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Abstract. We consider here scalar aggregation queries in databases that
may violate a given set of functional dependencies. We show how to
compute consistent answers (answers true in every minimal repair of
the database) to such queries. We provide a complete characterization
of the computational complexity of this problem. We also show how
tractability can be obtained in several special cases (one involves a novel
application of the perfect graph theory) and present a practical hybrid
query evaluation method.

1 Introduction

While integrity constraints capture important semantic properties of data, they
are often unenforceable if data comes from different, autonomous sources (thus
the integrated database may be inconsistent with the constraints). The notion of
a consistent query answer [2] attempts to reduce this tension by using constraints
to qualify query answers. A consistent answer is, intuitively, true regardless of
the way the database is fixed to remove constraint violations. Thus answer con-
sistency serves as an indication of its reliability.

Consistent query answers are potentially important in a datawarehouse con-
text, where inconsistencies are likely to occur as the effect of the integration
of data sources, with duplicate information, or delayed refreshment of the wa-
rehouse. In addition, it is in datawarehousing where aggregation queries are
particularly important because they are used, in combination with OLAP me-
thodologies, to better understand, in a global way, the peculiarities of clients,
market and business behavior, and to support decision making.

In [2], in addition to a formal definition of a consistent query answer, a
computational mechanism for obtaining such answers was presented. However,
the queries considered were just first-order queries. Here we address in the same
context the issue of aggregation queries. We limit, however, ourselves to single
relations that possibly violate a given set of functional dependencies (FDs).

In defining consistent answers to aggregation queries we distinguish between
queries with scalar and aggregation functions. The former return a single value
for the entire relation. The latter perform grouping on an attribute (or a set of
attributes) and return a single value for each group. Both kinds of queries use
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the same standard set of SQL-2 aggregate operators: MIN, MAX, COUNT, SUM, and
AVG. In this paper, we address only aggregation queries with scalar functions.

Example 1. Assume we have the following database instance Salary (we are
identifying the table with the database instance)

Salary Name Amount
V .Smith 5000
V .Smith 8000
P .Jones 3000
M .Stone 7000

and F is Name → Amount , meaning that Name functionally determines
Amount , that is violated by the table Salary , actually by the tuples with the
value V .Smith in attribute Name. If we pose the query MIN(Amount) to this
database, we should get, independently of how the violation is fixed, the value
3000. Nevertheless, if we ask MAX(Amount), we have a problem, because the
maximum, 8000, comes from a tuple that participates in the violation of the
functional dependency.

In [2] we defined an answer to a query posed to an inconsistent database as
consistent when that same answer is obtained from every possible repair of the
given database instance. Here, a repair is a new database instance that satisfies
the given integrity constraints (ICs) and departs in a minimal way from the
original database (see Section 2.1). In our case, the possible repairs are

Salary1 Name Amount Salary2 Name Amount
V .Smith 5000 V .Smith 8000
P .Jones 3000 P .Jones 3000
M .Stone 7000 M .Stone 7000

In each repair MIN(Amount) returns the same value: 3000. On the other hand,
MAX(Amount) returns a different value in each repair: 7000 or 8000. Thus, in the
second case, there is no single consistent answer in the sense we had defined it.
Nevertheless, an answer given by the initial database in the form of the inter-
val [6000, 9000], meaning that in every repair the maximum lies between 6000
and 9000, could be considered a consistent answer. In particular, we might be
interested in getting, as a more accurate consistent answer, the smallest pos-
sible interval (the optimal lower and upper bounds), in this case the interval
[7000, 8000].

Example 2. Consider the FD: StNumber → Name and the inconsistent database
instance

Jobs StNumber Name Activity
980134 D .Singh TeachAsst
980134 F .Chen ResAsst
980134 D .Singh Programmer

This instance has two possible repairs
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Jobs1 StNumber Name Activity Jobs2 StNumber Name Activity
980134 D.Singh TeachAsst 980134 F.Chen ResAsst
980134 D.Singh Programmer

If we pose the query COUNT(Jobs) to these repairs, we obtain two different
answers, 2 and 1, respectively. Thus, the optimal consistent answer is the interval
[1,2]. 2

Therefore, for aggregation queries we have to weaken a bit the notion of
consistent query answer to allow answers that are not single values, but intervals.

In Section 2, we provide a general definition of consistent answer to an ag-
gregation query with scalar functions. We also define a graph-theoretical repre-
sentation of the database repairs, which is specifically geared towards FDs. In
Section 3, we study the data complexity of the problem of computing consistent
answers to aggregation queries in inconsistent databases. In Section 4, we show
how to reduce the computational cost of computing such answers by decompo-
sing the computation into two parts: one that involves standard relational query
evaluation and one that computes the consistent answers in a smaller instance.
In Section 5, we show that the complexity of computing consistent answers can
be reduced by exploiting special properties of the given set of FDs or the given
instances. In Section 6 we discuss related and further work.

2 Basic Notions

In this paper we assume that we have a fixed database schema containing only
one relation schema R with the set of attributes U . We will denote elements of
U by A,B, . . . , subsets of U by X,Y, . . . , and the union of X and Y by XY .
We also have two fixed, disjoint infinite database domains: D (uninterpreted
constants) and N (numbers). We assume that elements of the domains with
different names are different. The database instances can be seen as first order
structures that share the domains D and N . Every attribute in U is typed, thus
all the instances of R can contain only elements either of D or N in a single
attribute. Since each instance is finite, it has a finite active domain which is a
subset of D∪N . As usual, we allow built-in predicates over N that have infinite
extensions, identical for all database instances. There is also a set of functional
dependencies F over R that captures the semantics of the database. E.g., it may
express the property that an employee has only a single salary. The instances
of the database do not have to satisfy F (because the database may contain
integrated data from multiple sources). A database that violates a given set of
FDs is called FD-inconsistent.

2.1 Repairs

Given a database instance r, we denote by Σ(r) the set of formulas {P (ā) | r �
P (ā)}, where P is a relation name and ā a ground tuple.
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Definition 1. The distance ∆(r, r′) between data-base instances r and r′ is the
symmetric difference: ∆(r, r′) = (Σ(r) −Σ(r′)) ∪ (Σ(r′) −Σ(r)).

Definition 2. For the instances r, r′, r′′ , r′ ≤r r
′′ if ∆(r, r′) ⊆ ∆(r, r′′), i.e., if

the distance between r and r′ is less than or equal to the distance between r and
r′′.

Definition 3. Given a set of FDs F and database instances r and r′, we say
that r′ is a repair of r w.r.t. F if r′ � F and r′ is ≤r-minimal in the class of
database instances that satisfy the set of FDs F . 2

We denote by RepairsF (r) the set of repairs of r w.r.t. F . Examples 1 and 2
illustrate the notion of repair. For a set of FDs, F , repairs are always obtained
by deleting tuples from the table. For every instance r, the union of all repairs
of r w.r.t. F is equal to r. These properties are not necessarily shared by other
classes of ICs.

Definition 4. The core of r is defined as CoreF (r) =
⋂

r′∈RepairsF (r) r
′. 2

The core is a new database instance. If r consists of a single relation, then
the core is the intersection of all the repairs of r. The core of r itself is not
necessarily a repair of r. In example 1, the core is the table containing the tuples
(P.Jones, 3000) and (M.Stone, 7000) only. In example 2, the core is empty.

2.2 Consistent Query Answers

First Order Queries. Query answers for first order queries are defined in the
standard way.

Definition 5. Given a set of integrity constraints F , we say that a (ground)
tuple t̄ is a consistent answer to a query Q(x̄) in a database instance r, and we
write r |=F Q(t̄) (or r |=F Q(x̄)[t̄]), if for every r′ ∈ RepairsF (r), r′ � Q(t̄). If
Q is a sentence, then true (false) is a consistent answer to Q in r, and we write
r |=F Q (r |=F ¬Q), if for every r′ ∈ RepairsF (r), r′ � Q (r′

2 Q).

Aggregation Queries. The aggregation queries we consider are queries of the
form: SELECT f(...) FROM R, where f is one of the aggregate operators MIN,
MAX, COUNT, SUM, and AVG, applied to an attribute or the entire relation (as
with the COUNT(*)). These queries return single numerical values by applying
the corresponding scalar function, i.e., minimum for MIN, etc. In general, f will
denote an aggregation query (or a scalar function itself). We write r |= f = a to
express that the aggregation query f returns the value a in the instance r.

Definition 6. Given a set of integrity constraints F , we say that a numerical
interval [a, b], with −∞ < a ≤ b < ∞, is a consistent answer to an aggregation
query f in a database instance r, and we write r |=F f ∈ [a, b] (or r |=F a ≤
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f ≤ b) if for every r′ ∈ RepairsF (r), r′ returns to the query f a value v such that
a ≤ v ≤ b. If [a, b] is a consistent answer, then a is called a lower-bound-answer
and b an upper-bound-answer. An interval is an optimal consistent answer if no
subinterval is a consistent answer. If [a, b] is an optimal consistent answer, then
a is called the greatest-lower-bound-answer (glb-answer) and denoted glbF (f, r),
and b the least-upper-bound-answer (lub-answer) and denoted lubF (f, r). 2

We will be particularly interested in obtaining optimal consistent answers by
querying the possibly inconsistent database, without computing and checking all
possible repairs.

Note: Our notion of consistent query answer for aggregation queries with
scalar functions has some shortcomings. For instance, while we guarantee that
the value of the scalar function in every repair falls within the returned interval,
clearly not every value in this interval will correspond to the value of the function
obtained in some repair. Perhaps it is more natural for such queries to return
a set of values, each corresponding to the value of the function in some repair.
Along the same lines, one could represent such a set as an OR-object [12] or a
C-table [11]. However, the interval-based representation is exponentially more
compact than any explicit set-based representation.

Example 3. Consider the functional dependency A → B and the following data-
base instance r0 (columns represent tuples):

r0
A 1 1 2 2 · · · n n
B 0 1 0 2 · · · 0 2n−1

The scalar function involving summing on the B attribute will assume each value
between 0 and 2n−1 in some repair of r0. Therefore, any set-based representation
of set of all of those values will be of exponential size. On the other hand, the
interval-based representation [0, 2n − 1] has polynomial size. 2

In addition to consistent answers, we will also consider other auxiliary notions
of query answers in inconsistent databases.

Definition 7. A value v is a core answer w.r.t. F to f in r if

v = f(
⋂

r′∈RepairsF (r)

r′).

A value v is a union answer w.r.t. F to f in r if

v = f(
⋃

r′∈RepairsF (r)

r′).

Union answers are trivial for FDs, as the union of all the repairs of r is r
itself, so the union answer reduces to f(r).
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2.3 Graph Representation

Given a set of FDs F and an instance r, all the repairs of r w.r.t. F can be
succinctly represented as a graph.

Definition 8. The conflict graph GF,r is an undirected graph whose set of ver-
tices is the set of tuples in r and whose set of edges consists of all the edges
(t1, t2) such that there is a dependency X → Y ∈ F for which t1[X] = t2[X]
and t1[Y ] 6= t2[Y ]. The complement conflict graph ḠF,r is the complement of
the conflict graph.

Example 4. Consider a schema R(AB), the set F of two functional dependencies
A → B and B → A, and an instance r = {(a1, b1), (a1, b2), (a2, b2), (a2, b1)} over
this schema. The conflict graph GF,r looks as follows:

(a1, b1) (a1, b2)

(a2, b1) (a2, b2)

Proposition 1. Each repair in RepairsF (r) corresponds to a maximal indepen-
dent set in GF,r (or a maximal clique in ḠF,r) and vice versa. 2

The above graphs are geared specifically towards FDs. The repairs of other
classes of constraints do not necessarily have similar representations.

2.4 Computational Complexity

Data Complexity. The data complexity assumption [7,15] makes it possible to
study the complexity of query processing as a function of the size of the database
instance.

Definition 9. Given a class of databases D, a class of queries L and a class of
integrity constraints, the data complexity of computing consistent query answers
is defined to be the complexity of (deciding the membership of) the sets DF,φ =
{(D, t̄) : D |=F φ[t̄]} for a fixed φ ∈ L and a fixed finite set F of integrity
constraints. This problem is C-data-hard for a complexity class C if there is a
query φ ∈ L and a finite set of integrity constraints F such that DF,φ is C-hard.

Upper and Lower Complexity Bounds. We view computing glb- and lub-
answers as an optimization problem. It is easy to see that for all SQL scalar ag-
gregation queries the data complexity of this problem is in NPO - the class of op-
timization problems whose associated decision problems are in NP [4]. In several
cases, we will show that computing glb- and lub-answers is in PO (polynomial-
time computable optimization problems). To show intractability of computing
a glb- (or lub)-answer to f(r) for an aggregation query f , we will demonstrate
that the decision problem glbF (f, r) (or lubF (f, r)) θk (where θ ∈ {≤,≥}) is NP-
hard. If the latter is the case, then clearly computing the appropriate consistent
answer is not in PO, unless P=NP.
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3 Scalar Aggregation

Computing consistent answers by producing all the repairs of a database instance
and then computing the aggregation queries for each of them may have a high
complexity. The following instance r1 with 2n tuples (columns represent tuples):

r1
A 1 1 2 2 · · · n n
B 0 1 0 1 · · · 0 1

has 2n possible repairs for the single FD A → B. So, in general, computing all re-
pairs and then evaluating a query in each repair is not feasible. We have identified
two ways of computing consistent answers by querying the given, inconsistent
database instance, without having to compute all the repairs. Query transfor-
mation modifies the original query, Q, into a new query, T (Q), that returns only
consistent answers. We have applied this approach in [2] to restricted first order
queries and universal integrity constraints. Except in some simple cases, this ap-
proach does not seem applicable to aggregation queries. For example, even when
MAX(A) and MIN(A) queries can be written as first order queries, their resulting
syntax does not allow to apply the methodology developed in [2] to them. Here,
we use instead the fact that for FDs, the set of all repairs of an instance can
be compactly represented as the conflict graph or its complement. We develop
techniques and algorithms geared specifically towards this representation.

3.1 Core Answers

We start by considering core answers. For some aggregation operators, e.g.,
COUNT and SUM of nonnegative values, a core answer is a lower-bound-answer,
but not necessarily a glb-answer. As we will see in Section 4, computing core
answers to aggregation queries can be useful for computing consistent answers.

Theorem 1. The data complexity of computing core answers for any scalar
function is in PTIME.

Proof: The core consists of all the isolated vertices in the conflict graph. 2

In general, computing glb-answers and lub-answers is considerably more in-
volved than computing core answers. We consider each aggregation operator in
turn. In the following, r denotes an instance of a schema R.

3.2 MIN and MAX

Consider MAX(A) (MIN(A) is symmetric). In this case computing the lub-answer
in r w.r.t. an arbitrary set of FDs F consists of evaluating MAX(A) in r. However,
it is not obvious how to compute the glb-answer, namely the minimum of the set
of maximums obtained by posing the query MAX(A) in every repair. Computing
MAX(A) in CoreF (r) gives us only a lower-bound-answer which does not have to
be the glb-answer. We first provide a definition and prove a lemma which will
also be useful later. Recall that U is the set of all attributes of the schema R.
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Definition 10. An FD X → Y is a partition dependency over R if X ∪Y = U
and X ∩ Y = ∅.

Lemma 1. For any instance r of R and any partition dependency d = X → Y
over R, the conflict graph Gd,r is a union of disjoint cliques.

Proof: Assume (t1, t2) and (t2, t3) are two edges in Gd,r such that t1 6= t3.
Then t1[X] = t2[X], t1[Y ] 6= t2[Y ], t2[X] = t3[X], and t2[Y ] 6= t3[Y ]. Therefore
t1[X] = t3[X]. Also, t1[Y ] 6= t3[Y ] because otherwise t1 and t3 would be the
same tuple. So (t1, t3) is an edge in Gd,r. 2

Theorem 2. The data complexity of computing glbF (MAX(A), r) in r for a set of
FDs F consisting of a single FD X → Y is in PTIME.

Proof: Consider first the case where the FD is a partition dependency. Then
by Lemma 1 the conflict graph GF,r is a union of disjoint cliques C1, . . . , Ck.
Every repair picks exactly one tuple from each clique. Consider a tuple t in a
clique Cj , 1 ≤ j ≤ k. The value t[A] is a maximum in a repair iff for every clique
Ci, 1 ≤ i ≤ k, there is a tuple t′ in Ci such that t′[A] ≤ t[A]. This condition
can be tested in PTIME because the cliques are in our case just the connected
components. Denote the set of all maximum values determined in this way as S.
Then the glb-answer to MAX(A) is the minimum value in S.

A slight complication arises if the FD is not a partition dependency. The
schema may contain some attributes other than those inXY . Let’s call two tuples
t and t′ XY -overlapping if t[XY ] = t′[XY ]. There may be two different XY -
overlapping tuples which are not in conflict although they are both in conflict
with some other tuple. Thus, the conflict graph is not necessarily a union of
disjoint cliques. However, it is easy to see that XY -overlapping tuples are always
together in a repair. Therefore only the tuples with the maximum value of A
among all XY -overlapping tuples can have a maximum value in a repair. All the
remaining tuples can be removed without affecting the set of maximum values
in repairs. If there is more than one tuple with the maximum value, an arbitrary
one is selected. Denote the instance obtained in this way as r′. The conflict graph
GF,r′ is a union of disjoint cliques and the procedure described in the previous
paragraph can be applied. 2

Theorem 3. There is a set of 2 FDs F0 for which deciding whether glbF0
(MAX

(A), r) ≤ k in r is NP-data-hard.

Proof: We reduce SAT to our problem. Consider a propositional formula ϕ :
C1∧· · ·∧Cn in CNF. Let p1, . . . pm be the propositional variables in ϕ. Construct
a relation r with the list of attributes A,B,C,D and containing exactly the
following tuples:
1. (pi, 1, Cj , 1) if making pi true makes Cj true,
2. (pi, 0, Cj , 1) if making pi false makes Cj true,
3. (w,w,Cj , 2), 1 ≤ j ≤ n, where w is a new symbol.

Consider also the FDs A → B (each propositional variable cannot have more
than one truth value) and C → D. The crucial observation is that the glbF0

(MAX
(D), r) = 1 iff ϕ is satisfiable. 2
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3.3 COUNT(*) and SUM

We consider only COUNT(*): SUM is very similar.

Theorem 4. If the set of FDs F is equivalent to a single dependency X →
Y , X ∩ Y = ∅, the data complexity of computing glbF (COUNT(∗), r) (or lubF

(COUNT(∗), r)) in r is in PTIME.

Proof: The glb-answer can be computed using the following set of SQL views
(the lub-answer is obtained in a similar way):

CREATE VIEW S(X,Y,C) AS
SELECT X,Y,COUNT(*) FROM R
GROUP BY X,Y;

CREATE VIEW T(X,C) AS
SELECT X, MIN(C) FROM S
GROUP BY X;

SELECT SUM(C) FROM T; 2

To characterize the remaining cases, we prove two lemmas about maximum
cliques in conflict graphs.

Lemma 2. There is a set of 2 FDs F1 for which the problem of determining the
existence of a repair of r of size ≥ k is NP-data-hard.

Proof: Reduction from 3-COLORABILITY. Given a graph G = (N,E), with
N = {1, 2, . . . , n}, and given the colors w (white), b (blue) and r (red), we define
the relation P (A,B,C,D) by means of the following rules:

1. for every 1 ≤ i ≤ n, (i, w, i, w) ∈ P , (i, b, i, b) ∈ P and (i, r, i, r) ∈ P .
2. for every (i, j) ∈ E, (i, w, j, b) ∈ P , (i, w, j, r) ∈ P , (i, b, j, w) ∈ P , (i, b, j, r) ∈
P , (i, r, j, w) ∈ P and (i, r, j, b) ∈ P .

We consider the set of functional dependencies A → B and C → D. The crucial
property is that G is 3-colorable iff there is a repair P ′ of P with exactly n+2·|E|
tuples (the maximum possible number of tuples in a repair). 2

Lemma 3. There is a set of 2 FDs F2 for which the problem of determining the
existence of a repair of r of size ≤ k is NP-data-hard.

Proof: Modification of the lower bound proof of Theorem 3. We build the
instance by using the same tuples of the kind (1) and (2), as well as sufficiently
many tuples of the kind (3), each with a different new symbol w. It is enough
to have 3n(n+ 1) such tuples, where n is the number of clauses. The formula is
satisfiable iff there is a repair of size ≤ 3n. 2

The lemmas 2 and 3 imply the following theorems.

Theorem 5. There is a set of two FDs F1 for which determining whether
lubF1(COUNT(∗), r) ≥ k in r is NP-data-hard.
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Theorem 6. There is a set of two FDs F2 for which determining whether
glbF2

(COUNT(∗), r) ≤ k in r is NP-data-hard. 2

The above results establish the intractability of determining lub-answers and
glb-answers to COUNT(*) in a general setting. Similar results hold for SUM. We
will see that the boundary between the tractable and the intractable can be
pushed farther in several special cases.

3.4 COUNT(A)

We assume here that distinct values of A are counted (COUNT (DISTINCT A)).

Theorem 7. There is a single FD d0 = B → A for which determining whether
glbd0

(COUNT(A), r) ≤ k in r is NP-data-hard.

Proof: To see that the lower bound holds, we will encode an instance of the
HITTING SET problem in r. For every set Si in the given collection C and
every element x ∈ Si we put the tuple (i, x) in r. There is in C a hitting set
of size less than or equal to k iff there is a repair of r with at most k different
values of the first attribute A. 2

Theorem 8. There is a single FD d1 = B → A for which determining whether
lubd1(COUNT(A), r) ≥ k in r is NP-data-hard.

Proof: We reduce SAT to this problem. Let the instance r be the conjunction
of clauses ϕ : C1 ∧ . . . ∧ Cn. Consider the functional dependency X → Y and
the database instance r(X,Y,A) with the following tuples:
1. (pi, 1, Cj) if making pi true makes Cj true.
2. (pi, 0, Cj) if making pi false makes Cj true.

Then, ϕ is satisfiable iff lubd1(COUNT(A), r) ≥ n. 2

3.5 AVG

Theorem 9. If a set of FDs F is equivalent to a single dependency X → Y , with
X ∩Y = ∅, then the data complexity of the problem of computing glbF (AVG(A), r)
(or lubF (AVG(A), r)) in r is in PTIME.

Proof:1 First, the problems of finding the glb and lub answers for AVG with
one functional dependency can be reduced in polynomial time to the following
problem:
P1: There are m bins. Each bin contains objects of different colors. No two
bins have objects of the same color. All objects of the same color have the same
weight. One has to choose exactly one color for each bin in such a way that the
sum of the weights of all objects of the chosen colors divided by the total number
of such objects (i.e., the average weight AVG of objects of the chosen colors) is
maximized.
1 The proof of this theorem is due to Vijay Raghavan and Jeremy Spinrad.
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To solve P1, consider the well-known “2-OPT” strategy of starting with an
arbitrary selection 〈c1, c2, ..., cm〉 of one color each from each of the m bins. The
2-OPT strategy is simply to replace a color from one bin with a different color
from the same bin if so doing increases the value of the average weight of objects
of the colors in the selection.

This 2-OPT strategy can be shown to converge to the optimum. In addition,
it can be designed in such a way the it runs in polynomial time. 2

Theorem 10. There is a set of two FDs F3 for which determining whether
glbF3

(AVG(A), r) ≤ k in r is NP-data-hard.

Proof: We can use the same reduction as in theorem 3. There is a satisfying
assignment iff there is a repair for which AVG(D) = 1 (otherwise the glb-answer
is bigger than 1) iff glbF3

(AVG(D), r) ≤ 1. 2

Theorem 11. There is a set of two FDs F4 for which determining whether
lubF4(AVG(A), r) ≥ k in r is NP-data-hard.

Proof: We reduce SAT to our problem. Change the tuples of the instance in the
proof of theorem 3 as follows:
3’. (w,w,Cj ,−2), 1 ≤ j ≤ n, where w is a new symbol.
There is a satisfying assignment iff glbF4

(AVG(D), r) ≥ 1. 2

3.6 Summary of Complexity Results

It is easy to show that each of the problems considered before belong to the class
NP.

glb-answer lub-answer
|F | = 1 |F | ≥ 2 |F | = 1 |F | ≥ 2

MIN(A) PTIME PTIME PTIME NP-complete
MAX(A) PTIME NP-complete PTIME PTIME

COUNT(*) PTIME NP-complete PTIME NP-complete
COUNT(A) NP-complete NP-complete NP-complete NP-complete
SUM(A) PTIME NP-complete PTIME NP-complete
AVG(A) PTIME NP-complete PTIME NP-complete

4 Hybrid Computation

As we have seen, determining glb-answers and lub-answers is often computatio-
nally hard. However, it seems that hard instances of those problems are unlikely
to occur in practice. We expect that in a typical instance a large majority of
tuples are not involved in any conflicts. If this is the case, it is advantageous to
break up the computation of an lub-answer to f in r into three parts: (1) the
computation of f in the core of r, (2) the computation of an lub-answer to f
in the complement of the core of r (which should be small), and (3) the com-
bination of the results of (1) and (2). The step (1) can be done using a DBMS
because the core of r can be computed using a first-order query (Theorem 1).
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Definition 11. The scalar function f admits a g-decomposition of its lub-
answers (resp. glb-answers) w.r.t. a set of FDs F if for every instance r of R, the
lub-answer (resp. glb-answer) v to f satisfies the condition v = g(f(CoreF (r)),
v′), where v′ = lubF (f, r − CoreF (r)) (resp. v′ = glbF (f, r − CoreF (r))).

Theorem 12. The following pairs describe g-decompositions admitted by scalar
functions f :
1. f = MIN(A), g = min;
2. f = MAX(A), g = max;
3. f = COUNT(*), g = +;
4. f = SUM(A), g = +.

5 Special Cases

We consider here various cases when the conflict graph (or its complement) has
some special form that could be used to reduce the complexity of computing
answers to aggregation queries.

5.1 BCNF

We show here that if the set of FDs F has two dependencies and the schema
R is in BCNF, computing lub-answers can be done in PTIME. This should be
contrasted with Theorem 5 which showed that two dependencies without the
BCNF assumption are sufficient for NP-hardness.

Lemma 4. If R is in BCNF and F is equivalent to a set of FDs with 2 de-
pendencies, then F is equivalent to a set of FDs with 2 partition dependencies
X1 → Y1 and X2 → Y2. 2

Therefore, WLOG we can assume that |F | = 2 and F = {d1, d2} where d1
and d2 are different partition dependencies. (The case of |F | = 1 has already
been shown to be in PTIME, even without the BCNF assumption.)

Definition 12. A chord in a cycle is an edge connecting two nonconsecutive
vertices of the cycle.

Lemma 5. Every cycle of length k where k is odd and k > 3 in G{d1,d2},r has
a chord.

Proof: Such a cycle has two consecutive edges (t1, t2) and (t2, t3) that belong
both to Gd1,r or both to Gd2,r. Therefore, by Lemma 1 the edge (t1, t3), which
is a chord, also belongs to one of those graphs, and consequently to G{d1,d2},r.
2

Note: For the above property to hold, it is essential for the cycle in the
conflict graph to be odd. Example 4 shows an even cycle of length 4 that does
not have a chord. That implies that conflict graphs in the case of two FDs are
not necessarily chordal [5] and thus efficient algorithms for the computation of
maximum independent set in such graphs [9] are not applicable.
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Lemma 6. Every cycle of length k where k is odd and k > 3 in the complement
conflict graph Ḡ{d1,d2},r has a chord.

Proof: To give the idea of the proof, we consider the case of R(A,B) and
d1 = A → B and d2 = B → A.

Assume (t1, t2, . . . , tk, t1) is a cycle in Ḡ{d1,d2},r. Let ti = (ai, bi), 1 ≤ i ≤ k,
where the ai’s and bi’s are distinct variables. We write down the formula φ that
expresses the property that the consecutive vertices in the cycle are in Ḡ{d1,d2},r:
φ ≡ ∧

ai 6= ai+1 ∧ ∧
bi 6= bi+1, where the indexes are interpreted cyclically, i.e.,

k + 1 = 1. Now we write down the formula ψ that expresses the property that
there are no chords in the cycle. This formula is a conjunction of the formulas
ψi,j (for every pair (i, j) of nonconsecutive vertices in the cycle) that express
the property that there is a conflict between ti and tj : ψi,j ≡ (ai = aj ∧ bi 6=
bj ∨ bi = bj ∧ ai 6= aj) ≡ (ai = aj ∨ bi = bj) ∧ (ai 6= aj ∨ bi 6= bj). Therefore ψi,j

postulates at least one equality: ai = aj or bi = bj .
Now the counting argument. Assume φ ∧ ψ is satisfiable. The formula φ

postulates n inequalities between the ai’s and n inequalities between the bi’s.
The formula ψ postulates n(n−3)

2 inequalities and the same number of equalities
that involve either ai’s or bi’s. WLOG we assume that at least half of them,
i.e., dn(n−3)

4 e involve ai’s. Therefore, for n ≥ 5, the equalities imply together yet
another equality. (The assumption that all the equalities holding have disjoint
variables leads to contradiction.) Thus the total number of equalities is n(n−3)

2 +1.
Now

2n+
n(n− 3)

2
+
n(n− 3)

2
+ 1 = n(n− 1) + 1

and is greater than the number of 2-element sets consisting only of ai’s or bi’s.
Therefore for some i and j, we have both ai = aj and ai 6= aj (or bi = bj and
bi 6= bj), which contradicts the satisfiability of φ∧ψ. Thus an odd cycle of length
≥ 5 has to have a chord. 2

Definition 13. A graph is perfect if its chromatic number is equal to the size
of its maximum clique.

Strong Perfect Graph Conjecture: A graph G is perfect iff every odd cycle
in G or Ḡ has a chord.

This conjecture has been shown to hold for many classes of graphs, including
claw-free graphs [5].

Definition 14. A graph is claw-free if it does not contain an induced subgraph
(V0, E0) where V0 = {t1, t2, t3, t4} and E0 = {(t2, t1), (t3, t1), (t4, t1)}.

Lemma 7. If R is in BCNF over F = {d1, d2}, then for every instance r of R,
the conflict graph G{d1,d2},r is claw-free and perfect.

Proof: Assume that the conflict graph contains a claw (V0, E0) where V0 =
{t1, t2, t3, t4} and E0 = {(t2, t1), (t3, t1), (t4, t1)}. Then two of the edges in E0,
say (t2, t1) and (t3, t1) come from one of Gd1,r or Gd2,r. But the by Lemma 1,
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the edge (t3, t2) also belongs to that graph, and consequently to G{d1,d2},r. Thus
the subgraph induced by V0 is not a claw.

As the conflict graph is claw-free, the Strong Perfect Graph Conjecture holds
for it and Lemmas 5 and 6 yield together the fact that it is perfect. 2

Theorem 13. If R is in BCNF and the given set of FDs F is equivalent to one
with at most two dependencies, computing lubF (COUNT(∗), r) in any instance r
of R can be done in PTIME.

Proof: The theorem follows from Lemma 7 and the fact that in perfect claw-free
graphs computing a maximum independent set can be done in O(n5.5) [10]. 2

What about |F | > 2? In this case the conflict graph does not have to be
claw-free, so it is not clear whether the Strong Perfect Graph Conjecture holds
for it. The conflict graph does not even have to be perfect. Take a conflict
graph consisting of a cycle of length 5 where the edges corresponding to the
dependencies d1, d2 and d3 alternate. The chromatic number of this graph is 3,
while the size of the maximum clique is 2.

5.2 Disjoint Union

Theorem 14. If the instance r is the disjoint union of two instances that sepa-
rately satisfy F , computing lubF (COUNT(∗), r) can be done in PTIME.

Proof: In this case, the only conflicts are between the parts of r that come from
different databases. Thus the conflict graph is a bipartite graph. For bipartite
graphs determining the maximum independent set can be done in PTIME. 2

Note that the assumption in Theorem 14 is satisfied when the instance r is
obtained by merging together two consistent databases in the context of database
integration.

6 Related and Further Work

We can only briefly survey the related work here. A more comprehensive dis-
cussion can be found in [2]. The need to accommodate violations of functional
dependencies is one of the main motivations for considering disjunctive databa-
ses [12,14] and has led to various proposals in the context of data integration [1,
3,8,13]. A purely proof-theoretic notion of consistent query answer comes from
Bry [6]. None of the above approaches considers aggregation queries.

Many further questions suggest themselves. First, is it possible to identify
more tractable cases and to reduce the degree of the polynomial in those already
identified? Second, is it possible to use approximation in the intractable cases?
The INDEPENDENT SET problem is notoriously hard to approximate, but
perhaps the special structure of the conflict graph may be helpful. Finally, it
would be very interesting to see if our approach can be generalized to broader
classes of queries and integrity constraints.
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Finally, alternative definitions of repairs and consistent query answers that
include, for example, preferences are left for future work. Also, one can apply
further aggregation to the results of aggregation queries in different repairs, e.g.,
the average of all MAX(A) answers.
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