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1 INTRODUCTION

Arguably, query answering is the most fundamental problem in databases. In this respect, devel-
oping efficient query answering algorithms, as well as understanding when this cannot be done, is
of paramount importance for database theory and applications. In the most classical view of this
problem, one is interested in computing all the answers, or solutions, to a query. However, as the
quantity of data becomes enormously large, the number of answers to a query could also be enor-
mous, so computing the complete set of solutions can be prohibitively expensive. To overcome this
limitation, the idea of enumerating the answers to a query with a small delay has been recently
studied in the database area [31]. More specifically, the idea is to divide the computation of the
answers to a query into two phases. In a preprocessing phase, some data structures are constructed
to accelerate the process of computing answers. Then, in an enumeration phase, the answers are
enumerated with a small delay between them. In particular, in the case of constant delay enumer-
ation algorithms, the preprocessing phase should take polynomial time, while the time between
consecutive answers should be constant.

Constant delay enumeration algorithms allow users to retrieve a fixed number of answers very
efficiently, which can give them a lot of information about the solutions to a query. In fact, the
same holds if users need a linear or a polynomial number of answers. However, because of the
data structures used in the preprocessing phase, these algorithms usually return answers that are
very similar to each other [10, 15, 31]; for example, tuples with n elements where only the first few
coordinates are changed in the first answers that are returned. In this respect, other approaches
can be used to return some solutions efficiently but improving their variety. Most notably, the
possibility of generating an answer uniformly, at random, is a desirable condition if it can be done
efficiently. Notice that returning varied solutions has been identified as an important property not
only in databases, but also for algorithms that retrieve information in a broader sense [1].

Efficient algorithms for either enumerating or uniformly generating the answers to a query are
powerful tools to help in the process of understanding the answers to a query. But how can we
know how long these algorithms should run and how complete the set of computed answers is?
A third tool that is needed, then, is an efficient algorithm for computing, or estimating, the num-
ber of solutions to a query. Then, taken together, enumeration, counting, and uniform generation
techniques form a powerful attacking trident when confronting the problem of answering a query.

In this article, we follow a principled approach to study the problems of enumerating, counting,
and uniformly generating the answers to a query. More specifically, we begin by following the
guidance of Reference [21], which urges the use of relations to formalize the notion of solution to
a given input of a problem (for instance, to formalize the notion of answer to an input query over an
input database). While there are many ways of formalizing this notion, most such formalizations
only make sense for a specific kind of queries, e.g., a subset of the integers is well-suited as the
solution set for counting problems, but not for sampling problems. We want a general framework,
so by following Reference [21], we represent a problem as a relation R ⊆ {0, 1}∗ × {0, 1}∗, and
we say that y is a solution for an input x if (x ,y) ∈ R.1 Note that the problem of enumerating the
solutions to a given input x corresponds to the problem of enumerating the elements of the set
{y ∈ {0, 1}∗ ∣ (x ,y) ∈ R}, while the counting and uniform generation problems correspond to the
problems of computing the cardinality of {y ∈ {0, 1}∗ ∣ (x ,y) ∈ R} and uniformly generating, at
random, a string in this set, respectively.

Second, we study two simple yet general complexity classes for relations, based on non-

deterministic logspace transducers (NL-transducers), which provide a unifying framework

1For the sake of presentation, we assume relations to be defined over the binary alphabet {0, 1}. The results of this article
also hold if we consider relations defined over an arbitrary finite alphabet Σ.
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for studying enumeration, counting, and uniform generation. More specifically, an NL-transducer
M is a non-deterministic Turing Machine with input and output alphabet {0, 1}, a read-only in-
put tape, a write-only output tape, and a work-tape of which, on input x ∈ {0, 1}∗, only the
first O(log(∣x ∣)) cells can be used. Moreover, a string y ∈ {0, 1}∗ is said to be an output of M
on input x if there exists a run of M on input x that halts in an accepting state with y as the
string in the output tape. Finally, assuming that all outputs of M on input x are denoted by M(x),
a relation R ⊆ {0, 1}∗ × {0, 1}∗ is said to be accepted by M if for every input x , it holds that
M(x) = {y ∈ {0, 1}∗ ∣ (x ,y) ∈ R}.

The first complexity class of relations studied in this article consists of the relations accepted
by unambiguous NL-transducers. More precisely, an NL-transducer M is said to be unambiguous
if for every input x and y ∈ M(x), there exists exactly one run of M on input x that halts in an
accepting state with y as the string in the output tape. For this class, we are able to achieve con-
stant delay enumeration and both counting and uniform generation of solutions in polynomial
time. For the second class, we consider (unrestricted) NL-transducers, and we obtain polynomial
delay enumeration, approximate counting in polynomial time, and polynomial-time randomized
algorithms for uniform generation. More specifically, we show that each problem in this second
class admits a fully polynomial-time randomized approximation scheme (FPRAS) [21] and
a polynomial-time Las Vegas algorithm (with preprocessing) for uniform generation. It is impor-
tant to mention that the key idea to prove these results is to show that the fundamental problem
#NFA admits an FPRAS, where #NFA is the problem of counting the number of strings of length
n (given in unary) accepted by a non-deterministic finite automaton (NFA). While this prob-
lem is known to be #P-complete and, more precisely, SpanL-complete [3], it was open whether
it admits an FPRAS, and only quasi-polynomial time randomized approximation schemes

(QPRAS) were known for it [18, 23]. In this work, we solve this open problem and obtain as a wel-
come corollary that every function in SpanL admits an FPRAS. Thus, to the best of our knowledge,
we identify SpanL as the first complexity class with a simple and robust definition based on Turing
Machines, which contains #P-complete problems and where each problem admits an FPRAS.

Proviso. This article is an extended version of the article “Efficient Logspace Classes for Enumera-
tion, Counting, and Uniform Generation,” which was published in the 38th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS 2019). For this extended version, we
have made many changes. In particular, we have completely reworked the proof that #NFA admits
a fully polynomial-time randomized approximation schema, which is the main result of this work.
More specifically, we have carefully restructured this proof for the sake of readability, obtaining
a simpler and more efficient algorithm. Besides, for the more general class of relations defined in
terms of (unrestricted) NL-transducers, this result allows us to prove that each problem in this
class admits a polynomial-time Las Vegas uniform generator. Such a randomized algorithm needs
a preprocessing phase, which was not properly made explicit in the conference paper. We have
solved this issue by introducing, and studying, the notion of preprocessing polynomial-time Las
Vegas uniform generator.

Organization of the article. The main terminology used in the article is given in Section 2. In
Section 3, we define the two classes studied in this article and state our main results. In Section 4, we
show how these classes can be used to obtain positive results on query evaluation in information
extraction, graph databases, and binary decision diagrams. The complete proofs of our results are
presented in Sections 5 and 6 and Appendix A. In particular, we explain the algorithmic techniques
used to obtain an FPRAS for the #NFA problem in Section 6, where we also provide a detailed proof
of this result. Finally, some concluding remarks are given in Section 7.
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2 PRELIMINARIES

Given natural numbers n ≤m, we use notation [n,m] for the set {n, . . . ,m}. Besides, we use log(x)
to refer to the logarithm of x to base e .

2.1 Relations and Problems

As usual, {0, 1}∗ denotes the set of all strings over the binary alphabet {0, 1}, ∣x ∣ denotes the length
of a string x ∈ {0, 1}∗, x1 ⋅ x2 denotes the concatenation of two strings x1,x2 ∈ {0, 1}∗, and {0, 1}n

denotes the set of all strings x ∈ {0, 1}∗ such that ∣x ∣ = n. A problem is represented as a relation
R ⊆ {0, 1}∗ × {0, 1}∗. For every pair (x ,y) ∈ R, we interpret x as being the encoding of an input
to some problem, and y as being the encoding of a solution to that input. For each x ∈ {0, 1}∗,
we define the set WR(x) = {y ∈ {0, 1}∗ ∣ (x ,y) ∈ R} and call it the set of solutions for x . Also, if
y ∈WR(x), then we call y a solution to x .

This is a very general framework, so we work with p-relations [21]. Formally, a relation
R ⊆ {0, 1}∗ × {0, 1}∗ is a p-relation if (1) there exists a polynomial q such that (x ,y) ∈ R im-
plies that ∣y∣ ≤ q(∣x ∣) and (2) there exists a deterministic Turing Machine that receives as input
(x ,y) ∈ {0, 1}∗ × {0, 1}∗, runs in polynomial time, and accepts if, and only if, (x ,y) ∈ R. Without
loss of generality, from now on we assume that for a p-relation R, there exists a polynomial q such
that ∣y∣ = q(∣x ∣) for every (x ,y) ∈ R. This is not a strong requirement, since all solutions can be
made to have the same length through padding.

2.2 Enumeration, Counting, and Uniform Generation

There are several computational problems associated to a relation R. For example, given a relation
R and an input x ∈ {0, 1}∗, we could consider the existence problem of deciding whether there are
any solutions for x . In this article, given a p-relation R, we are interested in the following problems:

Problem: ENUM(R)
Input: A word x ∈ {0, 1}∗
Output: Enumerate all y ∈WR(x) without repetitions

Problem: COUNT(R)
Input: A word x ∈ {0, 1}∗
Output: The size ∣WR(x)∣

Problem: GEN(R)
Input: A word x ∈ {0, 1}∗
Output: Generate uniformly, at random, a word inWR(x)

Given that ∣y∣ = q(∣x ∣) for every (x ,y) ∈ R, we have thatWR(x) is finite and these three problems
are well defined. Notice that in the case of ENUM(R), we do not assume a specific order on words,
so the elements ofWR(x) can be enumerated in any order (but without repetitions). Moreover, in
the case of COUNT(R), we assume that ∣WR(x)∣ is encoded in binary and, therefore, the size of
the output is logarithmic in the size ofWR(x). Finally, in the case of GEN(R), we generate a word
y ∈ WR(x) with probability 1

∣WR(x)∣
if the set WR(x) is not empty; otherwise, we return a special

symbol � to indicate thatWR(x) = ∅.

2.3 Enumeration with Polynomial and Constant Delay

An enumeration algorithm for ENUM(R) is a procedure that receives an input x ∈ {0, 1}∗ and,
during the computation, it outputs each word inWR(x), one-by-one and without repetitions. The
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time between two consecutive outputs is called the delay of the enumeration. In this article, we
consider two restrictions on the delay: polynomial delay and constant delay. Polynomial delay enu-
meration is the standard notion of polynomial time efficiency in enumeration algorithms [22] and
is defined as follows: An enumeration algorithm is of polynomial delay if there exists a polynomial
p such that for every input x ∈ {0, 1}∗, the time between the beginning of the algorithm and the
initial output, between any two consecutive outputs, and between the last output and the end of
the algorithm, is bounded by p(∣x ∣).

Constant delay enumeration is another notion of efficiency for enumeration algorithms that has
attracted a lot attention in recent years [9, 12, 31]. This notion has stronger guarantees compared to
polynomial delay: The enumeration is done in a second phase after the processing of the input and
taking constant-time between two consecutive outputs in a very precise sense. Several notions of
constant delay enumeration have been given, most of them in database theory where it is important
to divide the analysis between query and data. In this article, we want a definition of constant delay
that is agnostic of the distinction between query and data (i.e., combined complexity) and, for this
reason, we use a more general notion of constant delay enumeration than the one in References
[9, 12, 31].

Constant delay enumeration cannot be achieved in general with a standard Turing Machine,
because merely moving the head through the tape will take up more than constant time. So, as
it is standard in the literature [31], for the notion of constant delay enumeration, we consider
enumeration algorithms on Random Access Machines (RAM) with addition and uniform cost
measure [2]. Given a relation R ⊆ {0, 1}∗ ×{0, 1}∗, an enumeration algorithm E for R has constant
delay if E runs in two phases over the input x .

(1) The first phase (precomputation), which does not produce output.
(2) The second phase (enumeration), which occurs immediately after the precomputation phase,

where all words inWR(x) are enumerated without repetitions and satisfying the following
conditions, for a fixed constant c:
(a) the time it takes to generate the first output y is bounded by c ⋅ ∣y∣;
(b) the time between two consecutive outputs y and y′ is bounded by c ⋅ ∣y′∣ and does not

depend on y; and
(c) the time between the final element y that is returned and the end of the enumeration

phase is bounded by c ⋅ ∣y∣,
We say that E is a constant delay algorithm for R with precomputation phase f if E has constant
delay and the precomputation phase takes time O(f (∣x ∣)). Moreover, we say that ENUM(R) can
be solved with constant delay if there exists a constant delay algorithm for R with precomputation
phase p for some polynomial p.

Our notion of constant delay algorithm differ from the definitions in Reference [31] in two
aspects. First, in our definition the input is not divided into some components, so the preprocessing
phase must take polynomial time in the size of the entire input. In the case of constant delay
algorithms for query answering, the input is usually divided into the data and the query, and the
preprocessing phase is only asked to take polynomial time in the size of the data (as the query is
usually assumed to be fixed, which is referred to as data complexity [33]). Second, our definition
of constant delay is what in References [9, 12] is called linear delay in the size of the output, namely,
writing the next output is linear in its size and does not depend on the size of the input. This is a
natural assumption, since each output must at least be written down to return it to the user. Notice
that, given an input x and an output y, the notion of polynomial delay above means polynomial in
∣x ∣ and, instead, the notion of linear delay from References [9, 12] means linear in ∣y∣, i.e., constant
in the size of ∣x ∣. Thus, we have decided to call the two-phase enumeration from above “constant
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delay,” as it does not depend on the size of the input x , and the delay is just what is needed to write
the output (which is the minimum requirement for such an enumeration algorithm).

2.4 Approximate Counting and Las Vegas Uniform Generation with Preprocessing

Given a relation R ⊆ {0, 1}∗ × {0, 1}∗, the problem COUNT(R) can be solved efficiently if there
exists a polynomial-time algorithm that, given x ∈ {0, 1}∗, computes ∣WR(x)∣. In other words, if we
think of COUNT(R) as a function that maps x to the value ∣WR(x)∣, then COUNT(R) can be com-
puted efficiently if COUNT(R) ∈ FP, the class of functions that can be computed in polynomial time.
As such a condition does not hold for many fundamental problems, we also consider the possibility
of efficiently approximating the value of the function COUNT(R). More precisely, COUNT(R) is
said to admit a FPRAS [21] if there exists a randomized algorithm A ∶ {0, 1}∗ × (0, 1) → N and a
polynomial q(u,v) such that for every x ∈ {0, 1}∗ and δ ∈ (0, 1), it holds that:

Pr(∣A(x ,δ) − ∣WR(x)∣∣ ≤ δ ⋅ ∣WR(x)∣) ≥ 3

4
,

and the time needed to compute A(x ,δ) is at most q(∣x ∣, 1
δ
). Thus, A(x ,δ) approximates the value

∣WR(x)∣ with a relative error of δ , and it can be computed in polynomial time in the size of x and
the value 1

δ
.

The problem GEN(R) can be solved efficiently if there exists a polynomial-time randomized
algorithm that, given x ∈ {0, 1}∗, generates an element of WR(x) with uniform probability dis-
tribution (if WR(x) = ∅, then it returns �). However, as in the case of COUNT(R), the existence
of such a generator is not guaranteed for many fundamental problems, so we also consider a re-
laxed notion of generation that has a probability of failing in returning a solution. More precisely,
GEN(R) is said to admit a preprocessing polynomial-time Las Vegas uniform generator

(PPLVUG) if there exists a pair of randomized algorithms P ∶ {0, 1}∗ × (0, 1) → ({0, 1}∗ ∪ {�}),
G ∶ {0, 1}∗ → ({0, 1}∗ ∪ {fail}) and a pair of polynomials q(u,v), r(u) such that for ev-
ery x ∈ {0, 1}∗ and δ ∈ (0, 1):

(1) The preprocessing algorithm P receives as inputs x and δ and runs in time bounded by
q(∣x ∣, log(1/δ)). If WR(x) ≠ ∅, then P(x ,δ) returns a string D such that D is good-for-
generation with probability 1 − δ . IfWR(x) = ∅, then P(x ,δ) returns �.

(2) The generator algorithm G receives as input D and runs in time bounded by r(∣D∣). Moreover,
if D is good-for-generation, then:
(a) G(D) returns fail with a probability at most 1

2 , and
(b) conditioned on not returning fail, G(D) returns a truly uniform sample y ∈WR(x), i.e.,

with a probability 1/∣WR(x)∣ for each y ∈WR(x).
Otherwise, if D is not good-for-generation, then G(D) outputs a string without any
guarantee.

In line with the notion of constant delay enumeration algorithm, we allow the previous concept
of uniform generator to have a preprocessing phase. If there is no solution for the input x (that
is,WR(x) = ∅), then the preprocessing algorithm P returns the symbol �. Otherwise, the invoca-
tion P(x ,δ) returns a string D in {0, 1}∗, namely, a data structure or “advice” for the generation
procedure G. The output of the invocation P(x ,δ) is used by the generator algorithm G to pro-
duce a solution of x with uniform distribution (that is, with probability 1/∣WR(x)∣). If the output of
P(x ,δ) is not good-for-generation (which occurs with probability δ ), then we have no guarantees
on the output of the generator algorithm G. Otherwise, we know that G(D) returns an element
ofWR(x) with uniform distribution, or it returns fail. Furthermore, we can repeat G(D) as many
times as needed, generating each time a truly uniform sample y fromWR(x) whenever y ≠ fail.
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Notice that by condition (2a), we know that this probability of failing is smaller than 1
2 , so

by invoking G(D) several times, we can make this probability arbitrarily small (for example, the
probability that G(D) returns fail in 1,000 consecutive independent invocations is at most ( 1

2)1000).
Moreover, we have that P(x ,δ) can be computed in time q(∣x ∣, log(1/δ)), so we can consider an
exponentially small value of δ such as

1

2∣x ∣+1000
,

and still obtain that P(x ,δ) can be computed in time polynomial in ∣x ∣. Notice that with such a
value of δ , the probability of producing a good-for-generation string D is at least

1 − 1

21000
,

which is an extremely high probability. Finally, it is important to notice that the size of D is at
most q(∣x ∣, log(1/δ)), so G(D) can be computed in time polynomial in ∣x ∣ and log(1/δ). Therefore,
G(D) can be computed in time polynomial in ∣x ∣ even if we consider an exponentially small value
for δ such as 1/2∣x ∣+1000.

It is important to notice that the notion of preprocessing polynomial-time Las Vegas uniform
generator imposes stronger requirements than the notion of fully polynomial-time almost uniform
generator introduced in Reference [21]. In particular, the latter not only has a probability of failing,
but also considers the possibility of generating a solution with a probability distribution that is
almost uniform, that is, an algorithm that generates an string y ∈WR(x) with a probability in an
interval [1/∣WR(x)∣ − ε, 1/∣WR(x)∣ + ε] for a given error ε ∈ (0, 1).

3 NLOGSPACE TRANSDUCERS: DEFINITIONS AND OUR MAIN RESULTS

The goal of this section is to provide simple yet general definitions of classes of relations with
good properties in terms of enumeration, counting, and uniform generation. More precisely, we
are first aiming at providing a class C of relations that has a simple definition in terms of Turing
Machines and such that for every relationR ∈ C, it holds that ENUM(R) can be solved with constant
delay, and both COUNT(R) and GEN(R) can be solved in polynomial time. Moreover, as it is well
known that such good conditions cannot always be achieved, we are then aiming at extending
the definition of C to obtain a simple class, also defined in terms of Turing Machines and with
good approximation properties. It is important to mention that we are not looking for an exact
characterization in terms of Turing Machines of the class of relations that admit constant delay
enumeration algorithms, as this may result in an overly complicated model. Instead, we are looking
for simple yet general classes of relations with good properties in terms of enumeration, counting,
and uniform generation, and which can serve as a starting point for the systematic study of these
three fundamental properties.

A key notion that is used in our definitions of classes of relations is that of transducer. An
NL-transducer M is a non-deterministic Turing Machine with input and output alphabet {0, 1}, a
read-only input tape, a write-only output tape where the head is always moved to the right once
a symbol is written in it (so the output cannot be read by M), and a work-tape of which, on input
x , only the first f (∣x ∣) cells can be used, where f (n) ∈ O(log(n)). A string y ∈ {0, 1}∗ is said to
be an output of M on input x if there exists a run of M on input x that halts in an accepting state
with y as the string in the output tape. The set of all outputs of M on input x is denoted by M(x)
(notice that M(x) can be empty). Finally, the relation accepted by M , denoted by R(M), is defined
as {(x ,y) ∈ {0, 1}∗ × {0, 1}∗ ∣ y ∈ M(x)}.

Definition 3.1. A relation R is in RelationNL if, and only if, there exists an NL-transducer M
such that R(M) = R.

Journal of the ACM, Vol. 68, No. 6, Article 48. Publication date: October 2021.



48:8 M. Arenas et al.

Cycles are forbidden in NL-transducers to ensure polynomial-size solutions for each input [3].
However, we do not need to impose this restriction here, as we only work with p-relations in this
article (see Section 2).

The class RelationNL should be general enough to contain some natural and well-studied prob-
lems. A first such a problem is the satisfiability of a propositional formula in DNF. As a relation,
this problem can be represented as follows:

SAT-DNF = {(φ,σ) ∣ φ is a propositional formula in DNF,σ is a truth assignment, and σ(φ) = 1}.

Thus, we have that ENUM(SAT-DNF) corresponds to the problem of enumerating the truth assign-
ments satisfying a propositional formulaφ in DNF, while COUNT(SAT-DNF) and GEN(SAT-DNF)
correspond to the problems of counting and uniformly generating such truth assignments, respec-
tively. It is not difficult to see that SAT-DNF ∈ RelationNL. In fact, assume that we are given a
propositional formula φ of the form D1 ∨ ⋯ ∨Dm , where each Di is a conjunction of literals, that
is, a conjunction of propositional variables and negation of propositional variables. Moreover, as-
sume that each propositional variable in φ is of the form x_k , where k is a binary number, and
that x_1, . . . ,x_n are the variables occurring in φ. Notice that with such a representation, we have
that φ is a string over the alphabet {x , _, 0, 1,∧,∨,¬}.2 We define as follows an NL-transducer M
such that M(φ) is the set of truth assignments satisfying φ. On input φ, the NL-transducer M
non-deterministically chooses a disjunct Di , which is represented by two indexes indicating the
starting and ending symbols of Di in the string φ. Then it checks whether Di is satisfiable, that is,
whether Di does not contain complementary literals. Notice that this can be done in logarithmic
space by checking for every j ∈ {1, . . . ,n}, whether x_j and ¬x_j are both literals in Di . If Di

is not satisfiable, then M halts in a non-accepting state. Otherwise, M returns a satisfying truth
assignment of Di as follows: A truth assignment for φ is represented by a string of length n over
the alphabet {0, 1}, where the jth symbol of this string is the truth value assigned to variable x_j.
Then for every j ∈ {1, . . . ,n}, if x_j is a conjunct in Di , then M writes the symbol 1 in the output
tape, and if ¬x_j is a conjunct in Di , then M writes the symbol 0 in the output tape. Finally, if
neither x_j nor ¬x_j is a conjunct in Di , then M non-deterministically chooses a symbol b ∈ {0, 1},
and it writes b in the output tape.

Given that COUNT(SAT-DNF) is a #P-complete problem [27], we cannot expect COUNT(R) to
be solvable in polynomial time for every R ∈ RelationNL. However, COUNT(SAT-DNF) admits
an FPRAS [24], so we can still hope for COUNT(R) to admit an FPRAS for every R ∈ RelationNL.
It turns out that proving such a result involves providing an FPRAS for another natural and funda-
mental problem: #NFA. More specifically, #NFA is the problem of counting the number of words
of length k accepted by a non-deterministic finite automaton without epsilon transitions (NFA),
wherek is given in unary (that is,k is given as a string 0k ). It is known that #NFA is #P-complete [3],
but it is open whether it admits an FPRAS; in fact, the best randomized approximation scheme
known for #NFA runs in time nO(log(n)) [23]. In our notation, this problem is represented by the
following relation:

MEM-NFA = {((A, 0k),w) ∣ A is an NFA with alphabet {0, 1},w ∈ {0, 1}k and w is accepted by A},

that is, we have that #NFA = COUNT(MEM-NFA). It is easy to see that MEM-NFA ∈ RelationNL.
Hence, we give a positive answer to the open question of whether #NFA admits an FPRAS by
proving the following general result about RelationNL.

2For the sake of presentation, we consider a non-binary alphabet in this case, although it is easy to see how SAT-DNF can
be represented by using the binary alphabet.
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Theorem 3.2. If R ∈ RelationNL, then ENUM(R) can be solved with polynomial delay,
COUNT(R) admits an FPRAS, and GEN(R) admits a PPLVUG.

It is worth mentioning a fundamental consequence of this result in computational complexity.
The class of functions SpanL was introduced in Reference [3] to provide a characterization of some
functions that are hard to compute. More specifically, a function f ∶ {0, 1}∗ → N is in SpanL if
there exists an NL-transducer M with input alphabet {0, 1} such that f (x) = ∣M(x)∣ for every
x ∈ {0, 1}∗. The complexity class SpanL is contained in #P, and it is a hard class in the sense
that if SpanL ⊆ FP, then P = NP [3], where FP is the class of functions that can be computed in
polynomial time. In fact, SpanL has been instrumental in proving that some functions are difficult
to compute [3, 7, 19, 25]. It is not difficult to see that #NFA belongs to SpanL [3].

Given functions f ,д ∶ {0, 1}∗ → N, f is said to be parsimoniously reducible to д in polynomial-
time if there exists a polynomial-time computable function h ∶ {0, 1}∗ → {0, 1}∗ such that, for
every x ∈ {0, 1}∗, it holds that f (x) = д(h(x)). It is known that #NFA is SpanL-complete under
polynomial-time parsimonious reductions, which in particular implies that if #NFA can be com-
puted in polynomial time, then P = NP [3]. Moreover, given that #NFA admits an FPRAS and
parsimonious reductions preserve the existence of FPRAS, we obtain the following corollary from
Theorem 3.2:

Corollary 3.3. Every function in SpanL admits an FPRAS.

Although some classes C containing #P-complete functions and for which every f ∈ C admits
an FPRAS have been identified before [8, 29], to the best of our knowledge this is the first such a
class with a simple and robust definition based on Turing Machines.

A tight relationship between the existence of an FPRAS and the existence of a schema for almost
uniform generation was proved in Reference [21] for the class of relations that are self-reducible.
Thus, one might wonder whether the existence of a PPLVUG for GEN(R) in Theorem 3.2 is just
a corollary of our FPRAS for COUNT(R) along with the result in Reference [21]. However, as
the notion of PPLVUG asks for a uniform generator without any distributional error ε , it is not
clear how to infer its existence from the results in Reference [21]. Thus, we prove in Section 6
that COUNT(R) admits an FPRAS and GEN(R) admits a PPLVUG, for a relation R ∈ RelationNL,
without utilizing the aforementioned result from Reference [21].

A natural question at this point is whether a simple syntactic restriction on the definition of
RelationNL gives rise to a class of relations with better properties in terms of enumeration, count-
ing, and uniform generation. Fortunately, the answer to this question comes by imposing a natural
and well-studied restriction on Turing Machines, which allows the definition of a class that con-
tains many natural problems. More precisely, we consider the notion of UL-transducer, where the
letter “U” stands for “unambiguous.” Formally, M is a UL-transducer if M is an NL-transducer such
that for every input x and y ∈ M(x), there exists exactly one run of M on input x that halts in
an accepting state with y as the string in the output tape. Notice that this notion of transducer is
based on well-known classes of decision problems (e.g., UP [32] and UL [28]) adapted to our case,
namely, adapted to problems defined as relations.

Definition 3.4. A relation R is in RelationUL if, and only if, there exists a UL-transducer M such
that R(M) = R.

For the class RelationUL, we obtain the following result:

Theorem 3.5. If R ∈ RelationUL, then ENUM(R) can be solved with constant delay, there ex-
ists a polynomial-time algorithm for COUNT(R), and there exists a polynomial-time randomized
algorithm for GEN(R).
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In particular, it should be noticed that given R ∈ RelationUL and an input x , the solutions for
x can be enumerated, counted, and uniformly generated efficiently. In the following section, we
provide examples of relations in this class.

Classes of problems definable by machine models and that can be enumerated with constant
delay have been proposed before. In Reference [4], it is shown that if a problem is definable by
a d-DNNF circuit, then the solutions of an instance can be listed with linear preprocessing and
constant delay enumeration. Still, to the best of our knowledge, RelationUL is the first such a
class with a simple and robust definition based on Turing Machines.

On the relationship of RelationNL and RelationUL with known complexity classes. It is well-
known that a function f is in #P if and only if there exists a p-relation R such that f = COUNT(R)
(recall the definition of p-relation from Section 2). In the same way, there exists a tight relationship
between SpanL and RelationNL, as it is easy to see that a function f is in SpanL if and only if there
exists a relation R ∈ RelationNL such that f = COUNT(R). Hence, the reader may wonder why
it is necessary to introduce RelationNL and RelationUL, considering further that such classes
are defined in terms of well-known Turing Machine models. The key issue to consider here is
that function complexity classes, such as #P and SpanL, are not appropriate to state results about
the enumeration and uniform generation problems. For instance, it would not be correct to state
that every function in SpanL admits a PPLVUG, as the definition of SpanL does not provide a
unique notion of solution for an input, which is the object to be generated in this case. In this
respect, we introduce RelationNL and RelationUL to have a unified framework to study the
counting, enumeration, and uniform generation problems. The definition of such classes should
not be considered as a contribution of this article. In fact, they should only be seen as our way of
following the guidance of Reference [21], which, as mentioned before, urges the use of relations
to formalize the notion of solution for an input of a problem.

4 APPLICATIONS OF THE MAIN RESULTS

Before providing the proofs of Theorems 3.2 and 3.5, we give some implications of these results. In
particular, we show how NL- and UL-transducers can be used to obtain positive results on query
evaluation in areas such as information extraction, graph databases, and binary decision diagrams.

4.1 Information Extraction

In Reference [14], the framework of document spanners was proposed as a formalization of ruled-
based information extraction. In this framework, the main data objects are documents and spans.
Formally, given a finite alphabet Σ, a document is a string d = a1 . . .an , and a span is pair s = [i, j⟩
with 1 ≤ i ≤ j ≤ n + 1. A span represents a continuous region of the document d , whose content
is the substring of d from positions i to j − 1. Given a finite set of variables X, a mapping μ is a
function from X to the spans of d .

Variable set automata (VA) are one of the main formalisms to specify sets of mappings over
a document. Here, we use the notion of extended VA (eVA) from Reference [15] to state our main
results. We only recall the main definitions, and we refer the reader to References [14, 15] for more
intuition and further details. An eVA is a tuple A = (Q,q0, F ,δ) such that Q is a finite set of states,
q0 is the initial state, and F is the final set of states. Further, δ is the transition relation consisting
of letter transitions (q,a,q′), or variable-set transitions (q,S,q′), where S ⊆ {x⊢,⊣x ∣ x ∈ X} and
S ≠ ∅. The symbols x⊢ and ⊣ x are called markers, and they are used to denote that variable x
is opened or closed by A, respectively. A run ρ over a document d = a1 ⋯an is a sequence of the

form: q0
X1�→ p0

a1�→ q1
X2�→ p1

a2�→ ⋯ an�→ qn
Xn+1�→ pn where eachXi is a (possible empty) set of markers,

(pi ,ai+1,qi+1) ∈ δ , and (qi ,Xi+1, pi) ∈ δ whenever Xi+1 ≠ ∅, and qi = pi otherwise (that is, when
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Xi+1 = ∅). We say that a run ρ is valid if for every x ∈ X there exists exactly one pair [i, j⟩ such
that x⊢∈ Xi and ⊣x ∈ X j . A valid run ρ naturally defines a mapping μρ that maps x to the only
span [i, j⟩ such that x⊢∈ Xi and ⊣x ∈ X j . We say that ρ is accepting if pn ∈ F . Finally, the semantics
�A�(d) of A over d is defined as the set of all mappings μρ where ρ is a valid and accepting run
of A over d .

In References [16, 26], it was shown that the decision problem related to query evaluation,
namely, given an eVA A and a document d deciding whether �A�(d) ≠ ∅, is NP-hard. For this
reason, in Reference [15] a subclass of eVA is considered to recover polynomial-time evaluation.
An eVA A is called functional if every accepting run is valid. Intuitively, a functional eVA does not
need to check validity of the run given that it is already known that every run that reaches a final
state will be valid.

For the query evaluation problem of functional eVA (i.e., to compute �A�(d)), one can naturally
associate the following relation:

EVAL-eVA = {((A,d), μ) ∣ A is a functional eVA, d is a document, and μ ∈ �A�(d)}.
It is not difficult to show that EVAL-eVA is in RelationNL. Hence, by Theorem 3.2, we get the
following results:

Corollary 4.1. ENUM(EVAL-eVA) can be enumerated with polynomial delay, COUNT
(EVAL-eVA) admits an FPRAS, and GEN(EVAL-eVA) admits a PPLVUG.

In Reference [15], it was shown that every functional RGX or functional VA (not necessarily
extended) can be converted in polynomial time into an functional eVA. Therefore, Corollary 4.1
also holds for these more general classes. Notice that in Reference [17], a polynomial delay enu-
meration algorithm for �A�(d) was provided. Thus, only the results about COUNT(EVAL-eVA)
and GEN(EVAL-eVA) can be considered as new.

Regarding efficient enumeration and exact counting, a constant delay algorithm with polyno-
mial preprocessing was given in Reference [15] for the class of deterministic functional eVA. Here,
we can easily extend these results for a more general class, which we called unambiguous func-
tional eVA. Formally, we say that an eVA is unambiguous if for every two valid and accepting runs
ρ1 and ρ2, it holds that μρ1 ≠ μρ2 . In other words, each output of an unambiguous eVA is witnessed
by exactly one run. As in the case of EVAL-eVA, we can define the relation EVAL-UeVA by restrict-
ing the input to unambiguous functional eVA. By using UL-transducers and Theorem 3.5, we can
then extend the results in Reference [15] for the unambiguous case.

Corollary 4.2. ENUM(EVAL-UeVA) can be solved with constant delay, there exists a polynomial-
time algorithm for COUNT(EVAL-UeVA), and there exists a polynomial-time randomized algorithm
for GEN(EVAL-UeVA).

Notice that this result gives a constant delay algorithm with polynomial preprocessing for the
class of unambiguous functional eVA. Instead, the algorithm in Reference [15] has linear prepro-
cessing over documents, restricted to the case of deterministic eVA. This leaves open whether there
exists a constant delay algorithm with linear preprocessing over documents for the unambiguous
case.

4.2 Query Evaluation in Graph Databases

Enumerating, counting, and generating paths are relevant tasks for query evaluation in graph
databases [6]. Given a finite set Σ of labels, a graph database G is a pair (V ,E) where V is a finite
set of vertices and E ⊆ V × Σ ×V is a finite set of labeled edges. Here, vertices represent pieces
of data and edges specify relations between them [6]. One of the core query languages for posing
queries on graph databases are regular path queries (RPQ). An RPQ is a triple (x ,R,y) where
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x ,y are variables and R is a regular expression over Σ. As usual, we denote by L(R) all the strings
over Σ that conform to R. Given an RPQ Q = (x ,R,y), a graph database G = (V ,E), and vertices
u,v ∈ V , one would like to retrieve, count, or uniformly generate all paths3 in G going from u
to v that satisfy Q . Formally, a path from u to v in G is a sequence of vertices and labels of the
form π = v0,p1,v1,p2, . . . ,pn ,vn , such that (vi , pi+1,vi+1) ∈ E, u = v0, and v = vn . A path π is
said to satisfy Q = (x ,R,y) if the string p1p2 . . . pn ∈ L(R). The length of π is defined as ∣π ∣ = n.
Clearly, between u and v there can be an infinite number of paths that satisfy Q . For this reason,
one usually wants to retrieve all paths between u and v of at most a certain length n, namely, one
usually considers the set �Q�n(G,u,v) of all paths π from u to v in G such that π satisfies Q and
∣π ∣ = n. This naturally defines the following relation representing the problem of evaluating an
RPQ over a graph database:

EVAL-RPQ = {((Q, 0n ,G,u,v),π) ∣ π ∈ �Q�n(G,u,v)}.
Using this relation, fundamental problems for RPQs, such as enumerating, counting, or uniform
generating paths, can be naturally represented. It is not difficult to show that EVAL-RPQ is in
RelationNL, from which the following corollary can be obtained by using Theorem 3.2:

Corollary 4.3. ENUM(EVAL-RPQ) can be enumerated with polynomial delay, COUNT
(EVAL-RPQ) admits an FPRAS, and GEN(EVAL-RPQ) admits a PPLVUG.

It is important to mention that giving a polynomial delay enumeration algorithm for EVAL-RPQ
is straightforward, but the existence of an FPRAS and a PPLVUG for EVAL-RPQ was not known
before when queries are part of the input (that is, in combined complexity [33]).

4.3 Binary Decision Diagrams

Binary decision diagrams are an abstract representation of Boolean functions that are widely used
in computer science and have found many applications in areas like formal verification [11]. A
binary decision diagram (BDD) is a directed acyclic graph D = (V ,E) where each vertex v is
labeled with a variable var(v) and has at most two edges going to children lo(v) and hi(v). Intu-
itively, lo(v) and hi(v) represent the next vertices when var(v) takes values 0 and 1, respectively.
D contains only two terminal, or sink vertices, labeled by 0 or 1, and one initial vertex called v0.
We assume that every path from v0 to a terminal vertex does not repeat variables. Then given an
assignment σ from the variables in D to {0, 1}, we have that σ naturally defines a path from v0

to a terminal vertex 0 or 1. In this way, D defines a Boolean function that gives a value in {0, 1}
to each assignment σ ; in particular, D(σ) ∈ {0, 1} corresponds to the sink vertex reached by start-
ing from v0 and following the values in σ . For Ordered BDDs (OBDDs), we also have a linear
order < over the variables in D such that, for every v1,v2 ∈ V with v2 a child of v1, it holds that
var(v1) < var(v2). Notice that not necessarily all variables appear in a path from the initial vertex
v0 to a terminal vertex 0 or 1. Nevertheless, the promise in an OBDD is that variables will appear
following the order <.

An OBDD D defines the set of assignments σ such that D(σ) = 1. Then D can be considered as
a succinct representation of the set {σ ∣ D(σ) = 1}, and one would like to enumerate, count, and
uniformly generate assignments given D. This motivates the relation:

EVAL-OBDD = {(D,σ) ∣ D(σ) = 1}.
Given (D,σ) in EVAL-OBDD, there is exactly one path in D that witnesses D(σ) = 1. Therefore,
one can easily show that EVAL-OBDD is in RelationUL. By Theorem 3.5, we obtain that:

3Notice that the standard semantics for RPQs is to retrieve pair of vertices. Here, we consider a less standard semantics
based on paths that is also relevant for graph databases [6, 7, 25].
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Corollary 4.4. ENUM(EVAL-OBDD) can be enumerated with constant delay, there exists a
polynomial-time algorithm for COUNT(EVAL-OBDD), and there exists a polynomial-time random-
ized algorithm for GEN(EVAL-OBDD).

The above results are well known. Nevertheless, they show how easy and direct it is to use
UL-transducers to realize the good algorithmic properties that a data structure like OBDD has.

Some non-deterministic variants of BDDs have been studied in the literature [5]. In particular,
an nOBDD extends an OBDD with vertices u without variables (i.e., var(u) = �) and without
labels on its children. Thus, an nOBDD is non-deterministic in the sense that given an assignment
σ , there can be several paths that bring σ from the initial vertexv0 to a terminal vertex with labeled
0 or 1. Without lost of generality, nOBDDs are assumed to be consistent in the sense that, for each
σ , all paths of σ in D can reach 0 or 1, but not both.

As in the case of OBDDs, we can define a relation EVAL-nOBDD that pairs an nOBDD D with
an assignment σ that evaluate D to 1 (i.e., D(σ) = 1). Contrary to OBDDs, an nOBDD loses the
single witness property, and now an assignment σ can have several paths from the initial vertex
to the 1 terminal vertex. Thus, it is not clear whether EVAL-nOBDD is in RelationUL. Still one
can easily show that EVAL-nOBDD in RelationNL:

Corollary 4.5. ENUM(EVAL-nOBDD) can be solved with polynomial delay, COUNT
(EVAL-nOBDD) admits an FPRAS, and GEN(EVAL-nOBDD) admits a PPLVUG.

It is important to stress that the existence of an FPRAS and a PPLVUG for EVAL-nOBDD was
not known before, and one can easily show this by using NL-transducers and then applying
Theorem 3.2.

5 COMPLETENESS, SELF-REDUCIBILITY, AND THEIR IMPLICATIONS FOR THE

CLASS RelationUL

The goal of this section is to establish the good algorithmic properties of RelationUL, that is, to
prove Theorem 3.5. To this end, we start by introducing a simple notion of reduction for the classes
RelationNL and RelationUL, which will allow for much simpler proofs.

A natural question to ask is which notions of “completeness” and “reduction” are appropriate
for our framework. Notions of reductions for relations have been proposed before, in particular in
the context of search problems [13]. However, we do not intend to discuss them here; instead, we
use an idea of completeness that is very restricted, but that turns out to be useful in this context.

Let C be a complexity class of relations and R,S ∈ C, and recall thatWR(x) is defined as the set
of solutions for input x , that is,WR(x) = {y ∣ (x ,y) ∈ R}. We say R is reducible to S if there exists
a function f ∶ {0, 1}∗ → {0, 1}∗, computable in polynomial time, such that for every x ∈ {0, 1}∗:
WR(x) = WS (f (x)). Also, if T is reducible to S for every T ∈ C, then we say S is complete for
C. Notice that this definition is very restricted, since the notion of reduction requires the set of
solutions to be exactly the same for both relations (it is not sufficient that they have the same size,
for example). The benefit of this kind of reduction is that it preserves all the properties of efficient
enumeration, counting, and uniform generation that we introduced in Sections 2 and 3, as stated
in Proposition 5.1.

Proposition 5.1. If a relation R can be reduced to a relation S , then:

● If ENUM(S) can be solved with constant (respectively, polynomial) delay, then ENUM(R) can
be solved with constant (respectively, polynomial) delay.

● If there exists a polynomial-time algorithm (respectively, an FPRAS) for COUNT(S), then there
exists a polynomial-time algorithm (respectively, an FPRAS) for COUNT(R).
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● If there exists a polynomial-time randomized algorithm (respectively, a PPLVUG) for GEN(S),
then there exists a polynomial-time randomized algorithm (respectively, a PPLVUG) for
GEN(R).

Proof. We go into some detail, but the idea of the proof is very simple. Because our notion of
reduction is so strong, all efficient algorithms for S apply immediately for R, provided we add a
preprocessing phase where we compute a function reducing fromR to S . Since that takes only poly-
nomial time, it preserves the overall complexity of all the types of algorithms we have discussed.

Now, with more detail and formality. Since R can be reduced to S , there exist a polynomial
p(u) and a function f such that WS (f (x)) = WR(x) for every input string x , and f (x) can be
computed in time p(∣x ∣). First, suppose ENUM(S) can be solved with constant (respectively,
polynomial) delay, so there is an algorithm E that enumerates WS (f (x)) with constant (respec-
tively, polynomial) delay and with precomputation phase of time q(∣f (x)∣) for some polynomial
q. Now, consider the following procedure for ENUM(R) on input x : First, we compute f (x)
in time p(∣x ∣). Then, we run E(f (x)), which enumerates all solutions in WS (f (x)), that is, it
enumerates all solutions in WR(x). So, the precomputation time of the procedure takes time
p(∣x ∣) + q(∣f (x)∣) ≤ p(∣x ∣) + q(p(∣x ∣)), which is polynomial in ∣x ∣. The enumeration phase is
the same as for E(f (x)), so it has constant (respectively, polynomial) delay. We conclude that
ENUM(R) can be solved with constant (respectively, polynomial) delay.

Now, suppose there exists a polynomial-time algorithm A for COUNT(S), let q be the poly-
nomial that characterizes its complexity, and consider the following procedure for COUNT(R)
on input x . First, we construct f (x) in time p(∣x ∣). Next, we run A(f (x)), which computes
∣WS (f (x))∣, that is, it computes ∣WR(x)∣. So, the procedure calculates ∣WR(x)∣ and takes time
p(∣x ∣) + q(∣f (x)∣) ≤ p(∣x ∣) + q(p(∣x ∣)), which is polynomial in ∣x ∣. We conclude that COUNT(R)
has a polynomial-time algorithm. The proof for the case of an FPRAS is completely analogous.

Finally, suppose there exists a polynomial-time randomized algorithm G for GEN(S), and let
q be the polynomial that characterizes its complexity. Now, consider the following procedure for
GEN(R) on input x . First, we construct f (x) in time p(∣x ∣). Next, we run G(f (x)), which outputs
a solution fromWS (f (x)), that is, a solution fromWR(x), uniformly at random. So, the procedure
generates an element from WR(x) uniformly at random and takes time p(∣x ∣) + q(∣f (x)∣) ≤
p(∣x ∣) + q(p(∣x ∣)), which is polynomial in ∣x ∣. We conclude that GEN(R) has a polynomial-time
randomized algorithm. The proof for the case of a PPLVUG is completely analogous. �

Therefore, by finding a complete relation S for a class C under the notion of reduction just de-
fined, we can study the aforementioned problems for S knowing that the obtained results will
extend to every relation in the class C. In what follows, we identify complete problems for the
classes RelationNL and RelationUL and use them first to establish the good algorithmic proper-
ties of RelationUL. Moreover, we prove that the identified problems are self-reducible [21], which
will be useful for establishing some of the results of this section as well as for some of the results
proved in Section 6 for the class RelationNL.

5.1 Complete Problems for RelationNL and RelationUL

The notion of reduction just defined is useful for us, because RelationNL and RelationUL admit
natural complete problems under this notion. These complete relations are defined in terms of
NFAs and we call them MEM-NFA and MEM-UFA. We already introduced MEM-NFA in Section 3,
and we now define MEM-UFA as

MEM-UFA = {((A, 0k),w) ∣ A is an unambiguous NFA

with alphabet {0, 1},w ∈ {0, 1}k and w is accepted by A},
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where an NFA is said to be unambiguous if there exists exactly one accepting run for every string
accepted by it.

Recall from Section 3 that MEM-NFA ∈ RelationNL. Besides, it is easy to see that MEM-UFA ∈
RelationUL. To see why these relations are complete for our classes, consider the following: Take
a relation R in RelationNL (the case for RelationUL is the same). We know there is an NL-
transducer M that characterizes it. Now run M on some given input x . Since M works in loga-
rithmic space, there is only a polynomial number of different configurations that M can ever be
in (polynomial in ∣x ∣). Hence, we can consider the set of possible configurations as the states of
an NFA Ax , which then has only polynomial size. The transitions of Ax are determined by the
transitions between the configurations of M . Moreover, a symbol output by the transducer M is
interpreted as a symbol read by the automaton Ax . In this way, Ax accepts exactly the language
WR(x). We formalize this idea in the following result:

Proposition 5.2. MEM-NFA is complete for RelationNL and MEM-UFA is complete for
RelationUL.

We will prove the result only for the case of RelationUL and MEM-UFA, as the other case is
completely analogous. The following lemma is the key ingredient in our argument. The proof of
this lemma is given in Appendix A.1.

Lemma 5.3. Let R be a relation in RelationUL. Then there exists a polynomial-time algorithm
that, given x ∈ {0, 1}∗, produces an unambiguous NFA Ax such that y ∈ WR(x) if and only if y is
accepted by Ax .

Proof of Proposition 5.2. Let R be a relation in RelationUL and x be a string in {0, 1}∗. We
know by Lemma 5.3 that we can construct in polynomial time an unambiguous NFA Ax such that
y ∈WR(x) if and only if y is accepted by Ax . Now, since R is a p-relation, there exists a polynomial
q such that ∣y∣ = q(∣x ∣) for all y ∈ WR(x). Thus, we have that all words accepted by Ax have the
same length q(∣x ∣). We conclude thatWR(x) =WMEM-UFA((Ax , 0

q(∣x ∣))). Since this works for every
R ∈ RelationUL and every input x , by definition of completeness, we deduce that MEM-UFA is
complete for RelationUL. �

In Section 3, we show that SAT-DNF ∈ RelationNL. Thus, a fundamental question is whether
SAT-DNF is complete for the class RelationNL under the notion of reduction considered in this
work. Notice that if this holds, then we will obtain that COUNT(SAT-DNF) is SpanL-complete
under the notion of polynomial-time parsimonious reduction (introduced in Section 3). However,
COUNT(SAT-DNF) is only known to be SpanL-complete under polynomial-time Turing reduc-
tions, and it is unknown whether COUNT(SAT-DNF) is complete for SpanL under polynomial-
time parsimonious reductions. In fact, it is not even known whether COUNT(SAT-DNF) is SpanL-
complete under some notion of reduction that preserves the existence of an FPRAS, so the existence
of an FPRAS for COUNT(SAT-DNF) cannot be used to infer the existence of an FPRAS for #NFA.
Hence, we leave as an open problem whether SAT-DNF is complete for RelationNL in the sense
studied in this article.

5.2 MEM-NFA and MEM-UFA are Self-reducible

Self-reducibility is a property of many natural relations, and it plays a key role in proving some im-
portant results, like the tight relationship between counting and uniform generation established in
Reference [21]. There are different ways of formalizing this concept, and they can get rather tech-
nical, but the intuition is pretty straightforward. We say that a (decision) problem is self-reducible
if it can be solved by referring to smaller instances of the same problem. For example, SAT is self-
reducible. Given a propositional formulaφ, consider its satisfiability problem. We can easily reduce
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that problem to smaller instances of SAT as follows: Take the first variable of φ and replace it by 0
to get a new formula φ0. Do the same with 1 to get a new formula φ1. Notice that φ is satisfiable if
and only if φ0 or φ1 is satisfiable. Moreover, both φ0 and φ1 have one less variable than φ, so they
are smaller instances.

Now, self-reducibility does not imply the existence of a polynomial-time solution for a problem,
as SAT well illustrates. It is true that the instances get smaller, until they eventually become trivially
easy to solve. But the number of instances is multiplied, so recursively applying self-reducibility
can lead to an exponential number of smaller instances to solve. Rather than a solution method,
self-reducibility is thought of as a structural feature of a problem.

Now, definitions (and proofs) of self-reducibility can get very technical, partly because they
have to formalize the notion of “smaller instance.” Hence, they crucially depend on the way that
problems are encoded.4 We now state the main result of this subsection.

Proposition 5.4. MEM-NFA and MEM-UFA are self-reducible.

To see the intuition behind this result, consider first a deterministic finite automaton (DFA)

D over the alphabet {0, 1}, and suppose it accepts a string w = 0 ⋅w ′, where w ′ ∈ {0, 1}∗. Then
assuming that q0 is the initial state of D, we know that the accepting run forw moves from q0 to a
state q1 by reading symbol 0, and then it continues processing w ′ from q1. Now, if we change the
initial state to q1 to get a new DFA D0, then D0 accepts the string w ′. In other words, if L(D) is
the language accepted by D, then we have that:

L(D) = {0 ⋅w ′ ∣w ′ ∈ L(D0)} ∪ {1 ⋅w ′ ∣w ′ ∈ L(D1)},

where DFAD1 is defined in the same way asD0. Besides, notice that if the length of the strings to be
accepted by D is given as a parameter, as in the case of MEM-NFA, then we can assume that D does
not contain any cycles, and each automaton Di (i = 0, 1) can be made smaller than D by removing
q0 and updating the transition function of D accordingly. Hence, the above equality shows that the
language accepted by D can be defined in terms of the languages accepted by smaller deterministic
finite automata. The same idea can be applied to an NFA N , although constructing each NFA Ni

(i = 0, 1) is a little more complicated, as there can be several transitions from a state that read
the same symbol. Intuitively, this shows that MEM-NFA is self-reducible. The precise definition of
self-reducibility (with all its technicalities) and the complete proof of Proposition 5.4 can be found
in Appendix A.2.

5.3 Establishing the Good Algorithmic Properties of RelationUL

Theorem 3.5 is a consequence of Propositions 5.1 and 5.2 and the following result:

Proposition 5.5. ENUM(MEM-UFA) can be solved with constant delay, there exists a polynomial-
time algorithm for COUNT(MEM-UFA), and there exists a polynomial-time randomized algorithm
for GEN(MEM-UFA).

To sum up all the results just mentioned: MEM-UFA is complete for RelationUL, it has good
algorithmic properties, and our notion of reduction (and completeness) preserves all the algorith-
mic properties we have discussed. In what follows, we prove each of the three results stated in
Proposition 5.5.

4Thus, saying something like “SAT is self-reducible” is slightly inaccurate. We need to specify the way in which the problem,
inputs, and solutions are encoded before we can assert something like that.
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Fig. 1. Unambiguous NFA A.

5.3.1 ENUM(MEM-UFA) Can Be Solved with Constant Delay. We now provide a sketch of the
constant delay algorithm. The idea is conceptually simple. Remember what we want: to output all
strings of a certain length accepted by an unambiguous NFA, without repetition. We may use a
preprocessing phase of polynomial time, but afterwards, there can be at most linear time between
one string and the next.

Now, let (A, 0k) be the input, and consider Figure 1 with k = 3 as an example. To do constant
delay enumeration, we do a depth-first traversal of the NFA, starting from the initial state. As
we traverse the NFA, we read the symbols from the transitions and store them in a partial string.
When the partial string reaches length k , if we happen to be in a final state, then we output the
string.

Basically, that is all you have to do, but there are a few technicalities remaining. First, we men-
tioned depth-first traversal even though we are not analyzing a graph, but an NFA. The clarifica-
tion is simple. We will use the preprocessing phase to get a labeled directed acyclic graph (DAG)

Aunroll from A and k and do the depth-first traversal on Aunroll. The DAG Aunroll is obtained by first
unrolling A in the following way:

(1) Cluster all final states of A into a single final state. This is easy to do: Create a new state qF ,
make it the unique final state, and create an ε-transition from all previous final states to the
new one.

(2) Remove all ε-transitions (this is a standard procedure for an NFA).
(3) Unroll the NFA k + 1 times. That is, for each state q create k + 1 copies {(q, i)}k

i=0, and for

each transition q
a�→ p in A, create the transitions {(q, i) a�→ (p, i + 1)}k−1

i=0 in the unrolled
automaton. Keep a unique initial state (q0, 0) and a unique final state (qF ,k).

(4) Remove all nodes that are not a part of an accepting run from the initial to the final state.

See Figure 2 for an example of this kind of transformation. It is easy to see that this can be done
in polynomial time and that it produces a new NFA (alternatively, a labeled DAG) Aunroll that is
still unambiguous and accepts the same words of length k as A. Since there are no ε-transitions,
each string of length k accepted by A can be interpreted as a path of length k in Aunroll from the
initial to the final state and vice versa. Thus, a depth-first traversal of Aunroll will go through all
words of length k accepted by k , and no more.

The second technicality concerns the following question: Is the enumeration truly repetition-
free? It is, for the following reason: Each path of length k from the initial state to the final state
is only traversed once (by definition of a depth-first traversal of a graph). Moreover, each one of
those paths corresponds to a different string, since A and Aunroll are both unambiguous automata.

Finally, does the enumeration phase really have constant delay? That is, does it take time O(k)
between enumerating one solution and the next? The answer is yes. Notice that it takes timeO(k)
to traverse from the initial state to the final state and from one final state visit to the next, because
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Fig. 2. Graph Aunroll obtained from A.

the traversal is depth-first. Also, recall that we removed (in step (4) above) all nodes that were
not part of an accepting run from the initial to the final state. Thus, there is no time wasted: Each
traversal to the final state produces a new string that we can output.

5.3.2 There Exists a Polynomial-time Algorithm for COUNT(MEM-UFA). Consider the graph
Aunroll as defined in Section 5.3.1. As we already pointed out, the number of paths of length k from
the initial to the final state is exactly what we want to compute: the number of strings of length k
accepted by A (the unambiguity assumption is crucial here). Since Aunroll is a DAG, we know the
number of paths between two given nodes can be computed exactly in polynomial time by dynamic
programming. Hence, there exists a polynomial-time algorithm for COUNT(MEM-UFA).

5.3.3 There Exists a Polynomial-time Randomized Algorithm for GEN(MEM-UFA). Consider an
input (A, 0k) for the problem GEN(MEM-UFA). Moreover, as for the case of COUNT(MEM-UFA),
consider the graphAunroll defined in Section 5.3.1, which can also be seen as an automaton. Assume
that (q0, 0) is the initial state of Aunroll and that {(q1, 1), . . . , (q�, 1)} is the set of states in Aunroll

reachable from (q0, 0) by following an edge with label 0. Let N0 be the number of strings of length
k that start with the symbol 0 and are accepted byA. Then, we can compute N0 in polynomial time
by using the counting algorithm mentioned in the previous section, starting from each one of the
states in {(q1, 1), . . . , (q�, 1)}. Notice that this algorithm works properly, as A is an unambiguous
NFA. In the same way, we can compute in polynomial time the number N1 of strings of length k
that start with the symbol 1 and are accepted by A. Given N0 and N1, the first symbol w1 of the
string w =w1 . . .wk to be generated is chosen according to the probabilities:

Pr(w1 = 0) = N0

N0 + N1
and Pr(w1 = 1) = N1

N0 + N1
.

Then the algorithm continues in the same way choosing w2, . . . ,wk . It is easy to prove that this
algorithm generates uniformly, at random, a string accepted by A of length k .

Notice that the previous idea is essentially the same as the one in Reference [21], that is,
we use the fact that the relation MEM-UFA is self-reducible and its counting problem can be
solved efficiently. However, a clarifying note should be included here. We claim a polynomial-
time randomized algorithm for GEN(MEM-UFA), while an almost-uniform generator is claimed in
Reference [21]. Our result is stronger for two reasons. First, we have a stronger counting result (ex-
act polynomial-time algorithm instead of an FPRAS) to use as the basis of our uniform generation
algorithm. Second, the computational model considered in Reference [21] (the Probabilistic Turing
Machine) is a bit different from the one considered in this work. It cannot, for example, simulate
a Bernoulli experiment with a success probability of exactly 1

3 . Essentially, it makes it impossible
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to get an exact uniform generation algorithm. We are less strict with our computational model, so
we are able to get a polynomial-time randomized algorithm for GEN(MEM-UFA).

6 #NFA ADMITS A FULLY POLYNOMIAL-TIME RANDOMIZED APPROXIMATION

SCHEME AND ITS IMPLICATIONS TO THE CLASS RelationNL

The goal of this section is to provide a proof of Theorem 3.2, which considers the class RelationNL
defined in terms of NL-transducers. Given that we showed in Proposition 5.2 that MEM-NFA is
complete for RelationNL, we have by Propositions 5.1 that Theorem 3.2 is a consequence of the
following result:

Theorem 6.1. ENUM(MEM-NFA) can be solved with polynomial delay, COUNT(MEM-NFA)
admits an FPRAS, and GEN(MEM-NFA) admits a PPLVUG.

The existence problem for MEM-NFA has as input an NFA A and a value k given in unary (as
the string 0k ), and the question to answer is whether WMEM-NFA((A, 0k)) ≠ ∅ (that is, whether
there are any solutions for (A, 0k) according to the relation MEM-NFA). It is easy to prove that
such a task can be solved in polynomial time, as the nonemptiness problem for NFA can be solved
in polynomial time. Moreover, we proved in Section 5.2 that MEM-NFA is a self-reducible relation.
Given all of the above, a polynomial delay algorithm for ENUM(MEM-NFA) can be derived from
the folklore result that such an enumeration algorithm exists for a self-reducible relation if the
associated existence problem for this relation can be solved in polynomial time (a precise state-
ment of this result can be found in Lemma 4.10 in Reference [30]). In this section, we focus on the
remaining part of the proof of Theorem 6.1. More specifically, we provide an algorithm that ap-
proximately counts the number of words of a given length accepted by an NFA, where this length
is given in unary. This constitutes an FPRAS for COUNT(MEM-NFA), as formally stated in the
following theorem:

Theorem 6.2. #NFA (and, thus, COUNT(MEM-NFA)) admits a fully polynomial-time random-
ized approximation scheme.

The algorithm mentioned in this theorem works by simultaneously counting and doing uniform
generation of solutions. Then its existence not only gives us an FPRAS for COUNT(MEM-NFA),
but also a PPLVUG for GEN(MEM-NFA), as formally stated in the following theorem:

Theorem 6.3. GEN(MEM-NFA) admits a preprocessing polynomial-time Las Vegas uniform
generator.

In the rest of this section, we prove Theorems 6.2 and 6.3. More specifically, we start by providing
in Section 6.1 an overview of the algorithmic techniques used in the proof of Theorem 6.2. Then,
we present in Section 6.2 the template for the FPRAS for #NFA, whose main components are given
in Sections 6.3 and 6.4. A complete version of the FPRAS for #NFA is finally given in Section 6.6,
where its correctness and polynomial-time complexity are established. Moreover, the proof of The-
orem 6.3 is also given in Section 6.6.

6.1 An Overview of the Algorithmic Techniques

We start by providing a high-level overview of our FPRAS for the #NFA problem. To this end, we
first set the necessary terminology to refer to this counting problem.

A non-deterministic finite automaton (NFA) A over the alphabet {0, 1} is given as a tuple
(Q,{0, 1},Δ, I , F), whereQ is a finite set of states, Δ ⊆ Q×{0, 1}×Q is the transition relation, I ⊆ Q
is a set of initial states, and F ⊆ Q is a set of final states. The language of the strings in {0, 1}∗ that
are accepted by A is denoted by L(A). Moreover, given a natural number n, the language Ln(A) is
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defined as L(A)∩{0, 1}n . With this terminology, we define the counting problem #NFA as follows:
The input of #NFA is an NFA A withm states over the alphabet {0, 1} and a natural number n, and
the task is to return ∣Ln(A)∣. Here, n is given in unary (that is, n is given as the string 0n ).5

To illustrate the difficulty of #NFA, we first consider the simpler problem of counting the number
of strings ∣Ln(A)∣ of length n contained in the language L(A) accepted by a deterministic finite

automaton (DFA) A. Note that if w ∈ Ln(A), there is exactly one accepting path in the DFA for
w . So, to count ∣Ln(A)∣, one can simply compute the total number of paths of length n in the DFA,
which can be done in polynomial time by a dynamic program. However, if Ln(A) is instead the
language accepted by an NFA, thenw ∈ Ln(A) can have exponentially many accepting paths, and
so counting paths does not lead to a good estimate of ∣Ln(A)∣ for an NFA.

One natural approach to overcome the aforementioned issue is to design an algorithm to es-
timate the ambiguity of the NFA. For instance, the following procedure produces an unbiased
estimator of ∣Ln(A)∣: First, sample a random path of length n in the NFA, and let w be the string
accepted on that path. Second, count the number of accepting paths Pw that w has in the NFA,
and also count the total number of paths P of length n in the NFA. Repeat this process N times,
and report the average value of P/Pw . The resulting estimator is indeed unbiased. However, the
number of paths Pw ,Pw ′ can differ by an exponential factor for different strings w,w ′, thus the
variance of this estimator is exponential. Therefore, this algorithm requires exponentially many
samples to obtain a good estimate. Several other similar estimators exist (see, e.g., Reference [23]),
which all unfortunately do not lead to polynomial time algorithms for the general #NFA problem.

The basic approach of our FPRAS is to incrementally estimate, for each state q in the NFA,
the number of distinct strings w for which there is a path of length α from the starting states
to q labeled by w . Call this set of strings L(qα ). Our high-level approach is similar to dynamic
programming. Namely, to estimate ∣L(qα )∣, we first estimate ∣L(pα−1)∣ for each state p such that
there is a transition from (p,a,q) in the NFA, where a ∈ {0, 1}. However, one cannot simply declare

∣L(qα )∣ = ∑
p ∶ (p,a,q)∈Δ

∣L(pα−1)∣,

because a single stringw can be in many of the sets L(pα−1), which would result in over-counting.
Therefore, we must also estimate the intersections of the sets L(pα−1). This is challenging, as these
sets themselves can be exponentially large, so we cannot afford to write them down. Moreover,
there are 2m possible sets that can arise as the intersection of sets of the form L(qα ) for q ∈ Q , thus
we cannot store an estimate of each. The main insight of our FPRAS is to sketch the intermediate
states L(pα−1) of the dynamic program by replacing the set L(pα−1) with a small (polynomial-
sized) uniformly sampled set S(pα−1) ⊆ L(pα−1). Here, the sketch S(pα−1) acts as a compact
representation of the (possibly) larger set L(pα−1). For instance, to see how such a sketch could be
useful, if there were exactly two preceding states (p1,a,q) and (p2,a,q), to estimate the relative
size of the intersection ∣L(pα−1

1 ) ∩ L(pα−1
2 )∣/∣L(pα−1

1 )∣, it will suffice to use the approximation
Ĩ = ∣S(pα−1

1 )∩L(pα−1
2 )∣/∣S(pα−1

1 )∣. Notice that the quantity ∣S(pα−1
1 )∩L(pα−1

2 )∣ can be computed in
time polynomial in ∣S(pα−1

1 )∣ by checking for eachw ∈ S(pα−1
1 ) ifw is contained in L(pα−1

2 ), which
can be accomplished in polynomial time by a membership query for NFAs. If N (pα−1

1 ),N (pα−1
1 )

are our estimates of ∣L(pα−1
1 )∣, ∣L(pα−1

2 )∣, then we can therefore obtain an estimate of ∣L(qα )∣ by
N (qα ) = N (pα−1

1 ) + N (pα−1
2 ) − Ĩ ⋅ N (pα−1

1 ), avoiding the issue of overcounting the intersection.

5As mentioned before, it is known that #NFA belongs to #P. Notice that the fact that n is given in unary is necessary to
show this property. If n is given as a binary number, then the value ∣Ln(A)∣ can be double exponential in the size O(log n)

of this input, since ∣Ln(A)∣ can be equal to 2n . Hence, #NFA cannot be in #P if the input n is given as a binary number, as
if a function f ∶ {0, 1}∗ → N is in #P, then there exists a polynomial p(u) such that for every w ∈ {0, 1}∗, it holds that

f (w) ≤ 2p(∣w ∣).
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The main technical hurdle that remains is to determine how to uniformly sample a stringw from
a set L(qα ) to construct our sketches S(pα ). This is accomplished by sampling the stringw bit-by-
bit. We first partition L(qα ) into the set of strings with last bit equal to 0 and 1. We then estimate
the size of both partitions and choose a partition with probability proportional to its size. Finally,
we store the bit corresponding to the sampled partition, append it to a suffix w ′ of the string w ,
and then recurse onto the next bit. In essence, we sample a string w by growing a suffix of w .

To estimate the size of the partitions, we use our sketches S(pβ ) of L(pβ ) for all β ≤ α and states
p. Unfortunately, because of the error in estimating the sets ∣L(pβ )∣, there will be some error in the
distribution of our sampler. To correct this, and avoid and exponential propagation of this error, we
use a rejection sampling technique of Jerrum, Valiant, and Vazirani [21], which normalizes the dis-
tribution and results in a perfectly uniform sample. This allows for our construction of the sketches
S(qα ) and also gives an algorithm for the uniform generation of strings of length n from an NFA.

6.2 The Algorithm Template

The input of #NFA is an NFA A = (Q,{0, 1},Δ, I , F) with m states, a string 0n that represents a
natural number n given in unary, and an error ε ∈ (0, 1). The problem, then, is to return a value N
such that N is a (1 ± ε)-approximation of ∣Ln(A)∣, that is,

(1 − ε)∣Ln(A)∣ ≤ N ≤ (1 + ε)∣Ln(A)∣.
Besides, such an approximation should be returned in time polynomial inm, n, and 1

ε
.

Our algorithm for approximating ∣Ln(A)∣ first involves the construction of a labeled directed
acyclic graph from the NFA A. We call this graph Aunroll, as it is obtained by unrolling n times the
NFA A. Specifically, for every state q ∈ Q create n + 1 copies q0,q1, . . . ,qn of q, and include them
as vertices of Aunroll. Moreover, for every transition (p,b,q) in Δ, create the edge (pα ,b,qα+1) in
Aunroll, for every α ∈ [0,n − 1]. We refer to the set Qα = {qα ∣ q ∈ Q} as the α th layer of Aunroll.
Furthermore, for every set P ⊆ Q , we denote by Pα the copy of P in the α th layer of Aunroll. This
means that I 0 refers to the initial states ofA at the first layer, and Fn refers to the final states ofA at
the last layer. For the sake of presentation, we will use the terms vertex and state interchangeably
to refer to the vertices of Aunroll. Moreover, from now on we assume that Aunroll is pruned, that
is, for every q ∈ Q and every α ∈ [0,n], there exists a path from some vertex of I 0 to qα . In other
words, all states inAunroll are connected to some initial state. The pruning ofAunroll can be done in a
pre-processing step in polynomial-time in nm without changing the overall time of the algorithm.
We remark that in the remainder of the section, whenever we state that we run a procedure for pα

with p ∈ Q and α some layer, it is implicitly assumed that all pruned states pα have already been
removed. Thus, for the remainder, we will not consider the pruned states at any point, since they
cannot be used to derive words of length n in the language.

Given a state q and a layer α , we define L(qα ) as the set of all strings w such that there exists
a path labeled with w from some vertex in I 0 to qα . Notice that ∣w ∣ = α for every w ∈ L(qα ), and
also that L(qα ) ≠ ∅, since Aunroll is pruned. We extend this notation to every set P ⊆ Q , namely,
L(Pα ) = ⋃q∈P L(qα ). The sets of strings L(Pα ) will be crucial for our algorithm. Indeed, finding
an approximation for ∣Ln(A)∣ is reduced to finding an estimate for ∣L(Fn)∣, where Fn represents
the set of final states of A at the last layer.

The components of our approximation algorithm are as follows: Fix the value κ = ⌈nm
ε

⌉ and
assume that n ≥ 2 andm ≥ 2 (if n ≤ 1 orm ≤ 1, then the problem can be easily solved in polynomial
time). Then for each layer α and each state q with qα in Aunroll, store a number N (qα ) and a set
S(qα ) ⊆ L(qα ) such that:

● N (qα ) is a (1 ±κ−2)α -approximation of ∣L(qα )∣ and
● S(qα ) is a uniform sample from L(qα ) of size 2κ7.
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ALGORITHM 1: Algorithmic Template for our FPRAS

(1) Construct the labeled directed acyclic graphAunroll from an input NFAA and string 0n , where
A = (Q,{0, 1},Δ, I , F).

(2) For layers α = 0, 1, . . . ,n and states q ∈ Q :
(a) Compute N (qα ) given ⋃α−1

β=0 ⋃p∈Q {N (pβ ),S(pβ )}. For α = 0, the value N (qα ) is com-
puted without any additional information.

(b) Call a subroutine to sample polynomially many uniform elements from L(qα ) using the
value N (qα ) and the elements ⋃α−1

β=0 ⋃p∈Q {N (pβ ),S(pβ )}.

(c) Let S(qα ) ⊆ L(qα ) be the multiset of uniform samples obtained.
(3) Return N (Fn) given ⋃n

β=0 ⋃p∈Q {N (pβ ),S(pβ )}.

For the first requirement, we mean that

(1 −κ−2)α ∣L(qα )∣ ≤ N (qα ) ≤ (1 +κ−2)α ∣L(qα )∣.

In particular, if α = 0, then we should have that N (qα ) = ∣L(qα )∣. For the last requirement, we
mean that eachw ∈ S(qα ) is a uniform and independent sample from L(qα ). Given this condition
on the samples, it is possible that we will obtain duplicates of a given w ∈ L(qα ). Besides, if
∣L(qα )∣ < 2κ7, then we know that S(qα ) has to contain duplicate elements. Therefore, we allow
S(qα ) to be a multiset (meaning that the strings w in S(qα ) are not necessarily distinct). The
number N (qα ) and the set S(qα ) can be understood as a “sketch” of L(qα ) that will be used to
compute other estimates for Aunroll.

The algorithm proceeds like a dynamic programming algorithm, computing N (qα ) and S(qα )
for every state qα in Aunroll in a breadth-first search ordering. We first compute N (q0),S(q0) for
all states q0 at layer 0. Then, given ⋃α−1

β=0 ⋃p∈Q {N (pβ ),S(pβ )}, we compute N (qα ),S(qα ) for each

vertex qα . So, the value N (qα ) and the set S(qα ) are computed layer-by-layer. The final estimate
for ∣L(Fn)∣ is N (Fn). We summarize this algorithmic template in Algorithm 1. For the rest of
this section, we show how to instantiate the template of our algorithm. For a layer α , we show in
Section 6.3 how to compute the estimate N (qα ) given estimates N (qβ ) and sets S(qβ ) for all β < α .
In fact, for this we need to assume a strong condition (introduced in the next section), which states
that the samples in our set S(qα ) satisfy good concentration properties. Next, given N (qα ) and the
prior estimates N (qβ ) and sets S(qβ ), we demonstrate in Section 6.4 how to generate a uniform
sample from the set L(qα ), proving how to compute S(qα ). In particular, again, we will show that
the strong condition used as an induction hypothesis holds for the sets S(qα ) with exponentially
large probability over κ (Section 6.5). In the last section, we put all pieces together and show the
correctness of the algorithm.

6.3 Computing an Estimate for a Set of Vertices

Recall that the input of the problem is an NFA A = (Q,{0, 1},Δ, I , F) withm states and a string 0n ,
and that we assume that m ≥ 2 and n ≥ 2. Then fix a layer α and define a sketch data structure
such that sketch[α] ∶= {N (pβ ),S(pβ )}p∈Q,β≤α . Moreover, assume that sketch[α] has already been

computed. In particular, N (pβ ) is a (1 ± κ−2)β -approximation of ∣L(pβ )∣, and S(pβ ) is a uniform
sample from L(pβ ) of size 2κ7 for each β ≤ α . The goal of this section is twofold: We first show
how to compute an estimate of ∣L(Pα )∣ for every P ⊆ Q , which is denoted by N (Pα ), and then we
show how to compute an estimate for N (qα+1). These values N (Pα ) will play a crucial role for
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computing not only N (qα+1), but also the set of uniform samples S(qα+1) and the final estimate
N (Fn) for ∣L(Fn)∣ (see Sections 6.4 and 6.5).

Let P be a non-empty subset of Q , and suppose that we want to find an estimate N (Pα ) for
∣L(Pα )∣. If A is deterministic, then the sets {L(pα ) ∣ p ∈ P} are disjoint, and then we can easily
compute the size of ∣L(Pα )∣ as ∑p∈P ∣L(pα )∣. Unfortunately, given thatA can be non-deterministic,
this sum will over-approximate the size of ∣L(pα )∣, and we need to find a way to deal with the
intersections of the sets {L(pα ) ∣ p ∈ P}. For this, fix a total order ≺ over the set P , and consider
the following way to compute ∣L(Pα )∣:

∣L(Pα )∣ = ∑
p∈P

∣L(pα )∣ ⋅
∣L(pα ) ∖ ⋃q∈P ∶q≺p L(qα )∣

∣L(pα )∣ . (†)

With the ratio ∣L(pα ) ∖ ⋃q∈P ∶q≺p L(qα )∣/∣L(pα )∣, we removed from L(pα ) its intersection with
all sets L(qα ) such that q ≺ p. In fact, one can easily check that ∣L(Pα )∣ = ∑p∈P ∣L(pα ) ∖
⋃q∈P ∶q≺p L(qα )∣ and, thus, equation (†) trivially holds. We call the above ratio the intersection
rate of pα in P given ≺ (or just the intersection rate of pα ).

Inspired by equation (†), we can estimate ∣L(Pα )∣ by using N (pα ) to estimate ∣L(pα )∣ and S(pα )
to estimate the intersection rate of pα . More precisely, we define the estimate N (Pα ) for ∣L(Pα )∣
as follows:

N (Pα ) = ∑
p∈P

N (pα ) ⋅
∣S(pα ) ∖ ⋃q∈P ∶q≺p L(qα )∣

∣S(pα )∣ . (‡)

It is important to note that N (Pα ) can be computed in polynomial time in the size of sketch[α].
Indeed, the set S(pα ) ∖ ⋃q∈P ∶q≺p L(qα ) can be computed by iterating over each string w ∈ S(pα )
and checking whether w ∈ L({qα ∣ q ∈ P and q ≺ p}). Given that verifying if a string is in
L({qα ∣ q ∈ P and q ≺ p}) can be done in polynomial time, computing N (Pα ) takes polynomial
time as well. We call the ratio ∣S(pα ) ∖ ⋃q∈P ∶q≺p L(qα )∣/∣S(pα )∣ the estimate of the intersection
rate of pα .

To show that N (Pα ) is a good estimate for ∣L(Pα )∣, we need that the estimate of the intersection
rate is a good approximation of the real intersection rate in each layer. By a good approximation,
we mean that the following condition holds at level α :

E(α) ∶= ∀q ∈ Q ∀P ⊆ Q . ∣
∣L(qα ) ∖ ⋃p∈P L(pα )∣

∣L(qα )∣ −
∣S(qα ) ∖ ⋃p∈P L(pα )∣

∣S(qα )∣ ∣ < 1

κ3
.

This condition is crucial for the next results, and most of our analysis in this and next section will
assume that this condition holds. Towards the end, in Section 6.6, we will show that, by Hoeffding’s
inequality, the condition E(α) holds for all layers α with exponentially high probability over κ.
Next, we prove that, if condition E(α) holds, then N (Pα ) is a good estimate for ∣L(Pα )∣.

Proposition 6.4. Assume that E(α) holds and N (pα ) is a (1 ± κ−2)α -approximation of ∣L(pα )∣
for every p ∈ Q . Then N (Pα ) is a (1 ±κ−2)α+1-approximation of ∣L(Pα )∣ for every P ⊆ Q .

Proof. Given that condition E(α) holds, we know that for each p ∈ P :

∣L(pα ) ∖ ⋃q∈P ∶q≺p L(qα )∣
∣L(pα )∣ −κ−3

<
∣S(pα ) ∖ ⋃q∈P ∶q≺p L(qα )∣

∣S(pα )∣

<
∣L(pα ) ∖ ⋃q∈P ∶q≺p L(qα )∣

∣L(pα )∣ +κ−3.
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Moreover, given that N (pα ) is a (1 ±κ−2)α -approximation of ∣L(pα )∣, it holds that:

(1 −κ−2)α ∣L(pα )∣ ≤ N (pα ) ≤ (1 +κ−2)α ∣L(pα )∣.
Putting these two bounds together, we obtain the following bounds from the definition of N (Pα )
in equation (‡):

(1 −κ−2)α ∑
p∈P

(∣L(pα ) ∖ ⋃
q∈P ∶q≺p

L(qα )∣ −κ−3∣L(pα )∣) < N (Pα )

< (1 +κ−2)α ∑
p∈P

(∣L(pα ) ∖ ⋃
q∈P ∶q≺p

L(qα )∣ +κ−3∣L(pα )∣).

Recall from the discussion of the intersection rate that ∣L(Pα )∣ = ∑p∈P ∣L(pα ) ∖ ⋃q∈P ∶q≺p L(qα )∣.
Moreover, given that L(pα ) ⊆ L(Pα )∣ and ∣P ∣ ≤m ≤ κ, we have that ∑p∈P ∣L(pα )∣ ≤ ∑p∈P ∣L(Pα )∣ =
∣P ∣ ⋅ ∣L(Pα )∣ ≤ κ ⋅ ∣L(Pα )∣. Replacing both statements in the previous inequality, we obtain

(1 −κ−2)α (∣L(Pα )∣ −κ−3 ⋅ κ∣L(Pα )∣) < N (Pα ) < (1 +κ−2)α (∣L(Pα )∣ +κ−3 ⋅κ∣L(Pα )∣),
which is equivalent to

(1 −κ−2)α+1∣L(Pα )∣ < N (Pα ) < (1 +κ−2)α+1∣L(Pα )∣.
This concludes the proof of the proposition. �

With the estimates of ∣L(Pα )∣ for every P ⊆ Q at the α th layer, we are ready to give a good
estimate for the size ∣L(qα+1)∣ of a single vertex in the next layer α + 1. Let qα+1 be an arbitrary
vertex at layer α + 1. For b ∈ {0, 1}, define the set of vertices Rb = {pα ∈ Qα ∣ (pα ,b,qα+1) is an
edge in Aunroll}, namely, the set of all vertices in the α th layer from which qα+1 can be reached by
reading symbol b. Notice that sets R0 and R1 partition L(qα+1) in the following sense:

L(qα+1) = L(R0) ⋅ {0} ⊎ L(R1) ⋅ {1}, (1)

where given two sets S1,S2 of strings, S1 ⋅ S2 is defined as the set consisting of the concatenation
of each string of S1 with each string of S2 (in particular, L(Rb) ⋅ {b} = {w ∈ {0, 1}∗ ∣w = v ⋅b with
v ∈ L(Rb)} forb ∈ {0, 1}). Equation (1) implies that ∣L(qα+1)∣ = ∣L(R0)∣+∣L(R1)∣. Notice that, if we
assume E(α) holds, then by Proposition 6.4, we have that N (Rb) is a (1 ±κ−2)α+1-approximation
of ∣L(Rb)∣ for b ∈ {0, 1}, from which we obtain that N (qα+1) = N (R0) + N (R1) is a (1 ± κ−2)α+1-
approximation of ∣L(qα+1)∣. Therefore, we can derive an estimate N (qα+1) for ∣L(qα+1)∣ by using
previous estimates {pα }p∈Q .

Note that the computation of N (qα+1) is deterministic by assuming that E(β) holds for all
β ≤ α . Specifically, the estimates N (q0) are exact for the initial layer. Next, for each layer α ,
we assume that E(α) holds and we can compute N (qα+1) by using {N (pα )}p∈Q (in fact, by us-
ing {N (Pα )}P⊆Q ). Then, we assume that E(α + 1) holds and so on. Therefore, by filling the sets
{S(pβ )}p∈Q,β≤α with uniform samples and assuming that E(β) holds for all β ≤ α , we can com-
pute each estimate N (qα+1). Moreover, we can guarantee that it is a (1 ± κ−2)α+1-approximation
of ∣L(qα+1)∣. We summarize this fact in the following proposition:

Proposition 6.5. Assume that E(β) holds for all β ≤ α . Then N (pα+1) is a (1 ± κ−2)α+1-
approximation of ∣L(pα+1)∣ for every p ∈ Q .

After all, at some point, we will reach the last layer n, and we would like to compute the (1 ±ε)-
approximation for ∣Ln(A)∣. For this, we can use N (Fn) for estimating ∣Ln(A)∣, which achieves the
ultimate goal of our algorithm.

Proposition 6.6. If E(β) holds for all β ≤ n, then N (Fn) is a (1 ± ε)-approximation for ∣Ln(A)∣.
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Proof. Assume that N (Fn) is a (1 ±κ−2)n+1-approximation of ∣L(Fn)∣ = ∣Ln(A)∣, that is,

(1 −κ−2)n+1∣Ln(A)∣ ≤ N (Fn) ≤ (1 +κ−2)n+1∣Ln(A)∣.

But we have that:

(1 +κ−2)n+1 ≤ (1 + ( ε

mn
)

2

)
n+1

= [(1 + ( 1

(nm
ε

)2
))
( nm

ε )
2

]
(n+1)ε2

n2m2

≤ e
ε2

m2

≤ 1 + 2
ε2

m2
since ex ≤ (1 + 2x) for x ∈ [0, 1]

= 1 + ε ⋅ 2ε

m2

≤ 1 + ε sincem ≥ 2 and ε ∈ (0, 1),

and we also have that:

(1 −κ−2)n+1 ≥ (1 − ( ε

mn
)

2

)
n+1

= [(1 − ( 1

(nm
ε

)2
))
( nm

ε )
2

]
(n+1)ε2

n2m2

≥ (e−2)
ε2

m2 since (1 − 1

x
)

x

≥ e−2 for x ≥ 2

≥ 1 − 2ε2

m2
since e−x ≥ 1 − x for x ≥ 0

= 1 − ε ⋅ 2ε

m2

≥ 1 − ε sincem ≥ 2 and ε ∈ (0, 1).

Thus, we conclude that:

(1 − ε)∣Ln(A)∣ ≤ N (Fn) ≤ (1 + ε)∣Ln(A)∣. �

In the following section, we show how to compute the set S(qα+1) using sketch[α], namely,
how to generate a uniform sample from L(qα+1). Specifically, we show that, assuming E(β) holds
for all β ≤ α , we can obtain uniform samples from the sets L(qα+1) such that property E(α + 1)
will hold with high probability.

6.4 Uniform Sampling from a Vertex

To carry out our main approximation algorithm, we must implement the algorithm template given
in Algorithm 1, whose input is assumed to be an NFA A = (Q,{0, 1},Δ, I , F) with m states and a
string 0n , where m ≥ 2 and n ≥ 2. In the previous section, we implemented Step 2(a) of this
algorithm and, thus, the goal of this section is to implement the sampling subroutine in Step 2(b).
This procedure is based on a sample technique proposed in Reference [21], but modified to suit
our setting.
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Take a state q ∈ Q and layer α ≤ n, and assume that for all layers β < α the condition E(β)
holds. Notice that by Proposition 6.5, once we have E(β) and estimates for all levels β < α , we
immediately get the estimates N (pα ) for the level α as well.

The procedure to sample a uniform element of the set L(qα ) is as follows: We initialize a string
wα to be the empty string. Then, we construct a sequence of strings wα , wα−1, . . . ,w1, w0, where
each element wβ is of the form bβ ⋅wβ+1 with bβ ∈ {0, 1}, and we define the result of the sample
procedure to be w0. In other words, we sample a string w0 of L(qα ) by building a suffix of the
sample, bit-by-bit. To ensure that w0 is an element of L(qα ) chosen uniformly, we also consider a
sequence of sets Pα , Pα−1, . . . ,P1, P0 constructed as follows: The first set is Pα = {qα }. Then, we
consider the set of vertices at layer α − 1 that can reach the set Pα by reading letter b, namely, for
b ∈ {0, 1} define:

Pα
b = {pα−1 ∈ Qα−1 ∣ there exists rα ∈ Pα such that (pα−1,b, rα ) is an edge in Aunroll}.

Notice that, although we use the superscript α , the set Pα
b is a subset of vertices in the (α − 1)-th

layer. Similar to the previous section, the sets Pα
0 and Pα

1 induce a partition of the set L(Pα ) in the
following sense:

L(Pα ) = L(Pα
0 ) ⋅ {0} ⊎ L(Pα

1 ) ⋅ {1}.

Therefore, our sampling algorithm estimates the size N (Pα
b ) of L(Pα

b ) for b ∈ {0, 1} and chooses
one of Pα

0 , Pα
1 with probability proportional to its size, namely, N (Pα

0 )/(N (Pα
0 ) + N (Pα

1 )) and
N (Pα

1 )/(N (Pα
0 ) + N (Pα

1 )). Say we choose Pα
b . Then, we define bα−1 = b, append the bit bα−1 as

a prefix of wα to obtain wα−1 = bα−1 ⋅wα , define Pα−1 as Pα
b , and continue with the recursion on

wα−1 and Pα−1. Hence, we have that P β is the set of vertices such that there exists a path labeled
by wβ that connects some state of P β with qα . Notice that L(P β ) ≠ ∅ for every layer β (and, thus,
P β ≠ ∅). Indeed, given that Aunroll is pruned, we know that L(Pα ) = L({qα }) ≠ ∅. By induction,

if for some level β we have that P β
0 = ∅ (similar when P

β
1 = ∅), then L(P β

1 ) ⋅ {1} = L(P β ) and the

next level β − 1 will be chosen with probability 1. In particular, L(P β
1 ) = L(P β−1) ≠ ∅.

Since there could be an error in estimating the sizes of the partitions, it may be the case that
some items were chosen with slightly larger probability than others. To remedy this and obtain
a perfectly uniform sampler, at every step of the algorithm, we store the probability with which
we chose a partition. Thus, at the end, we have computed exactly the probability φ with which we
sampled the string w . We can then reject this sample with probability proportional to φ, which
gives a perfect sampler. As long as no string is too much more likely than another to be sampled,
the probability of rejection will be a constant, and we can simply run our samplerO(log( 1

μ
))-times

to get a sample with probability 1 − μ for every μ > 0.
This procedure then is given in Algorithm 2. We call it with the initial parameters Sam-

ple(α ,{qα }, λ, φ0), where λ is the empty string, corresponding to the goal of sampling a uniform
element of L(Pα ) = L(qα ). Here, φ0 is a value that we will later choose. Notice that at every step
of Algorithm 2, we have that ∣L(P β )∣ is precisely the number of strings in L(qα ) that have the
suffix wβ , as L(P β ) is the set of strings x such that x ⋅ wβ ∈ L(qα ). Observe then that the set

P β depends on the random string wβ , so in fact we could write P
β

w β instead of P β . For notational

simplicity, we omit the subscript, and it is then understood that P β is a function of wβ .
To get some intuition of Algorithm 2, assume for the moment that we can compute each pb

exactly, namely, pb = ∣L(P β

b
)∣/∣L(P β )∣. Now the probability of choosing a given element x ∈ L(qα )

can be computed as follows: Ignoring for a moment the possibility of returning fail, we have that
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ALGORITHM 2: Sample(β,P β ,wβ ,φ)

(1) If β = 0, then with probability φ return w0, otherwise return fail.
(2) Else, compute the set Pα

b = {pα−1 ∈ Qα−1 ∣ there exists rα ∈ Pα such that (pα−1,b, rα ) is an
edge in Aunroll} for every b ∈ {0, 1}.

(3) Choose a partition b ∈ {0, 1} with probability pb =
N (P β

b
)

N (P β
0 ) + N (P β

1 )
.

(4) Set P β−1 = P
β

b
, and wβ−1 = b ⋅wβ .

(5) Return Sample(β − 1,P β−1,wβ−1,
φ

pb
).

w0 is the string returned by Sample(α ,{qα }, λ, φ0). Thus, the probability we choose x is:

Pr(w0 = x) = ∣L(Pα−1)∣
∣L(Pα )∣ ⋅ ∣L(Pα−2)∣

∣L(Pα−1)∣ ⋅ ∣L(Pα−3)∣
∣L(Pα−2)∣ ⋅ ⋯ ⋅ ∣L(P1)∣

∣L(P2)∣ ⋅ 1

∣L(P1)∣ = 1

∣L(Pα )∣ .

Now at the point of return, we also have that φ = φ0/Pr(w0 = x). Thus, if φ0/Pr(w0 = x) ≤ 1, then
the probability that x is output is simply φ0. The following is then easily seen:

Fact 1. Assume that each probability pb in Algorithm 2 satisfies that

pb =
∣L(P β

b
)∣

∣L(P β )∣ .

If 0 < φ0 ≤ 1
∣L(P α )∣ and w0 ≠ fail is the output of Algorithm 2, then for every x ∈ L(Pα ), it holds

that Pr(w0 = x) = φ0. Moreover, the algorithm outputs w0 = fail with probability 1 − ∣L(Pα )∣φ0.

This shows that, conditioned on not failing, the above is a uniform sampler. Repeating the pro-
cedure � ⋅ (∣L(Pα )∣φ0)−1 times, we get a sample with probability 1 − e−� , since:

(1 − ∣L(Pα )∣φ0)�⋅(∣L(P
α )∣φ0)

−1

≤ (e−∣L(P
α )∣φ0)�⋅(∣L(P

α )∣φ0)
−1

(by using (1 − x) ≤ e−x )

= e−∣L(P
α )∣φ0⋅�⋅(∣L(P

α )∣φ0)
−1

= e−� .

However, Fact 1 was obtained under the strong assumption that each probability pb can be
computed exactly. Hence, in what follows, we focus on showing that with high probability the

same result holds if we approximate pb with N (P β

b
)/(N (P β

0 ) + N (P β
1 )) (instead of assuming

that pb = ∣L(P β

b
)∣/∣L(P β )∣).

Proposition 6.7. Assume that condition E(β) holds for every layer β < α . Ifw ≠ fail is the output

of Sample(α ,{qα },λ, e−5

N (qα )), then for every x ∈ L(qα ):

Pr(w = x) = e−5

N (qα ) .

Moreover, the algorithm outputs fail with probability at most 1−e−9. Thus, conditioned on not failing,

Sample(α ,{qα },λ, e−5

N (qα )) returns a uniform element x ∈ L(qα ).

Proof. First, we show that every recursive call to Sample satisfies that φ ∈ (0, 1). Since φ0 =
e−5

N (qα ) > 0 and with each call φ does not decrease (because it is divided by a probability), we know

that φ > 0 at each subsequent call. It remains to show that φ < 1 for every recursive call to the
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Sample procedure. Since φ does not decrease after each recursive call, it suffices to show this for
the final value ofφ. Notice that at the call β , with β fromn to 1, we have thatφ is divided by a factor

N (P β

w[β]
)

N (P β
0 ) + N (P β

1 )
,

where w[β] is the βth letter of w . So, in the final call, φ has the value:

φ = (
α

∏
β=1

N (P β

w[β]
)

N (P β
0 ) + N (P β

1 )
)
−1

⋅φ0

= (
α

∏
β=1

N (P β
0 ) + N (P β

1 )

N (P β

w[β]
)

) ⋅ e−5

N (qα ) .

Given that condition E(β) holds for every layer β < α , by Proposition 6.4, we know that N (P β

b
) is

a (1 ±κ−2)β -approximation of ∣L(P β

b
)∣ for all b ∈ {0, 1} and β ∈ [1,α] (recall that P β

b
is a subset of

states at layer β − 1). It follows that at the final recursive call to Sample, we have that:

φ = (
α

∏
β=1

N (P β
0 ) + N (P β

1 )

N (P β

w[β]
)

) ⋅ e−5

N (qα )

≤ (
α

∏
β=1

(1 +κ−2)β ⋅ (∣L (P β
0 )∣ + ∣L(P β

1 )∣)

(1 −κ−2)β ⋅ ∣L (P β

w[β]
)∣

) ⋅ e−5

N (qα )

= (
α

∏
β=1

(1 +κ−2)β

(1 −κ−2)β
) ⋅ (

α

∏
β=1

(∣L(P β
0 )∣ + ∣L(P β

1 )∣)

∣L(P β

w[β]
)∣

) ⋅ e−5

N (qα ) .

Recall that ∣L(P β
0 )∣ + ∣L(P β

1 )∣ = ∣L(P β+1
w[β+1]

)∣ for every β ∈ [1,α − 1]. Also note that ∣L(P1
w[1])∣ = 1,

since L(P1) is the set of strings x ∈ {0, 1} such that x ⋅w1 ∈ L(qα ), and L(P1
w[1]) is the subset

of L(P1) with the last bit equal to w[1] (of which there is just one). Thus, given that ∣L(qα )∣ =
∣L(Pα )∣ = ∣L(Pα

0 )∣ + ∣L(Pα
1 )∣, we have that:

α

∏
β=1

(∣L(P β
0 )∣ + ∣L(P β

1 )∣)

∣L(P β

w[β]
)∣

= ∣L(qα )∣,

and so

φ ≤ (
α

∏
β=1

(1 +κ−2)β

(1 −κ−2)β
) ⋅ ∣L(Pα )∣ ⋅ e−5

N (qα )

= (1 +κ−2

1 −κ−2
)

α(α+1)
2

⋅ ∣L(qα )∣ ⋅ e−5

N (qα )

≤ (1 +κ−2

1 −κ−2
)

α 2

⋅ ∣L(qα )∣ ⋅ e−5

N (qα )
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≤ (1 +κ−2

1 −κ−2
)

n2

⋅ ∣L(qα )∣ ⋅ e−5

N (qα ) .

Furthermore, N (qα ) is a (1 ±κ−2)α -approximation of ∣L(qα )∣ by Proposition 6.5. Then, we know

that N (qα ) ≥ (1 −κ−2)α ∣L(qα )∣ ≥ (1 −κ−2)n2 ∣L(qα )∣ and, therefore,

φ ≤ (1 +κ−2

1 −κ−2
)

n2

⋅ ∣L(qα )∣ ⋅ e−5

N (qα )

≤ (1 +κ−2

1 −κ−2
)

n2

⋅ ∣L(qα )∣ ⋅ e−5

(1 −κ−2)n2 ∣L(qα )∣

= (1 +κ−2)n2

(1 −κ−2)n2 ⋅ (1 −κ−2)n2 ⋅ e−5 < e

e−2 ⋅ e−2
⋅ e−5 = 1,

where the last inequality holds, because κ = ⌈nm
ε

⌉ ≥ n ≥ 2, (1 + �−1)� < e , and (1 − �−1)� ≥ e−2 for
every � ≥ 2. Hence, we know that under the assumptions stated for this proposition, on each call
and, in particular, on the last call, we have that φ ≤ 1.

As a second step in the proof of the proposition, we show that the algorithm outputs fail with
probability at most 1 −e−9. Notice that this probability is only due to Step (1) in Algorithm 2. That
is, the probability we output fail is at most (1 −φ), where φ is as computed in the previous part of
the proof. Thus, to show that the failure probability is at most 1 − e−9, we compute a lower bound
for φ in a similar way as we computed an upper bound for it:

φ = (
α

∏
β=1

N (P β
0 ) + N (P β

1 )

N (P β

w[β]
)

) ⋅ e−5

N (qα )

≥ (
α

∏
β=1

(1 −κ−2)β ⋅ (∣L (P β
0 )∣ + ∣L(P β

1 )∣)

(1 +κ−2)β ⋅ ∣L (P β

w[β]
)∣

) ⋅ e−5

N (qα )

= (
α

∏
β=1

(1 −κ−2)β

(1 +κ−2)β
) ⋅ (

α

∏
β=1

(∣L(P β
0 )∣ + ∣L(P β

1 )∣)

∣L(P β

w[β]
)∣

) ⋅ e−5

N (qα )

≥ (1 −κ−2

1 +κ−2
)

n2

⋅ ∣L(qα )∣ ⋅ e−5

(1 +κ−2)n2 ⋅ ∣L(qα )∣

= (1 −κ−2)n2

(1 +κ−2)n2 ⋅ (1 +κ−2)n2 ⋅ e−5 ≥ e−2

e ⋅ e ⋅ e−5 = e−9.

Note that, in the fourth step, we use the fact that N (qα ) is a (1 ±κ−2)α -approximation of ∣L(qα )∣
by Proposition 6.5 (indeed, implied by the assumption that E(β) holds for each β < α ), so N (qα ) ≤
(1 +κ−2)α ∣L(qα )∣ ≤ (1 +κ−2)n2 ∣L(qα )∣.

As the final step of the proof, we need to show that if the output of the algorithm is w ≠ fail,
then Pr(w = x) = e−5/N (qα ) for every x ∈ L(qα ). Now, the probability of w being a particular
x ∈ L(qα ) is given by the following expression:

Pr(w = x) = Pr(w0 = x ∧ the last call to Sample does not fail)
= Pr(last call to Sample does not fail ∣w0 = x) ⋅ Pr(w0 = x)
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= ((
α

∏
β=1

N (P β

w[β]
)

N (P β
0 ) + N (P β

1 )
)
−1

⋅ e−5

N (qα )) ⋅ (
α

∏
β=1

N (P β

w[β]
)

N (P β
0 ) + N (P β

1 )
)

= e−5

N (qα ) ,

as desired. This concludes the proof of the proposition. �

We would like to remark that, for Proposition 6.7 to be correct, we need that E(β) holds for

every layer β < α . Indeed, the sampling procedure uses values N (P β

b
)/(N (P β

0 ) + N (P β
1 )) for ap-

proximating the real probabilities ∣L(P β

b
)∣/∣L(P β )∣. For this, we need that each value N (P β ) is a

good estimate for ∣L(P β )∣ and this is implied by Proposition 6.5 if E(β) holds for every layer β < α .
In the next section, we prove that indeed this happens with exponentially high probability.

6.5 Bounding the Probability of Breaking the Main Assumption

As it was previously discussed, the computation of the sketch composed by the estimates N (qα )
and sets S(qα ) is subject that conditions E(α) hold for all layers α ≤ n. Therefore, this section
is aimed to bound the probability that E(α) is false for some layer α and show that, indeed, this
probability is exponentially low.

First, assume that we are back to a layer α , condition E(β) holds for all layers β < α , and we
want to check the probability that E(α) holds for α . In other words, we want to bound Pr(E(α) ∣
⋀α−1

β=0 E(β)), for which we need Hoeffding’s inequality.

Proposition 6.8 (Hoeffding’s Ineqality [20]). Let X1, . . . ,Xt be independent random vari-
ables bounded by the interval [0, 1] such that E[Xi ] = μ. Then for every δ > 0, it holds that

Pr(∣1

t

t

∑
i=1

Xi − μ∣ ≥ δ) ≤ 2e−2tδ 2

.

For the first layer α = 0, the condition E(0) certainly holds. Now, if we are at any layer α
and ⋀α−1

β=0 E(β) holds, then we know by Proposition 6.7 that for each q ∈ Q , it is possible to fill

S(qα ) with 2κ7 uniform samples of L(qα ). Consider the case of any subset P ⊆ Q , and let S(qα ) =
{w1, . . . ,wt } be the uniform sample of L(qα ) of size t = 2κ7. For each wi , consider the random
variable Xi such that Xi = 1 if wi ∈ (L(qα ) ∖ ⋃p∈P L(pα )), and 0 otherwise. Then, we have that:

E[Xi ] =
∣L(qα ) ∖ ⋃p∈P L(pα )∣

∣L(qα )∣
t

∑
i=1

Xi = ∣S(qα ) ∖ ⋃
p∈P

L(pα )∣, and

t = ∣S(qα )∣.
Therefore, by Hoeffding’s inequality we infer that:

Pr(∣
∣L(qα ) ∖ ⋃p∈P L(pα )∣

∣L(qα )∣ −
∣S(qα ) ∖ ⋃p∈P L(pα )∣

∣S(qα )∣ ∣ ≥ 1

κ3
∣

α−1

⋀
β=0

E(β)) ≤ 2e−4κ .

Note that in the previous inequality the condition ⋀α−1
β=0 E(β) does not change the assumptions of

Hoeffding’s inequality. We can bound Pr(¬E(α) ∣ ⋀α−1
β=0 E(β)) by taking the union bound over all

states q and all possible subsets P ⊆ Q :
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Pr(∃q ∈ Q ∃P ⊆ Q ∣
∣L(qα ) ∖ ⋃p∈P L(pα )∣

∣L(qα )∣ −
∣S(qα ) ∖ ⋃p∈P L(pα )∣

∣S(qα )∣ ∣ ≥ 1

κ3
∣

α−1

⋀
β=0

E(β))

≤ m2m ⋅ 2e−4κ ≤ e2nm ⋅ e−4κ ≤ e−2κ .

We conclude that, at layer α , the probability Pr(E(α) ∣ ⋀α−1
β=0 E(β)) ≥ 1 − e−2κ .

To extend the previous implications over all layers, we can use that:

Pr(E(0) ∧ ⋯ ∧ E(n)) =
n

∏
α=1

Pr
⎛
⎝
E(α) ∣

α−1

⋀
β=0

E(β)
⎞
⎠

≥
n

∏
α=1

(1 − e−2κ) = (1 − e−2κ)n .

Moreover, we have that:

(1 − e−2κ)n = 1 +
n

∑
j=1

(n
j
)(−1)je−2κ ⋅j

≥ 1 −
n

∑
j=1

(n
j
)e−2κ ⋅j

≥ 1 − e−2κ ⋅
n

∑
j=1

(n
j
)

≥ 1 − e−2κ ⋅ 2n

≥ 1 − e−2κ ⋅ eκ = 1 − e−κ .

We conclude by stating the main purpose of this section in the following proposition:

Proposition 6.9. The probability that E(α) holds for all layers α ≤ n is bounded below by 1−e−κ .

6.6 The Main Algorithm, Its Correctness, and Its Complexity

In Algorithm 3, we give all the steps of the FPRAS that has been discussed in the previous sub-
sections. This algorithm follows the same structure of Algorithm 1, but now the computation of
N (qα ) and S(qα ) is fully described. The algorithm proceeds as mentioned before, layer-by-layer,
computing the estimates N (qα ) and the sample sets S(qα ). For each state q0 at the initial layer
α = 0, the pair N (qα ), S(qα ) is computed without considering any additional information (Step (4)
of Algorithm 3). Then for each layerα > 0 and each vertexqα , we computeN (qα ) = N (R0)+N (R1),
as was discussed in Section 6.3. After N (qα ) is computed, the set S(qα ) is filled with 2κ7 uniform

and independent samples. For this, Sample(α ,{qα }, λ, e−5

N (qα )) is run at most Θ(log(κ)) times or

until a stringw ≠ fail is output. Ifw = fail, then the algorithm terminates and outputs 0. Otherwise,
the sample is added to S(qα ), and the computation continues. Finally, the algorithm computes and
returns N (Fn), as it was discussed in Section 6.3.

Given that the value κ is polynomial in m, n, and 1
ε
, it is clear that Algorithm 3 works in time

polynomial inm, n, and 1
ε
. Hence, it only remains to show that Algorithm 3 is correct, namely, that

N (Fn) is a (1±ε)-approximation of ∣Ln(A)∣ with probability greater than 3
4 . First, assume that the

algorithm returns a good estimate, that is, condition E(α) holds for all layers α ≤ n during the run
of the algorithm andw is never equal to fail after Step (i) of the algorithm. Then by Proposition 6.6,
we obtain that N (Fn) is a (1 ± ε)-approximation of ∣Ln(A)∣, as desired.

To conclude the proof of the correctness of Algorithm 3, we need to bound the probability
that the algorithm does not give a good estimate, namely, that either condition E(α) is false for
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ALGORITHM 3: FPRAS to estimate ∣Ln(A)∣ for an NFA A = (Q,{0, 1},Δ, I , F) with m ≥ 2
states, integer n ≥ 2 given in unary and error ε ∈ (0, 1)

(1) If Ln(A) = ∅, then return 0.
(2) Else, construct the directed acyclic graph Aunroll from A, and set κ = ⌈nm

ε
⌉.

(3) For each vertex qα of Aunroll, if there is no path from a vertex in I 0 to qα , then remove qα

from Aunroll.
(4) For each q0 ∈ I 0, set N (q0) = 1 and S(q0) = {λ}.
(5) For layers α = 1, 2, . . . ,n and for each vertex qα in Aunroll:

(a) Let Rb = {pα−1 ∈ Qα−1 ∣ (pα−1,b,qα ) is an edge in Aunroll} for b = 0, 1.
(b) Set N (qα ) = N (R0) + N (R1).
(c) Set S(qα ) = ∅. Then while ∣S(qα )∣ < 2κ7:

(i) Run Sample(α ,{qα }, λ, e−5

N (qα )) until it returns a string w ≠ fail, and at most

Θ(log(κ)) times
(ii) If w = fail, then terminate the algorithm and output 0 as the estimate (failure event).

(iii) Otherwise, a sample w ∈ {0, 1}α was returned, and set S(qα ) = S(qα ) ∪ {w} (recall
S(qα ) allows duplicates).

(6) Return N (Fn) as an estimate for ∣Ln(A)∣.

some layer α or the sampling algorithm fails c(κ) times at Step (i), where c(κ) is the number of
repetitions performed in this step. Therefore, it remains to show that this probability of giving a
wrong output is at most 1

4 considering a value for c(κ) ∈ Θ(log(κ)). Let Efail(α ,q, j) be the event
that the call Sample(α ,{qα }, λ, e−5/N (qα )) fails c(κ) consecutive times at layer α , state qα , and
the jth sample of S(qα ), where j ∈ [1, 2κ7]. We know by Proposition 6.7 that the probability that
Sample fails is at most 1 − e−9 and, therefore, Pr(Efail(α ,q, j)) ≤ (1 − e−9)c(κ). Furthermore, by
Proposition 6.9, we already know that Pr(¬E(0) ∨ ⋯ ∨ ¬E(n)) ≤ e−κ . By the union bound, we
conclude that the probability that the algorithm gives the wrong output is:

Pr
⎛
⎝
¬

n

⋁
α=1

⋁
q∈Q

2κ7

⋁
j=1

Efail(α ,q, j) ∨ ¬E(0) ∨ ⋯ ∨ ¬E(n)
⎞
⎠

≤
n

∑
α=1

∑
q∈Q

2κ7

∑
j=1

(1 − e−9)c(κ) + e−κ

≤ 2nmκ7(1 − e−9)c(κ) + e−2

≤ 2κ8(1 − e−9)c(κ) + e−2.

Finally, if we take

c(κ) = ⌈2 + log(4) + 8 log(κ)
log((1 − e−9)−1) ⌉ ,

then we obtain that 2κ8(1 − e−9)c(κ) ≤ 1
2 ⋅ e−2. Therefore, we have that the probability that the

algorithm returns a wrong estimate is at most 3
2 ⋅e−2 < 1

4 . As c(κ) is Θ(log(κ)), this concludes the
proof of the correctness of Algorithm 3 as stated in Theorem 6.2.

To finish this section, we need to prove Theorem 6.3, that is, we need to show that
GEN(MEM-NFA) admits a preprocessing polynomial-time Las Vegas uniform generator

(PPLVUG). Notice that our algorithm results in a sampler satisfying the conditions of Theo-
rem 6.3. Specifically, given an NFA A and a natural number n, Algorithm 3 builds a struc-
ture (Aunroll,{N (pα ),S(pα )}p∈Q,α≤n). Furthermore, conditioned on all the above events (i.e.,
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E(0), . . . ,E(n), and Efail) we can use (Aunroll,{N (pα ),S(pα ))}p∈Q,α≤n) for getting a uniform sam-
ple from Ln(A) by using Algorithm 2, and this algorithm fails with probability 1 − e−9. In other
words, Algorithm 3 and Algorithm 2 are the randomized algorithms P and G, respectively, and
(Aunroll,{N (pα ),S(pα ))}p∈Q,α≤n) is the string D that is good-for-generation (i.e., the advice) from
the PPLVUG’s definition. The probability of success of the above events can be amplified to 1 − δ
for any δ > 0 by scaling κ up by a factor of log(1/δ). The overall runtime is now polynomial in
(n,m, log(1/δ)) as needed. Note that for the purposes of a uniform sampler, the parameter δ can
be set to a constant, as it does not appear in the definition of the sampler in Theorem 6.3. Now by
Proposition 6.7, we can obtain truly uniform samples from the set Ln(A) in time polynomial in
(n,m, log(1/δ)) time. The probability that fail is returned by the sampler is at most 1−e−9, which
can be amplified to at most 1/2 by repeating it a constant number of times to satisfy the condition
required in Theorem 6.3, which completes the proof of this theorem.

7 CONCLUDING REMARKS

We consider this work as a first step towards the definition of classes of problems with good prop-
erties in terms of enumeration, counting, and uniform generation of solutions. In this sense, there
is plenty of room for extensions and improvements, and many problems need to be studied further.
First, for each one of the classes RelationNL and RelationUL, we have identified a single problem
that is complete for it. An important question, then, is whether such classes admit other natural
and well-studied complete problems; for instance, we leave as an open problem whether SAT-DNF
is complete for RelationNL under the notion of reduction introduced in Section 5. Second, the
different components of the FPRAS for #NFA were designed to facilitate its proof of correctness.
As such, we already know of some optimizations that significantly reduce its runtime, and we plan
to develop more such optimizations to make this FPRAS usable in practice. Finally, an interesting
area to explore is to extend the results of this article to the class of context-free languages. In
particular, it will be interesting to understand if relations based on context-free languages have
good properties regarding enumeration, counting, and uniform generation. Here, it is natural to
ask whether the problem #CFG (i.e., to count the number of words of a given length accepted by
a context-free grammar) admits an FPRAS or not.

APPENDIX

A PROOFS OF INTERMEDIATE RESULTS

A.1 Proof of Lemma 5.3

Let x be any element in {0, 1}∗. Since R is in RelationUL, we know there exists a UL-transducer
M such that WR(x) = M(x). Without loss of generality, we can assume that M has only one
accepting state, so it can be written as a tuple M = (Q, Γ,B,{0, 1},δ ,q0,{qF }). If it has more than
one accepting state, say, a set F of accepting states, then we can define a new transducer M ′ that
is identical to M with one difference. It has only one final state qF and whenever it reaches a state
in F , it makes one last transition to qF and stops. It is clear that M(x) = M ′(x), so we do not lose
any generality with this assumption.

Letn = ∣x ∣, f (n) be the function that bounds the number of cells in the work tape that can be used,
and assume that f (n) is O(log(n)). Consider now an execution of M on input x . Since the input
tape never changes (its content is always x ), we can completely characterize the configuration of
the machine at any given moment as a tuple (q, i, j,w) ∈ Q × {1, . . . ,n} × {1, . . . , f (n)} × Γf (n)

where

● q stores the state the machine is in.
● i indicates the position of the head on the input tape.
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● j indicates the position of the head on the work tape.
● w stores the contents of the work tape.

With the previous notation, the initial configuration of M on input x is represented by cI =
(q0, 1, 1,B

f (n)), that is, M is in its initial state, the heads are at the first position of their respective
tapes, and the work tape is empty (that is, it only contains the blank symbol B). The accepting
configuration is represented by a tuple of the form cF = (qF , iF , jF ,wF ). Notice that without loss
of generality, we can assume the accepting configuration to be unique by changing M so it runs
for a little longer to reach it. If Cx is the set of possible configuration tuples, then we have that

∣Cx ∣ ≤ ∣Q ∣ ⋅ n ⋅ f (n) ⋅ ∣Γ∣f (n)

= ∣Q ∣ ⋅ n ⋅ f (n) ⋅ ∣Γ∣O(log(n))

= ∣Q ∣ ⋅ n ⋅ f (n) ⋅O(n�), where � is a constant

=O(n�+1 log(n)),

which is polynomial in ∣x ∣. Recall the notation for NFAs introduced in Section 6.1. We now define
the NFA Ax = (Cx ,{0, 1},Δx ,cI ,{cF }) whereCx , cI and cF are defined as above and the transition
relation Δx is constructed in the following way:

● Let c,d ∈ Cx . Consider any possible run of M on input x . Suppose there is a valid transition,
during that run, that goes from c to d while outputting symbol γ ∈ Γ. Then, (c,γ ,d) is in Δx .

● Let c,d ∈ Cx . Consider any possible run of M on input x . Suppose there is a valid transition,
during that run, that goes from c to d while making no output. Then, (c, ε,d) is in Δx .

We already showed thatCx has polynomial size in ∣x ∣, and it clearly can be constructed explicitly
in polynomial time. The same is true for Δx . Given a pair of configurations c,d ∈ Cx , it can be
checked in polynomial time whether there is a possible transition from c to d during an execution
of M on input x (it suffices to check δ , the transition relation for M). And there are just ∣Cx ∣2 such
pairs of configurations that we need to check, so the whole construction of Ax can be done in
polynomial time. It only rests to show thatWR(x) = L(Ax ) and that Ax is unambiguous.

Let y ∈ WR(x). That means there is an accepting run of M on input x that yields y as output.
Equivalently, there is a sequence of configurations {ck}m

k=0 and a sequence {wk}m
k=0 of symbols

such that:

● c0 = cI .
● cm = cF .
● For each k ∈ {0, . . . ,m − 1}, the transition from ck to ck+1 is valid on input x given the

transition relation δ of M .
● For each k ∈ {0, . . . ,m− 1}, we have thatwk is equal to the symbol output when going from

configuration ck to ck+1 if a symbol was output. Otherwise, wk = ε .
● y =w0 ⋅w1 ⋅ . . . ⋅wm .

By definition, this means thaty is accepted byAx . That is,y ∈ L(Ax ) and so we can conclude that
WR(x) ⊆ L(Ax ). Since all the previous implications are clearly equivalences, we can also conclude
that L(Ax ) ⊆WR(x). Hence,WR(x) = L(Ax ) as needed. What the previous argument is saying is
that every accepting run of M that outputs a string y has a unique corresponding accepting run of
Ax on input y. That implies that Ax is unambiguous. Otherwise, there would be some y ∈ L(Ax )
such that two different runs of Ax accept y. But that would mean that there are two different runs
of M on input x that output y, which cannot occur, since M is a UL-transducer.

Finally, notice that Ax is actually not an NFA (under the definition given in Section 3), since we
explicitly allowed for the possibility of ε-transitions. But recall that the ε-transitions of any NFA
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can be removed in polynomial time without changing the accepted language, which is a standard
result from automata theory. This concludes the proof of the lemma.

A.2 Proof of Proposition 5.4

We focus on the case of MEM-NFA (it extends easily to MEM-UFA). To show this result, we need
to include a little more detail in our definition of MEM-NFA to consider some corner cases. First,
we have to consider the cases where the string in unary is empty. That is, the case where k = 0
in input (N , 0k). This just amounts to the following: If the starting state is a final state, then we
consider that the automaton does accept the empty string. So, if k = 0 and N is an NFA that has
all the properties stated in the definition of MEM-NFA, plus its starting state is the accepting state,
then ((N , 0k), ε) ∈ MEM-NFA. Also, we need to consider the cases where N does not have all the
properties stated in the definition of MEM-NFA. In those cases, we consider that (N , 0k), for any
k , does not have any solutions. Also—and this gets more technical—we consider that any input
that has an invalid encoding does not have any solutions either. We will not be completely precise
about which encoding should be used (although during the proof we will mention some important
points regarding that). But we will ask that the correctness of the encoding can be checked in
polynomial time (this is a mild requirement, as any reasonable encoding will allow for it). And it
is important to have in mind that for some technical concepts like self-reducibility, the encoding
of the problem is critical.

We use the notion of self-reducibility stated in Reference [30], adapted to our situation, since
Reference [30] uses a slightly different framework to define an enumeration problem. We say a
relation R ⊆ {0, 1}∗ × {0, 1}∗ is self reducible if there exist polynomial-time computable functions
ψ ∶ {0, 1}∗ × {0, 1}∗ → {0, 1}∗, σ ∶ {0, 1}∗ → N and � ∶ {0, 1}∗ → N such that for every x ,y,w ∈
{0, 1}∗:

(1) if (x ,y) ∈ R, then ∣y∣ = �(x),

(2) if �(x) = 0, then it can be tested in polynomial time in ∣x ∣, whether the empty string is a
solution for x .

(3) σ(x) ∈O(log ∣x ∣),

(4) �(x) > 0 if and only if σ(x) > 0,

(5) ∣ψ(x ,w)∣ ≤ ∣x ∣,
(6) �(ψ(x ,w)) = max{�(x) − ∣w ∣, 0}, and

(7) WR(x) = ⋃w∈{0,1}σ (x){w ⋅y ∣y ∈WR(ψ(x ,w))}.

The last condition intuitively says that all solutions for a given input can be constructed from
the solutions of (a polynomial number of) smaller instances. It can be equivalently stated in the
following way, which is how we will use it:

(8) if y = y1y2 . . .ym , then it holds that (x ,y) ∈ R if and only if (ψ(x ,y1 . . .yσ(x)),yσ(x)+1 . . .

ym) ∈ R.

As we already stated, the empty string is a solution only when the input is correctly encoded
and the initial and final states of the automaton coincide. So, condition (2) from above is satisfied
regardless of our definition of �. We will focus from now on on the other six conditions. Let N =
{N ∣N is an NFA with a unique final state and no ε-transitions}. Following the previous notation,
we define the functions �, σ , and ψ that characterize self-reducibility. The only interesting cases,
of course, are those where the automaton in the input is in N (and the input is correctly encoded).
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In all the others, the input is not correct, so the set of solutions is empty, and we do not need to
worry about self-reducibility. That said, we define

�((N , 0k)) =
⎧⎪⎪⎨⎪⎪⎩

k if the input is correctly encoded and N ∈ N
0 in any other case;

σ((N , 0k)) =
⎧⎪⎪⎨⎪⎪⎩

1 if the input is correctly encoded, k > 0 and N ∈ N
0 in any other case.

Both functions are clearly computable in polynomial time. The definition of � is just saying that
on input (N , 0k), any solution will have length k , which comes directly from the definition of
MEM-NFA. The definition of σ indicates that, for any input, as long as its solutions have positive
length, we can create another input that has the same solutions, but with the first character re-
moved. Notice that with these definitions, conditions (3) and (4) for self-reducibility are trivially
met. Condition (1) is also met, which is easy to see from the definitions of MEM-NFA and �. The
only task left is to defineψ and prove conditions (5), (6), and (8). We now proceed in that direction.

Let N = (Q,{0, 1},δ ,q0,{qF }) be an automaton in N . Notice we are making the assumption that
N has a unique final state, since it makes the idea clearer and the proof only has to be modified
slightly for the general case. We will mention some points about the exact encoding soon (which
is key for condition (5) to hold). But first, consider an input x = (N , 0k) that is incorrectly encoded
or where N is not in N . Then, it has no solutions and it is enough to set ψ(x ,w) = x for all
w ∈ {0, 1}∗ (which is clearly computable in polynomial time). In that case, notice that condition
(5) is trivially true. Also, notice that, since N is not in N (or is encoded in an incorrect format), we
have �(x) = σ(x) = 0, so for any w it holds that

�(ψ(x ,w)) = �(x) = 0 = max{−∣w ∣, 0} = max{�(x) − ∣w ∣, 0},

so condition (6) is also true. And given that �(x) = σ(x) = 0, condition (8) amounts to checking
that for every y ∈ {0, 1}∗, it holds that (x ,y) ∈ MEM-NFA if and only if (x ,y) ∈ MEM-NFA, which
is obviously true. Now, consider the case of an input x = (N , 0k) that is correctly encoded and
where N is in N . There are two main cases to consider.

First, the case where k = 0. This case is also simple, because we can set ψ(x ,w) = x for all
w ∈ {0, 1}∗ (which is computable in polynomial time and implies that condition (5) is trivially
true), and, since �(x) = σ(x) = 0, it is possible to prove as before that conditions (6) and (8) hold.
Second, we need to consider the case wherek > 0. Then, we haveσ(x) = 1, soψ(x ,w) only needs to
be defined whenw is a single symbol. Then, for bothw ∈ {0, 1}, we setψ((N , 0k),w) = (N ′, 0k−1),
where N ′ is defined as follows: Let Qw be the set

Qw = {q ∈ Q ∣ (q0,w,q) ∈ δ}.

Thus, Qw is the set of states that can be reached (with one transition) from the initial state by
reading the symbol w . Now, we define N ′ = (Q ′,{0, 1},δ ′,q′0,{q′F }) where q′0 is a new state not
contained in Q , and:

Q ′ = (Q ∖Qw ) ∪ {q′0},
δ ′ = {(q,a,p) ∣ (q,a,p) ∈ δ and q,p ∈ Q ′} ∪ {(q,a,q′0) ∣ (q,a,p) ∈ δ and q ∈ Q ′,p ∈ Qw } ∪

{(q′0,a,p) ∣ (q,a,p) ∈ δ and q ∈ Qw ,p ∈ Q ′} ∪ {(q′0,a,q′0) ∣ (q,a,p) ∈ δ and q,p ∈ Qw },

q′F =
⎧⎪⎪⎨⎪⎪⎩

qF if qF ∈ Q ′
q′0 if qF /∈ Q ′.
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Notice that this construction takes only polynomial time. What we are doing, basically, is the
following: Imagine Qw as a first “layer” of states reachable from q0 in one step. We want to merge
all of Qw in a single new initial state q′0, while ensuring that from q′0 we can reach the same states
as were previously reachable fromQw . The definitions are a little complicated, because we have to
account for some special cases. For example, we would maybe want to remove q0 (since now we
have a new initial state) but there is the possibility that q0 is part of the acceptance runs of some
strings, and not only as an initial state. The same goes for the states in Qw , and that is why we
have many different cases to consider in the definition of δ ′. We have to make sure not to lose any
accepting runs with the removal of Qw .

Now, we make some observations about N ′. To constructQ ′, we are removing at least one state
from Q , but we are adding at most one new state, q′0. This implies that ∣Q ′∣ ≤ ∣Q ∣ (notation here
indicates set cardinality). Similarly for the construction of δ ′. Notice that each transition we add to
construct δ ′ (besides the ones that come directly from δ ) corresponds to a transition that already
existed and that involved at least one state from Qw . So, all in all, we have not really added any
new transitions, just simulated the ones where states in Qw appeared. That means that ∣δ ′∣ ≤ ∣δ ∣.
So, as a whole, N ′ contains at most as many states and transitions as N , and maybe less. Does that
mean that (notation here indicates encoding sizes) ∣ψ((N , 0k),w)∣ ≤ ∣(N , 0k)∣? It will depend on
the type of encoding used, of course. So, we will consider that the NFA in the input is encoded
in the following (natural) way: First, a list of all states, followed by the list of all tuples in the
transition relation, and at the end the initial and final states. Also, we assume that all states have
an encoding of the same size (which is easy to achieve through padding). And the same goes for
all transitions. With that encoding, since N ′ has less (or equal) number of states and transitions
than N , it is clear that ∣N ′∣ ≤ ∣N ∣. Of course, it is also true that ∣0k−1∣ ≤ ∣0k ∣. We can then conclude
that ∣ψ((N , 0k),w)∣ = ∣(N ′, 0k−1)∣ ≤ ∣(N , 0k)∣, that is, condition (5) is satisfied. We also have by
definition of � that �((N , 0k)) = k and �((N ′, 0k−1)) = k − 1. Since ∣w ∣ = 1, condition (6) is also
true:

�(ψ((N , 0k),w)) = �((N ′, 0k−1)) = k − 1

= �((N , 0k)) − 1 = �((N , 0k)) − ∣w ∣ = max{�((N , 0k)) − ∣w ∣, 0}.

Finally, we turn to condition (8). Lety = y1y2 . . .ym ∈ {0, 1}∗. Sinceσ(x) = 1, condition (8) amounts
to checking that

((N , 0k),y) ∈ MEM-NFA if and only if ((N ′, 0k−1),y2 . . .ym) ∈ MEM-NFA,

where N ′ is constructed by considering w = y1, that is, N ′ = ψ((N , 0k ),y1). Notice that if m /= k ,
then both sides of the equivalence above are immediately false (and thus the equivalence is true), so
we need only consider the case wherem = k . We will now prove both directions of the equivalence.
First, suppose ((N , 0k),y) ∈ MEM-NFA. Then, by definition, we know there is an accepting run ρ
of N on input y such that

ρ ∶ p0
y1�→ p1

y2�→ p2
y3�→ ⋯ yk−1��→ pk−1

yk�→ pk ,

where p0 = q0, pk = qF and (pi−1,yi ,pi) ∈ δ for all i ∈ {1, . . . ,k}. Now, we will show that
((N ′, 0k−1),y2 . . .yk) ∈ MEM-NFA, that is, y2 . . .yk is accepted by N ′. To do that, we first show by
induction the following property: For all i ∈ {2, . . . ,k} there is a valid run of N ′ on input y2 . . .yi

(although the run is not necessarily accepting) that looks like this:

ρi ∶ s1
y2�→ s2

y3�→ s3
y4�→ ⋯ yi−1��→ si−1

yi�→ si ,
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where s1 = q′0 and for all j ∈ {2, . . . , i}, we have that (sj−1,yj , sj) ∈ δ ′ and

sj =
⎧⎪⎪⎨⎪⎪⎩

pj if pj /∈ Qy1

q′0 if pj ∈ Qy1 .

To prove this fact by induction, consider first the case of i = 2. By definition, we know that p1 ∈ Qy1

and (p1,y1,p2) ∈ δ . There are now two different possibilities. First, if p2 /∈ Qy1 , then by definition
of δ ′, we know that (q′0,y2,p2) ∈ δ ′. Second, if p2 ∈ Qy1 , then by definition of δ ′, we know that
(q′0,y2,q

′
0) ∈ δ ′. So, the property is true when i = 2.

Now, suppose the property holds for some i < k , and consider the case for i+1. By the induction
hypothesis, we know there is a valid run ρi such that

ρi ∶ s1
y2�→ s2

y3�→ s3
y4�→ ⋯ yi−1��→ si−1

yi�→ si ,

where s1 = q′0 and (sj−1,yj , sj) ∈ δ ′ for all j ∈ {2, . . . , i}. Now, by the induction hypothesis, there
are four possibilities (where each possibility is represented in one of the four sets that form the
definition of δ ′):

● si = pi and pi+1 /∈ Qy1 . In that case, if we set si+1 = pi+1, then, by definition, we know that
(si ,yi+1, si+1) ∈ δ ′.

● si = pi and pi+1 ∈ Qy1 . In that case, if we set si+1 = q′0, then, by definition, we know that
(si ,yi+1, si+1) ∈ δ ′.

● si = q′0 and pi+1 /∈ Qy1 . In that case, if we set si+1 = pi+1, then, by definition, we know that
(si ,yi+1, si+1) ∈ δ ′.

● si = q′0 and pi+1 ∈ Qy1 . In that case, if we set si+1 = q′0, then, by definition, we know that
(si ,yi+1, si+1) ∈ δ ′.

All that means that we can add one more transition to ρi to form a valid run ρi+1 given by

ρi+1 ∶ s1
y2�→ s2

y3�→ s3
y4�→ ⋯ yi�→ si

yi+1��→ si+1,

where s1 = q′0 and for all j ∈ {2, . . . , i + 1}, we have that (sj−1,yj , sj) ∈ δ ′ and

sj =
⎧⎪⎪⎨⎪⎪⎩

pj if pj /∈ Qy1

q′0 if pj ∈ Qy1 .

The property is thus proved. Now, consider a valid run of that type for i = k that looks like

ρ′ ∶ s1
y2�→ s2

y3�→ s3
y4�→ ⋯ yk−1��→ sk−1

yk�→ sk ,

where s1 = q′0 and for all j ∈ {2, . . . ,k}, we have that (sj−1,yj , sj) ∈ δ ′. Now, by the property just
proved, we know there are two possibilities. First, if pk /∈ Qy1 , then we know sk = pk = qF . Since
qF = pk /∈ Qy1 , we have that q′F = qF and thus ρ′ is an accepting run, which means that y2 . . .yk is
accepted by N ′. Second, if pk ∈ Qy1 , then we know sk = q′0. And, since qF = pk ∈ Qy1 , we have that
q′F = q′0 and thus ρ′ is again an accepting run, which means that y2 . . .yk is accepted by N ′. All
this proves that if ((N , 0k),y) ∈ MEM-NFA, then ((N ′, 0k−1),y2 . . .yk) ∈ MEM-NFA. The proof
for the other direction is analogous.

We conclude this section by pointing out that the same proof works for the case of MEM-UFA.
That is, the same definitions of �, σ , andψ work for that proof. The only difference is that we also
need to show that ψ produces a valid automaton for the relation, that is, an unambiguous NFA.
But that is not hard to show from the previous proof. Making similar use of the notation of valid
runs, it can be shown that ifψ((N , 0k ),w) had two different accepting runs for some word y, then
N would have two different accepting runs for w ○y, and so it would not be unambiguous.
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