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ABSTRACT

In	this	systems	paper,	we	present	MillenniumDB:	a	novel	graph	database	engine	that	is	modular,	persistent,	
and	open	source.	MillenniumDB	is	based	on	a	graph	data	model,	which	we	call	domain	graphs,	that	provides	
a	 simple	abstraction	upon	which	a	variety	of	popular	graph	models	can	be	 supported,	 thus	providing	a	
flexible	data	management	engine	for	diverse	types	of	knowledge	graph.	The	engine	itself	is	founded	on	a	
combination	of	tried	and	tested	techniques	from	relational	data	management,	state-of-the-art	algorithms	for	
worst-case-optimal	joins,	as	well	as	graph-specific	algorithms	for	evaluating	path	queries.	In	this	paper,	we	
present	the	main	design	principles	underlying	MillenniumDB,	describing	the	abstract	graph	model	and	query	
semantics	 supported,	 the	 concrete	 data	 model	 and	 query	 syntax	 implemented,	 as	 well	 as	 the	 storage,	
indexing,	query	planning	and	query	evaluation	techniques	used.	We	evaluate	MillenniumDB	over	real-world	
data	 and	queries	 from	 the	Wikidata	 knowledge	 graph,	where	we	 find	 that	 it	 outperforms	 other	 popular	
persistent	 graph	 database	 engines	 (including	 both	 enterprise	 and	 open	 source	 alternatives)	 that	 support	
similar	query	features.
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1. INTRODUCTION

Recent	 years	 have	 seen	 growing	 interest	 in	 graph	 databases	 [1],	 wherein	 nodes	 represent	 entities	 of	
interest,	and	edges	represent	relations	between	those	entities.	In	comparison	with	alternative	data	models,	
graphs	offer	a	flexible	and	often	more	intuitive	representation	of	particular	domains	[2].	Graphs	forgo	the	
need	to	define	a	fixed	(e.g.,	relational)	schema	for	the	domain	upfront,	and	allow	for	modeling	and	querying	
cyclical	relations	between	entities	that	are	not	well-supported	in	other	data	models	(e.g.,	tree-based	models,	
such	as	XML	and	JSON).	Graphs	have	long	been	used	as	an	intuitive	way	to	model	data	in	domains	such	
as	social	networks,	transport	networks,	genealogy,	biological	networks,	etc.	Graph	databases	further	enable	
specific	 forms	of	querying,	such	as	path	queries	 that	 find	entities	 related	by	arbitrary-length	paths	 in	 the	
graph.	Graph	databases	have	become	popular	in	the	context	of	NoSQL	[3],	where	alternatives	to	relational	
databases	are	sought	for	specialized	scenarios;	Linked	Data	[4],	where	graph-structured	data	are	published	
and	interlinked	on	the	Web;	and	recently	Knowledge	Graphs	[5],	where	diverse	data	are	integrated	at	large	
scale	into	a	graph.

Recent	years	have	also	seen	a	growing	number	of	models,	 languages,	 techniques	and	systems	emerge	
for	managing	and	querying	graph	databases	[1,	2].	In	the	context	of	NoSQL	systems,	Neo4j	[6],	which	uses	
the	query	language	Cypher	[7]	and	the	property	graph	data	model	[2],	is	a	leading	graph	database	system	
in	practice.	Other	popular	graph	database	systems	include	ArangoDB	[8],	JanusGraph	[9],	OrientDB	[10],	
TigerGraph	[11],	etc.,	which	support	Gremlin	[12]	and	other	custom	graph	query	languages.	We	also	find	
graph	 database	 systems	 supporting	 the	 RDF	 data	 model	 and	 SPARQL	 query	 language	 [13],	 including	
Allegrograph	[14],	Amazon	Neptune	[15],	Blazegraph	[16],	GraphDB	[17],	 Jena	TDB	[18],	Stardog	[19],	
Virtuoso	[20],	and	(many)	more	besides	[13].	There	are	now	many	graph	database	systems	to	choose	from.

Many	of	these	graph	databases	implement	their	own	graph	model,	query	language,	etc.	An	open	challenge	
is to design a graph database engine that is both interoperable,	i.e.,	able	to	seamlessly	support	the	diverse	
graph	data	models	now	popular	in	practice;	and	efficient,	 i.e.,	achieving	query	performance	comparable	
(or	ideally	better	than)	systems	built	with	a	specific	graph	data	model	in	mind.	These	goals	are	key	to	use-
cases	 involving	 diverse,	 large-scale	 knowledge	 graphs.	 One	 concrete	 example	 is	 that	 of	 the	Wikidata	
knowledge	 graph	 [21],	 which	 is	 composed	 of	 billions	 of	 statements,	 tens	 of	 thousands	 of	 node	 types,	
thousands	of	edge	types,	complex	meta-data	on	edges,	etc.	Wikidata’s	query	service—currently	powered	
by	Blazegraph	[16]—receives	in	the	order	of	millions	of	queries	per	day	[22].	Interoperability	in	this	setting	
would	allow	clients	to	seamlessly	query	Wikidata	using	their	preferred	syntax.	However,	as	we	will	argue	
in	Section	2.2,	none	of	 the	graph	models	 implemented	by	 the	aforementioned	engines	 is	well-suited	 for	
knowledge	graphs	like	Wikidata;	for	example,	for	representing	meta-data	on	edges	(per	Wikidata’s	qualifiers 
[21]),	RDF	requires	reification	[23],	which	adds	bloat	and	indirection	to	the	graph,	while	property	graphs	
cannot	 link	edges	to	nodes	[24],	requiring	syntactic	workarounds.	Our	abstract	graph	model—which	we	

	 See,	e.g.,	https://db-engines.com/en/ranking/graph+dbms
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call	 domain graphs—is	 designed	 with	 such	 knowledge	 graphs	 in	 mind	 [24].	 Efficiency	 then	 involves	
supporting	more	clients	posing	increasingly	complex	queries	in	less	time.

Inspired	 by	 use-cases	 such	 as	Wikidata,	 we	 propose	MillenniumDB:	 an	 open-source	 graph	 database	
engine	designed	 from	 the	ground-up	 in	order	 to	achieve	both	 interoperability	and	efficiency.	To	achieve	
interoperability,	rather	than	implement	the	different	data	models	from	scratch,	we	rather	adopt	a	common	
graph	data	model,	called	domain	graphs,	which	can	represent	popular	graph	models	in	practice,	and	upon	
which	MillenniumDB	 is	 founded.	We	 then	 abstract	 the	 key	 query	 features	 common	 to	 different	 graph	
database	engines,	capturing	them	first	as	a	formal	query	language	over	which	concrete	query	syntax	can	
be	layered.	Within	this	combination,	we	cover	novel	features,	such	as	returning	shortest	paths	(like	Cypher)	
that	match	regular	expressions	(like	SPARQL).	In	terms	of	efficiency,	it	is	not	trivial	to	know,	a priori,	which	
techniques	are	well-suited	for	evaluating	real-world	workloads	over	our	model.	To	achieve	efficient	query	
processing,	we	thus	incorporate	a	mix	of	both	traditional	and	state-of-the-art	techniques	for	evaluating	graph	
patterns	and	path	queries,	adapting	them	to	the	domain	graph	model,	and	evaluating	them	empirically	in	
a	real-world	setting	to	ascertain	which	offer	the	best	performance	in	practice.

Contributions.	The	contributions	of	this	paper	are	as	follows:

•		the	domain	graph	and	property	domain	graph	data	models,	which	allow	for	succinctly	representing	
graph	data	models	popular	in	practice,	including	RDF	graphs,	RDF-star	graphs,	property	graphs,	and	
the	Wikidata	knowledge	graph	[21];

•		a	formal	query	language	based	on	domain	graphs	that	captures	key	features	of	popular	query	languages	
for	graph	databases,	along	with	a	concrete	query	syntax;

•		an	indexing	scheme	and	query	engine	designed	for	domain	graphs	that	incorporates	both	traditional	
and	state-of-the-art	techniques,	with	optimizations	dedicated	to	the	evaluation	of	graph	patterns	and	
path	queries;

•		experiments	over	 the	Wikidata	knowledge	graph	 [21],	 involving	 real-world	graph	data	and	queries,	
comparing	algorithms	internal	to	MillenniumDB	as	well	as	other	graph	database	engines.

Our	 experimental	 results	 highlight	 the	benefits,	 for	 example,	 of	 incorporating	worst-case-optimal	 join	
algorithms	when	evaluating	complex	graph	patterns	(with	many	joins)	versus	a	more	traditional	approach	
based	on	applying	binary	joins	with	a	Selinger-based	query	engine.	We	further	compare	the	performance	
associated	with	different	graph	search	algorithms	in	the	context	of	path	queries.	On	a	more	practical	note,	
we	show	that	MillenniumDB,	under	optimal	configurations,	clearly	outperforms	prominent	graph	database	
systems—namely	Blazegraph,	Neo4j,	Jena	and	Virtuoso—and	discuss	why.	We	further	publish	a	first	release	
of	MillenniumDB	as	 an	open	 source	graph	database	engine	 [25],	which	we	plan	 to	 extend	 in	 future	 in	
order	to	support	more	query	syntax,	query	features,	transactional	updates,	index	structures,	and	more.

	 	Domain	graphs	provide	a	concrete	data	model	to	use	for	representing	knowledge	graphs,	and	are	thus	an	alternative	to	RDF	
graphs,	property	graphs,	etc.,	but	one	that—as	we	will	argue	in	Section	3—encapsulates	such	models	while	addressing	some	
of	their	key	limitations	in	this	setting.	
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Paper structure.	The	rest	of	this	paper	is	structured	as	follows:	In	Section	2	we	describe	existing	graph	data	
models	and	their	 limitations.	 In	Section	3,	we	propose	domain graphs	as	an	abstraction	of	 these	models	
used	in	MillenniumDB.	In	Section	4,	we	describe	the	query	language	of	MillenniumDB,	and	how	it	takes	
advantage	of	domain	graphs.	In	Section	5,	we	explain	how	MillenniumDB	stores	data	and	evaluates	queries.	
In	Section	6,	we	provide	an	experimental	evaluation	of	the	proposed	methods	on	a	large	body	of	queries	
over	the	Wikidata	knowledge	graph.	In	Section	7,	we	provide	some	concluding	remarks	and	ideas	for	future	
research.

Data Availability & Supplementary Material Statement.	The	source	code	of	MillenniumDB	 is	provided	 in	
full	at	[25].	Experimental	data	is	given	at	[26].

2. EXISTING GRAPH DATA MODELS AND THEIR LIMITATIONS

In	this	section	we	briefly	recap	the	popular	graph	data	models	in	use	today,	and	discuss	their	limitations	
when	modeling	real-world	datasets.

2.1 Graph Data Models

RDF and RDF*.	One	of	the	simplest	models	used	for	representing	knowledge	graphs	is	based	on	directed 
labeled graphs,	composed	of	a	set	of	edges	of	the	form	 a cb ,	where	a	is	called	the	source	node,	b the 
edge	label,	and	c	the	target	node.	In	the	context	of	knowledge	graphs,	nodes	are	used	to	represent	entities	
and	edges	represent	binary	relations	between	pairs	of	entities.	For	example,	with	the	edge	in	Figure	1	we	
can	state	that	Michelle	Bachelet	was	(or	is)	the	president	of	Chile.

Michelle Bachelet President of Chileposition held

Figure 1.	 Information	on	presidency	of	Chile.

Such	graphs	are	 the	basis	of	RDF	[27],	where	 the	source	node,	edge	 label	and	 target	node	are	called	
subject,	predicate and object,	 respectively.	Given	 a	 universe	Obj	 of	 objects	 (ids,	 strings,	 numbers,	 IRIs,	
etc.)	the	RDF	data	model	is	defined	as	follows:

Definition 1. An	RDF	triple	is an element	(s,	p,	o)	∈	Obj	� Obj	� Obj. An	RDF	graph	is a finite set of RDF 
triples.

Upon	analyzing	this	definition,	we	can	immediately	notice	that	the	RDF	data	model	lacks	the	ability	to	
directly	refer	to	the	edge	(s,	p,	o)	itself.	For	instance,	if	we	wanted	to	add	the	information	about	when	the	
presidency	represented	by	the	above	edge	starts	and	when	it	ends,	we	would	have	to	resort	to	some	sort	
of reification,	which	would	introduce	an	artificial	object	representing	the	edge	that	can	then	be	linked	to	

	 For	simplicity,	we	will	often	not	distinguish	restrictions	on	different	types	of	objects	when	not	pertinent.
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the	 start	 and	 end	 date	 information.	 For	 example,	 the	 (reified)	 triples	 representing	 the	 duration	 of	 this	
presidency	 could	 be	 represented	 as	 shown	 in	 Figure	 2.	The	 reification	 is	 given	by	 the	 use	 of	 the	 edges	
labeled	as	source,	label	and	target.

Figure 2.	 Reified	triples	representing	the	duration	of	a	presidency.

In	order	to	avoid	the	need	for	reification,	an	extension	of	the	RDF	data	model	called	RDF*	(or	RDF-star)	
was	proposed	 [28].	 Intuitively,	 in	RDF*	an	entire	 triple	can	appear	as	a	 subject	or	an	object	 in	another	
triple.	For	example,	in	Figure	3,	we	are	modeling	the	fact	that	Michelle	Bachelet	was	the	president	of	Chile	
from	2014-03-11	to	2018-03-11.

Figure 3.	 RDF*	triples	with	another	triple	as	the	subject.

The	node	 representing	 the	edge	 is	called	a	quoted triple	 [29].	To	distinguish	edges	 that	originate	 in	a	
quoted	triple,	in	Figure	3	we	denote	them	with	a	dotted	line.	Formally,	the	RDF*	data	model	can	be	defined	
as	follows:

Definition 2	([28]). An	RDF*	triple	is defined recursively as follows:

• An RDF triple	(s,	p,	o)	is an RDF* triple; and
• If s,	o are RDF* triples or elements of	Obj,	and p ∈	Obj,	then	(s,	p,	o)	is an RDF* triple.

An	RDF*	graph	is a finite set of RDF* triples.

Another	model	extending	RDF	is	 that	of	RDF datasets	 [27],	which	are	 typically	used	to	represent	and	
manage	multiple	named	RDF	graphs.	This	model	can	be	defined	in	two	manners.	The	first,	most	general,	
definition	permits	empty	graphs.

Definition 3. An RDF	dataset is defined as a pair D = (G,	{(n1,	G1),	…,	(nk,	Gk)})	where:

• G,	G1,	…,	Gk are RDF graphs; and
• n1,	…,	nk are objects such that ni ≠ nj for	1	≤	i < j	≤	k.
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The graph G is called the default	graph,	while each pair	(ni,	Gi) is called a	named	graph,	composed of the 
name ni and its corresponding RDF graph Gi.

For	example,	letting	G	denote	the	RDF	graph	of	Figure	1,	and	letting	G1	denote	the	RDF	graph	of	Figure	2,	
then	we	can	capture	both	graphs	separately	in	an	RDF	dataset	of	the	form	D	=	(G,	{(n1,	G1)}),	where	n1 is 
a	name	(e.g.,	reified)	used	to	reference	the	graph	G1.	It	is	common	to	simply	represent	RDF	datasets	as	a	
set	of	quads	of	the	form	(s,	p,	o,	g)	∈	Obj	�	Obj	�	Obj	�	Obj	[30],	which	indicates	that	the	RDF	triple	(s,	
p,	o)	 is	 in	the	RDF	graph	with	name	g.	 In	this	quad-based	view,	for	example,	D	would	then	contain	the	
quad	(e1,	source,	Michelle	Bachelet,	reified).	A	special	name	can	be	reserved	in	order	to	denote	the	default	
graph;	for	example	(Michelle	Bachelet,	position	held,	President	of	Chile,	default).	This	quad-based	definition	
cannot	directly	 support	naming	empty	RDF	graphs	 (though	 it	 could	be	extended	 to	 incorporate	a	 set	of	
names	for	empty	graphs).

Property graphs.	Finally,	one	of	the	more	popular	graph	data	models	is	that	of	property graphs	[7].	Property	
graphs	extend	the	simple	edge	labeled	directed	graph	with	two	additional	features:	(i)	they	assign	explicit	
identifiers	to	nodes	and	edges,	so	that	one	can	refer	to	them;	and	(ii)	they	allow	for	annotating	both	nodes	
and	edges	with	a	set	of	property–value	pairs.	For	example,	the	information	from	Figure	3	can	be	equivalently	
represented	by	the	property	graph	in	Figure	4.

Figure 4.	Property	graph	representing	the	information	about	the	presidency	of	Chile.

Here	 the	nodes	have	 identifiers	 (n1,	n2)	as	well	as	 labels	 (human,	public	office).	Similarly,	edges	have	
both	identifiers	(e1)	and	labels	(position	held).	A	node	can	have	multiple	labels,	while	an	edge	always	has	
a	single	label	(often	referred	to	as	its	type).	The	edge	e1	has	two	properties,	namely	start	date	and	end	date,	
each	with	an	associated	value.	Formally,	if	Obj	is	a	set	of	objects,	L	is	a	set	of	labels,	P	a	set	of	properties,	
and V	a	set	of	values,	we	define	the	property	graph	data	model	as	follows:

Definition 4. A property	graph is a tuple G = (V,	E,	src,	tgt,	lab,	prop), where:

• V ⊂	Obj	is finite set of node identifiers;
• E ⊂	Obj	is finite set of edge identifiers disjoint from V;
• src : E → V assigns a source node to each edge;
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• tgt : E → V assigns a target node to each edge;
•  lab :	(V ∪ E)	→	2L is a function assigning a finite set of labels to nodes and edges, with |lab(e)|	=	1 for 

all e ∈ E; and
•  prop :	 (V ∪ E)	� P → V is a partial function assigning a value to a certain property of a node or an 

edge.

Moreover, we assume that for each object o ∈ V ∪ E,	there exists a finite number of properties p ∈ P 
such that prop(o,	p)	is defined.

2.2 Limitations of Existing Models

While	all	of	 the	described	data	models	have	great	expressive	power,	 they	are	sometimes	cumbersome	
to	use	when	representing	real-world	datasets	 that	contain	higher-arity	relations.	To	illustrate	 this,	we	will	
use	the	Wikidata	[21,	31,	5]	knowledge	graph.	Consider	the	two	Wikidata	statements	shown	in	Figure	5.	
Both	statements	claim	that	Michelle	Bachelet	was	a	president	of	Chile,	and	both	are	associated	with	nested	
qualifiers	that	provide	additional	information:	in	this	case	a	start	date,	an	end	date,	who	replaced	her,	and	
whom	she	was	replaced	by.	There	are	two	statements	for	two	distinct	presidencies.	Also	the	ids	for	objects	
(for	example,	Q320	and	P39)	are	shown;	any	positional	element	can	have	an	id	and	be	viewed	as	a	node	
in	the	knowledge	graph.

Figure 5.	Wikidata	statement	group	for	Michelle	Bachelet.

As	aforementioned,	 representing	 statements	 like	 this	 in	RDF	graphs	 requires	 reification	 to	decompose	
n-ary	relations	into	binary	relations	[23].	Figure	6	shows	a	graph	where	e1 and e2 are nodes representing 
two	distinct	n-ary	relationships	(an	extended	version	of	Figure	2).	For	greater	readability,	we	use	human-
readable	 nodes	 and	 labels,	 where	 in	 practice,	 the	 node	 Sebastián Piñera 	 will	 rather	 be	 given	 as	 the	
identifier Q306 ,	and	the	edge	type	“replaces’’	will	rather	be	given	as	“P155’’.
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Figure 6.	 Directed	labeled	graph	reifying	the	statements	of	Figure	5.

Since	property	graphs	allow	labels	and	property–value	pairs	to	be	associated	with	both	nodes	and	edges,	
reification	can	be	avoided	in	our	example.	For	instance,	the	statements	of	Figure	5	can	be	represented	as	
the	 property	 graph	 in	 Figure	 7.	Though	more	 concise	 than	 reification,	 labels,	 properties	 and	 values	 are	
considered	 to	be	 simple	 strings,	which	 are	disjoint	with	nodes;	 for	 example,	Ricardo	Lagos	 is	 neither	 a	
node	nor	a	pointer	to	a	node,	but	a	string,	which	would	complicate,	for	example,	querying	for	the	parties	
of	presidents	that	Michelle	Bachelet	replaced.

Figure 7.	 Property	graph	representing	statements	of	Figure	5.

On	the	other	hand,	RDF*	allows	an	edge	to	be	a	node.	For	example,	the	first	statement	of	Figure	5	can	
be	 represented	 in	 RDF*	 as	 shown	 in	 Figure	 8.	 However,	 we	 can	 only	 represent	 one	 of	 the	 statements	
(without	 reification),	 as	we	can	only	have	one	distinct	 node	per	 edge;	 if	we	add	 the	qualifiers	 for	 both	
statements,	then	we	would	not	know	which	start	date	pairs	with	which	end	date,	for	example.

	 	A	 proposed	 workaround	 involves	 adding	 intermediate	 nodes	 to	 denote	 different	 occurrences	 of	 quoted	 triples,	 but	 this	
requires	a	reserved	term	[29].
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Figure 8.	 RDF*	for	one	of	the	statements	of	Figure	5.

Regarding	RDF	datasets,	we	could	model	both	statements	by	creating	two	named	graphs,	each	with	a	
copy	of	the	statement	that	Michele	Bachelet	has	been	President	of	Chile,	thereafter	defining	the	start	date,	
end	date,	replaced	by	and	replaces	annotations	in	another	graph	using	the	graph	name.	The	resulting	quads	
could	thus	be	as	follows	if	we	define	the	latter	information	in	the	default	graph	(for	example):

(Michelle	Bachelet,	position	held,	President	of	Chile,	e1)
(e1,	start	date,	2014-03-11,	default)

.	.	.
(Michelle	Bachelet,	position	held,	President	of	Chile,	e2)

(e2,	start	date,	2006-03-11,	default)
.	.	.

This	is	quite	a	concise	way	to	model	the	aforementioned	Wikidata	statements,	wherein	we	effectively	use	
graph	names	to	assign	each	edge	a	unique	id	that	serves	as	a	graph	node	elsewhere.	Indeed,	the	data	model	
we	propose	follows	a	similar	idea.	However,	RDF	datasets	were	defined	in	the	context	of	managing	several	
(named)	 graphs,	where	 using	 them	 to	 define	 edge	 ids	 gives	 rise	 to	 several	 complications;	 for	 example,	
SPARQL	does	not	support	evaluating	path	queries	that	span	different	named	graphs.

3. DATA MODEL UNDERLYING MILLENNIUMDB

In	 this	 section,	we	present	 the	graph	data	model	upon	which	MillenniumDB	 is	based,	called	domain	
graphs,	and	discuss	how	it	generalizes	existing	graph	data	models	such	as	RDF	and	property	graphs.	We	
also	show	its	utility	in	concisely	modeling	real-world	knowledge	graphs	that	contain	higher-arity	relations,	
such	as	Wikidata	[21].

3.1 Domain Graphs

The	 structure	 of	 knowledge	 graphs	 is	 captured	 in	 MillenniumDB	 via	 domain graphs,	 which	 follow	 
the	natural	idea	of	assigning	ids	to	edges	in	order	to	capture	higher-arity	relations	within	graphs	[23,	32,	
33,	24].	Formally,	assume	a	universe	Obj	of	objects	 (ids,	strings,	numbers,	 IRIs,	etc.).	We	define	domain	
graphs	as	follows:

Definition 5. A domain graph G = (O,	c) consists of a finite set of objects O ⊆ Obj and a partial mapping 
c : O → O � O � O.
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Intuitively,	O is the set of database objects and c models	edges	between	objects.	If	c(e)	=	(n1,	t,	n2),	this	
states	that	the	edge	(n1,	t,	n2)	has	id	e,	type	t,	and	links	the	source	node	n1 to the target node n2.	We	can	
analogously	define	our	model	as	a	relation:

DomainGraph(source,	type,	target,	eid)

where	eid	(edge	id)	is	a	primary	key	of	the	relation.

The	domain	graph	model	of	MillenniumDB	already	subsumes	the	RDF	graph	model	[27].	Recall	that	an	
RDF	graph	is	a	set	of	triples	of	the	form	(a,	b,	c).	To	show	how	RDF	is	modeled	in	domain	graphs,	consider	
again	 the	 RDF	 triple	 from	 Figure	 1.	We	 can	 encode	 this	 triple	 in	 a	 domain	 graph	 by	 storing	 the	 tuple	
(Michelle	Bachelet,	position	held,	President	of	Chile,	e)	in	the	DomainGraph	relation,	where	e	denotes	a	
unique	(potentially	auto-generated)	edge	id,	or	equivalently	stating	that:

c(e)	=	(Michelle	Bachelet,	position	held,	President	of	Chile).

The	id	of	the	edge	itself	 is	not	needed	in	the	RDF	data	model,	but	it	can	be	used	for	modeling	RDF-star	
(RDF*)	graphs	[28,	29].	For	example,	to	represent	the	RDF*	graph	from	Figure	8,	we	can	extend	the	function	
c	with	two	additional	statements:

c(e1)	=	(e,	start	date,	2014-03-11)
c(e2)	=	(e,	end	date,	2018-03-11).

Here	we	use	two	new	edges,	e1	and	e2,	which	have	the	edge	e	as	their	starting	node.

For	 stricter	 backwards	 compatibility	 with	 legacy	 property	 graphs	 (where	 desired),	 MillenniumDB	
implements	a	simple	extension	of	the	domain	graph	model,	called	property domain graphs,	which	allows	
for external annotation,	 i.e.,	adding	labels	and	property–value	pairs	 to	nodes	and	edges	without	creating	
new	nodes	and	edges.	Formally,	if	L	is	a	set	of	labels,	P	a	set	of	properties,	and	V	a	set	of	values,	we	define	
a	property	domain	graph	as	follows:

Definition 6. A property	domain	graph is defined as a tuple G = (O,	c,	lab,	prop), where:

•	(O,	c)	is a domain graph;
• lab : O →	2L is a function assigning a finite set of labels to an object; and
• prop: O � P → V is a partial function assigning a value to a certain property of an object.

Moreover, we assume that for each object o ∈ O, there exists a finite number of properties p ∈ P such that 
prop(o,	p)	is defined.

	 	Herein,	we	say	“edge type’’	rather	than	“edge label’’	to	highlight	that	the	type	forms	part	of	the	edge,	rather	than	being	an	
annotation	on	the	edge,	as	in	property	graphs.
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While	domain	graphs	(without	properties)	can	directly	capture	property	graphs—where,	for	example,	the	
property–value	 pair	 (gender,	 “female”)	 on	 node	 n1	 can	 be	 represented	 by	 an	 edge	 c(e3)	 =	 (n1,	 gender,	
female),	the	property–value	pair	(order,	“2”)	on	an	edge	e2 becomes c(e4)	=	(e2,	order,	2),	the	label	on	n1 
becomes c(e5)	=	 (n1,	 label,	human),	 the	 label	on	e1	becomes	 the	 type	of	 the	edge	c(e1)	=	 (n1,	 father,	n2),	
etc.—this	can	generate	“incompatibilities’’	between	the	legacy	property	graph	and	the	resulting	domain	
graph;	for	example,	strings	like	“male”,	labels	like	human,	etc.,	now	become	nodes	in	the	graph,	generating	
new	paths	through	them	that	may	affect	query	results.	Property	domain	graphs	thus	offer	an	extra	layer	of	
flexibility,	and	interoperability	with	legacy	property	graphs,	where	needed	for	a	given	use-case.

To	illustrate	how	property	domain	graphs	work,	consider	the	property	graph	(as	introduced	in	Definition	
4)	from	Figure	9.	To	model	this	information	via	property	domain	graphs,	we	use	the	domain	graph	part	to	
capture	the	graph	structure	of	our	model,	while	property	domain	graphs	also	permit	annotating	that	graph	
structure	with	labels	and	property–value	pairs.	The	property	graph	in	Figure	9	can	be	represented	with	the	
following	property	domain	graph	G	=	(O,	c,	lab,	prop),	where	the	graph	structure	is	as	follows:

Figure 9.	 A	property	graph	with	two	nodes	and	two	edges.	We	use	the	order	property	on	edge	e2 to indicate that 
Michelle	Bachelet	is	the	second	child	of	Alberto	Bachelet.

 O	=	{n1,	n2,	e1,	e2},	 c(e1)	=	(n1,	father,	n2),
  c(e2)	=	(n2,	child,	n1),

and	the	annotations	of	the	graph	structure	are	as	follows:

	 lab(n1)	=	human	 prop(n1,	last	name)	=	”Bachelet”
	 lab(n2)	=	human	 prop(n2,	gender)	=	”male”
	 prop(e2,	order)	=	”2”	 prop(n2,	children)	=	”2”
	 prop(n1,	gender)	=	”female”	 prop(n2,	first	name)	=	”Alberto”
	 prop(n1,	children)	=	”3”	 prop(n2,	last	name)	=	”Bachelet”
	 prop(n1,	first	name)	=	”Michelle”	 prop(n2,	death)	=	”12	March	1974”

The	relational	representation	of	property	domain	graph	then	adds	two	new	relations	alongside	DomainGraph:

	 To	represent	edges	in	property	graphs	that	permit	multiple	labels,	multiple	edges	with	different	types	can	be	added	(or	the	
labels	can	be	added	on	the	edge	ids).
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LabeLs(object,	label),
properties(object,	property,	value),

where	object,	 property	 is	 a	 primary	 key	of	 the	 second	 relation,	with	 the	 first	 relation	 allowing	multiple	
labels	per	object.

3.2 Domain Graphs Compared with Other Graph Data Models

Why	 did	 we	 choose	 (property)	 domain	 graphs	 as	 the	 model	 of	 MillenniumDB?	As	 discussed	 in	 the	
previous	section,	it	can	be	used	to	model	both	directed	labeled	graphs	(like	RDF)	as	well	as	property	graphs.	
It	also	has	a	natural	relational	expression,	which	facilitates	its	implementation	in	a	query	engine.	But	it	is	
also	heavily	inspired	by	the	needs	of	real-world	knowledge	graphs	like	Wikidata	[21,	31,	5].	To	illustrate	
its	versatility,	consider	again	the	Wikidata	statements	shown	in	Figure	5.	Note	that	edges	that	originate	in	
another	edge	are	drawn	with	a	dotted	line.

As	discussed	 in	Section	2,	neither	RDF	nor	RDF*	can	 represent	 these	 statements	without	 resorting	 to	
reification,	while	 property	 graphs	 cannot	 take	 nodes	 as	 values	 for	 properties.	The	 domain	 graph	model	
allows	us	to	capture	higher-arity	relations	more	directly.	In	Figure	10	we	present	one	possible	representation	
of	the	statements	from	Figure	5.	We	only	show	edge	ids	as	needed	(all	edges	have	ids).	We	do	not	use	the	
“property	 part”	 of	 our	 data	 model	 for	 external	 annotation,	 considering	 that	 the	 elements	 of	Wikidata	
statements	shown	can	form	nodes	in	the	graph	itself.

Figure 10.	 Domain	graph	for	Figure	5.

Domain	graphs	are	similar	to	named	graphs	in	RDF	datasets.	Both	domain	graphs	and	RDF	datasets	can	
be	represented	as	quads.	However,	the	edge	ids	of	domain	graphs	identify	each	quad,	which,	as	we	will	
discuss	 in	 Section	 5,	 necessitates	 fewer	 index	 permutations.	 RDF	 datasets	 were	 proposed	 to	 represent	
multiple	RDF	graphs	for	publishing	and	querying.	SPARQL	thus	does	not	support	querying	paths	that	span	
different	named	graphs;	to	support	path	queries	over	singleton	named	graphs,	all	edges	would	need	to	be	
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duplicated	(virtually	or	physically)	into	a	single	graph	[23].	Named	graphs	could	be	supported	in	domain	
graphs	using	a	 reserved	 term	graph,	and	edges	of	 the	 form	c(e3)	=	 (e1,	 graph,	g1),	c(e4)	=	 (e2,	 graph,	g1);	
optionally,	named domain graphs	could	be	considered	in	the	future	to	support	multiple	domain	graphs.

The	idea	of	assigning	ids	to	edges/triples	for	similar	purposes	as	described	here	is	a	natural	one,	and	not	
new	 to	 this	 work.	 Hernandez	 et	 al.	 [23]	 explored	 using	 singleton	 named	 graphs	 in	 order	 to	 represent	
Wikidata	qualifiers,	placing	one	triple	in	each	named	graph,	such	that	the	name	acts	as	an	id	for	the	triple.	
In	 parallel	with	 our	work,	 recently	 a	 data	model	 analogous	 to	 domain	 graphs	 has	 been	 independently	
proposed	for	use	in	Amazon	Neptune,	which	the	authors	call	1G	[33].	Their	proposal	does	not	discuss	a	
formal	definition	for	the	model,	nor	a	query	language,	storage	and	indexing,	implementation,	etc.,	but	the	
reasoning	and	justification	that	they	put	forward	for	the	model	is	similar	to	ours.	Similar	such	models	have	
been	generalized	as	multilayer graphs	 [24],	where	 the	appearance	of	edge	 ids	within	 the	graph	 induces	
different	 layers	of	 reference.	Our	work	proposes	a	novel	query	 language,	storage	and	 indexing	schemes,	
query	 planner—and	 ultimately	 a	 fully-fledged	 graph	 database	 engine—built	 specifically	 for	 this	model.	
Furthermore,	with	property	domain	graphs,	we	support	annotation	external	to	the	graph,	which	we	believe	
to	be	a	useful	extension	that	enables	better	compatibility	with	property	graphs.

Table	1	summarizes	the	features	that	are	directly	supported	by	the	respective	graph	models	themselves	
without	requiring	reserved terms,	which	would	include,	for	example,	source,	label	and	target	in	Figure	6	
(all	features	except	External annotation	can	be	supported	in	all	models	with	reserved	vocabulary).	Reserved	
terms	can	add	indirection	to	modeling	(e.g.,	reification	[23]),	and	can	clutter	the	data,	necessitating	more	
tuples	or	higher-arity	tuples	to	store,	leading	to	more	joins	and/or	index	permutations.	The	features	are	then	
defined	as	follows,	considering	directed	(labeled)	edges:

Table 1.	 Features	supported	by	graph	models	without	reserved	terms	(RD	=	RDF	Datasets,	PG	=	Property	Graphs,	
DG	=	Domain	Graphs,	PDG	=	Property	Domain	Graphs).

RDF RDF* RD PG DG PDG

Edge type/label      
Node label      
Edge annotation      
Node annotation      
External annotation      
Edge as node      
Edge as nodes      
Nested edge nodes      
Graph as node      

• Edge type/label:	assign	a	type	or	label	to	an	edge.
• Node label:	assign	labels	to	nodes.
• Edge annotation:	assign	property–value	pairs	to	an	edge.
• Node annotation:	assign	property–value	pairs	to	a	node.
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• External annotation:	nodes/edges	can	be	annotated	without	adding	new	nodes	or	edges.
•  Edge as node:	an	edge	can	be	referenced	as	a	node	(this	allows	edges	to	be	connected	to	nodes	of	
the	graph).

• Edge as nodes:	a	single	unique	edge	can	be	referenced	as	multiple	nodes.
•  Nested edge nodes:	an	edge	involving	an	edge	node	can	itself	be	referenced	as	a	node,	and	so	on,	
recursively.

• Graph as node:	a	graph	can	be	referenced	as	a	node.

Some	unsupported	features	in	Table	1	are	more	benign	than	others;	for	example,	Node label	requires	a	
reserved	term	(e.g.,	rdf:type),	but	no	extra	tuples;	on	the	other	hand,	Edge as node	requires	reification,	using	
at	least	one	extra	tuple,	and	also	a	reserved	term.

Wikidata	requires	Edge as nodes	as	per	Figure	5,	where	values	like	Ricardo	Lagos	are	themselves	nodes.	
Only	RDF	datasets,	domain	graphs	and	property	domain	graphs	can	model	such	examples	without	reserved	
terms;	 however,	 the	 use	 of	 RDF	 datasets	 requires	 co-opting	 graph	 names,	 which	 are	 typically	 used	 to	
manage	multiple	graphs,	to	rather	serve	as	edge	ids.	Comparing	RDF	datasets	and	domain	graphs,	the	latter	
sacrifices	 the	 “Graph as node’’	 feature	 without	 reserved	 vocabulary	 to	 reduce	 indexing	 permutations	
(discussed	in	Section	5).	Property	domain	graphs	further	support	external	annotation,	and	better	compatibility	
with	legacy	property	graphs.

4. QUERY LANGUAGE

Per	our	goal	of	 supporting	multiple	graph	models,	MillenniumDB	aims	 to	 support	a	number	of	graph	
query	languages.	However,	no	existing	query	language	would	take	full	advantage	of	the	property	domain	
graph	model	defined	 in	 the	previous	section.	We	have	 thus	 implemented	a	base	query	 language,	called	
DGQL,	which	closely	 resembles	Cypher	 [7],	but	 is	designed	 for	 the	property	domain	graph	model,	and	
adds	features	of	other	query	languages,	such	as	SPARQL,	that	are	commonly	used	for	querying	knowledge	
graphs	[34,	5].	Herein	we	provide	a	guided	tour	of	the	syntax	of	DGQL.	A	full	formal	specification	of	the	
language	can	be	found	in	the	appendix	of	this	paper.

To	introduce	the	features	of	the	query	language,	in	Figure	11	we	present	(a	snippet	of)	a	bibliographical	
knowledge	graph	representing	data	about	publications,	authors,	 institutions,	etc.	The	knowledge	graph	is	
represented	as	a	property	domain	graph,	where,	for	authorship	relations,	we	use	properties	on	the	edge	to	
indicate	the	author	order,	but	directly	link	the	edges	(via	their	ids)	to	the	organization	node	with	which	the	
author	 was	 affiliated	 for	 that	 particular	 paper	 (something	 not	 directly	 possible	 in	 property	 graphs).	We	
further	use	abstract	node	and	edge	ids	(n1,	…,	n15,	e1,	…,	e21)	for	brevity,	though	these	may	be	instantiated	
with	application	 ids;	 for	 example,	 in	Wikidata,	 the	node	n15	denoting	 the	U.S.	might	 rather	have	 the	 id	
Q30.
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Figure 11.	 A	property	domain	graph	describing	venues,	papers,	universities,	authors,	locations,	and	their	relations.

We	will	use	this	knowledge	graph	as	a	running	example	in	order	to	illustrate	the	MillenniumDB	query	
language	 in	 the	context	of	a	bibliographical	use-case,	where	we	wish	 to	analyze	citations,	 find	possible	
collaborators,	etc.

4.1 Domain Graph Queries

A	DGQL	query	takes	the	following	high-level	form:

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/5/3/560/2158194/dint_a_00229.pdf by guest on 04 August 2024



Data Intelligence 575

MillenniumDB: An Open-Source Graph Database System

	 MATCH	Pattern
	 WHERE	Filters

RETURN	Variables

When	evaluated	over	a	property	domain	graph,	such	a	query	will	 return	a	multiset	of	mappings	binding	
Variables	 to	database	objects	 (or	 values)	 that	 satisfy	 the	Pattern	 specified	 in	 the	MATCH	clause	 and	 the	
Filters	specified	in	the	WHERE	clause.

Querying objects.	The	most	 basic	 query	will	 return	 all	 the	 objects	 (or	more	 precisely,	 their	 ids)	 in	 our	
property	domain	graph.	In	MillenniumDB	we	can	achieve	this	via	the	following	query:

MATCH	(?x)
	 RETURN	?x

Over	the	knowledge	graph	of	Figure	11,	this	would	return	a	table	of	all	node	and	edge	ids:	n1,	…,	n15,	e1,	
…,	e21.	Of	course,	one	usually	wants	to	select	objects	with	a	certain	label,	or	a	certain	value	in	a	specific	
property,	as	illustrated	in	the	following	example.

exampLe	4.1.	The following DGQL query returns articles published in 1967 from Figure 11:

MATCH (?x :article { year : 1967 })
 RETURN ?x, ?x.name

This	returns	the	ids	of	nodes	with	label	article	and	value	1967	for	the	property	year,	along	with	their	value	
for	the	property	name,	i.e.,	we	return	two	results	as	follows:

?x ?x.name

n3 “A Turing M. Sim.”
n4 “Pr. Lang. for Aut.”

If, for example, n3 did not have a name, we would still return n3 as a result, leaving the corresponding value 
for ?x.name blank.

If	we	wish	to	specify	a	range,	we	can	rather	use	the	WHERE	clause,	which	allows	us	to	specify	conditions	
on	the	results	returned.

exampLe	4.2.	If we want to find articles published before 1990, we can use the following query:

 MATCH (?x :article)
WHERE ?x.year < 1990

 RETURN ?x, ?x.name

This returns the same solutions over Figure 11 as in Example 4.1. If we were to replace “<’’ with “<=’’, we 
would receive a third result for n5 and “Add. Machines”.
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Querying edges.	In	order	to	query	over	edges,	we	can	write	the	following	query,	which	returns	c,	i.e.,	the	
relation	DomainGraph:

MATCH	(?x)–[?e	:?t]–>(?y)
	 RETURN	*

The	RETURN	*	operation	projects	all	variables	specified	in	the	MATCH	pattern,	while	the	construct	(?x)-[?e	
:?t]–>(?y)	specifies	that	we	want	to	connect	the	object	in	?x	with	an	object	in	?y,	via	an	edge	with	type	?t	
and	 id	 ?e.	This	 is	 akin	 to	 a	 query	DomainGraph(?x,?t,?y,?e)	 over	 the	 domain	 graph	 relation.	Variable	 or	
constant	edge	types	(e.g.	?t	above)	are	prefixed	by	a	colon.

exampLe	4.3.	Over the graph of Figure 11, the aforementioned query would return results of the following 
form, with 21 results in total (one for each edge):

?x ?e ?t ?y

n3 e1 venue n1

n4 e2 venue n1

n5 e3 venue n2

... ... ... ...
e6 e11 org n6

... ... ... ...
n14 e21 loc n15

This is akin to returning the DomainGraph relation.

We	can	also	restrict	which	edges	are	matched,	as	shown	in	the	following	example.

exampLe	4.4.	The following query in DGQL will return the ids and names of articles that cite an article of 
the same year:

 MATCH (?x)–[:cite]–>(?y)
WHERE ?x.year == ?y.year

 RETURN ?x, ?x.name

Here we choose to omit the edge id variable as we do not need it (e.g., in the WHERE or RETURN clause). 
Over the knowledge graph of the running example, this returns a single result:

?x ?x.name

n4 “Pr. Lang. for Aut.”

In	the	next	example,	we	illustrate	two	features	together:	the	ability	to	return	and	specify	conditions	on	
edge	properties,	and	the	ability	to	query	known	objects.
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exampLe	4.5.	We look for the names of papers where Donald Knuth (n11) is second or third author, returning 
his position in the author list:

 MATCH (n11)–[?e :author]–>(?y)
WHERE ?e.order > 1 AND ?e.order < 4

 RETURN ?y.name ?e.order

This query returns a single result:

?y.name ?e.order

“Add. Machines” 2

As	 per	 the	 previous	 example,	 the	WHERE	 clause	may	 use	Boolean	 combinations.	We	 recall	 that	 the	
running	example	uses	abstract	node	ids	for	brevity.	In	practice,	the	node	id	n11	could	rather	be	an	id	such	
as	Q17457,	which	identifies	Donald	Knuth	on	Wikidata.

Path queries.	A	key	feature	of	graph	databases	 is	 their	ability	 to	explore	paths	of	arbitrary	 length.	DGQL	
supports	two-way	regular	path	queries	(2RPQs),	which	specify	regular	expressions	over	edge	types,	including	
concatenation	(	/	),	disjunction	(	|	),	inverses	(^),	optional	(	?	),	Kleene	star	(	*	)	and	Kleene	plus	(	+	).	We	
use	=[	]=>	(rather	than	–	[	]	–>	)	to	signal	a	path	query	in	DGQL.

exampLe	4.6.	If we wish to find all of the citations of the article named “Add. Machines”, and their respective 
citations, and so on transitively, we can use the regular expression :cites+ in the following way, further 
returning the name and year of the articles where available:

MATCH (?x :article { name : “Add. Machines” })=[:cites+]=>(?y)
 RETURN ?y, ?y.name, ?y.year

This returns:

?y ?y.name ?y.year

n3 “A Turing M. Sim.” 1967
n4 “Pr. Lang. for Aut.” 1967

DGQL	can	also	 return	a	 single	 shortest	path	witnessing	 the	query	 result	by	binding	 such	a	path	 to	a	
variable.

exampLe	4.7.	The following query extends that of Example 4.6 by binding paths witnessing each result to a 
variable ?p:

MATCH (?x :article { name : “Add. Machines” })=[?p :cites+]=>(?y)
 RETURN ?y, ?y.name, ?y.year, ?p
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This returns a string representation of a shortest path for each result, as follows:

?y ?y.name ?y.year ?p

n3 “A Turing M. Sim.” 1967 “ 5 4 3
cites citesn n n→ → ”

n4 “Pr. Lang. for Aut.” 1967 “ 5 4
citesn n→ ”

We	can	also	combine	different	features	to	capture	more	complex	paths.

exampLe	 4.8.	The following query looks for publications of staff and students of U.S. institutions, further 
including the direct citations of these publications:

MATCH (?x { name : “U.S.” })=[?p (^:loc)*/(:staff|:student)/:author/:cites?]=>(?y)
 RETURN ?y, ?y.name, ?p

This query returns:

?y ?y.name ?p

n3 “A Turing M. Sim.” “ 15 14 8 11 4 3
loc loc staff author citesn n n n n n← ← → → → ”

n4 “Pr. Lang. for Aut.” “ 15 14 8 11 4
loc loc staff authorn n n n n← ← → → ”

n5 “Add. Machines” “ 15 14 8 11 5
loc loc staff authorn n n n n← ← → → ”

Notice that a shortest path to each node is returned, so an additional path to e.g. n4 using cites is not 
returned.

The	final	example	for	paths	illustrates	operators	nested	inside	a	Kleene	star.

exampLe	4.9. In order to find potential collaborators for a researcher, the following query finds shortest paths 
from that researcher (in this case Donald Knuth: n11) to other authors via (transitive) citation or coauthorship 
relations:

MATCH (n11)=[?p :author/(:cites|(^:author/:author))*/^:author]=>(?y)
 RETURN ?y, ?y.name, ?p

This query returns:

?y ?y.name ?p

n9 “M. Curtis” “ 11 4 3 9
author cites authorn n n n→ → ← ”

n10 “R. Bigelow” “ 11 4 10
author authorn n n→ ← ”

n11 “D. Knuth” “ 11 4 11
author authorn n n→ ← ”

n12 “R. Floyd” “ 11 5 12
author authorn n n→ ← ”
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A path that cycles back to Donald Knuth (n11) is included. If we wished to filter such results, we could use 
WHERE to require the inequality ?y != n11. Also there are two possible shortest paths for the n11 result (via 
n4 or via n5), where the first such path to be found is returned.

If	we	wished	to	return	all shortest paths,	we	could	use	the	DGQL	keyword	ALL	before	before	the	path	
variable.	For	instance,	in	the	previous	example,	we	can	write	[ALL	?p	...	],	which	returns	a	second	result	
for n11	indicating	the	other	shortest	path.

Unlike	Cypher,	we	can	return	paths	matching	2RPQs,	not	just	Kleene	star.	Unlike	SPARQL,	we	can	return	
paths,	 not	 just	 pairs	 of	 nodes.	 No	 manipulation	 of	 path	 variables,	 apart	 from	 outputting	 the	 result,	 is	
currently	supported	in	MillenniumDB,	but	a	full	path	algebra	will	be	supported	in	future	versions.

Basic graph patterns.	Basic	graph	patterns	 [2]	 lie	 at	 the	core	of	many	graph	query	 languages,	 including	
DGQL.	Such	graphs	following	the	same	structure	as	the	data	model,	but	allowing	variables	in	any	position.	
They	can	be	seen	as	expressing	natural	(multi)joins	over	sets	of	atomic	edge	patterns.	In	DGQL,	they	are	
given	in	the	MATCH	clause.	Basic	graph	patterns	are	evaluated	under	homomorphism-based semantics	[2],	
which	allows	multiple	variables	in	a	result	to	map	to	the	same	element	of	the	data.

exampLe	4.10. Illustrating basic graph patterns, the following query finds pairs of co-authors:

 MATCH (?x)–[:author]–>(?z),
  (?y)–[:author]–>(?z)
 RETURN ?x, ?y

If we evaluate this query over the running example, we get the following results:

?x ?y

n9 n9

n10 n10

n10 n11

n11 n10

n11 n11

n11 n12

n12 n11

n12 n12

Given the homomorphism-based semantics, results are returned that map both variables to the same author. 
If we wished to filter such results, we could stipulate the desired inequalities with WHERE ?x != ?y, which 
would filter the first, second, fifth and eighth result.

The	previous	example	could	equivalently	be	expressed	as	a	path	of	the	form	?x=[:author/^	:author]=>?y.	
However,	with	basic	graph	patterns,	we	can	also	capture	branches	and	cycles,	as	illustrated	in	the	following	
example.
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exampLe	 4.11. If we wanted to detect self-citations among journals in the same year, we could use the 
following DGQL query:

 MATCH (?x)–[:cites]–>(?y),
  (?x)–[:venue]–>(?z),
  (?y)–[:venue]–>(?z)
 WHERE ?x.year == ?y.year

RETURN ?x, ?x.name, ?y, ?y.name, ?z, ?z.name

This would return:

?x ?x.name ?y ?y.name ?z ?z.name

n4 “Pr. Lang. for Aut.” n3 “A Turning M. Sim.” n1 “J. ACM”

The	DGQL	query	language	allows	us	to	take	full	advantage	of	domain	graphs	by	allowing	joins	between	
edges,	types,	etc.,	as	illustrated	by	the	following	example.

exampLe	4.12. The following query looks for articles with an affiliation that is current, i.e., where an author 
is still staff at the indicated organization:

MATCH (?x)–[?e :author]–>(?y :article),
  (?e)–[:org]–>(?z),
  (?z)–[:staff]–>(?x)
 RETURN ?y, ?y.name

The variable ?e invokes a join between an edge and a node, returning:

?y ?y.name

n5 “Add. Machines”

Navigational graph patterns. If	 we	 further	 allow	 path	 queries	 within	 basic	 graph	 patterns,	 we	 arrive	 at	
navigational graph patterns	[2].

exampLe	4.13. Suppose we wish to find, for example, instances of self-citation of staff at U.S. institutions; 
we could write this as follows:

MATCH (?w)=[^:staff/loc+]=>(?x :country { name : “U.S.” }),
  (?w)–[:author]–>(?y),
  (?w)–[:author]–>(?z),
  (?y)–[:cites]–>(?z)
 RETURN ?w, ?w.name, ?y, ?y.name, ?z, ?z.name
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This query would return:

?w ?w.name ?y ?y.name ?z ?z.name

n11 “D. Knuth” n5 “Add. Machines” n4 “Pr. Lang. for Aut.”

Optional graph patterns.	 Considering	 that	 the	 graph	 patterns	 considered	 previously	 allow	 for	 extracting	
tables	 from	graphs,	a	way	 to	enrich	a	graph	query	 language	 is	 to	support	 relational	operators	over	 these	
tables	 [2];	 this	 gives	 rise	 to	 the	notion	of	 relational graph patterns.	Thus	 far	we	have	 seen	 the	ability	 to	
project	 results	with	SELECT,	and	apply	 selections	over	 results	with	WHERE.	We	have	also	 spoken	about	
how	basic	 and	navigational	 graph	patterns	 can	be	 interpreted	 as	 natural	 joins	 in	 the	 relational	 algebra.	
DGQL	also	supports	optional	graph	patterns,	which	behave	akin	to	left	outer	joins	in	the	relational	algebra,	
i.e.,	they	allow	for	extending	solutions	with	data	that	may	or	may	not	be	available;	in	case	the	data	of	the	
optional	pattern	are	not	available,	the	solution	is	still	returned	and	the	optional	data	are	left	blank.

exampLe	4.14. Assume we want to find the authors who have published articles in the Journal of the ACM, 
their affiliation in those articles, and, if available, the organization at which they are currently staff. The 
following DGQL query achieves this:

MATCH (?v)–[?e :author]–>(?w),
 (?w)–[:venue]–>(?x { name = “J. ACM” }),
 (?e)–[:org]–>(?y)
 OPTIONAL {
 (?v)–[:staff]–>(?z)
 }
RETURN ?v, ?v.name, ?y, ?y.name, ?z, ?z.name

This query would return:

?v ?v.name ?y ?y.name ?z ?z.name

n9 “M. Curtis” n6 “Wesleyan U.”
n10 “R. Bigelow” n7 “Cal. Tech.”
n11 “D. Knuth” n7 “Cal. Tech.” n8 “Stanford U.”

Results for n9 and n10 are still returned though they are not currently staff at any organization; the 
corresponding variables are left blank.

Nested	optional	patterns	are	also	supported.	However,	optional	patterns	must	form	well-designed patterns 
[35].
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Limits and ordering.	 Some	 additional	 operators	 that	MillenniumDB	 supports	 are	 LIMIT	 and	ORDER	BY.	
These	allow	us	to	limit	the	number	of	output	mappings,	and	sort	the	obtained	results,	as	illustrated	by	the	
following	example.

exampLe	4.15. In order to find the most recent paper by Donald Knuth, we can use the following DGQL 
query:

MATCH (?x { name : “D. Knuth” })–[:author]–>(?y)
 ORDER BY DESC ?y.year
 RETURN ?x, ?x.name
 LIMIT 1

The result returned is as follows:

?x ?x.name

n5 “Add. Machines”

Ordering	is	always	applied	before	limiting	results.

4.2 Formal Definitions for DGQL

For	readers	 interested	in	a	 formal	specification,	we	provide	the	full	definition	of	DGQL,	together	with	
the	associated	semantics,	in	the	appendix	to	this	paper.	Specifically,	in	Appendix	A	we	provide	a	grammar	
for	 DGQL	 queries,	 and	 in	Appendix	 B	we	 define	 (an	 equivalent)	 abstract	 syntax	 of	 DGQL	 and	 formal	
semantics	of	the	language.

4.3 Comparing Graph Query Languages

A	variety	of	query	languages	for	graphs	have	been	proposed	in	recent	years	[1,	2].	This	section	compares	
DGQL	with	six	prominent	query	languages:	Cypher	[7]	(Neo4j),	SPARQL	[30]	(the	standard	query	language	
for	RDF	Triple	Stores),	G-CORE	[36]	(LDBC),	GSQL	[11]	(TigerGraph),	Gremlin	[12]	(supported	by	several	
systems	like	Amazon	Neptune	and	JanusGraph)	and	nGQL	[37]	(NebulaGraph).	For	each	query	language,	
we	evaluate	its	support	(total	or	partial)	for	six	query	features,	namely:	basic	graph	patterns,	relational	graph	
patterns,	 querying	 edges,	 regular	 path	 queries,	 navigational	 graph	 patterns,	 and	 full	 path	 recovery.	Our	
comparison	is	shown	in	Table	2.
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Table	2.	 Query	features	supported	by	graph	query	languages	(BGP	=	basic	graph	patterns,	RGP	=	relational	graph	
patterns,	QE	=	querying	edges,	RPQ	=	regular	path	queries,	NGP	=	navigational	graph	patterns,	FPR	=	full	path	
recovery).	The	symbol	~	is	used	to	indicate	partial	support	of	a	feature.

Query	language BGP RGP QE RPQ NGP FPR

DGQL  ~    ~

Cypher   ~ ~ ~ ~

SPARQL   ~   

G-CORE   ~   

GSQL  ~ ~  ~ 

Gremlin  ~ ~ ~ ~ ~

nGQL   ~ ~ ~ ~

Every	query	language	considered	in	Table	2	supports	the	notion	of	a	basic	graph	pattern	(BGP),	which,	
in	 its	 most	 general	 form,	 is	 a	 graph	 pattern	 structured	 like	 the	 data,	 but	 allowing	 variables	 to	 replace	
constants.	In	most	cases,	the	result	of	a	basic	graph	pattern	is	a	relation	(or	table)	consisting	of	results,	and	
in	some	cases	it	is	possible	to	construct/return	a	graph	(like	in	G-CORE	and	SPARQL).

Considering	that	a	graph	pattern	extracts	a	table	from	a	graph	(as	seen	in	the	examples	of	Section	4.1),	
relational graph patterns	(RGPs)	allow	the	use	of	relational-based	operators	to	combine	the	results	of	one	
or	more	graph	patterns	into	a	single	relation.	Full	support	of	this	feature	in	Table	2	indicates	that	a	language	
provides	 join,	 optional,	 union	 and	 negation	 of	 graph	 patterns.	 Partial	 support	 indicates	 that	 a	 language	
supports	some	of	 these	operators,	usually	 join	and	optional	graph	patterns,	as	 is	 the	case	for	DGQL	(we	
plan	to	extend	this	in	future	to	support	more	relational	operators).

Querying edges	(QE)	is	a	particular	feature	of	DGQL,	allowing	for	querying	relationships	involving	edges.	
Notably,	DGQL	allows	an	id	to	be	extracted	as	an	edge	in	one	part	of	the	query,	and	then	used	as	a	node	
in	another	part.	Other	query	languages	provide	partial	support	for	querying	edges,	as	they	are	restricted	to	
query	 the	 labels	 and	 properties	 of	 the	 edges,	 require	 reserved	 vocabulary	 (reification),	 or	 have	 other	
restrictions	(e.g.,	using	named	graphs	in	SPARQL	over	which	paths	cannot	be	resolved).

The	regular path queries	(RPQs)	feature	refers	to	matching	paths	based	on	(2-way)	regular	expressions,	
with	concatenation,	disjunction,	inverse,	optional	and	Kleene	star.	Partial	support	indicates	that	a	language	
offers	a	restricted	group	of	such	operators,	such	as	in	the	case	of	Cypher,	which	supports	only	Kleene	star	
on	top	of	a	single	edge	type,	and	not	over	a	subexpression,	thus	supporting	an	expression	such	as	cites+,	
but	not	a	more	complex	expression,	such	as	(author/^	author)+.

We	use	the	term	navigational graph patterns	(NGPs)	to	represent	the	combination	of	basic	graph	patterns	
and	 regular	 path	queries.	These	queries	 are	 akin	 to	 conjunctive	 (2-way)	 regular	 path	queries.	NGPs	 are	
supported	by	DGQL,	SPARQL	and	G-Core.
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Finally,	a	query	language	with	 full path recovery	allows	not	only	to	search	for	some	paths,	but	also	to	
return	such	paths	as	objects	that	can	be	manipulated	(with	the	nodes	and	edges	in	a	path).	This	is	a	particular	
feature	of	G-CORE	as	it	supports	path	construction	operations,	and	the	data	model	permits	storing	paths.	
In	Cypher,	the	resulting	paths	can	be	assigned	to	a	variable,	so	the	elements	of	each	path	can	be	accessed	
by	using	ad-hoc	functions,	although	with	reduced	facilities.	SPARQL	does	not	support	this	feature	as	the	
output	of	a	path	expression	is	only	the	start	and	end	nodes	of	each	path.	In	GSQL	and	Gremlin,	the	result	
of	 a	 path	 query	 is	 a	 set	 of	 objects,	 so	 the	 resulting	 paths	must	 be	 processed	 by	 using	 a	 programming	
language.	 Currently,	 DGQL	 partially	 supports	 this	 feature	 by	 returning	 a	 path	 as	 a	 string;	 however,	
MillenniumDB	has	been	designed	to	support	path	manipulation	in	the	future.

Table	2	focuses	on	core	features	for	querying	graphs	[2],	and	thus	omits	features	(e.g.,	borrowed	from	
SQL)	that	are	supported	by	some	of	the	languages,	and	that	are	potentially	very	useful	in	practice,	such	as	
aggregations,	solution	modifiers,	federation,	etc.	Such	features	can	be	layered	atop	the	features	mentioned.

5. SYSTEM ARCHITECTURE

In	 this	 section,	we	describe	 the	 internals	of	 the	MillenniumDB	engine,	which	have	been	designed	 to	
efficiently	support	the	domain	graph	model.	The	overall	architecture	of	the	system	is	presented	in	Figure	12,	
and	will	be	explained	in	the	following.

Figure 12.	 MillenniumDB	Architecture.

MillenniumDB	is	founded	on	tried	and	tested	relational	techniques:	it	stores	the	(property)	domain	graph	
model	as	several	relations	indexed	in	B+	trees,	loading	parts	into	main	memory	as	needed	using	a	fixed-
size	buffer.	It	also	uses	algorithmic	techniques	recently	suggested	in	the	theoretical	literature	for	evaluating	
queries	 [38,	 39]—techniques	 not	 typically	 implemented	 in	 graph	 database	 systems—for	 supporting	 the	
domain	graphs	model	in	practice.	Specifically,	we	combine	three	different	techniques	that	are	new	to	the	
architecture	of	graph	database	systems	when	used	in	conjunction.	First,	the	data	model	is	encoded	as	basic	
relations,	 indexed	 following	 different	 attributes	 orders,	 wherein	 data	 objects	 (e.g.,	 nodes,	 strings)	 are	
represented	by	ids.	Second,	we	translate	the	evaluation	of	any	query	to	several	joins	between	basic	relations,	
which	we	manage	using	worst-case optimal join algorithms	[40]:	an	evaluation	technique	recently	proposed	
for	relational	database	systems.	Last,	we	combine	join	algorithms	with	 the	evaluation	of	path	queries	by	
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compiling	the	path	pattern	into	an	automaton	and	running	the	query	on	the	fly.	These	techniques,	together,	
are	at	the	heart	of	how	MillenniumDB	optimizes	queries	over	the	domain	graphs	model	in	practice.

In	what	 follows,	we	 explain	 how	 one	 can	 store	 (property)	 domain	 graphs	 and	 index	 them.	We	 then	
outline	 the	query	evaluation	process	and	 the	algorithmic	 techniques	 it	uses,	 like	 the	worst-case	optimal	
query	plan	and	the	evaluation	of	path	queries.

Storage and indexing.	Let	us	start	by	explaining	the	Disk	and	Storage	Manager	part	of	the	MillenniumDB	
architecture	from	Figure	12.	The	main	component	of	the	domain	graph	data	model	are	objects.	Objects	are	
represented	internally	as	8-byte	identifiers.	To	optimize	query	execution,	identifiers	are	divided	into	classes	
and	 the	 first	byte	of	 the	 identifier	 specifies	a	class	 it	belongs	 to.	The	main	classes	 in	a	property	domain	
graph G	=	(O,	c,	lab,	prop)	are:

•  Nodes,	which	are	objects	in	the	range	of	c.	They	are	divided	into	two	subclasses:	named nodes,	which	
are	objects	in	the	domain	graph	for	which	an	explicit	name	is	available	(e.g.	Q320	in	Wikidata),	and	
anonymous nodes,	which	are	 internally	generated	objects	without	an	explicit	name	available	 to	 the	
user	(similar	to	blank	nodes	in	RDF	[41]).

•  Edges,	which	are	objects	in	the	domain	and	range	of	c,	and	are	always	anonymous,	internally	generated	
objects.

•  Values,	which	are	data	objects	like	strings,	integers,	etc.	These	values	are	classified	in	two	subclasses:	
inlined values,	which	are	values	that	fit	into	7	bytes	of	the	identifier	after	the	mask	(e.g.	7	byte	strings,	
integers,	etc.),	and	external values,	which	are	values	longer	than	7	bytes	(e.g.	long	strings).

All	 records	 stored	 in	MillenniumDB	 are	 composed	 of	 these	 identifiers.	We	will	 explain	 later	 how	 long	
strings	for	external	values	are	handled.

To	store	property	domain	graphs,	MillenniumDB	deploys	B+	trees	[42].	For	this	purpose,	we	build	a	B+	
tree	template	for	fixed	sized	records,	which	store	all	classes	of	identifiers.	To	store	a	property	domain	graph	
G	=	(O,	c,	lab,	prop),	we	simply	store	and	index	in	B+	trees	the	four	components	defining	it:

• objects(id)	stores	the	identifiers	of	all	the	objects	in	the	database	(i.e.,	O).
•  DomainGraph(source,type,target,eid)	contains	all	information	on	edges	in	the	graph	(i.e.,	c),	where	eid	
is	an	edge	identifier,	and	source,	type,	and	target	can	be	ids	of	any	class	(i.e.,	node,	edge,	or	value).	
By	default,	four	permutations	of	the	attributes	are	indexed	in	order	to	aid	query	evaluation.	These	are:	
source-target-type-eid,	target-type-source-eid,	type-source-target-eid	and	type-target-source-eid.

•  LabeLs(object,label)	 stores	object	 labels	 (i.e.,	 lab).	The	value	of	object	can	be	any	 identifier,	and	 the	
values	of	label	are	stored	as	ids.	Both	permutations	are	indexed.

•  properties(object,property,value)	stores	the	property–value	pairs	associated	with	each	object	(i.e.,	prop).	
The	object	column	can	contain	any	id,	and	property	and	value	are	value	ids.	Aside	from	indexing	the	
primary	key,	an	additional	permutation	is	added	to	search	objects	by	property–value	pairs.
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All	 the	B+	 trees	are	created	 through	a	bulk-import	phase,	which	 loads	multiple	 tuples	of	 sorted	data,	
rather	than	inserting	records	one	by	one.	In	order	to	enable	fast	lookups	by	edge	identifier,	we	use	the	fact	
that	this	attribute	is	the	key	for	the	relation.	Therefore,	we	also	store	a	table	called	eDGetabLe,	which	contains	
triples	 of	 the	 form	 (source,type,target),	 such	 that	 the	 position	 in	 the	 table	 equals	 to	 the	 identifier	 of	 the	
object e such that c(e)	=	(source,type,target).	This	implies	that	edge	identifiers	must	be	assigned	consecutive	
ids	starting	from	zero	internally	by	MillenniumDB	(they	are	not	specified	by	the	user).	In	total,	we	use	ten	
B+	trees	for	storing	the	data.

To	transform	external	strings	and	values	(longer	than	7	bytes)	to	database	object	ids	and	values,	we	have	
a	single	binary	file	called	objectFiLe,	which	contains	all	such	strings	concatenated	together.	The	internal	id	
of	an	external	value	is	then	equal	to	the	position	where	it	is	written	in	the	objectFiLe,	thus	allowing	efficient	
lookups	of	a	value	via	 its	 id.	The	 identifiers	are	generated	upon	loading,	and	an	additional	hash	 table	 is	
kept	to	map	a	string	to	its	identifier;	we	use	this	to	ensure	that	no	value	is	inserted	twice,	and	to	transform	
explicit	 values	 given	 in	 a	 query	 to	 their	 internal	 ids.	 Only	 strings	 are	 currently	 supported,	 but	 the	
implementation	interface	allows	for	adding	support	for	different	value	types	in	a	relatively	simple	manner.

All	of	the	stored	relations	are	accessed	through	linear	iterators	which	provide	access	to	one	tuple	at	a	
time.	All	of	the	data	is	stored	on	pages	of	fixed	(but	parametrized)	size	(currently	4kB).	The	data	from	disk	
is	loaded	into	a	shared	main	memory	buffer,	whose	size	can	be	specified	upon	initializing	the	MillenniumDB	
server.	 The	 buffer	 uses	 the	 standard	 clock	 page	 replacement	 policy	 [42].	 Additionally,	 for	 improved	
performance,	 upon	 initializing	 the	 server,	 it	 can	 be	 specified	 that	 the	 objectFiLe	 be	 loaded	 into	 main	
memory	 in	order	 to	quickly	convert	 internal	 identifiers	 to	string	and	 integer	values	 that	do	not	 fit	 into	7	
bytes.

Evaluating a query.	In	MillenniumDB,	the	execution	pipeline	follows	the	standard	database	template	where	
the	string	of	the	query	is	parsed	and	translated	into	a	logical	plan,	which	is	then	analyzed	and	converted	
into	a	physical	plan,	and	finally	evaluated,	as	illustrated	by	the	Query	Processor	component	of	Figure	12.

A	key	part	is	in	how	the	patterns and filters	of	a	DGQL	query	(see	Section	4.1)	are	evaluated.	Specifically,	
patterns	and	filters	are	grouped	together	into	a	list	of	relations	that	can	be	edges,	labels,	properties,	or	path	
queries,	forming	a	large	multi-way join	query.	In	essence,	evaluating	these	joins	is	analogous	to	selecting	
an	appropriate	join	plan	for	the	relations	representing	the	different	elements.	This	also	goes	in	hand	with	
selecting	the	appropriate	join	algorithm	for	each	of	the	joins.	Given	that	edges,	labels,	and	properties	are	
all	indexed,	this	will	most	commonly	be	index	nested-loop	join.	Paths	on	the	other	hand	are	not	directly	
indexed.	For	this	reason,	they	are	pushed	to	the	end	of	the	join	plan	and	joined	via	nested-loop	with	the	
rest	of	the	multi-way	join.

MillenniumDB	supports	different	mechanisms	 for	evaluating	 the	multi-way	 join	 formed	by	 the	pattern	
and	filter	of	DGQL	query.

	 While	not	the	best	option,	based	on	empirical	evidence	(see	Section	6),	this	solution	seems	to	be	adequate	in	practice.
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•		A	 worst-case	 optimal	 query	 plan	 as	 described	 in	 [43]	 is	 used	 whenever	 possible.	 This	 approach	
implements	a	modified	leapfrog	algorithm	[38]	in	order	to	minimize	the	number	of	intermediate	results	
that	are	generated.

•		The	classical	relational	optimizer,	which	is	based	on	cost	estimation,	and	tries	to	order	base	relations	
in	such	a	way	as	to	minimize	the	amount	of	(intermediate)	results.	We	currently	support	two	modes	
of	execution	here:

	 (i)		Selinger-style	join	plans	[44]	which	use	dynamic	programming	to	determine	the	optimal	order	
of	relations.

	 (ii)		In	 the	presence	of	 a	 large	number	of	 relations,	 a	 greedy	planner	 [45]	 is	 used	which	 simply	
determines	the	cheapest	relation	to	use	in	each	step.

Two	particular	points	of	 interest	are	 the	worst-case	optimal	query	planner,	and	the	way	that	paths	are	
evaluated.	Both	of	these	deploy	state-of-the-art	research	ideas	that	are	usually	not	implemented	in	practical	
graph	database	systems	(though	some	prototypes	exist	 [43,	46,	47]).	We	provide	some	additional	details	
on	these	next.

Worst-case optimal query plan.	 Evaluating	 multiple	 joins	 in	 a	 worst-case	 optimal	 way	 is	 done	 using	 a	
modified	leapfrog	algorithm	[43].	While	a	classical	join	plan	does	a	nested	for-loop	over	relations,	leapfrog	
performs	a	nested	for-loop	over	variables	[38].	Specifically,	the	algorithm	first	selects	a	variable	order	for	
the	query,	say	(?x,	?y,	?z).	It	then	intersects	all	relations	where	the	first	variable	?x	appears,	and	over	each	
solution	 for	 ?x	 returned,	 it	 intersects	all	 relations	where	 ?y	appears	 (replacing	 ?x	 in	 its	 current	 solution),	 
and	so	on	to	?z,	until	all	variables	are	processed	and	the	final	solutions	are	generated.	We	refer	the	reader	
to	[38]	and	[43]	for	a	detailed	explanation.	Two	critical	aspects	for	supporting	this	approach	are	indexes	
and	variable	ordering,	explained	next.

To	support	the	leapfrog	algorithm	over	traditional	relational	indexes	such	as	B+	trees,	we	should	index	
all	relations	in	all	possible	orders	of	their	attributes	in	order	to	ensure	efficient	intersections,	which	greatly	
increases	 disk	 storage	 [43].	 In	MillenniumDB,	we	 include	 four	 orders	 for	DomainGraph,	 and	 all	 orders	 
for LabeLs and properties.	With	 these	 orders	we	 can	 cover	 the	most	 common	 join-types	 that	 appear	 in	
practice	[34]	by	a	worst-case	optimal	query	plan.	We	use	the	classical	relational	optimizer	if	the	plan	needs	
an	unsupported	order	or	one	of	the	relations	uses	a	path	query.

The	leapfrog	algorithm	further	requires	choosing	a	variable	ordering,	which	is	crucial	for	its	performance.	
The	heuristic	we	deploy	for	selecting	the	variable	ordering	mixes	a	greedy	approach,	and	the	ideas	of	the	
Graham–Yu–Özsoyoglu	 (GYO)	 reduction	 [48].	More	precisely,	we	 first	 order	 the	 variables	 based	on	 the	
minimal	cost	of	the	relations	they	appear	in	and	resolve	ties	by	selecting	the	variable	that	appears	in	more	
distinct	relations.	The	variables	“connected”	to	the	first	one	chosen	are	then	processed	in	the	same	manner	
(where	connected	means	appearing	in	the	same	relation)	until	the	process	can	not	continue.	The	isolated	
variables	are	then	treated	last.
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Evaluating path queries.	For	evaluating	a	path	query	(2RPQ),	the	path	pattern	is	compiled	into	an	automaton.	
Then	a	“virtual”	cross-product	of	this	automaton	and	the	graph	is	constructed	on-the-fly,	and	navigated	via	
breadth-first	search,	as	commonly	suggested	in	the	theoretical	 literature	[49,	50,	39]	 (our	experiments	 in	
Section	6	will	also	 test	a	depth-first	 search	 (DFS)	variant).	Our	assumption	 is	 that	each	path	pattern	will	
have	 at	 least	 one	of	 the	 endpoints	 assigned	before	 evaluation.	This	 can	be	done	 either	 explicitly	 in	 the	
pattern,	or	via	the	remainder	of	the	query.	For	instance,	a	path	pattern	(Q1)=[P31*]=>(?x)	has	the	starting	
point	of	our	search	assigned	to	Q1.	On	the	other	hand,	(?x)=[P31*]=>(?y	:person)	does	not	have	any	of	the	
endpoints	 assigned,	 however,	 the	 (?y	 :Person)	 allows	 us	 to	 instantiate	 ?y	 with	 any	 node	with	 the	 label	
:person.

Intuitively,	from	a	starting	node	(tagged	with	the	initial	state	of	the	automaton),	all	edges	with	the	type	
specified	by	the	outgoing	transitions	from	this	state	are	followed.	The	process	is	repeated	until	reaching	an	
end	state	of	the	automaton,	upon	which	a	result	can	be	returned.	This	allows	a	fully	pipelined	evaluation	
of	path	queries,	while	only	requiring	at	most	a	fixed	amount	of	memory	(the	neighbors	of	the	node	on	the	
top	of	the	BFS	queue).	Additionally,	the	BFS	algorithm	also	allows	us	to	return	a	single	shortest	path	between	
each	pair	of	endpoints	(see	Section	4	for	an	example).	Returning	a	single	shortest	path	comes	almost	for	
free,	given	that	it	can	be	reconstructed	using	the	set	of	visited	nodes	as	used	for	bookkeeping	in	the	BFS	
algorithm.	The	algorithm	can	also	be	 extended	 to	 return	 all	 shortest	 paths	 (as	 supported	by	DGQL	 )	 by	
keeping	a	list	of	predecessors	that	reach	the	node	via	a	path	of	shortest	length.

The	 implemented	 algorithm	 only	 requires	 two	 permutations	 of	 the	 DomainGraph	 relation:	 one	 for	
retrieving	 all	 of	 a	 node’s	 successors	 via	 an	 edge	of	 a	 specified	 type;	 and	 another	 for	 retrieving	 all	 such	
predecessors	of	a	given	node.

6. BENCHMARKING

In	this	section,	we	provide	an	experimental	evaluation	of	the	core	graph	querying	features	of	MillenniumDB	
addressing	 two	 key	 questions:	 (Q1)	Which join and path algorithms provide the best performance over 
domain graphs?	 (Q2)	 How does MillenniumDB’s performance compare with existing graph database 
engines?

We	base	our	experiments	on	the	Wikidata	knowledge	graph	[21],	which	is	one	of	the	largest	and	most	
diverse	real-world	knowledge	graphs	that	is	publicly	available,	and	also	provides	a	public	log	of	real-world	
queries	posted	by	Wikidata	users	that	we	can	use	for	experiments	[22,	34].	The	experiments	focus	on	two	
fundamental	 query	 features:	 (i)	 basic	 graph	 patterns	 (BGPs);	 and	 (ii)	 path	 queries.	 Regarding	 (Q1),	 we	
compare	the	performance	of	different	join	and	path	algorithms	within	MillenniumDB.	Regarding	(Q2),	we	
also	provide	a	side	by	side	comparison	with	several	popular	persistent	graph	database	engines	that	support	
BGPs	and	at	least	the	Kleene	star	feature	for	paths.	We	publish	the	data,	queries,	scripts,	and	configuration	
files	for	each	engine	online,	together	with	the	scripts	used	to	load	the	data	and	run	the	experiments	[26].
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Internal baselines.	The	base	of	our	comparison	is	the	MillenniumDB	implementation	available	at	[25].	For	
comparing	the	performance	of	different	join	and	path	algorithms	in	MillenniumDB	(per	Q1),	we	include	
internal	 baselines,	 where	 we	 test:	 (i)	 MillenniumDB	 LF,	 which	 is	 the	 default	 version	 implementing	 the	
leapfrog	triejoin	algorithm;	(ii)	MillenniumDB	GR,	which	implements	the	greedy	algorithm	for	selecting	the	
join	order;	and	(iii)	MillenniumDB	SL,	implementing	the	Sellinger	join	planner.	Similarly,	for	path	queries,	
we	 test	 (a)	 MillenniumDB	 BFS,	 the	 default	 version	 of	 the	 engine;	 and	 (b)	 MillenniumDB	 DFS,	 which	
evaluates	path	queries	using	the	depth-first	traversal.

Other engines.	We	also	compare	the	performance	of	MillenniumDB	with	five	persistent	graph	query	engines	
(per	Q2).	First,	we	include	three	popular	RDF	engines:	Jena	TDB	version	4.1.0	[18],	Blazegraph	(BlazeG	
for	short)	version	2.1.6	[16],	and	Virtuoso	version	7.2.6	[20].	We	further	include	a	property	graph	engine:	
Neo4J	community	edition	4.3.5	[6].	Finally,	we	also	compare	with	Jena	Leapfrog	(Jena	LF,	 for	short)—a	
version	of	Jena	TDB	implementing	a	leapfrog-style	algorithm	[43]—in	order	to	compare	with	an	external	
graph	database	using	a	worst	case	optimal	algorithm.

The machine.	All	experiments	described	were	run	on	a	single	commodity	server	with	an	Intel®Xeon®Silver	
4110	CPU,	and	128GB	of	DDR4/2666MHz	RAM,	running	the	Linux	Debian	10	operating	system	with	the	
kernel	version	5.10.	The	hard	disk	used	to	store	the	data	was	a	SEAGATE	ST14000NM001G	with	14TB	of	
storage.

The data.	The	base	 for	 our	 experiments	 is	 the	Wikidata	 dataset.	 In	 particular,	we	used	 the	 truthy	 dump	
version	 20210623-truthy-BETA	 [51],	 keeping	 only	 triples	 in	which	 (i)	 the	 subject	 position	 is	 a	Wikidata	
entity,	and	(ii)	the	predicate	is	a	direct	property.	We	call	this	dataset	Wikidata Truthy.	The	size	of	the	dataset	
after	this	process	was	1,257,169,959	triples.	The	simplification	of	the	dataset	is	done	to	facilitate	comparison	
across	 multiple	 engines,	 specifically	 to	 keep	 data	 loading	 times	 across	 all	 engines	 manageable	 while	
keeping	the	nodes	and	edges	necessary	for	testing	the	performance	of	BGPs	and	property	paths.	The	size	
of the Wikidata Truthy	dataset,	when	loaded	into	the	respective	systems,	is	summarized	in	Table	3.	Default	
indices	were	used	on	Jena	TDB,	Blazegraph	and	Virtuoso.	Jena	LF	stores	three	additional	permutations	of	
the	stored	 triples	 to	efficiently	support	 the	 leapfrog	algorithm	for	any	 join	query,	 thus	using	more	space.	
Neo4j	by	default	creates	an	index	for	edge	types	(as	of	version	4.3.5).	To	speed	up	searches	for	particular	
entities	and	properties,	we	also	created	an	index	linking	a	Wikidata	identifier	(such	as,	e.g.,	Q510)	to	its	
internal	id	in	Neo4j.	We	also	tried	to	index	literal	values	in	Neo4j,	but	the	process	failed	(the	literals	are	
still	stored).	MillenniumDB	uses	extra	disk	space	because	of	the	additional	indices	needed	to	support	worst-
case	optimal	join	over	domain	graphs	(similar	to	the	case	of	Jena	LF).

Table 3.	Wikidata	Truthy	sizes	when	loaded	into	each	engine.	The	base	dataset	consists	of	roughly	1.25	billion	
triples.

MillenniumDB BlazeG Jena Jena	LF Virtuoso Neo4J

203GB 70GB 110GB 195GB 70GB 112GB

	 Though	TigerGraph	meets	the	technical	requirements,	its	license	currently	restricts	benchmarking	and	thus	it	is	excluded.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/5/3/560/2158194/dint_a_00229.pdf by guest on 04 August 2024



590 Data Intelligence

MillenniumDB: An Open-Source Graph Database System

How we ran the queries.	We	detail	the	query	sets	used	for	the	experiments	in	their	respective	subsections.	
To	simulate	a	realistic	database	load,	we	do	not	split	queries	into	cold/hot	run	segments.	Rather,	we	run	
them	in	succession,	one	after	another,	after	a	cold	start	of	each	system	(and	after	cleaning	the	OS	cache).	
This	simulates	the	fact	that	query	performance	can	vary	significantly	based	on	the	state	of	the	system	buffer,	
or	even	on	the	state	of	the	hard	drive,	or	the	state	of	OS’s	virtual	memory.	For	each	system,	queries	were	
run	 in	 the	 same	order.	We	 record	 the	execution	 time	of	each	 individual	query,	which	 includes	 iterating	
over	all	results.	We	set	a	limit	of	100,000	distinct	results	for	each	query,	again	in	order	to	enable	comparability	
as	some	engines	showed	instability	when	returning	larger	results.

Memory usage.	Blazegraph,	 Jena	and	Virtuoso	were	assigned	64GB	of	RAM,	as	 is	 recommended.	Neo4J	
was	run	with	default	settings,	while	MillenniumDB	had	access	to	32GB	for	main-memory	buffer,	and	it	
uses	an	additional	10GB	for	in-memory	dictionaries.	Since	the	systems	tested	are	buffer-based—i.e.,	since	
they	 reserve	a	 fixed	amount	of	 scrap	space	 (the	buffer)	 in	main	memory	 for	 their	operation,	and	do	not	
exceed	this	memory	(except	perhaps	modulo	a	small	amount	used	for	internal	operations)—and	since	they	
tend	to	use	the	buffer	available,	their	maximum	memory	usage	corresponds	to	the	these	settings.	Thus,	in	
the	rest	of	this	section	we	focus	on	comparing	runtimes.

Handling timeouts.	We	defined	a	 timeout	of	10	minutes	per	query	 for	each	system.	Apart	 from	 that,	we	
note	 that	most	 systems	had	 to	be	 restarted	upon	a	 timeout	 as	 they	often	 showed	 instability,	particularly	
while	evaluating	path	queries.	This	was	done	without	cleaning	the	OS	cache	in	order	to	preserve	some	of	
the	virtual	memory	mapping	that	the	OS	built	up	to	that	point.	In	comparison,	MillenniumDB	managed	to	
return	a	non-trivial	amount	of	query	results	on	each	query,	and	did	not	need	to	be	restarted,	thus	handling	
timeouts	gracefully.

6.1 Basic Graph Patterns

We	focus	first	on	basic	graph	pattern	queries.	To	test	different	query	execution	strategies	of	MillenniumDB,	
we	use	two	benchmarks:	Real-world BGPs and Complex BGPs,	which	are	described	next.

Real-world BGPs.	The	Wikidata	SPARQL	query	log	contains	millions	of	queries	[22],	but	many	are	trivial	
to	evaluate.	We	thus	generate	our	benchmark	from	more	challenging	cases,	 i.e.,	a	smaller	log	of	queries	
that	timed-out	on	the	Wikidata	public	endpoint	[22].	From	these	queries	we	extracted	their	BGPs,	removing	
duplicates	 (modulo	 isomorphism	on	query	variables).	We	distinguish	queries	consisting	of	a	single	 triple	
pattern	(Single)	from	those	containing	more	than	one	triple	pattern	(Multiple).	The	former	set	tests	the	triple	
matching	 capabilities	 of	 the	 systems,	whereas	 the	 latter	 set	 tests	 join	 performance.	 Single	 contains	 399	
queries,	whereas	Multiple	has	436	queries.

		We	also	 tried	 increasing	 the	dbms.memory.pagecache.size	parameter	manually	 to	64GB,	and	setting	dbms.memory.heap.
initial_size	and	dbms.memory.heap.max_size	to	30GB	each,	but	the	variation	in	the	runtimes	between	the	two	settings	was	
less	than	0.5%.	We	believe	that	this	is	because	in	both	cases,	Neo4j	manages	to	run	in	main	memory	without	swapping,	
so	varying	these	configurations	has	little	effect.
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Real-world Single.	Table	 4	 (top)	 summarizes	 the	 query	 times	 on	 this	 set,	whereas	 Figure	 13	 (left)	 shows	
boxplots	with	more	detailed	statistics	on	the	distributions	of	runtimes.	Since	these	queries	do	not	require	
joins,	we	 show	 one	 variant	 for	MillenniumDB.	MillenniumDB	 is	 the	 fastest	 overall	 (median	 of	 0.05	 s),	
followed	by	Blazegraph	(median	of	0.09	s).	In	terms	of	average	times	and	higher	percentiles,	MillenniumDB	
more	clearly	outperforms	other	engines,	being	able	 to	enumerate	up	 to	100,000	 results	 (the	 limit)	more	
quickly	due	to	decoding	internal	 ids	more	quickly.	 In	MillenniumDB,	values	such	as	P12	or	Q10	that	 fit	
within	7	bytes	are	inlined,	and	do	not	need	to	be	dictionary	decoded.	The	remaining	dictionary	fits	entirely	
in	available	memory	(~8	GB	of	RAM).	In	the	other	systems,	dictionary	decoding	generates	random	accesses	
to	the	disk.	The	four	SPARQL	engines	tested	must	store	IDs	as	IRIs	within	the	RDF	model,	which	include	
relatively	long	prefixes.	However,	since	RDF	datasets	typically	have	few	prefixes	repeated	often,	we	could	
support	full	IRIs	within	MillenniumDB	with	minimal	overhead	by	encoding	a	prefix	id	for	the	top	k	prefixes	
in log2(k)	bits	within	the	object	identifier,	keeping	the	small	mapping	from	prefix	id	to	string	in	memory.	
The	Wikidata	query	service	lists	32	prefixes,	which	would	require	5	bits	that	would	fit	“for	free’’	in	the	class	
byte	(essentially	considering	each	prefix	to	be	a	class).

Table 4.	 Summary	of	runtimes	(in	seconds)	for	BGPs.

Engine Supported Error Timeouts Average Median

Real-world Single (399 queries)

MillenniumDB 399 	 0 0 	 0.07 0.05
Blazegraph 399 	 0 0 	 2.21 0.09
Jena 399 	 0 0 14.10 0.34
Jena	LF 395 	 4 0 10.08 0.44
Virtuoso 399 	 0 0 	 2.22 0.32
Neo4j 394 	 5 0 28.00 1.33

Real-world Multiple (436 queries)

MillenniumDB	LF 436 	 0 0 	 4.84 0.24
MillenniumDB	GR 436 	 0 1 10.19 0.30
MillenniumDB	SL 436 	 0 1 10.04 0.27
Blazegraph 436 	 0 3 31.79 2.42
Jena 426 10 0 35.43 4.90
Jena	LF 418 18 0 16.78 3.39
Virtuoso 436 	 0 0 	 7.87 5.11
Neo4j 405 31 0 75.55 6.84

Complex (850 queries)

MillenniumDB	LF 850 	 0 0 	 0.38 0.10
MillenniumDB	GR 850 	 0 1 	 3.30 0.17
MillenniumDB	SL 850 	 0 1 	 3.51 0.17
Blazegraph 850 	 0 2 	 4.63 0.34
Jena 850 	 2 0 	 3.37 0.16
Jena	LF 850 	 0 0 	 0.88 0.14
Virtuoso 850 	 0 0 	 1.00 0.19
Neo4j 850 10 0 17.92 0.66
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Real-world Multiple.	Table	 4	 (middle)	 and	 Figure	 13	 (middle)	 show	 the	 results	 for	 this	 set.	 Comparing	
different	join	execution	strategies	within	MillenniumDB,	we	can	see	the	superiority	of	the	leapfrog	triejoin	
variant	 (particularly	 on	 average,	 i.e.,	 for	more	 complex	 queries).	The	 Selinger	 variant	 of	MillenniumDB	
outperforms	 the	 greedy	 algorithm	 for	 join	 selection,	 but	 only	marginally.	Compared	with	 existing	 graph	
engines,	MillenniumDB	clearly	outperforms	other	 systems	on	 this	query	 set.	 Its	medians	are	an	order	of	
magnitude	faster	than	those	of	Blazegraph,	the	next	best	contender.	The	difference	is	less	sharp	for	averages,	
but	MillenniumDB	LF	still	takes	60%	of	the	time	of	Virtuoso,	the	next	best	contender.

Figure 13.	 Boxplots	showing	distributions	for	BGP	runtimes.

Complex BGPs.	This	is	a	benchmark	used	to	test	the	performance	of	worst-case	optimal	joins	[43].	Here,	
17	 different	 complex	 join	 patterns	 were	 selected,	 and	 50	 different	 queries	 generated	 for	 each	 pattern,	
resulting	in	a	total	of	850	queries.	Figure	13	(right),	and	Table	4	(bottom),	show	the	resulting	query	times.	
In	 this	case,	 the	difference	between	 the	 join	algorithms	of	MillenniumDB	 is	more	clear.	The	worst-case-
optimal	version	(MillenniumDB	LF)	is	not	only	considerably	more	stable	than	the	other	two	versions,	but	
also	twice	as	fast	in	the	median.	We	can	also	observe	that	MillenniumDB	GR	wins	out	over	MillenniumDB	
SL	on	average	 (but	not	 the	median	case).	When	comparing	with	other	engines,	 the	next-best	competitor	
after	MillenniumDB	LF	is	Jena	LF,	showing	the	benefits	of	worst-case	optimal	joins.	Virtuoso	follows	not	far	
behind,	 while	 MillenniumDB	 GR,	 Jena,	 Blazegraph	 and	 Neo4j	 are	 considerably	 slower.	 Overall,	
MillenniumDB	LF	offers	the	best	performance	for	every	statistic	shown	in	the	plot.

6.2 Path Queries

To	test	the	performance	of	path	queries,	we	extracted	2RPQ	expressions	from	a	log	of	queries	that	timed	
out	on	the	Wikidata	endpoint	[22].	The	original	log	has	2110	queries.	After	removing	queries	that	do	not	
use	direct	properties	 (which	are	absent	 in	 the	Wikidata Truthy	dataset),	we	ended	up	with	1683	queries.	
These	were	 run	 in	 succession,	 each	 restricted	 to	 return	at	most	100,000	 results.	 In	 the	case	of	 SPARQL	
engines,	we	added	 the	DISTINCT	keyword	 to	 remove	duplicates	caused	by	 the	 rewriting	of	 fixed-length	
path	queries	to	unions	of	BGPs	that	are	then	evaluated	under	bag	semantics.	To	make	the	comparison	fair,	
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the	DISTINCT	keyword	was	also	added	in	MillenniumDB	queries.	Each	system	was	started	after	cleaning	
the	system	cache,	and	with	a	timeout	of	10	minutes.	Since	these	are	originally	SPARQL	queries,	not	all	of	
them	were	supported	by	Neo4J	given	 the	 restricted	 regular-expression	syntax	 it	 supports.	MillenniumDB	
and	Neo4J	were	the	only	systems	able	to	handle	timeouts	without	being	restarted.	In	this	comparison	we	
do	not	include	Jena	LF	since	it	uses	the	same	execution	strategy	as	Jena	for	property	paths.	Likewise,	for	
MillenniumDB,	we	 introduce	 two	 internal	 baselines	 for	 breadth-first	 search	 (BFS)	 and	 depth-first	 search	
(DFS).	The	experimental	results	for	these	path	queries	are	summarized	in	Table	5	and	Figure	14.

Table 5.	 Summary	of	runtimes	(in	seconds)	for	path	queries.

Engine Supported Error Timeouts Average Median

MillenniumDB	BFS 1683 	 0 	 0 	 1.1 0.095
MillenniumDB	DFS 1683 	 0 	 0 	 1.1 0.072
Blazegraph 1683 	 2 44 27.6 0.396
Jena 1683 14 46 22.8 0.207
Virtuoso 1683 55 	 4 	 5.8 0.325
Neo4J 1622 	 0 42 23.3 0.328

Figure 14.	 Boxplots	of	query	times	on	property	paths.

In	 terms	of	our	 internal	comparison,	we	can	see	 that	 the	DFS	algorithm	slightly	outperforms	BFS.	The	
reason	for	keeping	BFS	as	the	default	algorithm	is	twofold:	(i)	it	significantly	outperforms	DFS	when	paths	
are	also	returned;	and	 (ii)	 it	 supports	 returning	all	shortest	paths	between	any	pair	of	nodes.	To	 illustrate	
point	(i),	we	ran	our	experiments	again,	but	now	also	returning	a	single	path	witnessing	each	query	answer.	
In	this	case,	the	average	for	BFS	is	5.9	sec,	and	median	is	0.086	sec.	On	the	other	hand,	when	paths	are	
returned,	DFS	takes	7.9	sec	on	average,	and	0.1	sec	median	time.

	 	In	fact,	MillenniumDB	did	not	give	any	timeouts.	However,	we	re-ran	the	experiments	with	a	lower	timeout,	and	observed	
that	the	system	could	recover	from	interrupting	the	query	gracefully	and	was	able	to	return	the	results	found	before	being	
interrupted.
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Compared	with	other	engines,	MillenniumDB	is	generally	the	fastest,	and	has	the	most	stable	performance.	
Its	average	is	near	a	second,	i.e.,	five	times	faster	than	the	next	best	contender	(Virtuoso).	Its	median,	below	
0.1	 seconds,	 is	 half	 the	 next	 one	 (Jena’s).	 Even	 after	 removing	 the	 queries	 that	 timed-out	 on	 the	 other	
systems,	 they	are	considerably	slower	 than	MillenniumDB.	 In	particular,	 if	we	only	consider	 the	queries	
that	run	successfully	on	Virtuoso	(i.e.,	excluding	the	59	queries	that	timed-out	or	gave	an	error),	we	get	an	
average	time	of	0.85	seconds	and	a	median	time	of	0.086	seconds	on	MillenniumDB:	less	 than	half	 the	
times	of	Virtuoso	with	 these	queries	excluded.	The	boxplots	 further	 show	 the	stability	of	MillenniumDB:	
the	medians	of	other	engines	are	above	 the	 third	quartile	of	MillenniumDB.	Their	 third	quartile	 is	5–10	
times	higher	than	MillenniumDB’s,	and	higher	than	its	topmost	whisker.

To	further	test	robustness,	we	also	ran	all	of	the	queries	without limiting the output size	on	MillenniumDB.	
In	this	test,	the	engine	timed	out	in	only	15	queries,	each	returning	between	800	thousand	and	44	million	
results	before	timing	out.	When	running	queries	to	completion,	MillenniumDB	BFS	averaged	13.4	seconds	
per	query	(8	seconds	excluding	timeouts),	with	a	median	of	0.1	seconds	(both	with	and	without	timeouts).

6.3 Wikidata Complete

To	show	the	scalability	of	MillenniumDB,	and	to	property	leverage	its	domain	graph,	we	ran	experiments	
with	a	full	version	of	Wikidata.	We	call	this	dataset	Wikidata Complete,	and	base	it	off	the	Wikidata	JSON	
dump11	 version	 20201102-all.json,	 which	 is	 preprocessed	 and	mapped	 to	 our	 data	model.	 In	Wikidata 
Complete,	we	model	qualifiers	(i.e.	edges	on	edges),	put	labels	on	objects,	and	assign	them	properties	with	
values.	We	use	properties	to	store	the	language	value	of	each	string	in	Wikidata,	and	also	to	model	elements	
of	complex	data	values	(e.g.,	for	coordinates	we	would	have	objects	with	properties	latitude	and	longitude,	
and	similarly	for	amounts,	date/time,	limits,	etc.).	Each	object	representing	a	complex	data	value	also	has	
a	 label	 specifying	 its	data	 type	 (e.g.	coord	 for	geographical	coordinates).	All	qualifiers	were	 loaded.	The	
only	elements	excluded	from	the	full	Wikidata	data	dump	were	sitelinks	and	references.	This	full	version	
of	Wikidata	 resulted	 in	a	knowledge	graph	with	 roughly	300	million	objects,	participating	 in	4.3	billion	
edges.	The	 total	size	on	disk	of	 this	data	was	827GB	in	MillenniumDB,	 i.e.,	more	 than	four	 times	 larger	
than Wikidata Truthy.	More	details	about	this	dataset	can	be	found	in	the	online	material	accompanying	
this	paper	[26].

We	ran	the	same	queries	from	the	benchmarks	(Single,	Multiple and Complex	BGPs,	as	well	as	Paths).	
The	number	of	outputs	on	the	two	versions	of	the	data,	while	not	the	same,	was	within	the	same	order	of	
magnitude	 averaged	 over	 all	 the	 queries.	 The	 results	 are	 presented	 in	 Table	 6.	 As	 we	 can	 observe,	
MillenniumDB	 shows	 no	 deterioration	 in	 performance	when	 a	 larger	 database	 is	 considered	 for	 similar	
queries.	This	is	mostly	due	to	the	fact	that	the	buffer	only	loads	the	necessary	pages	into	the	main	memory,	
and	will	probably	require	a	rather	similar	effort	in	both	cases.	We	also	note	that,	again,	no	queries	resulted	
in	a	timeout	over	the	larger	dataset.

11	 It	is	important	to	note	that	JSON	and	RDF	dumps	of	Wikidata	do	not	result	in	precisely	the	same	knowledge	graph	due	to	
some	restrictions	of	the	particular	reification	used	in	RDF;	however,	they	do	result	in	very	similar	knowledge	graphs.
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Table	6.	 Average	and	median	runtimes,	in	seconds,	for	MillenniumDB	on	the	complete	version	of	Wikidata.

Single Multiple Complex Paths

Average 0.08 4.04 0.35 1.04
Median 0.07 0.28 0.095 0.10

6.4 Discussion

Regarding	 (Q1)—i.e.,	 which	 join	 and	 path	 algorithms	 provide	 the	 best	 performance	 in	 this	 setting—
regarding	 join	 algorithms,	 we	 can	 conclude	 that	 the	 worst-case	 optimal	 join	 algorithm	 consistently	
outperforms	the	greedy	and	Selinger	variants,	being	particularly	notable	in	the	case	of	more	complex	graph	
patterns	with	many	joins	(wherein	Jena	LF—also	worst-case	optimal—was	the	next	best	competitor).	Worst-
case	 optimal	 joins	 use	 more	 space	 for	 indexing,	 but	 provide	 superior	 query	 runtimes.	 Regarding	 path	
algorithms,	we	see	less	difference	between	BFS	and	DFS:	DFS	is	slightly	faster	for	returning	pairs	of	nodes	
connected	by	paths,	while	BFS	is	faster	for	returning	paths.

Regarding	(Q2)—i.e.,	how	existing	graph	database	systems	compare	with	MillenniumDB—we	found	that	
MillenniumDB,	 when	 equipped	 with	 the	 best	 join	 and	 path	 algorithms,	 consistently	 outperforms	 other	
competitors	in	all	query	sets	tested.

7. CONCLUSIONS AND LOOKING AHEAD

This	 paper	 presents	 MillenniumDB,	 an	 open-source	 graph	 database	 system	 with	 persistent	 storage	
implementing	the	novel	(property)	domain	graph	model.

Domain	graphs	adopt	the	natural	idea	of	adding	edge	ids	to	directed	labeled	edges	in	order	to	concisely	
model	higher-arity	relations	in	graphs,	as	needed	in	Wikidata,	without	the	need	for	reserved	vocabulary	or	
reification.	They	can	naturally	represent	popular	graph	models,	such	as	RDF	and	property	graphs,	and	allow	
for	combining	the	features	of	both	models	in	a	novel	way.	While	the	idea	of	using	edge	ids	as	a	hook	for	
modeling	higher-arity	relations	in	graphs	is	far	from	new	(see,	e.g.,	[23,	32,	33]),	it	is	an	idea	that	is	garnering	
increased	attention	as	a	more	flexible	and	concise	alternative	to	reification.	Our	work	proposes	a	formal	
data	model	 that	 incorporates	 edge	 ids,	 a	 query	 language	 that	 can	 take	 advantage	 of	 them,	 and	 a	 fully-
fledged	graph	database	engine	that	supports	them	by	design.	We	also	propose	to	optionally	allow	(external)	
annotations	on	top	of	the	graph	structure,	thus	facilitating	better	compatibility	with	property	graphs,	whereby	
labels	 and	property–values	 can	be	 added	 to	 graph	objects	without	 adding	new	nodes	 and	edges	 to	 the	
graph	itself.

We	have	also	proposed	a	new	query	language	with	a	syntax	inspired	by	Cypher,	but	 that	additionally	
enables	users	to	take	full	advantage	of	the	domain	graph	model	by	(optionally)	referencing	edge	ids	in	their	
queries,	and	performing	 joins	on	any	element	of	 the	domain	graph.	We	 further	combine	useful	 features	
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present	 in	 both	 Cypher	 and	 SPARQL,	 in	 order	 to	 provide	 additional	 expressivity,	 such	 as	 returning	 the	
shortest	path	witnessing	a	result	for	a	path	query	(as	captured	by	a	2RPQ	expression).

In	the	implementation	of	MillenniumDB,	we	combine	both	tried-and-trusted	techniques	that	have	been	
successfully	used	in	relational	database	pipelines	 for	decades	[42]	 (e.g.,	B+	trees,	buffer	managers,	etc.),	
with	 promising	 state-of-the-art	 algorithms	 for	 computing	 worst	 case	 optimal	 joins	 (leapfrog	 [38])	 and	
evaluating	path	queries	 (guided	by	an	automaton	[49,	50]).	Our	experiments	over	Wikidata,	considering	
real-world	queries	and	data	at	large-scale,	show	that	this	combination	outperforms	other	persistent	graph	
database	engines	that	are	commonly	found	in	practice.

Limitations.	 Many	 of	 the	 current	 limitations	 of	 MillenniumDB	 relate	 to	 the	 fact	 that	 it	 is	 still	 under	
development.	For	example,	at	the	moment,	MillenniumDB	only	supports	a	bulk	load	of	data,	where	support	
for	(incremental)	updates	is	currently	under	investigation	and	development.	Currently	only	the	core	features	
of	query	languages	such	as	Cypher	and	SPARQL	are	supported,	where	we	are	working	on	adding	support	
for	other	features,	including	negation,	value	assignment,	functions	on	datatypes,	etc.	MillenniumDB	lacks	
some	of	the	advanced	features	supported	by	other	graph	database	systems,	such	as	geographic,	temporal	
and	federated	queries,	keyword	search	features,	etc.	Finally,	MillenniumDB	does	not	yet	support	partitioning	
the	graph	over	multiple	machines	in	order	 to	achieve	horizontal	scaling.	We	do	not	see	such	limitations	
as	fundamental,	but	rather	as	features	that	can	be	added	to	the	engine	over	time.

Future work.	Looking	to	the	future,	we	foresee	extensions	such	as:	returning	entire	graphs,	supporting	more	
complex	path	constraints,	returning	sets	of	paths,	path	algebra,	just	to	name	a	few.	Regarding	more	practical	
features,	we	aim	to	add	support	 for	 full	 transactions,	keyword	search,	a	graph	update	 language,	existing	
graph	query	languages,	and	more	besides.	More	importantly,	given	that	MillenniumDB	is	published	as	an	
open	source	engine,	we	hope	 that	 the	 research	community	can	view	the	MillenniumDB	code	base	as	a	
sandbox	for	incorporating	their	novel	algorithms	and	ideas	into	a	modern	graph	database,	without	the	need	
to	remake	storage,	indexing,	access	methods,	or	query	parsers.	Along	these	lines,	we	are	currently	working	
on	adding	an	 in-memory	storage	option	 to	MillenniumDB	using	 the	ring	[47]:	a	data	structure	based	on	
the	Burrows—Wheeler	 transform	that	supports	worse-case	optimal	 joins	 (over	 triples)	 in	space	similar	 to	
representing	the	graph	itself.	Initial	tests	show	that	the	ring	can	store	Wikidata Truthy	in	50GB	of	space	and	
improve	median	query	times	by	a	factor	of	3,	with	average	query	times	remaining	similar.	We	are	working	
on	extending	the	ring	to	support	edge	ids	and	thus	work	with	domain	graphs.	We	also	wish	to	explore	the	
deployment	of	MillenniumDB	for	key	use-cases;	for	example,	we	plan	to	provide	and	host	an	alternative	
query	service	for	Wikidata,	which	may	help	to	prioritize	the	addition	of	novel	features	and	optimizations	
as	needed	in	practice.
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SUPPLEMENTARY MATERIAL

Appendix

A Syntax of MillenniumDB queries

The DGQL language supported by MillenniumDB borrows syntax from popular graph
query languages SPARQL [17] and Cypher [15]. The general structure of queries in
MillenniumDB can be visualized as follows:

MATCH MatchPattern
WHERE Condition
ORDER BY OrderSelectors
RETURN Selectors
LIMIT Number

Figure 15: General structure of queries in MillenniumDB

Intuitively, the MATCH clause specifies the basic or navigational graph pattern which
we will look for in our graph. The WHERE clause is used to filter result based on a se-
lection, usually by restricting the values of some of the attributes of a matched object.
The RETURN clause specifies which of the matched variables will be returned. The ORDER
BY clause allows us to reorder the results based on the values of some output variables,
while LIMIT cuts off the evaluation after a specific number of results have been found.

We define the formal syntax of the DGQL query language in Figure 16. Examples
of DGQL queries following this syntax can be found in Section 4.1.

B Formal Definition of Domain Graph Queries

Queries in MillenniumDB are based on the abstract notion of a domain graph query,
which generalizes the types of graph patterns used by modern graph query lan-
guages [3]. This query abstraction provides modularity in terms of how the database is
constructed, flexibility in terms of what concrete query syntax is supported, and allows
for defining its semantics and studying its theoretical properties in a clean way.

This section provides the formal definition of the MillenniumDB query language.
From now on, assume an infinite set Var of variables disjoint with the set of objects Obj.

B.1 Basic graph patterns

At the core of domain queries are basic graph patterns.12 A basic graph pattern is defined
as a pair (V, φ) such that φ : (Obj ∪ Var) → (Obj ∪ Var) × (Obj ∪ Var) × (Obj ∪ Var) is
a partial mapping with a finite domain and V ⊆ var(φ), where var(φ) is the set of
variables occurring in the domain or in the range of φ. Thus, φ can be thought of as a
domain graph that allows a variable in any position, together with a set V of output
variables (hence the restriction that each variable in V occurs in φ).

The evaluation of a basic graph pattern returns a set of solution mappings. A
solution mapping (or simply mapping) is a partial function µ : Var → Obj. The domain of
a mapping µ, denoted by dom(µ), is the set of variables on which µ is defined. Given
v ∈ Var and o ∈ Obj, we use µ(v) = o to denote that µ maps variable v to object o.
Given a set V ′ of variables, the term µ|V ′ is used to denote the mapping obtained by

12Basic graph patterns correspond to conjunctive queries (CQs) over graphs.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/5/3/560/2158194/dint_a_00229.pdf by guest on 04 August 2024



Data Intelligence 605

MillenniumDB: An Open-Source Graph Database System

Selectors

Selectors : − * | Variables
Variables : − v | v.k | Variables, Variables , v ∈ Var, k ∈ K

MatchPattern

MatchPattern : − GraphPattern | ( MatchPattern ) OPTIONAL { MatchPattern }
GraphPattern : − GraphElement | GraphElement, ( GraphPattern )

GraphElement : − NodePattern | EdgePattern | PropertyPath

NodePattern : − ( Node? Labels? Properties? )

Node : − v ∈ Var | o ∈ Obj

Labels : − :l | :l Labels , l ∈ L
Properties : − { PropertyList }

PropertyList : − k:val | k:val, PropertyList , k ∈ K, val ∈ V

EdgePattern : − NodePattern -Edge?> NodePattern |
NodePattern <-Edge? NodePattern

Edge : − [ v? Type? Properties? ]- , v ∈ Var

Type : − :o | :?v , o ∈ Obj, v ∈ Var

PropertyPath : − NodePattern =[ pathExp ]=> NodePattern |
NodePattern <=[ pathExp ]= NodePattern

pathExp : − :o |ˆpathExp | (pathExp/pathExp) | pathExp* | pathExp+ |
pathExp{n,m} | (pathExp | pathExp) | pathExp? ,

o ∈ Obj, n,m ∈ N, n ≤ m

Conditions

Condition : − Comparison | (Condition AND Condition) | (Condition OR Condition)

Comparison : − v.k ∼ val | v.k ∼ v′.k′ ,

v, v′ ∈ Var, k, k′ ∈ K, val ∈ V,∼∈ {==,<=,>=,<,>}

OrderSelectors

OrderSelectors : − v | v ASC | v DESC | v.k | v.k ASC | v.k DESC |
OrderSelectors, OrderSelectors , v ∈ Var, k ∈ K

Figure 16: Specification of query patterns in MillenniumDB. Blue symbols are taken
literally. Red brackets in MatchPattern and GraphPattern are grouping specification for
unambiguous parsing, and are not specified when writing the query.
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v2 President of Chilev1: position held

v4

v3: start date

v6

v5: replaces

v2 v4 v6

Michelle Bachelet 2006-03-11 Ricardo Lagos
Michelle Bachelet 2014-03-11 Sebastián Piñera

Figure 17: Graphical representation of a basic graph pattern (left), and the tabular rep-
resentation of the solution mappings (right) obtained by evaluating the basic graph
pattern over the property domain graph shown in Figure 10 .

restricting µ to V ′, that is, µ|V ′ : (dom(µ)∩V ′) → Obj such that µ|V ′ (v) = µ(v) for every
v ∈ (dom(µ) ∩ V ′) (notice that V ′ is not necessarily a subset of dom(µ)). Finally, for the
sake of presentation, we assume that µ(o) = o, for all o ∈ Obj.

The evaluation of a basic graph pattern B = (V, φ) over a domain graph G =
(O, γ), denoted by �B�G, is defined as �B�G = {µ|V | µ ∈ �φ�G}, where:

�φ�G = {µ | dom(µ) = var(φ) and,
if φ(�) = (�1, �2, �3), then γ(µ(�)) = (µ(�1), µ(�2), µ(�3))}�

For example, consider the basic graph pattern (V, φ) where V = {v2, v4, v6} and φ is
given by the assignments:

φ(v1) = (v2, position held, President of Chile),
φ(v3) = (v1, start date, v4), and
φ(v5) = (v1, replaces, v6).

�n Figure 17, we provide a graphical representation of the above graph pattern, and
the solution mappings obtained by evaluating the graph pattern over the property do-
main graph shown in Figure 10. The solution mappings are presented as a table with
columns v2, v4, v6 (i.e. the variables in V ), and each row represents an individual map-
ping. �n our definitions, different variables may map to the same ob�ect in a single
solution. Thus, our notion of evaluation follows a homomorphism-based semantics,
similar to �uery languages such as �� ���� ���. 1�

Supporting labels and properties. �bserve that the formali�ation thus far only al-
lowed to access elements of the function γ, and could not reason about labels, nor
properties. �n essence, up to now we only defined the semantics of �ueries over do-
main graphs. �e now extend this definition to property domain graphs.

Following our approach of modelling a �uery similarly as a domain graph, we
define a basic graph pattern with properties as a tuple (V, φ,Qlab,Qprop), where:

• φ : (Obj ∪ Var) → (Obj ∪ Var)× (Obj ∪ Var)× (Obj ∪ Var) is a partial mapping;

• V ⊆ var(φ);

• Qlab : (Obj ∪ Var) → L is a partial mapping;

• � ∈ dom(Qlab) implies that there are �, �, �, � such that φ(�) = (�, �, � ); and � ∈
{�, �, �, � }

• Qprop : (Obj ∪ Var)× P → V is a partial mapping;

13Isomorphism-based semantics [3] – such as Cypher’s no-repeated-edge semantics, which disallows the
same solution to use the same edge twice – can be emulated by filtering solutions after they are generated.
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• (a, k) ∈ dom(Qprop), for some k ∈ P , implies that there are x, y, z, w such that
φ(x) = (y, z, w); and a ∈ {x, y, z, w}

A basic graph pattern with properties extends basic graph patterns with a labelling
function and a property checking function. Notice that the domain constraints on Qlab
and Qprop serve to make sure that these are associated to some variable or object used in
the core pattern. Given a property domain graph G = (O, γ, lab, prop), the semantics
of a basic graph pattern with properties BP = (V, φ,Qlab,Qprop), denoted �BP�G is
defined as �BP�G = {µ|V | µ ∈ �φ,Qlab,Qprop�G}, where:

�φ,Qlab,Qprop�G = {µ | dom(µ) = var(φ);

φ(a) = (a1, a2, a3) implies γ(µ(a)) = (µ(a1), µ(a2), µ(a3));

Qlab(a) = l implies l ∈ lab(µ(a));

Qprop(a,k) = v implies prop(µ(a), k) = v }.

This extends the evaluation to also support labels and properties with their val-
ues, akin to making the query pattern have the same structure as the property domain
graph, allowing us to query labels and properties as described in Section 4.

B.2 Navigational graph patterns

A characteristic feature of graph query languages is the ability to match paths of ar-
bitrary length that satisfy certain criteria. We call basic graph patterns enhanced with
this feature navigational graph patterns, and we define them next.

A popular way to express criteria that paths should match is through regular ex-
pressions on their labels, aka. 2-way regular path queries (2RPQs). More precisely, an
2RPQ expression r is defined by the following grammar:

r ::= ε | o ∈ Obj | (r/r) | (r + r) | r− | r∗.

The semantics of an 2RPQ expression r is defined in terms of its evaluation on a (prop-
erty) domain graph G, denoted by �r�G, which returns a set of pair of nodes in the graph
that are connected by paths satisfying r. More precisely, assuming that G = (O, γ),
o ∈ Obj and r, r1, r2 are 2RPQ expressions, we have that:

�ε�G = {(o, o) | o ∈ O},
�o�G = {(o1, o2) | ∃o′ ∈ Obj : γ(o′) = (o1, o, o2)},

�(r1/r2)�G = {(o1, o2) | ∃o′ ∈ Obj : (o1, o
′) ∈ �r1�G and (o′, o2) ∈ �r2�G},

�(r1 + r2)�G = �r1�G ∪ �r2�G,
�r−�G = {(o1, o2) | (o2, o1) ∈ �r�G}.

Moreover, assuming that r1 = r and rn+1 = r/rn for every n ≥ 1, we have that:

�r∗�G = �ε�G ∪
⋃

k≥1

�rk�G.

Other 2RPQ expressions widely used in practice can be defined by combining the pre-
vious operators. In particular, r? = ε+ r and r+ = r/r∗.

A path pattern is a tuple (a1, r, a2) such that a1, a2 ∈ Obj ∪ Var and r is a 2RPQ
expression. As for the case of basic graph patterns, given a path pattern p, we use the
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term var(p) to denote the set of variables occurring in p. Moreover, the evaluation of
p = (a1, r, a2) over a property-domain graph G, denoted by �p�G, is defined as:

�p�G = {µ | dom(µ) = var(p) and (µ(a1), µ(a2)) ∈ �r�G}.

For example, the expression (Michelle Bachelet, (replaced by)+, v) is a path pattern
that returns all the Presidents of Chile after Michelle Bachelet. Given a set ψ of path
patterns, var(ψ) also denotes the set of variables occurring in ψ, and the evaluation of
ψ over a property-domain graph G is defined as:

�ψ�G = {µ | dom(µ) = var(ψ) and µ|var(p) ∈ �p�G for each p ∈ ψ}.

A navigational graph pattern is a triple (V, φ, ψ) where (V ′, φ) is a basic graph pattern
for some V ′ ⊆ V , ψ is a set of path patterns, and V ⊆ var(φ) ∪ var(ψ). The semantics of
a navigational graph pattern N = (V, φ, ψ) is defined as:

�N�G = {µ|V | var(µ) = var(φ) ∪ var(ψ), µ|var(φ)
∈ �φ�G and µ|var(ψ)

∈ �ψ�G}.

Hence, the result of a navigational graph pattern N = (V, φ, ψ) is a set of mappings
µ projected onto the set V of output variables, where µ satisfies the structural restric-
tions imposed by φ and the path constraints imposed by ψ. Notice that multiple 2RPQ
expressions can link the same pair of nodes. This is similar to the existential semantics
of path queries, as specified in the SPARQL standard [17].

Given a domain graph G = (O, γ), we define paths over the directed labeled graph
that forms the range of γ; in other words, we do not allow for matching paths that
emanate from an edge object (except when it appears as a node). Such a feature could
be considered in the future. We may also consider additional criteria on node or edges
in the matching paths, etc.

B.3 Relational graph patterns

As previously discussed (and seen in the example of Figure 17), graph patterns return
relations (tables) as solutions. Thus we can – and many practical graph query languages
do – use a relational-style algebra to transform and/or combine one or more sets of
solution mappings into a final result.

Towards defining this algebra, we need the following terminology. Two mappings
µ1 and µ2 are compatible, denoted by µ1 ∼ µ2, if µ1(v) = µ2(v) for all variables v which
are in both dom(µ1) and dom(µ2). If µ1 ∼ µ2, then we write µ1 ∪ µ2 for the mapping
obtained by extending µ1 according to µ2 on all the variables in dom(µ2) \ dom(µ1).
Given two sets of mappings Ω1 and Ω2, the join (��), anti-join (�) and left outer join (��)
between Ω1 and Ω2 are defined respectively as follows:

Ω1 �� Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2},
Ω1 � Ω2 = {µ1 ∈ Ω1 | �µ2 ∈ Ω2 : µ1 ∼ µ2},
Ω1 �� Ω2 = (Ω1 �� Ω2) ∪ (Ω1 � Ω2).

With this terminology, a relational graph pattern is recursively defined as follows:

• If N is a navigational graph pattern, then N is also relational graph pattern;

• If R1 and R2 are relational graph patterns, then (R1 AND R2) and (R1 OPT R2)
are relational graph patterns.
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The evaluation of a relational graph pattern R over a property-domain graph G, de-
noted by �R�G, is recursively defined as follows:

• if R is a navigational graph pattern N , then �R�G = �N�G;

• if R is (R1 AND R2) then �R�G = �R1�G �� �R2�G;

• if R is (R1 OPT R2) then �R�G = �R1�G �� �R2�G.

B.4 Selection conditions

In addition to matching a graph pattern against a property-domain graph, we would
like to filter the solutions by imposing selection conditions over the resulting objects
(i.e. nodes and edges). More precisely, a selection condition is defined recursively as
follows: (a) if v1, v2 ∈ Var and o ∈ Obj, k1, k2 ∈ K, v ∈ V then (v1 = v2), (v1 = o),
v1.k1 = v2.k2 and v1.k1 = v are selection conditions; and (b) if C1, C2 are selection
conditions, then (¬ C1), (C1 ∧ C2), (C1 ∨ C2) are selection conditions.

�ive n a property domain graph G = (�, �, lab, prop), a mapping � , and a selection
condition C, we say that � satisfies C under G, denoted by � |=G C, if one of the
following statements holds:

• C is (v1 = v2), v1, v2 ∈ dom(�) and �(v1) = �(v2);

• C is (v1 = o), v1 ∈ dom(�) and �(v1) = o;

• C is (v1.k1 = v2.k2), v1, v2 ∈ dom(�), prop(�(v1), k1) = prop(�(v2), k2);

• C is (v1.k1 = v), v1 ∈ dom(�) and prop(�(v1), k1) = v;

• C is (¬C1), and it is not the case that � |=G C1;

• C is (C1 ∧ C2), � |=G C1, and � |=G C2;

• C is (C1 ∨ C2) and either � |=G C1, � |=G C2, or both.

B.5 Solution modifiers

�e consider an initial set of solution modifiers that allow for applying a final transfor-
mation on the solutions generated by a graph pattern. These include: RETURN, which
defines a set of elements (variables and properties) to be returned; ORDER BY, which
orders the solutions according to a sort criteria; and LIMIT, which returns the first �
mappings in a se�uence of solutions (with � specified in the clause). �otice here that
the solution mappings are not defined by the RETURN solution modifier, but rather by
the relational graph pattern, and by selection conditions.

�et S be the set of strings, v ∈ Var and k ∈ K. � return mapping is a function
� : S → Obj ∪ V . � return element is either a variable v or an expression v.k. �ssume
that there is a simple way to transform a return element into a string in S. �iven a
se�uence of return mappings � and an integer � , the function limit(�, �) returns the
first � elements of � when � � �, and returns � otherwise.

�ive n a property-domain graph G = (�, �, lab, prop), a mapping � , and a se-
�uence of return elements � , the function ret(�, � )G produces a return mapping �
defined as follows: if v ∈ � then �v� ∈ ���( �) and �(�v�) = �(v); if v.k ∈ �
then �v.k� ∈ ���( �) and �(�v.k�) = prop(�(v), k). Moreover, given a set of re-
turn mappings � , the function return outputs a set of return mappings defined as
return(� , � )G = {ret(�, � )G | � ∈ � }.
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An order modifier is a tuple (e, β) where e is a return element and β is either asc
or desc. Given a sequence of return mappings S and an order modifier o = (e, β), we
say that S satisfies o, denoted S |= o, if it applies that: (i) β is asc and S satisfies an
ascending order with respect to e; or (ii) β is desc and S satisfies a descending order
with respect to e. Moreover, given a sequence of order modifiers O = (o1, . . . , on),
we say that S satisfies O, denoted S |= O, if it applies that: (i) S |= o1 when n = 1;
or (ii) S |= o1 and, for every sub-sequence of selection mappings S′ ⊆ S such that
τi(e1) = τj(e1) (with o1 = (e1, β1)) for any pair of selection mappings τi, τj ∈ S′, it
holds that S′ |= (o2, . . . , on).

B.6 Graph Queries

A graph query Q is defined as a tuple (R, C, E, O, n), where R is a relational graph pat-
tern, C is a selection condition, E is a sequence of return elements, O = {o1, . . . , on} is a
sequence of order modifiers, and n is a positive integer. We assume that R is the unique
mandatory component. Given a variable v ∈ dom(R), the remaining components have
the following expressions by default: C is v = v, E is v, O is (v, asc) and n = 0.

The evaluation of Q over G is defined as limit(S, n) where S = return(Ω, E)G,
S |= O, and Ω = {µ|V | µ ∈ �R�G ∧ µ |=G C}. We will assume that every graph query
Q = (R, C, E, O, n) satisfies the following two conditions: (i) For every sub-pattern
R′ = (R1 OPT R2) of R and for every variable v occurring in R, it applies that, if
v occurs both inside R2 and outside R′, then it also occurs in R1; (ii) It applies that
Var(C) ⊆ Var(R). Then, we say that Q is a well-designed graph query.

We finish this section noting that the semantics of a declarative query expression:
MATCH R
WHERE C
ORDER BY O
RETURN E
LIMIT n

is defined as the output of the graph query (R, C, E, O, n) on an input graph.
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