
An Information-Theoretic Approach to Normal Forms for
Relational and XML Data

MARCELO ARENAS AND LEONID LIBKIN

University of Toronto, Toronto, Ontario, Canada

Abstract. Normalization as a way of producing good relational database designs is a well-understood
topic. However, the same problem of distinguishing well-designed databases from poorly designed
ones arises in other data models, in particular, XML. While, in the relational world, the criteria for
being well designed are usually very intuitive and clear to state, they become more obscure when one
moves to more complex data models.

Our goal is to provide a set of tools for testing when a condition on a database design, spec-
ified by a normal form, corresponds to a good design. We use techniques of information theory,
and define a measure of information content of elements in a database with respect to a set of
constraints. We first test this measure in the relational context, providing information-theoretic jus-
tification for familiar normal forms such as BCNF, 4NF, PJ/NF, 5NFR, DK/NF. We then show that
the same measure applies in the XML context, which gives us a characterization of a recently intro-
duced XML normal form called XNF. Finally, we look at information-theoretic criteria for justifying
normalization algorithms.

Categories and Subject Descriptors: H.1.1 [Models and Principles]: Systems and Information The-
ory—Information theory; value of information; H.2.1 [Database Management]: Logical Design—
Data models; normal forms

General Terms: Design, Management, Theory

Additional Key Words and Phrases: Information theory, design, normal forms, normalization
algorithms, relational databases, XML

1. Introduction

What constitutes a good database design? This question has been studied exten-
sively, with well-known solutions presented in practically all database texts. But
what is it that makes a database design good? This question is usually addressed
at a much less formal level. For instance, we know that BCNF is an example of
a good design, and we usually say that this is because BCNF eliminates update

Authors’ addresses: M. Arenas, Department of Computer Science, University of Toronto, 10 King’s
College Road, Toronto, Ont., Canada M5S 3G4, e-mail: marenas@cs.toronto.edu; L. Libkin, Depart-
ment of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Ont., Canada
M5S 3H5, e-mail: libkin@cs.toronto.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0004-5411/05/0300-0246 $5.00

Journal of the ACM, Vol. 52, No. 2, March 2005, pp. 246–283.



Normal Forms for Relational and XML Data 247

anomalies. Most of the time, this is sufficient, given the simplicity of the relational
model and our good intuition about it.

Several papers [Fagin 1981; Vincent 1999; Levene and Vincent 2000] attempted
a more formal evaluation of normal forms, by relating it to the elimination of
update anomalies. Another criterion is the existence of algorithms that produce
good designs: for example, we know that every database scheme can be losslessly
decomposed into one in BCNF, but some constraints may be lost along the way.

The previous work was specific for the relational model. As new data formats
such as XML are becoming critically important, classical database theory problems
have to be revisited in the new context [Vianu 2001; Suciu 2001]. However, there
is as yet no consensus on how to address the problem of well-designed data in the
XML setting [Embley and Mok 2001; Arenas and Libkin 2002].

It is problematic to evaluate XML normal forms based on update anomalies;
while some proposals for update languages exist [Tatarinov et al. 2001], no XML
update language has been standardized. Likewise, using the existence of good
decomposition algorithms as a criterion is problematic: for example, to formulate
losslessness, one needs to fix a small set of operations in some language, that would
play the same role for XML as relational algebra for relations. Stating dependency
preservation and testing normal forms is even more problematic: while in the rela-
tional world we have well-understood procedures for doing this, for XML, we do
not even know if implication of functional dependencies is decidable.

This suggests that one needs a different approach to the justification of normal
forms and good designs. Such an approach must be applicable to new data mod-
els before the issues of query/update/constraint languages for them are completely
understood and resolved. Therefore, such an approach must be based on some intrin-
sic characteristics of the data, as opposed to query/update languages for a particular
data model. In this article, we suggest such an approach based on information-
theoretic concepts, more specifically, on measuring the information content of the
data. Our goal here is twofold. First, we present information-theoretic measures
of “goodness” of a design, and test them in the relational world. To be applicable
in other contexts, we expect these measures to characterize familiar normal forms.
Second, we apply them in the XML context, and show that they justify a nor-
mal form XNF proposed in Arenas and Libkin [2002]. We also use our measures
to reason about normalization algorithms, by showing that standard decomposi-
tion algorithms never decrease the information content of any piece of data in a
database/document.

The rest of the article is organized as follows. In Section 2, we give the notations,
and review the basics of information theory (entropy and conditional entropy).
Section 3 is an “appetizer” for the main part of the article: we present a particularly
simple information-theoretic way of measuring the information content of a
database, and show how it characterizes BCNF and 4NF. The measure, however,
is too coarse, and, furthermore, cannot be used to reason about normalization
algorithms. In Section 4, we present our main information-theoretic measure
of the information content of a database. Unlike the measure studied before
[Lee 1987; Cavallo and Pittarelli 1987; Dalkilic and Robertson 2000; Levene
and Loizou 2003], our measure takes into account both database instance and
schema constraints, and defines the content with respect to a set of constraints. A
well-designed database is one in which the content of each datum is the maximum



248 M. ARENAS AND L. LIBKIN

possible. We use this measure to characterize BCNF and 4NF as the best way
to design schemas under FDs and MVDs, and to justify normal forms involving
JDs (PJ/NF, 5NFR) and other types of integrity constraints (DK/NF). In Section
5, we show that the main measure of Section 4 straightforwardly extends to the
XML setting, giving us a definition of well-designed XML specifications. We
prove that for constraints given by FDs, well-designed XML specifications are
precisely those in XNF. In Section 6, we use the measures of Sections 4 and 5
to reason about normalization algorithms, by showing that good normalization
algorithms do not decrease the information content of each datum at every step.
Finally, Section 7 presents the conclusions and some ideas for future work.

2. Notations

2.1. SCHEMAS AND INSTANCES. A database schema S is a finite set of relation
names, with a set of attributes, denoted by sort(R), associated with each R ∈ S.
We shall identify sort(R) of cardinality m with {1, . . . , m}. Throughout the paper,
we assume that the domain of each attribute is N+, the set of positive integers. An
instance I of schema S assigns to each symbol R ∈ S with m = |sort(R)| a relation
I (R) which is a finite set of m-tuples over N+. By adom(I ) we mean the active
domain of I , that is, the set of all elements of N+ that occur in I . The size of I (R)
is defined as ‖I (R)‖ = |sort(R)| · |I (R)|, and the size of I is ‖I‖ = ∑

R∈S ‖I (R)‖.
If I is an instance of S, the set of positions in I , denoted by Pos(I ), is the set
{(R, t, A) | R ∈ S, t ∈ I (R) and A ∈ sort(R)}. Note that |Pos(I )| = ‖I‖.

We shall deal with integrity constraints that are first-order sentences over S.
Given a set � of integrity constraints, �+ denotes the set of all constraints implied
by it, that is, constraints ϕ such that for every instance I , I |= � implies I |= ϕ.
We define inst(S, �) as the set of all database instances of S satisfying � and
instk(S, �) as {I ∈ inst(S, �) | adom(I ) ⊆ [1, k]}, where [1, k] = {1, . . . , k}.

2.2. CONSTRAINTS AND NORMAL FORMS. Here we briefly review the most
common normal forms BCNF, 4NF, PJ/NF, 5NFR and DK/NF. For more informa-
tion, the reader is referred to Beeri et al. [1978], Kanellakis [1990], Abiteboul et al.
[1995], and Biskup [1995]. The most widely used among these are BCNF and 4NF,
defined in terms of functional dependencies (FD) and multivalued dependencies
(MVD), respectively. We shall use the standard notations X → Y and X →→ Y
for FDs and MVDs. Given a set � of FDs over S, (S, �) is in BCNF if for every
nontrivial FD X → Y ∈ �+, X is a key (i.e., if X → Y is defined over R, then
X → sort(R) ∈ �+). If � is a set of FDs and MVDs over S, then 4NF is defined
analogously [Fagin 1977]: for every nontrivial MVD X →→ Y ∈ �+, X must be
a key. Recall that in the case of FDs nontrivial means Y �⊆ X , and in the case of
MVDs nontrivial means Y �⊆ X and X ∪ Y � sort(R).

The normal forms PJ/NF (projection-join normal form) [Fagin 1979] and 5NFR
[Vincent 1997] deal with FDs and join dependencies (JDs). Recall that a JD
over R ∈ S is an expression of the form �[X1, . . . , Xn], where X1 ∪ · · · ∪
Xn = sort(R). A database instance I of S satisfies �[X1, . . . , Xn], if I (R) =
πX1 (I (R)) � · · · � πXn (I(R)). Given a set � of FDs and JDs over S, (S, �) is in
PJ/NF if � |= �, where � is the set of key dependencies in �+ (that is, dependen-
cies of the form X → sort(R) for X ⊆ sort(R)). In other words, every instance of S



Normal Forms for Relational and XML Data 249

that satisfies all the keys in �+ must satisfy � as well. PJ/NF is an extension of both
4NF and BCNF. Since an MVD X →→ Y over R is a JD �[XY, X (sort(R) − Y )],
when only FDs and MVDs are present in �, the definition of PJ/NF coincides with
4NF. If no MVDs are present at all, it reduces to the definition of BCNF [Fagin
1979].

An alternative normal form for FDs and JDs was introduced in [Vincent 1997],
which is based on the original definitions of BCNF and 4NF. Given a set of FDs and
JDs� over S, a JDϕ = �[X1, . . . , Xn] in� is strong-reduced if for every i ∈ [1, n],
�[X1, . . . , Xi−1, Xi+1, . . . , Xn] is not in �+ or X1 ∪· · ·∪ Xi−1 ∪ Xi+1 ∪· · ·∪ Xn �
sort(R). (S, �) is in 5NFR (reduced 5th normal form) if for every nontrivial, strong-
reduced join dependency �[X1, . . . , Xn] ∈ �+ and every i ∈ [1, n], Xi is a key.
PJ/NF is strictly stronger than 5NFR.

The “ultimate” normal form for relational databases was introduced in Fagin
[1981]. This normal form was defined in terms of key dependencies and domain
dependencies. In our setting, where domain dependencies are not considered, it
says the following. Given any set of integrity constraints � over S, (S, �) is in
DK/NF (domain-key normal form) if � is implied by the set of key dependencies
in �+.

2.3. BASICS OF INFORMATION THEORY. The main concept of information
theory is that of entropy, which measures the amount of information provided by a
certain event. Assume that an event can have n different outcomes s1, . . . , sn , each
with probability pi , i ≤ n. How much information is gained by knowing that si
occurred? This is clearly a function of pi . Suppose g measures this information;
then it must be continuous and decreasing function with domain (0, 1] (the higher
the probability, the less information gained) and g(1) = 0 (no information is gained
if the outcome is known in advance). Furthermore, g is additive: if outcomes are
independent, the amount of information gained by knowing two successive
outcomes must be the sum of the two individuals amounts, that is, g(pi · p j ) =
g(pi ) + g(p j ). The only function satisfying these conditions is g(x) = −c ln x ,
where c is an arbitrary positive constant [Shannon 1948]. It is customary to use
base 2 logarithms: g(x) = − log x .

The entropy of a probability distribution represents the average amount of
information gained by knowing that a particular event occurred. Let A =
({s1, . . . , sn}, PA) be a probability space. If pi = PA(si ), then the entropy of A,
denoted by H(A), is defined to be

H (A) =
n∑

i=1

pi log
1

pi
= −

n∑
i=1

pi log pi .

Observe that some of the probabilities in the space A can be zero. For that case,
we adopt the convention that 0 log 1

0 = 0, since limx→0 x log 1
x = 0. It is known

that 0 ≤ H(A) ≤ log n, with H(A) = log n only for the uniform distribution
PA(si ) = 1/n [Cover and Thomas 1991].

We shall also use conditional entropy. Assume that we are given two probability
spaces A = ({s1, . . . , sn}, PA), B = ({s ′

1, . . . , s ′
m}, PB) and, furthermore, we

know probabilities P(s ′
j , si ) of all the events (s ′

j , si ) (i.e., PA and PB need
not be independent). Then, the conditional entropy of B given A, denoted
by H(B | A), gives the average amount of information provided by B if A is
known [Cover and Thomas 1991]. It is defined using conditional probabilities.



250 M. ARENAS AND L. LIBKIN

FIG. 1. Database instances.

P(s ′
j | si ) = P(s ′

j , si )/PA(si ) :

H (B | A) =
n∑

i=1

(
PA(si )

m∑
j=1

P(s ′
j | si ) log

1

P(s ′
j | si )

)
.

3. Information Theory and Normal Forms: An Appetizer

We will now see a particularly simple way to provide information-theoretic char-
acterization of normal forms. Although it is very easy to present, it has a number of
shortcomings, and a more elaborate measure will be presented in the next section.

Violating a normal form, for example, BCNF, implies having redundancies. For
example, if S = {R(A, B, C)} and � = {A → B}, then (S, �) is not in BCNF (A
is not a key) and some instances can contain redundant information: in Figure 1(a),
the value of the gray cell must be equal to the value below it. We do not need to
store this value as it can be inferred from the remaining values and the constraints.

We now use the concept of entropy to measure the information content of every
position in an instance of S. The basic idea is as follows: we measure how much
information we gain if we lose the value in a given position, and then someone
restores it (either to the original, or to some other value, not necessarily from the
active domain). For instance, if we lose the value in the gray cell in Figure 1(a),
we gain zero information if it gets restored, since we know from the rest of the
instance and the constraints that it equals 2. Formally, let I ∈ instk(S, �) (i.e.,
adom(I ) ⊆ [1, k]) and let p ∈ Pos(I ) be a position in I . For any value a, let Ip←a
be a database instance constructed from I by replacing the value in position p by
a. We define a probability space Ek

�(I, p) = ([1, k + 1], P) and use its entropy as
the measure of information in p (we define it on [1, k + 1] to guarantee that there
is at least one value outside of the active domain). The function P is given by:

P(a) =
{

0 Ip←a �|= �,

1/|{b | Ip←b |= �}| otherwise.

In other words, let m be the number of b ∈ [1, k + 1] such that Ip←b |= � (note
that m > 0 since I |= �). For each such b, P(b) = 1/m, and elsewhere P = 0.
For example, for the instance in Figure 1(a) if p is the position of the gray cell,
then the probability distribution is as follows: P(2) = 1 and P(a) = 0, for all other
a ∈ [1, k + 1]. Thus, the entropy of Ek

�(I, p) for position p is zero, as we expect.
More generally, we can show the following.

THEOREM 3.1. Let � be a set of FDs (or FDs and MVDs) over a schema S.
Then (S, �) is in BCNF (or 4NF, respectively) if and only if for every k > 1,
I ∈ instk(S, �) and p ∈ Pos(I ),

H
(
Ek

�(I, p)
)

> 0.



Normal Forms for Relational and XML Data 251

PROOF. We give the proof for the case of FDs; for FDs and MVDs the proof is
almost identical.

(⇒) Assume that (S, �) is in BCNF. Fix k > 0, I ∈ instk(S, �) and p ∈ Pos(I ).
Assume that a is the pth element in I . We show that Ip←k+1 |= �, from which
we conclude that H (Ek

�(I, p)) > 0, since Ek
�(I, p) is uniformly distributed, and

P(a), P(k + 1) �= 0.
Towards a contradiction, assume that Ip←k+1 �|= �. Then there exist R ∈ S,

t ′
1, t ′

2 ∈ Ip←k+1(R) and X → A ∈ �+ such that t ′
1[X ] = t ′

2[X ] and t ′
1[A] �= t ′

2[A].
Assume that t ′

1, t ′
2 were generated from tuples t1, t2 ∈ I (R) (hence, t1 �= t2),

respectively. Note that t ′
1[X ] = t1[X ] (if t1[X ] �= t ′

1[X ], then t ′
1[B] = k + 1 for

some B ∈ X ; given that k + 1 �∈ adom(I ), only one position in Ip←k+1 mentions
this value and, therefore, t ′

1[X ] �= t ′
2[X ], a contradiction). Similarly, t ′

2[X ] = t2[X ]
and, therefore, t1[X ] = t2[X ]. Given that (S, �) is in BCNF, X must be a key in R.
Hence, t1 = t2, since I |= �, which is a contradiction.

(⇐) Assume that (S, �) is not in BCNF. We show that there exists k > 0,
I ∈ instk(S, �) and p ∈ Pos(I ) such that H (Ek

�(I, p)) = 0. Since (S, �) is not in
BCNF, there exist R ∈ S and X → A ∈ �+ such that A �∈ X , X ∪ {A} � sort(R)
and X is not a key in R. Thus, there exists a database instance I of S such that
I |= � and I �|= X → sort(R). We can assume that I (R) contains only two tuples,
say t1, t2. Let k be the greatest value in I , i = t1[A] and p be the position of t1[A] in
I . It is easy to see that I ∈ instk(S, �) and P( j) = 0, for every j �= i in [1, k + 1],
since t1[A] must be equal to t2[A] = i . Therefore, H (Ek

�(I, p)) = 0.

Thus, a schema is in BCNF or 4NF iff for every instance, each position carries
non-zero amount of information. This is a clean characterization of BCNF and
4NF, but the measure H (Ek

�(I, p)) is not accurate enough for a number of reasons.
For example, let �1 = {A → B} and �2 = {A →→ B}. The instance I in
Figure 1(a) satisfies �1 and �2. Let p be the position of the gray cell in I . Then
H (Ek

�1
(I, p)) = H (Ek

�2
(I, p)) = 0. But intuitively, the information content of p

must be higher under �2 than �1, since �1 says that the value in p must be equal
to the value below it, and �2 says that this should only happen if the values of the
C-attribute are distinct.

Next, consider I1 and I2 shown in Figures 1(a) and 1(c), respectively. Let � =
{A → B}, and let p1 and p2 denote the positions of the gray cells in I1 and I2.
Then H (Ek

�(I1, p1)) = H (Ek
�(I2, p2)) = 0. But again, we would like them to have

different values, as the amount of redundancy is higher in I2 than in I1. Finally, let
S = R(A, B), � = {∅ →→ A}, and I = {1, 2} × {3, 4} ∈ inst(S, �). For each
position, the entropy would be zero. However, consider both positions in attribute
A corresponding to the value 1. If they both disappear, then we know that no matter
how they are restored, the values must be the same. The measure presented in this
section cannot possibly talk about interdependencies of this kind.

In the next section, we will present a measure that overcomes these problems.

4. A General Definition of Well-Designed Data

Let S be a schema, � a set of constraints, and I ∈ inst(S, �) an instance with
‖I‖ = n. Recall that Pos(I ) is the set of positions in I , that is, {(R, t, A) | R ∈
S, t ∈ I (R) and A ∈ sort(R)}. Our goal is to define a function INFI (p | �), the
information content of a position p ∈ Pos(I ) with respect to the set of constraints �.



252 M. ARENAS AND L. LIBKIN

FIG. 2. Defining INFk
I (p | �).

For a general definition of well-designed data, we want to say that this measure has
the maximum possible value. This is a bit problematic for the case of an infinite
domain (N+), since we only know what the maximum value of entropy is for a
discrete distribution over k elements: log k. To overcome this, we define, for each
k > 0, a function INFk

I (p | �) that would only apply to instances whose active
domain is contained in [1, k], and then consider the ratio INFk

I (p | �)/ log k. This
ratio tells us how close the given position p is to having the maximum possible
information content, for databases with active domain in [1, k]. As our final measure
INFI (p | �) we then take the limit of this sequence as k goes to infinity.

Informally, INFk
I (p | �) is defined as follows. Let X ⊆ Pos(I ) − {p}. Suppose

the values in those positions X are lost, and then someone restores them from
the set [1, k]; we measure how much information about the value in p this gives
us. This measure is defined as the entropy of a suitably chosen distribution. Then
INFk

I (p | �) is the average such entropy over all sets X ⊆ Pos(I ) − {p}. Note that
this is much more involved than the definition of the previous section, as it takes
into account all possible interactions between different positions in an instance and
the constraints.

We now present this measure formally. An enumeration of I with ‖I‖ = n,
n > 0, is a bijection f I between Pos(I ) and [1, n]. From now on, we assume
that every instance has an associated enumeration.1 We say that the position of
(R, t, A) ∈ Pos(I ) is p in I if the enumeration of I assigns p to (R, t, A), and if R is
clear from the context, we say that the position of t[A] is p. We normally associate
positions with their rank in the enumeration f I .

Fix a position p ∈ Pos(I ). As the first step, we need to describe all possible
ways of removing values in a set of positions X , different from p. To do this, we
shall be placing variables from a set {vi | i ≥ 1} in positions where values are to
be removed, where vi can occur only in position i . Furthermore, we assume that
each set of positions is equally likely to be removed. To model this, let �(I, p)
be the set of all 2n−1 vectors (a1, . . . , ap−1, ap+1, . . . , an) such that for every
i ∈ [1, n] − {p}, ai is either vi or the value in the i th position of I . A probability
space A(I, p) = (�(I, p), P) is defined by taking P to be the uniform distribution.

Example 4.1. Let I be the database instance shown in Figure 1(a). An enumer-
ation of the positions in I is shown in Figure 2(a). Assume that p is the position
of the gray cell shown in Figure 1(a), that is, p = 5. Then ā1 = (4, 2, 1, 3, 1) and
ā2 = (v1, 2, 1, 3, v6) are among the 32 vectors in �(I, p). For each of these vectors,
we define P as 1

32 .

Our measure INFk
I (p | �), for I ∈ instk(S, �), will be defined as the conditional

entropy of a distribution on [1, k], given the above distribution on �(I, p). For that,

1 The choice of a particular enumeration will not affect the measures we define.



Normal Forms for Relational and XML Data 253

we define conditional probabilities P(a | ā) that characterize how likely a is to
occur in position p, if some values are removed from I according to the tuple ā
from �(I, p).2 We need a couple of technical definitions first. If ā = (ai )i �=p is a
vector in �(I, p) and a > 0, then I(a,ā) is a table obtained from I by putting a in
position p, and ai in position i, i �= p. If k > 0, then a substitution σ : ā → [1, k]
assigns a value from [1, k] to each ai which is a variable, and leaves other ai s intact.
We can extend σ to I(a,ā) and thus talk about σ (I(a,ā)).

Example 4.2 (Example 4.1 continued). Let k = 8 and σ1 be an arbitrary sub-
stitution from ā1 to [1, 8]. Note that σ1 is the identity substitution, since ā1 contains
no variables. Figure 2(b) shows I(7,ā1), which is equal to σ1(I(7,ā1)). Let σ2 be a
substitution from ā2 to [1, 8] defined as follows: σ (v1) = 4 and σ (v6) = 8.
Figure 2(c) shows I(7,ā2) and Figure 2(d) shows the database instance generated by
applying σ2 to I(7,ā2).

If � is a set of constraints over S, then SATk
�(I(a,ā)) is defined as the set of all

substitutions σ : ā → [1, k] such that σ (I(a,ā)) |= � and ‖σ (I(a,ā))‖ = ‖I‖ (the
latter ensures that no two tuples collapse as the result of applying σ ). With this, we
define P(a | ā) as:

P(a | ā) =
∣∣SATk

�

(
I(a,ā)

)∣∣∑
b∈[1,k]

∣∣SATk
�

(
I(b,ā)

)∣∣ .
We remark that this corresponds to conditional probabilities with respect to a
distribution P ′ on [1, k] × �(I, p) defined by P′(a, ā) = P(a | ā) · (1/2n−1), and
that P ′ is indeed a probability distribution for every I ∈ instk(S, �) and p ∈ Pos(I ).

Example 4.3 (Example 4.2 continued). Assume that � = {A → B}. Given
that the only substitution σ from ā1 to [1, 8] is the identity, for every a ∈ [1, 8],
a �= 2, σ (I(a,ā1)) �|= �, and, therefore, SAT8

�(I(a,ā1)) = ∅. Thus, P(2 | ā1) = 1
since σ (I(2,ā1)) |= �. This value reflects the intuition that if the value in the gray
cell of the instance shown in Figure 1(a) is removed, then it can be inferred from
the remaining values and the FD A → B.

There are 64 substitutions with domain ā2 and range [1, 8]. A substitution σ
is in SAT8

�(I(7,ā2)) if and only if σ (v6) �= 1, and, therefore, |SAT8
�(I(7,ā2))| = 56.

The same can be proved for every a ∈ [1, 8], a �= 2. On the other hand, the only
substitution that is not in SAT8

�(I(2,ā2)) is σ (v1) = 3 and σ (v6) = 1, since σ (I(2,ā2))
contains only one tuple. Thus, |SAT8

�(I(2,ā2))| = 63 and, therefore,

P(a | ā2) =
{

63
455 if a = 2,

56
455 otherwise.

We define a probability space Bk
�(I, p) = ([1, k], P) where

P(a) = 1

2n−1

∑
ā∈�(I,p)

P(a | ā) ,

2 We use the same letter P here, but this will never lead to confusion. Furthermore, all probability
distributions depend on I , p, k and �, but we omit them as parameters of P since they will always
be clear from the context.



254 M. ARENAS AND L. LIBKIN

and, again, omit I, p, k and � as parameters, and overload the letter P since this
will never lead to confusion.

The measure of the amount of information in position p, INFk
I (p | �), is the

conditional entropy of Bk
�(I, p) given A(I, p), that is, the average information

provided by p, given all possible ways of removing values in the instance I :

INFk
I (p | �)

def= H
(
Bk

�(I, p) | A(I, p)
)

=
∑

ā∈�(I,p)

(
P(ā)

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)

)
.

Note that for ā ∈ �(I, p),
∑

a∈[1,k] P(a | ā) log 1
P(a|ā) measures the amount of

information in position p, given a set of constraints � and some missing values in
I , represented by the variables in ā. Thus, INFk

I (p | �) is the average such amount
over all ā ∈ �(I, p). Furthermore, from the definition of conditional entropy,
0 ≤ INFk

I (p | �) ≤ log k, and the measure INFk
I (p | �) depends on the domain

size k. We now consider the ratio of INFk
I (p | �) and the maximum entropy log k.

It turns out that this sequence converges:

LEMMA 4.4. If � is a set of first-order constraints over a schema S, then for
every I ∈ inst(S, �) and p ∈ Pos(I ), limk→∞ INFk

I (p | �)/ log k exists.

The proof of this lemma is given in Appendix A.1. In fact, Lemma 4.4 shows
that such a limit exists for any set of generic constraints, that is, constraints that do
not depend on the domain. This finally gives us the definition of INFI (p | �).

Definition 4.5. For I ∈ inst(S, �) and p ∈ Pos(I ), the measure INFI (p | �) is
defined as

lim
k→∞

INFk
I (p | �)

log k
.

INFI (p | �) measures how much information is contained in position p, and
0 ≤ INFI (p | �) ≤ 1. A well-designed schema should not have an instance
with a position that has less than maximum information:

Definition 4.6. A database specification (S, �) is well designed if for every
I ∈ inst(S, �) and every p ∈ Pos(I ), INFI (p | �) = 1.

Example 4.7. Let S be a database schema {R(A, B, C)}. Let �1 = {A → BC}.
Figure 1(b) shows an instance I of S satisfying �1 and Figure 3(a) shows the value
of INFk

I (p | �1) for k = 5, 6, 7, where p is the position of the gray cell. As expected,
the value of INFk

I (p | �1) is maximal, since (S, �1) is in BCNF. Indeed, given that
we have to preserve the number of tuples, the A-values must be distinct, hence all
possibilities for selecting B and C are open.

The next two examples show that the measure INFk
I (p | �) can distinguish cases

that were indistinguishable with the measure of Section 3. Let �2 = {A → B} and
�′

2 = {A →→ B}. Figure 1(a) shows an instance I of S satisfying both �2 and �′
2.

Figure 3(b) shows the value of INFk
I (p | �2) and INFk

I (p | �′
2) for k = 5, 6, 7. As

expected, the values are smaller for �2. Finally, let �3 = {A → B}. Figures 1(a)
and 1(c) show instances I1, I2 of S satisfying �3. We expect the information content
of the gray cell to be smaller in I2 than in I1, but the measure used in Section 3



Normal Forms for Relational and XML Data 255

FIG. 3. Value of conditional entropy.

could not distinguish them. Figure 3(c) shows the values of INFk
I1

(p | �3) and
INFk

I2
(p | �3) for k = 5, 6, 7. As expected, the values are smaller for I2. In fact,

INFI1 (p | �3) = 0.875 and INFI2 (p | �3) = 0.78125.

4.1. BASIC PROPERTIES. It is clear from the definitions that INFI (p | �) does
not depend on a particular enumeration of positions. Two other basic properties
that we can expect from the measure of information content are as follows: first,
it should not depend on a particular representation of constraints, and second, a
schema without constraints must be well designed (as there is nothing to tell us that
it is not). Both are indeed true.

PROPOSITION 4.8

(1) Let �1 and �2 be two sets of constraints over a schema S. If they are equivalent
(i.e., �+

1 = �+
2 ), then, for any instance I satisfying �1 and any p ∈ Pos(I ),

INFI (p | �1) = INFI (p | �2).
(2) If � = ∅, then (S, �) is well designed.

PROOF

(1) Follows from the fact that for every instance I of S, I |= �1 iff I |= �2.
Hence, for every a ∈ [1, k] and ā ∈ �(I, p), SATk

�1
(I(a,ā)) = SATk

�2
(I(a,ā))

and, therefore, H (Bk
�1

(I, p) | A(I, p)) = H (Bk
�2

(I, p) | A(I, p)).
(2) Follows from part (2) of Proposition 4.9, to be proved below. Since for every

I ∈ inst(S, �), p ∈ Pos(I ) and a ∈ N+ − adom(I ), we have Ip←a |= �, this
implies that (S, �) is well designed.

In the following proposition, we show a very useful structural criterion for
INFI (p | �) = 1, namely that a schema (S, �) is well designed if and only if
one position of an arbitrary I ∈ inst(S, �) can always be assigned a fresh value.
Also in this proposition, we use this criterion to show that INFk

I (p | �) cannot
exhibit sub-logarithmic growth, that is, if limk→∞ INFk

I (p | �)/ log k = 1, then
limk→∞[log k − INFk

I (p | �)] = 0.

PROPOSITION 4.9. Let S be a schema and � a set of constraints over S. Then
the following are equivalent.

(1) (S, �) is well designed.
(2) For every I ∈ inst(S, �), p ∈ Pos(I ) and a ∈ N+ − adom(I ), Ip←a |= �.

(3) For every I ∈ inst(S, �) and p ∈ Pos(I ), limk→∞[log k − INFk
I (p | �)] = 0.

The following lemma will be used in the proof of this proposition and in several
other proofs.



256 M. ARENAS AND L. LIBKIN

LEMMA 4.10. Fix n, m > 0, an n-element set A and a probability space A
on A with the uniform distribution PA. Assume that for each k > 0, we have a
probability space on [1, k] called Bk and a joint distribution PBk ,A on [1, k] × A
such that for some a0 ∈ A, and for all k > 0, the conditional probability
P(i | a0) = PBk ,A(i, a0)/PA(a0) = 0, for at least k − m elements of [1, k]. Then,
for every k > m2:

H (Bk | A)

log k
< 1 − 1

2n
.

In particular, if limk→∞ H (Bk | A)/ log k exists, then limk→∞ H (Bk | A)/
log k < 1.

PROOF. First, assume that m > 1. Let k > m2 and M = {i ∈ [1, k] | P(i |
a0) > 0}. Observe that |M | ≤ m. Then H (Bk |A)

log k is equal to

1

log k

[∑
a∈A

1

n

∑
i∈[1,k]

P(i | a) log
1

P(i | a)

]

= 1

n log k

[( ∑
a∈A−{a0}

∑
i∈[1,k]

P(i | a) log
1

P(i | a)

)

+
( ∑

i∈[1,k]

P(i | a0) log
1

P(i | a0)

)]

= 1

n log k

[( ∑
a∈A−{a0}

∑
i∈[1,k]

P(i | a) log
1

P(i | a)

)

+
(∑

i∈M

P(i | a0) log
1

P(i | a0)

)]

≤ 1

n log k

[( ∑
a∈A−{a0}

log k

)
+ log m

]
(1)

= 1

n log k
[(n − 1) log k + log m]

= 1 − 1

n
+ log m

n log k
< 1 − 1

n
+ log m

n log m2

= 1 − 1

n
+ 1

2n
= 1 − 1

2n
.

Now, assume that m = 1. In this case, log m in Eq (1) is equal to 0 and, therefore, the
previous sequence of formulas show that H (Bk | A)/ log k ≤ 1− 1

n < 1− 1
2n .

PROOF OF PROPOSITION 4.9. We will prove the chain of implications (3) ⇒ (1)
⇒ (2) ⇒ (3).

The implication (3) ⇒ (1) is straightforward. Next we show (1) ⇒ (2). Towards
a contradiction, assume that there exists I ∈ inst(S, �), p ∈ Pos(I ) and a ∈
N+ −adom(I ) such that Ip←a �|= �. Let k > 0 be such that adom(I )∪{a} ⊆ [1, k].
By Claim A.1 (see Appendix), for every b ∈ [1, k] − adom(I ), Ip←b �|= �. Thus,



Normal Forms for Relational and XML Data 257

for every a ∈ [1, k] − adom(I ), P(a | ā0) = 0, where ā0 is the tuple in �(I, p)
containing no variables. Therefore, applying Lemma 4.10 with n = 2‖I‖−1 and
m = |adom(I )|, we conclude that for k > m2:

INFk
I (p | �)

log k
= H

(
Bk

�(I, p) | A(I, p)
)

log k
< 1 − 1

2 · 2‖I‖−1
.

Since INFI (p | �) = limk→∞ INFk
I (p | �)/ log k exists by Lemma 4.4, we conclude

that INFI (p | �) < 1 and thus (S, �) is not well designed, a contradiction.
Next, we show (2) ⇒ (3). Let I ∈ inst(I, �) and p ∈ Pos(I ). Let ‖I‖ = n

and let k > n be such that I ∈ instk(S, �). First, we prove that for every a ∈
[1, k] − adom(I ) and ā ∈ �(I, p),∣∣SATk

�

(
I(a,ā)

)∣∣ ≥ (k − n)|var(ā)|, (2)

where var(ā) is the set of variables in ā. We do it by induction on |var(ā)|.3
Assume that |var(ā)| = 0. Then given that Ip←a |= �, we conclude that
|SATk

�(I(a,ā))| = 1. Now assume that (2) is true for every tuple in �(I, p)
containing at most m variables, and let |var(ā)| = m + 1. Suppose that
ā = (a1, . . . , ap−1, ap+1, . . . , an) and ai = vi , for some i ∈ [1, p −1]∪ [p +1, n].
Let I ′ = Ip←a . By the assumption, I ′ |= �, and hence for every b ∈ [1, k] −
adom(I ′) we have I ′

i←b |= �. Thus, given that |[1, k] − adom(I ′)| ≥ k − n and
for every b1, b2 ∈ [1, k] − adom(I ′), |SATk

�(I ′
(a,b̄1))| = |SATk

�(I ′
(a,b̄2))|, where b̄ j

( j = 1, 2) is a tuple constructed from ā by replacing vi by b j , we conclude that if b̄
is a tuple constructed from ā by replacing vi by an arbitrary b ∈ [1, k] − adom(I ′),
then |SATk

�(I(a,ā))| ≥ (k − n) · |SATk
�(I ′

(a,b̄))|, since |adom(I ′)| ≤ n. By the induc-

tion hypothesis, |SATk
�(I ′

(a,b̄))| ≥ (k − n)|var(b̄)| = (k − n)|var(ā)|−1 and, therefore,

|SATk
�(I(a,ā))| ≥ (k − n)|var(ā)|, proving (2).

Now we show that limk→∞[log k − INFk
I (p | �)] = 0. For every k ≥ 1 such

that adom(I ) ⊆ [1, k], log k ≥ INFk
I (p | �) and, therefore, limk→∞[log k − INFk

I
(p | �)] ≥ 0. Hence, to prove the theorem, we will show that

lim
k→∞

[
log k − INFk

I (p | �)
] ≤ 0. (3)

Let k ≥ 1 be such that adom(I ) ⊆ [1, k]. Assume that k > n. Let a ∈ [1, k] −
adom(I ) and ā ∈ �(I, p). Since

∑
b∈[1,k] |SATk

�(I(b,ā))| ≤ k|var(ā)|+1, using (2), we
get

P(a | ā) ≥ (k − n)|var(ā)|

k|var(ā)|+1
= 1

k

(
1 − n

k

)|var(ā)|
. (4)

By Claim A.1 (see Appendix), for every a, b ∈ [1, k] − adom(I ) and every ā ∈
�(I, p), P(a | ā) = P(b | ā). Thus, for every a ∈ [1, k] − adom(I ) and every
ā ∈ �(I, p),

P(a | ā) ≤ 1/(k − |adom(I )|) ≤ 1/(k − n). (5)

3 This induction relies on the following simple idea: If a �∈ adom(I ), then Ip←a |= � and, therefore,
one can replace values in positions of ā one by one, provided that each position gets a fresh value.



258 M. ARENAS AND L. LIBKIN

In order to prove (3), we need to establish a lower bound for INFk
I (p | �). We do

this by using (4) and (5) as follows: Given the term P(a | ā) log 1
P(a|ā) , we use

(4) and (5) to replace P(a | ā) and log 1
P(a|ā) by smaller terms, respectively. More

precisely,

INFk
I (p | �) =

∑
ā∈�(I,p)

(
P(ā)

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)

)

≥ 1

2n−1

∑
a∈[1,k]−adom(I )

∑
ā∈�(I,p)

1

k

(
1 − n

k

)|var(ā)|
log(k − n)

= 1

2n−1
log(k − n)

1

k

∑
a∈[1,k]−adom(I )

n−1∑
i=0

(
n − 1

i

) (
1 − n

k

)i

= 1

2n−1
log(k − n)

1

k

∑
a∈[1,k]−adom(I )

((
1 − n

k

)
+ 1

)n−1

≥ 1

2n−1
log(k − n)

1

k
(k − n)

(
2 − n

k

)n−1

≥ 1

2n−1
log(k − n)

1

k
(k − n)

(
2 − 2n

k

)n−1

= 1

2n−1
log(k − n)

(
1 − n

k

)
2n−1

(
1 − n

k

)n−1

= log(k − n)
(

1 − n

k

)n
.

Therefore, log k − INFk
I (p | �) ≤ log k − log(k − n) (1 − n

k )n . Since
limk→∞[log k − log(k − n) (1 − n

k )n] = 0 we conclude that (3) holds. This
completes the proof of Proposition 4.9.

A natural question at this point is whether the problem of checking if a relational
schema is well designed is decidable. It is not surprising that for arbitrary first-order
constraints, the problem is undecidable:

PROPOSITION 4.11. The problem of verifying whether a relational schema con-
taining first-order constraints is well designed is undecidable.

PROOF. It is known that the problem of verifying whether a first-order sentence
ϕ of the form ∃x̄∀ȳ ψ(x̄, ȳ), where ψ(x̄, ȳ) is an arbitrary first-order formula, is
finitely satisfiable is undecidable. Denote this decision problem by P∃∀.

We will reduce P∃∀ to the complement of our problem. Let ϕ be a formula of the
form shown above. Assume that ϕ is defined over a relational schema {R1, . . . , Rn}
and |x̄ | = m > 0, and let S be a relational schema {U1, U2, R1, . . . , Rn}, where
U1, U2 are m-ary predicates. Furthermore, define a set of constraints � over S as
follows:

� = {∀x̄ (U1(x̄) ↔ U2(x̄)), ∀x̄ (U1(x̄) → ∀ȳ ψ(x̄, ȳ))}. (6)

It suffices to show that ϕ ∈ P∃∀ if and only if (S, �) is not well designed.
(⇒) Assume that ϕ ∈ P∃∀ and let I0 be an instance of {R1, . . . , Rn} satisfying

ϕ. Define I ∈ inst(S, �) as follows: I (Ri ) = I0(Ri ), for every i ∈ [1, n], and



Normal Forms for Relational and XML Data 259

I (U1) = I (U2) = {ā}, where ā is an m-tuple in I0 such that I0 |= ∀ȳ ψ(ā, ȳ).
Let a ∈ N+ − adom(I ) and p be an arbitrary position in I (U1). Then, Ip←a �|=
∀x̄ (U1(x̄) ↔ U2(x̄)) and, therefore, (S, �) is not well designed by Proposition 4.9.

(⇐) Assume that ϕ �∈ P∃∀. Then for every nonempty instance I ∈ inst(S, �),
I(U1) = I(U2) = ∅ and I(Ri ) �= ∅, for some i ∈ [1, n]. But for every position p of a
value in I(R j ) ( j ∈ [1, n]) and every a ∈ N+−adom(I ), Ip←a |= � since I(U1) and
I(U2) are empty. We conclude that (S, �) is well designed by Proposition 4.9.

However, integrity constraints used in database schema design are most com-
monly universal, that is, of the form ∀x̄ ψ(x̄), where ψ(x̄) is a quantifier-free
formula. FDs, MVDs and JDs are universal constraints as well as more elaborated
dependencies such as equality generating dependencies and full tuple generating
dependencies [Abiteboul et al. 1995]. For universal constraints, the problem of
testing if a relational schema is well designed is decidable. In fact,

PROPOSITION 4.12. The problem of deciding whether a schema containing only
universal constraints is well designed is co-NEXPTIME-complete. Furthermore, if
for a fixed m, each relation in S has at most m attributes, then the problem is
�

p
2 -complete.

To prove this proposition, first we have to prove a lemma. In this lemma we use the
following terminology. A first-order constraint ϕ is a �n-sentence if ϕ is of the form
Q1x1 Q2x2 · · · Qm xmψ , where (1) Qi ∈ {∀, ∃} (i ∈ [1, m]); (2) ψ is a quantifier-free
formula; (3) the string of quantifiers Q1 Q2 · · · Qm consists of n consecutive blocks,
all quantifiers in the same block are the same and no adjacent blocks have the
same quantifiers; and (4) the first block contains existential quantifiers. Moreover,
�n-sentences are defined analogously, but requiring that the first block contains
universal quantifiers.

LEMMA 4.13. Let S be a relational schema and � be a set of �n ∪�n-sentences
over S, n ≥ 1. Then there exists a relational schema S′ ⊇ S and a �n+1-sentence ϕ
over S′ such that (S, �) is well designed iff ϕ ∈ �+. Moreover, ϕ can be constructed
in time O(‖(S, �)‖2).

PROOF. Assume that S = {Rm1
1 , . . . , Rmn

n }, where mi is the arity of Ri (i ∈
[1, n]). Define a relational schema S′ as S ∪ {Rmi

i, j | i ∈ [1, n] and j ∈ [1, mi ]} ∪
{U 1}. To define ϕ, first we define sentence ψ as the conjunction of the following
formulas.

—
∨n

i=1 ∃x1 · · · ∃xmi Ri (x1, . . . , xmi ). For some i ∈ [1, n], relation Ri is not empty.
—∃x (U (x) ∧ ∀y (U (y) → x = y)). U contains exactly one element.
—For every i ∈ [1, n],

∀x∀y1 · · · ∀ymi −1 (U (x) →
mi∧
j=1

¬Ri (y1, . . . , y j−1, x, y j , . . . , ymi −1)).

That is, the element contained in U is not contained in the active domain of
relation Ri , for every i ∈ [1, n].

—For every i ∈ [1, n],

(∀x1 · · · ∀xmi ¬Ri (x1, . . . , xmi )) →
(

mi∧
j=1

∀y1 · · · ∀ymi ¬Ri, j (y1, . . . , ymi )

)
.



260 M. ARENAS AND L. LIBKIN

If Ri is empty, then Ri, j is empty, for every j ∈ [1, mi ].
—For every i ∈ [1, n] and every j ∈ [1, mi ],

∃u1 · · · ∃umi Ri (u1, . . . , umi ) →
∃x∃x ′∃y1 · · · ∃y j−1∃y j+1 · · · ∃ymi

(Ri (y1, . . . , y j−1, x, y j+1, . . . , ymi )

∧ ¬Ri, j (y1, . . . , y j−1, x, y j+1, . . . , ymi )

∧ Ri, j (y1, . . . , y j−1, x ′, y j+1, . . . , ymi ) ∧ U (x ′)

∧ ∀z1 · · · ∀zmi ((z j �= x ∧ z j �= x ′) ∨
mi∨

k=1,k �= j

zk �= yk →

(Ri (z1, . . . , zmi ) ↔ Ri, j (z1, . . . , zmi )))).

If Ri is not empty, then there exists a tuple t in Ri and a tuple t ′ in Ri, j such that
t ′ is not in Ri , t is not in Ri, j and t , t ′ contain exactly the same values, except
for the element in the j-th column where t ′ contains a value that is in relation U .
Furthermore, every other tuple is in Ri if and only if is in Ri, j .

Given i ∈ [1, n] and j ∈ [1, mi ], we denote by �[Ri/Ri, j ] the set of first-order
constraints generated from � by replacing every occurrence of Ri by Ri, j . We
define sentence ϕ as follows:

ψ →
n∧

i=1

mi∧
j=1

�[Ri/Ri, j ]. (7)

Notice that ψ is a �2-sentence and, therefore, ϕ is a �n+1-sentence, since n ≥ 1.
To finish the proof, we have to show that (S, �) is well designed if and only if
ϕ ∈ �+.

(⇐) Assume that (S, �) is not well designed. Then, by Proposition 4.9, there
exists I ∈ inst(S, �), p ∈ Pos(I ) and a ∈ N+ − adom(I ) such that Ip←a �|= �.
Assume that p is the position of some element in the j0-th column of Ri0 (i0 ∈ [1, n],
j0 ∈ [1, mi0 ]). Then, we define an instance I ′ of S′ as follows. For every i ∈ [1, n],
I′(Ri ) = I (Ri ), I (U ) = {a} and I ′(Ri0, j0 ) = Ip←a(Ri0 ). Furthermore, for every
i ∈ [1, n] and j ∈ [1, mi ], with i �= i0 or j �= j0, if I (Ri ) is empty, then I ′(Ri, j )
is also empty, else I ′(Ri, j ) is constructed by replacing an arbitrary element in the
j th column of I (Ri ) by a. Then, I ′ |= �, since I |= � and I ′(Ri ) = I (Ri ) for
every i ∈ [1, n]. I ′ |= ψ since (1) I ′(Ri0 ) is not empty (I (Ri0 ) is not empty); (2)
I ′(U ) = {a} and a �∈ adom(I ); (3) for every i ∈ [1, n], if I ′(Ri ) is empty, then
I′(Ri, j ) is empty, for every j ∈ [1, mi ]; and (4) for every i ∈ [1, n], j ∈ [1, mi ], if
I′(Ri ) is not empty, then I′(Ri, j ) differs from I ′(Ri ) by exactly one value, which is
in U . Finally, I ′ �|= �[Ri0/Ri0, j0 ], since I ′(Ri0, j0 ) = Ip←a(Ri0 ) and Ip←a �|= �. We
conclude that I ′ �|= ϕ and, therefore, ϕ �∈ �+.

(⇒) Assume that ϕ �∈ �+. Then, there exists a database instance I ′ of S′,
i0 ∈ [1, n] and j0 ∈ [1, mi0 ] such that I ′ |= �, I ′ |= ψ and I ′ �|= �[Ri0/Ri0, j0 ].
We note that I ′(Ri0 ) is not empty (if I ′(Ri0 ) is empty, then I ′(Ri0, j0 ) is empty
(I ′ |= ψ) and, therefore, I ′(Ri0, j0 ) = I ′(Ri0 ) and I ′ |= �[Ri0/Ri0, j0 ], since I ′ |= �,
a contradiction). Define an instance I of S as follows. For every i ∈ [1, n], I (Ri ) =
I ′(Ri ). Let a be the element in I ′(U ) and let p be the position in I of the element
that has to be changed to obtain I′(Ri0, j0 ) from I (Ri0 ). Then (1) I is not empty, since



Normal Forms for Relational and XML Data 261

I ′ |= ψ ; (2) I |= �, since I ′ |= � and I (Ri ) = I ′(Ri ), for every i ∈ [1, n]; and
(3) Ip←a �|= �, since I ′ �|= �[Ri0/Ri0, j0 ]. Given that a ∈ N+ − adom(I ), since
I ′ |= ψ , by Proposition 4.9, we conclude that (S, �) is not well designed.

�2-sentences correspond to the Schönfinkel–Bernays fragment of first-order
logic. It is known that the problem of verifying if a Schönfinkel–Bernays formula
has a finite model is NEXPTIME-complete [Papadimitriou 1994] and becomes
�

p
2 -complete if every relation has at most m attributes, where m is a fixed con-

stant. Thus, from Lemma 4.13 we obtain the following corollary and the proof of
Proposition 4.12.

COROLLARY 4.14. The problem of deciding whether a schema containing only
�1 ∪ �1-sentences is well designed belongs to co-NEXPTIME.

PROOF OF PROPOSITION 4.12. We consider only the case of unbounded-arity
relations, being the case of fixed-arity relations similar. The membership part of
the proposition is a particular case of Corollary 4.14. The hardness part of
the proposition follows from the following observation. If in the reduction
of Proposition 4.11 the formula ϕ is of the form ∃x̄∀ȳ ψ(x̄, ȳ), where ψ is
quantifier-free, then the set of constraints � defined in (6) is universal. Thus,
the same reduction of Proposition 4.11 shows that the problem of deciding
whether a �2-sentence is finitely satisfiable is reducible to the problem of de-
ciding whether a schema containing only universal constraints is well designed.

For specific kinds of constraints, for example, FDs, MVDs, lower complexity
bounds will follow from the results in the next section.

4.2. JUSTIFICATION OF RELATIONAL NORMAL FORMS. We now apply the cri-
terion of being well designed to various relational normal forms. We show that all
of them lead to well-designed specifications, and some precisely characterize the
well-designed specifications that can be obtained with a class of constraints.

We start by finding constraints that always give rise to well-designed schemas.
Recall that a typed unirelational equality generating dependency [Abiteboul et al.
1995] is a constraint of the form:

∀ (R(x̄1) ∧ · · · ∧ R(x̄m) → x̄ = ȳ),

where ∀ represents the universal closure of a formula, x̄, ȳ ⊆ x̄1 ∪· · ·∪ x̄m and there
is an assignment of variables to columns such that each variable occurs only in one
column and each equality atom involves a pair of variables assigned to the same
column. An extended key is a typed unirelational equality generating dependency
of the form:

∀ (R(x̄1) ∧ · · · ∧ R(x̄m) → x̄i = x̄ j ),

where i, j ∈ [1, m]. Note that every key is an extended key.

PROPOSITION 4.15. If S is a schema and � a set of extended keys over S, then
(S, �) is well designed.

Before proving this proposition, we introduce one definition that will be used in
several proofs. Let I ∈ inst(S, �), p ∈ Pos(I ), a ∈ [1, k] and ā ∈ �(I, p). Given
a substitution σ : ā → [1, k] and R ∈ S, we say that a tuple t ′ ∈ σ (I(a,ā))(R) is
generated by a tuple t ∈ I (R) by means of a tuple t∗ ∈ I(a,ā) if σ (t∗) = t ′ and t∗



262 M. ARENAS AND L. LIBKIN

can be obtained from t by replacing each value in it by the element of (a, ā) in the
same position. We say t ′ ∈ σ (I(a,ā))(R) is generated by a tuple t ∈ I (R) if it is
generated by t by means of some t∗ ∈ I(a,ā).

PROOF OF PROPOSITION 4.15. To prove the proposition, we now use part (2) of
Proposition 4.9. Let I ∈ inst(S, �), p ∈ Pos(I ) and a ∈ N+ − adom(I ). We have
to show that Ip←a |= �.

Assume to the contrary that Ip←a �|= �. Then, there exists R ∈ S and an extended
key ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → x̄i = x̄ j ) ∈ � such that Ip←a �|= ∀(R(x̄1) ∧ · · · ∧
R(x̄m) → x̄i = x̄ j ). Thus, there exists a substitution ρ ′ : x̄1 ∪ · · · ∪ x̄m → [1, k]
such that ρ ′(x̄l) = t ′

l and t ′
l ∈ Ip←a(R), for every l ∈ [1, m], and t ′

i �= t ′
j . Define a

substitution ρ : x̄1 ∪ · · · ∪ x̄m → [1, k] as follows. Let b be the value in the pth
position of I . Then

ρ(x) =
{
ρ ′(x) ρ ′(x) �= a
b Otherwise.

Let ρ(x̄l) = tl , for every l ∈ [1, n]. It is straightforward to verify that t ′
1, . . . , t ′

n are
generated from t1, . . . , tn , respectively. Given that I |= �, ti = t j and, therefore,
t ′
i = t ′

j . This contradiction proves the proposition.

COROLLARY 4.16. A relational specification (S, �) in DK/NF is well designed.

In the rest of this section, we also denote join dependencies by first-order
sentences. More precisely, a join dependency over a relation R is a first-order
sentence of the form:

∀ (R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)),

where ∀ represents the universal closure of a formula, x̄ ⊆ x̄1 ∪ · · · ∪ x̄m , every
variable not in x̄ occurs in precisely one x̄i (i ∈ [1, m]) and there is an assignment
of variables to columns such that each variable occurs only in one column. For
example, join dependency �[AB, BC] over a relation R(A, B, C) can be denoted by

∀x∀y∀z∀u1∀u2 (R(x, y, u1) ∧ R(u2, y, z) → R(x, y, z)).

Next, we characterize well-designed schemas with FDs and JDs.

THEOREM 4.17. Let � be a set of FDs and JDs over a relational schema S.
(S, �) is well designed if and only if for every R ∈ S and every nontrivial join
dependency ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)) in �+, there exists M ⊆ {1, . . . , m}
such that:

(1) x̄ ⊆ ⋃
i∈M x̄i .

(2) For every i, j ∈ M, ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → x̄i = x̄ j ) ∈ �+.

In the proof of Theorem 4.17, we shall use chase for FDs and JDs [Maier et al.
1979], which we now briefly review for the sake of completeness. A tableau is
a set of rows with one column for each attribute in some universe U . The rows
are composed of distinguished and nondistinguished variables. Each variable may
appear in only one column and only one distinguished variable may appear in one
column. Let the nondistinguished variables be x1, . . . , xm . The chase of T with



Normal Forms for Relational and XML Data 263

respect to a set � of FDs and JDs is based on the successive application of the
following two rules:

FD rule: Let σ be a functional dependency in � of the form X → A, where
A is a single attribute, and let u, v ∈ T be such that u[X ] = v[X ]
and u[A] �= v[A]. The result of applying the FD σ to T is a new
tableau T ′ defined as follows. If one of the variables u[A], v[A]
is distinguished, then all the occurrences of the other one are
renamed to that variable. If both are nondistinguished, then all the
occurrences of the variable with the larger subscript are renamed
to the variable with the smaller subscript.

JD rule: Let σ be a join dependency of the form �[X1, . . . , Xn] and let
u be a tuple not in T . If there are u1, . . . , un ∈ T such that
ui [Xi ] = u[Xi ] for every i ∈ [1, n], then the result of applying
the JD σ over T is T ∪ {u}.

A chasing sequence of T by � is a sequence of tableaux T = T0, T1, T2, . . . , such
that for each i ≥ 0, Ti+1 is the result of applying some dependency in � to Ti . It is
known that any such sequence terminate and the resulting tableau does not depend
on a particular sequence [Maier et al. 1979]; we denote this tableau by Chase(T, �).

Every application of either the “FD rule” or the “JD rule” naturally defines a
substitution of variables by variables (in the latter, this substitution is the identity).
The substitution defined by the chase is obtained as the composition of the substi-
tutions for each step of the chase. This substitution enables us to map each original
variable (tuple) in T to a variable (tuple) in Chase(T, �).

Given a set of FDs and JDs � ∪ {σ }, it was shown in Maier et al. [1979] that
the chase can be used for checking whether � |= σ . The idea is to construct a
tableau Tσ , compute Chase(Tσ , �) and verify whether some condition is satisfied.
If σ is an FD X → A, then Tσ has two rows: one contains only distinguished
variables, and the other one contains distinguished variables in all the X -columns
and nondistinguished variables elsewhere. Then, � |= σ iff Chase(Tσ , �) has only
one distinguished variable in the A-column [Maier et al. 1979]. Moreover, if σ is
a JD �[X1, . . . , Xn], then Tσ has n rows. For every i ∈ [1, n], the i th row contains
distinguished variables in the Xi -columns and nondistinguished variables in the
remaining columns. Furthermore, every nondistinguished variable in Tσ appears
exactly once. Then, � |= σ iff Chase(Tσ , �) contains a row of all distinguished
variables [Maier et al. 1979].

Chase, and all the results shown above, can be generalized in a natural manner to
the case of more expressive constraints like typed equality generating dependencies
(see Abiteboul et al. [1995]).

We now move to the proof of Theorem 4.17. We need two lemmas first.

LEMMA 4.18. Let � be a set of FDs and JDs over a relational schema S and
R ∈ S. Assume that � contains a JD ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)) such that
∀(R(x̄1) ∧ · · · ∧ R(x̄m) → x̄ = x̄i ) �∈ �+, for every i ∈ [1, m]. Then there exists
I ∈ inst(S, �) and p ∈ Pos(I ) such that INFI (p | �) < 1.

PROOF. Let T be a tableau containing tuples {x̄1, . . . , x̄m}, and let x̄ be the
distinguished variables. Let ρ be a one-to-one function with the domain x̄1∪· · ·∪ x̄m
and the range contained in N+. Define I = ρ(Chase(T, �)). Assume that θ is the
composition of the substitutions used in the chase. Let t j = ρ(θ (x̄ j )), for every



264 M. ARENAS AND L. LIBKIN

j ∈ [1, m], and t = ρ(θ (x̄)). Given that ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → x̄ = x̄i ) �∈ �+,
for every i ∈ [1, m], we conclude that t �= t j , for every j ∈ [1, m]. Let A ∈ sort(R),
p be the position of t[A] in I and k such that adom(I ) ⊆ [1, k]. Since I |= � and
I contains t1, . . . , tm , the JD ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)) ∈ � implies that I
must contain t . Thus, changing any value in t generates an instance that does not
satisfy �. Hence, for every a ∈ [1, k] − {t[A]}, P(a | ā0) = 0, where ā0 is the
tuple in �(I, p) containing no variables. Applying Lemma 4.10 we conclude that
H (Bk

�(I, p) | A(I, p))/ log k < c for some constant c < 1, for all sufficiently large
k, and thus by Lemma 4.4, INFI (p | �) = limk→∞ INFk

I (p | �)/ log k < 1.

Given a set � of FDs and JDs over a relational schema S and a JD ϕ ∈ � of the
form ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)), define an equivalence relation ∼ϕ on tuples
of variables as follows. For every i, j ∈ [1, m], x̄i ∼ϕ x̄ j if ∀(R(x̄1)∧· · ·∧R(x̄m) →
x̄i = x̄ j ) ∈ �+. Let [i]ϕ be the equivalence class of x̄i , for every i ∈ [1, m], and let
var([i]ϕ) be the set of variables contained in all the tuples x̄ j ∈ [i]ϕ .

LEMMA 4.19. Let � be a set of FDs and JDs over a relational schema S and
R ∈ S. Assume that � contains a JD ϕ of the form ∀(R(x̄1)∧· · ·∧ R(x̄m) → R(x̄))
such that x̄ �⊆ var([i]ϕ), for every i ∈ [1, m]. Then there exists I ∈ inst(S, �) and
p ∈ Pos(I ) such that INFI (p | �) < 1.

PROOF. If ∀(R(x̄1)∧· · ·∧R(x̄m) → x̄ = x̄i ) �∈ �+, for every i ∈ [1, m], then by
Lemma 4.18 there exists I ∈ inst(S, �) and p ∈ Pos(I ) such that INFI (p | �) < 1.
Thus, we may assume that there exists i ∈ [1, m] such that ∀(R(x̄1)∧· · ·∧R(x̄m) →
x̄ = x̄i ) ∈ �+. By the hypothesis, there exists l ∈ [1, |x̄ |] and a variable x in the
lth column of x̄ such that x �∈ var([i]ϕ). Let u be the variable in the lth column of
x̄i and Ui the set of variables in the l-column of all the tuples x̄ j ( j ∈ [1, m]) such
that x̄i ∼ϕ x̄ j .

Let T be a tableau {x̄1, . . . , x̄m}, with x̄i as distinguished variables. In
Chase(T, �), all the tuples in the equivalence class of x̄i (and no other) are identi-
fied with this tuple. Denote the lth component of tuple x̄ j by x̄ l

j (and similarly for
other tuples).

Let ρ be a one-to-one function with the domain x̄1 ∪ · · · ∪ x̄m and the range
contained in N+ and I = ρ(Chase(T, �)). Assume that θ is the composition of
the substitutions used in the chase. Let t j = ρ(θ (x̄ j )) be a tuple in I , for every
j ∈ [1, m]. Note that ρ(θ (x̄i )) = ρ(x̄i ) since x̄i is a tuple of distinguished variables.
Additionally, since I satisfies ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → x̄ = x̄i ), it must be the
case that ρ(θ (x̄)) = ρ(x̄i ).

Let p be the position in I of t l
i . The value in this position is ρ(u). We will show

that for every a ∈ [1, k] − {ρ(u)}, P(a | ā0) = 0, where ā0 is a tuple in �(I, p)
containing no variables.

Denote by t ′
j the tuple of I(a,ā0) that corresponds to t j in I . Note that t ′

j = t j for
all j such that x̄ j is not in [i]ϕ . When x̄ j is in [i]ϕ , t ′

j differs from t j only in that the
value in its l-th column is a rather than ρ(u). Assume that I(a,ā0) satisfies �. Then it
satisfies, in particular, ∀(R(x̄1)∧· · ·∧ R(x̄m) → R(x̄)). Recall that in this JD, every
variable not in x̄ occurs in a unique x̄ j . We give a substitution from the variable
tuples x̄1, . . . , x̄m to the tuples t ′

1, . . . , t ′
m , respectively. Let ρ ′ : x̄1∪· · ·∪x̄m → [1, k]



Normal Forms for Relational and XML Data 265

be a substitution defined as follows. For every y ∈ x̄1 ∪ · · · ∪ x̄m ,

ρ ′(y) =
{
ρ(θ (y)) if y �∈ Ui

a otherwise.

We claim that for every j ∈ [1, m], ρ ′(x̄ j ) = t ′
j . Clearly, we only need to consider

the l-th column. Indeed, if x̄ j is in [i]ϕ , then t ′
j is t j , except in the l-column, where

t j contains the value a, since x̄ l
j is in Ui . Thus, ρ ′(x̄ j ) = t ′

j . If x̄ j is not in [i]ϕ , then
x̄ l

j is either x , or a variable that occurs only in x̄ j . In either case, it is not in Ui . Thus,
ρ ′(x̄ j ) = t ′

j . Since I(a,ā0) is assumed to satisfy JD ∀(R(x̄1) ∧ · · · ∧ R(x̄m) → R(x̄)),
it must contain ρ ′(x̄). However, since x is not in Ui , ρ ′(x̄) = ρ(θ (x̄)) = ρ(x̄i ) = ti
in I , which is not in I(a,ā0), a contradiction.

We conclude that for every a ∈ [1, k]−{ρ(u)}, P(a | ā0) = 0. Hence, by Lemma
4.10, INFk

I (p | �)/ log k < c for some constant c < 1, for all sufficiently large
k, and then by Lemma 4.4, INFI (p | �) = limk→∞ INFk

I (p | �)/ log k < 1. This
proves the lemma.

Theorem 4.17 is a corollary of Proposition 4.15 and Lemma 4.19. We note that
this theorem justifies various normal forms proposed for JDs and FDs [Fagin 1979;
Vincent 1997].

COROLLARY 4.20. Let � be a set of FDs and JDs over a relational schema S.
If (S, �) is in PJ/NF or 5NFR, then it is well-designed.

However, neither of these normal forms characterizes precisely the notion of
being well designed:

PROPOSITION 4.21. There exists a schema S and a set of JDs and FDs � such
that (S, �) is well designed, but it violates all of the following: DK/NF, PJ/NF,
5NFR.

PROOF. Let S = {R(A, B, C)} and � = {AB → C, AC → B, �[AB, AC,
BC]}. This specification is not in DK/NF and PJ/NF since the set of keys im-
plied by � is {AB → ABC, AC → ABC, ABC → ABC} and this set does
not imply �[AB, AC, BC]. Furthermore, this specification is not in 5NFR since
�[AB, AC, BC] is a strong-reduced join dependency and BC is not a key in �.

Join dependency �[AB, AC, BC] corresponds to the following first order
sentence:

∀x∀y∀z∀u1∀u2∀u3 (R(x, y, u1) ∧ R(x, u2, z) ∧ R(u3, y, z) → R(x, y, z)).

From Theorem 4.17, we conclude that (S, �) is well designed since � implies the
sentence

∀x∀y∀z∀u1∀u2∀u3(R(x, y, u1) ∧ R(x, u2, z) ∧ R(u3, y, z) → y = u2 ∧ z = u1).

and (x, y, z) ⊆ (x, y, u1) ∪ (x, u2, z).

By restricting Theorem 4.17 to the case of specifications containing only FDs and
MVDs (or only FDs), we obtain the equivalence between well-designed databases
and 4NF (respectively, BCNF).

THEOREM 4.22. Let � be a set of integrity constraints over a relational
schema S.



266 M. ARENAS AND L. LIBKIN

(1) If � contains only FDs and MVDs, then (S, �) is well designed if and only if
it is in 4NF.

(2) If � contains only FDs, then (S, �) is well designed if and only if it is in BCNF.

5. Normalizing XML Data

In this section, we give an overview of the XML normal form called XNF, and show
that the notion of being well-designed straightforwardly extends from relations to
XML. Furthermore, if all constraints are specified as functional dependencies, this
notion precisely characterizes XNF.

5.1. OVERVIEW OF XML CONSTRAINTS AND NORMALIZATION

5.1.1. DTDs and XML Trees. We shall use a somewhat simplified model of
XML trees in order to keep the notation simple. We assume a countably infinite
set of labels L , a countably infinite set of attributes A (we shall use the notation
@l1, @l2, etc for attributes to distinguish them from labels), and a countably infinite
set V of values of attributes. Furthermore, we do not consider PCDATA elements in
XML trees since they can always be represented by attributes.

A DTD (Document Type Definition) D is a 4-tuple (L0, P, R, r ) where L0 is a
finite subset of L , P is a set of rules a → Pa for each a ∈ L0, where Pa is a regular
expression over L0 − {r}, R assigns to each a ∈ L0 a finite subset of A (possibly
empty; R(a) is the set of attributes of a), and r ∈ L0 (the root).

Example 5.1. The DTD below is a part of DBLP [Ley 2003] that stores
conference data.

<!ELEMENT db (conf*)>

<!ELEMENT conf (issue+)>

<!ATTLIST conf

title CDATA #REQUIRED>

<!ELEMENT issue (inproceedings+)>

<!ELEMENT inproceedings EMPTY>

<!ATTLIST inproceedings

author CDATA #REQUIRED

title CDATA #REQUIRED

pages CDATA #REQUIRED

year CDATA #REQUIRED>

This DTD is represented as (L0, P, R, r ), where r = db, L0 = {db, conf, issue,
inproceedings}, P = {db → conf∗, conf → issue+, issue → inproceedings+,
inproceedings → ε}, R(conf) = {@title}, R(inproceedings) = {@author, @title,
@pages, @year} and R(db) = R(issue) = ∅.

An XML tree is a finite rooted directed tree T = (N , E) where N is the set of
nodes and E is the set of edges, together with the labeling function λ : N → L
and partial attribute value functions ρ@l : N → V for each @l ∈ A. We further-
more assume that for every node x in N , its children x1, . . . , xn are ordered and
ρ@l(x) is defined for a finite set of attributes @l. We say that T conforms to DTD
D = (L0, P, R, r ), written as T |= D, if the root of T is labeled r , for every x ∈ N
with λ(x) = a, the word λ(x1) · · · λ(xn) that consists of the labels of its children



Normal Forms for Relational and XML Data 267

belongs to the language denoted by Pa , and for every x ∈ N with λ(x) = a,
@l ∈ R(a) if and only if the function ρ@l is defined on x (and thus provides the
value of attribute @l).

5.1.2. Functional Dependencies for XML. To present a functional dependency
language for XML we need to introduce some terminology. Recall that L and A are
countably infinite sets of labels and attributes, respectively. Then an element path q
is a word in L∗, and an attribute path is a word of the form q.@l, where q ∈ L∗ and
@l ∈ A. An element path q is consistent with a DTD D if there is a tree T |= D
that contains a node reachable by q (in particular, all such paths must have r as
the first letter); if in addition the nodes reachable by q have attribute @l, then the
attribute path q.@l is consistent with D. The set of all paths (element or attribute)
consistent with D is denoted by paths(D). This set is finite for a nonrecursive D
and infinite if D is recursive.

A functional dependency over DTD D [Arenas and Libkin 2002] is an expression
of the form {q1, . . . , qn} → q, where n ≥ 1 and q, q1, . . . , qn ∈ paths(D). To define
the notion of satisfaction for FDs, we use a relational representation of XML trees
from Arenas and Libkin [2002]. Given T |= D, a tree tuple in T is a mapping
t : paths(D) → N ∪ V ∪ {⊥} such that if q is an element path whose last letter is
a and t(q) �= ⊥, then

—t(q) ∈ N and its label, λ(t(q)), is a;
—if q ′ is a prefix of q, then t(q ′) �= ⊥ and the node t(q ′) lies on the path from the

root to t(q) in T ;
—if @l is defined for t(q) and its value is v ∈ V , then t(q.@l) = v .

Intuitively, a tree tuple assigns nodes or attribute values or nulls (⊥) to paths in a
consistent manner. A tree tuple is maximal if it cannot be extended to another one
by changing some nulls to values from N ∪ V . The set of maximal tree tuples is
denoted by tuplesD(T ). Now we say that FD {q1, . . . , qn} → q is true in T if for any
t1, t2 ∈ tuplesD(T ), whenever t1(qi ) = t2(qi ) �= ⊥ for all i ≤ n, then t1(q) = t2(q)
holds.

Example 5.2. Let D be the DTD from Example 5.1. Among the set � of FDs
over this DTD are:

db.conf.@title → db.conf,
db.conf.issue → db.conf.issue.inproceedings.@year.

The first functional dependency specifies that two distinct conferences must have
distinct titles. The second one specifies that any two inproceedings children of the
same issue must have the same value of @year.

5.1.3. XNF: An XML Normal Form. Suppose we are given a DTD D and a set
� of FDs over D. The set of all FDs implied by (D, �) is denoted by (D, �)+,
this is, (D, �)+ is the set of all FD X → Y over D such that for every XML tree
T conforming to D and satisfying �, T |= X → Y . An FD is called trivial if it
belongs to (D, ∅)+, that is, it is implied by the DTD alone. For example, q → r ,
where r is the root, or q → q.@l, are trivial FDs.

We say that (D, �) is in XML Normal Form (XNF) [Arenas and Libkin 2002]
if for any nontrivial FD X → q.@l in (D, �)+, the FD X → q is in (D, �)+ as



268 M. ARENAS AND L. LIBKIN

well. Intuitively, a violation of XNF means that there is some redundancy in the
document: we may have many nodes reachable by path q but all of them will have
the same value of attribute @l (provided they agree on X ).

Example 5.3. The DBLP example 5.1 seen earlier may contain redundant in-
formation: year is stored multiple times for the same issue of a conference. This
XML specification is not in XNF since

db.conf.issue → db.conf.issue.inproceedings

is not in (D, �)+. This suggests making @year an attribute of issue, and indeed,
such a revised specification can easily be shown to be in XNF.

5.2. WELL-DESIGNED XML DATA. We do not need to introduce a new notion of
being well-designed specifically for XML: the definition that we formulated in Sec-
tion 4 for relational data will apply. We only have to define the notion of positions
in a tree, and then reuse the relational definition. For relational databases, posi-
tions correspond to the “shape” of relations, and each position contains a value.
Likewise, for XML, positions will correspond to the shape (that is more com-
plex, since documents are modeled as trees), and they must have values associated
with them. Consequently, we formally define the set of positions Pos(T ) in a tree
T = (N , E) as {(x, @l) | x ∈ N , @l ∈ R(λ(x))}. As before, we assume that
there is an enumeration of positions (a bijection between Pos(T ) and {1, . . . , n}
where n = |Pos(T )|) and we shall associate positions with their numbers in the
enumeration. We define adom(T ) as the set of all values of attributes in T and
Tp←a as an XML tree constructed from T by replacing the value in position p
by a.

As in the relational case, we take the domain of values V of the attributes to be
N+. Let � be a set of FDs over a DTD D and k > 0. Define inst(D, �) as the set of
all XML trees that conform to D and satisfy � and instk(D, �) as its restriction to
trees T with adom(T ) ⊆ [1, k]. Now fix T ∈ instk(D, �) and p ∈ Pos(T ). With the
above definitions, we define the probability spaces A(T, p) and Bk

�(T, p) exactly
as we defined A(I, p) and Bk

�(I, p) for a relational instance I . That is, �(T, p) is
the set of all tuples ā of the form (a1, . . . , ap−1, ap+1, . . . , an) such that every ai is
either a variable, or the value T has in the corresponding position, SATk

�(T(a,ā)) as
the set of all possible ways to assign values from [1, k] to variables in ā that result
in a tree satisfying �, and the rest of the definition repeats the relational case one
verbatim, substituting T for I .

We use the above definitions to define INFk
T (p | �) as the entropy of Bk

�(T, p)
given A(T, p):

INFk
T (p | �)

def= H
(
Bk

�(T, p) | A(T, p)
)
.

As in the relational case, we can show that the limit

lim
k→∞

INFk
T (p | �)

log k

exists, and we denote it by INFT (p | �). Following the relational case, we introduce

Definition 5.4. An XML specification (D, �) is well designed if for every
T ∈ inst(D, �) and every p ∈ Pos(T ), INFT (p | �) = 1.



Normal Forms for Relational and XML Data 269

Note that the information-theoretic definition of well-designed schema presented
in Section 4 for relational data proved to be extremely robust, as it extended straight-
forwardly to a different data model: we only needed a new definition of Pos(T ) to
use in place of Pos(I ), and Pos(T ) is simply an enumeration of all the places in a
document where attribute values occur. As in the relational case, it is possible to
show that well-designed XML and XNF coincide. Furthermore, it is also possible
to establish a useful structural criterion for INFT (p | �) = 1, namely that an XML
specification (D, �) is well designed if and only if one position of an arbitrary
T ∈ inst(D, �) can always be assigned a fresh value.

THEOREM 5.5. Let D be a DTD and � a set of FDs over D. Then the following
are equivalent.

(1) (D, �) is well designed.
(2) (D, �) is in XNF.
(3) For every T ∈ inst(D, �), p ∈ Pos(T ) and a ∈ N+ − adom(T ), Tp←a |= �.

The proof of the theorem follows rather closely the proof of Proposition 4.9, by
replacing relational concepts by their XML counterparts.

PROOF OF THEOREM 5.5. We will prove the chain of implications (1) ⇒ (2) ⇒
(3) ⇒ (1).

(1) ⇒ (2) Assume that (D, �) is not in XNF. We will show that there exists
T ∈ inst(D, �) and p ∈ Pos(T ) such that INFT (p | �) < 1.

Given that (D, �) is not in XNF, there exists a nontrivial FD X → q.@l ∈
(D, �)+ such that X → q �∈ (D, �)+. Thus, there is T ∈ inst(D, �) containing
tree tuples t1, t2 such that t1(q ′) = t2(q ′) and t1(q ′) �= ⊥, for every q ′ ∈ X , and
t1(q) �= t2(q). We may assume that t1(q) �= ⊥ and t2(q) �= ⊥ (if t1(q) = ⊥
or t2(q) = ⊥, then t1(q.@l) �= t2(q.@l), which would contradict T |= �). Let
x = t1(q), p be the position of (x, @l) in T and a = t1(q.@l). Let ā0 be the vector
in �(T, p) containing no variables. Given that t1(q) �= t2(q) and none of these values
is ⊥, for every b ∈ [1, k] − {a}, T(b,ā0) �|= �. Thus, for every b ∈ [1, k] − {a},
P(b | ā0) = 0. Now a straightforward application of Lemma 4.10 implies

INFT (p | �) = lim
k→∞

INFk
T (p | �)/ log k < 1.

This concludes the proof.

(2) ⇒ (3) Let (D, �) be an XML specification in XNF, T ∈ inst(D, �), p ∈
Pos(T ) and a ∈ N+ − adom(T ). We prove that Tp←a |= �.

Assume, to the contrary, that Tp←a �|= �. Then there exists a FD X → q ∈ �
such that Tp←a �|= X → q. Thus, there exists t ′

1, t ′
2 ∈ tuplesD(Tp←a) such that

t ′
1(q ′) = t ′

2(q ′) and t ′
1(q ′) �= ⊥, for every q ′ ∈ X , and t ′

1(q) �= t ′
2(q). Assume

that these tuples were generated from tuples t1, t2 ∈ tuplesD(T ). Given that a ∈
N+ − adom(T ), t1(q ′) = t2(q ′) and t1(q ′) �= ⊥, for every q ′ ∈ X , and, therefore,
t1(q) = t2(q), since T |= �. If q is an element path, then t ′

1(q) = t1(q) and
t ′
2(q) = t2(q), since Tp←a is constructed from T by modifying only the values of

attributes. Thus, t ′
1(q) = t ′

2(q), a contradiction. Assume that q is an attribute path
of the form q1.@l. In this case, X → q1.@l is a nontrivial FD in � and, therefore,
X → q1 ∈ (D, �)+, since (D, �) is in XNF. We conclude that t1(q1) = t2(q1).
Given that q1 is an element path, as in the previous case we conclude that t ′

1(q1) =
t ′
2(q1). Hence, t ′

1(q1.@l) = t ′
2(q1.@l), again a contradiction.



270 M. ARENAS AND L. LIBKIN

(3) ⇒ (1) Let T ∈ inst(D, �) and p ∈ Pos(T ). We have to prove that INFT (p |
�) = 1. To show this, it suffices to prove that

lim
k→∞

INFk
T (p | �)

log k
≥ 1. (8)

Let n = |Pos(T )| and k > 2n such that T ∈ instk(D, �). If ā ∈ �(T, p) and var(ā)
is the set of variables mentioned in ā, then for every a ∈ [1, k] − adom(T ),

|SATk
�(T(a,ā))| ≥ (k − 2n)|var(ā)|

since by hypothesis one can replace values in positions of ā one by one, provided
that each position gets a fresh value. Thus, given that

∑
b∈[1,k] |SATk

�(T(b,ā))| ≤
k|var(ā)|+1, for every a ∈ [1, k] − adom(T ) and every ā ∈ �(T, p), we have:

P(a | ā) ≥ (k − 2n)|var(ā)|

k|var(ā)|+1
= 1

k

(
1 − 2n

k

)|var(ā)|
. (9)

Functional dependencies are generic constraints. Thus, for every a, b ∈ [1, k] −
adom(T ) and every ā ∈ �(T, p), P(a | ā) = P(b | ā). Hence, for every a ∈
[1, k] − adom(T ) and every ā ∈ �(T, p):

P(a | ā) ≤ 1

k − |adom(T )| ≤ 1

k − n
. (10)

In order to prove (8), we need to establish a lower bound for INFk
T (p | �). We do

this by using (9) and (10) as follows: Given the term P(a | ā) log 1
P(a|ā) , we use

(9) and (10) to replace P(a | ā) and log 1
P(a|ā) by smaller terms, respectively. More

precisely,

INFk
T (p | �) =

∑
ā∈�(T,p)

(
P(ā)

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)

)

≥ 1

2n−1

∑
a∈[1,k]−adom(T )

∑
ā∈�(T,p)

1

k

(
1 − 2n

k

)|var(ā)|
log(k − n)

= 1

2n−1
log(k − n)

1

k

∑
a∈[1,k]−adom(I )

n−1∑
i=0

(
n − 1

i

)(
1 − 2n

k

)i

= 1

2n−1
log(k − n)

1

k

∑
a∈[1,k]−adom(I )

((
1 − 2n

k

)
+ 1

)n−1

≥ 1

2n−1
log(k − n)

1

k
(k − n)

(
2 − 2n

k

)n−1

= 1

2n−1
log(k − n)

(
1 − n

k

)
2n−1

(
1 − n

k

)n−1

= log(k − n)

(
1 − n

k

)n

.



Normal Forms for Relational and XML Data 271

Therefore,

INFk
T (p | �)

log k
≥ log(k − n)

log k

(
1 − n

k

)n
.

Since

lim
k→∞

log(k − n)

log k

(
1 − n

k

)n
= 1,

(8) follows. This concludes the proof.

The theory of XML constraints and normal forms is not nearly as advanced
as its relational counterparts, but we demonstrated here that the definition of
well-designed schemas works well for the existing normal form based on FDs;
thus, it can be used to test other design criteria for XML when they are proposed.

6. Normalization Algorithms

We now show how the information-theoretic measure of Section 4 can be used for
reasoning about normalization algorithms at the instance level. For this section, we
assume that � is a set of FDs, both for the relational and the XML cases. The results
shown here state that after each step of a decomposition algorithm, the amount of
information in each position does not decrease.

6.1. RELATIONAL DATABASES. Let I ′ be the result of applying one step of a
normalization algorithm to I . In order to compare the amount of information in
these instances, we need to show how to associate positions in I and I ′. Since
we only consider here functional dependencies, we deal with BCNF, and standard
BCNF decomposition algorithms use steps of the following kind: pick a relation
R with the set of attributes W , and let W be the disjoint union of X, Y, Z , such
that X → Y ∈ �+. Then, an instance I = I (R) of R gets decomposed into
IXY = πXY(I ) and IXZ = πXZ(I ), with the sets of FDs �XY and �XZ, where �U
stands for {C → D ∈ �+ | CD ⊆ U ⊆ W }. This decomposition gives rise
to two partial maps πXY : Pos(I ) → Pos(IXY) and πXZ : Pos(I ) → Pos(IXZ). If
p is the position of t[A] for some A ∈ XY , then πXY(p) is defined, and equals
the position of πXY(t)[A] in IXY; the mapping πXZ is defined analogously. Note
that πXY and πXZ can map different positions in I to the same position of IXY

or IXZ.
We now show that the amount of information in each position does not decrease

in the normalization process.

THEOREM 6.1. Let (X, Y, Z ) partition the attributes of R, and let X → Y ∈
�+. Let I ∈ inst(R, �) and p ∈ Pos(I ). If U is either XY or X Z and πU is defined
on p, then INFI (p | �) ≤ INFIU (πU (p) | �U ).

To prove this theorem, first we need to prove two lemmas.

LEMMA 6.2. Let � be a set of FDs over a relational schema S, I ∈ inst(S, �),
p ∈ Pos(I ) and ā ∈ �(I, p). Then limk→∞ 1

log k

∑
a∈[1,k] P(a | ā) log 1

P(a|ā) is
either 0 or 1.



272 M. ARENAS AND L. LIBKIN

PROOF. Given in Section A.2.

Let R be a relation schema such that sort(R) = X ∪ Y ∪ Z , where X , Y and Z
are nonempty pairwise disjoint sets of attributes. Let � be a set of FDs over R and
I ∈ inst(R, �). Assume that X → Y ∈ �+. Define R′ as a relation schema such
that sort(R′) = X ∪ Y , �′ = �XY, and let I ′ be πXY(I ). Note that I ′ ∈ inst(R′, �′).
We use Lemma 6.2 to show the following:

LEMMA 6.3. Let t0 ∈ I , t ′
0 = πXY(t0) and A ∈ X ∪Y . If t0[A] is the pth element

in I and t ′
0[A] is the p′-th element in I ′, then INFI (p | �) ≤ INFI ′(p′ | �′).

PROOF. Assume that ‖I‖ = n, X ∪ Y = {A1, . . . , Am} and {t[X ] | t ∈ I }
contains l tuples {c̄1, . . . , c̄l}. For every i ∈ [1, l], choose a tuple ti ∈ I such
that ti [X ] = c̄i . Without loss of generality, assume that t0 = tl , A = Am and
ti [A j ] is the ((i − 1)m + j)th element in I . Thus, t1[A1] is the first element in I ,
t1[Am] is the mth element in I and tl[Am] is the lmth element in I . We note that
p = lm.

For every ā = (a1, . . . , ap−1, ap+1, . . . , an) ∈ �(I, p), define ā∗ =
(a1, . . . , ap−1, v p+1, . . . , vn), that is, ā∗ is generated from ā by replacing each ai (i ∈
[p + 1, n]) by a variable. Furthermore, define �∗(I, p) as {ā ∈ �(I, p) | for every
i ∈ [p + 1, n], ai is a variable}. It is easy to see that if limk→∞ 1

log k

∑
a∈[1,k] P(a |

ā) log 1
P(a|ā) = 1, then limk→∞ 1

log k

∑
a∈[1,k] P(a | ā∗) log 1

P(a|ā∗) = 1. Thus, by
Lemma 6.2, for every ā ∈ �(I, p):

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)
≤ lim

k→∞
1

log k

∑
a∈[1,k]

P(a | ā∗) log
1

P(a | ā∗)
.

Therefore,

INFI (p | �) = lim
k→∞

1

log k

∑
ā∈�(I,p)

1

2n−1

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)

= 1

2n−1

∑
ā∈�(I,p)

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)

≤ 1

2n−1
2n−p

∑
ā∈�∗(I,p)

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)

= 1

2p−1

∑
ā∈�∗(I,p)

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)
. (11)

Observe that ‖I ′‖ = lm. Without loss of generality assume that p′ = lm = p. Then
for every ā = (a1, . . . , ap−1, ap+1, . . . , an) ∈ �(I, p), define ā′ ∈ �(I ′, p′) as
(a1, . . . , ap′−1). As in the case of ā∗, it is easy to see that limk→∞ 1

log k

∑
a∈[1,k] P(a |

ā) log 1
P(a|ā) ≤ limk→∞ 1

log k

∑
a∈[1,k] P(a | ā′) log 1

P(a|ā′) . Particularly, this property



Normal Forms for Relational and XML Data 273

holds for every ā ∈ �∗(I, p). Thus, by (11) we conclude that

INFI ′(p′ | �′) = lim
k→∞

1

log k

∑
ā∈�(I ′,p′)

1

2p′−1

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)

= 1

2p′−1

∑
ā∈�(I ′,p′)

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)

≥ 1

2p−1

∑
ā∈�∗(I,p)

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)

≥ INFI (p | �).

PROOF OF THEOREM 6.1. First, we notice that adding new relations and
constraints over them to a schema does not affect the information content
of the old positions. Namely, let S = {R1, . . . , Rm} be a relational schema,
� = �1 ∪ · · · ∪ �m be a set of FDs over S such that �i is a set of FDs over Ri
(i ∈ [1, m]), S′ = {R1}, �′ = �1, I ∈ inst(S, �) and I ′ ∈ inst(S′, �′) such that
I ′ = I (R1). Furthermore, let p be a position in I (R1) and p′ the corresponding
position in I ′. Then, INFI (p | �) = INFI ′(p′ | �′). The theorem now is a direct
consequence of this fact and Lemma 6.3.

A decomposition algorithm is effective in I if for one of its basic steps, and for
some p, the inequality in Theorem 6.1 is strict: that is, the amount of information
increases. This notion leads to another characterization of BCNF.

PROPOSITION 6.4. (R, �) is in BCNF if and only if no decomposition algorithm
is effective in (R, �).

PROOF

(⇒) If (R, �) is in BCNF, then for every I ∈ inst(R, �) and p ∈ Pos(I ), INFI (p |
�) = 1. Thus, no decomposition algorithm can be effective on any I ∈ inst(R, �).

(⇐) Assume that (R, �) is not in BCNF. We will show that there exists a
decomposition algorithm effective in (R, �).

Given that (R, �) is not in BCNF, we can find nonempty pairwise disjoint sets
of attributes X, Y, Z such that X ∪ Y ∪ Z = sort(R), X → Y ∈ �+, X is not a key
and (XY , �XY) is in BCNF. Let I be a database instance of R containing two tuples
t1, t2 defined as follows. For every A ∈ sort(R), t1[A] = 1. If X → A ∈ �+, then
t2[A] = 1, otherwise t2[A] = 2. It is easy to see that I ∈ inst(R, �). Furthermore,
for every A ∈ Y and p ∈ Pos(I ) such that t1[A] (or t2[A]) is the pth element in
I , INFI (p | �) < 1 and INFIXY(πXY(p) | �XY) = 1 (since (XY , �XY) is in BCNF).
Therefore, INFI (p | �) < INFIXY(πXY(p) | �XY). Thus, a decomposition algorithm
that decomposes I into IXY and IXZ is effective in (R, �).

6.2. XML DATA. We now treat the XML case. We shall prove a result similar to
Theorem 6.1. However, to state the result, we first need to review the normalization
algorithm for XML data proposed in Arenas and Libkin [2002], and explain how
each step of the algorithm induces a mapping between positions in two XML trees.
Throughout the section, we assume that the DTDs are nonrecursive and that all FDs
contain at most one element path on the left-hand side. Furthermore, for presenting
the algorithm and proving the result, we also make the following assumption: if



274 M. ARENAS AND L. LIBKIN

FIG. 4. Two transformations of the XML normalization algorithm.

X → q.@l is an FD that causes a violation of XNF, then every time that q.@l is
not null, every path in X is not null (it is shown in Arenas and Libkin [2004] how
to eliminate this assumption).

To present the algorithm proposed in Arenas and Libkin [2002], we need to
introduce some terminology. Given a DTD D and a set of FDs �, a nontrivial FD
X → q.@l is called anomalous, over (D, �), if it violates XNF; that is, X →
q.@l ∈ (D, �)+ but X → q �∈ (D, �)+. The algorithm eliminates anomalous
functional dependencies by using two basic steps: moving an attribute, and creating
a new element type.

Moving Attributes. Let D = (L0, P, R, r ) be a DTD and � a set of FDs over
D. Assume that (D, �) contains an anomalous FD q ′ → q.@l, where q ′ is an
element path. For instance, the DBLP database shown in Example 5.3 contains an
anomalous FD of this form:

db.conf.issue → db.conf.issue.inproceedings.@year. (12)

To eliminate the anomalous FD, we move the attribute @l from the set of attributes
of the last element a of q to the set of attributes of the last element a′ of q ′, as shown
in Figure 4(a). For instance, to eliminate the anomalous functional dependency (12),
we move the attribute @year from the set of attributes of inproceedings to the set
of attributes of issue. Formally, the new DTD D[q.@l := q ′.@m], where @m is
an attribute, is (L0, P, R′, r ), where R′(a′) = R(a′) ∪{@m}, R′(a) = R(a) −{@l}
and R′(b) = R(b) for each b ∈ L0 − {a, a′}.

After transforming D into a new DTD D[q.@l := q ′.@m], a new set of func-
tional dependencies is generated. Formally, the set of FDs �[q.@l := q ′.@m]
over D[q.@l := q ′.@m] consists of all FDs X → Y ∈ (D, �)+ with X ∪ Y ⊆
paths(D[q.@l := q ′.@m]). Observe that the new set of FDs does not include the
functional dependency q → q ′.@l.



Normal Forms for Relational and XML Data 275

Creating New Element Types. Let D = (L0, P, R, r ) be a DTD and
� a set of FDs over D. Assume that (D, �) contains an anomalous FD
{q ′, q1.@l1, . . . , qn.@ln} → q.@l, where q ′ is an element path and n ≥ 1. For
example, consider the following DTD that describes a database containing courses
in different universities:

<!ELEMENT db (univ*)>

<!ELEMENT univ (course*)>

<!ELEMENT course (student*)>

<!ATTLIST course

cno CDATA #REQUIRED

title CDATA #REQUIRED>

<!ELEMENT student EMPTY>

<!ATTLIST student

sno CDATA #REQUIRED

name CDATA #REQUIRED

grade CDATA #REQUIRED>

For every course, we store its number (@cno), its title and the list of students taking
the course. For each student taking a course, we store his/her number (@sno), name,
and the grade in the course. In this database, we have the following functional
dependencies:

{db.univ, db.univ.course.@cno} → db.univ.course,
{db.univ, db.univ.course.student.@sno} → db.univ.course.student.@name. (13)

The first FD says that two distinct courses of the same university must have distinct
@cno numbers, the second one says that two students of the same university with the
same @sno value must have the same @name. We observe that (13) is an anomalous
FD of the form described above since {db.univ, db.univ.course.student.@sno} →
db.univ.course.student is not in (D, �)+.

To eliminate the anomalous FD, we construct a new DTD D′ by creating a
new element type a′′ as a child of the last element a′ of q ′, making a1, . . . , an its
children, @l its attribute, and @l1, . . . , @ln attributes of a1, . . . , an , respectively.
Furthermore, we remove @l from the set of attributes of the last element a of q, as
shown in Figure 4(b). Formally, if {a′′, a1, . . . , an} are element types that are not in
L0, the new DTD, denoted by D[q.@l := q ′.a′′[a1.@l1, . . . , an.@ln, @l]], is (L ′

0,
P ′, R′, r ), where L ′

0 = L0 ∪ {a′′, a1, . . . , an} and P ′, R′ are defined as follows.

(1) Assume that a′ → Pa′ ∈ P . Then P ′ = (P − {a′ → Pa′ }) ∪ {a′ → (a′′)∗ Pa′,
a′′ → a∗

1 · · · a∗
n , a1 → ε, . . . , an → ε}.

(2) R′(a′′) = {@l}, R′(ai ) = {@li }, for each i ∈ [1, n], R′(a) = R(a) − {@l} and
R′(b) = R(b) for each b ∈ L0 − {a}.

For instance, to eliminate the anomalous functional dependency (13), we create
a new element type info as a child of courses, we remove @name as an attribute of
student and we make it an attribute of info, we create an element type number as a
child of info and we make @sno its attribute. We note that we do not remove @sno
as an attribute of student.



276 M. ARENAS AND L. LIBKIN

FIG. 5. An XML normalization algorithm.

After transforming D into a new DTDD′ = D[q.@l := q ′.a′′[a1.@l1, . . . ,
an.@ln, @l]], a new set of functional dependencies is generated. Formally, �[q.@l
:= q ′.a′′[a1.@l1, . . . , an.@ln, @l]] is a set of FDs over D′ defined as the union of
the sets of constraints defined in (1), (2) and (3):

(1) X → Y ∈ (D, �)+ with X ∪ Y ⊆ paths(D′);
(2) For each FD X → Y ∈ (D, �)+ with X ∪ Y ⊆ {q ′, q1, . . . , qn,

q1.@l1, . . . , qn.@ln, q.@l}, we include an FD obtained from it by changing qi
to q ′.a′′.ai , qi .@li to q.a′′.ai .@li , and q.@l to q.a′′.@l;

(3) {q ′, q ′.a′′.a1.@l1, . . . , q ′.a′′.an.@ln} → q ′.a′′, and {q ′.a′′, q ′.a′′.ai .@li } →
q ′.a′′.ai for i ∈ [1, n].

The Algorithm. In Figure 5, the normalization algorithm proposed in Arenas
and Libkin [2002] is shown. This algorithm applies the “moving attributes” and
“creating new element types” transformations until the schema is in XNF. We note
that the “creating new element types” transformation is not applied to an arbitrary
anomalous FD, but rather to a minimal one. To understand the notion of minimality
for XML FDs, we first introduce this notion for relational databases. Let R be a
relation schema containing a set of attributes U and � a set of FDs over R. If
(R, �) is not in BCNF, then there exist pairwise disjoint sets of attributes X , Y and
Z such that U = X ∪ Y ∪ Z , � � X → Y and � �� X → A, for every A ∈ Z .
In this case, we say that X → Y is an anomalous FD. To eliminate this anomaly, a
decomposition algorithm splits relation R into two relations: S(X, Y ) and T(X, Z ).
A desirable property of the new schema is that S or T is in BCNF. We say that
X → Y is a minimal anomalous FD if S(X, Y ) is in BCNF, that is, S(X, Y ) does
not contain an anomalous FD. This condition can be defined as follows: X → Y is
minimal if there are no pairwise disjoint sets X ′, Y ′ ⊆ U such that X ′ ∪Y ′ � X ∪Y ,
� � X ′ → Y ′ and � �� X ′ → X ∪ Y .

In the XML context, the definition of minimality is similar in the sense that
we expect the new element types a′′, a1, . . . , an form a structure not containing
anomalous elements. However, the definition of minimality is more complex to
account for paths used in FDs. We say that {q, q1.@l1, . . . , qn.@ln} → q0.@l0
is (D, �)-minimal if there is no anomalous FD X → qi .@li ∈ (D, �)+ such
that i ∈ [0, n] and X is a subset of {q, q1, . . . , qn, q0.@l0, . . . , qn.@ln} such that
| X |≤ n and X contains at most one element path.

Now we prove that after each step of the normalization algorithm proposed
in Arenas and Libkin [2002], the amount of information in each position does



Normal Forms for Relational and XML Data 277

not decrease. Let (D, �) be an XML specification and T ∈ inst(D, �). Assume
that (D, �) is not in XNF. Let (D′, �′) be an XML specification obtained by
executing one step of the normalization algorithm. Every step of this algorithm
induces a natural transformation on XML documents. One of the properties of the
algorithm is that for each normalization step that transforms T ∈ inst(D, �) into
T ′ ∈ inst(D′, �′), one can find a map πT ′,T : Pos(T ′) → 2Pos(T ) that associates
each position in the new tree T ′ with one or more positions in the old tree T , as
shown below.

(1) Assume that D′ = D[q.@l := q ′.@m] and, therefore, q ′ → q.@l is an
anomalous FD in (D, �). In this case, an XML tree T ′ is constructed from T as
follows. For every t ∈ tuplesD(T ), define a tree tuple t ′ by using the following
rule: t ′(q ′.@m) = t(q.@l) and for every q ′′ ∈ paths(D) − {q.@l}, t ′(q ′′) =
t(q ′′). Then T ′ is an XML tree whose tree tuples are {t ′ | t ∈ tuplesD(T )}.
Furthermore, positions in t ′ are associated to positions in t as follows: if p′ =
(t ′(q ′), @m), then πT ′,T (p′) = {(t(q), @l)}; otherwise, πT ′,T (p′) = {p′}.

(2) Assume that (D′, �′) was generated by considering a (D, �)-minimal anoma-
lous FD {q ′, q1.@l1, . . . , qn.@ln} → q.@l. Thus, D′ = D[q.@l :=
q ′.a′′[a1.@l1, . . . , an.@ln, @l]]. In this case, an XML tree T ′ is constructed
from T as follows. For every t ∈ tuplesD(T ), define a tree tuple t ′ by using
the following rule: t ′(q ′.a′′) is a fresh node identifier, t ′(q ′.a′′.@l) = t(q.@l),
t ′(q ′.a′′.ai ) is a fresh node identifier (i ∈ [1, n]), t ′(q.a′′.qi .@li ) = t(qi .@li )
and for every q ′′ ∈ paths(D) − {q.@l}, t ′(q ′′) = t(q ′′). Then, T ′ is an XML
tree whose tree tuples are {t ′ | t ∈ tuplesD(T )}. Furthermore, positions in t ′ are
associated to positions in t as follows. If p′ = (t ′(q ′.a′′), @l), then πT ′,T (p′) =
{(t(q), @l)}. If p′ = (t ′(q ′.a′′.ai ), @li ), then (t(qi ), @li ) ∈ πT ′,T (p′) (note
that in this case πT ′,T (p) may contain more than one position). For any other
position p′ in t ′, πT ′,T (p′) = {p′}.

Similarly to the relational case, we can now show the following.

THEOREM 6.5. Let T be a tree that conforms to a DTD D and satisfies a set
of FDs �, and let T ′ ∈ inst(D′, �′) result from T by applying one step of the
normalization algorithm. Let p′ ∈ Pos(T ′). Then

INFT ′(p′ | �′) ≥ max
p∈πT ′,T (p′)

INFT (p | �).

PROOF. Let (D, �) be an XML specification and T ∈ inst(D, �). Assume
that (D, �) is not in XNF. Let (D′, �′) be an XML specification obtained by
executing one step of the normalization algorithm. We have to prove that for every
p′ ∈ Pos(T ′), INFT ′(p′ | �′) ≥ maxp∈πT ′,T (p′) INFT (p | �). This can be done in
exactly the same way as the proof of Theorem 6.1. First, by using the same proof
as for Lemma 6.2, we show that the same results holds for XML trees. Using this,
we show the following:

(1) Assume D′ = D[q.@l := q ′.@m] and q ′ → q.@l is an anomalous FD
over (D, �). Let a′ be the last element of q ′ and p′ ∈ Pos(T ′). If p′ is of the
form (x, @m), where λ(x) = a′, then INFT ′(p′ | �′) = 1 and, therefore, the
theorem trivially holds. Otherwise, πT ′,T (p′) = {p′} and it can be shown that
INFT ′(p′ | �′) ≥ INFT (p′ | �) by using the same proof as that of Lemma 6.3.



278 M. ARENAS AND L. LIBKIN

(2) Assume that D′ = D[q.@l := q ′.a′′[a1.@l1, . . . , an.@ln, @l]] {q ′,
q1.@l1, . . . , qn.@ln} → q.@l is a (D, �)-minimal anomalous FD. Let p′ ∈
Pos(T ′). If p′ is the position in T ′ of some value reachable from the root by
following path q ′.a′′.@l or q ′.a′′.ai .@li , for some i ∈ [1, n], then INFT ′(p′ |
�′) = 1 since {q ′, q1.@l1, . . . , qn.@ln} → q.@l is (D, �)-minimal. Thus, in
this case the theorem trivially holds. Otherwise, πT ′,T (p′) = {p′} and again it
can be shown that INFT ′(p′ | �′) ≥ INFT (p′ | �) by using the same proof as
for Lemma 6.3.

This completes the proof of the theorem.

Just like in the relational case, one can define effective steps of the algorithm
as those in which the above inequality is strict for at least one position, and show
that (D, �) is in XNF if and only if no decomposition algorithm is effective in
(D, �).

7. Conclusions and Future Work

Our goal was to find criteria for good data design, based on the intrinsic properties of
a data model rather than tools built on top of it, such as query and update languages.
We were motivated by the justification of normal forms for XML, where usual
criteria based on update anomalies or existence of lossless decompositions are not
applicable until we have standard and universally acceptable query and update
languages.

We proposed to use techniques from information theory, and measure the in-
formation content of elements in a database with respect to a set of constraints.
We tested this approach in the relational case and showed that it works: that is,
it characterizes the familiar normal forms such as BCNF and 4NF as precisely
those corresponding to good designs, and justifies others, more complicated ones,
involving join dependencies. We then showed that the approach straightforwardly
extends to the XML setting, and for the case of constraints given by functional
dependencies, equates the normal form XNF of Arenas and Libkin [2002] with
good designs. In general, the approach is very robust: although we do not show it
here due to space limitations, it can be easily adapted to the nested relational model,
where it justifies a normal form NNF [Mok et al. 1996; Özsoyoglu and Yuan 1987].

It would be interesting to characterize 3NF by using the measure developed in this
paper. So far, a little bit is known about 3NF. For example, as in the case of BCNF, it
is possible to prove that the synthesis approach for generating 3NF databases does
not decrease the amount of information in each position. Furthermore, given that
3NF does not necessarily eliminate all redundancies, one can find 3NF databases
where the amount of information in some positions is not maximal.

We would like to consider more complex XML constraints and characterize good
designs they give rise to. We also would like to connect this approach with that of
Hull [1986], where information capacities of two schemas can be compared based
on the existence of queries in some standard language that translate between them.
For two classes of well-designed schemas (those with no constraints, and with keys
only), being information-capacity equivalent means being isomorphic [Albert et al.
1999; Hull 1986], and we would like to see if this connection extends beyond the
classes of schemas studied in Albert et al. [1999] and Hull [1986].



Normal Forms for Relational and XML Data 279

Appendix

A. Proofs

A.1. Proof of Lemma 4.4. We start with the following simple but useful obser-
vation. The proof follows immediately from genericity.

CLAIM A.1. Let � be a set of generic integrity constraints over a relational
schema S, I ∈ instk(S, �) and p ∈ Pos(I ). Assume that a, b ∈ [1, k] − adom(I ).
Then for every ā ∈ �(I, p), |SATk

�(I(a,ā))| = |SATk
�(I(b,ā))|.

Next, we need the following.

CLAIM A.2. Let � be a set of integrity constraints over a relational schema
S, I ∈ inst(S, �), p ∈ Pos(I ) and ā ∈ �(I, p). Then for every a ∈ N+, there exists
k0 ∈ N+ and a polynomial qa(k) such that |SATk

�(I(a,ā))| = qa(k), for every k > k0.

PROOF. Let the variables of ā be v1, . . . , vl . Fix a > 0, and let m be the
maximum value in adom(I ) ∪ {a}. Define k0 to be m + l + 1. By genericity,
|SATk0

� (I(a,ā))| = 0 implies |SATk
�(I(a,ā))| = 0 for all k > k0, so we assume there is

at least one substitution in SATk0
� (I(a,ā)).

We consider the set of all triples P = (X, σX , �) where

—X ⊆ {1, . . . , l},
—σX : {vi | i ∈ X} → [1, m], and

—� is a partition on {1, . . . , l} − X .

Given σ ∈ SATk
�(I(a,ā)), we write σ ∼ P if for every i ∈ X , σ (vi ) = σX (vi ),

for every i �∈ X , σ (vi ) �∈ [1, m], and for every i, j �∈ X , σ (vi ) = σ (v j ) iff i and j
are in the same block of �. Observe that for every σ ∈ SATk

�(I(a,ā)), there exists
exactly one triple P such that σ ∼ P .

Let σ, σ ′ ∼ P be two substitutions. From the genericity of �, we immediately
see that σ (I(a,ā)) |= � iff σ ′(I(a,ā)) |= �. Furthermore, if σ collapses two rows in
I(a,ā), then so does σ ′ (since σ (vi ) = σ (v j ) iff σ ′(vi ) = σ ′(v j )). We conclude that
σ ∈ SATk

�(I(a,ā)) iff σ ′ ∈ SATk
�(I(a,ā)).

The number of triples P depends on I, a and ā but not on k. For each P , either
all σ with σ ∼ P belong to SATk

�(I(a,ā)), or none belongs to SATk
�(I(a,ā)). Thus,

it will suffice to show that for every P , there exists a polynomial qP
a (k) such that

|{σ ∈ SATk
�(I(a,ā)) | σ ∼ P}| = qP

a (k).
The case when no σ with σ ∼ P belongs to SATk

�(I(a,ā)) is trivial: qP
a (k) = 0

for all k. Otherwise, let P = (X, σX , �), and let mP be the number of partition
blocks of �. The number of σ ∼ P is then the number of ways to chose mP distinct
ordered elements in [m + 1, k], that is

qP
a (k) =

mP−1∏
i=0

(k − m − i).

Since m and mP do not depend on k, this concludes the proof of the claim.



280 M. ARENAS AND L. LIBKIN

PROOF OF LEMMA 4.4. Let I ∈ inst(S, �), p ∈ Pos(I ), and ā ∈ �(I, p). To
prove this lemma it suffices to show that the following limit exists:

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)
. (14)

By Claims A.1 and A.2, there exists k0 > 0 and polynomials qa(k), for every
a ∈ adom(I ), and q(k) such that for every k > k0:

(1) |SATk
�(I(a,ā))| = qa(k), for every a ∈ adom(I );

(2) |SATk
�(I(a,ā))| = q(k), for every a ∈ [1, k] − adom(I ).

Let n = |adom(I )| and r (k) = (k − n)q(k) + ∑
a∈adom(I ) qa(k). Then (14) is equal

to

lim
k→∞

1

log k

[ ∑
a∈adom(I )

(
qa(k)

r (k)
log

r (k)

qa(k)

)
+ (k − n)

q(k)

r (k)
log

r (k)

q(k)

]
. (15)

We first show that

lim
k→∞

1

log k

[ ∑
a∈adom(I )

qa(k)

r (k)
log

r (k)

qa(k)

]
= 0. (16)

Note that degree(r ) ≥ degree(qa) for every a ∈ adom(I ). If degree(r ) >

degree(qa), then clearly limk→∞ qa(k)
r (k) log r (k)

qa(k) = 0. If degree(r ) = degree(qa),
then limk→∞ qa(k)

r (k) log r (k)
qa(k) exists and equals some positive constant ca; hence

limk→∞ 1
log k

qa(k)
r (k) log r (k)

qa(k) = 0. Thus, (16) holds and (15) equals

lim
k→∞

[
(k − n)

log k
· q(k)

r (k)
· log

r (k)

q(k)

]
. (17)

By the definition of r , degree(r ) ≥ degree(q) + 1. A simple calculation shows
that for degree(r ) = degree(q)+1, (17) equals some positive constant that depends
on the coefficients of q and r , and for degree(r ) > degree(q) + 1, (17) equals 0.
Hence, the limit (15) always exists, which completes the proof.

A.2. Proof of Lemma 6.2.
Assume that

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)
�= 0. (18)

We will show that this limit must be 1.
First note that by (18), there exists k0 > 0 such that for every k ≥ k0 and

a ∈ [1, k] − adom(I ), |SATk
�(I(a,ā))| ≥ 1. If this were not true, then by Claim A.1,

for every a ∈ N+ − adom(I ), we would have |SATk
�(I(a,ā))| = 0 and, therefore,∑

a∈[1,k] P(a | ā) log 1
P(a|ā) ≤ log |adom(I )|. We conclude that

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)
≤ lim

k→∞
log |adom(I )|

log k
= 0,

which contradicts (18).



Normal Forms for Relational and XML Data 281

To prove the lemma, we need to introduce an equivalence relation on the elements
of ā and prove some basic properties about it. Assume that ‖I‖ = n, n > 0. Let
k ≥ k0 be such that adom(I ) � [1, k]. Given ai , a j ∈ ā, we say that ai and a j
are linked in (a, ā), written as ai ∼ a j , if for every substitution σ : ā → [1, k]
such that σ (I(a,ā)) |= �, it is the case that σ (ai ) = σ (a j ). Observe that if ai , a j are
constants, then ai ∼ a j iff ai = a j . It is easy to see that ∼ is an equivalence relation
on ā. We say that ai ∈ ā is determined in (a, ā) if for every pair of substitutions
σ1, σ2 : ā → [1, k] such that σ1(I(a,ā)) |= � and σ2(I(a,ā)) |= �, it is the case
that σ1(ai ) = σ2(ai ). Notice that if ai is a constant, then ai is determined in (a, ā).
Furthermore, observe that if ai ∼ a j and ai is determined in (a, ā), then a j is
determined in (a, ā). Thus, we can extend the definition for equivalence classes:
[ai ]∼ is determined in (a, ā) if ai is determined in (a, ā). We define undet(a, ā) as
the set of all undetermined equivalence classes of ∼:

undet(a, ā) = {[ai ]∼ | ai ∈ ā and [ai ]∼ is not determined}.
CLAIM A.3

(1) For every a ∈ adom(I ) and b ∈ [1, k] − adom(I ), if there exists a substitution
σ : ā → [1, k] such that σ (I(b,ā)) |= �, then |undet(b, ā)| ≥ |undet(a, ā)|.

(2) For every a, b ∈ [1, k] − adom(I ), undet(b, ā) = undet(a, ā).

PROOF

(1) Let a ∈ adom(I ) and b ∈ [1, k] − adom(I ). Assume that there exists a
substitution σ : ā → [1, k] such that σ (I(b,ā)) |= �. It is easy to see that for
every ai , a j ∈ ā, if ai is determined in (b, ā), then ai is determined in (a, ā), and
if ai , a j are linked in (b, ā), then ai , a j are linked in (a, ā). Thus, |undet(b, ā)| ≥
|undet(a, ā)|.

(2) Trivial, by Claim A.1.

CLAIM A.4. Let a ∈ [1, k] − adom(I ). If k > 2n, then |SATk
�(I(a,ā))| ≥ (k −

2n)|undet(a,ā)|.

PROOF. To prove this claim, we consider two cases. First, assume that ā does
not contain any variable. Then, |undet(a, ā)| = 0 and we have to prove that
|SATk

�(I(a,ā))| ≥ 1. For that, it suffices to show that I(a,ā) |= �. Towards a contra-
diction, assume that I(a,ā) �|= �. Then, by Claim A.1, |SATk

�(I(b,ā))| = 0, for every
b ∈ N+ − adom(I ), which contradicts the existence of k0.

Second assume that ā contains at least one variable. Let σ0 : ā → [1, k] be
a substitution such that σ0(I(a,ā)) |= � (such a substitution exists by assumption
(18)). Let σ : ā → [1, k] be a substitution such that: (a) σ and σ0 coincide in
determined equivalence classes; (b) for every undetermined class [ai ]∼, σ assigns
the same value in [1, k] − (adom(I ) ∪ {a}) to each element in this class; (c) for
every pair of distinct undetermined classes [ai ]∼, [a j ]∼, σ (ai ) �= σ (a j ). Notice that
such a function exists since k > 2n. Given that σ0(I(a,ā)) |= �, we have σ (I(a,ā)) |=
�. Thus, |SATk

�(I(a,ā))| is greater than or equal to the number of substitutions
with domain ā and range contained in [1, k] satisfying conditions (a), (b) and (c).
Therefore, |SATk

�(I(a,ā))| ≥ (k − (n +1))(k − (n +2)) · · · (k − (n +|undet(a, ā)|)) ≥
(k − 2n)|undet(a,ā)|. This proves the claim.



282 M. ARENAS AND L. LIBKIN

We will use this claim to prove that limk→∞ 1
log k

∑
a∈[1,k] P(a | ā) log 1

P(a|ā) = 1.
Let k ≥ k0 be such that adom(I ) ⊆ [1, k] and k > 2n. By Claim A.4, for every
a ∈ [1, k] − adom(I ), |SATk

�(I(a,ā))| ≥ (k − 2n)|undet(a,ā)|. Furthermore, by Claim
A.3, for every a ∈ [1, k] − adom(I ):∑

b∈[1,k]

|SATk
�(I(b,ā))| ≤

∑
b∈[1,k]

k|undet(b,ā)| ≤ k|undet(a,ā)|+1.

Thus, for every a ∈ [1, k] − adom(I ):

P(a | ā) ≥ (k − 2n)|undet(a,ā)|

k|undet(a,ā)|+1
= 1

k

(
1 − 2n

k

)|undet(a,ā)|
. (19)

By Claim A.1, for every a, b ∈ [1, k] − adom(I ), P(a | ā) = P(b | ā) and,
therefore,

P(a | ā) ≤ 1

k − |adom(I )| ≤ 1

k − n
. (20)

Therefore, using (19) and (20) we conclude that:

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)
≥

∑
a∈[1,k]−adom(I )

1

k

(
1 − 2n

k

)|undet(b,ā)|
log(k − n)

≥ log(k − n)

(
1 − n

k

)(
1 − 2n

k

)|undet(b,ā)|
,

where b is an arbitrary element in [1, k] − adom(I ). Thus,

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)
≥ log(k − n)

log k

(
1 − n

k

)(
1 − 2n

k

)|undet(b,ā)|
.

It is straightforward to prove that

lim
k→∞

[
log(k − n)

log k

(
1 − n

k

)(
1 − 2n

k

)|undet(b,ā)|]
= 1.

Thus,

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)
≥ 1

and, therefore,

lim
k→∞

1

log k

∑
a∈[1,k]

P(a | ā) log
1

P(a | ā)
= 1,

since
∑

a∈[1,k] P(a | ā) log 1
P(a|ā) ≤ log k. This completes the proof of Lemma 6.2.

ACKNOWLEDGMENTS. We thank Pablo Barceló and Michael Benedikt for helpful
comments. We would also like to thank the anonymous referees for several very
helpful comments.



Normal Forms for Relational and XML Data 283

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley, Reading,
Mass.

ALBERT, J., IOANNIDIS, Y., AND RAMAKRISHNAN, R. 1999. Equivalence of keyed relational schemas by
conjunctive queries. J. Comput. Syst. Sci. 58, 3, 512–534.

ARENAS, M., AND LIBKIN, L. 2002. A normal form for XML documents. In Proceedings of the 21st ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM, New York, 85–96.

ARENAS, M., AND LIBKIN, L. 2004. A normal form for XML documents. ACM Trans. Datab. Syst. 29, 1,
195–232.

BEERI, C., BERNSTEIN, P., AND GOODMAN, N. 1978. A sophisticate’s introduction to database normal-
ization theory. In Proceedings of the 4th International Conference on Very Large Data Bases. 113–124.

BISKUP, J. 1995. Achievements of relational database schema design theory revisited. In Semantics in
Databases, L. Libkin and B. Thalheim, Eds. Springer-Verlag, New York, 29–54.

CAVALLO, R., AND PITTARELLI, M. 1987. The theory of probabilistic databases. In Proceedings of 13th
International Conference on Very Large Data Bases. 71–81.

COVER, T., AND THOMAS, J. 1991. Elements of Information Theory. Wiley-Interscience, New York.
DALKILIC, M., AND ROBERTSON, E. 2000. Information dependencies. In Proceedings of the 19th ACM

Symposium on Principles of Database Systems. ACM, New York, 245–253.
EMBLEY, D., AND MOK, W. Y. 2001. Developing XML documents with guaranteed “good” properties.

In Proceedings of the 20th International Conference on Conceptual Modeling. 426–441.
FAGIN, R. 1977. Multivalued dependencies and a new normal form for relational databases. ACM Trans.

Datab. Syst. 2, 3, 262–278.
FAGIN, R. 1979. Normal forms and relational database operators. In Proceedings of the 1979 ACM

SIGMOD International Conference on Management of Data. ACM, New York, 153–160.
FAGIN, R. 1981. A normal form for relational databases that is based on domians and keys. ACM Trans.

Datab. Syst. 6, 3, 387–415.
HULL, R. 1986. Relative information capacity of simple relational database schemata. SIAM J. Com-

put. 15, 3, 856–886.
KANELLAKIS, P. 1990. Elements of relational database theory. In Handbook of Theoretical Computer

Science, Volume B. MIT Press, Cambridge, Mass., 1075–1144.
LEE, T. 1987. An information-theoretic analysis of relational databases—Part I: Data dependencies and

information metric. IEEE Trans. Softw. Eng. 13, 10, 1049–1061.
LEVENE, M., AND LOIZOU, G. 2003. Why is the snowflake schema a good data warehouse design? Inf.

Syst. 28, 3, 225–240.
LEVENE, M., AND VINCENT, M. 2000. Justification for inclusion dependency normal form. IEEE Trans.

Knowl. Data Eng. 12, 2, 281–291.
LEY, M. 2003. DBLP. http://www.informatik.uni-trier.de/~ley/db/index.html.
MAIER, D., MENDELZON, A., AND SAGIV, Y. 1979. Testing implications of data dependencies. ACM

Trans. Datab. Syst. 4, 4, 455–469.
MOK, W. Y., NG, Y.-K., AND EMBLEY, D. 1996. A normal form for precisely characterizing redundancy

in nested relations. ACM Trans. Datab. Syst. 21, 1, 77–106.
ÖZSOYOGLU, M., AND YUAN, L.-Y. 1987. A new normal form for nested relations. ACM Trans. Datab.

Syst. 12, 1, 111–136.
PAPADIMITRIOU, C. 1994. Computational complexity. Addison-Wesley, Reading, Mass.
SHANNON, C. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (Part I),

623–656 (Part II).
SUCIU, D. 2001. On database theory and XML. SIGMOD Record 30, 3, 39–45.
TATARINOV, I., IVES, Z., HALEVY, A., AND WELD, D. 2001. Updating XML. In Proceedings of the 2001

ACM SIGMOD International Conference on Management of Data. ACM, New York, 413–424.
VIANU, V. 2001. A web odyssey: From Codd to XML. In Proceedings of the 20th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems. ACM, New York, 1–15.
VINCENT, M. 1997. A corrected 5NF definition for relational database design. Theoret. Comput.

Sci. 185, 2, 379–391.
VINCENT, M. 1999. Semantic foundations of 4NF in relational database design. Acta Inf. 36, 3, 173–213.

RECEIVED NOVEMBER 2003; REVISED JUNE 2004; ACCEPTED DECEMBER 2004

Journal of the ACM, Vol. 52, No. 2, March 2005.


