
AUTHOR C
OPY

Querying the Semantic Web via Rules

Marcelo ARENAS a, Georg GOTTLOB b, Andreas PIERIS c

a Universidad Católica & IMFD Chile, Chile, e-mail: marenas@ing.puc.cl
b University of Oxford, UK & TU Wien, Austria e-mail: georg.gottlob@cs.ox.ac.uk

c University of Edinburgh, UK, e-mail: apieris@inf.ed.ac.uk

Abstract. The problem of querying RDF data is a central issue for the development
of the Semantic Web. The query language SPARQL has become the standard lan-
guage for querying RDF since its W3C standardization in 2008. However, the 2008
version of this language missed some important functionalities: reasoning capabil-
ities to deal with RDFS and OWL vocabularies, navigational capabilities to exploit
the graph structure of RDF data, and a general form of recursion much needed
to express some natural queries. To overcome those limitations, a new version of
SPARQL, called SPARQL 1.1, was released in 2013, which includes entailment
regimes for RDFS and OWL vocabularies, and a mechanism to express navigation
patterns through regular expressions. Nevertheless, there are useful navigation pat-
terns that cannot be expressed in SPARQL 1.1, and the language lacks a general
mechanism to express recursive queries. This chapter is a gentle introduction to a
tractable rule-based query language, in fact, an extension of Datalog with value in-
vention, stratified negation, and falsum, that is powerful enough to define SPARQL
queries enhanced with the desired functionalities focussing on a core fragment of
the OWL 2 QL profile of OWL 2.

Keywords. RDF, SPARQL, Querying RDF

1. Introduction

The Resource Description Framework (RDF) is the W3C recommendation data model
to represent information about World Wide Web resources. An atomic piece of data in
RDF is a Uniform Resource Identifier (URI). In the RDF data model, URIs are organized
as RDF graphs, that is, labeled directed graphs where node labels and edge labels are
URIs. As with any other data model, the problem of querying RDF data has been widely
studied. Since its release in 1998, several designs and implementations of RDF query
languages have been proposed [16]. In 2004, a first public working draft of a language,
called SPARQL, was released by the W3C, which is in fact a graph-matching query
language. Since then, SPARQL has been adopted as the standard language for querying
the Semantic Web, and in 2008 it became a W3C recommendation.1

One of the distinctive features of Semantic Web data is the existence of vocabularies
with predefined semantics: the RDF Schema (RDFS)2 and the Web Ontology Language
(OWL)3, which can be used to derive logical conclusions from RDF graphs. Moreover, it

1http://www.w3.org/TR/rdf-sparql-query
2http://www.w3.org/TR/rdf-schema
3http://www.w3.org/TR/owl-features/

Applications and Practices in Ontology Design, Extraction, and Reasoning
G. Cota et al. (Eds.)

IOS Press, 2020
© 2020 Akademische Verlagsgesellschaft AKA GmbH, Berlin. All rights reserved.

doi:10.3233/SSW200044

194

http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl-features/

AUTHOR C
OPY

has been recognized that navigational capabilities are of fundamental importance for data
models with an explicit graph structure such as RDF [2,6,8,15,27], and, more generally,
it is well-accepted that a general form of recursion is a central feature for a graph query
language [8,21,31]. Therefore, it would be desirable to have an RDF query language
equipped with reasoning capabilities to deal with the RDFS and OWL vocabularies, as
well as a general mechanism to express recursive queries. Unfortunately, the 2008 ver-
sion of SPARQL missed the above crucial functionalities. To overcome these limitations,
a new version, called SPARQL 1.1 [19], was released in 2013, which includes entailment
regimes for RDFS and OWL vocabularies, and a mechanism to express navigation pat-
terns through regular expressions. However, it has already been observed that there exist
some very natural queries that require a more general form of recursion and cannot be
expressed in SPARQL 1.1 [21,31].

Towards an Expressive RDF Query Language. Datalog with stratified negation [1,14]
has been shown to be expressive enough to represent every SPARQL query [2,3,6,28,32].
Thus, it has been used as a natural platform for SPARQL extensions with richer naviga-
tion capabilities and recursion mechanisms [21,31]. Moreover, some extensions of Dat-
alog with existential quantification in rule-heads are appropriate to encode some infer-
encing mechanisms in OWL [11]. Therefore, as discussed in [5,18], Datalog and some
of its extensions (in particular, the members of the Datalog± family of knowledge repre-
sentation and query languages [12]) appear to be suitable for bridging the gap between
RDF query languages and the desired functionalities, that is, reasoning capabilities and
a general mechanism to express recursive queries. However, query answering under the
language obtained by extending Datalog with existential quantification is undecidable;
this is implicit in [9]. In fact, the undecidability holds even in the case of data complexity,
i.e., when the input query is fixed, and only the extensional database (or the RDF graph)
is considered as part of the input [11]. It is thus a non-trivial task to isolate an expressive
RDF query language that

1. is based on Datalog, which enables a modular rule-based style of writing queries;

2. is expressive enough for being useful in practice, and, in particular, to support
reasoning and navigational capabilities, as well as a general form of recursion;

3. ensures the decidability of the query evaluation problem; and

4. has good complexity properties in the case the input query is fixed – this is of fun-
damental importance as a low data complexity is considered to be a key condition
for a query language to be useful in practice.

Triple Query Language. A first attempt to design a Datalog-based RDF query language
that fulfills the above desiderata, focussing on the profile OWL 2 QL of OWL 2, was
made in [4]. The proposed language, called TriQ-Lite,4 is based on Datalog∃,¬s,⊥, that
is, Datalog extended with existential quantification in rule-heads, stratified negation, and
negative constraints expressed by using the symbol ⊥ (falsum) in rule-heads. However,
TriQ-Lite suffers from a serious drawback, which may revoke its advantage as an expres-

4This language is the lite version of a highly expressive language called TriQ, which stands for triple query
language, also introduced in [4].

M. Arenas et al. / Querying the Semantic Web via Rules 195

AUTHOR C
OPY

sive RDF query language, namely it is not a plain language. We call a rule-based query
language plain if it allows the user to express a query as a single program in a simple
non-composite syntax. An example of a plain query language is Datalog itself, where the
user simply needs to define a single Datalog program that captures the intended query.
The property of plainness provides conceptual simplicity, which is considered to be a key
condition for a query language to be useful in practice. Although TriQ-Lite is based on
an extension of Datalog, the way its syntax and semantics are defined significantly devi-
ates from the standard way of defining Datalog-like languages, and thus does not inherit
the plainness of Datalog. TriQ-Lite is a composite language, where the user is forced to
split the query program in several programs Π1, . . . ,Πn so that each Πi can be expressed
by the fragment of Datalog∃,¬s,⊥ underlying TriQ-Lite, while each pair (Πi,Πi+1) is
bridged via a set Qi of conjunctive queries.

In view of the conceptual weakness of TriQ-Lite discussed above, the new version
of it, dubbed TriQ-Lite 1.0, was introduced in [5,18]. TriQ-Lite 1.0 is indeed a plain
language based on Datalog∃,¬s,⊥ that fulfills all the crucial desiderata discussed above.
The goal of this chapter is to provide a gentle introduction to TriQ-Lite 1.0 by intuitively
explaining its key ingredients, without delving into the low level formal definitions and
technical details. For further details we refer the interested reader to [5].

2. Motivating Scenarios and Queries

Let us first expose some of the difficulties and limitations encountered when querying
RDF data with SPARQL, which further motivated the design of a Datalog-like RDF
query language. The following scenarios and queries are taken from [5].

Assume that G1 is an RDF graph consisting of:

(dbUllman, is author of, “The Complete Book”),

(dbUllman, name, “Jeffrey Ullman”).

The first triple states that the object with URI dbUllman is one of the authors of the book
“The Complete Book”, while the second triple indicates that the name of dbUllman is
“Jeffrey Ullman”. To retrieve the list of authors in G1 we can use the SPARQL query:

SELECT ?X

WHERE {
?Y is author of ?Z . (1)

?Y name ?X }

Note that variables start with the symbol ?. Moreover, the expression ?Y is author of ?Z
represents a triple pattern that is used to retrieve the pairs (a, b) of elements from G1,
which are stored in the variables ?Y and ?Z, such that a is an author of b. In the same
way, the expression ?Y name ?X also represents a triple pattern that is used to retrieve
the pairs (a, c) of elements from G1, which are stored in the variables ?Y and ?X , such
that c is the name of a. Finally, the symbol . (dot) is used as a separator of the triple

M. Arenas et al. / Querying the Semantic Web via Rules196

AUTHOR C
OPY

patterns, whose results have to be joined when computing the answer to the query, and
SELECT ?X indicates that we are interested in the values stored in ?X .

In TriQ-Lite 1.0 it is assumed that a predicate triple(·, ·, ·) is used to store the triples
of an RDF graph. Thus, query (1) can be formulated in TriQ-Lite 1.0 as follows:

triple(y, is author of, z), triple(y, name, x)→ query(x). (2)

The possibility of returning an RDF graph as the answer to a SPARQL query is consid-
ered as a fundamental feature [19,29]. For this reason, one can use the CONSTRUCT
operator in order to produce an RDF graph as the output of a query. For example, the fol-
lowing query constructs an RDF graph consisting of triples (a, name author, b), where a
is the name of an author of b:

CONSTRUCT { ?X name author ?Z }
WHERE {

?Y is author of ?Z .

?Y name ?X }

The expression ?X name author ?Z represents a triple pattern specifying which RDF
triples are to be included in the output. The result of evaluating this query over G1 is

(“Jeffrey Ullman”, name author, “The Complete Book”).

In TriQ-Lite 1.0, the user is not forced to learn about a new operator in order to produce
an RDF graph as output. (S)he can simply replace in (2) the predicate query(·) by the
predicate triple(·, ·, ·) in order to produce an RDF graph:

triple(y, is author of, z), triple(y, name, x) → triple(x, name author, z). (3)

The use of the operator CONSTRUCT in SPARQL allows to have compositional-
ity; the output of a query can be used as the input of another query. This is a key prop-
erty, which plays a crucial role when adding a recursion mechanism to SPARQL [30].
Notice that TriQ-Lite 1.0 inherits the compositionality of Datalog, so that a recursion
mechanism can be introduced without needing additional syntactic constructs.

Assume now that G2 is an RDF graph extending G1 with the following triples:

(dbAho, is coauthor of, dbUllman),

(dbAho, name, “Alfred Aho”).

The query language SPARQL allows the use of blank nodes in the CONSTRUCT oper-
ator to include some anonymous resources in an RDF graph. For example, a blank node
is used in the following query to indicate that if a is a co-author of b, then there must be
some publication c such that a and b are both authors of c.

CONSTRUCT { ?X is author of :B . ?Y is author of :B }
WHERE { ?X is coauthor of ?Y } (4)

M. Arenas et al. / Querying the Semantic Web via Rules 197

AUTHOR C
OPY

In the above query, :B is a blank node, while the expressions ?X is author of :B and
?Y is author of :B specify the triples to be constructed for every possible match of
the variables ?X and ?Y . The semantics of SPARQL imposes the restriction that a fresh
blank node has to be used for each match of the variables ?X and ?Y . Although this
constraint is natural in this case, this is yet another feature of SPARQL that the user needs
to remember when formulating a query. In the case of TriQ-Lite 1.0, no extra notation
for the creation of anonymous resources is needed, as it allows existentially quantified
variables to appear in rule-heads:

triple(x, is coauthor of, y)→ ∃z triple(x, is author of, z), triple(y, is author of, z).

Moreover, TriQ-Lite 1.0 can be used to lift the restriction that blank nodes are used only
locally. For example, it can be used to anonymize the subjects of the triples in an RDF
graph, by replacing every URI in the subject position of a triple by a blank node:

triple(x, y, z)→ subject(x)

subject(x)→ ∃y bnode(x, y)

triple(x, y, z), bnode(x, u)→ output(u, y, z).

The first rule is used to store in the predicate subject(·) the URIs mentioned in the sub-
ject of the triples of an RDF graph. The second rule creates a blank node for every URI
in the predicate subject(·), which is stored in the predicate bnode(·, ·). Finally, the third
rule replaces in the predicate triple(·, ·, ·) every URI in the subject position by its asso-
ciated blank node, producing an RDF graph in the predicate output(·, ·, ·). The ability
to anonymize the subjects of an RDF graph is a useful feature as it can allow publish-
ing data without leaking sensitive information. It is important to note that such a query
cannot be expressed by using the local semantics of blank nodes in the CONSTRUCT
operator of SPARQL, as the same blank node identifying a specific resource in an RDF
graph has to be used every time this resource is considered in the result of the query.

Query (4) encodes some prior knowledge about the co-authorship relation. This type
of knowledge can be explicitly encoded in an RDF graph by using the RDFS and OWL
vocabularies. As an example of this, assume that G3 is an RDF graph extending G2 with
the following triples:

(r1, rdf:type, owl:Restriction), (r2, rdf:type, owl:Restriction),

(r1, owl:onProperty, is coauthor of), (r2, owl:onProperty, is author of),

(r1, owl:someValuesFrom, owl:Thing), (r2, owl:someValuesFrom, owl:Thing),

(r1, rdfs:subClassOf, r2).

In G3, the URIs with prefix rdfs: are part of the RDFS vocabulary, while the URIs with
prefix owl: are part of the OWL vocabulary. The first three triples of G3 define r1 as
the class of URIs a for which there exists a URI b such that (a, is coauthor of, b) holds,
while the following three triples of this graph define r2 as the class of URIs a for which
there exists a URI b such that the triple (a, is author of, b) holds. Finally, the last triple
of G3 indicates that r1 is a subclass of r2.

The above set of triples states that for every a and b such that (a, is coauthor of, b)
holds, it must be the case that a is an author of some publication. Thus, if we want to

M. Arenas et al. / Querying the Semantic Web via Rules198

AUTHOR C
OPY

retrieve the list of authors mentioned in G3, then we expect to find dbAho in this list.
However, the answer to the SPARQL query (1) over G3 does not include this URI, and we
are forced to encode the semantics of the RDFS and OWL vocabularies in the query. In
fact, even if we try to obtain the right answer by using SPARQL 1.1 under the entailment
regimes for these vocabularies, we are forced by the restrictions of the language [17] to
use a query of the form:

SELECT ?X

WHERE {
?Y name ?X .

?Y rdf:type ?Z .

?Z rdf:type owl:Restriction .

?Z owl:onProperty is author of .

?Z owl:someValuesFrom owl:Thing }

This query is obtained from (1) by replacing the expression ?Y is author of ?Z with the
last four triples above, which explicitly state that we are looking for the objects that are
authors of some publication (that is, the objects of type r2). It is clear that the resulting
query is quite complex. In TriQ-Lite 1.0 such complications can be avoided by using
rules encoding the semantics of the RDFS and OWL vocabularies. For example, the
following rule specifies the semantics of the owl:onProperty primitive of OWL:

triple(x, rdf:type, y),

triple(y, rdf:type, owl:Restriction),

triple(y, owl:onProperty, z),

triple(y, owl:someValuesFrom, u) → ∃w triple(x, z, w).

Notice that a fixed set of rules is used to encode the semantics of the RDFS and OWL
vocabularies. If such rules are available as a library, then the user just has to include them
in order to answer queries, without needing to have prior knowledge about the semantics
and inference rules for the respective vocabulary. For example, if these rules have been
included, then to retrieve the list of authors mentioned in G3 we can use query (1) again,
as initially expected.

3. The Language TriQ-Lite 1.0 in a Nutshell

We now proceed to give a gentle introduction to the language TriQ-Lite 1.0. But first we
briefly recall plain Datalog via the standard graph reachability example.

Plain Datalog. Datalog is a prominent query language that essentially adds recursion to
the select-project-join-union fragment of relational algebra. For example, using Datalog

M. Arenas et al. / Querying the Semantic Web via Rules 199

AUTHOR C
OPY

we can compute the transitive closure of a graph, which is an inherently recursive query.
In particular, assuming that G = (V,E) is stored in a relational database5

DG = {edge(a, b) | (a, b) ∈ E},

we can inductively compute, starting from DG, the transitive closure of G, which will be
stored in a binary relation called answer, via the following set of Datalog rules:

edge(x, y)→ reachable(x, y)

reachable(x, z), edge(z, y)→ reachable(x, y)

reachable(x, y)→ answer(x, y).

The first rule, which is essentially the base step of the inductive definition, simply states
that if there exists an edge from x to y, then y is reachable from x. The second rule,
which corresponds to the inductive step of the definition, states that if z is reachable from
x and there is an edge from z to y, then y is reachable from x. Notice that the second
rule is recursive in the sense that the definition of reachable depends on itself. Finally,
the last rule computes the relation answer by simply copying the relation reachable.
Eventually, the Datalog query that computes the transitive closure of a graph is the pair
(Π, answer), where Π is the set of Datalog rules given above. Such a query states the
following: execute the Datalog program Π on the input database D, which will basically
compute a new database Π(D) that contains D, and then return as an answer the set of
tuples {c̄ | answer(c̄) ∈ Π(D)}.

Adding the Features ∃, ¬s and ⊥. The query language TriQ-Lite 1.0 is based on an
extension of Datalog, and in particular on Datalog∃,¬s,⊥ that extends Datalog with

• existentially quantified variables (∃), i.e., variables that appear in the head but not
in the body of a rule, and allow us to infer new objects that are not in the database;

• stratified negation (¬s), which, as customary in the Datalog literature, is in-
terpreted as negation as failure, i.e., ¬R(c1, . . . , cn) holds if we fail to derive
R(c1, . . . , cn);

• the falsum (⊥), which allows us to raise inconsistency.

A Datalog∃,¬s,⊥ query is a pair (Π, answer), and its evaluation over an extensional
database D follows the same approach as the evaluation of a plain Datalog query de-
scribed above, i.e., it relies on the execution of the Datalog∃,¬s,⊥ program Π over D,
which results to a new database Π(D). However, due to the features ∃ and ⊥, Π(D) may
be infinite or undefined. Consider, for example, the program Π consisting of

R(x, y) → ∃z R(y, z) R(x, y), P (x, z) → ⊥

Given the database D = {R(a, b)}, it is easy to verify that Π(D) is the infinite instance

{R(a, b), R(b, ν1), R(ν1, ν2), R(ν2, ν3), . . .},
5We see a database as a finite set of relational atoms of the form R(c1, . . . , cn), where R is an n-ary

relation, and c1, . . . , cn are constant values drawn from a countably infinite domain.

M. Arenas et al. / Querying the Semantic Web via Rules200

AUTHOR C
OPY

where ν1, ν2, . . . are new labeled null values that are used as witnesses for the existen-
tially quantified variable z. On the other hand, for the database D = {R(a, b), P (b, c)},
Π(D) is undefined, written as Π(D) = ⊥, since the atom R(b, ν1) obtained by executing
the first rule due to R(a, b), together with the database atom P (b, a), trigger the body of
the second rule, and the falsum is entailed, i.e., we get an inconsistency.

From the above discussion, it is clear that, given a database D and a Datalog∃,¬s,⊥

query Q = (Π, answer), computing the database Π(D), and then returning the set of
tuples {c̄ | answer(c̄) ∈ Π(D)}, providing that Π(D) is defined, is not an effective
procedure for evaluating Q over D since Π(D) may be infinite. In fact, we know that the
decision version of the above problem, that is, given a database D, a Datalog∃,¬s,⊥ query
(Π, answer), and a candidate answer c̄, decide whether Π(D) �= ⊥ implies answer(c̄) ∈
Π(D), is an undecidable problem. This is implicit in [9], while the undecidability holds
even in the case of data complexity, i.e., when the input query is fixed, and only the
database and the candidate answer are part of the input [11]. Actually, as one might
expect, the problematic feature that leads to the undecidability of query evaluation is the
existentially quantified variables in rule heads. Indeed, the undecidability holds already
for Datalog∃, whereas Datalog¬s,⊥ is a decidable query language.

TriQ-Lite 1.0 and Wardedness. A TriQ-Lite 1.0 query is essentially a Datalog∃,¬s,⊥

query (Π, answer) such that the positive existential part of Π enjoys a syntactic condition
known in the literature as wardedness [5]. In other words, (Π, answer) is a TriQ-Lite 1.0
query if the set of Datalog∃ rules obtained from Π by dropping all the rules with the
symbol ⊥ in the head, as well as all the negated atoms occurring in rule bodies, enjoys
the wardedness condition. This leads to a well-behaved Datalog∃,¬s,⊥-based query lan-
guage that can serve as an expressive RDF query language that combines all the desired
characteristics that have been discussed in Section 1.

The wardedness condition applies a syntactic restriction on how certain “dangerous”
variables of a Datalog∃ program Π are used. These are body variables that can be unified
with a labeled null value during the execution of Π over an extensional database, and that
are also propagated to the head. For example, given the Datalog∃ rules

P (x) → ∃z R(x, z) and R(x, y) → P (y)

the variable y in the body of the second rule is dangerous. Indeed, once we apply the
first rule, an atom of the form R(, ν) is generated, where ν is a null value, and then the
second rule is executed with the variable y being unified with ν that is propagated to
the obtained atom P (ν). It has been observed that the liberal use of dangerous variables
leads to a prohibitively high computational complexity, or even undecidability, of query
evaluation [11]. The main goal of wardedness is to limit the use of dangerous variables
with the aim of taming the way that null values are propagated during the execution of
the Datalog∃ program. This is achieved by posing the following two conditions:

1. the dangerous variables appear together in a single body atom α, called a ward,
and

2. the atom α can share only harmless variables with the rest of the body, that is,
variables that unify only with constants.

M. Arenas et al. / Querying the Semantic Web via Rules 201

AUTHOR C
OPY

Let us conclude this section by stressing that if we drop the second condition above,
then we get a syntactic condition over Datalog∃ programs known in the literature as
weakly-frontier-guardedness [7], which in turn leads to the powerful language TriQ 1.0.
Although query evaluation for TriQ 1.0 is decidable, it is prohibitively expensive, that is,
EXPTIME-complete in data complexity [5]. It turned out that TriQ-Lite 1.0 is a “nearly”
maximal tractable sublanguage of TriQ 1.0 in the sense that the mildest relaxation of
wardedness that one can think of, namely at most one occurrence of exactly one harmful
variable that occurs in the ward can appear also outside the ward, leads to a language
for which query evaluation is EXPTIME-hard in data complexity [5]. This is a strong
indication that there is no obvious way to extend wardedness, and thus, TriQ-Lite 1.0,
without losing tractability in data complexity.

The question that comes up is whether TriQ-Lite 1.0 is indeed expressive enough to
serve as an RDF query language that combines all the desired functionalities that have
been discussed in Section 1. This is the subject of the next section.

4. From SPARQL over OWL 2 QL to TriQ-Lite 1.0

The first version of the Web ontology language OWL was released in 2004 [22]. The sec-
ond version of this language, which is called OWL 2, was released in 2012 [33]. OWL 2
includes three profiles that can be implemented more efficiently [23]. One of those pro-
files, called OWL 2 QL, is based on the description logic DL-LiteR [13] and designed
to be used in applications where query answering is the most important reasoning task.
As the main goal of TriQ-Lite 1.0 is to provide a rule-based query language that natu-
rally embeds the fundamental features for querying RDF, we focus on a core fragment
of OWL 2 QL, called OWL 2 QL core, which corresponds to the description logic DL-
LiteR, and discuss that every SPARQL query under the OWL 2 QL core direct seman-
tics entailment regime, which is inherited from the OWL 2 direct semantics entailment
regime [17,20], can be naturally translated into a TriQ-Lite 1.0 query.6 For the sake of
presentation, we first omit the direct semantics entailment regime, and explain in Sec-
tion 4.1 how a SPARQL query can be translated into a Datalog¬s query. We then discuss
in Section 4.2 how every SPARQL query under the OWL 2 QL core direct semantics
entailment regime can be transformed into a TriQ-Lite 1.0 query. Moreover, we discuss
in Section 4.3 that the use of TriQ-Lite 1.0 allows us to formulate SPARQL queries in a
simpler way as a more natural notion of entailment, obtained by removing a restriction
from the regime proposed in [17], can be easily encoded in TriQ-Lite 1.0.

4.1. Translating SPARQL into Datalog¬s

We explain via some illustrative examples how a SPARQL query can be translated into
a Datalog¬s query; the complete translation can be found in [5]. Let us clarify that we
refer to the definition of SPARQL 1.0 that has been adopted in a large number of articles
that formally study SPARQL under set semantics, starting from [26]. We assume that the
reader is familiar with the syntax and semantics of SPARQL 1.0 as defined in [26]. In
what follows, given an RDF graph G, we define the relational database

6We focus on OWL 2 QL core, instead of the full formalism of OWL 2 QL, for technical clarity. However,
TriQ-Lite 1.0 is expressive enough to deal with all the constructs of OWL 2 QL.

M. Arenas et al. / Querying the Semantic Web via Rules202

AUTHOR C
OPY

τdb(G) = {triple(a, b, c) | (a, b, c) ∈ G},
i.e., the instance of the relational schema {triple(·, ·, ·)} naturally associated with G.

Example 1 We give a series of graph patterns, taken from [5], where their structural
complexity is progressively increased, and explain how they are encoded in Datalog¬s.

• We first consider the graph pattern

P1 = (?X, name, ?Y),

where name is a constant, that asks for the list of pairs (a, b) of elements from an
RDF graph G such that b is the name of a in G. This graph pattern can be easily
represented as a Datalog program over τdb(G):

triple(x, name, y)→ queryP1
(x, y).

The predicate queryP1
(·, ·) is used to store the answer to the graph pattern P1.

• Now consider the graph pattern

P2 = (?X, name, :B),

where :B is a blank node. This time we are asking for the list of elements in an
RDF graph G that have a name (the blank node :B is used in P2 to indicate
that ?X has a name, but that we are not interested in retrieving it). As in the
previous case, this graph pattern can be easily represented as a Datalog program
over τdb(G):

triple(x, name, y)→ queryP2
(x).

Given that blank nodes are used as existential variables in basic graph patterns, y
is used in the previous rule to represent :B. However, this time we do not include
the variable y in the head of the rule as we are not interested in retrieving names.

• As a third example, consider the graph pattern:

P3 = (?X, name, ?Y)
︸ ︷︷ ︸

P 1
3

OPT (?X, phone, ?Z)
︸ ︷︷ ︸

P 2
3

,

where phone is a constant. For every constant a in an RDF graph G, this graph
pattern is asking for the name and phone number of a, if the information about the
phone number of a is available in G, and otherwise it is only asking for the name
of a. The basic graph patterns P 1

3 and P 2
3 are represented via the rules

triple(x, name, y)→ queryP 1
3
(x, y)

triple(x, phone, z)→ queryP 2
3
(x, z).

The predicates queryP 1
3
(·, ·) and queryP 2

3
(·, ·) are used in the representation of

graph pattern P3 in Datalog¬s. More precisely, we first construct a set of rules for
the cases where the information about phone numbers is available:

M. Arenas et al. / Querying the Semantic Web via Rules 203

AUTHOR C
OPY

queryP 1
3
(x, y), queryP 2

3
(x, z)→ queryP3

(x, y, z)

queryP 1
3
(x, y), queryP 2

3
(x, z)→ compatibleP3

(x).

As for the previous graph patterns, we use queryP3
(·, ·, ·) to store the answers to

the query. But in this case, we also include a predicate compatibleP3
(·), which

stores the individuals with phone numbers. This is used in the definition of the third
rule utilized to represent P3, which takes care of the individuals without phone
numbers:

queryP 1
3
(x, y),¬compatibleP3

(x)→ query{3}
P3

(x, y).

The predicate query{3}
P3

(·, ·) is used to store the answer, which has a supra-index
{3} to indicate that the third argument in the answer to P3 is missing.

• As a final example, consider the graph pattern

P4 = ((?X, name,?Y) OPT (?X, phone, ?Z))
︸ ︷︷ ︸

P 1
4

AND (?Z, phone company,?W)
︸ ︷︷ ︸

P 2
4

,

where the constant phone company indicates that a phone number is associated
with a phone company. In this case, we first consider a set of Datalog¬s rules
that define the answer to the sub-pattern P 1

4 , which is stored in the predicates
queryP 1

4
(·, ·, ·) and query{3}

P 1
4
(·, ·), and to the sub-pattern P 2

4 , which is stored in
queryP 2

4
(·, ·). We have already seen how these rules look like, and thus we skip

their definition. Having the above predicates in place, we now use two rules to
define the answer to P4. The first rule considers the case of the individuals with
phone numbers:

queryP 1
4
(x, y, z), queryP 2

4
(z, w)→ queryP4

(x, y, z, w).

Moreover, the second rule used to define the answers to P4 considers the case of
the individuals without phone numbers, where a join is not needed:

query{3}
P 1

4
(x, y), queryP 2

4
(z, w)→ queryP4

(x, y, z, w) (5)

Although P4 is a valid SPARQL query, it can be difficult to interpret because if a
person has no phone number, then she gets all the phone companies associated to
her. The rules used to encode P4 make this phenomenon clear: the two predicates
in the body of rule (5) do not have any variables in common, so every pair of values
assigned to variables x, y is combined with every pair of values assigned to z, w.

The approach in Example 1 can be generalized to represent any graph pattern P . We
can construct a Datalog¬s query Pdat = (Π, answerP), where Π is the union of

1. τbgp(P) that encodes the basic graph patterns occurring in P .

M. Arenas et al. / Querying the Semantic Web via Rules204

AUTHOR C
OPY

2. τopr(P) that represents the non-basic graph patterns occurring in P ; in fact, these
rules are used to encode the semantics of the SPARQL operators appearing in P .

3. τout(P) that computes the output predicate answerP .

Example 1 gives a pretty good idea of how the programs τbgp(P) and τopr(P) are
defined (their precise definitions can be found in [5]). For the definition of τout(P), there
is one issue that needs to be resolved. Assume that P3 is the graph pattern in Example 1.
In this case, we expect queryP3

(·, ·, ·) to be the output predicate. However, the predicate

query{3}P3
(·, ·) is also used to collect some answers; more specifically, query{3}P3

(x, y) is
used to collect the answers to the query where z is not assigned a value. To deal with this
issue, the following rules are included in τopr(P3):

queryP3
(x, y, z) → answerP3(x, y, z) query{3}P3

(x, y) → answerP3(x, y, �),

where � is a special constant used to represent the fact that some positions in a tuple
have not been assigned values. Thus, answerP3

(·, ·, ·) is the only output predicate in this
example (the precise definition of τout(P) can be found in [5]). The Datalog¬s query that
represents the graph pattern P is Pdat = (τbgp(P) ∪ τopr(P) ∪ τout(P), answerP).

It remains to explain how we can compute the answer to a graph pattern P over an
RDF graph G, denoted �P �G, which consists of mappings from the variables in P to
the URIs in G.7 To this end, we need to recall an auxiliary notion. Let c̄ = (c1, . . . , cn)
be a tuple constants that belongs to the evaluation of Pdat over τdb(G). By construction,
in the set of rules τout(P) there exists an atom answerP (x1, . . . , xn) that contains only
variables (and not the constant �). We define a mapping μc̄,P corresponding to c̄ given
P with its domain being the set of variables {xi | i ∈ {1, . . . , n} and ti �= �} and,
for every i ∈ {1, . . . , n}, ti �= � implies μt,P (xi) = ci. We then define the set of
mappings corresponding to the answers of Pdat given τdb(G): �Pdat, τdb(G)� = {μc̄,P |
c̄ ∈ Pdat(τdb(G))}. It is not difficult to show, by induction on the structure of P , that:

Theorem 1.1 For every graph pattern P and RDF graph G, �P �G = �(Pdat, τdb(G))�.

4.2. SPARQL Entailment Regime and TriQ-Lite 1.0

We now discuss how the above translation can be extended to encode using TriQ-Lite 1.0
the entailment regime to deal with RDFS and OWL vocabularies [17,20].

Storing Ontologies in RDF. We first recall the fragment of OWL 2 QL that includes the
main features of the description logic DL-LiteR [13], on which the profile OWL 2 QL
is based. The vocabulary Σ of an OWL 2 QL core ontology is a finite set of unary and
binary predicates, called classes and properties, respectively. A basic property over Σ is
either p or p−, where p is a property in Σ, while a basic class over Σ is either a or ∃r,
where a is a class in Σ and r is a basic property over Σ. To represent an OWL 2 QL core
ontology over a vocabulary Σ, we first include the following triples:

7Let us remind the reader that we refer to the definition of SPARQL 1.0 as defined in [26].

M. Arenas et al. / Querying the Semantic Web via Rules 205

AUTHOR C
OPY

OWL 2 QL core Axiom RDF Triple

SubClassOf(b1, b2) (b1, rdfs:subClassOf, b2)

SubObjectPropertyOf(r1, r2) (r1, rdfs:subPropertyOf, r2)

DisjointClasses(b1, b2) (b1, owl:disjointWith, b2)

DisjointObjectProperties(r1, r2) (r1, owl:propertyDisjointWith, r2)

ClassAssertion(b, a) (a, rdf:type, b)

ObjectPropertyAssertion(p, a1, a2) (a1, p, a2)

Table 1. Representation of OWL 2 QL core axioms as RDF triples.

• For every class a in Σ, we include the triple

(a, rdf:type, owl:Class).

Notice that this triple uses the URIs rdf:type and owl:Class, and indicates that a,
which is also a URI, is of type class.

• For every property p in Σ, we include the following triples, where p, p−, ∃p and
∃p− are considered as URIs (constants), and they are pairwise distinct:

(p, rdf:type, owl:ObjectProperty) (p−, rdf:type, owl:ObjectProperty)

indicating that p and p− are properties,

(p, owl:inverseOf, p−) (p−, owl:inverseOf, p)

indicating that p− is the inverse of p and vice versa,

(∃p, rdf:type, owl:Restriction) (∃p−, rdf:type, owl:Restriction)

(∃p, owl:onProperty, p) (∃p−, owl:onProperty, p−)

(∃p, owl:someValueFrom, owl:Thing) (∃p−, owl:someValueFrom, owl:Thing)

indicating that ∃p and ∃p− are restrictions of p and p−, respectively, and finally

(∃p, rdf:type, owl:Class) (∃p−, rdf:type, owl:Class)

indicating that ∃p and ∃p− are classes.

We now discuss how OWL 2 QL core ontologies are stored as RDF graphs, follow-
ing the standard syntax to represent OWL 2 ontologies as RDF triples [25]. By using the
functional-style syntax of OWL [24], we can have the following axioms:

• SubClassOf(b1, b2): a basic class b1 is a sub-class of a basic class b2.
• SubObjectProperty(r1, r2): r1 is a subproperty of r2, where r1, r2 are basic prop-

erties.
• DisjointClasses(b1, b2): basic classes b1 and b2 are disjoint.
• DisjointObjectProperties(r1, r2): basic properties r1 and r2 are disjoint.
• ClassAssertion(b, a): a constant a belongs to a basic class b.

M. Arenas et al. / Querying the Semantic Web via Rules206

AUTHOR C
OPY

• ObjectPropertyAssertion(p, a1, a2): a constant a1 is related to a constant a2 via a
property p.

Moreover, by following the mapping from [25], the above axioms are stored as RDF
triples as in Table 1. An RDF graph G represents an OWL 2 QL core ontology if there is
an OWL 2 QL core ontology O such that its representation as RDF generates G.

OWL 2 QL Core Direct Semantics Entailment Regime. We now discuss how a graph
pattern is evaluated under the OWL 2 QL core direct semantics entailment regime, which
is based on the definition of a direct semantics entailment regime for SPARQL 1.1 given
in [17]. To compute the answer to a graph pattern, this regime is first applied at the level
of basic graph patterns, and then the results of this step are combined using the standard
semantics for the SPARQL operators [20]. Therefore, only the OWL 2 QL core direct
semantics entailment regime for basic graph patterns needs to be defined.

Consider a basic graph pattern P . Under the OWL 2 QL core direct semantics en-
tailment regime, the evaluation of P over an RDF graph G adopts an active domain se-
mantics, that is, it uses the notion of entailment in OWL 2 QL core (which corresponds
to the notion of entailment in DL-LiteR), but allowing the variables and blank nodes in
P to take only values from G. For example, consider the RDF graph G:

(dog, rdf:type, animal) (animal, rdfs:subClassOf, ∃eats), (6)

which indicate that dog is an animal, and every animal eats something. Moreover, assume
that we want to retrieve the list of elements of G that eat something. The natural way
to formulate this query is by using a graph pattern of the form (?X, eats, :B), where
:B is a blank node. However, the answer to this query is empty under the OWL 2 direct

semantics entailment regime, as there are no elements a, b in G that can be assigned to
?X and :B in such a way that the triple (a, eats, b) is implied by the axioms in G. In
other words, the answer to (?X, eats, :B) is empty under the active domain semantics
adopted in SPARQL 1.1. To obtain a correct answer in this case, we can consider the
graph pattern (?X, rdf:type, ∃eats), as the triples in G can be used to infer the triple
(dog, rdf:type, ∃eats), from which the correct answer dog is obtained.

Let G be an RDF graph representing an OWL 2 QL core ontology. Given a triple
of URIs ū, we write G |= ū to say that ū is implied by G as defined in [17,23], which
in turn is based on the notion of entailment for DL-LiteR [13]. Moreover, given a basic
graph pattern P , the evaluation of P over G under the OWL 2 QL core direct semantics
entailment regime, denoted by �P �UG , is defined as the set of mappings μ from the vari-
ables in P to URIs from G such that, for every triple ū of URIs that belongs to μ(P ′),
with P ′ being a basic graph pattern obtained from P after replacing the blank nodes with
URIs from G, G |= ū. Let us clarify that U in �P �UG indicates that every blank node in
P has to be assigned a URI from G. Now, the evaluation of an arbitrary graph pattern P
over an RDF graph G under the OWL 2 QL core direct semantics entailment regime, de-
noted by �P �UG , is recursively defined as the usual semantics for graph patterns (see [26]
for details), but replacing the rule for evaluating basic graph patterns by what has been
described above.

There is a fixed Datalog∃,¬s,⊥ program τowl2ql core that encodes the semantics �·�UG .
In this program, some simple Datalog rules are used to store in a unary predicate C all
the URIs from the graph (we assume that an RDF graph does not contain blank nodes):

M. Arenas et al. / Querying the Semantic Web via Rules 207

AUTHOR C
OPY

triple(x, y, z) → C(x) triple(x, y, z) → C(y) triple(x, y, z) → C(z). (7)

Then some Datalog rules are used to store the different elements in the ontology:

triple(x, rdf:type, y)→ type(x, y)

triple(x, rdfs:subPropertyOf, y)→ sp(x, y)

triple(x, owl:inverseOf, y)→ inv(x, y)

triple(x, rdf:type, owl:Restriction)

triple(x, owl:onProperty, y)

triple(x, owl:someValueFrom, owl:Thing)→ restriction(x, y)

triple(x, rdfs:subClassOf, y)→ sc(x, y)

triple(x, owl:disjointWith, y)→ disj(x, y)

triple(x, owl:propertyDisjointWith, y)→ disj property(x, y)

triple(x, y, z)→ triple1(x, y, z).

If we have the triples (a, rdf:type, b) and (b, rdfs:subClassOf, ∃r) in an OWL 2 QL core
ontology, then the Datalog∃,¬s,⊥ program τowl2ql core will create a triple of the form
(a, r, ν), where ν is a null value. If (a, r, ν) is stored in the relation triple, then by the
rules in (7) we get that C(ν) holds, violating the intended interpretation of the predicate
C. To solve this problem, the Datalog rule triple(x, y, z) → triple1(x, y, z) is used to
produce a copy of triple(·, ·, ·) in the predicate triple1(·, ·, ·). In this way, the new values
are added to triple1(·, ·, ·), that is, we do not modify the predicate triple(·, ·, ·) but in-
stead both triple1(a, rdf:type, b) and triple1(b, rdfs:subClassOf, ∃r) hold, from which we
conclude that triple1(a, r, ν) also holds. Moreover, we have

sp(x1, x2), inv(y1, x1), inv(y2, x2)→ sp(y1, y2)

type(x, owl:ObjectProperty)→ sp(x, x)

sp(x, y), sp(y, z)→ sp(x, z)

to reason about properties. The first rule states that if p is a sub-property of q, then p− is
a sub-property of q−. The other rules state that sub-property is reflexive and transitive.
We also have the Datalog rules

sp(x1, x2), restriction(y1, x1), restriction(y2, x2)→ sc(y1, y2)

type(x, owl:Class)→ sc(x, x)

sc(x, y), sc(y, z)→ sc(x, z).

The first rule states that if p is a sub-property of q, then ∃p is a sub-class of ∃q. The other
rules state that sub-class is reflexive and transitive. We also have the rules

disj(x1, x2), sc(y1, x1), sc(y2, x2)→ disj(y1, y2)

disj property(x1, x2), sp(y1, x1), sp(y2, x2)→ disj property(y1, y2).

M. Arenas et al. / Querying the Semantic Web via Rules208

AUTHOR C
OPY

to reason about disjointness. Finally, the following rules, which crucially use the features
∃ and ⊥, are included to reason about membership assertions:

triple1(x, u, y), sp(u, v)→ triple1(x, v, y)

triple1(x, u, y), inv(u, v)→ triple1(y, v, x)

type(x, y), restriction(y, u)→ ∃z triple1(x, u, z)

type(x, y)→ triple1(x, rdf:type, y)

type(x, y), sc(y, z)→ type(x, z)

triple1(x, u, y), restriction(z, u)→ type(x, z)

type(x, y), type(x, z), disj(y, z)→⊥
triple1(x, u, y), triple1(x, v, y),

disj property(u, v)→⊥.

Given a graph pattern P and an RDF graph G, to compute �P �UG we need to include
τowl2ql core in the Datalog¬s query Pdat defined in Section 4.1. More precisely, we need to
add to the program of Pdat the program τowl2ql core, but taking into consideration the active
domain semantics in the entailment regime just defined. For example, assume that P is
the basic graph pattern (?X, eats, :B) and G is the RDF graph in (6) storing information
about animals. Then τbgp(P) is the following rule:

triple(x, eats, y)→ queryP (x). (8)

In order to combine this rule with τowl2ql core, we first need to consider the fact that all
the triples inferred by using the axioms in G are stored in the predicate triple1(·, ·, ·).
Thus, we need to replace triple(·, ·, ·) by triple1(·, ·, ·) in (8). We also need to enforce the
constraint that every variable and blank node in P can only take a value from G, which
is done by including the predicate C:

triple1(x, eats, y),C(x),C(y)→ queryP (x). (9)

Thus, given a graph pattern P , let τUbgp(P) be the set of rules obtained from τbgp(P) by
first replacing triple by triple1 in every rule of τbgp(P), and then adding C(x) in the body
of every resulting rule ρ if x occurs in ρ. Finally, we define

PU
dat = (τowl2ql core ∪ τUbgp(P) ∪ τopr(P) ∪ τout(P), answerP).

It is not difficult to show the following:

Theorem 1.2 Consider a graph pattern P , and an RDF graph G that represents an OWL
2 QL core ontology. Then PU

dat is a TriQ-Lite 1.0 query, and �P �UG = �(PU
dat, τdb(G))�.

Let us stress that the program τowl2ql core, which encodes the semantics �·�UG for basic
graph patterns, is fixed and does not depend on the given graph pattern P . This implies
that, for a new graph pattern P ′, we only need to compute the programs τUbgp(P

′), τopr(P
′)

and τout(P
′) without altering τowl2ql core. This is quite beneficial since, whenever the user

wants to pose a new query, (s)he can use τowl2ql core as a black box.

M. Arenas et al. / Querying the Semantic Web via Rules 209

AUTHOR C
OPY

4.3. Removing the Active Domain Restriction

Consider the basic graph pattern:

Q = {(?X, eats, :B), (:B, rdf:type, plant material)},
which asks for the animals that eat some plant material, and assume that G is an RDF
graph. Under the active domain semantics, a is an answer to Q over G if we can replace
the blank node :B by a specific plant material b such that G implies (?X, eats, b).
But what happens if such a concrete witness cannot be found in G, and we can only
infer that a is an answer to Q by using the axioms in the ontology? For example, this
could happen if G stores information only about herbivores, so it includes the axiom
(∃eats−, rdfs:subClassOf, plant material). In this case, Q has to be replaced by

{(?X, rdf:type, ∃eats), (∃eats−, rdfs:subClassOf, plant material)}
in order to obtain the correct answers. And even worse, what happens if the query has
to be distributed over several RDF graphs, which is a very common scenario in the Web.
Then the user is forced to use a graph pattern of the form:

{(?X, eats, :B), (:B, rdf:type, plant material)} UNION

{(?X, rdf:type, ∃eats), (∃eats−, rdfs:subClassOf, plant material)},

in which some inferences have to be encoded. All these issues can be solved if we do
not force :B to take values only in G, as this allows us to use the initial basic graph
pattern Q. This gives rise to the semantics �P �ALL

G that is defined exactly as �P �UG , but
considering every basic graph pattern as a conjunctive query, and treating blank nodes as
existential variables that are not forced to take only values in G (they can take values in
the interpretations of G).

At this point, one may be tempted to think that the semantics �·�ALL can be directly
defined by transforming every basic graph pattern into a conjunctive query, which has to
be evaluated over a DL ontology. In fact, this approach works well with our initial query
Q, which can be transformed into the conjunctive query

∃y(eats(x, y) ∧ plant material(y)).

However, there are simple queries for which this approach does not work. For instance,
consider the basic graph pattern (?X, rdfs:subClassOf, ∃eats). Given that ?X is used to
store class names, this pattern cannot be transformed into a conjunctive query in order
to define its semantics; instead, we need to replace ?X by every class name C, and then
verify whether the inclusion C 	 ∃eats is implied by the DL ontology in order to define
its semantics. It turned out that the more natural semantics �·�ALL can be easily defined
by using Datalog∃,¬s,⊥, without the need of differentiate between variables that are used
to store individuals, classes or properties.

Given a basic graph pattern P , let τALL
bgp (P) be the rule obtained from τUbgp(P) by

removing every atom of the form C(x) such that x is a variable associated to a blank node
occurring in P . For example, assume that P is the basic graph pattern (?X, eats, :B).
Then τUbgp(P) is the rule (9), and thus τALL

bgp (P) is the rule:

M. Arenas et al. / Querying the Semantic Web via Rules210

AUTHOR C
OPY

triple1(x, eats, y),C(x)→ queryP (x).

Moreover, given a graph pattern P , define τALL
bgp (P) as the Datalog program consisting of

the rules τALL
bgp (Pi) for every basic graph pattern Pi occurring in P . Finally, we define

P ALL
dat = (τowl2ql core ∪ τALL

bgp (P) ∪ τopr(P) ∪ τout(P), answerP).

With this simple modification of PU
dat, we can formally define the semantics �·�ALL, i.e.,

given a graph pattern P and an RDF graph G, �P �ALL
G is defined as �(P ALL

dat , τdb(G))�.
Note that P ALL

dat is a TriQ-Lite 1.0 query, for every graph pattern P . Thus, TriQ-Lite 1.0
is expressive enough to represent the OWL 2 core direct semantics entailment regime,
even if the active domain restriction is not imposed.

5. Conclusions

A tractable Datalog-based query language has been discussed, called TriQ-Lite 1.0,
which is expressive enough to encode every SPARQL query under the entailment regime
for OWL 2 QL core. Moreover, this language allows us to formulate SPARQL queries in
a simpler way, as it can easily encode a more natural notion of entailment.

An interesting question is whether TriQ-Lite 1.0 is powerful enough to deal with the
other two lightweight profiles of OWL 2, namely OWL 2 EL and OWL 2 RL, and if not,
how it can be extended in order to obtain a unique tractable Datalog-based language that
can deal with all the three lightweight profiles of OWL 2 in a uniform way. Moreover, it
would be interesting to investigate whether TriQ-Lite 1.0 is powerful enough for dealing
also with the bag semantics of SPARQL. A good starting point for such an investigation
is the recent work [10], which studies Datalog under bag semantics.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[2] F. Alkhateeb, J. Baget, and J. Euzenat. Extending SPARQL with regular expression patterns (for query-

ing RDF). Journal of Web Semantics, 7(2):57–73, 2009.
[3] R. Angles and C. Gutierrez. The expressive power of SPARQL. In A. P. Sheth, S. Staab, M. Dean,

M. Paolucci, D. Maynard, T. W. Finin, and K. Thirunarayan, editors, The Semantic Web - ISWC 2008,
7th International Semantic Web Conference, Karlsruhe, Germany, October 26-30, 2008. Proceedings,
volume 5318 of Lecture Notes in Computer Science, pages 114–129. Springer, 2008.

[4] M. Arenas, G. Gottlob, and A. Pieris. Expressive languages for querying the semantic web. In Proceed-
ings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages
14–26, 2014.

[5] M. Arenas, G. Gottlob, and A. Pieris. Expressive languages for querying the semantic web. ACM
Transactions on Database Systems, 43(3):13:1–13:45, 2018.

[6] M. Arenas, C. Gutierrez, and J. Pérez. Foundations of RDF databases. In S. Tessaris, E. Franconi,
T. Eiter, C. Gutiérrez, S. Handschuh, M. Rousset, and R. A. Schmidt, editors, Reasoning Web. Semantic
Technologies for Information Systems, 5th International Summer School 2009, Brixen-Bressanone, Italy,
August 30 - September 4, 2009, Tutorial Lectures, volume 5689 of Lecture Notes in Computer Science,
pages 158–204. Springer, 2009.

[7] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential variables: Walking the
decidability line. Artificial Intelligence, 175(9-10):1620–1654, 2011.

[8] P. Barceló. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 175–188, 2013.

M. Arenas et al. / Querying the Semantic Web via Rules 211

AUTHOR C
OPY

[9] C. Beeri and M. Y. Vardi. The implication problem for data dependencies. In Proceedings of the 8th
International Colloquium on Automata, Languages and Programming, pages 73–85, 1981.

[10] L. E. Bertossi, G. Gottlob, and R. Pichler. Datalog: Bag semantics via set semantics. In P. Barceló
and M. Calautti, editors, 22nd International Conference on Database Theory, ICDT 2019, March 26-28,
2019, Lisbon, Portugal, volume 127 of LIPIcs, pages 16:1–16:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[11] A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under expressive rela-
tional constraints. Journal of Artificial Intelligence Research, 48:115–174, 2013.

[12] A. Calı̀, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Datalog±: A family of logical knowl-
edge representation and query languages for new applications. In Proceedings of the 25th Annual IEEE
Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom,
pages 228–242. IEEE Computer Society, 2010.

[13] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family. Journal of Automated Reasoning, 39(3):385–
429, 2007.

[14] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer, 1990.
[15] V. Fionda, C. Gutierrez, and G. Pirrò. Semantic navigation on the web of data: specification of routes,

web fragments and actions. In A. Mille, F. L. Gandon, J. Misselis, M. Rabinovich, and S. Staab, editors,
Proceedings of the 21st World Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20,
2012, pages 281–290. ACM, 2012.

[16] T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob. RDF querying: Language constructs and
evaluation methods compared. In P. Barahona, F. Bry, E. Franconi, N. Henze, and U. Sattler, editors,
Reasoning Web, Second International Summer School 2006, Lisbon, Portugal, September 4-8, 2006,
Tutorial Lectures, volume 4126 of Lecture Notes in Computer Science, pages 1–52. Springer, 2006.

[17] B. Glimm and C. Ogbuji. SPARQL 1.1 entailment regimes, 2013. W3C Recommendation 21 March
2013.

[18] G. Gottlob and A. Pieris. Beyond SPARQL under OWL 2 QL entailment regime: Rules to the rescue. In
Q. Yang and M. J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 2999–3007.
AAAI Press, 2015.

[19] S. Harris and A. Seaborne. SPARQL 1.1 query language, 2013. W3C Recommendation 21 March 2013.
[20] I. Kollia, B. Glimm, and I. Horrocks. SPARQL query answering over owl ontologies. In G. Anto-

niou, M. Grobelnik, E. P. B. Simperl, B. Parsia, D. Plexousakis, P. D. Leenheer, and J. Z. Pan, editors,
The Semantic Web: Research and Applications - 8th Extended Semantic Web Conference, ESWC 2011,
Heraklion, Crete, Greece, May 29-June 2, 2011, Proceedings, Part I, volume 6643 of Lecture Notes in
Computer Science, pages 382–396. Springer, 2011.

[21] L. Libkin, J. L. Reutter, and D. Vrgoc. Trial for RDF: adapting graph query languages for RDF data. In
R. Hull and W. Fan, editors, Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages 201–212.
ACM, 2013.

[22] D. L. McGuinness and F. van Harmelen. OWL web ontology language overview, 2004. W3C Recom-
mendation 10 February 2004.

[23] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 web ontology language
profiles (second edition), 2012. W3C Recommendation 11 December 2012.

[24] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 web ontology language structural specification
and functional-style syntax (second edition), 2012. W3C Recommendation 11 December 2012.

[25] P. F. Patel-Schneider and B. Motik. OWL 2 web ontology language mapping to rdf graphs (second
edition), 2012. W3C Recommendation 11 December 2012.

[26] J. Pérez, M. Arenas, and C. Gutiérrez. Semantics and complexity of SPARQL. ACM Transactions on
Database Systems, 34(3):16:1–16:45, 2009.

[27] J. Pérez, M. Arenas, and C. Gutierrez. nsparql: A navigational language for RDF. Journal of Web
Semantics, 8(4):255–270, 2010.

[28] A. Polleres. From SPARQL to rules (and back). In C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider,
and P. J. Shenoy, editors, Proceedings of the 16th International Conference on World Wide Web, WWW
2007, Banff, Alberta, Canada, May 8-12, 2007, pages 787–796. ACM, 2007.

[29] E. Prud’hommeaux and A. Seaborne. SPARQL query language for rdf, 2008. W3C Recommendation

M. Arenas et al. / Querying the Semantic Web via Rules212

AUTHOR C
OPY

15 January 2008.
[30] J. L. Reutter, A. Soto, and D. Vrgoc. Recursion in SPARQL. In M. Arenas, Ó. Corcho, E. Sim-

perl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, and
S. Staab, editors, The Semantic Web - ISWC 2015 - 14th International Semantic Web Conference, Beth-
lehem, PA, USA, October 11-15, 2015, Proceedings, Part I, volume 9366 of Lecture Notes in Computer
Science, pages 19–35. Springer, 2015.

[31] S. Rudolph and M. Krötzsch. Flag & check: data access with monadically defined queries. In Pro-
ceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pages 151–162, 2013.

[32] S. Schenk. A SPARQL semantics based on Datalog. In J. Hertzberg, M. Beetz, and R. Englert, editors, KI
2007: Advances in Artificial Intelligence, 30th Annual German Conference on AI, KI 2007, Osnabrück,
Germany, September 10-13, 2007, Proceedings, volume 4667 of Lecture Notes in Computer Science,
pages 160–174. Springer, 2007.

[33] W3C OWL Working Group. OWL 2 web ontology language document overview (second edition), 2012.
W3C Recommendation 11 December 2012.

M. Arenas et al. / Querying the Semantic Web via Rules 213

