclude that J ∈ SolM(I1)∪SolM(I2), and thus
SolM(I3) ⊆ SolM(I1) ∪ SolM(I2). Moreover, SolM(I3) ⊆ SolM(I1) ∪ SolM(I2) implies that SolM◦M′ (I3) ⊆ SolM◦M′ (I1) ∪
SolM◦M′ (I2). We have shown that every instance in SolM◦M′ (I1) contains the facts B(a), C1(a) and that every instance
in SolM◦M′ (I2) contains the facts B(a), C2(a), thus implying that every instance in SolM◦M′ (I3) contains the fact B(a).
Consider the query Q given by B(x). By the previous discussion, we have that a ∈ certainM◦M′ (Q , I3) but Q (I3) = ∅,
and thus we have that certainM◦M′ (Q , I3) � Q (I3). This contradicts the fact that M′ is a CQ-maximum recovery of M,
completing the proof. �

Recall that if a mapping M has a maximum recovery, then M also has a CQ-maximum recovery. Thus, by the previous
result, we obtain that, as opposed to the case of st-tgds, a mapping specified by an SO-tgd is not guaranteed to have a
maximum recovery. Also notice that a mapping specified by an SO-tgd is total and closed-down on the left, thus, we have
by Proposition 4 that a mapping specified by an SO-tgd is guaranteed to have neither a Fagin-inverse nor a quasi-inverse.
Therefore, by considering the fact that every SO-tgd defines the composition of two mappings specified by st-tgds [14,1],
we obtain a fundamental negative result for the composition operator.

Corollary 7. There exist mappings M1 and M2 , each specified by a finite set of st-tgds, such that the composition M1 ◦ M2 has
neither CQ-maximum recovery, nor maximum recovery, nor quasi-inverse, nor Fagin-inverse.

4. Plain SO-tgds to the rescue: CQ-composition, inversion and good structural properties

The negative result in Section 3.3 suggests that to obtain a language that is closed under composition and has good
properties regarding inversion, we have no choice but to relax the semantics of composition. In this section, we take this
path by considering the notion of composition w.r.t. conjunctive queries, or just CQ-composition, introduced by Madhavan
and Halevy in [22], and which predates the set-theoretic notion of composition presented in Section 3.1.

The notion of CQ-composition can be defined in terms of the concept of conjunctive-query equivalence of mappings that
was implicitly introduced in [22], and generalized in [13] when studying optimization of schema mappings. Two mappings
M and M′ from a schema S to a schema T are said to be equivalent w.r.t. conjunctive queries, denoted by M ≡CQ M′ , if
for every conjunctive query Q over T and every instance I of S, it holds that certainM(Q , I) = certainM′ (Q , I). Then a
mapping M3 is said to be a CQ-composition of M1 and M2 if M3 ≡CQ M1 ◦M2.

Interestingly, in this section we show that the notion of CQ-composition is captured by a natural fragment of the lan-
guage of SO-tgds, which also shares some fundamental structural properties with the language of st-tgds and has good
properties regarding inversion. More specifically, we define in Section 4.1 the language of plain SO-tgds, and then we show
in Section 4.2 that they are the right language for representing the CQ-composition of mappings given by st-tgds. Moreover,
we prove in Section 4.2 that every mapping given by plain SO-tgds admits a maximum recovery, thus showing that this
language is also appropriate for inversion. Finally, we present in Section 4.3 some of the structural properties of st-tgds
that have been identified as of fundamental importance for data exchange [27], and we prove that these properties are also
satisfied by the class of mappings defined by plain SO-tgds.
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4.1. Plain SO-tgds

In order to define plain SO-tgds, we use the notion of plain term. Given a tuple f̄ of function symbols and a tuple x̄
of variables, a plain term built from f̄ and x̄, is either a variable x in x̄, or a term of the form f (u1, . . . , uk) where f is a
function symbol in f̄ and each ui is a variable in x̄ (1 � i � k).

Definition 8. Given schemas R1 and R2 with no relation symbols in common, a plain second-order tuple-generating dependency
(plain SO-tgd) from R1 to R2 is a formula of the form:

∃ f̄
(∀x̄1 (ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n (ϕn → ψn)

)
,

where:

1. each member of f̄ is a function symbol,
2. each formula ϕi (1 � i � n) is a conjunction of relational atoms of the form S(y1, . . . , yk), where S is a k-ary relation

symbol of R1 and y1, . . . , yk are (not necessarily distinct) variables in x̄i ,
3. each formula ψi (1 � i � n) is a conjunction of relational atomic formulas over R2 mentioning plain terms built from x̄i

and f̄ , and
4. each variable in x̄i (1 � i � n) appears in some relational atom of ϕi .

That is, the language of plain SO-tgds is obtained from the language of SO-tgds by forbidding equality of terms and
nesting of functions. For example, formula (2) is a plain SO-tgd, while the formula used in the proof of Theorem 6 is not a
plain SO-tgd as it includes an equality of terms.

As was noted in Section 2.3, given an SO-tgd σ from a schema R1 to a schema R2 and a pair (I, J ) of instances of
R1 and R2, respectively, the satisfaction of σ by (I, J ) is defined by considering the standard notion of satisfaction in
second-order logic and a structure (D; I, J ), which is just like (I, J ) except that it has universe D. That is, (I, J ) is said to
satisfy σ if (D; I, J ) |� σ under the standard notion of satisfaction in second-order logic. The semantics of plain SO-tgds
is inherited from the semantics of SO-tgds. But as opposed to the case of SO-tgds, it can be shown that for every plain
SO-tgd λ from a schema R1 to a schema R2 and a pair (I, J ) of instances of R1 and R2, respectively, (D; I, J ) |� λ if and only
if (dom(I) ∪ dom( J ); I, J ) |� λ. Thus, in order to check whether a plain SO tgd λ is satisfied by a pair (I, J ) of instances,
one can assume that dom(I) ∪ dom( J ) is the domain and range of the functions instantiating the existentially quantified
function symbols in λ.

Finally, it should be noticed that, as for the case of SO-tgds, plain SO-tgds are closed under conjunction and, thus, we
talk about a mapping specified by a plain SO-tgd (instead of a set of plain SO-tgds). Moreover, it is easy to see that every
set of st-tgds is equivalent to a plain SO-tgd.

4.2. Plain SO-tgds: a language for CQ-composition which is also invertible

In this section, we show that the language of plain SO-tgds is the right language for representing the CQ-composition
of mappings given by st-tgds, in the same sense that SO-tgds are the right language for representing the composition of
mappings given by st-tgds, as shown in Section 3.1. Besides, we also show that in sharp contrast with the case of SO-
tgds, every mapping specified by a plain SO-tgd admits a maximum recovery. In Section 5, we provide a polynomial-time
algorithm for computing these maximum recoveries, thus showing that plain SO-tgds also have good properties regarding
inversion.

We start by proving a useful lemma showing that although the language of plain SO-tgds is less expressive than the
language of SO-tgds, in terms of CQ-equivalence they have the same expressive power.

Lemma 9. For every SO-tgd λ, there exists a plain SO-tgd λ′ such that λ ≡CQ λ′ .

Proof. We first recall a result that will considerably simplify the proof. Arenas et al. [1] proved that every SO-tgd λ is
logically equivalent to an SO-tgd λ� that does not have nesting of functions. That is, the language of SO-tgds is equivalent to
the language obtained from plain SO-tgds by adding equality of plain terms [1]. Thus, we can assume that SO-tgds contain
only plain terms.

We also make use of the chase procedure for SO-tgds that we introduce next. Given an SO-tgd λ from a schema S to a
schema T of the form:

∃ f̄
(∀x̄1 (ϕ1 → ψ1) ∧ · · · ∧ ∀x̄k (ϕn → ψn)

)
, (5)

where λ only contains plain terms, the chase of the source instance I with λ, denoted by chaseλ(I), is the instance J of T
constructed as follows [14]. Fix an interpretation for the function symbols of f̄ such that for every n-ary function symbol
f in f̄ and n-ary tuple ā of elements in I , f (ā) is interpreted as a fresh null value. Notice that with this interpretation,
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the equality f (ā) = g(b̄) holds if and only if f and g are the same function symbol and ā = b̄. Thus we can denote a null
of the form f (ā) with its own syntactic form (that is, simply as f (ā)). We need an additional notation. Given a formula α
that considers variables in a tuple x̄ and plain terms built from f̄ and x̄, we denote by α[x̄ → ā] the formula obtained by
replacing every occurrence of a variable in x̄ by the corresponding value in ā. We are now ready to introduce the process to
construct instance J . For every i ∈ {1, . . . ,n} and every tuple ā of elements in I such that the arity of ā is the same as the
arity of x̄i , if I satisfies the formula ϕi[x̄i → ā], then add all the atoms in ψi[x̄i → ā] to instance J . Fagin et al. [14] show
that chaseλ(I) is a universal solution for I under the mapping specified by λ.

We next show how to transform an SO-tgd λ into a plain SO-tgd λ′ such that chaseλ(I) = chaseλ′ (I). Let λ be an SO-tgd
of the form (5). We first construct a set of formulas Σ ′ by repeating the following for every i such that 1 � i � n. Start with
ϕ′

i as ϕi and ψ ′
i as ψi .

1. Replace every equality of the form f (x1, . . . , xk) = f (y1, . . . , yk) in ϕ′
i by the conjunction of equalities x1 = y1 ∧ · · · ∧

xk = yk .
2. If there is an equality of the form x = x′ in ϕ′

i with x and x′ variables, then eliminate the equality and replace in ϕ′
i and

in ψ ′
i every occurrence of x′ by x.

3. Repeat the previous step until ϕ′
i has no equality of the form x = x′ with x and x′ variables.

If after the process, ϕ′
i does not contain any equality between plain terms (the only equalities that may remain must

mention different function symbols), then add formula ∀x̄′
i (ϕ′

i → ψ ′
i ) to Σ ′ , where x̄′

i is the tuple of remaining variables
in ϕ′

i . Finally, we define λ′ as the formula ∃ f̄ (
∧

Σ ′), where (
∧

Σ ′) denotes the conjunction of all the formulas in Σ ′ .
Notice that the formula λ′ is a plain SO-tgd.

It is not difficult to see that for every instance I , it holds that chaseλ(I) = chaseλ′ (I). Just notice that if I satisfies
the formula ϕi[x̄i → ā], then (i) ϕi does not contain equalities of the form f (ū) = g(v̄) with f and g distinct function
symbols, (ii) if f (x1, . . . , xk) = f (y1, . . . , yk) is an equality in ϕi , then the equalities x1 = y1, . . . , xk = yk should hold for
the assignment x̄i → ā and (iii) if x = x′ is an equality in ϕi , then the values a and a′ that correspond to x and x′ in the
assignment x̄i → ā should be equal. This implies that if ∀x̄′

i (ϕ′
i → ψ ′

i ) is in Σ ′ , and x̄′
i → ā′ is the assignment obtained from

the assignment x̄i → ā by considering only the variables in x̄′
i , then I satisfies ϕ′

i [x̄′
i → ā′]. Similarly, it can be shown that if

∀x̄′
i (ϕ′

i → ψ ′
i ) is in Σ ′ and I satisfies ϕ′

i [x̄′
i → ā′], then I satisfies ϕi[x̄i → ā]. The property follows from the observation that

if I satisfies ϕi[x̄i → ā], then ψi[x̄i → ā] is equal to ψ ′
i [x̄′

i → ā′].
To conclude the proof we use a result proved by Fagin et al. [13]. In [13], it is proved that if two mappings have the

same universal solutions (up to homomorphisms) for every source instance, then the mappings are CQ equivalent. Thus,
given that for every source instance I , it holds that chaseλ(I) is a universal solution for I under the mapping specified by λ,
and chaseλ′ (I) is a universal solution for I under the mapping specified by λ′ , we obtain that λ and λ′ are CQ-equivalent
since chaseλ(I) = chaseλ′ (I). This concludes the proof of the lemma. �

As a corollary of Lemma 9 and the fact that SO-tgds are closed under composition (see Theorem 1), we obtain that the
language of plain SO-tgds is closed under CQ-composition.

Theorem 10. Let M1 and M2 be mappings specified by plain SO-tgds. Then a CQ-composition of M1 and M2 can also be specified
by a plain SO-tgd.

In Theorem 5.4 in [14], it is shown that there exist schema mappings M1 and M2, each specified by a finite set of
st-tgds, such that the composition of M1 and M2 cannot be specified by any finite or infinite set of SO-tgds without
equalities. Hence, the language of plain SO-tgds is not closed under the usual notion of composition, and we have to
consider the notion of CQ-composition instead. In particular, as a corollary of Theorem 10, we obtain that the language of
plain SO-tgds is appropriate to represent the CQ-composition of mappings given by st-tgds.

Corollary 11. A CQ-composition of a finite number of mappings, each defined by a finite set of st-tgds, can be defined by a plain SO-tgd.

Finally, the following property is a consequence of the fact that every plain SO-tgd is also an SO-tgd. More precisely, if
a mapping M is specified by a plain SO-tgd, then from the results proved in [1] for SO-tgds, we have that M is logically
equivalent to the composition of two mappings M1 and M2 specified by st-tgds. Thus, given that logical equivalence
implies CQ-equivalence, we conclude that M is a CQ-composition of M1 and M2.

Corollary 12. Let M be a mapping specified by a plain SO-tgd. Then there exist mappings M1 and M2 , each specified by a finite set
of st-tgds, such that M is a CQ-composition of M1 and M2 .

Theorem 10 together with Corollaries 11 and 12 show that plain SO-tgds are the right language for representing the
CQ-composition of mappings given by st-tgds. We conclude this section by pointing out that by using some of the tools
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developed in [5] (see, for example, Theorem 3.12 in [5]), it is possible to prove that plain SO-tgds are also a good language
for inversion.

Theorem 13. Every mapping specified by a plain SO-tgd admits a maximum recovery.

We omit here the proof of Theorem 13 based on the results from [5], as this theorem is also a corollary of Theorem 19
proved in Section 5, which shows that there exists a polynomial-time algorithm for computing the maximum recovery of a
plain SO-tgd.

We end this section with a remark on computing the CQ-composition of mappings specified by st-tgds. Notice that the
notion of CQ-composition is just a relaxation of the composition as defined in [14]. Thus, the same algorithm presented
in [14] can be used to compute the CQ-composition of mappings specified by st-tgds. Nevertheless, the algorithm in [14]
provides as output a not necessarily plain SO-tgd. One can combine the results in [14] and the construction in Lemma 9
to provide an algorithm for computing the CQ-composition that has a plain SO-tgd as output. Unfortunately, as we next
discuss, the complexity of such algorithm would be high. The composition algorithm in [14] provides as output an SO-tgd
which is of size exponential w.r.t. the size of the input mappings. Moreover, the construction in Lemma 9 is based on a
result presented in [1] stating that every SO-tgd is logically equivalent to an SO-tgd without nesting of function symbols.
In [1] the authors provide a procedure to show this result which, given an SO-tgd as input, computes a logically equivalent
SO-tgd without nesting of function symbols which is of size exponential w.r.t. the size of the input. Thus, both procedures
together plus the construction in Lemma 9 give rise to a doubly exponential time algorithm for computing a CQ-composition
expressed as a plain SO-tgd. It is open whether one can device a single exponential time algorithm for this problem that
has a plain SO-tgd as output.

4.3. Structural properties of plain SO-tgds

In this section, we study some structural properties of plain SO-tgds as a language for defining schema mappings. Bor-
rowing the framework developed by ten Cate and Kolaitis [26,27], we make a case that plain SO-tgds can be considered as a
good alternative for a mapping language which is to be used in practical applications, since, despite being more expressive
than st-tgds, they satisfy most of the good properties that st-tgds enjoy. We also show how plain SO-tgds refine the picture
introduced in [26,27], allowing us to answer an open question from the previous work.

Amongst all structural properties of mapping languages that have been studied in the literature, ten Cate and Kolaitis
argue in [27] that three of the most fundamental ones for data exchange and data integration are allowing for universal
solutions, allowing for rewriting of conjunctive queries, and closure under target homomorphisms. More precisely, given a mapping
M from a schema S to a schema T, M is said to admit universal solutions if for every instance I of S, there exists a universal
solution for I under M, and M is said to allow for conjunctive query rewriting if for every union of conjunctive queries Q
over T, there exists a union of conjunctive queries Q ′ over S such that Q ′(I) = certainM(Q , I) [27]. Moreover, M is said
to be closed under target homomorphisms if whenever (I, J ) ∈M and there exists a homomorphism from J to an instance J ′
of T, then (I, J ′) ∈M [27].

It has been shown that if a mapping is specified by a finite set of st-tgds, then it admits universal solutions, it allows
for conjunctive query rewriting and it is closed under target homomorphisms [26]. On the other hand, if a mapping is
specified by an SO-tgd, then it satisfies the first two conditions but it is not closed under target homomorphisms [14,
26]. Interestingly, we show in the following theorem that plain SO-tgds form a second-order language satisfying the three
fundamental properties defined above.

Theorem 14. The language of plain SO-tgds satisfies the following properties:

(1) Every mapping specified by a plain SO-tgd is closed under target homomorphisms, admits universal solutions, and allows for
conjunctive query rewriting.

(2) There exists a plain SO-tgd that is not expressible in first-order logic.

Proof. (1) Let M be a mapping defined by a plain SO-tgd λ from a schema S to a schema T. From the fact that every
mapping specified by an SO-tgd admits universal solutions and allows for conjunctive query rewriting, we conclude that
these two properties hold for M. Thus, it only remains to show that M is closed under target homomorphisms.

Assume that λ is of the form ∃ f̄ (∀x̄1 (ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n (ϕn → ψn)). Moreover, assume that I is an instance of S
and J , J ′ are instances of T such that (I, J ) |� λ and there exists a homomorphism h from J to J ′ . Next we prove that
(I, J ′) |� λ. As for the case of the proof of Lemma 9, given a formula α mentioning variables from x̄ and plain terms built
from x̄ and f̄ , and a tuple of elements ā, we use α[x̄ → ā] to denote the formula obtained from α by replacing every
variable in x̄ according to the assignment x̄ → ā.

Given that (I, J ) |� λ, we have that there exists an interpretation f̄ (I, J ) over (I, J ) for the function symbols in f̄ such that
for every i ∈ {1, . . . ,n}, if I satisfies the formula ϕi[x̄i → ā] with interpretation f̄ (I, J ) , then J satisfies formula ψi[x̄i → ā]
with interpretation f̄ (I, J ) . Consider now the interpretation f̄ (I, J ′) of f̄ over (I, J ′) defined as follows. For every function
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symbol f in f̄ and tuple of elements b̄ from (I, J ), let f (I, J ′)(b̄) = h( f (I, J )(b̄)), if f (I, J )(b̄) belongs to the domain of J ,
or otherwise f (I, J ′)(b̄) = ⊥, where ⊥ is any arbitrary element from (I, J ′). Next we show that (I, J ′) satisfies λ with
interpretation f̄ (I, J ′) .

Assume that I satisfies ϕi[x̄i → ā] with interpretation f̄ (I, J ′) , for i ∈ {1, . . . ,n}. Given that λ is a plain SO-tgd, we have
that ϕi does not mention any function symbol and, hence, I satisfies ϕi[x̄i → ā] with interpretation f̄ (I, J ) . Then we know
that J |� ψi[x̄i → ā] with interpretation f̄ (I, J ) . Let R(ā′) be an arbitrary conjunct in ψi[x̄i → ā] with function symbols
interpreted according to f̄ (I, J ) . Then we know that J |� R(ā′). Thus, given that h is a homomorphism from J to J ′ , we have
that J ′ |� R(h(ā′)).

Furthermore, since J |� ψi[x̄i → ā], it follows that the interpretation f̄ (I, J ′) is defined so that each conjunct of form
R(x̄i) in ψi corresponds to R(h(ā′)) in ψi[x̄i → ā], when function symbols are interpreted according to f̄ (I, J ′) . Hence, J ′ |�
ψi[x̄i → ā] with interpretation f̄ (I, J ′) , which was to be shown.

(2) Consider a plain SO-tgd λ from R1 = {E(·, ·)} to R2 = {T (·, ·)} defined as:

∃ f
(∀x∀y E(x, y) → T

(
f (x), f (y)

))
.

Next we show that λ is not expressible by a first-order logic sentence over the vocabulary R1 ∪ R2. For the sake of contra-
diction, assume that λ is expressible in first-order logic, and let Φ be a first-order sentence over R1 ∪ R2 that is logically
equivalent to λ. Let u and v be two variables not mentioned in Φ and consider the sentence Φ ′ obtained from Φ by re-
placing every relational atom T (x, y) by formula (x = u ∧ y = v) ∨ (x = v ∧ y = u). Now let Ψ be the first-order sentence
over R1 defined as:

∃u∃v
(
u = v ∧ Φ ′).

It is not difficult to see that I |� Ψ if and only if for the instance J of R2 such that T J = {(1,2), (2,1)}, it holds that
(I, J ) |� Φ . Thus, given that Φ is logically equivalent to λ, we obtain that I |� Ψ if and only if there exists an interpretation
f � for the function symbol f such that for every element c in I , it holds that f �(c) is either 1 or 2, and for every tuple
(a,b) ∈ E I , it holds that f �(a) = f �(b). Therefore, we have that I |� Ψ if and only if the graph represented by I is 2-colorable.
This leads to a contradiction since 2-colorability is not expressible in first-order logic [21]. �

Notice that by using a similar argument as the one used in the above proof, we can obtain a contradiction by using
3-colorability instead of 2-colorability. Thus, by a result by Dawar [8], we obtain that λ cannot even be defined in the finite-
variable infinitary logic Lω∞ω , which is strictly more expressive than first-order logic (see [21] for a definition of Lω∞ω).

It is important to notice that ten Cate and Kolaitis [26,27] were interested in characterizing schema-mapping languages
in terms of the structural properties that they satisfy. In particular, they were interested in a language capable of speci-
fying all the mappings that are closed under target homomorphisms, admit universal solutions, and allow for conjunctive
query rewriting. The language of nested st-tgds is a fragment of first-order logic introduced by Fuxman et al. in [19]. This
language is strictly more expressive than st-tgds, and still satisfies the three structural properties just mentioned, so it is
considered in [26,27] as a plausible candidate to exactly characterize the class of mappings that are closed under target
homomorphisms, admit universal solutions, and allow for conjunctive query rewriting. In fact, ten Cate and Kolaitis posed
the following question in [26,27]:

Question 15. (See [26,27].) Is it the case that a schema mapping is definable by a set of nested st-tgds if and only if it is closed under
target homomorphisms, admits universal solutions, and allows for conjunctive query rewriting?

For our purposes, it is not important to formally define the language of nested st-tgds (we refer the reader to [19,26] for
details), it is just important to mention that the language of nested st-tgds is strictly less expressive than the language of
plain SO-tgds. In particular, by the results in [19,26] it is easy to conclude that every set of nested st-tgds can be specified
using plain SO-tgds and, moreover, Theorem 14 (2) shows that there are plain SO-tgds that are not equivalent to any
finite set of nested st-tgds (as the latter are a fragment of first-order logic). Thus, Theorem 14 gives a negative answer to
Question 15 as every mapping specified by a plain SO-tgd is closed under target homomorphisms, admits universal solutions,
and allows for conjunctive query rewriting. It is worth mentioning that it is an open problem whether the language of
plain SO-tgds exactly characterizes the class of mappings that satisfy the aforementioned structural properties. In fact, the
following questions are still open.

Questions 16.

• Is it the case that a schema mapping is definable by a set of nested st-tgds if and only if it is definable in first-order logic, is closed
under target homomorphisms, admits universal solutions, and allows for conjunctive query rewriting?

• Is it the case that a schema mapping is definable by a plain SO-tgd if and only if it is closed under target homomorphisms, admits
universal solutions, and allows for conjunctive query rewriting?
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We conclude this section by going a step forward in our understanding of plain SO-tgds. More precisely, we show in the
first place that these dependencies correspond exactly to the fragment of SO-tgds defining mappings that are closed under
target homomorphisms.

Proposition 17. If M is a mapping defined by an SO-tgd λ and M is closed under target homomorphisms, then λ is logically equivalent
to a plain SO-tgd.

Proof. Assume that λ is an SO-tgd from a schema S to a schema T. From the proof of Lemma 9, we know that there
exists a plain SO-tgd λ′ such that chaseλ(I) = chaseλ′ (I) for every instance I of S. Given that M is closed under target
homomorphisms and for every instance I of S, chaseλ(I) is a universal solution for I under M, we have that for every
instance I of S and every instance J of T: (I, J ) |� λ if and only if there is a homomorphism from chaseλ(I) to J . In the
same way, we can conclude that for every instance I of S and every instance J of T: (I, J ) |� λ′ if and only if there is a
homomorphism from chaseλ′ (I) to J (notice that the mapping specified by λ′ is closed under target homomorphisms as λ′
is a plain SO-tgd). Thus, given that chaseλ(I) = chaseλ′ (I) for every instance I of S, we conclude that for every instance I of
S and every instance J of T: (I, J ) |� λ if and only if (I, J ) |� λ′ . Therefore, we have that λ and λ′ are logically equivalent,
which was to be shown. �

In the second place, we point out that the language of plain SO-tgds satisfies a property that is arguably the most
fundamental property satisfied by the class of mappings given by st-tgds, and which also help us to show that an important
problem associated to this class of dependencies is decidable. More precisely, given a mapping M from a schema S to a
schema T, we say that the spaces of solutions under M are characterized by universal solutions if for every instance I of S
and every universal solution J for I under M, it holds that K is a solution for I under M if and only if there exists a
homomorphism from J to K .1 This property is satisfied by every mapping specified by a finite set of st-tgds. Since plain
SO-tgds, just as st-tgds, are closed under target homomorphisms and admit universal solutions, every mapping defined by a
plain SO-tgd also satisfies this fundamental property. Surprisingly, this fact can be used to obtain an algorithm for deciding
whether a plain SO-tgd is equivalent to a finite set of st-tgds, which is an important problem in the area of schema mapping
optimization [13].

Proposition 18. There is an algorithm that, given a plain SO-tgd λ and a finite set Σ of st-tgds, decides whether λ is logically equivalent
to Σ .

Proof. Assume that λ is a plain SO-tgd from a schema S to a schema T, and that Σ is a finite set of st-tgds from S to T.
Then let M1 = (S,T, λ) and M2 = (S,T,Σ). Given that M1, M2 admit universal solutions and are closed under target
homomorphisms, we have from the results in [13] that λ is logically equivalent to Σ if and only if M1 ≡CQ M2. Thus, all
that needs to be shown is the existence of an algorithm to decide whether M1 is CQ-equivalent to M2. But this result has
been recently established by Fagin and Kolaitis [11] for the more general case where M1 is specified by an SO-tgd and M2
is specified by a finite set of st-tgds. This concludes the proof of the proposition. �

It is important to notice that the previous result is in sharp contrast with the situation for the language of SO-tgds. In
fact, an inspection of the proof of Theorem 1 in [18] reveals that the problem of verifying, given an SO-tgd λ and a finite
set Σ of st-tgds, whether λ is logically equivalent to Σ is undecidable.

5. Inverting plain SO-tgds in polynomial time

We show in this section that every st-mapping specified by a plain SO-tgd has a maximum recovery. More specifically,
we present in this section a polynomial time algorithm that, given a plain SO-tgd, returns a maximum recovery that is
expressed in a language that extends plain SO-tgds with some extra features. Notice that every mapping specified by st-
tgds can also be specified by a plain SO-tgd. Thus, our algorithm can be used to compute maximum recoveries of st-tgds
in polynomial time. Unfortunately, the gain in time complexity comes with the price of a stronger and less manageable
mapping language used to express maximum recoveries.

We start by giving some of the intuition behind the algorithm. Consider the following plain SO-tgd:

∃ f ∃g
(∀x∀y∀z

(
R(x, y, z) → T

(
x, f (y), f (y), g(x, z)

)))
. (6)

When exchanging data with an SO-tgd like (6), the standard assumption is that every application of a function symbol
generates a fresh value [14]. For example, consider a source instance {R(1,2,3)}. When we exchange data with (6), we
obtain a canonical target instance {T (1,a,a,b)}, where a = f (2), b = g(1,3), and a = b. The intuition behind our algorithm
is to produce a reverse mapping that focuses on this canonical target instance to recover as much source data as possible.

1 Notice that the definition of universal solution only guarantees that if K is a solution for I under M, then there is a homomorphism from J to K .



776 M. Arenas et al. / Journal of Computer and System Sciences 79 (2013) 763–784
Thus, in order to invert a dependency like (6), we consider three unary functions f1, g1 and g2. The idea is that f1
represents the inverse of function f , while (g1, g2) represents the inverse of g . Notice that since g has two arguments,
we need to use two functions to represent its inverse. Thus, considering the above example, the intended meaning of the
functions is f1(a) = 2, g1(b) = 1, and g2(b) = 3. With this in mind, we can represent an inverse of the plain SO-tgd (6) with
a sentence of the form:

∃ f1∃g1∃g2
(∀u∀v∀w

(
T (u, v, v, w) ∧ C(u) → R

(
u, f1(v), g2(w)

) ∧ u = g1(w)
))

, (7)

where C(·) denotes a built-in unary predicate such that C(a) holds if and only if a is a constant, that is, a ∈ C. Notice that,
if we use dependency (7) to exchange data back from instance {T (1,a,a,b)}, we obtain an instance {R(1, f1(a), g2(b))}. The
equality u = g1(w) has been added in order to ensure the correct interpretation of g1 as the inverse function of g . In the
example, the equality ensures that g1(b) is 1. Notice also that dependency (7) uses predicate C(·) since we know from (6)
that u must be a constant value coming from the original instance. Predicate C(·) is usually required in order to express
inverses of mappings when nulls are only allowed in the target [10,15,5].

In order to obtain a correct algorithm we need another technicality. We have mentioned that when exchanging data with
SO-tgds, we assume that every application of a function produces a fresh value. In the above example, we have that value
a is the result of applying f to 2, thus, we know that value a cannot be obtained with any other function. In particular, a
cannot be obtained as an application of function g . Thus, when exchanging data back we should ensure that at most one
inverse function is applied to every possible target value. Similarly, we know that every constant value in the target instance
that came from the source instance cannot be obtained as the result of applying any function. In the above example, value
1 in the target came directly from the source and is not obtained by applying f or g . Thus, we also need to ensure that
no inverse function is applied to a value that came from the source instance. We ensure all this by using an additional
unary function f� . In the above example, whenever we apply function f1 to some value v , we require that f1(v) = f�(v)

and that g1(v) = f�(v). Similarly, whenever we apply function g1 to some value w , we require that g1(w) = f�(w) and
that f1(w) = f�(w). Thus, for example, if we apply f1 to value a, we require that f1(a) = f�(a) and that g1(a) = f�(a).
Notice that this forbids the application of g1 to a, since, if that were the case, we would require that g1(a) = f�(a), which
contradicts the previous requirement g1(a) = f�(a). Moreover, for every value u that is copied from target to source, we
require that f1(u) = f�(u) and g1(u) = f�(u), ensuring that neither f1 nor g1 is applied to u. Our algorithm adds these
equalities and inequalities as conjuncts in the conclusions of dependencies. Considering the example, our algorithm adds

Φ(u, v, w) ≡ f1(v) = f�(v) ∧ g1(v) = f�(v)

∧ g1(w) = f�(w) ∧ f1(w) = f�(w)

∧ f1(u) = f�(u) ∧ g1(u) = f�(u)

to the right-hand side of the implication of dependency (7), and also adds the existential quantification over function f� .
The final SO sentence that specifies a maximum recovery of the plain SO-tgd (6) is:

∃ f�∃ f1∃g1∃g2
[∀u∀v∀w

(
T (u, v, v, w) ∧ C(u) → R

(
u, f1(v), g2(w)

) ∧ u = g1(w) ∧ Φ(u, v, w)
)]

.

Before presenting our algorithm, we make some observations. Although we have assumed in the above explanation that
every application of a function generates a fresh value, we remark that this assumption has only been used as a guide
in the design of our algorithm. In fact, it is shown in Theorem 19 that the algorithm presented in this section produces
maximum recoveries for the general case, where no assumption about the function symbols is made.

In the following sections, we formalize our algorithm to compute maximum recoveries of plain SO-tgds.

5.1. Auxiliary procedures

We start by fixing some notation. Given a plain SO-tgd λ, we denote by Fλ the set of function symbols that occur in λ.
We also consider a set of function symbols F ′

λ constructed as follows. For every n-ary function symbol f in Fλ , the set F ′
λ

contains n unary function symbols f1, . . . , fn . Additionally, F ′
λ contains a unary function symbol f� . For example, for plain

SO-tgd (6), Fλ = { f , g} and F ′
λ = { f1, g1, g2, f�}.

We now describe procedures CreateTuple, EnsureInv, and Safe. These procedures are the building blocks of the
algorithm that computes a maximum recovery of a plain SO-tgd. Procedure CreateTuple(t̄) receives as input a tuple
t̄ = (t1, . . . , tn) of plain terms. Then it builds an n-tuple of variables ū = (u1, . . . , un) such that, if ti = t j then ui and u j
are the same variable, and they are distinct variables otherwise. For example, consider the right-hand side of the implica-
tion of dependency (6). In the argument of relation T we have the tuple of terms t̄ = (x, f (y), f (y), g(x, z)). In this case,
we have that procedure CreateTuple(t̄) returns a tuple of the form (u, v, v, w). Notice that we have used this tuple as the
argument of T in the left-hand side of the implication of dependency (7). Tuple ū created with CreateTuple is used as an
input in the following two procedures.

We now formalize procedure EnsureInv that outputs a formula that guarantees the correct use of the inverse function
symbols.
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Procedure: EnsureInv(λ, ū, s̄).
Input: A plain SO-tgd λ, an n-tuple ū = (u1, . . . , un) of (not necessarily distinct) variables, and an n-tuple s̄ = (s1, . . . , sn) of
plain terms built from Fλ and a tuple of variables ȳ.
Output: A formula Q e consisting of conjunctions of equalities between terms built from F ′

λ , ū, and ȳ.

1. Construct formula Q e as follows. For every i ∈ {1, . . . ,n} do the following:
– If si is a variable y of ȳ, then add equality ui = y as a conjunct in Q e .
– If si is a term of the form f (y1, . . . , yk), then add the conjunction of equalities

f1(ui) = y1 ∧ · · · ∧ fk(ui) = yk

to Q e , where f1, . . . , fk are the k unary functions in F ′
λ associated with f .

2. Return Q e . �
As an example, let λ be the dependency (6), s̄ = (x, f (y), f (y), g(x, z)) the tuple of terms in the right-hand side of the

implication of λ, and ū = (u, v, v, w). When running the procedure EnsureInv(λ, ū, s̄), we have that u4 = w and s4 = g(x, z).
Thus, in the loop of Step 1, the conjunction g1(w) = x∧ g2(w) = z is added to formula Q e . The final output of the procedure
is in this case:

u = x ∧ f1(v) = y ∧ g1(w) = x ∧ g2(w) = z. (8)

Finally, we describe procedure Safe, which is used to guarantee that a value in the target cannot be generated by two
distinct functions.

Procedure: Safe(λ, ū, s̄)
Input: A plain SO-tgd λ, an n-tuple ū = (u1, . . . , un) of (not necessarily distinct) variables, and an n-tuple s̄ = (s1, . . . , sn) of
plain terms built from Fλ and a tuple of variables ȳ.
Output: A formula Q s consisting of equalities and inequalities between terms built from F ′

λ and ū.

1. Construct formula Q s as follows. For every i ∈ {1, . . . ,n} do the following:
– If si is a term of the form f (y1, . . . , yk), then add the following conjuncts to Q s:

– The equality f�(ui) = f1(ui).
– The inequality f�(ui) = g1(ui), for every function symbol g in Fλ different from f .

– If si is a variable, then for every function symbol f in Fλ , add the inequality f�(ui) = f1(ui) as a conjunct to Q s .2

2. Return Q s . �
Considering λ as the dependency (6), s̄ the tuple of terms (x, f (y), f (y), g(x, z)) and ū = (u, v, v, w), the algorithm

Safe(λ, ū, s̄) returns:

f1(u) = f�(u) ∧ g1(u) = f�(u) ∧ g1(w) = f�(w) ∧ f1(w) = f�(w) ∧ f1(v) = f�(v) ∧ g1(v) = f�(v). (9)

It is important to notice that all the procedures presented in this section work in polynomial time with respect to the size
of their inputs. Next we describe in detail our polynomial-time algorithm to compute a maximum recovery of a mapping
specified by a plain SO-tgd.

5.2. Building the maximum recovery

The algorithm for inverting plain SO-tgds resembles the algorithm proposed in [5] to compute a maximum recovery of
a mapping given by a set of full st-tgds. Recall that a full st-tgd is an st-tgd that does not include any existential quantifier
in its conclusion. As an example, the following is a full st-tgd:

∀x∀y
(

P (x, y) → S(x) ∧ S(y)
)
.

For mappings specified by this type of dependencies, an algorithm was given in [5] to compute maximum recoveries in
polynomial time. Informally, this algorithm works in two steps (see [5] for details). In the first step, the algorithm rewrites
each dependency into a new set of full st-tgds where each rule contains a single atom in the head. This is a standard
procedure in order to present a full st-tgd as a GAV mapping [12,20]. For the full dependency above, the new set of rules is
the following:

2 This technical step is new with respect to the algorithm given in [4], but notice that the output language remains the same. The inequalities added in
this step are needed in the proof of correctness of the algorithm given in Theorem 19.
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∀x∀y
(

P (x, y) → S(x)
)
,

∀x∀y
(

P (x, y) → S(y)
)
.

Notice that the new set of dependencies is logically equivalent to the previous set of full dependencies. In the second
step, the algorithm considers every atom R(x̄) that is in the conclusion of a dependency and adds to the final output a
dependency of the form ∀x̄ (R(x̄) → α(x̄)) where α(x̄) is a rewriting of R(x̄) over the source [5,27] (see Section 4.3 for a
formalization of this notion). For our previous example, a rewriting of S(x) over the source is ∃y1 P (x, y1) ∨ ∃y2 P (y2, x).
Thus, a maximum recovery for our example is:

∀x
(

S(x) → ∃y1 P (x, y1) ∨ ∃y2 P (y2, x)
)
.

The algorithm to compute maximum recoveries for plain SO-tgds works in a similar way. In the first part of the algorithm,
we normalize the set of rules exactly like in the algorithm for full dependencies. Notice that for plain SO-tgds the function
terms allow us to separate the conclusion of each dependency without altering the semantics of the mapping. Then in the
second part, we define for each atom in the conclusion of a dependency a new rule that intuitively contains as disjuncts
all the possible ways this atom could have been generated. The conclusion of this new rule is similar to a rewriting of the
atom over the source, but it further considers the technicalities presented at the beginning of this section.

Before formally presenting our algorithm for computing maximum recoveries of plain SO-tgds, we need to introduce
some additional notation. Let t̄ and s̄ be n-tuples of plain terms. Then we say that t̄ is subsumed by s̄ (or s̄ subsumes t̄) if,
whenever the i-th component of t̄ contains a variable, the i-th component of s̄ also contains a variable. Notice that if s̄
subsumes t̄ , then whenever the i-th component of s̄ contains a non-atomic term, the i-th component of t̄ also contains a
non-atomic term. For example, the tuple of terms (x, f (y), f (y), g(x, z)) is subsumed by (u, v,h(u),h(v)).

The following algorithm computes a maximum recovery of a mapping specified by a plain SO-tgd in polynomial time.

Algorithm: PolySOInverse(M)
Input: An st-mapping M= (S,T, λ) with λ a plain SO-tgd of the form ∃ f̄ (σ1 ∧ · · · ∧ σn).
Output: A ts-mapping M′ = (T,S, λ′) that specifies a maximum recovery of M such that λ′ is a sentence in SO.

1. Let Σ = {σ1, . . . , σn}, and Σ ′ be empty.
2. Normalize Σ as follows. For every i ∈ {1, . . . ,n} do:

– If σi is of the form ∀x̄ (ϕ(x̄) → R1(t̄1) ∧ · · · ∧ R�(t̄�)), then replace σi by � dependencies ∀x̄1 (ϕ1(x̄1) → R1(t̄1)), . . . ,

∀x̄� (ϕ�(x̄�) → R�(t̄�)) such that for every 1 � i � �:
– x̄i is exactly the tuple of variables shared by x̄ and t̄i ,
– ϕi(x̄i) is the formula obtained from ϕ(x̄) by existentially quantifying the variables of x̄ not mentioned in x̄i .

3. For every σ of the form ∀x̄ (ϕ(x̄) → R(t̄)) in the normalized set Σ , where t̄ = (t1, . . . , tm) is a tuple of plain terms, do
the following:
(a) Let ū = CreateTuple(t̄).
(b) Let premσ (ū) be a formula defined as the conjunction of the atom R(ū) and the formulas C(ui) for every i such

that ti is a variable.
(c) Create a set of formulas Γσ as follows. For every dependency ∀ ȳ (ψ( ȳ) → R(s̄)) in Σ such that s̄ subsumes t̄ , do

the following:
– Let Q e = EnsureInv(λ, ū, s̄).
– Let Q s = Safe(λ, ū, s̄).
– Add to Γσ the formula ∃ ȳ (ψ( ȳ) ∧ Q e ∧ Q s).

(d) Add to Σ ′ the dependency:

∀ū
(
premσ (ū) → γσ (ū)

)

where γσ (ū) is the disjunction of the formulas in Γσ .
4. Let λ′ = ∃ f̄ ′ (

∧
Σ ′), where f̄ ′ is a tuple containing the function symbols in F ′

λ . Return M′ = (T,S, λ′). �
As an example of the execution of the algorithm, let λ be the plain SO-tgd (6), and assume that M = (S,T, λ) is the

input of algorithm PolySOInverse. In Step 3 of algorithm PolySOInverse(M) we have to consider a single dependency
σ = R(x, y, z) → T (x, f (y), f (y), g(x, z)). Let t̄ be the tuple of terms (x, f (y), f (y), g(x, z)). Recall that CreateTuple(t̄) is a
tuple of the form (u, v, v, w) and, thus,

premσ (ū) = T (u, v, v, w) ∧ C(u)

is built in Step 3.b. Notice that C(u) has been added since the first component of t̄ is the variable x. Then in Step 3.c, we
need to consider just dependency σ . Notice that t̄ subsumes itself and, hence, formula

∃x∃y∃z
(

R(x, y, z) ∧ Q e ∧ Q s
)
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is added to the set Γσ , where Q e is the formula (8) and Q s is the formula (9). Notice that F ′
λ = { f�, f1, g1, g2}, and thus,

the following formula λ′ is created in the last step of the algorithm:

∃ f�∃ f1∃g1∃g2
[∀u∀v∀w

(
T (u, v, v, w) ∧ C(u) → ∃x∃y∃z

(
R(x, y, z) ∧ u = x ∧ f1(v) = y

∧ g1(w) = x ∧ g2(w) = z ∧ Q s
))]

. (10)

Notice that the existentially quantified variables can be eliminated from dependency (10). Thus, replacing formula Q s and
eliminating the existential quantification in the right-hand side of the implication, we obtain that dependency (10) is equiv-
alent to:

∃ f�∃ f1∃g1∃g2
[∀u∀v∀w

(
T (u, v, v, w) ∧ C(u) → R

(
u, f1(v), g2(w)

) ∧ u = g1(w)

∧ f1(v) = f�(v) ∧ g1(v) = f�(v)

∧ g1(w) = f�(w) ∧ f1(w) = f�(w)

∧ f1(u) = f�(u) ∧ g1(u) = f�(u)
)]

,

which specifies a maximum recovery of M.
It is important to point out that the output of PolySOInverse is a second-order sentence that extends plain SO-tgds by

using predicate C(·) in the premise of the dependencies, and disjunctions, equalities and inequalities over plain terms, in the
conclusions of the dependencies. Thus, the gain in time complexity when computing maximum recoveries of plain SO-tgds
comes with the price of a stronger and less manageable mapping language.

We now prove the correctness of PolySOInverse.

Theorem 19. Let M be an st-mapping specified by a plain SO-tgd λ. Then PolySOInverse(M) computes a mapping M′ specified by
an SO sentence such that M′ is a maximum recovery of M. Moreover, algorithm PolySOInverse works in polynomial time.

Proof. Let λ be a plain SO-tgd of the form ∃ f̄ (σ1 ∧ · · · ∧ σk), and M = (S,T, λ). Let Σ be the set {σ1, . . . , σk}. Notice that
after Step 2 of the algorithm, we have that every σ in the (normalized) set Σ , is a formula of the form ∀x̄ (ϕ(x̄) → R(t̄(x̄)))
where:

• ϕ(x̄) is a CQ formula over S with x̄ as tuple of free variables,
• R is an n-ary relation symbol in T,
• t̄(x̄) is an n-tuple of plain terms constructed by using functions from f̄ and variables from x̄, and
• x̄ is exactly the tuple of (distinct) variables that ϕ(x̄) and t̄(x̄) share.

Notice that in the above notation we have made explicit the variables mentioned in the tuple of terms t̄(x̄). Additionally,
we assume that all the formulas in Σ have pair-wise disjoint sets of variables. It is straightforward to see that the formula
∃ f̄

∧
Σ obtained after the normalization step is logically equivalent to the original plain SO-tgd provided as input for the

algorithm.
Before continuing with the proof, recall that Fλ is the set of function symbols in f̄ . Also recall that F ′

λ is the set of
function symbols constructed as follows. For every n-ary function symbol f in f̄ , the set F ′

λ contains n unary function
symbols f1, . . . , fn . Additionally, F ′

λ contains a new unary function symbol f� . In the rest of the proof we assume that f̄ ′ is
a tuple of function symbols containing exactly the function symbols mentioned in F ′

λ .
The rest of the proof is divided in three parts. We first introduce some auxiliary notation regarding the procedures

CreateTuple, EnsureInv and Safe, to simplify the exposition of the proof. Second, we prove, using our new notation, that
the mapping M′ obtained as the output of PolySOInverse(M) is a recovery of M. Finally, we prove that M′ is actually a
maximum recovery of M.

(I) Auxiliary notation.
We introduce some notation regarding the procedures CreateTuple, EnsureInv and Safe. First, given a tuple of terms

t̄(x̄) = (t1(x̄), . . . , tn(x̄)) we use ūt̄(x̄) to denote the output of CreateTuple(t̄(x)). That is, ūt̄(x̄) is an n-tuple of vari-
ables (u1, . . . , un) such that, for i = j, if the i-th component of t̄(x̄) is equal to the j-th component of t̄(x̄), then
ui and u j are the same variable, and they are different variables otherwise. Consider for example the tuple of terms
t̄(x1, x2) = (x1, f (x1), f (x1), x1, x2). In this case we have that t1(x1, x2) = t4(x1, x2) = x1, t2(x1, x2) = t3(x1, x2) = f (x1), and
t5(x1, x2) = x2, and then ūt̄(x1,x2) is a tuple of the form (u1, u2, u2, u1, u3). Second, given an n-tuple ū = (u1, . . . , un) of not
necessarily distinct variables, and an n-tuple s̄( ȳ) = (s1( ȳ), . . . , sn( ȳ)) of plain terms, we denote by ν(ū, s̄( ȳ)) the formula
obtained as output of procedure EnsureInv (λ, ū, s̄( ȳ)). Thus, we have that for every i with 1 � i � n it holds that:

• If si( ȳ) is a variable ym of ȳ, then ν(ū, s̄( ȳ)) contains the equality ui = ym as a conjunction.
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• If si( ȳ) is a non-atomic term f (ym1 , . . . , ymk ), with f a k-ary function symbol of f̄ and every ym j a variable in ȳ, then
ν(ū, s̄( ȳ)) contains the conjunction of equalities f1(ui) = ym1 ∧ · · · ∧ fk(ui) = ymk , where f1, . . . , fk are the k unary
functions in f̄ ′ associated with f .

For example, let ū = (u1, u2, u1) and s̄(y1, y2, y3)= (y1, f (y3, y1, y2), g(y2)). Notice that s1(y1, y2, y3)= y1, s2(y1, y2, y3)=
f (y3, y1, y2) and s3(y1, y2, y3) = g(y2). In this case we have that ν(ū, s̄(y1, y2, y3)) is the formula

u1 = y1 ∧ f1(u2) = y3 ∧ f2(u2) = y1 ∧ f3(u2) = y2 ∧ g1(u1) = y2.

Third, we denote by ω(ū, s̄( ȳ)) the formula obtained as the output of Safe(λ, ū, s̄( ȳ)). That is, we have that for every i with
1 � i � n, if si( ȳ) is a term of the form f (ym1 , . . . , ymk ) with f a k-ary function symbol of f̄ and every ym j a variable in ȳ,
then ω(ū, s̄( ȳ)) contains as conjuncts:

• the equality f�(ui) = f1(ui), and
• the inequality f�(ui) = g1(ui), for every function symbol g in f̄ different from f ,

and if si( ȳ) is a variable, then ω(ū, s̄( ȳ)) contains as conjuncts the inequalities f�(ui) = f1(ui) for every f in f̄ . We have
introduced this notation only to make explicit the variables used in the tuple of terms t̄(x̄) and s̄( ȳ) in the inputs of
CreateTuple, EnsureInv, and Safe.

Finally, given a dependency σ in Σ of the form ϕ(x̄) → R(t̄(x̄)), in this proof we denote by CR(t̄(x̄)) the set Γσ constructed
in Step 3.c. That is, for every dependency of the form ψ( ȳ) → R(s̄( ȳ)) in Σ such that s̄( ȳ) subsumes t̄(x̄), then CR(t̄(x))
includes the formula

∃ ȳ
(
ψ( ȳ) ∧ ν

(
ūt̄(x̄), s̄( ȳ)

) ∧ ω
(
ūt̄(x̄), s̄( ȳ)

))
.

Notice that in the above formula we are using our new notation for the outputs of CreateTuple(t̄(x)), EnsureInv(λ, ū, s̄( ȳ)),
and Safe(λ, ū, s̄( ȳ)).

With our new notation we have that the set Σ ′ constructed in PolySOInverse contains, for every σ ∈ Σ of the form
∀x̄ (ϕ(x̄) → R(t̄(x̄))), a dependency σ ′ such that

• the premise of σ ′ is composed of the atom R(ūt̄(x̄)) and formulas C(ui) for every i such that ti(x̄) is a variable x of x̄,
and

• the conclusion of σ ′ is the disjunction of all the formulas in CR(t̄(x̄)) .

We are now ready to continue with the proof. For simplicity, in what follows we omit the universal quantification in
the formulas in Σ and Σ ′ . That is, if σ is a formula in Σ of the form ∀x̄ (ϕ(x̄) → R(t̄(x̄))), we just write ϕ(x̄) → R(t̄(x̄))
to denote σ . Let M be the st-mapping specified by the formula λ = ∃ f̄

∧
Σ , and M′ the ts-mapping specified by the

formula λ′ = ∃ f̄ ′ ∧
Σ ′ constructed in the last step of algorithm PolySOInverse. We need to show that M′ is a maximum

recovery of M.

(II) M′ is a recovery of M.
We now show that M′ is a recovery of M, that is, we show that (I, I) ∈M ◦M′ for every source instance I . Let I be a

source instance, and J the result of chasing I with λ. Recall that J is constructed as follows. For every σ in Σ of the form
ϕ(x̄) → R(t̄(x̄)) and for every tuple ā of constant values such that I |� ϕ(ā), we include in J the tuple R(t̄(ā)). Notice that
in this procedure, every ground term is viewed as a distinct value (for example, f (a) and g(a) are considered to be distinct
values), and every ground non-atomic term is considered to be a null value. We claim that ( J , I) ∈ M′ which proves that
(I, I) ∈ M ◦M′ . In order to show that ( J , I) |� λ′ , we need to prove that there exists an interpretation for the functions of
f̄ ′ such that ( J , I) |� ∧

Σ ′ . For every k-ary function f in f̄ consider the interpretation of f i with 1 � i � k as follows:

• for every k-tuple (a1, . . . ,ak), we have that f i( f (a1, . . . ,ak)) = ai ,
• f i is an arbitrary fresh value in every other case.

That is f i is interpreted as the projection of f over component i. Additionally, we interpret function f� as follows. For every
k-ary function f in f̄ we let f�( f (a1, . . . ,ak)) = a1, and f� is an arbitrary fresh value in every other case. Notice that this
interpretation is well defined since every ground term produced when chasing I , is viewed as a distinct value. We show
now that with this interpretation, it holds that ( J , I) |� ∧

Σ ′ .
Let σ ′ be a formula in Σ ′ . We need to show that ( J , I) satisfies σ ′ . Assume that σ ′ was created from a formula in Σ of

the form ϕ(x̄) → R(t̄(x̄)). Assume that R is an n-ary relation symbol. Then σ ′ is of the form R(ūt̄(x̄))∧ C(ū′) → α(ūt̄(x̄)) with
ūt̄(x̄) an n-tuple of (not necessarily distinct) variables, ū′ ⊆ ūt̄(x̄) , and α(ūt̄(x̄)) the disjunction of the formulas in CR(t̄(x̄)) . Now,

suppose that there exists an n-tuple b̄ of ground terms such that J |� R(b̄) ∧ C(b̄′) (with b̄′ the corresponding assignment
to ū′ that derives from the assignment of b̄ to ūt̄(x̄)). We must show that I |� α(b̄). Since J is the result of chasing I with λ,
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we know that there exists a formula ψ( ȳ) → R(s̄( ȳ)) that is used to generate R(b̄) in J . Then there exists a tuple ā of
constants such that I |� ψ(ā) and s̄(ā) = b̄. Now, given that C(b̄′) holds and s̄(ā) = b̄, we conclude that s̄( ȳ) subsumes t̄(x̄).
Consequently, the formula

β(ūt̄(x̄)) = ∃ ȳ
(
ψ( ȳ) ∧ ν

(
ūt̄(x̄), s̄( ȳ)

) ∧ ω
(
ūt̄(x̄), s̄( ȳ)

))

belongs to CR(t̄(x̄)) , and then, it is a disjunct in α(ūt̄(x̄)). We claim that I |� β(b̄) = β(s̄(ā)) and then I |� α(b̄). Notice that

I |� ψ(ā) and by the interpretation of the functions of f̄ ′ it is straightforward to see that ν(s̄(ā), s̄(ā)) and ω(s̄(ā), s̄(ā)) hold.
Then we have that I |� β(b̄) with the chosen interpretation for the functions in f̄ ′ by using tuple ā as the witness for the
tuple ȳ of existentially quantified variables, and then I |� α(b̄). We have shown that, with the chosen interpretation for the
functions in f̄ ′ , it holds that ( J , I) satisfies every formula in Σ ′ , and then ( J , I) satisfies

∧
Σ ′ , which was to be shown.

(III) M′ is a maximum recovery of M.
We have shown that M′ is a recovery of M. To complete the proof that M′ is a maximum recovery of M, it is enough

to show that, if (I1, I2) ∈ M ◦ M′ then SolM(I2) ⊆ SolM(I1) (see Proposition 3.8 in [5]). To simplify the exposition we
introduce some notation. A ground plain term is a term of the form f (a1, . . . ,ak) where a1, . . . ,ak are values from some
domain. Let p̄ be a tuple of ground plain terms constructed by using function symbols from a tuple ḡ , and let ḡ0 be an
interpretation for the function symbols in ḡ . We write p̄[ḡ �→ ḡ0] to denote the tuple obtained by replacing every ground
plain term using a function symbol in ḡ by its corresponding interpretation in ḡ0. Similarly, if γ is a conjunction of atoms
mentioning ground plain terms, we write γ [ḡ �→ ḡ0] to denote the conjunction obtained by replacing every ground plain
term by its corresponding interpretation in ḡ0. Abusing of the notation, for a first-order formula α that mentions plain
terms constructed from function symbols in ḡ we write I |� α[ḡ �→ ḡ0] to denote that I satisfies α with the interpretation
ḡ0 for the function symbols in ḡ .

To continue with the proof, let I1 and I2 be source instances such that (I1, I2) ∈ M ◦ M′ . In order to prove that
SolM(I2) ⊆ SolM(I1) assume that (I2, J �) ∈ M. We need to show that (I1, J �) ∈ M. Since (I1, I2) ∈ M ◦M′ , there exists
a target instance J such that (I1, J ) ∈ M and ( J , I2) ∈ M′ . Thus, we have that (I1, J ) |� ∃ f̄

∧
Σ , and ( J , I2) |� ∃ f̄ ′ ∧

Σ ′ .
Then we know that there exist an interpretation f̄ (I1, J ) for the functions in f̄ , and an interpretation f̄ ′( J ,I2) for the functions
in f̄ ′ , such that (I1, J ) |� (

∧
Σ)[ f̄ �→ f̄ (I1, J )] and ( J , I2) |� (

∧
Σ ′)[ f̄ ′ �→ f̄ ′( J ,I2)]. Moreover, since (I2, J �) ∈ M we know

that there exists an interpretation f̄ (I2, J �) for the functions in f̄ , such that (I2, J �) |� (
∧

Σ)[ f̄ �→ f̄ (I2, J �)]. We need to
show that there exists an interpretation f̄ (I1, J �) for f̄ , such that (I1, J �) |� (

∧
Σ)[ f̄ �→ f̄ (I1, J �)]. We describe now how to

construct f̄ (I1, J �) from f̄ (I1, J ) , f̄ ′( J ,I2) and f̄ (I2, J �) . Let f be a k-ary function symbol in f̄ , and let ā be a k-tuple of constant
values mentioned in I1. Define f (I1, J �)(ā) as follows:

• Assume that there exists a unique function symbol g in f̄ , such that its associated function g1 in f̄ ′ satisfies:

f ( J ,I2)
�

(
f (I1, J )(ā)

) = g( J ,I2)
1

(
f (I1, J )(ā)

)
. (11)

Then, we let

f (I1, J �)(ā) = g(I2, J �)(g( J ,I2)
1

(
f (I1, J )(ā)

)
, . . . , g( J ,I2)

k

(
f (I1, J )(ā)

))
.

• Otherwise, if there is no function symbol in f̄ satisfying equality (11), or there is more than one function symbol in f̄
satisfying (11), then f (I1, J �)(ā) = f (I1, J )(ā).

We show next that, with f̄ (I1, J �) as defined above, it holds that (I1, J �) |� (
∧

Σ)[ f̄ �→ f̄ (I1, J �)].
Let σ be a formula in Σ of the form ϕ(x̄) → R(t̄(x̄)), with R an n-ary relation symbol, and assume that I1 |� ϕ(ā) for

some tuple ā of constant values. We need to show that J � |� R(t̄(ā))[ f̄ �→ f̄ (I1, J �)]. Now, since I1 |� ϕ(ā) and (I1, J ) |�
(
∧

Σ)[ f̄ �→ f̄ (I1, J )], we know that J |� R(t̄(ā))[ f̄ �→ f̄ (I1, J )]. By construction of Σ ′ , there exists a formula σ ′ in Σ ′ of the
form

R(ūt̄(x̄)) ∧ C
(
ū′) → α(ūt̄(x̄)),

that has been constructed from σ , with α(ūt̄(x̄)) the disjunction of the formulas in CR(t̄(x̄)) . Notice that, by the construction

of ūt̄(x̄) , we obtain that J satisfies R(ūt̄(x̄)) with the assignment t̄(ā)[ f̄ �→ f̄ (I1, J )] to ūt̄(x̄) . Let ā′ be the corresponding

assignment to ū′ that derives from the assignment of t̄(ā)[ f̄ �→ f̄ (I1, J )] to ūt̄(x̄) . By the construction of σ ′ and since ā is a

tuple of constant values, it is straightforward to see that C(ā′) holds. Then we have that J |� R(t̄(ā))[ f̄ �→ f̄ (I1, J )] ∧ C(ā′).
Moreover, since ( J , I2) |� (

∧
Σ ′)[ f̄ ′ �→ f̄ ′( J ,I2)], we obtain that I2 |� α(t̄(ā)[ f̄ �→ f̄ (I1, J )])[ f̄ ′ �→ f̄ ′( J ,I2)]. From this last fact

we conclude that there exist a disjunct β(ūt̄(x̄)) of α(ūt̄(x̄)) of the form ∃ ȳ (ψ( ȳ)∧ν(ūt̄(x̄), s̄( ȳ))∧ω(ūt̄(x̄), s̄( ȳ))), and a tuple

b̄ of constant values such that

I2 |� ψ(b̄) ∧ (
ν
(
t̄(ā)

[
f̄ �→ f̄ (I1, J )], s̄(b̄)

) ∧ ω
(
t̄(ā)

[
f̄ �→ f̄ (I1, J )], s̄(b̄)

))[
f̄ ′ �→ f̄ ′( J ,I2)

]
.
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By the construction of the formula α(ūt̄(x̄)), we know that β(ūt̄(x̄)) belongs to the set CR(t̄(x̄)) . Thus, there exists a formula

ψ( ȳ) → R(s̄( ȳ)) in Σ such that s̄( ȳ) subsumes t̄(x̄). Notice that I2 |� ψ(b̄), and then since (I2, J �) |� (
∧

Σ)[ f̄ �→ f̄ (I2, J �)],
we know that J � |� R(s̄(b̄))[ f̄ �→ f̄ (I2, J �)]. We show next that R(s̄(b̄))[ f̄ �→ f̄ (I2, J �)] is equal to R(t̄(ā))[ f̄ �→ f̄ (I1, J �)], and
then we obtain that J � |� R(t̄(ā))[ f̄ �→ f̄ (I1, J �)], which is exactly what we want to prove.

Let ūt̄(x̄) = (u1, . . . , un), t̄(x̄) = (t1(x̄), . . . , tn(x̄)), and s̄( ȳ) = (s1( ȳ), . . . , sn( ȳ)). We show now that, for every i such that

1 � i � n, it holds that ti(ā)[ f̄ �→ f̄ (I1, J �)] = si(b̄)[ f̄ �→ f̄ (I2, J �)]. First, assume that si( ȳ) is a variable ym from ȳ, and bm

the (constant) value that corresponds to ym in the assignment of b̄ to ȳ. Notice that since si(b̄) is the constant value bm ,
then si(b̄)[ f̄ �→ f̄ (I2, J �)] = si(b̄) = bm . Now, since s̄( ȳ) subsumes t̄(x̄) and si( ȳ) is a variable, it holds that ti(x̄) is either a
variable xr of x̄ or a non-atomic term f (xr1 , . . . , xr� ), with f an �-ary function symbol in f̄ and (xr1 , . . . , xr� ) an �-tuple of
variables from x̄. Assume first that ti(x̄) is the variable xr and let ar be the value that corresponds to xr in the assignment
of ā to x̄. Notice that formula ν(ūt̄(x̄), s̄( ȳ)) contains the equality ui = ym . Then since ν(t̄(ā)[ f̄ �→ f̄ (I1, J )], s̄(b̄))[ f̄ ′ �→ f̄ ′( J ,I2)]
holds, we obtain that ar = bm . Notice that since ar is a constant value the interpretation of the function symbols in f̄
(or in f̄ ′) does not affect it. In particular, we have that ar = ti(ā) = ti(ā)[ f̄ �→ f̄ (I1, J �)] and thus, since ar = bm we obtain
that ti(ā)[ f̄ �→ f̄ (I1, J �)] = si(b̄)[ f̄ �→ f̄ (I2, J �)], which was to be shown. Assume now that ti(x̄) is a term f (xr1 , . . . , xr� ), with
f in f̄ and (xr1 , . . . , xr� ) a tuple of variables from x̄. Given that ν(ūt̄(x̄), s̄( ȳ)) contains then equality ui = ym , and since

ν(t̄(ā)[ f̄ �→ f̄ (I1, J )], s̄(b̄))[ f̄ ′ �→ f̄ ′( J ,I2)] holds, we have that f (I1, J )(ar1 , . . . ,ar� ) = bm (where (ar1 , . . . ,ar� ) is the assignment
to variables (xr1 , . . . , xr� ) that derives from the assignment of ā to variables x̄). Moreover, since si( ȳ) is a variable, we know
that formula ω(ūt̄(x̄), s̄( ȳ)) contains the inequalities f�(ui) = g1(ui), for every function symbol g in f̄ . Thus, since formula

ω(t̄(ā)[ f̄ �→ f̄ (I1, J )], s̄(b̄))[ f̄ ′ �→ f̄ ′( J ,I2)] holds, we obtain that

f ( J ,I2)
�

(
f (I1, J )(ar1 , . . . ,ar� )

) = g( J ,I2)
1

(
f (I1, J )(ar1 , . . . ,ar� )

)
, (12)

for every function symbol g in f̄ . Notice that from (12) and the construction of functions f̄ (I1, J∗) , we obtain that
f (I1, J )(ar1 , . . . ,ar� ) = f (I1, J∗)(ar1 , . . . ,ar� ). Thus, since f (I1, J∗)(ar1 , . . . ,ar� ) = f (I1, J )(ar1 , . . . ,ar� ) = bm = si(b̄), we obtain that
ti(ā)[ f̄ �→ f̄ (I1, J �)] = si(b̄)[ f̄ �→ f̄ (I2, J �)], which was to be shown.

Now suppose that s̄i( ȳ) is a non-atomic term g(ym1 , . . . , ymk ), with g a k-ary function symbol in f̄ and (ym1 , . . . , ymk )

a k-tuple of variables from ȳ. Then since s̄( ȳ) subsumes t̄(x̄), it holds that ti(x̄) is a non-atomic term f (xr1 , . . . , xr� ), with f
an �-ary function symbol in f̄ and (xr1 , . . . , xr� ) an �-tuple of variables from x̄. Notice that formula ν(ūt̄(x̄), s̄( ȳ)) contains,

for every j such that 1 � j � k, the equality ym j = g j(ui) as a conjunction, with g j a unary function symbol in f̄ ′ . We

also know that formula ν(t̄(ā)[ f̄ �→ f̄ (I1, J )], s̄(b̄))[ f̄ ′ �→ f̄ ′( J ,I2)] holds. Then for every j such that 1 � j � k, we have that
bm j = (g j(ti(ā)[ f̄ �→ f̄ (I1, J )]))[ f̄ ′ �→ f̄ ′( J ,I2)]. Thus, since we are assuming that ti(x̄) = f (xr1 , . . . , xr� ), we know that the
following equalities hold:

bm1 = g( J ,I2)
1

(
f (I1, J )(ar1 , . . . ,ar� )

)
,

...

bmk = g( J ,I2)

k

(
f (I1, J )(ar1 , . . . ,ar� )

)
. (13)

Now, focus on the formula ω(ūt̄(x̄), s̄( ȳ)). Since s̄i( ȳ) = g(ym1 , . . . , ymk ), we know that ω(ūt̄(x̄), s̄( ȳ)) contains the equality

f�(ui) = g1(ui), and the inequalities f�(ui) = h1(ui), for every h in f̄ different from g . Then since we know that formula
ω(t̄(ā)[ f̄ �→ f̄ (I1, J )], s̄(b̄))[ f̄ ′ �→ f̄ ′( J ,I2)] holds, we obtain that

f ( J ,I2)
�

(
f (I1, J )(ar1 , . . . ,ar� )

) = g( J ,I2)
1

(
f (I1, J )(ar1 , . . . ,ar� )

)
, (14)

and for every h in f̄ different from g ,

f ( J ,I2)
�

(
f (I1, J )(ar1 , . . . ,ar� )

) = h( J ,I2)
1

(
f (I1, J )(ar1 , . . . ,ar� )

)
.

Notice then that g is the unique function in f̄ that satisfies (14). Then by the construction of f̄ (I1, J �) we know that

f (I1, J �)(ar1 , . . . ,ar� ) = g(I2, J �)(g( J ,I2)
1

(
f (I1, J )(ar1 , . . . ,ar� )

)
, . . . , g( J ,I2)

k

(
f (I1, J )(ar1 , . . . ,ar� )

))
.

By replacing the equalities in (13) in this last expression we obtain that

f (I1, J �)(ar1 , . . . ,ar� ) = g(I2, J �)(bm1 , . . . ,bmk ).

Notice si(b̄) = g(bm1 , . . . ,bmk ), and ti(ā) = f (ar1 , . . . ,ar� ), thus we have that ti(ā)[ f̄ �→ f̄ (I1, J �)] = si(b̄)[ f̄ �→ f̄ (I2, J �)], which
was to be shown.

We have shown that, for every i such that 1 � i � n, it holds that ti(ā)[ f̄ �→ f̄ (I1, J �)] = si(b̄)[ f̄ �→ f̄ (I2, J �)]. Thus we
have that R(t̄(ā))[ f̄ �→ f̄ (I1, J �)] is equal to R(s̄(b̄))[ f̄ �→ f̄ (I2, J �)]. Then since J � |� R(s̄(b̄))[ f̄ �→ f̄ (I2, J �)] we know that
J � |� R(t̄(ā))[ f̄ �→ f̄ (I1, J �)]. What we have proved is that, for every formula ϕ(x̄) → R(t̄(x̄)) in Σ , if I1 |� ϕ(ā), then
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J � |� R(t̄(ā))[ f̄ �→ f̄ (I1, J �)]. Thus we have that (I1, J �) |� (
∧

Σ)[ f̄ �→ f̄ (I1, J �)], and then (I1, J �) |� ∃ f̄
∧

Σ . This concludes
the proof of the theorem. �

We conclude this section with two important remarks about the algorithm presented above. Recall that a mapping M
from a schema R1 to a schema R2 is total if dom(M) = Inst(R1), and it is closed-down on the left if whenever (I, J ) ∈ M
and I ′ ⊆ I , it holds that (I ′, J ) ∈ M. Given that plain SO-tgds are total and closed down on the left, we obtain from
Proposition 4 the following corollary.

Corollary 20. Let M be an st-mapping specified by a plain SO-tgd λ. If M has a Fagin-inverse (quasi-inverse), then algorithm
PolySOInv(M) computes in polynomial time a Fagin-inverse (quasi-inverse) of M.

Moreover, given that every set of st-tgds can be transformed into an equivalent plain SO-tgd in linear time, our algorithm
can be used to compute Fagin-inverses, quasi-inverses, and maximum recoveries for st-mappings specified by sets of st-tgds.
This is the first polynomial-time algorithm capable of doing this.

6. Concluding remarks

We have studied the language of plain SO-tgds, its structural properties, and its properties regarding composition and
inversion. We have argued that plain SO-tgds are a good alternative as a mapping language for data exchange and data
integration, since plain SO-tgds retain the most important structural properties of st-tgds, and enjoy some interesting new
properties regarding composition and inversion.

In fact, just as st-tgds, plain SO-tgds admit universal solutions, allow for conjunctive query rewriting, and are closed
under target homomorphisms, which have been identified in [27] as three of the most fundamental structural proper-
ties for data exchange and data integration. Furthermore, we have shown that plain SO-tgds are a good alternative if one
wants to apply composition and inversion operators. Most notably, we have proved that plain SO-tgds are closed under
CQ-composition, the CQ-composition of any number of mappings given by st-tgds can be defined with a plain SO-tgd, any
plain SO-tgd defines the CQ-composition of two mappings specified by st-tgds, and plain SO-tgds always have a maximum
recovery. These results show that plain SO-tgds are the right language for capturing the CQ-composition of st-tgds and,
more importantly, they show how an inverse operator can be applied to a sequence of CQ-compositions of mappings given
by either plain SO-tgds, or st-tgds.

With the practical applicability of inversion in mind, we also presented a polynomial-time algorithm for computing the
inverse of plain SO-tgds (and thus, also the inverse of st-tgds) under all of the most important notions of inversion that
have been proposed in the classical data exchange setting. This is the first efficient algorithm capable of doing this.

Many questions remain open. For example, it would be interesting to see whether plain SO-tgds capture all mappings
that admit universal solutions, allow for conjunctive query rewriting and are closed under target homomorphisms. In the
search for a mapping language that is closed under both inversion and composition operators, we would like to study
whether all the features introduced in our algorithm are really needed to specify the maximum recovery of mappings given
by plain SO-tgds. Furthermore, we want to investigate the closure properties of maximum recoveries of mappings specified
by plain SO-tgds. In particular, study if the inversion algorithm can be refined, or the inversion semantics be relaxed, in
order to ensure that the inverse of plain SO-tgds can always be expressed as a plain SO-tgd.
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