
Increasing the Usability of Graph
Databases by Learning SPARQL

Queries and RDF Data

Gonzalo I. Diaz
Keble College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2018

A la emancipación del pueblo chileno.

Abstract

Semantic Web technologies and other open standards have the potential of allowing
current open datasets and knowledge bases to become more interlinked and interop-
erable, providing interfaces for end-users to access data via powerful high-level query
languages such as SPARQL. As a consequence, it becomes ever more important for
these data to be efficiently and easily searchable by non-expert audiences. The chal-
lenge of increasing the usability of these database systems, therefore, becomes central.
In this thesis, we approach the problem of increasing the usability of querying graph
data, in the form of RDF knowledge bases, from different perspectives. We study the
learning — more specifically, the reverse engineering — of SPARQL queries, including
its theoretical and practical aspects. Along the way we find that a key limitation of
these approaches is the completeness of the data, and therefore turn to learning —
in this case, knowledge base completion — of RDF data.

Specifically, we begin by studying the definability problem for first-order logic,
providing exact complexity bounds. We next provide a theoretical study of reverse
engineering in the SPARQL context, formalising variants of the reverse engineering
problem and giving bounds on their complexity. We develop algorithms for reverse
engineering and perform experimental analyses, showing that they scale well. Addi-
tionally, we implement and present a proof-of-concept user application which demon-
strates how reverse engineering is capable of guiding users who are unfamiliar with
both the dataset and with SPARQL to desired queries and result sets based on a query
by example paradigm. Finally, to address the issue of the completeness of data, we
propose a scalable and ontology-aware graph embedding model which allows for fact
inference in RDF datasets, providing a data learning approach that is complementary
to query learning.

ii

Acknowledgments

I am grateful to my D. Phil. supervisor, Prof. Michael Benedikt, and to my main
collaborator, Prof. Marcelo Arenas, for providing excellent guidance and encourage-
ment.

I would also like to thank my colleagues and collaborators. To Egor Kostylev,
Achille Fokoue and Mohammad Sadoghi for sharing their experience and for enriching
me with their advice and work ethic. To Ben Spencer and Max Schleich for endless
conversations about work and life.

I thank the Comisión Nacional de Ciencias y Tecnología (CONICYT) of the Gov-
ernment of Chile for funding my education. I am excited to return to Chile and con-
tribute to the development of my country, with the knowledge I have gained thanks
to the collective effort of our people.

A huge shout out to all my friends, and especially to Rodrigo, Paula, Pame, Lore,
and Juan Carlos. It has been my honour to share such awe inspiring times with them.

I thank my parents, Marco and Cecilia, and my brother Alejandro, for always
supporting me.

Finally, I thank my wife, Macarena, for being my lifeline. I could not have done
this without you.

iii

Declaration

This thesis is based on original research and contains no material that has already
been accepted, or is concurrently being submitted, for any degree or diploma or
certificate or other qualification in this university or elsewhere.

To the best of my knowledge and belief this thesis contains no material previously
published or written by another person, except where due reference is made in the
text.

iv

Contents

1 Introduction 1
1.1 Contributions . 3

2 First-order logic definability 7
2.1 Introduction . 7
2.2 Preliminaries . 9
2.3 Definability Problem for First-Order Logic 10
2.4 The exact complexity of FO-Def . 12

2.4.1 Proof of Theorem 2.1 . 13
2.5 Practical Considerations and Extensions 18

2.5.1 The BP-Pairs problem . 19
2.5.2 Including constants in the definability problem 20

3 Reverse Engineering SPARQL Queries 23
3.1 Introduction . 23
3.2 Preliminaries . 24

3.2.1 RDF and the query language SPARQL 24
3.2.2 Well-designed patterns . 27
3.2.3 Pattern trees . 29
3.2.4 Complexity classes . 30

3.3 Reverse engineering problems . 31
3.4 Complexity of Reverse Engineering 32

3.4.1 Complexity of verification problems 33
3.4.2 Reverse engineering without OPTIONAL 40
3.4.3 Reverse engineering with OPTIONAL 43
3.4.4 Reverse engineering with pattern trees 45
3.4.5 Reverse engineering upper bounds 47
3.4.6 Lower bounds on reverse engineering problems 64

v

3.5 Algorithms for Reverse Engineering 80

4 SPARQLByE: Reverse Engineering Systems 83
4.1 Introduction . 83

4.1.1 Related work . 85
4.2 SPARQLByE System Overview . 86
4.3 Reverse Engineering module . 88
4.4 Example Refinement and other modules 91
4.5 SPARQL-based backend . 92
4.6 Supplying negative examples . 94
4.7 Supplying positive examples . 103
4.8 Use cases and examples . 105
4.9 Experimental Evaluation . 110

4.9.1 Reverse engineering random inputs 110
4.9.2 Reverse engineering DBpedia query logs 112

4.10 System limitations and future work 115

5 Semantic Embeddings for RDF 118
5.1 Introduction . 118
5.2 Preliminaries and related work . 121

5.2.1 Definitions and notation . 121
5.2.2 Graph embeddings and related work 124

5.3 The EmbedS model . 126
5.3.1 Geometrical interpretation . 128
5.3.2 Negative examples . 129

5.4 Experimental evaluation . 130
5.4.1 Datasets . 131
5.4.2 Link prediction performance 132
5.4.3 Hyperparameter tuning . 132
5.4.4 Gradient descent . 133
5.4.5 Bern sampling . 133
5.4.6 Optimising triple classification 134
5.4.7 Optimal results . 134

6 Conclusion 136

Bibliography 139

vi

List of Figures

3.1 An example of how a tree structure is generated by a set of mappings. 44

4.1 SPARQLByE architecture. 88
4.2 SPARQLByE user interface overview showing the result of adding la-

belled examples and using the Entity search box. 93
4.3 Close-up of the SPARQLByE Entity Search Panel (left) and Extra

Results Panel (right). 93
4.4 Screenshot of SPARQLByE showing the result of a user inputting three

known football players as initial positive examples (and a known ten-
nis player as a negative). The Results Panel provides answers to the
working query with a trivial implementation (see Section 4.6 for a dis-
cussion, and see Figure 4.5 for the next figure in the series). 97

4.5 Screenshot of SPARQLByE showing the progression of a user interact-
ing with a trivial implementation of the Results Panel (see Section 4.6
for a discussion, see Figure 4.4 for the previous figure in the series, and
see Figure 4.6 for the next figure in the series). 98

4.6 Screenshot of SPARQLByE showing the progression of a user interact-
ing with a trivial implementation of the Results Panel (see Section 4.6
for a discussion, see Figure 4.5 for the previous figure in the series, and
see Figure 4.7 for the next figure in the series). 99

4.7 Screenshot of SPARQLByE showing the progression of a user interact-
ing with a trivial implementation of the Results Panel (see Section 4.6
for a discussion, see Figure 4.6 for the previous figure in the series, and
see Figure 4.8 for the next figure in the series). 100

vii

4.8 Screenshot of SPARQLByE showing the result of a user inputting three
known football players as initial positive examples (and a known ten-
nis player as a negative). The Results Panel provides answers to the
working query with a ranked implementation (see Section 4.6 for a
discussion, see Figure 4.7 for the previous figure in the series, and see
Figure 4.9 for the next figure in the series). 101

4.9 Screenshot of SPARQLByE showing the result of a user inputting three
known football players as initial positive examples (and a known ten-
nis player as a negative). The Results Panel provides answers to the
working query with a ranked implementation (see Section 4.6 for a
discussion, see Figure 4.8 for the previous figure in the series). 102

4.10 Result of a user interaction in SPARQLByE in which the Results Panel
uses a class-based criterium to rank the results. Note that the top
answer in the Results Panel is not a country. This is due to the quality
of the data. 104

4.11 Progression of a user interaction in SPARQLByE in which the Ex-
tra Results Panel uses an ontology-based relaxation implementation to
provide potential further positive examples. 106

4.12 SPARQLByE interface after having input two movies as labelled ex-
amples. The Extra Results Panel suggests further movies. 108

4.13 SPARQLByE interface converging towards a query that retrieves Spanish-
speaking countries. 109

4.14 Runtimes for ∼2000 randomly generated examples. Top: runtime ver-
sus input size; circles (black) represent definable inputs and crosses
(red) represent undefinable inputs. Bottom: runtime versus random
query size. 113

5.1 Cost of a triple (ei, pk, ej) ∈ I. The circle represents a 2n-sphere of
radius σk centred at (pαk ,p

β
k). The pair (ei, ej) is embedded as the

2n-dimensional point (ei, ej). The (red) error line shows the cost. . . 128
5.2 Cost (red error line) of t = (ei, type, cj), where class cj is embedded as

an n-sphere at cj with radius ρj. 129
5.3 Learning process over 1000 epochs with sgd updates (left) and adagrad

updates (right). Partial evaluation is done every 10 epochs. 133

viii

5.4 Learning process over 1000 epochs with uniform negative example sam-
pling (top) and Bernoulli negative example sampling (bottom). Partial
evaluation is done every 10 epochs. 135

ix

List of Tables

3.1 Complexity of verification problems. 39
3.2 Glossary of concepts used in this chapter. 40
3.3 Complexity of reverse engineering problems. 80

5.1 RDFS core keywords and their abbreviations used in this chapter. . . 122

x

Chapter 1

Introduction

Currently, databases are quickly growing in size, in variety, and in quality, with
a widening range of applications, from more classical use cases such as company
databases, to publicly available government data [75, see government subcloud], en-
cyclopaedic knowledge bases [18, 50], and newer applications such as the Internet
of Things [78]. Semantic Web technologies [45] and other open standards have the
potential of allowing these data to become interlinked and interoperable, as is the
case with the linked open data cloud [24, 75], for example. However, it becomes ever
more important for these data to be efficiently, and perhaps more importantly, easily
searchable by a potential audience which no longer consists mainly of database ad-
ministrators but ordinary users. The challenge of increasing the usability of database
systems, therefore, becomes central.

Semantic Web technologies such as the Resource Description Framework (RDF)
[73] and its query language, the SPARQL Protocol and Query Language (SPARQL
is its recursive acronym) [112], offer the possibility of opening up the use of public
datasets to a great variety of ordinary users. The relatively low-level data model used
by RDF, namely triples (i.e. 3-tuples formed by objects extracted from a well-defined
universe) which model basic subject-predicate-object statements, has allowed owners
and producers of data to publish them with a common format. Thus, a cosmos of
linked open data has grown from the interlinking of diverse datasets that range from
high-level ontologies, which describe classes of concepts and the relations that may
exist between them [73, 102], to very specific datasets such as scientific knowledge
bases [75, life sciences subcloud], to open government data (usually available on open
government websites), to large knowledge bases of varied facts, such as DBpedia [69]
or Wikidata [111].

However, some of the key obstacles to the consumption of open data include the
ease of querying, the interoperability of different databases, the availability of ex-

1

pressive ontologies which permit efficient calculation of inferred facts, and the incom-
pleteness of data, among other issues. The unfamiliarity of users with the structure
of data, as well as their unfamiliarity with the precise query languages they must use
to access those data, however, will be our main focus in this thesis. This problem
resonates with the broader issue of increasing the usability of database systems [63].

While increasing the usability of database systems can be achieved in many ways
[63], including designing user-friendly or otherwise enhanced querying interfaces [42,
12, 66] and providing keyword-based or natural language querying [67, 90], in this
thesis we focus on the study of extensions — or outright alternatives — to the classical
querying paradigm wherein a user with knowledge of the database must formulate
precise queries in a specific query language in order to obtain results.

The general goal of upending this classical querying paradigm (formulate query;
execute query; obtain answers) has produced an array of related concepts and sub
fields of research which are not immediately easy to distinguish, such as query-by-
example, query-by-output, query reverse engineering, among others. What they do
have in common, however, is the intention of relieving the user of the burden of
having to formulate a query in a precise query language in order to obtain results.

Specifically, we approach the problem of increasing the usability of querying graph
data, in the form of RDF knowledge bases, from different perspectives, ranging from
the theoretical (e.g. studying the computational complexity of related decision prob-
lems) to the practical (implementing a proof-of-concept user interface for querying
SPARQL endpoints by example). Along the way we will find that a key limitation of
these query-by-example systems is the completeness of the data, and therefore turn
to machine-learning approaches for knowledge-base completion, which allow the user
to explore data and facts that are not explicitly contained in their dataset.

Initial forays into querying by example date back to a homonymous study by
Zloof in 1975 [121], although this work arguably concerned itself with building a user-
friendly syntax for formulating relational algebra queries rather than fundamentally
altering the querying paradigm. The study of querying by example quickly diversified
and deepened into reverse engineering and query-by-output approaches and the study
of the definability problem (which will be discussed below). These fields progressed
in parallel and in interaction with the advance of fields such as learning theory [7, 8,
106, 27] and usability of database systems [63].

The previous body of work mainly addresses the problem of learning the query,
and this has an important limitation: in many cases the quality and completeness of
the data itself may become an obstacle to a user wishing to obtain answers. Class

2

information in graph knowledge bases is not always consistent across all entities;
when dealing with hierarchical class ontologies, a given entity may be associated to a
very specific subclass or the most general superclass, for example. Although modern
semantic web databases include the possibility of inferring facts via specific rule sets
[73], these rules usually refer to a restricted set of special keywords; there is a wealth
of class inclusion information encoded with non-standard keywords, which limits the
applicability of these schemes.

Hence, although learning a query can go a long way towards assisting a user in
exploring a database, this process is essentially limited by the quality and complete-
ness of the data, whereby studying forms of automatic knowledge base completion
— in essence, learning the data — can be a powerful complement. Learning theory
has given rise to machine learning techniques such as graph embeddings [79], which
have been used to predict user preferences, entity matching, and knowledge base
completion.

All in all, these are exciting times for the database community, as new applications
and new techniques push the field to the forefront of computer science research. In
the next section we describe in detail the contributions this thesis makes to the area.

1.1 Contributions

In a query reverse engineering scenario, which will be our main research object, the
database and answer set become the inputs to the problem (and we will assume the
inputs are to be provided by a user), while the query becomes the desired output, thus
being reverse engineered. As a alternative querying paradigm, this scenario has been
studied extensively for different data models, including relational databases, XML
(Extensible Markup Language), and graph databases.

Increasing the level of specificity, a very basic — yet fundamental — form of query
reverse engineering is the definability decision problem. Here, given a data model (e.g.
relational databases) and a query language (e.g. relational algebra), a database in-
stance D and an answer set R are given as inputs, the output being True if and only
if there exists a query such that, when evaluated over D, gives R as an output. This
formulation of the definability decision problem clearly illustrates how the standard
querying paradigm is reversed, as the query loses its status as the quintessential input.
The definability problem was initially studied in the context of the attempt to under-
stand the expressivity of relational algebra; the work of Bancilhon and Paredaens in
1978 [83, 21] being the prime examples. In these works, a complexity upper bound for

3

the relational algebra definability problem was obtained as a corollary of this work,
although this fact was not mentioned explicitly at this stage. In addition to the case
of (full) relational algebra, the definability problem has been studied for conjunctive
queries [115] and for graph databases/query languages [9]. Slightly more general sce-
narios (accepting a list of instance-answer pairs) have also been studied for relational
databases [47].

In this thesis, we have provided tight bounds for the first-order logic definability
problem, thus closing an open question in the field. We do this by providing a polyno-
mial-time algorithm for solving it, using calls to a graph-isomorphism subroutine (or
oracle). As a consequence, the first-order definability problem is found to be complete
for the class GI of all problems which are polynomial-time Turing reducible to the
graph isomorphism problem, thus resolving its exact complexity. The technique used
is also applied to a generalised version of the problem which accepts a finite set of
relation pairs, and whose exact complexity was also open; this version is also found
to be GI-complete. We also discuss practical applications that stem from this knowl-
edge. In particular, the connection, via calls to a subroutine, to graph isomorphism
allows algorithms for the definability problem to take advantage of efficient imple-
mentations of the graph isomorphism problem. This knowledge will hopefully lead
to the implementation or improvement of query definability systems, thus furthering
the objective of building usable database querying systems.

Although the previous results are useful in understanding the complexity of de-
finability and have potential practical applications, from the point of view of a user
faced with querying a database, the definability problem is far too restrictive to be
considered a realistic scenario. A typical user will not have an exhaustive list of an-
swers available, for example, especially if the database in question is extremely large.
Thus, users who are unfamiliar with either the details of SPARQL or properties of
the target dataset may find it easier to query by example, giving examples of the
information they want (or examples of both what they want and what they do not
want) and let the system reverse engineer the desired query from the examples. In
this way, query reverse engineering generally allows for more flexible inputs, where
each example in the answer set given can be labelled as either a positive or a negative
example.

The corresponding decision problem then seeks to determine the existence of a
query which is consistent with a set of labelled examples, i.e. a query which, when

4

evaluated on the dataset, would return all positive examples and exclude all neg-
ative examples. These problems have been studied for XML data in conjunction
with XPath (the standard query language for XML data) [99, 35] and for relational
databases and join queries [109, 110], among others. In this context, we provide
the first (to our knowledge) query reverse engineering study of RDF and SPARQL,
formalising variants of the reverse engineering problem and giving tight bounds on
its complexity. We have obtained complexity bounds for several variants of reverse
engineering decision problems, including reverse engineering with only positive exam-
ples, with both positive and negative examples, and exact reverse engineering with a
full answer set as input (a.k.a. the definability problem). We have found that these
are inherently intractable problems, with exact complexities ranging from NP and
coNP to Σp

2 [1]. Notwithstanding the high complexity bounds, we provide practi-
cal algorithms for reverse engineering, showing that the more complex steps may be
delegated to state-of-the-art SPARQL query engines, and providing experimental ev-
idence that our algorithms perform well with both synthetic and real world inputs.
We also implement a reverse engineering library for positive examples and perform an
experimental analysis of the tool, showing that it scales well in the data size, number
of examples, and in the size of the smallest query that fits the data.

The challenge of designing and building systems that assist in the querying of
large databases constitutes an burgeoning area of research itself. Such systems have
been built for join queries on relational databases, for example [29]. In the case of
RDF databases and the SPARQL query language, we have built a system, which we
name SPARQLByE, for querying RDF data by example, based on the reverse engi-
neering algorithms developed. The SPARQLByE system centres the user interaction
around a set of labelled examples, which are the main input. We demonstrate how
reverse engineering enables our system to guide users who are unfamiliar with both
the dataset and with SPARQL to the desired query and result set. This is achieved by
supplementing reverse engineering of SPARQL with techniques for guiding the user
to further positive and negative examples. The end objective is to converge towards a
reverse engineered query which satisfies the user’s expectation. We thus give evidence
that reverse engineering tools can provide benefits on real-life datasets, beyond the
theoretical computational properties of these problems.

In the final part of this thesis, we turn to graph embedding models as an alternative
view on the problem of increasing the usability of database systems. Graph embed-

5

dings provide machine-learning-friendly representations of graph data and provide a
tool for knowledge base completion, i.e. learning the data, a goal which complements
the learning of queries in order to improve the information value that may be ex-
tracted from a dataset. The input to a graph embedding model is a graph database
(e.g. an RDF graph), and the output is a mapping which associates to each entity in
the graph an n-dimensional real-valued vector, which thus embeds said entity into the
n-dimensional space. In particular, translational graph embedding models are able to
perform efficiently for very large graphs and with high accuracy, when applied to stan-
dard link prediction and triplet classification tasks. In this context, recent work has
focused on producing more expressive models that build on TransE, a particularly
simple translational model which has achieved good results [31]. A key limitation
of these models, however, is that they are agnostic with respect to the ontological
information which is often present in large graph data. Ontological triples, if not
outright removed, are treated as facts, and consequently the inferences produced by
these models may produce triples which violate the semantics of the ontology. In this
scenario, we design an ontology-aware graph embedding model which is able to model
the semantics of RDFS keywords. We show EmbedS to be superior to simple models
such as TransE and TransH [113], and provide experimental scenarios to ascertain
whether the model is able to improve the quality of predictions in large, ontology-rich
RDF graphs.

In summary, this thesis is concerned with improving the usability of RDF graph
databases via the study of the definability and reverse engineering problems for the
querying of SPARQL-RDF data, along with exploring the relation between Semantic
Web ontologies and graph embedding models as a more structured way of predicting
links in graph data.

This thesis is structured as follows: in Chapter 2 we study the definability prob-
lem for first-order logic, providing an exact complexity bound and discussing prac-
tical applications and extensions of the problem. In Chapter 3 we provide exact
complexity bounds for several variants of the reverse engineering problem in the con-
text of SPARQL, along with algorithmic considerations. In Chapter 4 we develop a
web-based system for reverse engineering SPARQL queries with user interaction. In
Chapter 5 we design a graph embedding model that allows for the inference of new
data from global patterns in existing data. Finally, we discuss the ramifications of
our results and further avenues of research in the Conclusion.

6

Chapter 2

First-order logic definability

2.1 Introduction

In a typical relational database querying scenario, a database instance I and a queryQ
are given and the objective is to answer the query, that is, calculate the answer relation
R which Q produces for I. There are many real-world situations though, where the
database I and answer relation R are known and it is the query that is unknown.
For example, it is common for the results of a query to be published without the
precise query being made available, requiring reverse engineering [109, 119]. In other
cases, users of a database system may have difficulties formulating a query, in which
case it is desirable to have the ability to infer or learn the query by having the user
specify tuples which they want included in the result (i.e. positive examples), tuples
which they want excluded from the result (i.e. negative examples), or a combination
of both. Query learning has been studied in relational databases [4, 28] as well as
in other data models such as XML [99, 35, 100], graph databases [26] and big data
[27]. This situation also arises in data integration scenarios, where example source
and target instances are used to derive data mapping queries between source and
target [23, 53, 88, 106]. Finally, another application is checking whether a relation
R is redundant in a database instance I, in the sense that there exists a query Q

that produces R when evaluated over the other relations in I, implying that the
information in R can be deduced from the other relations in the instance I [46].

A common ground for the different query discovery scenarios presented is the
definability problem for a query language Q. This decision problem takes as input
an appropriate database instance I and answer R, and asks whether there exists a
query Q ∈ Q such that Q evaluated on I results in R. Here, the semantics of the
query language Q determines what appropriate database instances and answer sets
are. In the case of first-order logic (without constants a linear order on the domain)

7

we denote the definability problem FO-Def, and the input is a relational database
instance I and an answer relation R. The definability problem has been studied
for relational databases and first-order logic (equivalently, relational algebra), as well
other data models and query languages. In particular, this problem has been studied
for nested relational databases and nested relational algebra [57, 59], for XML and
XPath [60, 48], and for graph databases and conjunctive regular path queries [9].

The study of the computational complexity of FO-Def dates back to 1978 [83, 21],
where a semantic characterisation of the problem, based on automorphisms, placed
FO-Def in coNP (see Section 2.3 and [37] for more details). Although this pro-
vided a complexity upper bound for the problem, an exact complexity result has
not been found since then [47, 105]; in particular, the problem was never found
to be coNP-hard. Despite the open question for the first-order logic case, the
corresponding definability problem for conjunctive queries was determined to be
coNEXPTIME-complete [115]. Here, the complexity upper bound (i.e. the in-
clusion in coNEXPTIME) stems from an analogous semantic characterisation of
the CQ definability problem in terms of polymorphisms [64]. In a different direc-
tion, a natural generalisation of FO-Def, dubbed BP-Pairs [47], accepts a finite set
of relation pairs {(S1, R1), . . . , (Sn, Rn)} and asks whether there exists a first-order
query Q such that Q(Si) = Ri, for all i ∈ [1, n]. By means of an analogous semantic
characterisation, the authors found BP-Pairs to be included in coNP.

In this chapter, we provide a novel polynomial-time algorithm for the first-order
logic definability problem, which uses calls to a graph-isomorphism subroutine (or-
acle). As a consequence of the existence of this algorithm, FO-Def is found to be
included in the complexity class GI (defined as the set of all languages which are
polynomial-time Turing reducible to the graph isomorphism problem). Moreover,
we also show that FO-Def is GI-hard, which allows us to conclude that FO-Def

is GI-complete and, thus, allows us to close the open question regarding the exact
complexity of FO-Def. This result also has consequences in practical applications,
as implementations for the definability problem may now take advantage of algorith-
mic optimisations for the graph isomorphism problem [87, 76, 20]. For example, for
several restricted classes of graphs it is possible to solve the isomorphism problem in
polynomial time [55], and this performance will be inherited by definability problem
algorithms which use the characterisation presented in this chapter. Finally, we find
that the technique used is also applicable to the BP-Pairs problem and show that
it is also included in GI, solving a problem left open in [47]. This chapter is based
on work published in [10].

8

2.2 Preliminaries

Let U be an infinite countable universe. A relational schema R = {R1, . . . , Rm} is a
set of relation names, each with an associated arity, denoted by arity(Ri). Given a
relational schema, a relational instance I over R is a set of relations {RI

1, . . . , R
I
m},

with each RI
i a finite subset of Uarity(Ri). The active domain of I, denoted by adom(I),

is the set of elements of U which appear in some relation of I (we define the active
domain of a relation analogously).

We assume familiarity with the syntax and semantics of first-order logic [3, 44].
Let R be a relational schema and I an instance over R. A k-ary FO-query Q over R
is given by an FO-formula ϕ(x̄), where x̄ = (x1, . . . , xk) is the tuple of free variables
of ϕ. Moreover, the evaluation of Q over I, denoted by Q(I), is defined as the set of
tuples ā such that ϕ(ā) holds in I.

Example 2.1. Consider the relational schema R = {Person,Knows} with arities
1 and 2, respectively. Also consider the relational instance I = {PersonI ,KnowsI}
defined as follows:

PersonI

Ada
John
Dana
Peter

KnowsI

Ada John
John Ada
Dana Peter

Then a query Q1 given by FO-formula Person(x) returns the set of persons in I,
while a query Q2 given by FO-formula ∃y (Person(x) ∧ Knows(x, y) ∧ x 6= y) returns
the set of persons in I that know someone else.

Given instances I1, I2 over a relational schema R, a function f : U → U is an
isomorphism from I1 to I2 if and only if (i) f is a bijection, and (ii) for every R ∈ R

such that arity(R) = n, and for every t ∈ Un, it is the case that t ∈ RI1 if and only
if f(t) ∈ RI2 , where f(t) is defined as (f(a1), . . . , f(an)) if t = (a1, . . . , an). Given an
instance I over a relational schema R, a function f : U→ U is an automorphism of I
if f is an isomorphism from I to I. The notions of isomorphism and automorphism
for a relation are defined analogously. In what follows, we use Aut(I), Aut(R) to
denote the set of automorphisms for an instance I and a relation R, respectively.

Given a tuple t = (a1, . . . , an), define the ith prefix of t in the following way:

π≤i(t) =

{
(a1, . . . , ai) if 1 ≤ i ≤ n,

() otherwise.

9

In order to extract only one column, we use the notation πi(t) = ai. We also allow
an overloaded version of the operator, where R is a relation of arity n:

π≤i(R) = {π≤i(t) | t ∈ R}.

In other words, π≤i(R) is the image of every tuple t ∈ R under π≤i.

The graph isomorphism problem and the complexity class GI The graph
isomorphism problem is defined as Graph-Iso = {(G1, G2) | G1 and G2 are iso-
morphic graphs} [16, 68]. A major open problem in computational complexity is to
determine the exact complexity of this problem, in particular whether it can be solved
in polynomial time, it is NP-complete, or it is NP-intermediate [68].

The problem Graph-Iso gives rise to the complexity class GI = {L | L ≤pT
Graph-Iso}, where L1 ≤pT L2 indicates that there is a polynomial-time Turing re-
duction from the decision problem L1 to the decision problem L2. In other words, GI

is the class of all problems L that can be solved in polynomial-time by an algorithm
that uses an oracle (or subroutine) for the graph isomorphism problem [1]. Further-
more, a decision problem L is said to be GI-hard if and only if L′ ≤pT L for every
problem L′ ∈ GI. Notice that this is a relaxation with respect to the traditional
definition of hardness for NP, as only a Turing reduction is required (as opposed
to a polynomial-time many-to-one reduction for the standard notion of hardness).
Examples of GI-complete problems, that will be used in this chapter, are: the rela-
tional instance isomorphism problem, Rel-Iso = {(I1, I2) | I1 and I2 are isomorphic
relational instances} [118], and the automorphism with one anti-fixed point problem,
Aut-1-AFP = {(G, v) | G = (V,E) is a graph with v ∈ V such that there exists
an automorphism f of G for which f(v) 6= v} [72]. It is important to notice that
although Graph-Iso ∈ NP, the class GI is not known to be a subset of NP, since
GI is defined in terms of polynomial-time Turing reductions and NP is not known to
be closed under such reductions (NP is known to be closed under polynomial-time
many-to-one reductions).

Finally, given a decision problem L, we denote the complement of L as L.

2.3 Definability Problem for First-Order Logic

The first-order logic definability problem is defined as FO-Def = {(I, R) | I is
a relational instance, R is a relation, and there is a first-order query Q such that
Q(I) = R}. Notice that both the schema R of I and the arity n of R are not fixed

10

but can be deduced from I and R, respectively, and also that the query does not
mention any constants. This problem was studied in [83, 21], where it was determined
that given a relational instance I and a relation R, (I, R) ∈ FO-Def (that is, R is
definable from I by a first-order query) if and only if (i) adom(R) ⊆ adom(I) and (ii)
Aut(I) ⊆ Aut(R). We first build some intuition on this semantic characterisation.

For the “if” direction, assume that Q(I) = R, where Q is an FO-query. Then R
cannot mention a value that does not occur in I, as first-order logic cannot invent
new values. Thus, it should be the case that adom(R) ⊆ adom(I). Moreover, assume
that a and b are values occurring in I and h is an automorphism of I such that
h(a) = b. We know that if we replace in I every value c by h(c), then we obtain
the same instance I. Hence, a and b are indistinguishable in I. In particular, these
two values cannot be differentiated by Q, as Q is defined by an FO-formula whose
vocabulary is R and, thus, by an FO-formula that does not mention any constant.
Hence, given that R = Q(I), if any of a or b occurs in R, then the other value
has to occur in R, and, more generally, a and b have to be indistinguishable in R.
Formally, h has to be an automorphism of R, and, therefore, every automorphism of
I has to be an automorphism of R (that is, Aut(I) ⊆ Aut(R)). For the “only if”
direction, we notice that it is possible to construct an FO-query Q which constructs
all automorphisms of I and then uses projection to build the required tuples in R, the
only restriction being that automorphisms will be preserved in any result. Thus, as
long as conditions (i) and (ii) hold, the input will be definable. Interestingly, though,
the witness Q to the definability is not of much practical use.

Example 2.2. Let R and I be the relational schema and instance shown in Example
2.1, respectively, and assume that R and S are the following relations:

R
John

S
Ada John
John Ada

In this case, the pair (I, S) ∈ FO-Def, i.e. it is possible to find a first-order query
Q such that Q(I) = S. In fact, in this case Q is given by FO-formula (Knows(x, y)∧
Knows(y, x)). On the other hand, the relation R is not definable from I by a first-order
query. To see why this is the case, notice that Ada and John are interchangeable in I,
so that if R can be obtained as the result of evaluating an FO-query over I, then Ada

has to occur in R as John occurs in R. We can formalise this intuition, and prove that
(I, R) 6∈ FO-Def, by using the semantic characterisation of the definability problem
in terms of automorphisms. More precisely, consider the function h : U → U such

11

that h(Ada) = John, h(John) = Ada, and for any other element u ∈ U, h(u) = u. The
function h thus defined is an automorphism of I. However, h is not an automorphism
of R, as h(John) 6∈ R, from which we conclude that (I, R) 6∈ FO-Def.

2.4 The exact complexity of FO-Def

From the characterisation of FO-Def in the previous section, it is clear that FO-Def

∈ coNP, as an automorphism of I which is not an automorphism of R provides
a (polynomially sized) witness to the fact that (I, R) 6∈ FO-Def. Although this
provides an upper bound for the complexity of this problem, the exact complexity of
FO-Def is an open problem; in particular, the problem is not known to be coNP-
hard. The following is the main result of this chapter, in which we close this problem:

Theorem 2.1. FO-Def is GI-complete.

This result allows us to revisit the status of the FO-Def problem with respect
to PTIME and NP. As a first corollary of Theorem 2.1, we can now say that
if Graph-Iso ∈ PTIME then it will also be the case that FO-Def ∈ PTIME.
As second corollary of Theorem 2.1, we obtain strong evidence against the coNP-
hardness of FO-Def. Recall that if C is a complexity class, then NPC is the class
of decision problems that can be solved in polynomial time by a non-deterministic
Turing machine with an oracle for a decision problem L ∈ C. Moreover, recall that
the second level of the polynomial hierarchy [101] consists of the complexity classes
Σp

2 = NPNP and Πp
2 = coΣp

2 = {L | L ∈ Σp
2}, which are widely believed to be

different. From Theorem 2.1 we have that:

Corollary 1. If FO-Def is coNP-complete, then Σp
2 = Πp

2.

To understand this corollary, we must consider the second level of the low hierarchy
of NP [94, 61]. Let Low2 be the class of decision languages L ∈ NP such that:

NP(NPL) = NPNP,

that is, the class of languages L ∈ NP such that the computational power of the
second level of the polynomial hierarchy is not augmented if L is available as an
oracle. It is known that Graph-Iso ∈ Low2 [95], and also that if a language in Low2

is NP-complete (under the usual notion of polynomial-time many-to-one reduction),
then Σp

2 = Πp
2 [94]. From Theorem 2.1 and the fact that Graph-Iso ∈ NP, we have

12

that FO-Def ∈ NP∩GI, from which we conclude that FO-Def ∈ Low2. Hence, if
FO-Def is NP-complete, then Σp

2 = Πp
2, from which Corollary 1 follows.

As a final comment, it is important to mention that Theorem 2.1 holds for any
relational query language that is BP-complete [33, 58]. Thus, for example, the defin-
ability problem for Datalog is also GI-complete, where the input of this problem is
an instance I and a relation R, and the question to answer is whether there exists a
Datalog program that evaluated over I produces R.

In the rest of this section, we concentrate in proving Theorem 2.1.

2.4.1 Proof of Theorem 2.1

The GI-hardness of FO-Def is shown via a polynomial-time Turing reduction from
Aut-1-AFP, whereas the inclusion of FO-Def in GI is shown via a polynomial-time
Turing reduction to Rel-Iso. Recall that these problems were defined in Section 2.2,
and that they are both known to be GI-complete [118, 72].

In order to motivate the proof of the inclusion of FO-Def in GI, consider the
following algorithm for FO-Def using an oracle for Rel-Iso, which constitutes a
failed attempt to show that FO-Def ≤pT Rel-Iso. On input (I, R), with arity(R) =

n, we wish show the existence of a function f ∈ Aut(I) for which there is a tuple
t ∈ R such that f(t) = s and s 6∈ R (note that s ∈ adom(I)n).1 This scenario
can be restated in the following way: does there exist a tuple t ∈ R, a bad tuple
s ∈ adom(I)n r R, and an automorphism f ∈ Aut(I) such that f(t) = s? Then for
every t = (a1, . . . , an) ∈ R and s = (b1, . . . , bn) ∈ adom(I)nrR, the procedure builds
the relational instances I1 and I2 from I by marking, for every i ∈ [1, n], the pair ai, bi
in such a way that any isomorphism from I1 to I2 must map ai to bi (these markings
can be achieved by placing ai and bi in fresh unary relations). We then consult the
Rel-Iso oracle with input (I1, I2) to decide whether such an isomorphism exists.

Example 2.3. Consider the pair (I, R) from Examples 2.1 and 2.2. In order to decide
whether (I, R) is definable, we iterate over every tuple in R; the only such tuple being
t = (John). For this fixed t, we iterate over all possible bad tuples s ∈ adom(I) r R.
Upon reaching the case s = (Ada) we build the following instances:

• We first create a fresh relation name Fresh such that arity(Fresh) = arity(R) =

1,
1This would actually shows that (I,R) is not definable, but as this is a deterministic algorithm,

we may simply return the opposite answer.

13

• We prepare an instance I1 over the relational schema {Person,Knows,Fresh}
such that PersonI1 = PersonI , KnowsI1 = KnowsI , and FreshI1 = {(John)}

• We prepare an instance I2 over the relational schema {Person,Knows,Fresh}
such that PersonI2 = PersonI , KnowsI2 = KnowsI , and FreshI2 = {(Ada)}.

We now call a Rel-Iso oracle with input (I1, I2) in order to decide whether there is
an isomorphism from I1 to I2. Note that, with the addition of the FreshI relation, we
are actually asking whether there is an automorphism of I which maps John to Ada.
The oracle will respond True, and this will serve as a witness to the non-definability
of (I, R), whereby we return False.

The previous algorithm does not constitute a proof that FO-Def ≤pT Rel-Iso

due to the fact that there are exponentially many bad tuples s ∈ adom(I)nrR to be
checked. This problem can be avoided by considering an incremental characterisation
of the first-order definability problem, which we turn to now.

Lemma 2.1. Let I be an instance of a relational schema R and R a relation of arity
n such that adom(R) ⊆ adom(I). Given f ∈ Aut(I), f is not an automorphism of
R if and only if there exists a tuple t ∈ R and an integer i ∈ [0, n− 1] such that:

1. f(π≤i(t)) ∈ π≤i(R),

2. f(π≤i+1(t)) 6∈ π≤i+1(R).

Intuitively, f is not an automorphism of R if there is a tuple t ∈ R for which
f(t) 6∈ R; however, we can refine this notion by finding the column i such that f
maps t correctly in the ith prefix (condition (1)), but fails to map t correctly for the
(i+ 1)th prefix (condition (2)).

Proof of Lemma 2.1. Let I be an instance of a relational schemaR and R a relation of
arity n such that adom(R) ⊆ adom(I). The following is a well-known characterisation
of the notion of automorphism of a relation.

Claim 2.1. f ∈ Aut(I) is not an automorphism of R if and only if there exists a
tuple t ∈ R such that f(t) 6∈ R.

To prove the direction (⇒) of the lemma, we assume that f is not an automorphism
of R. In that case, we know by Claim 2.1 that there is a tuple t0 ∈ R such that

14

f(t0) 6= t for every t ∈ R. Then for every t ∈ R define kt as the minimum element of
the set:

{i ∈ [1, n] | f(πi(t0)) 6= πi(t)}.

That is, kt represents the left-most column for which f fails to map t0 to t. With the
previous, define:

i0 =

(
max
t∈R

kt

)
− 1.

Then we have that i0 satisfies the conditions stated in the lemma:

1. Let t′ = argmaxt∈R kt. Then, by definition of i0 and t′, we have that f(π≤i0(t0))

= π≤i0(t′) (whereby f(π≤i0(t0)) ∈ π≤i0(R)),

2. Let t′′ ∈ R. Then, by definition of i0, we have that f(π≤i0+1(t0)) 6= π≤i0+1(t′′).
As t′′ is arbitrary, this implies that f(π≤i0+1(t)) 6∈ π≤i0+1(R).

For the direction (⇐), assume there exists tuple t ∈ R and integer i ∈ [0, n− 1] such
that items (1) and (2) hold. In particular, item (2) implies that f(t) 6∈ R, whereby f
is not an automorphism of R by Claim 2.1.

We finally have all the necessary ingredients to prove Theorem 2.1.

Proof of Theorem 2.1. We first show that FO-Def ∈ GI by determining that the
following relation holds: FO-Def ≤pT Graph-Iso. We use the result of Lemma 2.1
to produce Algorithm 1, a deterministic polynomial-time algorithm which uses an
oracle for the Rel-Iso decision problem.

Let I be a relational instance and R a relation such that arity(R) = n, and assume
that adom(R) ⊆ adom(I). On input (I, R), Algorithm 1 proceeds in a similar way
as the naïve algorithm described at the beginning of this section, but trying to show
the existence of a function f ∈ Aut(I) which fails as an automorphism of R in a
specific column of R. More precisely, Algorithm 1 starts by picking the values of
i and t in its first two loops, which will be used as stated in Lemma 2.1 to show
that a function f ∈ Aut(I) is not an automorphism of R. As f(π≤i(t)) must be a
tuple in π≤i(R) according to Lemma 2.1, there must exist a tuple s ∈ R such that
f(π≤i(t)) = π≤i(s). This tuple is chosen in the third loop of the algorithm. Besides,
given that f(π≤i+1(t)) 6∈ π≤i+1(R) according to Lemma 2.1, then it must be the case
that f(πi+1(t)) 6= πi+1(s). But in fact, for every tuple r ∈ R such that π≤i(r) = π≤i(s),
it must be the case that f(πi+1(t)) 6= πi+1(r), otherwise f(π≤i+1(t)) would be a tuple
in π≤i+1(R). The set BadElements contains all the possible values a for f(πi+1(t))

that make f(πi+1(t)) to satisfy this condition. Thus, in its innermost loop, Algorithm

15

ALGORITHM 1: Algorithm for deciding first-order logic definability.
Input: Relational instance I, relation R with arity(R) = n.
Output: True if adom(R) ⊆ adom(I) and every automorphism of I is also an

automorphism of R, and False otherwise.
1 if adom(R) 6⊆ adom(I) then
2 return False
3 end
4 for i = 0 to n− 1 do
5 foreach t ∈ R do
6 foreach s ∈ R do
7 BadElements← {a ∈ adom(I) | ∀r ∈ R : if π≤i(r) = π≤i(s), then πi+1(r) 6=

a};
8 foreach a ∈ BadElements do
9 if CheckForIso(I, t, s, i, a) then

10 return False
11 end
12 end
13 end
14 end
15 end
16 return True

17 Function CheckForIso(I, t, s, i, a)
Input: Relational instance I, n-ary tuples t and s, values i ∈ [0, n] and a ∈ adom(I).
Output: True if there exists an automorphism f of I such that f(π≤i(t)) = π≤i(s) and

f(πi+1(t)) = a, and False otherwise.
18 R← Relational schema of I;
19 R? ← R ∪ {R1, . . . , Ri, Ra}, where each Rj (1 ≤ j ≤ i) and Ra are fresh unary relation

names;
20 I1 ← empty instance of R?;
21 I2 ← empty instance of R?;
22 foreach R ∈ R do
23 RI1 ← RI ;
24 RI2 ← RI ;
25 end
26 for j = 1 to i do
27 RI1j ← {(πj(t))};
28 RI2j ← {(πj(s))};
29 end
30 RI1a ← {(πi+1(t))};
31 RI2a ← {(a)};
32 if there exists an isomorphism from I1 to I2 (that is, (I1, I2) ∈ Rel-Iso) then return

True;
33 else return False ;

16

1 picks a value a ∈ BadElements, and makes the call CheckForIso(I, t, s, i, a) to
check whether there exists an automorphism f of I such that f(π≤i(t)) = π≤i(s) and
f(πi+1(t)) = a. If this is the case, then Algorithm 1 knows that f ∈ Aut(I) and f is
not an automorphism of R, so it returns False. Otherwise, after trying all possibilities
for i, t, s and a, Algorithm 1 knows by Lemma 2.1 that every automorphism of I is
an automorphism of R, so it returns True.

To check whether there exists an automorphism f of I such that f(π≤i(t)) = π≤i(s)

and f(πi+1(t)) = a, function CheckForIso generalises the approach given in Example
2.3, and uses an oracle for the Rel-Iso decision problem (in its penultimate line).
More precisely, this function starts by creating two copies I1 and I2 of I. Then it adds
to I1 the fresh facts R1(π1(t)), . . ., Ri(πi(t)), Ra(πi+1(t)), and it adds to I2 the fresh
facts R1(π1(s)), . . ., Ri(πi(s)), Ra(a). Finally, it calls the oracle to verify whether
there exists an isomorphism from I1 to I2, which represents an automorphism of I
satisfying the aforementioned conditions, as it has to map πj(t) to πj(s) (1 ≤ j ≤ i)
and πi+1(t) to a.

Example 2.4. Continuing with Examples 2.1 and 2.2, now consider the definability
problem for the pair (I, T), where I is defined as in Example 2.1 and T is the following
relation:

T
John Dana John
Ada Dana John

In this case, for i = 0 the algorithm will not find any automorphism of I which fails
to be an automorphism of π1(T). In fact, the only non-trivial automorphism of I is
the one that maps John → Ada, Ada → John, Dana → Dana and Peter → Peter,
and this one maps T correctly up to column i = 1. Similarly, for i = 1 we have that
the only non-trivial automorphism of I is also an automorphism of π≤2(T), so again
the algorithm will not find the witness automorphism. For value i = 2, consider the
iteration step at which t = (John, Dana, John) and s = (Ada, Dana, John). Then we
have that:

BadElements = {Ada, Dana, Peter}.

We now iterate over the elements of BadElements. For a = Ada we build instances
I1 and I2 as follows. For I1 we have that PersonI1 = PersonI and KnowsI1 = KnowsI ,
and we add the fresh facts:

TI11

John (= π1(t))
TI12

Dana (= π2(t))
TI1a

John (= π3(t))

17

For I2 we have that PersonI2 = PersonI and KnowsI2 = KnowsI , and:

TI21

Ada (= π1(s))
TI22

Dana (= π2(s))
TI1a

Ada (= a)

Then we have that I1 and I2 are in fact isomorphic, whereby the Rel-Iso will return
True. Therefore, as a witness has been found, the algorithms returns False.

Algorithm 1 runs in time polynomial in the size of the input, assuming that every
call to the subroutine for the Rel-Iso decision problem takes constant time (that is,
assuming that Algorithm 1 has access to an oracle for the Rel-Iso decision problem).
More precisely, let |S| be the number of elements in a set S, and recall that n =

arity(R). Then the outer loops of Algorithm 1 complete at most |R|2 × n iterations;
for each of these iterations the set BadElements is computed in polynomial time,
as at most | adom(I)| candidate elements a are tested, where for each element a the
condition defining the set BadElements can be checked in polynomial-time on |R|,
i ≤ n and | adom(I)|. Moreover, as to the subroutine CheckForIso, it builds the
relational instances I1 and I2 in polynomial time as well.

From the discussion in the previous paragraph, the fact that Rel-Iso ∈ GI and
the transitivity of polynomial-time Turing reductions, we conclude that FO-Def ≤pT
Graph-Iso, whereby FO-Def ∈ GI.

We will now show that FO-Def is GI-hard by showing that Aut-1-AFP ≤pT
FO-Def (we actually show a many-to-one reduction to the complement of FO-Def,
which is a stronger result than we need). Given a graph G = (V,E) and a node v ∈ V ,
build a relational instance I with only one relation E copying the edge relation of G.
Finally, build the relation R in the following way: RI = {(v)}, that is, R has arity
1 and only contains one tuple with the distinguished node v. Note that, as built, an
automorphism f of I which is not an automorphism of R will be such that f(v) 6= v.
Thus, we have that (G, v) ∈ Aut-1-AFP if and only if (I, R) 6∈ FO-Def. Hence,
given that (I, R) can be constructed in polynomial-time from (G, v), we conclude
that the problem Aut-1-AFP can be solved in polynomial-time by using an oracle
for FO-Def.

We therefore conclude that Aut-1-AFP ≤pT FO-Def, whereby FO-Def is GI-
complete.

2.5 Practical Considerations and Extensions

Having established the exact complexity of the first-order logic definability problem,
we now turn to possible variations of the problem and practical considerations. The

18

definability problem, while of great theoretical interest, should be considered in the
broader context of database research. As was mentioned in the introduction, the
definability problem provides a common basis for research in reverse engineering [109,
119], querying by example [4, 28], view definitions [92], etc. In fact, FO-Def may be
interpreted as a basic query reverse-engineering scenario, where a user who has access
to a dataset and an answer relation needs to discover the query (first-order query, in
this case) which produced such an answer over the data. A natural extension of this
scenario is that in which we must fit several such example source-target pairs [47],
which we discuss in Section 2.5.1. Such scenarios find applications in areas such as
schema matching and data integration [23, 53, 88, 106]. In each of these areas it may
be interesting to explore the consequences of the graph-isomorphism based approach
to the definability problems presented here.

In terms of practical implementations of FO-Def itself, an algorithm for FO-Def

whose efficiency depends on an external subroutine for the graph isomorphism prob-
lem —a heavily studied problem in its own right—comes with several benefits for
optimisation. Not only can we now tap into the power of highly optimised graph-
isomorphism [89, 17, 107, 68, 87, 76, 20], we can also consider all restrictions on
the input graphs that produce efficiently solvable versions of the graph isomorphism
problem, and inherit those benefits in our FO-Def implementations (for example,
see [54, 55]).

As a final consideration, in Section 2.5.2 we comment on the use of constants in the
queries. Although we will see that unrestricted constants results in an uninteresting
problem, a more restricted use of constants may have practical applications that make
this case worth looking into.

2.5.1 The BP-Pairs problem

Expanding on the definability problem as a reverse engineering scenario, where a
query must be obtained to match a source-target (relational instance-relation) pair,
the situation where several such pairs are given is represented by the following decision
problem:

BP-Pairs = {((S1, T1), . . . , (Sk, Tk)) | S1, T1, . . . Sk, Tk are relations and

there exists a first-order query Q such that for every i ∈ [1, k] : Q(Si) = Ti}.

In [47], it was shown that Graph-Iso ≤pm BP-Pairs, that is, there exists a polyno-
mial-time many-to-one reduction from Graph-Iso to BP-Pairs (this was referred

19

to as cograph-isomorphism-hardness in [47]). Moreover, it was also shown in [47] that
BP-Pairs ∈ coNP. A corollary of the first result is that BP-Pairs is GI-hard,
as a many-to-one reduction also constitutes a Turing reduction (the GI-hardness of
BP-Pairs can be alternatively derived using the results from Section 2.4). The key
insight regarding this generalised version of the definability problem is its semantic
characterisation: an input ((S1, T1), . . . , (Sk, Tk)) is in BP-Pairs if and only if (i) for
every i ∈ [1, k], we have adom(Ti) ⊆ adom(Si), and (ii) for every i, j ∈ [1, k], we have
that if f is an isomorphism from Si to Sj, then it is also an isomorphism from Ti to
Tj [47].

Algorithm 1 can be adapted to solve this decision problem as well, leading to the
following:

Theorem 2.2. BP-Pairs ∈ GI.

The previous result, along with the GI-hardness of BP-Pairs, as proven in [47],
gives the following result:

Corollary 2. BP-Pairs is GI-complete.

The previous corollary establishes the exact complexity of BP-Pairs and, thus,
closes a problem that was left open in [47].

In order to prove Theorem 2.2, consider the following extension of Lemma 2.1:

Lemma 2.2. Let S1, S2, T1, T2 be relations such that adom(Ti) ⊆ adom(Si) for i ∈
[1, 2]. Given an isomorphism f from S1 to S2, f is not an isomorphism from T1 to
T2 if and only if there exists a tuple t ∈ T1 and an integer i ∈ [0, n− 1] such that:

1. f(π≤i(t)) ∈ π≤i(T2),

2. f(π≤i+1(t)) 6∈ π≤i+1(T2).

With this result an algorithm analogous to that shown in Section 2.4.1 is used to
prove Theorem 2.2.

2.5.2 Including constants in the definability problem

As was mentioned previously, FO-Def considers the existence of a first-order logic
query without constants. Let FO-Def-Const the decision problem consisting of
pairs (I, R) such that there exists a first-order query with constants Q such that
Q(I) = R. Then FO-Def-Const can be decided in polynomial time due to the

20

fact that a pair (I, R) will be included in FO-Def-Const if and only if adom(R) ⊆
adom(I). It is evident that this problem has become uninteresting, as a query can
always be found, with the sole exception that a first-order query may not introduce
new constants into the answer. The actual reverse engineered query Q such that
Q(I) = R is not very informative though; given an input (I, R) such that adom(R) ⊆
adom(I) and arity(R) = n, the proof of FO-Def-Const ∈ PTIME constructs a
query Q of the form {(x1, . . . , xn) |

∨
t∈RQt(x1, . . . , xn)}, where, for a tuple t =

(a1, . . . , an) in R, the query Qt(x1, . . . , xn) is the expression
∧
i∈[1,n] xi = ai. This

query is fine tuned to the specific pair (I, R) and does not shed light on the original
unknown query which might have produced this pair. In fact, this query becomes
useless if some constants in the input (I, R) are renamed and, thus, it is an example
of over-fitting.

A more restricted, and useful, use of constants is formalised in the following prob-
lem: FO-Def-Const-S = {(I, R, C)} | I is a relational instance, R is a relation, C is
a set of constants, and there exists a first-order query Q, which may mention constants
in C only, such that Q(I) = R}. This extension of FO-Def is GI-complete. To see
this, note that FO-Def ≤pm FO-Def-Const-S is trivial (by setting C = ∅) and that
FO-Def-Const-S ≤pm FO-Def admits a simple proof as well. On input (I, R, C) to
FO-Def-Const-S, construct an instance (I ′, R′) to FO-Def by encoding the con-
stants in C into the instance I ′, using singleton relations. More precisely, set R′ = R

and let I ′ have all the relations in I plus a unary singleton relation Ci = {(ci)} for
each constant ci ∈ C. The previous arrangement for (I ′, R′) allows constants to be
referred to indirectly by using the expression Ci(x) in a first-order query, as it will
only be true when x is assigned to ci.

Consider the problem FO-Def-Const-≤ = {(I, R, 0n) | I is a relational instance,
R is a relation, and n is a natural number, such that there exists a first-order query Q
which mentions at most n distinct constants, and Q(I) = R} as a more elaborate, and
also interesting, setting. Notice that the input n in FO-Def-Const-≤ is encoded
in unary as a string of 0’s of length n. Although FO-Def-Const-≤ remains GI-
hard (set n = 0 in a Turing reduction), it is no longer obviously in GI. Actually,
FO-Def-Const-≤ ∈ NPGI, as a non-deterministic polynomial-time algorithm may
guess a set C of n constants and use an oracle for the FO-Def-Const-S problem.
The question remains, then, whether FO-Def-Const-≤ is in GI.

Finally, consider the case where the queries have access to a linear order over
the constants in the relational instance, which exhibits underlying similarities to
the unrestricted constants case FO-Def-Const. Formally, consider the problem

21

FO-Def-Lin = {(I, R) | I is a relational instance having a binary relation < which
is a linear order over all elements in adom(I), R is a relation, and there exists a
first-order query Q such that Q(I) = R}. In the presence of the linear order, and
using the semantic characterisation, the only automorphism of I is the identity (i.e.
the function h(x) = x), which is trivially also an automorphism of R. Hence, in
this case an algorithm must only ensure that adom(R) ⊆ adom(I) to check whether
(I, R) ∈ FO-Def-Lin, which may be completed in polynomial time. Therefore,
FO-Def-Lin ∈ PTIME, and once again the problem becomes trivial. Moreover,
this is also an example of over-fitting, as every element in I can be identified by its
position in the linear order, which is used as in the case of FO-Def-Const to define
a query Q such that Q(I) = R.

22

Chapter 3

Reverse Engineering SPARQL
Queries

3.1 Introduction

The data model used in Semantic Web systems views data as collections of RDF
triples, a fairly low-level representation, but the Web APIs expose SPARQL end-
points, a high level declarative query language which allows users to pose queries
that combine and filter information. Declarative query languages are powerful, but
they are known to have disadvantages in terms of ease of use by wider audiences.
The alternative query-by-example paradigm, where users present examples of what
they want, and the system generalises them [109, 29, 110], is particularly attractive
in an open data setting, since to harness the power of these interfaces users must un-
derstand the structure of data as well as the features of SPARQL needed to express
their information needs, and this is frequently not the case. Even users familiar with
SPARQL and with a given dataset may prefer to explore the data via example and
have the system suggest generalisations.

In this chapter we study of the problem of querying via examples for SPARQL.
We formalise the problem as “reverse engineering SPARQL queries from examples”,
following a line of research that has been developed for other problems dealing with
learning from examples [52], including regular languages [6, 7, 8], relational database
queries [119], XML queries [99, 36], and queries in graph databases [26]. A common
baseline for these approaches lies in the definability problem [83, 21, 115, 9], which
was discussed in the previous chapter.

We present several variations of the problem, depending on whether the user
presents a set of positive examples, a set of positive and negative examples, or an
exact answer set. We also vary the subset of SPARQL that the system is permitted to

23

synthesise, starting with simple graph patterns, appending the SPARQL operator for
obtaining optional information, and finally considering an extension with SPARQL’s
feature for filtering results according to some conditions.

Our first contribution is theoretical: we study the complexity of all variants of
the reverse engineering problem. We provide tight complexity bounds for the reverse
engineering problem with positive examples, with positive and negative examples, and
with an exact answer, looking at reverse engineering queries in fragments of SPARQL
ranging from very expressive (allowing all the operators mentioned above) to very
limited (allowing only conjunction).

Having completed the picture of the theory of reverse engineering, we turn to a
practical implementation of it. We provide a parametrised algorithm for reverse en-
gineering from positive examples, where the parameters allow tuning several features
of the target class. We evaluate our algorithms on real-world and synthetic queries,
showing that it scales well both with the input size and the complexity of a target
query needed to match a set of examples, that it can reverse engineer complex queries
with high accuracy, and that it can be useful as a supplement to an existing SPARQL
engine. Portions of this chapter were published in [11], not including full proofs and
derivations.

3.2 Preliminaries

3.2.1 RDF and the query language SPARQL

The RDF (Resource Description Framework) data model is used to represent infor-
mation about World Wide Web resources, and was released as a W3C (World Wide
Web Consortium) recommendation in 2004 [56]. Along with RDF, the W3C defined
the query language SPARQL as a recommendation for querying RDF data. We shall
present only a simplified version of the full definitions, in line with the formalisation
given by [84].

Assume two countably infinite disjoint sets U and L of URIs and literals, respec-
tively. An (RDF) triple is a tuple (s, p, o) ∈ U×U× (U∪L), and an (RDF) graph is a
finite set of RDF triples. Define another countably infinite set V of variables, disjoint
from U and L.

Next we define the fragment of the SPARQL query language that will be con-
sidered in this chapter. We start by introducing the notion of (SPARQL) built-in
condition, defined inductively as follows:

24

• if v1,v2 ∈ V and a ∈ (U∪ L), then v1 = a, v1 = v2, and bound(v1) are built-in
conditions,

• if R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2), and (R1 ∧ R2) are
built-in conditions.

The notion of (SPARQL) graph pattern is inductively defined next:

• a triple from (U ∪ V) × (U ∪ V) × (U ∪ V ∪ L) is a graph pattern (called triple
pattern),

• if P1 and P2 are graph patterns, then (P1 ANDP2) and (P1 OPTP2) are graph
patterns,

• if P is a graph pattern and R is a built-in condition, then (P FILTERR) is a
graph pattern.

Example 3.1. Assume that ?X ∈ V, {type, Person, age} ⊆ U, and 32 ∈ L. Then, we
have that P1 = (?X, type, Person) and P2 = (?X, type, Person)AND (?X, age, 32) are
graph patterns, which intuitively ask for the list of all people (more precisely, all ele-
ments of type person) and for the list of people whose age is 32, respectively. Moreover,
the following is also a graph pattern: P3 = [(?X, type, Person) AND (?X, age, 32)]

OPT (?X, email, ?Y), where the OPT operator is used to retrieve the email of each
person stored in the variable ?X if this information is available.

The SPARQL query language includes also union, projection and some additional
built-in predicates; these features of SPARQL are not considered, and are left for
future work. To distinguish the entire SPARQL query language from the fragment
considered in this chapter, the latter is denoted by SP[AOF], where A, O and F stand
for the operators AND, OPT and FILTER, respectively.

To define the semantics of graph patterns, we define a mapping µ as a partial
function from V to U ∪ L with finite domain, which is denoted by dom(µ). Two
mappings µ1 and µ2 are compatible, denoted µ1 ∼ µ2, if µ1(v) = µ2(v) for all v ∈
dom(µ1) ∩ dom(µ2) (i.e. when µ1 ∪ µ2 is also a mapping). Given sets Ω1 and Ω2 of
mappings, define the following operations on them:

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2},

Ω1 − Ω2 = {µ | µ ∈ Ω1 and ∀µ2 ∈ Ω2 : µ1 6∼ µ2}.

We start by defining the semantics of built-in conditions. Given a built-in condi-
tion R and a mapping µ, we say that µ satisfies R, denoted by µ |= R, if

25

• R is v = a for some v ∈ V, a ∈ U ∪ L, and µ(v) = a,

• R is v1 = v2 for some v1,v2 ∈ V and µ(v1) = µ(v2),

• R is bound(v) for some v ∈ V ∩ dom(µ),

• R is (¬R1) for a built-in condition R1 and µ 6|= R1,

• R is (R1 ∨R2) for some R1, R2 and µ |= R1 or µ |= R2 (or both),

• R is (R1 ∧R2) for R1, R2, and both µ |= R1 and µ |= R2.

We now move to the definition of the semantics of graph patterns. Given a graph
pattern P , we define var(P) to be the set of variables which occur in P , noting that
var(P) ⊆ V, and analogously for a built-in condition R. Given a triple pattern t and
a mapping µ such that var(t) ⊆ dom(µ), we define µ(t) as the RDF triple obtained
from t by replacing every variable v occurring in t by µ(v). Then given a graph
pattern P and an RDF graph D, the evaluation of P over D, denoted by JP KD, is
the set of mappings defined recursively as follows:

• If P is a triple pattern t, then JP KD = {µ | var(t) = dom(µ) and µ(t) ∈ D},

• If P = (P1 ANDP2) for graph patterns P1 and P2, then JP KD = JP1KD ./ JP2KD,

• If P = (P1 OPTP2) for graph patterns P1 and P2, then JP KD = (JP1KD ./

JP2KD) ∪ (JP1KD − JP2KD),

• If P = (P1 FILTERR) for a graph pattern P1 and a built-in condition R, then
JP KD = {µ ∈ JP1KD | µ |= R}.

Note that the official W3C semantics for SPARQL 1.1 defines OPT via a ternary
‘LeftJoin’ operator that includes a FILTER expression. However, in the well-designed
fragments of SPARQL considered in this work, the difference is of no consequence.
Also noteworthy is the fact that SPARQL includes many more features that have not
been considered in this study, including projection, union, negation, path expressions,
among others. These limitations restrict the possible patterns in the data that may
be effectively reverse engineered into a query.

From now on, we use notation [?X1 7→ a1, . . . , ?Xk 7→ ak] to represent a mapping µ
such that dom(µ) = {?X1, . . . , ?Xk} and µ(?Xi) = ai for all i ∈ [1, k].

Note that, as can be shown by simple induction on the structure, for any graph
D and pattern P in SP[AOF] the semantics is such that any two different mappings

26

in the set of mappings JP KD are incompatible, and the intersection of the domains of
mappings in JP KD is non-empty. These two properties play an important role in the
chapter, and we call sets of mappings satisfying them consistent .

Example 3.2. Continuing with Example 3.1, consider an RDF graph D consisting
of following triples:

(John, type, Person), (John, age, 26),
(Peter, type, Person), (Peter, age, 32),
(Susan, type, Person), (Susan, age, 32),
(Susan, email, susan@example.org).

Then we have that JP1KD consists of the mappings [?X 7→ John], [?X 7→ Peter] and
[?X 7→ Susan], which correspond to the list of people in D. Moreover, we have that
JP2KD = {[?X 7→ Peter], [?X 7→ Susan]}, as the age of John is 26. Finally, we have
that JP3KD consists of the mappings

µ1 = [?X 7→ Peter],

µ2 = [?X 7→ Susan, ?Y 7→ susan@example.org].

On the one hand, we do not have the email of Peter in D, so only variable ?X is
assigned with a value in the mapping µ1. On the other hand, the email of Susan is
in D, so we have a value for variable ?Y in the mapping µ2.

Finally, the size of a graph pattern P , denoted by size(P), is the number of triple
patterns and atomic filter conditions in P .

3.2.2 Well-designed patterns

Previous work on SPARQL has identified some anomalies that arise when the OPT

operator can be used arbitrarily, and [84] showed that one can avoid these anomalies
by making a natural restriction on the use of OPT. A graph pattern P is said
to be safe if for every sub-pattern (P1 FILTERR) of P , it holds that var(R) ⊆
var(P1). A graph pattern P is said to be well-designed if P is safe and for every
sub-pattern P1 of P of the form (PLOPTPR), and for every variable v ∈ var(PR), if
v is mentioned outside of P1 in P , then v ∈ var(PL). With the previous, we define
the fragments SP[AOwd] and SP[AOFwd] as classes of well-designed graph patterns
using the respective operators.

27

Example 3.3. The graph pattern P3 defined in Example 3.1 is well-designed. On the
other hand, if

P4 = ((?Y, type, Publication)OPT (?X, email, ?Z)),

then the graph pattern P5 = (?X, type, Person)ANDP4 is not well-designed. To
see why this is the case, notice that the variable ?X is mentioned in the right-hand
side of P4 and outside P4 in the triple (?X, type, Person), but it is not mentioned
in the left-hand side of P4. What is unnatural about the graph pattern P5 is that
the triple (?X, email, ?Z) has been placed to give optional information to the triple
(?Y, type, Publication), but it is actually giving optional information to the outside
triple (?X, type, Person).

Empirical studies have shown that well-designed graph patterns are commonly
used in practice [85]. Well-designed patterns have many desirable properties. First,
the complexity of the query evaluation problem for well-designed graph patterns is
lower than for the entire language [84] (coNP versus PSPACE), even if only the
OPT operator is considered [93]. Second, well-designed graph patterns are suitable
for query optimisation [84, 70, 86]; in particular, this restriction allows the definition
of some simple reordering and optimisation rules [84, 93, 70]. Third, this class of
graph patterns captures the intuition behind the OPT operator, which is to allow
information to be added to an answer whenever it is available, and not to reject such
an answer if the information is not present. This intuition, which is formalised in the
following paragraph, does not hold for an arbitrary query in SP[AOF].

A mapping µ1 is subsumed by a mapping µ2, denoted by µ1 v µ2, if dom(µ1) ⊆
dom(µ2) and µ1(v) = µ2(v) for every variable v ∈ dom(µ1). Assume that we have
two RDF graphs D1 and D2 such that D1 ⊆ D2. If a SPARQL pattern P mentioning
only the operators AND and FILTER is evaluated over D1 and D2, then we have
that JP KD1 ⊆ JP KD1 . Thus, such a query P is monotone in the sense that if new
information is added to an RDF graph then no answer is lost. If we are also allowed
to use the OPT operator in P , then we would expect a similar behaviour, which is
referred to as weak monotonicity [14]. More precisely, given that D1 ⊆ D2, it should
be the case that for every mapping µ1 ∈ JP KD1 , there exists a mapping µ2 ∈ JP KD2

such that µ1 v µ2, as the OPT operator was designed only to add information to an
answer whenever it is available. However, there exist patterns in SP[AOF] that are not
weakly monotone [14]; in fact, P5 in Example 3.3 is such a query. Well-designed graph
patterns come as a solution to this fundamental problem, as shown in the following
proposition.

28

Proposition 3.1 ([14]). Every SP[AOFwd] graph pattern is weakly monotone.

Last, but not least, the semantics of well-designed graph patterns can be charac-
terised in terms of the notion of subsumption of mappings, which is a useful property
that will be utilised in this work. A graph pattern P ′ is a reduction of a graph pattern
P if P ′ can be obtained from P by replacing a sub-pattern (P1 OPTP2) of P by P1,
that is, if P ′ is obtained by deleting some optional part of P . The reflexive and tran-
sitive closure of the reduction relation is denoted by E. Moreover, andify(P) is the
graph pattern obtained from P by replacing every OPT operator in P by the AND

operator. The set of partial answers of a graph pattern P over an RDF graph D,
denoted by partials(P,D), is the set of all mappings µ for which there exists P ′ E P

such that µ ∈ Jandify(P ′)KD. As shown in the following proposition, partial answers
and the notion of subsumption of mappings can be used to characterise the evaluation
of a well-designed graph pattern.

Proposition 3.2 ([84]). For every RDF graph D, graph pattern P in SP[AOFwd]

and mapping µ, it holds that µ ∈ JP KD if and only if µ is a maximal mapping (with
respect to v) in partials(P,D).

Well-designed patterns also admit OPT normal form, in which arguments of
AND and FILTER do not use OPT [84]; this normalisation can be performed in
polynomial time. Moreover, in well-designed patterns the bound operator is moot, as
in OPT normal form it can be always replaced by True [120]. In this work we assume
normalised, well-designed patterns without bound.

Besides the class SP[AOFwd] of all well-designed patterns, we also study the re-
verse engineering problem for the fragment SP[AOwd] of well-designed graph patterns
formed using only AND and OPT, and the fragment SP[AOF∧,=, 6=wd] of SP[AOFwd]

obtained by disallowing the use of disjunction in filter expression and restricting the
use of negation to only inequalities.

3.2.3 Pattern trees

Well-designed graph patterns can also be represented as pattern trees, a representa-
tion which will be used heavily in what follows. In this subsection, we define this
representation.

Firstly, define a pattern tree to be a tuple P = (VP , EP , rP , λP , δP), where VP is a
set of nodes, EP ⊆ VP × VP is a set of edges such that for every node n ∈ VP \ {rP}
there exists exactly one node m ∈ VP such that (m,n) ∈ EP (i.e. each node, except

29

rP , has exactly one parent), rP ∈ VP is the root node which has no parent, λP is a
function which associates to each node n ∈ VP a set λP (n) of triple patterns, and
δP is a function which associates to each node n ∈ VP a SPARQL built-in condition
δP (n).

As with SP[AOFwd] queries, let var(P) be the variables mentioned in P , and we
say a pattern tree P is well-designed if and only if (i) the subtree induced by each
variable is connected, (ii) P is safe, meaning that for each node n ∈ VP it is the
case that var(δP (n)) ⊆ var(λP (n)). We will abuse notation by stating that the set of
well-designed pattern trees is equal to SP[AOFwd] (below we define the semantics of
said trees, and the equivalence was shown in [70]).

For evaluating pattern trees over RDF graphs, we use analogous concepts to those
presented in the preliminaries. Firstly, we say pattern tree P ′ ∈ SP[AOFwd] is a
reduction of P ∈ SP[AOFwd] if and only if P ′ is obtained from P by removing
a leaf node, and denote by E the reflexive and transitive closure of the reduction
relation (in other words, P ′ E P if and only if P ′ is obtained from P by iteratively
removing leaf nodes). Now, given an RDF graph D, a mapping µ, and a pattern tree
P ∈ SP[AOFwd], we define µ ∈ JP KD if and only if there exists a pattern tree Pµ such
that Pµ E P such that µ ∈ Jandify(Pµ)KD (i.e. µ ∈ partials(D,P)), and furthermore
µ is maximal in partials(D,P) with respect to v. Note that andify(P) is the query
obtained by connecting all triple patterns in all nodes of P and filtering this with the
conjunction of all FILTER expressions present in all nodes of P (again, analogously
to the case of graph patterns).

Given pattern tree P ∈ SP[AOFwd], let the function topP associate to each variable
v ∈ var(P) the node m = topP (v) ∈ VP such that v ∈ dom(λP (m)) and m is an
ancestor of all nodes n ∈ VP for which v ∈ dom(λP (n)) (note that topP (v) exists and
is unique, due to the connectedness condition on well-designed pattern trees). Also,
given a node n ∈ VP , let scopeP (n) be the set of variables scopeP (n) = {v | topP (v)

is an ancestor of n in P}; intuitively, these are the variables that may appear in n.
Finally, we may assume that pattern trees are in productive form, that is, for every
node n ∈ V (P) there is a variable v ∈ var(P) such that n = topP (v)[70].

3.2.4 Complexity classes

In the study of the computational complexity of the reverse engineering problems,
we consider the usual complexity classes PTIME, NP and coNP, along with the
complexity classes Σp

2 and DP. A prototypical complete problem for Σp
2 is ∃∀3Sat,

that is, the problem of verifying, given a quantified Boolean formula φ of the form

30

∃x̄∀ȳ ¬ψ with ψ a propositional formula (without quantifiers) in conjunctive normal
form with each clause using exactly three literals, whether φ is valid. DP is the
class of problems L for which there exist languages L1 and L2 in NP such that
L = L1 − L2 [82] (or, equivalently, for which there exist L1 in NP and L2 in coNP

such that L = L1∩L2). The problem 3SatUnsat of deciding validity of a quantified
formula φ of the form ∃x̄ ψ1 ∧ ∀ȳ ¬ψ2, where ψ1 and ψ2 are in conjunctive normal
form with three literals per clause, is DP-complete. It is known that NP ⊆ DP,
coNP ⊆ DP and DP ⊆ Σp

2. The previous inclusions are believed to be proper.

3.3 Reverse engineering problems

We now formally define the reverse engineering problems considered in this chapter.
Informally, reverse engineering problems ask whether there exists a query, or realizer,
which fits a set of examples. Let F be any of the SPARQL fragments defined in Section
3.2.2 (e.g. SP[AOFwd]). Then, the positive examples reverse engineering problem is
defined as:

RevEng+(F) = {(D,Ω) |D is a nonempty RDF graph,

Ω is a set of mappings, and ∃P ∈ F : Ω ⊆ JP KD}.

Moreover, the positive-and-negative examples reverse engineering problem is defined
as:

RevEng±(F) = {(D,Ω, Ω̄) |D is a non-empty RDF graph,

Ω, Ω̄ are sets of mappings, and

∃P ∈ F : Ω ⊆ JP KD and Ω̄ ∩ JP KD = ∅}.

In this case, without loss of generality we always silently assume that Ω ∩ Ω̄ = ∅,
since otherwise the problem is trivial. Finally, the exact-answers reverse engineering
problem is defined as:

RevEngE(F) = {(D,Ω) |D is a non-empty RDF graph,

Ω is a set of mappings, and ∃P ∈ F : Ω = JP KD}.

We will call (D,Ω) (and (D,Ω, Ω̄)) an instance of the problem and P a realizer for
the instance.

In order to study the complexity of these reverse engineering problems, we first
must understand the corresponding problem of verifying that a given pattern (a.k.a.

31

query) fits some example data. Hence, the positive examples verification problem is
defined as:

Verify+(F) = {(D,P,Ω) |D is a nonempty RDF graph,

Ω is a set of mappings, P ∈ F , and Ω ⊆ JP KD}.

The positive-and-negative examples verification problem is:

Verify±(F) = {(D,P,Ω, Ω̄) |D is a non-empty RDF graph,

Ω, Ω̄ are sets of mappings,

P ∈ F ,Ω ⊆ JP KD, and Ω̄ ∩ JP KD = ∅}.

Finally, the exact-answers verification problem is defined as:

VerifyE(F) = {(D,P,Ω) |D is a non-empty RDF graph,

Ω is a set of mappings, P ∈ F , and Ω = JP KD}.

Alongside the general versions of the reverse engineering and verification problems,
we will consider the case where the number of variables mentioned in Ω (and Ω̄) is
bounded by a fixed constant. An upper bound on the complexity of the verification
problem when the number of variables is fixed will imply the same upper bound when
the pattern is fixed but the data is scaled, i.e. an upper bound in the data complexity
of verification.

Note that the problems with both positive and negative examples are clearly at
least as difficult as their counterparts with only positive examples. However, the
exact-answers problems are not immediately reducible to others.

3.4 Complexity of Reverse Engineering

Having defined the decision problems to be studied, we now turn to their computa-
tional complexity. In this section we will first study the complexity of the auxiliary
verification problems. While interesting in their own right, the verification problems
will be important mainly for their role in obtaining complexity results for the reverse
engineering problems. We first give a general overview of the strategy to be used to
decide a reverse engineering problem: given a fixed SPARQL fragment F and a set
of example mappings, we may divide the problem into two main challenges:

32

• Since the fragment F will usually permit infinitely many queries, we cannot test
every query in the fragment as a candidate. Thus, we seek to bound the set of
queries to be considered. In fact, we will seek to show that if there is any query
realising the input, then there is a canonical realizer.

• Given a “candidate query” in the fragment, we must decide if it fits the example
instance by solving the corresponding verification problem. Then, once we
obtain a set of candidate queries it becomes a matter of verifying them one by
one.

The algorithmic strategy, then, will be to first construct the canonical query,
and then verify that it in fact fits the examples. In what follows we first study the
verification problems, and then define the canonical queries in order to study the
reverse engineering problems.

3.4.1 Complexity of verification problems

We now examine the complexity of the verification problems, starting with the upper
bounds, and progressing towards the results summarised in Table 3.1. The positive-
and-negative examples problem for SP[A], that is, Verify±(SP[A]), admits a straight-
forward polynomial-time algorithm:

Proposition 3.3. The following problems are in PTIME:

1. Verify±(SP[A]),

2. Verify+(SP[A]).

Proof. Item 1. For Verify±(SP[A]), given an input (D,Ω, Ω̄, P), we must first check
that Ω ⊆ JP KD: for each µ ∈ Ω we confirm that dom(µ) = var(P) and that µ(t) ∈ D
for every triple pattern t in P . Secondly, we must check that Ω̄∩ JP KD = ∅: for every
µ̄ ∈ Ω̄ we must confirm that either dom(µ̄) 6= var(P) or that there is a tuple t in P
such that µ(t) 6∈ D.

Item 2. This is a trivial corollary of item 1.

We defer the case of VerifyE(SP[A]) for the moment. If we now allow the
OPT operator, the problem becomes harder. We give an upper bound for Verify+

(SP[AOFwd]); here, checking each example mapping µ involves showing that it is max-
imal, generating the added complexity. In what follows we use the notation µ @ ν

to indicate that mapping µ is properly subsumed by mapping ν, that is, µ v ν and
µ 6= ν:

33

Proposition 3.4. Verify+(SP[AOFwd]) is in coNP.

Proof. Consider, for the complement of Verify+(SP[AOFwd]), the following NP

algorithm. Given input (D,P,Ω) we must decide whether Ω 6⊆ JP KD, for which
we use the characterisation provided in Proposition 3.2. More precisely, for each
µ ∈ Ω, first check whether µ ∈ partials(P,D); if not return accept (this can be done
in polynomial time, as shown in [84]). Otherwise, we now attempt to verify that µ is
not a maximal partial solution by guessing a mapping ν such that (i) dom(ν) consists
of variables used in Ω and P , and (ii) the range of ν consists of constants used in
D. Notice that ν is of polynomial size in the size of the input. We check whether
ν ∈ partials(P,D) and µ @ ν. If these conditions are both true, then µ 6∈ JP KD and
we accept; otherwise, we reject.

Corollary 3. The following problems are in coNP:

1. Verify+(SP[AOF∧,=, 6=wd]),

2. Verify+(SP[AOwd]).

Interestingly, if the number of variables in Ω is assumed to be bounded by a fixed
constant, then guessing is not necessary and the problem is in PTIME. In particular,
this implies that the verification problem can be solved in polynomial time in data
complexity.

We now show that VerifyE(SP[AOFwd]) is also in coNP, for which the following
characterisation will be useful:

Lemma 3.1. Given RDF graph D, set of mappings Ω, and pattern P ∈ SP[AOFwd],
it holds that JP KD 6⊆ Ω if and only if there exists a mapping µ ∈ partials(P,D) such
that (i) µ 6∈ Ω and (ii) for every ν ∈ Ω, if µ @ ν then ν 6∈ partials(P,D).

Proof. First assume that there is a mapping µ ∈ partials(P,D) such that both items
hold. There are two options for µ:

• Suppose µ ∈ JP KD. Then, due to the first item, we have that JP KD 6⊆ Ω.

• Suppose µ 6∈ JP KD. In this case, since µ ∈ partials(P,D), there exists a mapping
µ∗ ∈ JP KD such that µ @ µ∗. There are two cases to consider for µ∗:

– if µ∗ ∈ Ω, then, due to the second item, we have that µ∗ 6∈ partials(P,D).
Thus, µ∗ 6∈ JP KD, which leads to a contradiction.

34

– if µ∗ 6∈ Ω then we also conclude that JP KD 6⊆ Ω.

To prove the other direction of the lemma, assume that JP KD 6⊆ Ω. Then there
exists a mapping µ ∈ JP KD such that µ 6∈ Ω. By definition we have that µ ∈
partials(P,D) and, thus, we only have to show that the second item of the lemma
holds for µ to conclude the proof. Now consider a mapping ν ∈ Ω such that µ @ ν.
If ν ∈ partials(P,D), then we obtain a contradiction with the fact that µ ∈ JP KD, as
µ is a maximal partial mapping in partials(P,D).

Lemma 3.1 allows us to obtain an upper bound for VerifyE(SP[AOFwd]):

Proposition 3.5. VerifyE(SP[AOFwd]) is in coNP.

Proof. We prove that VerifyE(SP[AOFwd]) ∈ coNP by showing that its complement
is in NP. On input (D,Ω, P), we first check in NP whether Ω 6⊆ JP KD as in the
proof of Proposition 3.4. If this holds, accept. Otherwise, check whether JP KD 6⊆ Ω.
Now by Lemma 3.1, we must guess a mapping µ such that µ 6∈ Ω, dom(µ) consists
of variables occurring in P , the range of µ consists of the constants used in D and
µ ∈ partials(P,D); in particular, notice that µ is of polynomial size in the size of the
input. Then, for every ν ∈ Ω such that µ @ ν, we verify whether ν 6∈ partials(P,D),
which can be done in polynomial time. If this verification succeeds, accept; otherwise,
reject.

Corollary 4. The following problems are in coNP:

1. VerifyE(SP[AOF∧,=, 6=wd]),

2. VerifyE(SP[AOwd]),

3. VerifyE(SP[A]).

As before, if the number of variables in Ω is bounded by a fixed constant, then
the resulting problem is again in PTIME.

Our final upper bound is for Verify±(SP[AOFwd]):

Proposition 3.6. Verify±(SP[AOFwd]) is in DP.

Proof. Let Verify−(SP[AOFwd]) be the following decision problem: on input (D, Ω̄,

P), return True if and only if Ω̄∩ JP KD = ∅. The complement of this problem is easily
seen to be in NP: for each mapping µ̄ ∈ Ω̄, verify that either µ̄ 6∈ partials(D, P)

(which can be checked in polynomial time) or, if µ̄ ∈ partials(D,P), guess a mapping

35

ν and check that µ̄ @ ν and ν ∈ partials(D,P), accepting if this holds. Now note
that an input (D,Ω, Ω̄, P) is in Verify±(SP[AOFwd]) if and only if (D,Ω, P) ∈
Verify+(SP[AOFwd]) and (D, Ω̄, P) ∈ Verify−(SP[AOFwd]), from which it may be
straightforwardly concluded that Verify±(SP[AOFwd]) ∈ DP.

Corollary 5. The following problems are in DP:

1. Verify±(SP[AOF∧,=, 6=wd]),

2. Verify±(SP[AOwd]).

Having established complexity upper bounds for all the verification problems,
we now turn to the matching lower bounds. We will first show coNP-hardness for
VerifyE(SP[A]), which is also the matching lower bound for VerifyE(SP[AOwd]),
VerifyE(SP[AOF∧,=, 6=wd]), and VerifyE(SP[AOFwd]).

Proposition 3.7. VerifyE(SP[A]) is coNP-hard.

Proof. Consider the following problem, which is known to be NP-complete:

3−Colourability
Input: An undirected graph G = (V,E) with vertices V and edges E.

Output: True if it is possible to colour all the vertices in 3 different colours
such that adjacent vertices do not have the same colour, and False
otherwise.

We prove the statement by showing 3−Colourability ≤pm VerifyE(SP[AOFwd]),
i.e. there is a polynomial-time many-one reduction from the complement of the prob-
lem 3−Colourability to VerifyE(SP[AOFwd]).

Given a graph G = (V,E), construct an instance (DG,ΩG, PG) as follows:

• DG = {(c1, e, c2), (c2, e, c1), (c1, e, c3), (c3, e, c1), (c2, e, c3), (c3, e, c2)}, where
URIs c1, c2, c3 ∈ U represent the three colours (note that DG does not depend
on G in this reduction),

• ΩG = ∅,

• PG is a conjunction of triple patterns (?Xi, e, ?Xj) and (?Xj, e, ?Xi) for every edge
{ci, cj} ∈ E (note that for every node ci ∈ V we have a variable ?Xi ∈ var(PG)).

It is straightforward to show that G is not 3-colourable if and only if ΩG = JPGKDG ,
as each mapping in JPGKDG will represent a valid colouring of the nodes in V .

36

The proposition above completes the picture for the complexity of verification
problems for SP[A], as well as the VerifyE problem for all the fragments considered.
We now continue with the lower bounds on verification problems for SP[AOwd] and
SP[AOFwd]:

Proposition 3.8. Verify+(SP[AOwd]) is coNP-hard.

Proof. Consider the following decision problem:

Eval(SP[AOwd])
Input: (D,µ, P) where D is an RDF graph, µ is a mapping, and P ∈

SP[AOwd].
Output: True if µ ∈ JP KD, and False otherwise.

In [84] it was shown that Eval(SP[AOwd]) is coNP-hard. We show that Eval

(SP[AOwd]) ≤pm Verify+(SP[AOwd]), i.e. there exists a polynomial-time many-one
reduction from the Eval(SP[AOwd]) problem to Verify+(SP[AOwd]). We will thus
conclude that Verify+(SP[AOwd]) is also coNP-hard.

Given an input (D,µ, P) to the Eval(SP[AOwd]) problem, construct the input
(D, {µ}, P) to the Verify+(SP[AOwd]) problem and note that µ ∈ JP KD if and only
if {µ} ⊆ JP KD.

Corollary 6. The following problems are coNP-hard:

1. Verify+(SP[AOF∧,=, 6=wd]),

2. Verify+(SP[AOFwd]).

We conclude this section with the matching lower bound for the decision problem
Verify±(SP[AOwd]) (and, hence, for the fragments with FILTER), followed by
Theorem 3.1 which summarises the results:

Proposition 3.9. Verify±(SP[AOwd]) is DP-hard.

Proof. Consider the following problem, which is known to be DP-complete.

3SatUnsat
Input: A quantified formula φ of the form ∃x̄ ψ1 ∧ ∀ȳ ¬ψ2, where x̄ and ȳ

are disjoint tuples of variables, and ψ1 and ψ2 are conjunctions of
clauses of the form (`1 ∨ `2 ∨ `3), where `1, `2, `3 are either variables
in x̄ and ȳ, respectively, or their negations.

Output: True if φ is valid, and False otherwise.

37

We will show that 3SatUnsat ≤pm Verify±(SP[AOwd]), that is, there is a
polynomial-time many-one reduction from 3SatUnsat to Verify±(SP[AOwd]).

Consider an instance φ = ∃x̄ ψ1 ∧ ∀ȳ ¬ψ2 of the 3SatUnsat problem. Assume
that ψ1 = γ1 ∧ · · · ∧ γm, where for each i ∈ [1,m] we have γi = ri,1 ∨ ri,2 ∨ ri,3, and
each rj,k is either a variable in x̄ or the negation of one. Analogously, assume that
ψ2 = δ1 ∧ · · · ∧ δn, where for each j ∈ [1, n] we have δj = sj,1 ∨ sj,2 ∨ sj,3, and each
sj,k is either a variable in ȳ or the negation of one. For each literal ri,k let var(ri,k)

be the variable that is mentioned (be it negated or not); similarly, for each literal sj,k
let var(sj,k) be the variable that is mentioned.

We construct a graph D, sets of mappings Ω and Ω̄, and a pattern P ∈ SP[AOwd]

such that it holds that Ω ⊆ JP KD and Ω̄ ∩ JP KD = ∅ if and only if φ is valid.
We start the construction with the pattern P . Let P = P0 OPT Q with P0 =

(?a,R, ?b) and Q a conjunction of the following triple patterns:

1. (?b, U, ?u), (?b,W, ?w),

2. (?u, Ci, ?ci) for each i ∈ [1,m] (one for each clause γi in ψ1),

3. (?w, Dj, ?dj) for each j ∈ [1, n] (one for each clause δj in ψ2),

4. (?ci, V1, ?vvar(ri,1)), (?ci, V2, ?vvar(ri,2)), (?ci, V3, ?vvar(ri,3)) for each i ∈ [1,m], with
γi = ri,1 ∨ ri,2 ∨ ri,3,

5. (?dj, V1, ?vvar(sj,1)), (?dj, V2, ?vvar(sj,2)), (?dj, V3, ?vvar(sj,3)) for each j ∈ [1, n], with
δj = sj,1 ∨ sj,2 ∨ sj,3.

Next we describe the graph D. It consists of two disjoint parts D1 and D2, defined
as follows. Let D1 contain the following triples:

• (a1, R, b1), (b1, U, u1), (b1,W,w1),

• (u1, Ci, c
1
i,p) for each i ∈ [1,m] and p ∈ [1, 7],

• (c1
i,p, V1, h

1
var(ri,1)), (c

1
i,p, V2, h

1
var(ri,2)), (c

1
i,p, V3, h

1
var(ri,3)) for each i ∈ [1,m] and p ∈

[1, 7], where each σp is one of the seven satisfying assignments of γi = ri,1∨ri,2∨
ri,3 and for each h1

var(ri,k):

h1
var(ri,k) =

{
t1var(ri,k) if σp(var(ri,k)) = True,

f 1
var(ri,k) if σp(var(ri,k)) = False,

• (w1, Dj, d
1
j) for each j ∈ [1, n],

38

SP[A] SP[AOwd] SP[AOF∧,=,6=wd] SP[AOFwd]
Verify+ in PTIME coNP-c coNP-c coNP-c
VerifyE coNP-c coNP-c coNP-c coNP-c
Verify± in PTIME DP-c DP-c DP-c

Table 3.1: Complexity of verification problems.

• (d1
j , V1, v

1
var(sj,1)), (d

1
j , V2, v

1
var(sj,2)), (d

1
j , V3, v

1
var(sj,3)) for each j ∈ [1, n], with δj =

sj,1 ∨ sj,2 ∨ sj,3.

Part D2 is defined analogously to D1, and consists of the following triples:

• (a2, R, b2), (b2, U, u2), (b2,W,w2),

• (u2, Ci, c
2
i) for each i ∈ [1,m],

• (c2
i , V1, v

2
var(ri,1)), (c

2
i , V2, v

2
var(ri,1)), (c

2
i , V3, v

2
var(ri,1)) for each i ∈ [1,m], with γi =

ri,1 ∨ ri,2 ∨ ri,3,

• (w2, Dj, d
2
j,p) for each j ∈ [1, n] and p ∈ [1, 7],

• (d2
j,p, V1, h

2
var(sj,1)), (d

2
j,p, V2, h

2
var(sj,2)), (d

2
j,p, V3, h

2
var(sj,3)) for each j ∈ [1, n] and p ∈

[1, 7], where each σp is one of the seven satisfying assignments of δj = sj,1∨sj,2∨
sj,3, and each sj,k and each h2

var(sj,k):

h2
var(sj,k) =

{
t2var(sj,k) if σp(var(sj,k)) = True,

f 2
var(sj,k) if σp(var(sj,k)) = False,

Finally, we define the sets of mappings Ω̄ and Ω as follows:

Ω̄ = {µ̄} = {[?a 7→ a1, ?b 7→ b1]},
Ω = {µ} = {[?a 7→ a2, ?b 7→ b2]}.

It is a matter of technicality to show that Ω ⊆ JP KD and Ω̄∩ JP KD = ∅ if and only if
φ is satisfiable.

Theorem 3.1. Complexity bounds for the verification problems are as stated in in
Table 3.1.

Proof. This result is due to the propositions and corollaries proven in this subsection.

39

Symbol Concept Reference
atype Atomic type Page 40
Cov Coverage Page 44
C(Ω) Structure Page 44
scope Scope Page 45
Pcan Canonical query Page 45

Compatibility (between a query and a set of mappings) Page 45
Closedness (of a set of variables) Page 46

Table 3.2: Glossary of concepts used in this chapter.

3.4.2 Reverse engineering without OPTIONAL

We now turn to the reverse engineering decision problems, and progress towards the
results summarised in Table 3.3 (page 80). In this subsection we provide complexity
upper bounds for the different variants. As mentioned previously, the algorithms
which witness these upper bounds follow a common pattern, which consists in first
constructing a candidate query (or realizer) with the property that if it does not
correctly fit the input examples, then there does not exist any query which does; then
we must only verify that this realizer fits the input examples.

To assist the reader, Table 3.2 contains a list of concepts that are defined and
used throughout the rest of this chapter.

We first consider the SP[A] fragment, and thus the RevEng+(SP[A]) decision
problem, the RevEng±(SP[A]) problem, and the RevEngE(SP[A]) problem. Given
an input (D,Ω) to RevEngE(SP[A]), the candidate query will be the set of all triple
patterns which are true in D over all the positive examples in Ω. Intuitively, this
corresponds to the query which is the conjunction of all restrictions that are satisfied
by the positive examples.

We now construct this canonical query more precisely. Given an RDF graph D

and a mapping µ, define the atomic type of µ in D, denoted by atype(D,µ), as

atype(D,µ) = {t ∈ (U ∪ V)× (U ∪ V)× (U ∪ V ∪ L) | µ(t) ∈ D} \ U3,

Essentially, the atomic type is the set of triple patterns that are true in D under µ.
We now generalise this notion to a set of mappings Ω. However, for this fragment
of SPARQL we restrict to sets of mappings Ω which are homogeneous , that is, for
every pair of mappings µ, ν ∈ Ω it is the case that dom(µ) = dom(ν). For a homo-
geneous set of mappings Ω, define the atomic type of Ω in D, denoted atype(D,Ω),
as
⋂
µ∈Ω atype(D,µ). Abusing notation, we identify the set atype(D,Ω) and the

AND-combination of its triple patterns (i.e. an SP[A] pattern).

40

For the fragment SP[A], the atomic type as constructed above is precisely the
desired candidate query. The following lemma presents the crucial property of the
candidate query:

Lemma 3.2. Given an RDF graph D and sets of mappings Ω and Ω̄ the following
holds:

1. if (D,Ω) ∈ RevEng+(SP[A]) then Ω ⊆ Jatype(D,Ω)KD,

2. if (D,Ω, Ω̄) ∈ RevEng±(SP[A]) then we have both Ω ⊆ Jatype(D,Ω)KD and
Ω̄ ∩ Jatype(D, Ω̄)KD = ∅,

3. if (D,Ω) ∈ RevEngE(SP[A]) then Ω = Jatype(D,Ω)KD.

Proof. We proceed item by item.
Item 1. Consider an input (D,Ω) and assume that there exists a query P ∈ SP[A]

such that Ω ⊆ JP KD, and note that P may be interpreted as a set of triple patterns.
For every mapping µ ∈ Ω, µ ∈ JP KD holds, whereby for every triple pattern t in P
we have µ(t) ∈ D. Equivalently, for every t ∈ P it is the case that µ(t) ∈ D for
every µ ∈ Ω, which implies t ∈ atype(D,Ω), by definition. Therefore, P is a subset of
atype(D,Ω), and thus atype(D,Ω) 6= ∅ (note also that var(P) = var(atype(D,Ω)) =

dom(Ω)). For any mapping µ ∈ Ω, µ(t) ∈ D for every t ∈ atype(D,Ω) by construc-
tion, whereby µ ∈ Jatype(D,Ω)KD. Thus, Ω ⊆ Jatype(D,Ω)KD.

Item 2. Consider an input (D,Ω, Ω̄) to the RevEng±(SP[A]) decision problem,
and assume there exists a query P ∈ SP[A] such that Ω ⊆ JP KD and Ω̄ ∩ JP KD =

∅. Due to item 1, we have that Ω ⊆ Jatype(D,Ω)KD; furthermore, we have that
var(P) = dom(Ω) = var(atype(D,Ω)) and that P is a subset of atype(D,Ω) (when
interpreted as sets of triple patterns). Now consider a mapping µ̄ ∈ Ω̄, and note that
if dom(µ̄) 6= dom(Ω) then µ̄ 6∈ Jatype(D,Ω)KD; if dom(µ̄) = dom(Ω) then as µ̄ 6∈ JP KD
then there must exist a triple t in P such that µ̄(t) 6∈ D. However, as P is a subset
of atype(D,Ω) we have that t is in atype(D,Ω) as well, whereby µ̄ 6∈ Jatype(D,Ω)KD.
As the mapping µ̄ was arbitrary, we conclude that Ω̄ ∩ Jatype(D,Ω)KD = ∅.

Item 3. Consider an input (D,Ω) to the RevEngE(SP[A]) decision problem, and
assume that there exists a query P ∈ SP[A] such that Ω = JP KD. Due to item 1, we
have that Ω ⊆ Jatype(D,Ω)KD; furthermore, dom(Ω) = var(P) = var(atype(D,Ω))

and P is a subset of atype(D,Ω). We now claim that Jatype(D,Ω)KD ⊆ Ω. For this,
consider an mapping ν ∈ Jatype(D,Ω)KD, whereby dom(ν) = dom(Ω) and for every
triple pattern t in atype(D,Ω) we have that ν(t) ∈ D. In particular, as P is a subset

41

of atype(D,Ω) we have that for every t in P it is the case that ν(t) ∈ D, and thus
ν ∈ JP KD = Ω. We therefore conclude that Ω = Jatype(D,Ω)KD.

Example 3.4. Let Ω = {µ1, µ2} with µ1 = [?X 7→ a] and µ2 = [?X 7→ b], and
let D = {(a, type, Person), (b, type, Person), (a, field, CS), (b, field, CS)}. Then
atype(D,Ω) = {(?X, type, Person), (?X, field, CS)}, as t1 = (?X, type, Person) and
t2 = (?X, field, CS) are the only triple patterns t for which both µ1(t) ∈ D and µ2(t) ∈
D hold. Therefore, the corresponding candidate query P = (?X, type, Person)AND

(?X, field, CS) realises the input pair. This is not the only possible realizer though;
for example, the query Q = (?X, field, CS) also has the property that Ω ⊆ JP KD.

Lemma 3.2 leads to the following algorithm template for reverse-engineering in
the SP[A] case: first build the atomic type of Ω—which can be done in polynomial
time in this case—and then check if it works. Combining this with our results on the
verification problem, we obtain the following complexity upper bounds:

Proposition 3.10. The decision problems RevEng+(SP[A]) and RevEng±(SP[A])

are in PTIME, while RevEngE(SP[A]) is in coNP.

Proof. For RevEng+(SP[A]), we provide a deterministic polynomial-time algorithm
which decides it. Given an input (D,Ω), if Ω is not homogeneous, then return False.
Now, build atype(D,Ω); this can be done in polynomial time by iterating through all
the possible triple patterns t which mention variables from Ω and constants (i.e. URIs
or literals) from D, and testing whether µ(t) ∈ D holds for all µ ∈ Ω. Note that if
there exists a query P ∈ SP[A] such that Ω ⊆ JP KD then it must be the case that P
is a subset of atype(D,Ω), whereby if atype(D,Ω) thus built is such that atype(D,Ω)

is empty, or var(atype(D,Ω)) (dom(Ω), then we return False. If, on the other hand,
atype(D,Ω) is such that dom(Ω) = var(atype(D,Ω)), then by construction we have
that for every µ ∈ Ω it is the case that µ ∈ Jatype(D,Ω)KD whereby we return True.

For RevEng±(SP[A]) we also provide a deterministic polynomial-time algorithm
which decides it. Given an input (D,Ω, Ω̄), if Ω is not homogeneous, then return
False. Now build atype(D,Ω) as before; if var(atype(D,Ω)) (dom(Ω) then return
False. Now, assume that var(atype(D,Ω)) = dom(Ω). We may now execute the
deterministic polynomial-time algorithm provided for the Verify±(SP[A]) decision
problem, with (D,Ω, atype(D,Ω)) as input. If the previous accepts, then return
True, as atype(D,Ω) is a witness. If, on the other hand, the previous subroutine
rejects, then there must exist a mapping µ̄ ∈ Ω̄ such that µ̄ ∈ Jatype(D,Ω)KD (note
that Ω ⊆ Jatype(D,Ω)KD holds by construction). However, if there exists a query

42

P ∈ SP[A] such that Ω ⊆ JP KD and Ω̄ ∩ JP KD = ∅ then it is the case that P is a
subset of atype(D,Ω), whereby if µ̄ ∈ Jatype(D,Ω)KD then µ̄ ∈ JP KD as well, which
is a contradiction. Therefore, if the subroutine rejects we return False.

For RevEngE(SP[A]), we provide a non-deterministic polynomial-time algorithm
which decides the complement of the problem. Given an input (D,Ω), if Ω is not
homogeneous, then accept. Now, we build atype(D,Ω); if var(atype(D,Ω)) (dom(Ω)

then accept, as any query P ∈ SP[A] such that Ω ⊆ JP KD must be a subset of
atype(D,Ω) and thus does not mention all variables in dom(Ω) in this case, which
is a contradiction. Now, assume that dom(Ω) = atype(D,Ω), and execute a non-
deterministic polynomial-time algorithm for the complement of the VerifyE(SP[A])

decision problem (note that the complement of VerifyE(SP[A]) is in NP). If the
previous rejects, then atype(D,Ω) is such that Ω = Jatype(D,Ω)KD and thus we reject.
If the previous subroutine accepts, then atype(D,Ω) is such that Ω 6= Jatype(D,Ω)KD,
whereby the only possibility is that Jatype(D,Ω)KD (Ω (as Ω ⊆ Jatype(D,Ω)KD by
construction); consider then, the mapping ν ∈ Jatype(D,Ω)KD such that ν 6∈ Ω and
note that for any query P ∈ SP[A] such that Ω = JP KD it is the case that P is a
subset of atype(D,Ω), whereby ν ∈ JP KD, which is a contradiction, implying that
(D,Ω) 6∈ RevEngE(SP[A]). Therefore, we accept.

3.4.3 Reverse engineering with OPTIONAL

Next, we generalise the previous process for the SP[AOwd] fragment. To build intu-
ition, first consider, as an example, a query P = P1 OPTP2 where both P1 and P2

are in SP[A]. For every variable v ∈ var(P) there are two possibilities: if v ∈ var(P1),
then for every mapping µ ∈ JP KD it will be the case that v ∈ dom(µ); otherwise, if
v ∈ var(P2) and v 6∈ var(P1), then there may exist mappings µ ∈ JP KD such that
v 6∈ dom(µ). This example illustrates the existence of a hierarchy of variables. In
fact, for two variables v,u such that v ∈ var(P1) and u ∈ var(P2) \ var(P1) it will be
the case that for every mapping µ ∈ JP KD, if u ∈ dom(µ) then v ∈ dom(µ) (in this
example this statement is trivial, as x is in the domain of every mapping).

The previous reasoning can now be used to outline the same example, now from a
reverse engineering perspective. Consider an RDF graph D and a set of mappings Ω

as inputs to RevEng+(SP[AOwd]), where Ω can be divided into two subsets Ω1 and
Ω2 such that Ω = Ω1 ∪ Ω2, for every mapping µ ∈ Ω1 we have dom(µ) = {?X, ?Y},
and for every mapping ν ∈ Ω2 we have dom(ν) = {?X}. In this case, the form of a
candidate query P can be determined by observing the variable hierarchy, concluding
that P = P1 OPTP2 for some P1 such that var(P1) = {?X} and some P2 such that

43

µ1 = [?X 7→ 1,]
µ2 = [?X 7→ 2, ?Y1 7→ a]
µ3 = [?X 7→ 3, ?Y2 7→ b]
µ4 = [?X 7→ 4, ?Y2 7→ c, ?Z 7→ d]

(a) A non-homogeneous set of mappings Ω.

{µ1, µ2, µ3, µ4}(?X)

(?Y1){µ2} {µ3, µ4}(?Y2)

{µ4}(?Z)

(b) The structure C(Ω). Each node Λ = CovΩ(v) has been marked with a superscript
indicating the corresponding variable v.

Figure 3.1: An example of how a tree structure is generated by a set of mappings.

var(P2) ⊆ {?X, ?Y}. Crucially, it will be determined that no further OPT operators
are necessary, i.e. P1, P2 ∈ SP[A]. The precise triple patterns in P1 and P2 will be
determined by a construct analogous to the atomic type.

We now formalise the previous intuition, showing that the relation among variables
in the set of mappings Ω can be used to determine the form of the candidate query
P , and that a generalisation of the atomic type can be used to determine the triple
patterns in each subquery of P .

For every variable v mentioned in Ω define the coverage of v in Ω, denoted CovΩ(v)

as the set {µ ∈ Ω | v ∈ dom(µ)}. Define the structure of Ω as the set C(Ω) =

{CovΩ(v) | v ∈ dom(Ω)}, containing the coverage of each variable in Ω. The subset
relation naturally defines a partial order on the structure C(Ω).

Example 3.5. Consider the set of mappings Ω in Figure 3.1a. The corresponding
structure C(Ω) is shown in Figure 3.1b, where arrows represents the minimal proper
superset relation. The topmost node corresponds to the coverage of variable ?X, which
is present in all mappings. The two nodes at the second level correspond to the
coverages of ?Y1 and ?Y2, respectively, while the lone node at the third level represents
the coverage of ?Z.

Intuitively, the structure of Ω defined above restricts the possible OPT structures
of a candidate query. We say that C(Ω) (and, by extension, Ω) is tree-like if and only
if for every set Λ ∈ C(Ω) there is at most one minimal proper superset (i.e. parent)

44

of Λ in C(Ω). Note that since Ω is consistent (see page 27), there exists only one set
in C(Ω) without proper supersets and this set is Ω itself.

Example 3.6. While the set of mappings in Figure 3.1 is tree-like, consider replacing
mapping µ4 by µ′4 = [?X 7→ 4, ?Y1 7→ e, ?Y2 7→ c, ?Z 7→ d]. In this case, the coverage
of ?Y1 changes to {µ2, µ

′
4} and the node {µ′4} becomes a subset of both {µ2, µ

′
4} and

{µ3, µ
′
4}. The resulting set of mappings {µ1, µ2, µ3, µ

′
4} is not tree-like, as {µ′4} has

two minimal proper supersets (i.e. parents): {µ2, µ
′
4} and {µ3, µ

′
4}.

For tree-like sets of mappings we can give a detailed process for constructing a
candidate query, and we turn to this now. Given a set of mappings Ω and a set of
variables S, let ΩS consist of all µ ∈ Ω such that S ⊆ dom(µ). Finally, for a node
Λ in C(Ω), let the scope of Λ in Ω, denoted scopeΩ(Λ), be the set of variables v with
Λ ⊆ CovΩ(v) (note that this includes all variables corresponding to nodes along the
path towards the root).

We can now define a canonical query for tree-like sets of mappings. To do this we
will recursively define a pattern Pcan(Λ, D,Ω) for each Λ in C(Ω). If Λ has k maximal
proper subsets (i.e. children) Λ1, . . . ,Λk, then Pcan(Λ, D,Ω) is the graph pattern

(· · · ((atype(D,ΩscopeΩ(Λ))OPTPcan(Λ1, D,Ω)) (3.1)

OPTPcan(Λ2, D,Ω)) · · · OPTPcan(Λk, D,Ω)).

Note that if Λ has no children then Pcan(Λ, D,Ω) is just atype(D,ΩscopeΩ(Λ)). Finally,
we define Pcan(D,Ω) to be Pcan(Ω, D,Ω).

In the construction above the order of the children Λ1, . . ., Λk is arbitrary, so
the canonical pattern is not unique. However, all of them are equivalent, since
(P1 OPTP2)OPTP3 is equivalent to (P1 OPTP3)OPTP2 for all queries which are
well-designed. This blurred order of the children amounts to considering canonical
queries as pattern trees [70], whose tree structure is the same as that of C(Ω).

For tree-like sets of mappings we can formulate a generalisation of Lemma 3.2, for
input instances where Ω is restricted to being tree-like. However, we will first turn to
a treatment of the tree-like restriction from the point of view of pattern trees . These
definitions will be used heavily in proofs.

3.4.4 Reverse engineering with pattern trees

We introduce a simple yet key notion of compatibility . Given a set of mappings Ω and
a pattern tree P ∈ SP[AOFwd] such that var(P) = dom(Ω), we say P is compatible

45

with Ω if and only if for every pair of variables v,u ∈ var(P), if topP (v) is an ancestor
of topP (u) in P , then CovΩ(u) ⊆ CovΩ(v).

Recall that when dealing with a tree-like set of mappings Ω, C(Ω) is a tree, and
for each node (i.e. coverage) Λ ∈ C we associate the set of variables VarsOf(Λ) =

{v ∈ dom(Ω) | CovΩ(v) = Λ}. With the previous, we define that a pattern tree P =

(VP , EP , rP , λP , δP) ∈ SP[AOFwd] has the same structure as Ω if and only if there is a
bijective function f : VP → C(Ω) which preserves the tree structure, and furthermore
for every node n ∈ VP it is the case that {v ∈ var(P) | n = topP (v)} = VarsOf(f(n));
intuitively, P and C(Ω) have the same tree structure and associate to each pair of
corresponding nodes the same variables.

Finally, note that for an RDF graphD and a tree-like set of mappings Ω, the corre-
sponding canonical query Pcan(D,Ω) is a pattern tree which has the same structure of
Ω and such that for every node n ∈ VP it is the case that λP (n) = atype(D,ΩscopeP (n)),
and δP (n) = True is a trivial built-in condition. Also, the generalisation for the frag-
ment SP[AOF∧,=, 6=wd], P=, 6=

can (D,Ω) adds to each node of Pcan the built-in condition
δP (n) = atype=, 6=(D,ΩscopeP (n)), where atype=,6= is defined analogously to atype, in-
cluding all equalities and inequalities between variables and constants that hold.

Lemma 3.3. Given a set of mappings Ω and a pattern tree P ∈ SP[AOFwd] such
that var(P) = dom(Ω), if Ω ⊆ JP KD then P is compatible with Ω.

Proof. For the sake of contradiction, assume that P is not compatible with Ω, whereby
there exist a pair of variables v,u ∈ var(P) such that topP (v) is an ancestor of topP (u)

but CovΩ(u) 6⊆ CovΩ(u), whereby there is a mapping µ ∈ Ω such that u ∈ dom(µ)

but v 6∈ dom(µ).
As Ω ⊆ JP KD we have that µ ∈ JP KD, whereby there exists a reduction Pµ E P

such that dom(µ) = var(Pµ). Now, as u ∈ dom(µ) we must have that the node
topP (u) is included in Pµ. Furthermore, as topP (v) is an ancestor of topP (u) in
P , we have that topP (v) is also included in Pµ, and thus v ∈ dom(µ), which is a
contradiction. We therefore conclude that P is compatible with Ω.

Given a set of mappings Ω and a set of variables S ⊆ dom(Ω), we say S is closed
in Ω if and only if: for every pair of variables v,u ∈ dom(Ω), if CovΩ(u) ⊆ CovΩ(v)

and u ∈ S then v ∈ S.

Lemma 3.4. Consider a set of mappings Ω, a pattern tree P ∈ SP[AOFwd], and a
set of variables S ⊆ dom(Ω), such that: (i) var(P) ⊆ dom(Ω), (ii) P is compatible
with Ω, (iii) S is closed in Ω. Then there exists a pattern tree P ′ E P such that
var(P ′) = S.

46

Proof. We obtain P ′ in the following way: Initially, let Q ← P . If var(Q) = S then
stop; otherwise, note that S (var(Q) and let v be a variable in var(Q) \ S and let
n be the node in Q such that n = topQ(v). Note that for every variable u ∈ var(Q)

such that topQ(v) is an ancestor of topQ(u) it is the case that CovΩ(u) ⊆ CovΩ(v)

(as P is compatible with Ω), whereby u 6∈ S (u ∈ S contradicts the fact that S is
closed in Ω). Therefore, we remove the subtree of Q whose root is n (that is, update
VQ ← VQ \ {m ∈ VQ | n is an ancestor of m in Q} and remove the appropriate edges
from EQ as well). We iterate in this fashion until var(Q) = S and set P ′ ← Q.

With the previous, note that for a set of mappings Ω it is the case that for any
µ ∈ Ω, dom(µ) is closed in Ω, whereby for any P ∈ SP[AOFwd] which is compatible
with Ω (e.g. potential realizers) we will be able to find a reduction Pµ E P such that
var(Pµ) = dom(µ). This fact will be used heavily in the following proofs.

3.4.5 Reverse engineering upper bounds

We begin by presenting a series of lemmas that assert the desirable properties of our
canonical (candidate) queries.

Lemma 3.5. Given an RDF graph D, tree-like set of mappings Ω,

1. if (D,Ω) ∈ RevEng+
tree(SP[AOwd]) then Ω ⊆ JPcan(D,Ω)KD,

2. if (D,Ω) ∈ RevEngE
tree(SP[AOwd]) then Ω = JPcan(D,Ω)KD.

Proof. We proceed item by item.
Item 1. Assume that (D,Ω) ∈ RevEng+

tree(SP[AOwd]), whereby there exists a
pattern tree Q ∈ SP[AOwd] such that Ω ⊆ JQKD. Without loss of generality, we may
assume that var(Q) = dom(Ω) and that Q is in productive form. By Lemma 3.3,
then, Q is compatible with Ω. For the following, let P = Pcan(D,Ω), and note that
P = (VP , EP , rP , λP), where VP = C(Ω) and EP = {(Λ,Λ′) | Λ′ is a maximal proper
superset of Λ} (i.e. P has the same structure as Ω).

Now consider a mapping µ ∈ Ω. As µ ∈ JQKD, there exists a pattern tree Qµ E Q

such that var(Qµ) = dom(µ) and µ ∈ Jandify(Qµ)KD (i.e. µ ∈ partials(D,Q)) and µ
is maximal in partials(D,Q). We must now show that µ ∈ JP KD.

Now build the pattern tree Pµ E P in the following way: for every node Λ ∈ VP ,
Λ ∈ VPµ if and only if µ ∈ Λ (notice that this, in fact, forms a reduction of P),
whereby we have that dom(µ) = var(Pµ). Now, by construction of P , each node
Λ in Pµ will only contain triple patterns which are true for every mapping ν ∈ Ω

47

which mentions variables from scopePµ(Λ), whereby we have µ ∈ Jandify(Pµ)KD by
construction.

We must now show that µ is maximal in partials(D,P). For the sake of contradic-
tion, assume that there exists a mapping ν ∈ partials(D,P) such that µ @ ν, whereby
there exists a pattern tree Pν E P such that var(Pν) = dom(ν) and ν ∈ Jandify(Pν)KD
(also note that Pµ E Pν E P and Pµ 6= Pν). Now, as P has the same structure as
Ω, we have that var(Pν) is closed in Ω, whereby there is a pattern tree Qν E Q such
that var(Qν) = dom(ν).

We now claim that ν ∈ Jandify(Qν)KD. For this, consider a node n ∈ VQν and
a triple pattern t ∈ λQν (n). We claim we can find the triple pattern t in Pν . For
this, consider a variable ?X ∈ var(Qν) such that n = topQ(?X) (this variable must
exist, as Q is in productive form). As var(Qν) = var(Pν) there is a node m ∈ V (Pν)

such that m = topP (?X). We claim that scopeQ(n) ⊆ scopeP (m) and we show this
by contradiction next. For the sake of contradiction, assume that there is a variable
?Y ∈ scopeQ(n) such that ?Y 6∈ scopeP (m). Then it is the case that topQ(?Y) is an
ancestor of topQ(?X) in Q, but the same does not hold in P . As P has the same
structure as Ω this contradicts the fact that Q is compatible with Ω. Therefore, we
conclude that scopeQ(n) ⊆ scopeP (m). Now, as Ω ⊆ JQKD we have that for every
mapping σ ∈ Ω such that scopeQ(n) ⊆ dom(σ), it will be the case that σ(t) ∈ D, and
thus, for every mapping σ ∈ Ω such that scopeP (m) ⊆ dom(σ) it will also be the case
that σ(t) ∈ D. This implies that t ∈ atype(D,Ω|scopeP (m)), whereby, by construction,
t ∈ λP (m). Finally, as ν ∈ Jandify(Pν)KD we have that ν(t) ∈ D. As both the node
n and the triple pattern t are arbitrary, we have that ν ∈ Jandify(Qν)KD.

The previous discussion implies that ν ∈ partials(D,Q), and as µ @ ν this con-
tradicts the fact that µ is maximal in partials(D,Q). Therefore, µ is maximal in
partials(D,P). Thus, µ ∈ JP KD, and we conclude that Ω ⊆ JP KD.

Item 2. Now assume that (D,Ω) ∈ RevEngE(SP[AOwd]), whereby there ex-
ists a pattern tree Q ∈ SP[AOwd] such that Ω = JQKD. In particular, (D,Ω) ∈
RevEng+(SP[AOwd]), whereby due to item 1 we have that Ω ⊆ JPcan(D,Ω)KD, and
therefore we need only prove that JPcan(D,Ω)KD ⊆ Ω. Again, let P = Pcan(D,Ω).

Consider a mapping µ ∈ JP KD, whereby there exists Pµ E P such that var(Pµ) =

dom(µ), µ ∈ Jandify(Pµ)KD, and µ is maximal in partials(D,P). We must show that
µ ∈ Ω, or equivalently, that µ ∈ JQKD. For this, notice that as P has the same
structure as Ω, var(Pµ) is closed in Ω, and as Q is compatible with Ω there exists
Qµ E Q such that var(Qµ) = dom(µ). Now consider a node n in Qµ, a triple pattern t
in n, and a variable ?X such that n = topQµ(?X). As Ω ⊆ JQKD we have that for every

48

ν ∈ Ω such that scopeQµ(n) ⊆ dom(ν) it must be the case that ν(t) ∈ D, whereby
t ∈ atype(D,ΩscopeQµ (n)). Now, consider the node m in Pµ such that m = topPµ(?X)

and note that scopeQµ(n) ⊆ scopePµ(m), whereby t ∈ atype(D,ΩscopePµ (m)), and thus
t is mentioned in m, by construction of P . Now, as µ ∈ Jandify(Pµ)KD we have that
µ(t) ∈ D and thus we conclude that µ ∈ Jandify(Qµ)KD (as both t and n we arbitrarily
chosen).

We must now show that µ is maximal in partials(D,Q). For the sake of contradic-
tion, assume that µ is not maximal, whereby there exists a mapping ν ∈ partials(D,Q)

which is maximal, and such that µ @ ν. This implies that ν ∈ JQKD = Ω, but as
Ω ⊆ JP KD we have ν ∈ JP KD, which implies that ν is maximal in partials(D,P),
contradicting the fact that µ ∈ JP KD. Therefore, we have that µ is maximal in
partials(D,Q), whereby µ ∈ JQKD. We have thus shown that JP KD ⊆ JQKD = Ω,
whereby Ω = JP KD.

The notion of canonical query for tree-like sets of mappings can be straight-
forwardly adapted to the case of SP[AOF∧,=,6=wd], considering the generalisation
atype=, 6=(D,Ω) of atype(D,Ω) (which, recall, contains all equalities and inequali-
ties on the variables and URIs that are true in D. When seen as a query, this set
is the AND-combination of its triple patterns, filtered by the conjunction of all its
equalities and inequalities that mention only variables in the triple patterns. The
analog of Lemma 3.5 holds for SP[AOF∧,=, 6=wd] (see Lemma 3.6) and similarly for
SP[AOFwd] (see Lemma 3.7).

Lemma 3.6. Given an RDF graph D, tree-like set of mappings Ω,

1. if (D,Ω) ∈ RevEng+
tree(SP[AOF∧,=,6=wd]) then Ω ⊆ JP=,6=

can (D,Ω)KD,

2. if (D,Ω) ∈ RevEngE
tree(SP[AOF∧,=,6=wd]) then Ω = JP=, 6=

can (D,Ω)KD.

Proof. Item 1. Assume that (D,Ω) ∈ RevEng+
tree(SP[AOF∧,=, 6=wd]), whereby there

exists a pattern tree Q ∈ SP[AOF∧,=, 6=wd] such that Ω ⊆ JQKD. Without loss of
generality, we may assume that var(Q) = dom(Ω) and that Q is in productive form.
By Lemma 3.3, then, Q is compatible with Ω. For the following, let P = P=,6=

can (D,Ω),
and note that P = (VP , EP , rP , λP , δP), where VP = C(Ω) and EP = {(Λ,Λ′) | Λ′ is a
maximal proper superset of Λ} (in other words, P has the same structure as Ω).

Now consider a mapping µ ∈ Ω. As µ ∈ JQKD, there exists a pattern tree Qµ E Q

such that var(Qµ) = dom(µ) and µ ∈ Jandify(Qµ)KD (i.e. µ ∈ partials(D,Q)) and µ
is maximal in partials(D,Q). We must now show that µ ∈ JP KD.

49

Now build the pattern tree Pµ E P in the following way: for every node Λ ∈ VP ,
Λ ∈ VPµ if and only if µ ∈ Λ (notice that this, in fact, forms a reduction of P),
whereby we have that dom(µ) = var(Pµ). Now, by construction of P , each node Λ

in Pµ will only contain triple patterns which are true for every mapping ν ∈ Ω which
mentions variables from scopePµ(Λ); on the other hand, each node Λ will also only
contain filter equalities and inequalities in δP (Λ) which are true for every mapping
ν ∈ Ω such that scopeP (Λ) ⊆ dom(ν). Therefore, we have µ ∈ Jandify(Pµ)KD by
construction.

We must now show that µ is maximal in partials(D,P). For the sake of contradic-
tion, assume that there exists a mapping ν ∈ partials(D,P) such that µ @ ν, whereby
there exists a pattern tree Pν E P such that var(Pν) = dom(ν) and ν ∈ Jandify(Pν)KD
(also note that Pµ E Pν E P and Pµ 6= Pν). Now, as P has the same structure as
Ω, we have that var(Pν) is closed in Ω, whereby there is a pattern tree Qν E Q such
that var(Qν) = dom(ν).

We now claim that ν ∈ Jandify(Qν)KD. For this, consider a node n ∈ V (Qν), a
triple pattern t ∈ λQ(n), and a filter (in)equality f ∈ δQ(n). We wish to find the triple
pattern t in P . For this, consider a variable ?X ∈ var(Qν) such that n = topQ(?X)

(this variable must exist, as Q is in productive form). As var(Qν) = var(Pν) there is
a node m ∈ V (Pν) such that m = topP (?X). We claim that scopeQ(n) ⊆ scopeP (m).
For the sake of contradiction, assume that there is a variable ?Y ∈ scopeQ(n) such that
?Y 6∈ scopeP (m). Then it is the case that topQ(?Y) is an ancestor of topQ(?X) in Q,
but the same does not hold in P . As P has the same structure as Ω this contradicts
the fact that Q is compatible with Ω. Therefore, we conclude that scopeQ(n) ⊆
scopeP (m). Now, as Ω ⊆ JQKD we have that for every mapping σ ∈ Ω such that
scopeQ(n) ⊆ dom(σ), it will be the case that σ(t) ∈ D, and thus, for every mapping
σ ∈ Ω such that scopeP (m) ⊆ dom(σ) it will also be the case that σ(t) ∈ D. This
implies that t ∈ atype(D,Ω|scopeP (m)), whereby, by construction, t ∈ λP (m). Finally,
as ν ∈ Jandify(Pν)KD we have that ν(t) ∈ D. As both the node n and the triple
pattern t are arbitrary, we have that ν ∈ Jandify(Qν)KD, considering a very similar
argument for showing that ν also satisfies all the filter (in-)equalities as well.

The previous discussion implies that ν ∈ partials(D,Q), and as µ @ ν this con-
tradicts the fact that µ is maximal in partials(D,Q). Therefore, µ is maximal in
partials(D,P). Thus, µ ∈ JP KD, and we conclude that Ω ⊆ JP KD.

Item 2. The proof of item 2 is similar and has been omitted.

We now turn to the full filter, whereby we define a new type of canonical query.
Given (D,Ω), define the query P F

can(D,Ω), and denote it with P for brevity, such that

50

P = (VP , EP , rP , λP , δP), P has the same structure as Ω, for each node n ∈ VP it is
the case that λP (n) = atype(D,ΩSn), where Sn = scopeΩ(n), and letting Ωn = {µ ∈
Ω | scopeΩ(n) ⊆ dom(µ)} and domn(µ) = {?X | ?X ∈ dom(µ) ∩ scopeΩ(n)}:

δP (n) =
∨
µ∈Ωn

∧
?X∈domn(µ)

?X = µ(?X).

Lemma 3.7. Given an RDF graph D and a tree-like set of mappings Ω,

1. if (D,Ω) ∈ RevEng+
tree(SP[AOFwd]) then Ω ⊆ JP F

can(D,Ω)KD,

2. if (D,Ω) ∈ RevEngE
tree(SP[AOFwd]) then Ω = JP F

can(D,Ω)KD.

Proof. We proceed item by item.
Item 1. Assume that (D,Ω) ∈ RevEng+(SP[AOFwd]), whereby there is a query

Q ∈ SP[AOFwd] such that Ω ⊆ JQKD. Note also that Q is compatible with Ω. Now
consider the canonical query P = P F

can(D,Ω) and note that P has the same tree
structure as Ω. We must show that Ω ⊆ JP KD.

Consider a mapping µ ∈ Ω and note that dom(µ) is closed in Ω, implying that
there exists a reduction Pµ E P such that var(Pµ) = dom(µ). Also, by construction,
we have that for each node n in Pµ and triple pattern t ∈ λPµ(n) it is the case that
µ(t) ∈ D. Furthermore, for each node n in Pµ, note that by construction we have
that µ |= δPµ(n) as well. Therefore, we have that µ ∈ partials(D,P). We now must
show that µ is maximal in partials(D,P).

For the sake of contradiction, assume that µ is not maximal in partials(D,P),
whereby there exists a mapping ν ∈ partials(D,P) such that µ @ ν. Also, note
that there is a reduction Pν E P such that ν ∈ Jandify(Pν)KD, i.e. for every node
n in Pν and triple pattern t ∈ λPν (n) it is the case that ν(t) ∈ D and ν |= δPν (n).
Now, due to the construction of δPν (n), there must exist a mapping σ ∈ Ω such that
scopePν (n) ⊆ dom(σ) and for every variable ?X ∈ scopeP (n) we have ν(?X) = σ(?X).
We now turn to the pattern tree Q, and claim that ν ∈ partials(D,Q). For this,
note that as P has the same structure as Ω, var(Pν) is closed in Ω, whereby there
is a reduction Qν E Q such that var(Qν) = dom(ν). Using arguments similar to
previous proofs, we have that for every node n in Qν and triple pattern t ∈ λQν (n)

it will be the case that ν(t) ∈ D. For the filter patterns, consider an arbitrary
node n in Qν and the corresponding filter pattern φn = δQν (n). Take the set of
variables Sn = {?X | topQν(?X)} (this set must be non-empty, as Q is in productive
form) and find the corresponding node m in Pν such that m = topPν (?X) for all
?X ∈ Sn (note that this node must exist in order for Q to be compatible with Ω).

51

Note that scopeQν (n) ⊆ scopePν (m). Now, due to the discussion at the beginning
of this paragraph, for the node m in Pν there must exist a mapping σm ∈ Ω such
that for every variable in scopePν (m) it is the case that ν(?X) = σm(?X). Also,
scopePν (m) ⊆ dom(σm), whereby scopeQν (n) ⊆ dom(σ). As Ω ⊆ JQKD we have a
reduction Qσm E Q such that σm ∈ Jandify(Qσm)KD, and notice that Qσm includes
node n. Finally, as σm(?X) = ν(?X) for every variable ?X ∈ scopeQ(n) we have
that ν |= φn, as φn may only mention variables in scopeQ(n) and we must have that
σ |= φn. Therefore, ν ∈ partials(D,Q), which contradicts the fact that µ is maximal in
partials(D,Q). Thus, we conclude that µ is maximal in partials(D,P). In conclusion,
we have that Ω ⊆ JP KD, which is what was required.

Item 2. Assume that (D,Ω) ∈ RevEngE(SP[AOFwd]), whereby there is a pat-
tern tree Q ∈ SP[AOFwd] such that Ω = JQKD. In particular, Ω ⊆ JQKD, and we
use the result of item 1 to conclude that P = P F

can(D,Ω) is such that Ω ⊆ JP KD.
Therefore, we need only show that JP KD ⊆ Ω, or equivalently, that JP KD ⊆ JQKD.

For this, consider an arbitrary mapping µ ∈ JP KD, whereby there exists a re-
duction Pµ E P such that µ ∈ Jandify(Pµ)KD, i.e. µ ∈ partials(D,P), and also µ is
maximal in partials(D,P). As P has the same structure as Ω, we have that dom(µ)

is closed in Ω, and as Q is compatible with Ω, we have that there is a reduction
Qµ E Q such that var(Qµ) = dom(µ). Consider a node n in Qµ and a triple pattern
t ∈ λQµ(n). As σ(t) ∈ D for every σ ∈ Ω such that scopeQ(n) ⊆ dom(σ), we have
that t ∈ atype(D,ΩscopeQ(n)). Also, if we take variables Sn = {?X | n = topQ(?X)}
and find the corresponding (and unique) node m in Pµ such that m = topP (?X) for
?X ∈ Sn, we see that scopeQ(n) ⊆ scopeP (m), whereby t ∈ atype(D,ΩscopeP (m)) as
well, and therefore t ∈ λP (m) by construction. Thus, as µ ∈ Jandify(Pµ)KD we have
that µ(t) ∈ D. For the filter pattern, consider φn = δQµ(n). Using an argument
similar to that of item 1, we see that µ |= φn. We conclude that µ ∈ partials(D,Q).
We now claim that µ is maximal in partials(D,Q).

Assume, for the sake of contradiction, that µ is not maximal in partials(D,Q),
whereby there is another mapping ν ∈ partials(D,Q) such that µ @ ν and ν is
maximal in partials(D,Q), and thus ν ∈ JQKD. As Ω = JQKD we have that ν ∈ Ω,
and as we have already shown, Ω ⊆ JP KD implies that ν ∈ JP KD, which contradicts the
fact that µ ∈ JP KD, as both µ and ν cannot be maximal in partials(D,P). Therefore,
µ is maximal in partials(D,Q). Thus, µ ∈ JQKD and we have shown that Ω = JP KD,
as was needed.

Proposition 3.11. The following decision problems are in coNP:

52

1. RevEng+
tree(SP[AOwd]),

2. RevEngE
tree(SP[AOwd]),

3. RevEng+
tree(SP[AOF∧,=, 6=wd]),

4. RevEngE
tree(SP[AOF∧,=, 6=wd]),

Proof. We proceed item by item.
Item 1. For RevEng+(SP[AOwd]), consider an algorithm which, on input (D,Ω)

builds Pcan(D,Ω) in polynomial time and then runs the algorithm presented in the
proof of Verify+(SP[AOwd]) ∈ coNP (as seen in the proof of Proposition 3.4), with
input (D,Ω, Pcan(D,Ω)). Now, clearly, if Pcan(D,Ω) is such that (D,Ω, Pcan(D,Ω)) ∈
Verify+(SP[AOwd]), then (D,Ω) ∈ RevEng+(SP[AOwd]), with Pcan(D,Ω) as a
witness. On the other hand, due to Lemma 3.5, item 1, if Ω 6⊆ JPcan(D,Ω)KD, then
(D,Ω) 6∈ RevEng+(SP[AOwd]). We thus conclude that the previous algorithm is
correct, whereby RevEng+(SP[AOwd]) ∈ coNP.

Item 2. For RevEngE
tree(SP[AOwd]), the proof is very similar to the previous, and

uses Lemma 3.5, item 2 (which corresponds to Lemma 3.5, item 3), and considering
that VerifyE(SP[AOwd]) ∈ coNP as well (see the discussion following Proposition
3.5).

Item 3. For RevEng+
tree(SP[AOF∧,=, 6=wd]) the proof is very similar, building

P=, 6=
can (D,Ω) and using the fact that Verify+(SP[AOF∧,=,6=wd]) ∈ coNP and Lemma

3.6, item 1.
Item 4. For RevEngE

tree(SP[AOF∧,=,6=wd]) the proof is again similar, building
P=, 6=
can (D,Ω) and using the fact that VerifyE(SP[AOF∧,=,6=wd]) ∈ coNP and Lemma

3.6, item 2.

We now return to the general case of reverse engineering, i.e. where C(Ω) is not
necessarily tree-like. In this case, there exist many different candidate SP[AOwd]

queries for an input (D,Ω). Intuitively, these candidates still conform to the structure
C(Ω), yet in a more relaxed sense: these are queries whose maximal SP[A] subqueries
can be “merged” to obtain the structure C(Ω).

To formalise the previous idea, first recall that a query P ∈ SP[AOwd] is assumed
to be in OPT normal form, whereby it is possible to consider P to be formed by
SP[A] queries, combined with the OPT operator. Given a query P ∈ SP[AOwd], a
subquery Q ∈ SP[A] of P is left-most in P if and only if Q is such that there does not
exist any subquery (P1 OPTP2) of P such that Q is a subquery of P2. Furthermore,

53

given two subqueries P1, P2 ∈ SP[A] of P , P1 is an ancestor of P2 in P if and only
if either P1 = P2 or there exists a subquery P ′1 OPTP ′2 of P such that P1 is the
left-most subquery of P ′1 and P2 is a subquery of P ′2. Finally, given a subquery Q of
P , a variable ?X is top-most in Q if ?X is present in the left-most subquery of Q yet
absent outside of Q in P . With this, an SP[AOwd] query P is a candidate for (D,Ω)

if there exists a surjective function h from its maximal SP[A] subqueries to C(Ω) that:

1. Each variable v ∈ dom(Ω) can be associated to an SP[A] subquery Qv of P
such that h(Qv) = CovΩ(v) and v is top-most in Qv,

2. h preserves the query’s tree structure: given P1, P2 ∈ SP[A] subqueries of P , if
P1 is an ancestor of P2 in P , then h(P1) is a superset (i.e. ancestor) of h(P2) in
C(Ω),

3. For each Λ in C(Ω) and R in the pre-image h−1(Λ), R consists of all triple
patterns in atype(D,ΩS), where S is the set containing every variable v for
which Qv is an ancestor of R in P .

Note that if Ω is tree-like, then there is exactly one candidate query, which is the
canonical query. When considering pattern trees, the previous definition is equivalent
to a pattern tree being such that P is compatible with Ω and containing in each node
n the atomic type λP (n) = atype(D,Ωn) (and similarly for the filter cases).

A pattern tree P ∈ SP[AOwd] is an SP[AOwd]-candidate for (Ω, D) if

1. P is compatible with Ω,

2. For each node n in P , if S = scopeP (n), then λP (n) = atype(D,Ωn).

Similarly, a pattern tree P ∈ SP[AOF∧,=,6=wd] is an SP[AOF∧,=, 6=wd]-candidate for
(Ω, D) if the previous two items hold, and also for each node n in P , if S = scopeP (n),
then δP (n) = atype=, 6=(D,Ωn).

Finally, a pattern tree P ∈ SP[AOFwd] is an SP[AOFwd]-candidate for (Ω, D) if the
initial two items hold, and also for every node n ∈ VP , λP (n) = atype(D,ΩscopeP (n))

and δP (n) is:

δP (n) =
∨
µ∈Ωn

∧
?X∈domn(µ)

?X = µ(?X),

where Ωn = {µ ∈ Ω | scopeP (n) ⊆ dom(µ)} and domn(µ) = dom(µ) ∩ scopeP (n).
In what follows, as the SPARQL fragment is usually obvious, we will shorten

notation by simply saying a candidate query P for (D,Ω).

54

Example 3.7. Consider the set of mappings Ω′ = {µ1, µ2, µ3, µ
′
4} from Example 3.6.

Depending on the graph D, a candidate query for the input (D,Ω′) may follow either
of two distinct OPT structures, both arising by choosing a parent for the {µ′4} element
of C(Ω′).

We obtain the following generalisation of Lemma 3.5:

Lemma 3.8. Given RDF graph D and set of mappings Ω,

1. if (D,Ω) ∈ RevEng+(SP[AOwd]) then there is a candidate query P for (D,Ω)

such that Ω ⊆ JP KD;

2. if (D,Ω) ∈ RevEngE(SP[AOwd]) then there is a candidate query P for (D,Ω)

such that Ω = JP KD.

Proof. Recall that given an RDF graph D and a set of mappings Ω, a query P ∈
SP[AOwd] is a candidate for (D,Ω) if and only if (a) P is compatible with Ω (when P is
viewed as a pattern tree), and (b) for every node n ∈ VP , λP (n) = atype(D,ΩscopeP (n)).

Item 1. Assume (D,Ω) ∈ RevEng+(SP[AOwd]) whereby there exists a pattern
tree P ∈ SP[AOwd] such that Ω ⊆ JP KD. Due to Lemma 3.3 we have that P is
compatible with Ω. Now build a pattern tree Q = (VQ, EQ, rQ, λQ) such that VQ = VP ,
EQ = EP , rQ = rP , and for every node n ∈ VQ, λQ(n) = atype(D,ΩscopeP (n)). We
claim that Ω ⊆ JQKD. For this, consider a mapping µ ∈ Ω and note that as µ ∈ JP KD
there is a reduction Pµ E P such that µ ∈ Jandify(Pµ)KD. As Q has the same tree
structure as P we also have a reduction Qµ E Q such that var(Qµ) = dom(µ). Now
consider a node n in Qµ and a triple pattern t ∈ λQµ(n) = atype(D,ΩscopeP (n)). Note
that scopeP (n) ⊆ dom(µ) whereby by construction we have that µ(t) ∈ D; thus
µ ∈ Jandify(Qµ)KD. We must now show that µ is maximal in partials(D,Q). For the
sake of contradiction, assume that there is a mapping ν ∈ partials(D,Q) such that
µ @ ν, whereby there is a pattern tree Qν E Q such that ν ∈ Jandify(Qν)KD (also
note that Qµ E Qν and that Qµ 6= Qν). As P has the same tree structure as Q, there
is a pattern tree Pν E P such that var(Pν) = dom(ν). Now consider a node n in Pν
and a triple pattern t ∈ λP (n). As Ω ⊆ JP KD it is the case that for every mapping
σ ∈ Ω such that scopeP (n) ⊆ σ it is the case that σ(t) ∈ D, whereby t is also present
in λQ(n), implying that ν(t) ∈ D as well. Therefore, we have that ν ∈ Jandify(Pν)KD,
which contradicts the fact that µ is maximal. Therefore, Q is a candidate for (D,Ω).

Item 2. Assume (D,Ω) ∈ RevEngE(SP[AOwd]), whereby there exists a pattern
tree P ∈ SP[AOwd] such that Ω = JP KD. In particular, we may build the query Q as

55

in the proof of item 1 and note that Q is a candidate for (D,Ω) and that Ω ⊆ JQKD.
We must now prove that JQKD ⊆ Ω, or equivalently, that JQKD ⊆ JP KD. For this,
consider a mapping µ ∈ JQKD, whereby there exists a pattern tree Qµ E Q such
that µ ∈ Jandify(Qµ)KD and µ is maximal in partials(D,Q). Now, as P has the same
tree structure as Q, there exists a pattern tree Pµ E P such that var(Pµ) = dom(µ).
Consider a node n in Pµ and a triple pattern t ∈ λPµ(n). As Ω ⊆ JP KD we have
that for every σ ∈ Ω such that scopePµ(n) ⊆ dom(σ) it is the case that σ(t) ∈ D,
whereby t ∈ atype(D,ΩscopeP (n)), and thus µ(t) ∈ D as well; thus we have that
µ ∈ Jandify(Pµ)KD. We must now show that µ is maximal in partials(D,P). For the
sake of contradiction, assume that µ is not maximal, whereby there exists a mapping
ν ∈ partials(D,P) such that µ @ ν such that ν is maximal in partials(D,P). In this
case, we have that ν ∈ JP KD = Ω. However, as Ω ⊆ JQKD we have that ν ∈ JQKD,
which contradicts the fact that µ is maximal in partials(D,Q). Therefore, µ ∈ JP KD.
We conclude, then, that JQKD ⊆ JP KD. Finally, Q (build as in the proof of item 1) is
such that Q is a candidate for (D,Ω) and Ω = JQKD.

If we replace atype with atype=,6= in the definition of candidate queries above, we
can prove a similar result to Lemma 3.8 for SP[AOF∧,=,6=wd] (see Lemma 3.9) and
SP[AOFwd] (see Lemma 3.10).

Lemma 3.9. Given an RDF graph D and a set of mappings Ω,

1. if (D,Ω) ∈ RevEng+(SP[AOF∧,=,6=wd]) then there is a candidate query P for
(D,Ω) such that Ω ⊆ JP KD;

2. if (D,Ω) ∈ RevEngE(SP[AOF∧,=,6=wd]) then there is a candidate query P for
(D,Ω) such that Ω = JP KD.

Proof. This proof is very similar to that of Lemma 3.8, and has been omitted.

Lemma 3.10. Given an RDF graph D and set of mappings Ω,

1. if (D,Ω) ∈ RevEng+(SP[AOFwd]) then there is an SP[AOF]-candidate query
P for (D,Ω) such that Ω ⊆ JP KD,

2. if (D,Ω) ∈ RevEngE(SP[AOFwd]) then there is an SP[AOF]-candidate query
P for (D,Ω) such that Ω = JP KD.

56

Proof. A crucial difference between the result that must be shown here and the proof
of Lemma 3.9 is that filter expressions in the fragment SP[AOFwd] cannot be regarded
merely as sets of equalities and inequalities, and candidate queries no longer contain
an atomic type of filter equalities and inequalities.

Firstly, notice that given an RDF graph D and a set of mappings Ω, a query
P ∈ SP[AOFwd] is a candidate for (D,Ω) if and only if (a) P is compatible with
Ω (when P is viewed as a pattern tree), and (b) for every node n ∈ VP , λP (n) =

atype(D,ΩscopeP (n)) and δP (n) is defined as for P F
can(D,Ω), that is,

δP (n) =
∨
µ∈Ωn

∧
?X∈domn(µ)

?X = µ(?X),

where recall that Ωn = {µ ∈ Ω | scopeP (n) ⊆ dom(µ)} and domn(µ) = dom(µ) ∩
scopeP (n).

Item 1. Assume (D,Ω) ∈ RevEng+(SP[AOFwd]) whereby there exists a pattern
tree Q ∈ SP[AOFwd] such that Ω ⊆ JQKD. Due to Lemma 3.3 we have that Q
is compatible with Ω. Now build a pattern tree P = (VP , EP , rP , λP , δP) such that
VP = VQ, EP = EQ, rP = rQ, and for every node n ∈ VP , λP (n) = atype(D,ΩscopeQ(n))

and δP (n) is defined as for the full-filter candidate. We claim that Ω ⊆ JP KD.
For this, consider a mapping µ ∈ Ω and note that as µ ∈ JQKD there is a reduction

Qµ E Q such that µ ∈ Jandify(Qµ)KD. As P has the same tree structure as Q we also
have a reduction Pµ E P such that var(Pµ) = dom(µ). Now consider a node n in Pµ
and a triple pattern t ∈ λPµ(n) = atype(D,ΩscopeP (n)). Note that scopeQ(n) ⊆ dom(µ)

whereby by construction we have that µ(t) ∈ D. Next, for node n in Pµ consider the
filter expression φn = δP (n) and notice that by construction we have that µ |= φn

(as µ ∈ Ω). Thus, µ ∈ Jandify(Pµ)KD. We must now show that µ is maximal in
partials(D,P).

For the sake of contradiction, assume that there is a mapping ν ∈ partials(D,P)

such that µ @ ν, whereby there is a pattern tree Pν E P such that ν ∈ Jandify(Pν)KD
(also note that Pµ E Pν and that Pµ 6= Pν). As P has the same tree structure as Q,
there is a reduction Qν E Q such that var(Qν) = dom(ν) as well.

Now consider a node n in Qν and a triple pattern t ∈ λQ(n). As Ω ⊆ JQKD
it is the case that for every mapping σ ∈ Ω such that scopeQ(n) ⊆ σ it is the
case that σ(t) ∈ D, whereby t is also present in λP (n), implying that ν(t) ∈ D as
well. Therefore, we have that ν ∈ Jandify(Qν)KD, which contradicts the fact that
µ is maximal in partials(D,Q). Next consider the filter expression φn = δP (n), and
notice that by construction ν |= φn implies that there exists a mapping σ ∈ Ω such

57

that scopeP (n) ⊆ dom(σ) and for every variable ?X ∈ scopeP (n) it is the case that
ν(?X) = σ(?X). Now, as Ω ⊆ JQKD it must also be the case that σ |= δQ(n′), where n′

is the node in Q which corresponds to P (note that P and Q have the same variable
structure). However, as δQ(n′) may only mention variables in scopeQ(n′) we also
have that ν |= δQ(n′), whereby ν ∈ partials(D,Q), contradicting the fact that µ is a
maximal partial answer. Therefore, µ is maximal in partials(D,P), and we conclude
that Ω ⊆ JP KD. Therefore, P is a full-filter candidate for (D,Ω).

Item 2. Assume (D,Ω) ∈ RevEngE(SP[AOFwd]), whereby there exists a pattern
tree Q ∈ SP[AOFwd] such that Ω = JQKD. In particular, we may build the query P
as in the proof of item 1 and note that P is a full-filter candidate for (D,Ω) and that
Ω ⊆ JP KD. We need only prove that JP KD ⊆ Ω, or equivalently, that JP KD ⊆ JQKD.

For this, consider a mapping µ ∈ JP KD, whereby there exists a pattern tree Pµ E P

such that µ ∈ Jandify(Pµ)KD and µ is maximal in partials(D,P). Now, as Q has the
same tree structure as P , there exists a pattern tree Qµ E Q such that var(Qµ) =

dom(µ). Consider a node n in Qµ and a triple pattern t ∈ λQµ(n). As Ω ⊆ JQKD we
have that for every σ ∈ Ω such that scopeQµ(n) ⊆ dom(σ) it is the case that σ(t) ∈ D,
whereby t ∈ atype(D,ΩscopeQ(n)), and thus µ(t) ∈ D as well. For the filter expression,
consider φn = δQµ(n). Firstly, the corresponding node m in Pµ (recall that P and
Q have the same tree structure) has a filter expression ϕm built in such a way that
there exists a mapping σ ∈ Ω such that scopeP (m) ⊆ dom(σ) and for every variable
?X ∈ scopeP (m) it is the case that µ(?X) = σ(?X); also, as σ ∈ Jandify(Qµ)KD it must
be the case that σ |= φn, while φn mentions only variables in scopeQ(n) = scopeP (m),
whereby it must also be the case that µ |= φn. Thus we have that µ ∈ Jandify(Qµ)KD,
or µ ∈ partials(D,Q). We must now show that µ is maximal in partials(D,Q).

For the sake of contradiction, assume that µ is not maximal in partials(D,Q),
whereby there exists a mapping ν ∈ partials(D,Q) such that µ @ ν such that ν is
maximal in partials(D,Q). In this case, we have that ν ∈ JQKD = Ω. However, as
Ω ⊆ JP KD we have that ν ∈ JP KD, which contradicts the fact that µ is maximal in
partials(D,P). Therefore, µ ∈ JQKD. We conclude, then, that JP KD ⊆ JQKD. Finally,
P is a candidate for (D,Ω) and Ω = JP KD.

Note also, that candidate patterns are always of polynomial size, so the above
result leads to an upper bound for the complexity of the corresponding reverse engi-
neering problems:

Proposition 3.12. The following decision problems are in Σp
2:

1. RevEng+(SP[AOwd]),

58

2. RevEngE(SP[AOwd]),

3. RevEng+(SP[AOF∧,=, 6=wd]),

4. RevEngE(SP[AOF∧,=, 6=wd]).

Proof. We proceed item by item.
Item 1. For RevEng+(SP[AOwd]), by Lemma 3.8 it suffices to guess a (polyno-

mially-sized) candidate query and verify that it realises the input (note that the
decision problem Verify+(SP[AOwd]) ∈ coNP, as per Proposition 3.4).

Item 2. For RevEngE(SP[AOwd]), the situation is similar (Proposition 3.5 shows
that VerifyE(SP[AOwd]) ∈ coNP.

All previous cases lead to a non-deterministic, polynomial-time algorithm which
makes use of an oracle for a problem in coNP, so we have that RevEng+(SP[AOwd])

and RevEngE(SP[AOwd]) are in Σp
2

For SP[AOF∧,=, 6=wd], the proofs are very similar, considering that SP[AOF∧,=,6=wd]

allows us to guess polynomially-sized queries as well, due to the fact that each filter
expression is a set of equalities and inequalities between variables of Ω and constants
of D, of which there exist only a polynomial amount. In this case, Lemma 3.9 may
be used and similar algorithms derived.

For the next result, we require a definition. Given a set of mappings Ω, we say
Ω is path-consistent if and only if for every mapping µ ∈ Ω and node n in C(Ω) such
that µ ∈ n but no children of n contain µ, and for every mapping ν ∈ Ω such that
ν ∈ n and node m such that m is a child of n in C(Ω) and ν ∈ m, it is not the case
that µn = νn, where µn is the mapping such that dom(µn) = scopeΩ(n) and µn v µ.

Lemma 3.11. Given RDF graph D and a set of mappings Ω, if (D,Ω) ∈ RevEng+

(SP[AOF]) then Ω is path-consistent.

Proof. Assume that P ∈ SP[AOF] and that Ω ⊆ JP KD and assume, for the sake of
contradiction, that Ω is not path-consistent, whereby there are mappings µ, ν ∈ Ω

nodes n,m ∈ C(Ω) such that m is a child of n in C(Ω), µ ∈ n (i.e. meaning that µ
mentions all variables in the scope of n) and both ν ∈ n and ν ∈ m.

The previous, though, implies that we may construct mapping µ∗ from µ by
adding the variables corresponding to node m, assigning the values given by ν, which
implies that µ is not maximal. As this is a contradiction, we conclude that Ω is
path-consistent.

Proposition 3.13. The following decision problems are in NP:

59

1. RevEng+(SP[AOFwd]),

2. RevEngE(SP[AOFwd]).

Proof. Item 1. For RevEng+(SP[AOFwd]), consider the following NP algorithm.
On input (D,Ω), guess a tree structure compatible with Ω, and then construct a
canonical query P ∈ SP[AOFwd] with said structure. If the pattern tree is well-
formed, then return True; otherwise, return False.

If the previous algorithm returns True, we claim that P is such that Ω ⊆ JP KD. For
this, consider a mapping µ ∈ Ω and notice that µ ∈ partials(D,P) by construction.
We now claim that µ is maximal. For the sake of contradiction, assume that it
is not maximal, whereby there is a mapping ν ∈ partials(D,P) such that µ @ ν.
Consider nodes n,m in P such that (n,m) ∈ E(P), n,m ∈ Pν , n ∈ Pµ, and m 6∈ Pµ
(such a combination must exist as µ @ ν). As ν is a partial answer, and due to the
construction of P there must exist a mapping ν∗ ∈ Ω such that ν(v) = ν∗(v) for
every variable v ∈ scopeP (m), which implies that µ and ν∗ witness the fact that Ω is
not path-consistent. This is a contradiction, whereby we conclude that Ω ⊆ JP KD.

On the other hand, if the algorithm returns False, then every canonical query (for
every possible compatible tree structure) is not well-formed, which implies that there
do not exist the required triple patterns which satisfy all mappings in Ω.

We thus conclude that RevEng+(SP[AOFwd]) ∈ NP.
Item 2. The proof of this case is a relatively simple extension of item 1, and has

thus been omitted.

Proposition 3.14. The following decision problems are in PTIME:

1. RevEng+
tree(SP[AOFwd]),

2. RevEngE
tree(SP[AOFwd]),

Proof. The algorithm for this problem is similar to that of Proposition 3.13, where
guessing the tree structure is not necessary.

In the case where both positive and negative examples are provided, the strong
previous results are not applicable. Indeed, the tightest notion of candidate that
we may define here is that if the input is definable, then it will be definable by a
polynomially sized compatible pattern tree. We turn to that result now.

Lemma 3.12. Given an RDF graph D and two sets of mappings Ω, Ω̄, if (D,Ω, Ω̄)

∈ RevEng±(SP[AOFwd]) then there exists a polynomially-sized pattern tree P such
that Ω ⊆ JP KD and Ω̄ ∩ JP KD = ∅.

60

Proof. Assume (D,Ω, Ω̄) ∈ RevEng±(SP[AOFwd]), whereby there is a filter pattern
tree Q ∈ SP[AOFwd] such that Ω ⊆ JQKD and Ω̄ ∩ JQKD = ∅. We will now show that
there exists a pattern tree P with size polynomial in the size of the input (D,Ω, Ω̄),
such that Ω ⊆ JP KD and Ω̄ ∩ JP KD.

Firstly, let P have the same tree structure as Q, and let P contain the same
triple pattern as Q, i.e. P = (VP , EP , rP , λP , δP) such that VP = VQ, EP = EQ, and
λP = λQ. Next, consider a node n in Q and the filter expression φn = δQ(n). Build
the following filter expression ϕn:

ϕn =

 ∨
µ∈Ωn

∧
?X∈domn(µ)

?X = µ(?X)


︸ ︷︷ ︸

ϕ1
n

∨ ϕ2
n

where Ωn = {µ ∈ Ω | scopeQ(n) ⊆ dom(µ)} and domn(µ) = dom(µ) ∩ scopeQ(n).
Also, let NonMaximals = {µ̄ ∈ Ω̄ | such that µ̄ ∈ partials(D,Q) but µ̄ is not
maximal in partials(D,Q)}. For each such µ̄ ∈ NonMaximals let max(µ̄) be the
(unique) mapping such that µ̄ @ max(µ̄) and max(µ̄) ∈ JQKD. For node n, let
Nn = {max(µ̄) | µ̄ ∈ NonMaximals and scopeQ(n) ⊆ dom(max(µ̄))}. Define:

ϕ2
n =

∨
max(µ̄)∈Nn

∧
?X∈domn(max(µ̄))

?X = [max(µ̄)](?X).

We show Ω ⊆ JP KD. For this, consider µ ∈ Ω, and note that, as Q and P have the
same tree structure, there is a reduction Pµ E P such that var(Pµ) = dom(µ) and
µ(t) ∈ D for every triple pattern in Pµ (P has the same triple patterns as Q). Now
consider node n in Pµ and note that the filter ϕn = δP (n) is such that µ |= ϕn.

We show µ is maximal in partials(D,P). Assume that µ is not maximal in
partials(D,P), whereby there is ν ∈ partials(D,P) such that µ @ ν and ν is max-
imal in partials(D,P). We claim this would imply ν is also a partial answer in Q.
There is Qν E Q such that var(Qν) = dom(ν), and for every triple pattern t in Qν

we have ν(t) ∈ D (as Q and P have the same triple patterns). For a node n in Qν

and for φn = δP (n), consider the following, of which at least one holds:

1. if ν |= ϕ1
n, then there exists a mapping σ ∈ Ω such that σ and ν coincide on all

variables in scopeQ(n), whereby, as σ ∈ JQKD, we also have that ν |= δQ(n).

2. if ν |= ϕ2
n, then there is σ̄ ∈ Ω̄ such that max(σ̄) and ν coincide on all variables

in scopeQ(n), whereby, as max(σ̄) ∈ JQKD, we have ν |= δQ(n).

61

Both cases contradict the fact that µ is maximal in partials(D,Q), and thus it
must be the case that µ is maximal in partials(D,P). We conclude that Ω ⊆ JP KD.

We must now show that Ω̄ ∩ JP KD = ∅. For this, consider a mapping µ̄ ∈ Ω̄. We
claim that µ̄ 6∈ JP KD. There are two possibilities:

1. It may be the case that µ̄ 6∈ partials(D,Q). Then there are three further possi-
bilities, of which at least one must hold:

(a) There does not exist a reduction Pµ̄ such that var(Pµ̄) = dom(µ̄), in which
case µ̄ 6∈ JP KD. In the following items we assume that such a reduction
does exist.

(b) There is a node n in Qµ̄ and a triple pattern t in n such that µ̄(t) 6∈ D.
In this case, as Q and P have the same triple patterns, we also have that
µ 6∈ partials(D,P), whereby µ̄ 6∈ JP KD.

(c) There is a node n in Qµ̄ such that µ̄ 6|= φn = δQ(n). In this case, we
claim that µ̄ 6|= ϕn = δP (n) also. To see this, for the sake of contradiction,
assume that µ̄ |= ϕn, whereby there are two possibilities, of which at least
one must hold:

i. µ̄ |= ϕ1
n. In this case there is a mapping σ ∈ Ω such that µ̄ and σ

coincide on every variable in scopeQ(n), whereby µ̄ |= φn, which is a
contradiction.

ii. µ̄ |= ϕ2
n. In this case there is a mapping max(σ̄) for some σ̄ ∈ Ω̄,

such that scopeP (n) ⊆ dom(max(σ̄)), and max(σ̄) coincides with µ̄ on
every variable in scopeP (n). As max(σ̄) ∈ partials(D,Q) we must have
that max(σ̄) |= φn, whereby µ̄ |= φn, which is a contradiction.

By contradiction, then we have concluded that µ̄ 6|= ϕn, and thus that
µ̄ 6∈ JP KD.

In all three cases we have concluded that µ̄ 6∈ JP KD, in particular µ̄ 6∈ partials(D,

P).

2. It may be the case that µ̄ ∈ partials(D,Q) but µ̄ is not maximal. In this
case recall that there exists the mapping max(µ̄) ∈ partials(D,Q) such that
µ̄ @ max(µ̄) and max(µ̄) is maximal in partials(D,Q). Firstly, we note that
µ̄ ∈ partials(D,P), using arguments analogous to those used earlier in this
proof. We claim that µ̄ is not maximal in partials(D,P).

62

For this, note that there is a node n in Q such that the reduction Qµ̄ contains
the parent of n but not n itself, whereas scopeQ(n) ⊆ dom(max(µ̄)). In this
node, but now looking at P , we have that ϕn = ϕ1

n ∨ ϕ2
n is such that ϕ2

n

contains a conjunct which corresponds to max(µ̄), and thus max(µ̄) |= ϕn.
Note then that µ̄ may be extended to µ̄′ such that dom(µ̄′) = dom(µ̄) ∪ {?X |
n = topP (n)}, where for every variable in dom(µ̄) we have that µ̄′(?X) = µ̄(?X),
and for variables in {?X | n = topP (n)} we have µ̄(?X) = [max(µ̄)](?X). By
construction, then, we have that µ̄′ |= ϕn, and that µ̄′ satisfies the triple patterns
of n as well, whereby µ̄′ ∈ partials(D,P), allowing us to conclude that µ̄ is not
maximal in partials(D,P).

The previous implies that Ω̄∩ JP KD = ∅. Finally, it is straightforward to see that the
size of P is polynomial in the size of the input (D,Ω, Ω̄).

Proposition 3.15. The following decision problems are in Σp
2:

1. RevEng±(SP[AOwd]),

2. RevEng±(SP[AOF∧,=, 6=wd]),

3. RevEng±tree(SP[AOwd]),

4. RevEng±tree(SP[AOF∧,=, 6=wd]),

Proof. We proceed item by item.
Item 1. For RevEng±(SP[AOwd]), it is possible to guess a polynomially-sized

pattern tree P which mentions only variables in Ω and only constants in D, as the
number of nodes in P is bounded by the number of variables in Ω, and the number
of possible triple patterns in each node is also polynomially bounded by the size of
the input). By Proposition 3.6, Verify±(SP[AOwd]) ∈ DP, and an oracle for this
problem may be used.

Item 2. For RevEng±(SP[AOF∧,=, 6=wd]), the proof is similar (using Lemma 3.12)
and has been omitted.

Item 3. For RevEng±tree(SP[AOwd]), the result is trivial, as this is a special case
of RevEng±(SP[AOwd]).

Item 4. For RevEng±tree(SP[AOF∧,=,6=wd]), the result is trivial, as this is a special
case of RevEng±(SP[AOF∧,=, 6=wd]).

Proposition 3.16. The decision problem RevEng±(SP[AOFwd]) is in NP.

63

Proof. Consider the following NP algorithm. Given an input (D,Ω, Ω̄), as in the
proof of Proposition 3.13, guess a tree structure compatible with Ω and build the
corresponding canonical pattern tree P = P F

can(D,Ω). If this pattern tree is not
well-formed, reject; otherwise, continue.

We next proceed to check the negative examples in polynomial time. For each
negative mapping µ̄ ∈ Ω̄, if there is no Pµ̄ E P such that var(Pµ̄) = dom(µ̄) then µ̄
is not an answer, so skip to next µ̄ ∈ Ω̄. Otherwise, assume there exists Pµ̄. Next,
check whether µ̄ is a partial answer. If µ̄ is not a partial answer, then it is not an
answer, so skip to next µ̄ ∈ Ω̄. Otherwise, assume µ̄ is a partial answer.

Next, consider each leaf node n of Pµ̄ which has a child node m in P . Notice
that there must exist a mapping µ′ ∈ Ω such that µ̄(v) = µ′(v) for every variable
v ∈ scopeP (n) (due to the construction of the filter expressions). Now, there are
two possibilities for µ′: (i) if n is a leaf node of Pµ′ , then we conclude that there
exists no expansion of µ̄ into children of n (in other words, there exists no mapping
ν̄ ∈ partials(D,P) such that µ̄ @ ν̄ and some child n′ of n is in Pν̄), in which case we
register this fact and proceed to the next leaf node of Pµ̄; (ii) if n is not a leaf node of
Pµ′ , then µ̄ may expand in to the same child as µ′, whereby µ̄ is not maximal and is
thus not an answer, in which case we proceed to the next µ̄. If µ̄ cannot expand from
any of its leaf nodes, then µ̄ is maximal and is therefore an answer, in which case we
return False. If all negative examples are not answers, then return True.

If the previous algorithm accepts, notice that P is such that Ω ⊆ JP KD (see proof
of Proposition 3.13). By the check done in polynomial time in the previous paragraph,
we also conclude that Ω̄ ∩ JP KD = ∅.

Therefore, RevEng±(SP[AOFwd]) is in NP.

Proposition 3.17. The decision problem RevEng±tree(SP[AOFwd]) is in NP.

Proof. This is a trivial corollary of Proposition 3.16.

3.4.6 Lower bounds on reverse engineering problems

In this section we provide complexity lower bounds for the reverse engineering deci-
sion problems, thus closing the exact complexities for all these problems, except for
RevEng±tree(SP[AOFwd]), a result which is left open, to be addressed in future work.

Recall that for our smallest language, SP[A], we have PTIME upper bounds for
the positive and positive-and-negative examples reverse engineering problems, but
only a coNP upper bound for the exact variant. Given that the problem of verifying

64

that an SP[A] query exactly fits a set of example mappings is coNP-hard, it is not
surprising that the corresponding reverse engineering problem is also coNP-hard:

Proposition 3.18. RevEngE(SP[A]) is coNP-hard.

Proof. We show this via a reduction from the complement of the 3−Colourability

problem. Given a graph G = (V,E) with V = {v1, . . . , vn}, construct an instance
(DG,ΩG) as follows:

• Let DG = D0 ∪D1 ∪D2, where:

– D0 = {(ci, e, cj), (ci, s, cj) | i ∈ [1, 3], j ∈ [1, 3], i 6= j},

– Dk, k ∈ [1, 2], has a triple (ck` , e, c
k
m) for every edge {v`, vm} ∈ E and a

triple (ck` , s, c
k
`+1) for ` ∈ [1, n− 1].

• Let ΩG consist of mappings µk = [?X1 7→ ck1, . . . , ?Xn 7→ ckn], k ∈ [1, 2].

It is straightforward to show that G is not 3-colourable if and only if there exists
P ∈ SP[A] such that JP KDG = ΩG.

We now claim that if G is not 3-colourable, then there exists a P ∈ SP[A] such that
JP KDG = ΩG. For this, assume that G is not 3-colourable, whereby for any function
σ : {v1, . . . , vn} → {R,G,B}, σ is not a valid colouring for G. Consider, then, the
graph pattern P = {(?Xi, e, ?Xj) | i, j ∈ [1, n], {vi, vj} ∈ E} ∪ {(?Xi, s, ?Xi+1) | i ∈
[1, n− 1]}.

Note that µ1 ∈ JP KDG by mapping P to theD1 component. Similarly, µ2 ∈ JP KDG .
Note that any other mapping to either Dk will break the ordering required by the
(ck` , s, c

k
`+1) triples. Also, any mapping to the D0 component will have at least one

pair which maps to the same colour, making such a mapping impossible. Therefore,
JP KDG = {µ1, µ2}.

Conversely, we claim that if there exists a P ∈ SP[A] such that JP KDG = ΩG

then G is not 3-colourable. For this, assume that there exists a P ∈ SP[A] such that
JP KDG = ΩG and note that as there is no mapping to the D0 component, there exist
no valid colourings of G.

We move to lower bounds for SP[AOwd] for tree-like cases.

Proposition 3.19. The following decision problems are coNP-hard:

1. RevEng+
tree(SP[AOwd]),

2. RevEngE
tree(SP[AOwd]),

65

3. RevEng+
tree(SP[AOF∧,=, 6=wd]),

4. RevEngE
tree(SP[AOF∧,=, 6=wd]).

Proof. We proceed item by item.
Item 1. For RevEng+

tree(SP[AOwd]), we reduce from the complement of the
3−Colourability problem. Given a graph G = (V,E) with V = {v1, . . . , vn},
construct an instance (DG,ΩG) as follows:

• Let DG be the union of graphs D0, D1, D2, with

– D0 = {(r, a, c1)} ∪ {(ci, e, cj), (ci, s, cj) | i, j ∈ [1, 3], i 6= j},

– For k ∈ [1, 2], Dk = {(rk, a, ck1)} ∪ {(ck` , e, ckm) | {v`, vm} ∈ E} ∪
{(ck` , s, ck`+1) | ` ∈ [1, n− 1]}.

• Let ΩG consist of a mapping µ0 = [?R 7→ r, ?X1 7→ c1] and µk = [?R 7→ rk, ?X1 7→
ck1, . . . , ?Xn 7→ ckn], for k ∈ [1, 2].

We will now show that G is not 3-colourable if and only if there exists a SP[AOwd]

pattern P with ΩG ⊆ JP KDG .
Firstly, assume that G is not 3-colourable. In this case, consider the graph pattern

P = P1 OPTP2, where P1 = {(?R, a, ?X1)} and P2 = {(?Xi, e, ?Xj) | {vi, vj} ∈ E} ∪
{(?Xi, s, ?Xi+1) | i ∈ [1, n − 1]}. Note that all three mappings in ΩG are partial
answers, and that µ1, µ2 are clearly maximal, whereby µ1, µ2 ∈ JP KDG . For µ0, note
that any subsuming mapping must map into the D0 component, and that such a
mapping would imply the existence of a valid 3-colouring. As such a colouring does
not exist, we have that µ0 is maximal, and thus is also an answer. We then have that
ΩG ⊆ JP KDG .

Next, assume that there exists a graph pattern Q ∈ SP[AOwd] such that ΩG ⊆
JQKDG and note that due to Lemma 3.5, the candidate graph pattern Pcan(DG,ΩG)

works. Also, note that the graph pattern P defined in the previous paragraph is the
candidate graph pattern. Thus, we have that µ0 is a maximal partial answer, whereby
there is no subsuming pattern mapping into D0, and therefore, no valid colouring of
G.

Item 2. The same reduction works for the RevEngE
tree(SP[AOwd]) problem, as

the previous proof actually produces an input such that ΩG = JP KDG holds.
Item 3. For RevEng+(SP[AOF∧,=, 6=wd]), informally we need each colour ci to

be already matched by each ?X`. We can do this by introducing 3n more graphs,

66

isomorphic to Dk and disjoint from all others, except that ck` (in this copy) is merged
with ci.

More precisely, to show 3−Colourability ≤pm RevEng+(SP[AOF∧,=,6=wd]),
given an input G = (V,E) to 3−Colourability, construct an input (DG,ΩG)

to RevEng+(SP[AOF∧,=, 6=wd]) as follows:

• Let DG be the union of graphs D0, D1, D2, and D(i,p) for i ∈ [1, n], p ∈ [1, 3]

with

– D0, D1, and D2 constructed as in item (1).

– For each i ∈ [1, n] and p ∈ [1, 3], create D(i,p) as follows. Initially set
D(i,p) = D0 ∪ {(r(i,p), a, c

(i,p)
1)} ∪ {(c(i,p)

` , e, c
(i,p)
m) | {v`, vm} ∈ E} ∪ {(c(i,p)

` , s,

c
(i,p)
`+1) | ` ∈ [1, n− 1]}. Now, replace each c(i,p)

i by cp.

• Let ΩG consist of the following mappings:

– µ0, µ1, and µ2 constructed as in item (1).

– For each i ∈ [1, n] and p ∈ [1, 3], initially set µ(i,p) = [?R 7→ r(i,p), ?X1 7→
c

(i,p)
1 , . . . , ?Xn 7→ c

(i,p)
n]. Next, replace c(i,p)

i by cp.

This construction works in the same way as before, now constructing the Pcan

which corresponds to SP[AOF∧,=,6=wd], and invoking Lemma 3.6. The exact version
of the problem is analogous.

Next we consider the general cases of the problems and start with RevEng+

(SP[AOwd]).

Proposition 3.20. The following problems are Σp
2-hard:

1. RevEng+(SP[AOwd]),

2. RevEng±(SP[AOwd]),

3. RevEngE(SP[AOwd]).

Proof. We proceed item by item.
Item 1. Consider the following problem, which is known to be Σp

2-complete:

∃∀3Sat
Input: A quantified formula φ of the form ∃x̄∀ȳ ¬ψ, where x̄ and ȳ are

tuples of variables and ψ is a conjunction of clauses of the form
(`1 ∨ `2 ∨ `3), where `1, `2, `3 are either variables in x̄ ∪ ȳ or their
negations.

Output: True if φ is true, and False otherwise.

67

We will show that ∃∀3Sat ≤pm RevEng+(SP[AOwd]), that is, there is a polynomial-
time many-one reduction from ∃∀3Sat to RevEng+(SP[AOwd]).

Consider an instance φ = ∃x̄ ∀ȳ ¬ψ of ∃∀3Sat problem. Without loss of generality
we assume that clauses do not contain repeated literals.

We will construct (in polynomial-time) a corresponding instance (Dφ,Ωφ) of the
problem RevEng+(SP[AOwd]) such that φ is valid if and only if there exists a pattern
P ∈ SP[AOwd] such that Ωφ ⊆ JP KDφ .

We first construct the RDF graph Dφ as the union of the following disjoint parts,
where γ ∈ ψ means that a clause γ is a conjunct in ψ, and ` ∈ γ means that ` is a
literal in γ:

Dφ = D0 ∪ D1 ∪ D2 ∪
⋃
x∈x̄

Dx ∪
⋃
y∈ȳ

Dy ∪
⋃
γ∈ψ

Dγ

∪
⋃

γ∈ψ, `∈γ, ` uses x∈x̄

D(γ,`) ∪ D∗.

All the previous components, except the first and last, have very similar structure.
For this reason, we next describe a graph D̂s and then explain how to obtain Ds from
D̂s for different s in {1, 2}∪ x̄∪ ȳ∪{γ | γ ∈ ψ} and pairs (γ, `) for literals ` in clauses
γ. We also describe the D0 and D∗ components.

Let D̂s = D̂s
b ∪ D̂s

w ∪ D̂s
x̄ ∪ D̂s

u ∪ D̂s
ȳ ∪ D̂s

ψ ∪ D̂s
C where the subparts are as follows:

• D̂s
b = {(A,A, bs)},

• D̂s
w = {(bs,W, es)},

• D̂s
x̄ = {(es, Fx, f sx), (es, Tx, t

s
x) | x ∈ x̄},

• D̂s
u = {(bs, U, ds)},

• D̂s
ȳ = {(ds, Ry, r

s
y) | y ∈ ȳ},

• D̂s
ψ = {(ds, Rγ, r

s
γ) | γ ∈ ψ},

• D̂s
C = {(rsγ,FArg i, f sx), (rsγ,TArg i, t

s
x) | γ ∈ ψ, literal `i, i ∈ [1, 3], in γ uses

variable x ∈ x̄}
∪ {(rsγ,Argsi , rsx) | γ ∈ ψ, literal `i, i ∈ [1, 3], in γ uses variable y ∈ ȳ}.

We are ready to describe the parts of Dφ:

1. Let D0 = {(A,A, b0)},

68

2. Let D1 = D̂1 and D2 = D̂2,

3. For each x ∈ x̄, let Dx = D̂x
b ∪ D̂x

w ∪ D̂x
x̄ ∪ D̂x

ψ ∪ D̂x
C , removing the triples

(ex, F x
x , f

x
x) and (ex, T xx , t

x
x),

4. For each y ∈ ȳ, letDy = D̂y
b∪D̂y

u∪D̂
y
ȳ∪D̂y

ψ∪D̂
y
C , removing the triple (dy, Ry

y, f
y
y),

5. For each γ ∈ ψ, let Dγ = D̂γ
b ∪ D̂γ

u ∪ D̂
γ
ȳ ∪ D̂γ

ψ ∪ D̂
γ
C , removing the triple

(dγ, Rγ
γ , f

γ
γ),

6. For each literal `i which has number i and mentions a variable x ∈ x̄, in each
clause γ, let D(γ,`i) = D̂

(γ,`i)
b ∪ D̂(γ,`i)

u ∪ D̂(γ,`i)
ȳ ∪ D̂(γ,`i)

ψ ∪ D̂(γ,`i)
C , removing the

triples (r
(γ,`i)
γ ,FArg

(γ,`i)
i , f

(γ,`i)
x) and (r

(γ,`i)
γ ,TArg

(γ,`i)
i , t

(γ,`i)
x),

7. Let D∗ consists of the following triples, assuming that each γ ∈ ψ has 7 satis-
fying assignments hγ1 , . . . , h

γ
7 :

• (A,A, b∗),

• (b∗, U, d∗),

• (d∗, Ry, f
∗
y) and (d∗, Ry, t

∗
y) for each y ∈ ȳ,

• (d∗, Rγ, r
∗
(γ,1)), . . . , (d

∗, Rγ, r
∗
(γ,7)) for each γ ∈ ψ,

• (r∗(γ,j),VArg
(γ,1), v∗z1), . . . , (r∗(γ,j),VArg

(γ,3), v∗z3) for satisfying assignments hγj
of each γ = `1 ∨ · · · ∨ `3 in ψ, where

– zi ∈ x̄ ∪ ȳ,

– v∗zi =

{
f ∗zi if hγj (zi) = False,

t∗zi otherwise,

– VArg (γ,i) =


FArg i if zi ∈ x̄ and hγj (zi) = False,

TArg i if zi ∈ x̄ and hγj (zi) = True,

Arg i if zi ∈ ȳ.

Having completed the RDF graph, we next define the set Ωφ with the following
mappings:

1. µ0 = [?b 7→ b0],

2. For each k = 1, 2, the mapping µk assigns

?b 7→ bk, ?e 7→ ek, ?d 7→ dk,
?fx 7→ fkx , ?tx 7→ tkx, for each x ∈ x̄,
?ry 7→ rky , for each y ∈ ȳ,
?rγ 7→ rkγ , for each γ ∈ ψ,

69

3. For each x ∈ x̄, µx = [?b→ bx, ?e→ ex],

4. For each s in variables ȳ, clauses in ψ, pairs (`i, γ) with `i a literal in a clause
γ that uses a variable in x̄, or ∗, µs = [?b→ bs, ?d→ ds].

We now show that there exists an SP[AOwd] pattern P such that Ωφ ⊆ JP KDφ if
and only if φ is true.

For the first direction, assume that φ is true, in which case there is an assignment
σ : x̄ → {F, T} such that for every assignment δ : ȳ → {F, T} it is the case that
¬ψ holds. With this, consider the following graph pattern (represented as a pattern
tree):

{(A,A, ?b)}

{(?b,W, ?e)}

Pe

{(?b, U, ?d)}

Pd

where:

Pd = {(?d, Ry, ?ry) | y ∈ ȳ}

∪ {(?d, Rγ, ?rγ) | γ ∈ ψ}

∪ {(?rγ,TArg i, ?tx) | γ ∈ ψ, x ∈ γ[i] such that σ(x) = T}

∪ {(?rγ,FArg i, ?fx) | γ ∈ ψ, x ∈ γ[i] such that σ(x) = F}

∪ {(?rγ,Arg i, ?ry) | γ ∈ ψ, y ∈ γ[i]}.

With the previous, notice that variables ?fx have not been mentioned for x ∈ x̄ such
that σ(x) = F , and similarly for ?tx such that σ(x) = F . Therefore:

Pe = {(?e, Tx, ?tx) | x ∈ x̄ such that σ(x) = F}

∪ {(?e, Fx, ?fx) | x ∈ x̄ such that σ(x) = T}.

We claim that the previous graph pattern P is such that Ω ⊆ JP KDφ .

• µ0 is an answer, as it maps the root node of P to the D0 component of Dφ (it
is clearly maximal as well).

• For each k ∈ [1, 2], µk is a (clearly maximal) partial answer. To see this, note
that µk maps the three inner nodes of P to the Dk component. Also, µk maps
the left leaf, Pe to the Dk

x̄ sector of the Dk component (note that Dk
x̄ contains

both (ek, Fx, f
k
x) and (ek, Tx, t

k
x) for each x).

70

Now consider the right leaf, Pd. µk maps (?d, Ry, ?ry) and (?d, Rγ, ?rγ) triples
to the Dk

ȳ and Dk
ψ̄
subcomponents, respectively. For each γ ∈ ψ, and i ∈ [1, 3],

let x be the propositional variable mentioned in literal γ[i]; if σ(x) = T then
triple (?rγ,TArg i, ?tx) maps to (rkγ ,TArg i, t

k
x); again, both options are present

in the Dk
C subcomponent. The situation is similar for the (?rγ,Arg i, ?ry) triples.

We conclude that µk ∈ JP KDφ .

• For x ∈ x̄, consider the mapping µx. The ?b and ?e nodes of P are clearly
mapped to the Dx component, and hence µx is a partial answer. We must now
show that µx is maximal. For the right inner node, there is clearly no expansion
(µx)′ which mentions ?d, as the triple (bx, U, dx) does not exist.

For the left leaf, Pe consider the Dx
x̄ subcomponent. Note that a triple pattern

(?e, Tx, ?tx) ∈ Pe maps to a triple (ex, Tx, ?) inDx
x̄. However, the only possibility

is (ex, Tx, tx), which was explicitly excluded from the subcomponent. Therefore,
µx is maximal.

• For the rest of the µs mappings, except µ∗, an argument similar to that of the
previous item applies.

• For µ∗, it is clearly a partial answer, as the ?b and ?d inner nodes map to the D∗

component. We must show that it is maximal. We proceed by contradiction,
assuming there is an expansion ν∗, and show that this contradicts the fact that
∀ȳ¬ψ holds.

Assume that there is a mapping ν∗ such that µ∗ @ ν∗ which is an answer, and
note immediately that it does not mention ?e as the D∗ component does not
include (b∗,W, e∗). Therefore, ν∗ must define the variables in Pd.

– For (?d, Ry, ?ry) triples, we see that ν∗ must map either ?ry 7→ t∗y or
?ry 7→ f ∗y , thus inducing an assignment δ : ȳ → {F, T}.

– For (?d, Rγ, ?rγ) triples, ν∗ must map ?rγ 7→ r∗(γ,j) for some jγ ∈ [1, 7], thus
representing one of the 7 truth-states of γ.

– For (?rγ,TArg i, ?tx) triple patterns, we have that x is mentioned in γ[i]

and σ(x) = T . Note that the previous item forces ?rγ 7→ r∗(γ,jγ), where
jγ ∈ [1, 7] is the truth-state of γ. Let hγjγ be the satisfying assignment of
clause γ associated to truth-state jγ.

For the first literal of γ and considering truth-state jγ, there are two pos-
sibilities:

71

1. γ[1] mentions y ∈ ȳ, a possibility which will be considered later, as it
offers no information on triple pattern (?rγ,TArg i, ?tx).

2. γ[1] mentions x ∈ x̄. There are two further possibilities:
(a) hγjγ (x) = T , whereby the triple (r∗(γ,jγ),VArg1, v

∗
z1

) ofD∗ is such that
z1 = x, VArg1 = TArg1, and v∗z1 = t∗x. Thus, (r∗(γ,jγ),TArg1, t

∗
x) ∈ D∗,

implying that ν∗ must map ?tx 7→ t∗x.
(b) hγjγ (x) = F , whereby the triple (r∗(γ,jγ),VArg1, v

∗
z1

) of D∗ is such
that z1 = x, VArg1 = FArg1, and v∗z1 = f ∗x . Thus, (r∗(γ,jγ),FArg1, f

∗
x) ∈

D∗. As ν∗ cannot map (?rγ,TArg1, ?tx) to this triple, no information
is gained.

The same holds for the second and third literal of γ.

– For (?rγ,FArg i, ?fx) triple patterns, and analogously to the previous item,
we have that if, for literal i of γ there is a variable x ∈ x̄ and truth-state jγ
is such that hγjγ (x) = F , then it must be the case that ν∗ maps ?fx 7→ f ∗x ;
otherwise, no restriction is added.

– For (?rγ,Arg i, ?ry) triple patterns, we have that y is mentioned in γ[i].
Note that a previous item forces ?rγ 7→ r∗(γ,jγ), where jγ ∈ [1, 7] is the
truth-state of γ. Let hγjγ be the satisfying assignment of clause γ associated
to truth-state jγ.

For the first literal of γ and considering truth-state jγ, there are two pos-
sibilities:

1. γ[1] mentions x ∈ x̄, a possibility which offers no information on triple
pattern (?rγ,Arg i, ?ry).

2. γ[1] mentions y ∈ ȳ. There are two further possibilities:
(a) hγjγ (y) = T , whereby the triple (r∗(γ,jγ),VArg

(γ,1)
1 , v∗z1) of D∗ is such

that z1 = y, VArg (γ,1) = Arg1, and v∗z1 = t∗y. Thus, (r∗(γ,jγ),Arg1, t
∗
y) ∈

D∗, implying that ν∗ must map ?ry 7→ t∗y.
(b) hγjγ (y) = F , whereby the triple (r∗(γ,jγ),VArg

(γ,1), v∗z1) of D∗ is such
that z1 = y, VArg (γ,1) = Arg1, and v∗z1 = f ∗y . Thus, (r∗(γ,jγ),Arg1, f

∗
y) ∈

D∗, implying that ν∗ must map ?ry 7→ f ∗y .

Crucially, note that item 2 immediately above implies a restriction on ν∗ that
must agree with the truth assignment induced previously on ȳ. This is the case
if and only if the truth-states jγ correspond to the values clauses γ would have
under assignment σ∪δ. As we have assumed that ν∗ exists and satisfies all triple

72

pattern, have conclude that the induced assignment δ is such that every clause
γ is in a truth-state, and therefore ψ evaluates to True under σ ∪ δ, whereby
¬ψ evaluates to False. This contradicts the assumption that σ has the property
that for every assignment of ȳ, ¬ψ holds (i.e. evaluates to True), whereby we
conclude that ν∗ cannot exist, and therefore µ∗ is an answer.

We have thus shown that Ωφ ⊆ JP KDφ , and therefore that a realiser exists.
We now consider the other direction, assuming there exists a graph pattern Q ∈

SP[AOwd] such that Ωφ ⊆ JQKDφ . We must show that φ is true.
As Q is compatible with Ω, we have that Q must have the following structure

(where Pb, Pe, and Pd are possibly empty):

{(A,A, ?b)}

{(?b,W, ?e)}

Pe

Pb {(?b, U, ?d)}

Pd

The triple patterns included above are the only triple patterns which satisfy all map-
pings in Ω, and therefore must be included. For Pb, note that there are no triple
patterns which mention ?b, ?tx, etc. (excluding ?e and ?d) which hold for both µk

mappings, whereby Pb is discarded. For Pe, note that the only triple patterns which
may exist are of the form (?e, Tx, ?tx) and (?e, Fx, ?fx) (in order for both µk mappings
to be partial answers), and similarly for Pd. While it will not be shown explicitly, it
is the case that Q = P . From the arrangement of the ?tx and ?fx variables in Q, an
assignment sigma : x̄ → {F, T} can be defined which serves as a witness that φ is
valid.

We thus conclude that RevEng+(SP[AOwd]) is Σp
2-hard.

Item 2. The previous proof immediately results in the Σp
2-hardness of RevEng±

(SP[AOwd]), as the reduction corresponding to RevEng+(SP[AOwd]) ≤pm RevEng±

(SP[AOwd]) may simply set Ω̄ = ∅.
Item 3. In the previous proof, it is the case that φ is valid if and only if there

exists P ∈ SP[AOwd] such that Ωφ = JP KDφ (and not merely Ωφ ⊆ JP KDφ), whereby
the same construction proves the Σp

2-hardness of RevEngE(SP[AOwd]).

A small modification of the previous proof (as in Proposition 3.20) gives us the
same lower bounds for the case of SP[AOF∧,=, 6=wd]:

Proposition 3.21. The following problems are Σp
2-hard:

73

1. RevEng+(SP[AOF∧,=, 6=wd]),

2. RevEng±(SP[AOF∧,=, 6=wd]),

3. RevEngE(SP[AOF∧,=, 6=wd]),

Proof. This proof is a generalisation of the previous proof (i.e. the proof of Proposition
3.20) which uses the same techniques as the generalisations of the coNP lower bounds
presented in the proof of Proposition 3.19, that is, a suitable amount of copies of the
graph must be included, and the realiser graph pattern will include all appropriate
filter expressions.

We now have the NP-hardness for the problems with arbitrary filter:

Proposition 3.22. The following problems are NP-hard:

1. RevEng+(SP[AOFwd]),

2. RevEng±(SP[AOFwd]),

3. RevEngE(SP[AOFwd]),

Proof. We show this by a reduction of the 3Sat problem. Given a formula φ of the
form ∃x̄ ψ with ψ a conjunction of clauses `1∨`2∨`3, where each `i is either a variable
from x̄ or its negation, we construct an instance (D,Ω) as follows. Let D consists of
disjoint parts D0, Du, Dw, D1, D2, where

• D0 = {(A,A, b0)},

• Du = {(A,A, bu), (bu, U, eu)},

• Dw = {(A,A, bw), (bw,W, dw)},

• Di, i = 1, 2, has triples (A,A, bi), (bi, U, ei), (bi,W, di), triples (ei, vix, f
i
x), (e

i, vix,

tix) for each x ∈ x̄, and triples (di, ciγ, s
i
1), . . . , di, ciγ, s

i
3) for each clause γ =

`1 ∨ · · · ∨ `3 in ψ, where each sij is f ix if `j = ¬x and is tix if `j = x.

Let Ω consists of mappings

• µ0 = [?b 7→ b0],

• µu = [?b 7→ bu, ?e 7→ eu],

• µw = [?b 7→ bw, ?d 7→ dw],

74

• µi, i = 1, 2, maps ?b 7→ bi, ?e 7→ ei, ?d 7→ di, maps ?vx 7→ vix, ?fx 7→ f ix, ?tx 7→ tix

for every x ∈ x̄ and maps ?cγ 7→ ciγ for each γ in ψ.

It can be seen that φ is satisfiable if and only if there exists a pattern P in
SP[AOFwd] such that Ω ⊆ JP KD. Moreover, the same reduction works for RevEng±

(taking Ω̄ = ∅) and for RevEng+.

The lower bound for RevEng±tree(SP[AOFwd]) is left open. Thus, this decision
problem may yet be found to be in PTIME or ultimately found to be NP-hard.

Proposition 3.23. The following problems are Σp
2-hard:

1. RevEng±tree(SP[AOwd]),

2. RevEng±tree(SP[AOF∧,=, 6=wd]).

Proof. For RevEng±tree(SP[AOwd]) the proof is similar to that of Proposition 3.20,
with the main difference being that now the constructed Ωφ must be tree-like. We
proceed to showing that ∃∀3Sat ≤pm RevEng±tree(SP[AOwd]).

Consider an instance φ = ∃x̄∀ȳ ¬ψ of the ∃∀3Sat problem. Without loss of
generality we assume that clauses do not contain repeated literals.

We will construct (in polynomial-time) a corresponding instance (Dφ,Ωφ, Ω̄φ) of
the problem RevEng±tree(SP[AOwd]) such that φ is valid if and only if there exists a
pattern P ∈ SP[AOwd] such that Ωφ ⊆ JP KDφ and Ω̄φ ∩ JP KDφ = ∅.

We first construct the RDF graph Dφ as the union of the following disjoint parts,
where γ ∈ ψ means that a clause γ is a conjunct in ψ, and ` ∈ γ means that ` is a
literal in γ:

Dφ = D0 ∪ D1 ∪ D2 ∪
⋃
x∈x̄

Dx ∪
⋃
y∈ȳ

Dy ∪
⋃
γ∈ψ

Dγ

∪
⋃

γ∈ψ,`∈γ

D(γ,`) ∪ D∗ ∪ D¬ ∪
⋃

i,j∈[1,n+p+q]

D(+,i,j).

Several of the previous components have very similar structure. For this reason, we
next describe a graph D̂s and then explain how to obtain Ds from D̂s for different
s in {1, 2} ∪ x̄ ∪ ȳ ∪ {γ | γ ∈ ψ} and pairs (γ, `). We describe the D0, D∗, and D¬

components separately.
Define the subcomponents D̂s

b , D̂s
x̄, D̂s

x̄,2, D̂s
ȳ, D̂s

ψ, D̂s
C , D̂s

C,2, and D̂s
X as follows,

letting D̂s = D̂s
b ∪ D̂s

x̄,2 ∪ D̂s
ȳ ∪ D̂s

ψ ∪ D̂s
C,2 ∪ D̂s

X for ease of notation:

• D̂s
b = {(A,A, bs)},

75

• D̂s
x̄ = {(bs, Fx, f sx), (bs, Tx, t

s
x) | x ∈ x̄},

• D̂s
x̄,2 = {(bs, Fx, rsx), (bs, Tx, rsx) | x ∈ x̄},

• D̂s
ȳ = {(bs, Ry, r

s
y) | y ∈ ȳ},

• D̂s
ψ = {(bs, Rγ, r

s
γ) | γ ∈ ψ},

• D̂s
C = {(rsγ,FArg i, f sx), (rsγ,TArg i, t

s
x) | γ ∈ ψ, literal `i, i ∈ [1, 3], in γ uses

variable x ∈ x̄}
∪ {(rsγ,Arg i, rsy) | γ ∈ ψ, literal `i, i ∈ [1, 3], in γ uses variable y ∈ ȳ}.

• D̂s
C,2 = {(rsγ,FArg i, rsx), (rsγ,TArg i, rsx) | γ ∈ ψ, literal `i, i ∈ [1, 3], in γ uses

variable x ∈ x̄}
∪ {(rsγ,Arg i, rsy) | γ ∈ ψ, literal `i, i ∈ [1, 3], in γ uses variable y ∈ ȳ}.

• Let m = n+ p+ q and define the sequence ᾱ = α1, . . . , αm, where:

α1, . . . , αn = γ1, . . . , γn,

αn+1, . . . , αn+p = x1, . . . , xp,

αn+p+1, . . . , αn+p+q = y1, . . . , yq.

With the previous, for each i, j ∈ [1,m], let Ds
X = {(rsαi , X, r

s
αj

)}.

We are ready to describe the parts of Dφ:

1. Let D0 = D̂0
b = {(A,A, b0)},

2. For k = 1, 2, let Dk = D̂k,

3. For each x ∈ x̄, let Dx = D̂x, removing the triples (bx, F x
x , r

x
x) and (bx, T xx , r

x
x),

4. For each y ∈ ȳ, let Dy = D̂y, removing the triple (by, Ry
y, r

y
y),

5. For each γ ∈ ψ, let Dγ = D̂γ, removing the triple (bγ, Rγ
γ , r

γ
γ),

6. For each clause γ ∈ ψ and each literal `i ∈ γ in position i ∈ [1, 3], mentioning a
variable x ∈ x̄, let D(γ,`i) = D̂(γ,`i), removing the triples (r

(γ,`i)
γ ,FArg

(γ,`i)
i , f

(γ,`i)
x)

and (r
(γ,`i)
γ ,TArg

(γ,`i)
i , t

(γ,`i)
x),

7. For each clause γ ∈ ψ and each literal `i ∈ γ in position i ∈ [1, 3], mentioning a
variable y ∈ ȳ, let D(γ,`i) = D̂(γ,`i), removing the triple (r

(γ,`i)
γ ,Arg

(γ,`i)
i , f

(γ,`i)
x),

76

8. Let D∗ consists of the following triples, assuming that each γ ∈ ψ has 7 satis-
fying assignments hγ1 , . . . , h

γ
7 :

• (A,A, b∗),

• (b∗, T ∗x , r
∗
x) and (b∗, F ∗x , r

∗
x) for each x ∈ x̄,

• (b∗, Ry, f
∗
y) and (b∗, Ry, t

∗
y) for each y ∈ ȳ,

• (b∗, Rγ, r
∗
(γ,1)), . . . , (b

∗, Rγ, r
∗
(γ,7)) for each γ ∈ ψ,

• (r∗(γ,j),VArg
(γ,1), v∗z1), . . . , (r∗(γ,j),VArg

(γ,3), v∗z3) for satisfying assignments hγj
of each γ = `1 ∨ · · · ∨ `3 in ψ, where zi ∈ x̄ ∪ ȳ and

VArg (γ,i), v∗zi =


FArg i, f

∗
x if zi = x ∈ x̄, hγj (x) = False,

TArg i, t
∗
x if zi = x ∈ x̄, hγj (x) = True,

Arg i, f
∗
y if zi = y ∈ ȳ, hγj (y) = False,

Arg i, t
∗
y if zi = y ∈ ȳ, hγj (y) = True,

9. Let D¬ = D̂¬b ∪ D̂¬x̄ ∪ D̂¬ȳ ∪ D̂¬ψ̄ ∪ D̂
¬
C ∪ D̂¬X ,

10. For i, j ∈ [1,m], let D(+,i,j) = D̂
(+,i,j)
X , removing the triple (r+

αi
, X, r+

αj
).

Having completed the RDF graph, we next define the set Ωφ with the following
mappings:

1. µ0 = [?b 7→ b0],

2. For each k = 1, 2, the mapping µk assigns

?b 7→ bk,
?rx 7→ rkx, for each x ∈ x̄,
?ry 7→ rky , for each y ∈ ȳ,
?rγ 7→ rkγ , for each γ ∈ ψ,

3. For each x ∈ x̄, µx = [?b→ bx],

4. For each y ∈ ȳ, µy = [?b→ by],

5. For each γ ∈ ψ, µγ = [?b→ bγ],

6. For each pair (γ, `i), µ(γ,`i) = [?b→ b(γ,`i)],

7. For each pair i, j ∈ [1,m], µ(+,i,j) = [?b→ b(+,i,j)],

8. µ∗ = [?b→ b∗].

77

Finally, the set of negative examples is Ω̄φ = {µ̄} with µ̄ = [?b 7→ b¬].
Note that in this case the structure of Ωφ is as follows:

{µ0, µx, . . .}?b

{µ1, µ2}?tx,...

We must show that φ is True if and only if (Dφ,Ωφ, Ω̄φ) ∈ RevEng±tree(SP[AOwd]).
For the first direction, assume that φ is True, whereby there exists the assignment

σ : x̄ → {F, T} with the usual properties. Construct a realiser P as follows. Firstly,
P will have the tree structure:

{(A,A, ?b)}

P1

where P1 consists of the following triple patterns:

• (?b, Tx, ?rx) for each x ∈ x̄ such that σ(x) = T ,

• (?b, Fx, ?rx) for each x ∈ x̄ such that σ(x) = F ,

• (?b, Ry, ?ry) for each y ∈ ȳ,

• (?b, Rγ, ?rγ) for each γ ∈ ψ,

• (?rγ,TArg i, ?rx) for each γ ∈ ψ, i ∈ [1, 3], and x ∈ x̄ such that x is mentioned
in the i-th position of γ and σ(x) = T ,

• (?rγ,FArg i, ?rx) for each γ ∈ ψ, i ∈ [1, 3], and x ∈ x̄ such that x is mentioned
in the i-th position of γ and σ(x) = F ,

• (?rγ,Arg i, ?ry) for each γ ∈ ψ, i ∈ [1, 3], and y ∈ ȳ such that y is mentioned in
the i-th position of γ,

• (?rαi , X, ?rαj) for each i, j ∈ [1,m],

We claim that P is such that Ω ⊆ JP KDφ and Ω̄ ∩ JP KDφ = ∅.
Firstly, note that all mappings µ ∈ Ω are partial answers of P over Dφ, by con-

struction, whereby we turn to their maximality.

• µb is maximal due to the fact that D0 only has one triple,

• µ1 and µ2 are trivially maximal,

78

• For a given x ∈ x̄, µx is maximal due to the fact that the root node of P ,
{(A,A, ?b)} may only be mapped to the Dx subcomponent. In the second node,
P1, the triple pattern (?b, Tx, ?rx) (or (?b, Fx, ?rx), depending on the value of
σ(x)) cannot be mapped, as Dx is explicitly missing the triple (bx, Tx, r

x
x),

• The µy, µγ, µ(γ,`i), and µ(+,i,j) mappings are maximal for the same reason as
the previous item.

• µ∗ is maximal for the same reasons as described in the proof of Proposition
3.20: an answer ν∗ such that µ∗ @ ν∗ would contradict the fact that φ is True.

Finally, µ̄ must not be an answer. As µ̄ is a partial answer (mapping the root node
of P to the D¬ component), we claim that it is not maximal. This is clearly the case,
as D¬ contains copies of all necessary triples. Therefore,

In the other direction, we now claim that there exists a pattern tree Q ∈ SP[AOwd]

such that Ωφ ⊆ JQKDφ and Ω̄φ ∩ JQKDφ = ∅ and we must prove that φ is True.
Due to that fact that Q is compatible with Ωφ, we have that Q must have a root

node rQ ∈ V (Q) with the triple pattern (A,A, ?b) (this is the only triple pattern
that is satisfied by all mappings in Ωφ). Now, we claim that Q has only one child
node. For this, assume there exists a node n ∈ V (Q) such that (rQ, n) ∈ E(Q), and
a different node m ∈ E(Q). Therefore, there are two variables ?rαi and ?rαj such
that topQ(?rαi) = n and topQ(?rαj) = m. Note that variable ?rαj corresponding to
m is out of scope in n, whereby it may not be mentioned in that node. Therefore,
the triple pattern (?rαi , X, ?rαj) is not included in n.

Now, note that the mapping µ(+,i,j) is a partial answer of Q and note that the
subcomponent D(+,i,j) contains all possible triples except (r

(+,i,j)
αi , X, r

(+,i,j)
αj). There-

fore, the only valid triple pattern which is not satisfied by µ(+,i,j) is (?rαi , X, ?rαj),
which is not included in n. Therefore, there is a subsuming mapping ν(+,i,j) which
covers node n, which contradicts the fact that µ(+,i,j) is maximal. We thus conclude
that Q has only one node other than the root, and we name this node Q1.

Using a similar argument, we see that the maximality of µy for each y ∈ ȳ im-
plies that triple pattern (?b, Ry, ?ry) must be included in Q, and similarly for all
(?b, Rγ, ?rγ) and (?rγ,Arg i, ?ry) triple patterns.

For µx mappings, we conclude that either (?b, Tx, ?rx), (?b, Fx, ?rx), or both
must be present, and µ(γ,`i) mappings similarly show us that either (?b,TArg i, ?rx),
(?b,FArg i, ?rx), or both must be present.

79

SP[A] SP[AOwd] SP[AOF∧,=,6=wd] SP[AOFwd]
RevEng+ in PTIME Σp

2-c Σp
2-c NP-c

RevEngE coNP-c Σp
2-c Σp

2-c NP-c
RevEng± in PTIME Σp

2-c Σp
2-c NP-c

RevEng+
tree in PTIME coNP-c coNP-c in PTIME

RevEngE
tree coNP-c coNP-c coNP-c in PTIME

RevEng±tree in PTIME Σp
2-c Σp

2-c in NP

Table 3.3: Complexity of reverse engineering problems.

We now turn to µ̄, which is not an answer of Q, implying that it is not maximal,
whereby there exists a mapping ν̄ such that µ̄ @ ν̄ and ν ∈ JQKDφ , noting that ν̄
must map Q1 into the D¬ subcomponent.

We now claim that, given x ∈ x̄, either (?b, Tx, ?rx) or (?b, Fx, ?rx) are present in
Q1, but not both. For the sake of contradiction, assume that both are included. This
is a contradiction as (?b, Tx, ?rx) implies that ν̄ maps ?rx 7→ r¬x , while (?b, Fx, ?rx)

implies that ν̄ maps ?rx 7→ r¬x , which cannot both hold. Therefore, either (?b, Tx, ?rx)

or (?b, Fx, ?rx) are in Q1, but not both. In fact, exactly one of these triple patterns
are included, for each x ∈ x̄. Using a similar argument, we have that for each
combination of γ ∈ ψ, i ∈ [1, 3], and x ∈ x̄ such that γ uses x at position i exactly
one of (?b,TArg i, ?rx) and (?b,FArg i, ?rx) are present. Finally, we may also conclude
that for each x ∈ x̄, (?b, Tx, ?rx) is present if and only if (?b,TArg i, ?rx), and similarly
for (?b, Fx, ?rx) and (?b,FArg i, ?rx).

With the previous, we may define an assignment σ : x̄ → {F, T} such that for
each x ∈ x̄, σ(x) = T if and only if (?b, Tx, ?rx) is in Q1.

Finally, the maximality of µ∗ works as usual, allowing us to conclude that φ is
True.

Item 2. The generalisation to SP[AOF∧,=,6=wd] is as usual, and has been omitted.

Finally, Theorem 3.2 summarises the results of this section:

Theorem 3.2. The complexity results in Table 3.3 hold.

3.5 Algorithms for Reverse Engineering

In this section we discuss the algorithms that can be used to solve the reverse engineer-
ing problems RevEng+

tree(SP[AOwd]) and RevEng+
tree (SP[AOF∧,=, 6=wd]). Although

80

the core ideas for these algorithms were presented in the complexity upper bounds
results of Section 3.4.2, we now describe the algorithms and discuss modifications for
returning more desirable reverse engineered queries.

Given an input (D,Ω), if Ω is an arbitrary set of mappings (i.e. not necessar-
ily tree-like), then the structure C(Ω) (as defined in Section 3.4.2) does not clearly
indicate an OPT structure for the reverse engineered query, in which case the al-
gorithm must iterate over all possible OPT structures and construct a candidate
query for each such structure. In what follows, we focus our attention on the tree-like
cases (RevEng+

tree(SP[AOwd]) and RevEng+
tree(SP[AOF∧,=,6=wd])), where the struc-

ture C(Ω) of Ω immediately gives the OPT-structure, from which we construct the
unique candidate query (with the additional requirement of deciding which triple
patterns to include in the query) in polynomial time. The complexity lower bound
results, however, indicate that even once the candidate query P is constructed, we
must check that Ω ⊆ JP KD actually holds (this is due to the fact that the candi-
date query has the property that (D,Ω) ∈ RevEng+ if and only if Ω ⊆ JP KD).
However, this clean separation between the polynomial time construction of the can-
didate query and the coNP-complete verification of said query will allow us to use a
state-of-the-art SPARQL engine for the final step.

Algorithm 2 outlines a framework for solving the RevEng+ (SP[AOwd]) decision
problem. Firstly, if Ω is not consistent then there is no query P ∈ SP[AOF] such
that Ω ⊆ JP KD (see Section 3.2.1). Function CheckCanon(D,Ω) simply verifies that
the candidate reverse-engineered query P is in SP[AOwd] (note that if the candidate
query is not in SP[AOwd], then we have that the input is not definable). Function
BuildCanon(D,Ω) uses the structure C(Ω) to build the candidate query P , and corre-
sponds to the recursive function P = Pcan(D,Ω) = Pcan(Ω, D,Ω) which was described
in detail in Equation 3.1 of Section 3.4.2. Notice that for each leaf element Λ in
the structure C(Ω) we set Pcan(Λ, D,Ω) = atype(D,ΩVarsOf(Λ)), which by definition
includes all existing triple patterns which satisfy the mappings in ΩVarsOf(Λ). For this
reason, we call this the maximal algorithm. Finally, once built, the candidate query
P must be checked, returning P if Ω ⊆ JP KD and null otherwise. This final check can
be delegated to an external SPARQL engine.

Now we consider a greedy version of the algorithm, which differs from the max-
imal algorithm only in the construction of the candidate P . Intuitively, for an el-
ement Λ ∈ C(Ω) it is not necessary for Pcan(Λ, D,Ω) to include all triple patterns
in atype(D,ΩVarsOf(Λ))—merely enough triple patterns from atype(D,ΩVarsOf(Λ)) to
ensure that the positive examples µ ∈ Ω will in fact be answers µ ∈ JP KD. More

81

precisely, for each element Λ ∈ C(Ω) we define a relaxed P greedy
can (Λ, D,Ω), which must

be a subset of atype(D,ΩVarsOf(Λ)) such that (i) every variable ?X ∈ VarsOf(Λ) is men-
tioned in at least one triple pattern of P greedy

can (Λ, D,Ω) (this is a requirement for P
to be in SP[AOwd]), and (ii) if Λ′ is the parent of Λ in C(Ω) (i.e. the unique minimal
superset of Λ in C(Ω)), then for each mapping µ ∈ Λ′ \ Λ, for every ν such that
µ @ ν there must exist a triple pattern t ∈ P greedy

can (Λ, D,Ω) such that ν(t) 6∈ D. The
previous condition (ii) effectively ensures that µ is a maximal partial answer.

We may now implement BuildCanon(D,Ω) to find, for each element Λ ∈ C(Ω),
all triple patterns t ∈ atype(D,ΩVarsOf(Λ)), adding them to P greedy

can (Λ, D,Ω) until all
variables ?X ∈ VarsOf(Λ) have been mentioned at least once, and the maximality of
each µ ∈ Λ′ \Λ has been assured. We call the resulting modified algorithm the greedy
algorithm.

The greedy algorithm generates an interesting trade-off between the quality of the
reverse engineered query and complexity. On one hand, as we only add enough triple
patterns to the query to justify the positive examples, the resulting query will be
relatively small (at the very least, not larger that the query produced by the maximal
algorithm). On the other hand, the process of checking the maximality of a positive
example µ ∈ Ω when adding each triple pattern t to P greedy

can (Λ, D,Ω) takes exponential
time, as every possible extension mapping ν such that µ @ ν must be checked (the
number of such extensions is exponential in the size of Ω).

Finally, we briefly comment on the modifications required for the decision problem
RevEng+(SP[AOF∧,=, 6=wd]). In this case, the construction in Equation 3.1 can be
modified to add a filter expression for each Λ ∈ C(Ω). In essence, each Pcan(Λ, D,Ω)

now consists of a set of triple patterns and a set of filter comparisons, which can be
of the form ?X = ?Y, ?X 6= ?Y, ?X = a, and ?X 6= a, for some variables ?X, ?Y ∈ V,
and some a ∈ U ∪ L. In this scenario, the atype(D,ΩVarsOf(Λ)) can be generalised to
include all filter comparisons R for which µ |= R for each µ ∈ ΩVarsOf(Λ).

ALGORITHM 2: Outline for deciding RevEng+
tree(SP[AOwd]).

Input: RDF graph D, set of mappings Ω.
Output: A query P ∈ SP[AOwd] such that Ω ⊆ JP KD if such a query exists and Ω is

tree-like; null otherwise.
1 if Ω is not consistent and tree-like then return null;
2 P ← BuildCanon(D,Ω);
3 if CheckCanon(P,Ω) = False then return null ;
4 if Ω ⊆ JP KD then return P else return null ;

82

Chapter 4

SPARQLByE: Reverse Engineering
Systems

4.1 Introduction

Having developed the theoretical basis for reverse engineering SPARQL queries, we
now return to the initial goal of increasing the usability of RDF database systems.
As was discussed previously, an enormous range of data of broad interest is available
over Semantic Web-based interfaces, leading to the possibility of a huge increase in
the number of active “data queriers”. In this context, key obstacles for exploiting the
availability of open data, and thus to widening its consumption, are the unfamiliarity
of users with the structure of the data, as well as their unfamiliarity with SPARQL.

Although the RDF data model was introduced previously, recall that RDF views
data as collections of RDF triples, making heavy use of web identifiers (URIs). This
is a fairly low-level representation that is not easy for users to deal with by navigating
or browsing the data one item at a time. Standard web Application Programming
Interfaces (APIs) usually expose endpoints to the SPARQL query language, which
allows users to pose queries that combine and filter information. However, making
effective use of SPARQL still requires familiarity both with the precise URIs and with
the syntax and semantics of SPARQL operators.

To address these issues, querying RDF data by example has the potential to more
closely resemble the natural way in which a human user would approach a querying
problem [109, 29, 110]. Querying by example is particularly attractive in an open data
setting, since it eliminates the need to understand the structure of data as well as the
features of SPARQL needed to express a query. Even users familiar with SPARQL
and with a given dataset may prefer to explore the data via example and have the
system suggest generalisations.

83

In this chapter we develop and present a query-by-example system for RDF and
SPARQL, which we name SPARQLByE (SPARQL by Example). Its core is based
on the set of reverse-engineering algorithms for SPARQL which were developed in
the previous chapter. Through this reverse engineering implementation and user
interface, we demonstrate how reverse engineering, along with other techniques (such
as query relaxation) enables our system to guide users who are unfamiliar with both
the dataset and with SPARQL to the desired query and result set. To illustrate a
potential querying scenario, consider the following example:

Example 4.1. Consider DBpedia, a public repository of RDF triples which represent
knowledge extracted from Wikipedia, and consider a user who would like to extract a
list of all Spanish-speaking countries. Although DBpedia has a free public SPARQL
endpoint available (see: http://dbpedia.org/sparql), this interface does not pro-
vide much in the way of help for a user who is not familiar with the syntax and se-
mantics of SPARQL queries. Moreover, formulating the appropriate SPARQL query
would be challenging even for an experienced SPARQL user, as intimate knowledge
of the DBpedia ontology and specific URIs is necessary to express the correct required
triples.

In contrast, the query-by-example paradigm allows users to specify their informa-
tion needs using positive and negative examples.

Example 4.2. Continuing with the previous example, consider now that the user has
access to a query-by-example system like SPARQLByE. In this case, the user might
indicate Chile, Bolivia, Venezuela, and Spain as positive examples, while indicating
Brazil and Angola as negative examples. The system would then be capable of guessing
that the user is interested in the following query, and presenting both the query and
its results to the user:

SELECT * WHERE {

?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Country> .

?s <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:

Spanish-speaking_countries_and_territories>

}

84

Each URI in the query is of the form <http://...>. In particular, <http:

//dbpedia.org/ontology/Country> is the URI for the concept Country, so in the
first triple of the query we are asking to store in the variable ?s all the countries in
DBpedia. Moreover, the second triple asks for all the Spanish-speaking countries and
territories. Finally, these two triples are combined by means of the period symbol in
SPARQL, which essentially represents the AND operator. Thus, this combination is
used to extract the list of all Spanish-speaking countries in DBpedia. Notice that the
URIs and triples used in the query are not trivial to remember, even for experienced
SPARQL users.

Our system, SPARQLByE, allows users to obtain information without any knowl-
edge of SPARQL by supplementing reverse engineering of SPARQL with techniques
for guiding the user to further positive and negative examples. In what follows, we
first present the architecture and design decisions of the SPARQLByE system, which
mainly consists of a Java backend that performs the reverse engineering tasks, based
on a set of labelled examples as input, the end objective being to converge towards
a reverse engineered query which satisfies the user’s expectation. This backend is
complemented by a web interface front end, where the user may interact with said
set of labelled examples, directing the system towards the desired SPARQL query.
Next we take a closer look at the function of its different modules, especially those
that work to provide that user with further interaction paths (i.e. providing further
positive or negative examples). Finally, we discuss the limitations of the system.

4.1.1 Related work

Query by example systems date back to the early days of relational databases [121,
122], with the initial focus being on a specification using only positive examples.
Although [121, 122] took the first steps towards redefining the classical querying
paradigm, the system presented in that paper would perhaps be more accurately
described as an alternative example-based query language than a reverse engineering
system. Nevertheless, the focus on the user interface and user experience for querying
showed that, even early on in the history of database systems, there was a pain point
to be addressed. Reverse engineering query systems from positive examples has been
studied for a number of query languages [119, 110]. The use of positive and negative
examples within query learning has been explored in the context of XML queries [36].

Query by example systems for relational data include the JIM system of [29].
Like SPARQLByE, JIM does not simply reverse engineer a query, but allows in-

85

teraction with a user. However, the underlying reverse-engineering algorithms for
SPARQL and relational data are quite different, due to the presence in SPARQL of
the OPTIONAL operator for extracting optional information. The additional fea-
tures in SPARQLByE for query-by-example, beyond reverse engineering, are tailored
to issues specific to the open data setting, such as the difficulty of mapping entities
to URIs. Furthermore, SPARQLByE is designed to connect to a predefined (and
customisable) SPARQL endpoint, thus achieving a modular design, allowing it to be
added onto existing Semantic Web infrastructure.

Recent systems such as Sapphire [42] also aim to improve the querying experience
by striking a balance between keyword search and assisted SPARQL query generation.
While Sapphire does not use reverse engineering algorithms under the hood, the
interface is similar. Query autocompletion systems also have received attention [117].
This chapter is based on work published in [38], although further work on providing
potential positive and negative examples has not been previously published.

4.2 SPARQLByE System Overview

SPARQLByE can be attached to any RDF dataset D. The main input is a set of
annotated mappings which are specified by the user. An annotated mapping, in this
context, is a mapping (see previous chapter for the precise definition) labelled as either
a positive example or a negative example. A SPARQL query Q, when evaluated on
a RDF dataset D, returns a set of mappings Q(D)—the result set of Q on D. A
result set implicitly defines an annotated mapping set where the mappings in Q(D)

are positive examples and the mappings outside of Q(D) are the negative examples.
Recall that a set of annotated mappings Ω is consistent with a query Q on D if the
positive mappings in Ω are in Q(D) and the negative mappings in Ω are all outside
of Q(D). The system proceeds by discovering a query Q which is consistent with the
annotated examples presented by the user, and to present the full result set Q(D)

(the query itself need not be shown). The user may then refine the set of annotated
mappings in order to improve the result set; this refinement step will be explained in
detail below.

Example 4.3. Consider our running example where a user wants to extract the list
of all Spanish-speaking countries in DBpedia. In this case, the user has annotated the
following mappings as positive examples:

?s 7→ Chile ?s 7→ Bolivia
?s 7→ Venezuela ?s 7→ Spain

86

Each one of these mappings gives a possible value for the variable ?s, for example
Chile and Bolivia. On the other side, the user has annotated the following mappings
as negative examples:

?s 7→ Brazil ?s 7→ Angola

These negative examples indicate that variable ?s cannot take the value Brazil

or the value Angola.
Let Ω be a set consisting of the previous positive and negative examples. Moreover,

let Q be the SPARQL query given in Example 4.2, and assume that D is the DBpedia
RDF dataset. In this case, we have that Ω is consistent with the query Q on D, as
Chile, Bolivia, Venezuela and Spain are answers to the query Q over D, while
Brazil and Angola are not. On the other hand, consider the following SPARQL
query Q′ asking for the list of countries in DBpedia:

SELECT * WHERE {

?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Country>

}

In this case, we have that Ω is not consistent with Q′ on D as Brazil is an answer
to Q′ over D, as well as Angola.

At the core of SPARQLByE is a set of reverse-engineering algorithms, based on
Chapter 3, which take a set of annotated mappings and return a SPARQL query that
is consistent with the annotated examples [11]. SPARQLByE focuses on SPARQL
queries which make use of only the AND and OPTIONAL operators. Given a set
of mappings, a basic step in the system is to reverse engineer a query, evaluate it,
and return the result set (or a pointer into a page of it, in case it is too large) to the
user. This is the reverse-engineering step.

Reverse-engineering steps are interleaved with example refinement steps, in which
a user responds to the displayed result set by refining the set of annotated mappings.
SPARQLByE provides several forms of assistance to a user in the refinement step,
including support for translating text descriptions to URIs (needed in constructing
positive examples) and for creating pools of candidate examples, which the user may
add to the labelled set of mappings.

87

Figure 4.1: SPARQLByE architecture.

Figure 4.1 shows the architecture of SPARQLByE. An HTML-JavaScript front-
end is backed by the Java server which is responsible for running the reverse engi-
neering algorithms in the reverse-engineering module and obtaining candidate map-
pings in the refinement module. An auxiliary entity search module translates keyword
searches to URIs.

The two main modules depend on several lower-level ones. In particular, the
reverse-engineering algorithms require the execution of auxiliary SPARQL queries,
which are delegated to a SPARQL endpoint; this may be either a local or a public
endpoint, allowing for flexible setup.

4.3 Reverse Engineering module

Our reverse-engineering approach is based on Chapter 3. We look for well-designed
SPARQL queries with AND and OPTIONAL that are consistent with a set of
positive and negative examples, and which satisfy the following natural restrictions:
they are well-designed, [84], and they they are tree-like, i.e. the domains of different
mappings (that is, sets of variables) should form a tree-like order, as described in
the previous chapter. Roughly speaking, the algorithm proceeds by induction on

88

domains starting with the the smallest ones. At each inductive step it looks to put
together a set of safe patterns through the AND operator, that is, patterns which
are satisfied by the positive examples, are not fit by the negative examples, and which
are consistent with the absent variables (that is, NULL values) present in positive
examples. We make use of a “greedy” version of the algorithm that iteratively adds
patterns until it obtains a safe set. This greedy approach has the desirable property of
generating relatively small reverse-engineered queries. The algorithm needs to query
the data to generate potential patterns, and also to check that a candidate query does
correctly fit the data. This is done via issuing SPARQL queries to the endpoint.

As shown in Chapter 3, the core algorithm for reverse engineering well-designed,
treelike SPARQL queries must build the atomic type for each node of the tree. In
what follows, to simplify the description, we assume AND-queries, where the tree
consists of only one node. The atomic type may be built naïvely with the iteration
shown in Algorithm 3.

ALGORITHM 3: Naïve method for generating a reverse-engineered candidate.
1 for t ∈ (U ∪ VarsOf(Ω))3 do
2 if t ∈ atype then
3 Add t to Q;
4 end
5 end

The main issue with Algorithm 3 is that the generated query will tend to be
very large and take very long to compute, as usually many triple patterns satisfy the
requirement. Thus, it is necessary to include a greedy aspect to the algorithm.

Another approach, which more closely reflects the inner workings of SPARQLByE,
is to loop only until enough triples patterns have been included to justify the positive
and negative examples. Algorithm 4 shows the structure of the steps taken.

A final and crucial consideration must be made regarding the step of iterating over
the set (U∪VarsOf(Ω))3, in order to produce candidate triple patterns to be included
in the reverse engineered query. This set, of course, is not only very large but must
be accessed through the SPARQL endpoint (as U is the set of constants appearing in
D). One possibility is to execute the following query to the endpoint:

SELECT DISTINCT ?u WHERE {

{ ?u ?c1 ?c2 . }

UNION

{ ?c3 ?u ?c4 . }

89

ALGORITHM 4: Less naïve method for generating a reverse-engineered candidate.
1 Prepare Ω+ with positive mappings;
2 Prepare Ω− with negative mappings;
3 while Q does not mention all variables in Ω+ do
4 Extract next t from (U ∪ VarsOf(Ω))3;
5 if t ∈ atype then
6 Add t to Q;
7 end
8 end
9 foreach µ ∈ Ω− do

10 if µ is not a partial answer of Q over D then
11 Remove µ from Ω−;
12 end
13 end
14 while Ω− is not empty do
15 Extract next t from (U ∪ VarsOf(Ω))3;
16 if t ∈ atype then
17 Add t to Q;
18 end
19 foreach µ ∈ Ω− do
20 if µ is not a partial answer of Q over D then
21 Remove µ from Ω−;
22 end
23 end
24 end

UNION

{ ?c5 ?c6 ?u . }

}

This would be extremely inefficient, however. In order to actually produce a
stream of potential triple patterns, the problem is broken down into parts, as follows.

Firstly, assume that VarsOf(Ω) = {?x_1, . . . , ?x_m}. Then, consider the set A =

VarsOf(Ω)∪{C}, where C is a symbol which represents constants. We now categorise
triple patterns in (U ∪ V)3 into families corresponding to each of the elements in the
set A3. For example, the element (?x_3, C, ?x_2)} defines the family of all triple
patterns of the form t = (?x_3, c, ?x_2)} for some c ∈ U.

For what follows, consider µ1, . . . , µn to be the positive examples. For a specific
family F ∈ A3 of triple patterns, we issue an auxiliary SPARQL query QF to the
endpoint, built as follows:

1. Replace each C in the family F by a fresh variable ?c_i. For example, if the

90

family is F = (?x, C, C), then we obtain tF = (?x, ?c_1, ?c_2).

2. Build the following set of triple patterns:

{µi(tF) | i ∈ [1, n]} .

which we subsequently interpret as the final auxiliary query QF .

The query QF returns all triple patterns in the family corresponding to F which
also happen to be in the corresponding atomic type atype(D,Ω). We show the aux-
iliary SPARQL query corresponding to one such family as an example.

Example 4.4. Consider a scenario where the two positive mappings are {?x 7→
Chile} and {?x 7→ Bolivia}. For family F = (?x, C, C), we obtain tF = (?x, ?c_1,

?c_2), and the following auxiliary SPARQL query QF :

SELECT ?c WHERE {

Chile ?c1 ?c2 .

Bolivia ?c1 ?c2 .

}

This auxiliary query has been constructed in such a way that its result mappings
will contain every possible combination of constants c1, c2 ∈ U such that the triple
pattern t = (?x, c1, c2) is also in the atomic type.

Iterating over the answers of the auxiliary query QF (and the corresponding auxil-
iary query for each family) is a much more efficient way of traversing (U∪VarsOf(Ω))3.

4.4 Example Refinement and other modules

SPARQLByE provides several features to assist users in refining annotated examples.
The top-right-hand side of the user interface houses the Results Panel. Here, the

generated query is evaluated and a selection of results is presented (see Section 4.6).
A user may use this panel to judge whether the answers to the generated query are
satisfactory; in particular, an answer from this panel may be marked, by the user, as a
negative example, thus refining the set of labelled examples and forcing SPARQLByE
to generate a new, more restrictive, query. In this way, the Results Panel also serves as
a pool for potential negative examples (see Section 4.6 for a more in-depth discussion
on how this is achieved).

91

Below the Results Panel is the Extra Results Panel, whose main purpose is to
serve as a pool for potential positive examples. This is achieved by generating a relaxed
version of the current working query. A selection of the answers of the relaxed query
is then presented in the Extra Results Panel. Much work has been done in the area of
query relaxation [43]; in our system we implement a relatively simple approach (see
discussion below).

The purpose of relaxing queries is to include answers which are not captured by the
working query Q, and which may be of interest to the user. Consequently, labelling
one of these as a positive example would force the system to generate a new — and
possibly more relaxed — working query.

Finally, finding the correct entity identifiers (i.e. URIs) presents one of the main
barriers to the formulation of meaningful SPARQL queries. Entity URIs are noto-
riously hard to remember; even the use of standard URI prefixes do not solve this
problem, as several such prefixes exist and must be chosen correctly. The Entity
Search Panel of SPARQLByE provides a simple keyword search for users to find
appropriate URIs.

Example 4.5. Figure 4.2 shows the result of inputting tennis into the entity search
module (left-most panel of the interface). The result is a list of entities, where, for
each, their label is presented, along with a type. The buttons allow for assigning the
URI as a positive or negative example (note that this will only apply if the examples
have arity 1).

Keyword searches in the entity search box are ultimately used to supply the user
with a list of entities (URIs). This module allows for different techniques to be
used, ranging from simple text search to using third-party semantic annotator APIs.
Currently, the entity search module translates the keyword search to a SPARQL query
which asks for a uri such that the triple (uri, rdfs:label, X) is in the dataset with
label X containing each keyword as a substring.

4.5 SPARQL-based backend

SPARQLByE relies on a SPARQL endpoint for its operation. The reverse engineering
of SPARQL queries from positive and negative examples is achieved by generating
intermediate SPARQL queries which allow the reverse-engineering module to first
produce a candidate query, and then to check said query. The fact that SPARQLByE
can operate on a SPARQL endpoint allows for flexible setup including:

92

Figure 4.2: SPARQLByE user interface overview showing the result of adding labelled
examples and using the Entity search box.

Figure 4.3: Close-up of the SPARQLByE Entity Search Panel (left) and Extra Results
Panel (right).

93

• using a local RDF backend for quicker access and custom indices tailored for
the query loads that the reverse-engineering module will generate,

• plugging in the SPARQLByE system into an existing SPARQL endpoint, and

• installing SPARQLByE as a third-party client to a public SPARQL endpoint.

4.6 Supplying negative examples

As discussed previously, a central task of the system is to provide potential further
examples — in this case negative examples — to the user, in order to restrict the
reverse engineered query further. Supplying such a pool of potential negative exam-
ples allows the system to provide the user with further interaction alternatives. In
SPARQLByE, this is achieved by executing the current reverse engineered query and
returning a ranked sample of its results to the user.

As SPARQLByE is based on a SPARQL backend (see previous section), obtaining
a ranked sample of results is achieved by performing a transformation of the reverse
engineered query, a.k.a. working query, Q and returning the results of the transformed
query Q′. The objective is to produce a query Q′ which will return a list of results
that are sorted in a way that will maximize the probability of the user finding a
diverse set of potential negative examples to add to their current example set. Note
that simply executing the reverse engineered query Q and presenting the first answers
may result in a less useful answer set for the user, as the ordering of the results is
undefined, and thus the user may be presented with, for example, an alphabetically
ordered list of answers.

Example 4.6 shows a simple implementation of the query transformation that
prioritizes answers based on the amount of classes they belong to in the dataset.

Example 4.6. Consider a scenario where the current reverse engineered query Q is
the following:

SELECT ?x WHERE {

?x type Country .

}

Under a simple class membership based implementation of the Results Panel, the
transformation will results in the following query Q′:

94

SELECT ?x (COUNT(?t) as ?count) WHERE {

?x type Country .

?x type ?t

}

GROUP BY ?x

ORDER BY DESC(?count)

As such, the transformed query returns the results of the reverse engineered query,
prioritizing answers that belong to more classes.

In Example 4.6, the ranking of query answers is expressed as a transformation on
the reversed engineered query, based on the number of classes to which an answer
belongs. Another possibility — and the one currently implemented in SPARQLByE
— is to rank answers based on their out degree, as in Example 4.7.

Example 4.7. Consider a scenario where the current reverse engineered query Q is
the following:

SELECT ?x WHERE {

?x type Country .

}

The transformed query will then be the following query Q′:

SELECT ?x (COUNT(?t) as ?count) WHERE {

?x type Country .

?x ?p ?t

}

GROUP BY ?x

ORDER BY DESC(?count)

As such, the transformed query returns the results of the reverse engineered query,
prioritizing answers that have more outgoing edges.

We now discuss the advantages and disadvantages of these ranking based imple-
mentations. Firstly, the currently implemented ranking (ranking answers according
to the number of outgoing edges they have in the dataset) is efficient to implement in
the SPARQL-endpoint design architecture. The number of outgoing edges also pro-
vides a simple and transparent measure of the importance of and relative visibility of

95

an entity in the dataset. This implementation also has the advantage of being similar
in structure to more widely used rankings which are usually based on the popularity
of an entity among users (or any other numerical ranking which may be calculated
straightforwardly).

In order to compare the trivial and ranked implementations of the Results Panel,
we provide an example interaction with the system in the series of Figures 4.4, 4.5,
4.6, 4.7, 4.8, and 4.9. These figures consider a hypothetical user who wishes to explore
the set of association football players who are signed with FC Barcelona. We compare
a trivial implementation of the Results Panel, that is, an implementation with the
trivial transformation Q′ = Q (Figures 4.4, 4.5, 4.6, and 4.7), with the outgoing edges
based ranking implementation of the Results Panel (Figures 4.8 and 4.9). Initially, the
user inputs three positive examples: Diego_Maradona, Lionel_Messi, and Rivaldo,
and one negative example: Serena_Williams (a tennis player).

Consider the trivial implementation of the Results Panel. Figure 4.4 shows the
result of executing the initial input. The system has reverse engineered a query which
seeks expatriate footballers in Spain, which is certainly a reasonable conclusion given
the examples. The Results Panel consequently shows such a list; the main problem
is that the order in which these results are presented is undefined, or more precisely,
defined by the storage order of the entities in the intermediate data structures used to
answer the working query. In this case, the results appear to be in URI-alphabetical
order. Figures 4.5, 4.6, and 4.7 show the progression of accepting the first proposed
negative example at each step; while the system eventually converges to a working
query which includes the correct constraint, that the entity be a footballer of FC
Barcelona, the final query also contains less useful constraints. Perhaps most im-
portantly, the proposed negative examples were not necessarily recognisable football
players.

Now consider an out degree ranking based implementation of the Results Panel;
specifically, the transformation shown in Example 4.6. This scenario is depicted in the
two figures in the series mentioned previously (Figures 4.8 and 4.9). After the initial
input is executed, it is immediately clear that the Results Panel is showing more
widely known football players (Figure 4.8). As the first entity shown in the Results
Panel, David Beckham, does not play for FC Barcelona, adding it as a further negative
example should serve to converge on the desired query. Figure 4.9 shows that this
negative example has produced the desired query, and the convergence was much
faster in this case.

96

Figure 4.4: Screenshot of SPARQLByE showing the result of a user inputting three
known football players as initial positive examples (and a known tennis player as a
negative). The Results Panel provides answers to the working query with a trivial
implementation (see Section 4.6 for a discussion, and see Figure 4.5 for the next figure
in the series).

97

Figure 4.5: Screenshot of SPARQLByE showing the progression of a user interacting
with a trivial implementation of the Results Panel (see Section 4.6 for a discussion,
see Figure 4.4 for the previous figure in the series, and see Figure 4.6 for the next
figure in the series).

Although the user interaction shown is anecdotal evidence, it serves to illustrate
the fact that a better implementation of the Results Panel may go a long way in
assisting the user to navigate and explore the data with SPARQLByE.

The main disadvantage of ranking-based implementation is that it does not easily
generalise to n-ary answers, as a answer tuple does not have a clearly defined mem-
bership to a class. In the current implementation of the system, for n-ary answers
we simply focus on the first variable for the purposes of ranking answers; clearly not
a completely satisfactory solution. Another potential disadvantage is in the diversity
of the answers that are returned, as two or more highly ranked answers may share
the same set of classes, in which case they become redundant as potential negative
examples. These problems generate the need to consider alternative implementations
of the ranking.

In considering alternative ranking implementations, it may be desirable to provide
a diverse set of answers, instead of prioritizing a numerical rank, for example. This
may be achieved by obtaining a sample of answers that belong to different classes, or a
set of examples that constitutes an anti-chain in the class hierarchy. This hypothetical
implementation would ideally increase the probability of providing the user with a

98

Figure 4.6: Screenshot of SPARQLByE showing the progression of a user interacting
with a trivial implementation of the Results Panel (see Section 4.6 for a discussion,
see Figure 4.5 for the previous figure in the series, and see Figure 4.7 for the next
figure in the series).

99

Figure 4.7: Screenshot of SPARQLByE showing the progression of a user interacting
with a trivial implementation of the Results Panel (see Section 4.6 for a discussion,
see Figure 4.6 for the previous figure in the series, and see Figure 4.8 for the next
figure in the series).

100

Figure 4.8: Screenshot of SPARQLByE showing the result of a user inputting three
known football players as initial positive examples (and a known tennis player as a
negative). The Results Panel provides answers to the working query with a ranked
implementation (see Section 4.6 for a discussion, see Figure 4.7 for the previous figure
in the series, and see Figure 4.9 for the next figure in the series).

101

Figure 4.9: Screenshot of SPARQLByE showing the result of a user inputting three
known football players as initial positive examples (and a known tennis player as a
negative). The Results Panel provides answers to the working query with a ranked
implementation (see Section 4.6 for a discussion, see Figure 4.8 for the previous figure
in the series).

102

distinct sample of answers, but may come at a runtime cost.
Finally, this discussion assumes that it is possible to express this answer ranking

as a transformation of the working query Q into a SPARQL query Q′, in order to
maintain the SPARQL-based system architecture. However, a user interface may also
relax this restriction, providing alternative procedures for ranking the answers of the
reverse engineered query.

Although not exactly a disadvantage of the ranking-based implementation of the
Results Panel, it is noteworthy to comment on the effect the quality of the data has
on the results presented to the user. Consider Figure 4.10, where a hypothetical user
seeks to explore Spanish-speaking countries. The user inputs three positive examples
(Chile, Bolivia, and Venezuela), whereby the system reverse engineers the query
shown. The resulting transformed query (which is not shown in the interface, but
corresponds to the second query from Example 4.6) is executed and its results are
presented to the user in the Results Panel. Interestingly, the first result is not actually
a country (Cinema_of_the_United_Kingdom). This situation is caused by the fact
that the data asserts that the entity Cinema_of_the_United_Kingdom is of type
Country. Any data exploration tool (or query engine, for that matter) will incur
in the same errors in cases like these, unless a previous data cleaning procedure is
performed.

4.7 Supplying positive examples

The complementary task to that of providing potential negative examples to the user
is to provide potential positive examples. For this, SPARQLByE provides a further
set of answers in the Extra Results Panel. The intention of this panel is to address
the possibility that the working query is too restrictive, and to provide the user an
avenue to refine their example set to indicate this issue.

Note that the answers to the working query — that is, the answers presented in
the Results Panel, which were discussed in the previous section — are not useful as
potential further positive examples, as adding such an answer to the list of positive
examples would be redundant (i.e. would not change the fact that the working query
satisfies all labelled examples).

As with the Results Panel, the Extra Results Panel is modelled as a transformation
of the working query, considering the design of SPARQLByE, which is based on a
connection to a SPARQL endpoint. In this case, the transformation does not merely
seek to sort the working query’s results but to relax the working query, in order

103

Figure 4.10: Result of a user interaction in SPARQLByE in which the Results Panel
uses a class-based criterium to rank the results. Note that the top answer in the
Results Panel is not a country. This is due to the quality of the data.

to return a broader set of answers from which the user may select further positive
examples. As before, there are several ways to implement such a query relaxation.
All of the implementations we consider shall follow the same structure: we relax the
working query Q by generating a modified query Q′ which returns a superset of the
answers to Q.

A basic implementation consists in randomly eliminating one of the triple patterns
of the working query. As each triple pattern can be understood as a constraint on the
answers, eliminating one produces a relaxed query. In the current implementation
of SPARQLByE, however, we consider an ontology based query relaxation method.
This consists of randomly selecting a triple of the form (?x, type, C) from the working
query and relaxing the class C to some randomly chosen superclass B of C.

In order to illustrate the Extra Results Panel, Figure 4.11 shows the progression
of a user interaction in which the user seeks to explore the plant kingdom. Initially,
the user inputs three positive examples: Spruce, Pine, and Fir, and one negative
example: Lion. Upon executing, the system reverse engineers a query which returns
conifers, which are actually a subset of the set of plants (the outcome is shown in
the upper panel of Figure 4.11). In other words, the example set given resulted in a
working query which is too restrictive.

104

In this scenario, it is not useful for the user to be provided with further negative
examples, as these would restrict the working query — and therefore the returned
answers — even more; potential positive examples thus become useful. In this case,
the Extra Results Panel assists the user in generalising the answer set by running a
relaxed query on the database. The relaxed query is not shown, but in this case the
ontology based relaxation replaces Conifer by its superclass Plant (the outcome is
shown in the lower panel of Figure 4.11). When the user adds the first answer from
the Extra Results Panel as a further positive example, the system correctly obtains
a working query that returns all plants.

This ontology based relaxation technique is not free of problems, however, as it
is very common for reverse engineered queries to make no mention of the database’s
ontology, but to restrict on the basis of connections between entities. For working
queries which do not contain type restrictions (i.e. do not contain triples of the form
(?x, type, C)), the current implementation falls back to a trivial relaxation approach,
that is, randomly eliminating a triple from the query.

As a final comment, the modular design of the SPARQLByE system allows for
taking advantage of a large body of work in the area of query relaxation in general
[49, 108], and in principle any of a number of query relaxation techniques may be
used to provide further positive examples to the user.

4.8 Use cases and examples

In contrast to a standard SPARQL query interface, where users are simply presented
with a text field in which to formulate a query, SPARQLByE allows for a more
interactive experience.

An obvious scenario which can showcase the capabilities of SPARQLByE is that
of obtaining a query capable of capturing a class of entities.

In this case the mappings are of arity 1. As was shown in [11], a set of examples of
arity 1 will always be reverse-engineerable with an AND-query (a query which only
makes use of the AND operator).

Example 4.8. Consider the case of a user seeking to obtain a list of Spanish-speaking
countries. A possible first approach for a user is to input the countries Chile,
Bolivia, and Venezuela as positive examples (see Figure 4.13, top frame). In this
case, the corresponding reverse-engineered query asks for all entities of type Country,
which is too general.

105

Figure 4.11: Progression of a user interaction in SPARQLByE in which the Extra
Results Panel uses an ontology-based relaxation implementation to provide potential
further positive examples.

106

The right hand panel has the country Angola, though, which can be added next as
a negative example. The result is shown in the middle frame of Figure 4.13. In this
case, the query is asking for countries in South America. The main problem with this
query is its exclusion of the quintessential Spanish-speaking country: Spain, which
may then be added as a positive example.

The bottom frame of Figure 4.13 shows the final result set and the corresponding
reverse engineered query that asks for entities of type Country which also have the
subject Spanish-speaking_countries_and_territories. Notice that although the
spirit of the query is intuitive, it would not have been trivial for a user to arrive at
the specific URIs and triples mentioned in the query without extensive knowledge of
the DBpedia data and types.

In the previous example, the final positive example (Spain) was crucial to obtain-
ing the desired result set. However, it is not always clear what positive example to
add. This problem is addressed by the Extra Results Panel, which suggests positives
examples.

Example 4.9. Consider a user who wishes to obtain a list of English-language
movies. The user begins with the positive example +Dances_with_Wolves, and sub-
sequently adds the negative example -Thirupathi. The resulting query, shown in
Figure 4.12, asks for films which have the label Dances_with_Wolves, which only
returns one result. Clearly this is overfitting the example data. The Extra Results
Panel, however, has executed a relaxed query which asks for all films, and thus is able
to suggest the film Newcastle_(film). Adding Newcastle as a positive example gives
the desired result set, corresponding to the query;

SELECT * WHERE {

?x <http://purl.org/dc/terms/subject>

<http://dbpedia.org/resource/Category:English-language_films> .

?x rdf:type <http://dbpedia.org/ontology/Film>

}

Finally, a key feature of SPARQLByE is that it is able to reverse engineer SPARQL
queries which make use of the OPTIONAL operator. In other words, labelled
examples may contain unmapped (null) values. The following example illustrates
this scenario.

107

Figure 4.12: SPARQLByE interface after having input two movies as labelled exam-
ples. The Extra Results Panel suggests further movies.

Example 4.10. Consider a user who wishes to obtain a list of authors along with
their places of death, the latter being relevant only if they have passed away. If the user
uses the positive examples {Lewis,Oxford}, {Tolkien,Dorset}, and {Rowling,

NULL}, and the negative examples {11th_Dalai_Lama,Tibet} and {Abbey_Lincoln,

Manhattan}, then the resulting reverse-engineered SPARQL query is:

SELECT * WHERE {

?x rdf:type <http://dbpedia.org/ontology/Writer> .

?x rdf:type <http://xmlns.com/foaf/0.1/Person> .

?x rdf:type <http://dbpedia.org/ontology/Artist>

OPTIONAL {

?x <http://dbpedia.org/ontology/deathPlace> ?y

}

}

The previous query thus allows SPARQLByE to present to the user the desired
result set.

108

Figure 4.13: SPARQLByE interface converging towards a query that retrieves
Spanish-speaking countries.

109

4.9 Experimental Evaluation

In this section we describe the experimental settings with which we have studied
the implementation of the reverse engineering algorithms. More precisely, we first
perform a study on synthetically generated inputs, and then we attempt to reverse
engineer SPARQL queries in a real-world setting. For the second scenario, as we do
not have access to positive examples provided by users, we indirectly obtain these
through the use of query logs. All algorithms have been implemented in Java and run
on a machine with a 2.3 GHz Intel Core i7 processor and 16 GB of main memory. The
SPARQL endpoint was hosted by Virtuoso (open source version) and the connection
to the endpoint was implemented using Apache Jena.

4.9.1 Reverse engineering random inputs

To test the efficiency and usefulness of our approach for reverse engineering SPARQL
queries, we tested Algorithm 2 over synthetically generated inputs. Although gener-
ating a random RDF graph D and a random set of mappings Ω is possible, in practice
the pair will usually not be definable. For this reason, we opt to first generate a ran-
dom query Q ∈ SP[AOwd], and construct the pair (DQ,ΩQ) from Q. We now discuss
the generation of these inputs.

The experimental setup will focus on investigating the effect of OPT-depth,
whereby random queries are generated as linear pattern trees, i.e. queries of the
form (P0 OPT(P1 OPT · · · (Pn−1 OPTPn) · · ·)), where each Pi ∈ SP[A]. The depth
n of each query Q is varied as a parameter. In each node Pi we place a set of triple
patterns of the form t = (s, p, o), where p ∈ U and s, o ∈ U ∪ V. We aim to include
joins between variables in these queries, and to this end, for each subquery Pi and
each variable v which is mentioned in Pi but not in any Pj for j < i, we include a
triple pattern of the form (u, c, v), where u is a variable mentioned in Pi−1 and c

is a random URI (notice that u is taken from Pi−1 to obtain a well-designed graph
pattern). In total, ∼900 random queries were generated, where ∼100 queries are
generated with each depth n ∈ [0, 8].

For each random query Q we next generate two distinct inputs (D1,Ω) and (D2,Ω)

to be submitted to the learning algorithm. First, we generate an RDF graph DQ by
freezing the query Q: for each prefix Q′ E Q,1 we convert the set of triple patterns
in Q′ into a set of triples by replacing the variables with fresh constants.

1Recall that such prefixes are formed by replacing a subquery (R OPT S) by R, as defined in
Section 3.2.2.

110

Example 4.11. Assume that Q = (?X, type, Country)OPT (?X, label, ?Y). Then
for the prefix Q1 = (?X, type, Country) of Q, we create the triple (X_0, type, Country)

by replacing variable ?X by constant X_0. Moreover, for the prefix Q2 = Q, we generate
the triples (X_1, type, Country), (X_1, label, Y_1) by following the same approach,
where X_1 and Y_1 are fresh constants (different from X_0). Thus, we have that
DQ = {(X_0, type, Country), (X_1, type, Country), (X_1, label, Y_1)}.

The RDF graph DQ is now used to obtain the full set of answers ΩQ = Q(DQ).
For both the inputs (D1,Ω) and (D2,Ω) to the algorithm, we extract samples from
DQ and ΩQ. First, let Ω ⊆ ΩQ be a uniform sample of ΩQ containing at most 100
mappings. Second, let D1 = DQ and D2 ⊆ DQ be a uniform sample of DQ, where
each triple in DQ has a 75% chance of being included in D2. The first input (D1,Ω) is
the full frozen RDF graph DQ and a sample of the answers in ΩQ as positive examples,
and it is thus expected to be definable by construction. The second input (D2,Ω)

uses a reduced RDF graph (and the same positive examples), whereby it is possible
that this pair will no longer be definable. This random elimination of triples is done
in order to generate inputs to the algorithm which are not definable, and thus study
the compared performance of the system on both definable and non-definable inputs.

For each random query Q, both pairs (D1,Ω) and (D2,Ω) are input into a Java
implementation of Algorithm 2, for a total of ∼1800 distinct runs of the algorithm.
Of these, 1064 definable cases and 761 non-definable cases are reported. Figure 4.14
shows the results of these experiments. The top plot in Figure 4.14 shows the runtime
of the algorithm in milliseconds versus the size of the input (defined to be the sum
of the number of triples in the RDF graph and the number of mappings in the set of
mappings). As this is a logarithmic plot, the exponential dependency is clear, both
for the definable and undefinable cases. On the other hand, the bottom plot in Figure
4.14 shows the runtime versus the size of the random query itself, exhibiting a very
similar (and exponential) performance behaviour. The average runtime for this set of
examples was ∼516ms. For the definable examples, the average ratio between the size
of the reverse-engineered query P and the original randomly generated query Q was
0.79; this reflects the fact that reverse-engineered queries tend to be relaxed versions
of the original query, and thus contain less triple patterns. Similarly, the average
difference between the OPT-depth of the learned query and the original random
query is -1.33, indicating that learned queries tend to use less OPT operators. This
actually depends on the positive examples, as the OPT-depth of the learned query
will be exactly the depth of the structure of the set of mappings Ω. Finally, note that

111

merely 32 of the 1064 definable cases learned a query which mentioned a constant
that was not originally included in the random query.

4.9.2 Reverse engineering DBpedia query logs

In order to test our implementation of the reverse engineering algorithm on real-
world examples, we turn to the public DBpedia SPARQL endpoint. DBpedia (version
2014) was downloaded and installed locally into the Virtuoso Open Source database
manager (version 7.1.0). The DBpedia RDF graph contains over 860 million triples,
and the contents is extracted from the Wikipedia and Wikimedia websites. DBpedia
provides a public SPARQL endpoint where users may perform SPARQL queries, and
the logs for this endpoint are made publicly available as well. To access and study
these query logs, we turn to the LSQ project [91], which has extracted and organised
the DBpedia query logs.

Although our main goal is to obtain sets of positive examples which can then
be input into our reverse engineering algorithm, such sets of positive examples are
not available, as no SPARQL reverse engineering or query-by-example systems exists
which publish these data. Hence, we use the DBpedia query logs to indirectly obtain
positive examples. For a query Q from the query logs, we execute the query on
the DBpedia RDF graph, which we denote by DDbpedia, to obtain Ω = JQKDDBpedia .
This set of mappings represents the full set of examples that the user was supposedly
interested in when executing query Q, and a random sample Ω′ ⊆ Ω of Ω can serve
as a hypothetical set of positive examples from said user.

Of the ∼740,000 queries in the query logs (queries which were executed on the
DBpedia SPARQL endpoint), there are ∼220,000 queries which make use of the OPT

operator but not the FILTER orUNION operators, and∼34,000 which use both the
OPT and FILTER operators but not UNION. To understand the sets of mappings
which are to be expected, ∼124,000 of the 220,000 queries on DDBpedia were selected,
and for each such query Q we obtain the full set of results JQKDDBpedia . Of these sets
of mappings, none had a structure whose depth was greater than 1; more precisely,
116 of these queries produced an answer set of depth 1, and the rest produced depth
0 (i.e. they were homogeneous). This suggests that a reverse engineering algorithm
may be parametrised to produce queries whose OPT-depth is limited to 1.

We next selected ∼30,000 queries and replicated the procedure from the previous
section for randomly generated queries. That is, each query Q was executed on
DDBpedia to obtain Ω = JQKDDBpedia , and a random sample Ω′ ⊆ Ω was used as the set
of positive examples (in many cases the query has exactly one mapping as an answer,

112

Figure 4.14: Runtimes for ∼2000 randomly generated examples. Top: runtime ver-
sus input size; circles (black) represent definable inputs and crosses (red) represent
undefinable inputs. Bottom: runtime versus random query size.

113

in which case we simply use this mapping as the sole positive example). The pair
(DDBpedia,Ω

′) then was used as the input. In this experimental setting the average
runtime for all queries was 35ms and the average ratio between the learned query size
and the original query size was 0.28. These low values can be explained by the fact
that many learned queries only have one triple pattern.

To illustrate the behaviour of the algorithm on a slightly more complicated query,
we manually prepare the following query Q2:

SELECT * WHERE {

?country type Country .

?country usesTemplate Infobox_country .

OPTIONAL {

?country languages ?language

}

OPTIONAL {

?country2 type Country .

?country wikiLink ?country2 .

?country2 usesTemplate Infobox_country .

?country2 subject Former_Spanish_colonies

}

}

The answer set Ω = JQ2KDDBpedia has ∼860 results, and its structure is tree-like
of depth 1. A sample Ω′ ⊆ Ω from Ω is extracted and the pair (DDBpedia,Ω

′) are
input into the algorithm. The query learned by the greedy algorithm was similar to
Q2, but without the two triple patterns which mention the URI Infobox_country.
The similarity between learned query and original query is an indication that the
algorithm in general gives high quality results.

Finally, we showcase the algorithm for the RevEng+ (SP[AOF∧,=,6=wd]) decision
problem by slightly altering the query Q2 and adding a single FILTER expression,
resulting in:

SELECT * WHERE {

?country type Country .

OPTIONAL {

?country languages ?language

}

114

OPTIONAL {

?country2 type Country .

?country2 subject Former_Spanish_colonies .

?country wikiLink ?country2 .

FILTER (?country != ?country2)

}

}

The following is the query learned by the algorithm:

SELECT * WHERE {

?country type Country .

OPTIONAL {

?country languages ?language

}

OPTIONAL {

?country2 type Country .

?country2 subject Former_Spanish_colonies .

?country wikiLink ?country2 .

?country2 usesTemplate RefList .

FILTER (?country != ?country2)

}

}

Note that the algorithm was able to successfully learn the query, although in this
case an extra triple pattern has been added.

4.10 System limitations and future work

Although arbitrary tree-like example sets are supported in the algorithms developed
in the previous chapter, the meaning of a “negative partial example” (i.e. a negative
example with NULLs) is unintuitive for users — it could mean that there is no map-
ping that matches the example exactly, or no mapping that subsumes the example.
In order to stick to an intuitive user-interface, we have restricted SPARQLByE to use
only “full negative examples”: negative examples must mention all variables included
in any positive example. Future work should address possible definitions of partial
negative examples.

115

Another key limitation we have found in practice is the fact that very generic
relations commonly justify the positive examples that users provide. For exam-
ple, for almost any set of arity 1 positive examples (i.e. entities), the triple pattern
(?x, type, Thing) 2 will be enough to generate a — useless — reverse engineered query.
Thus, it is not enough for the system to greedily generate candidate triple patterns,
but must do so in an order that ensures that more informative triple patterns are
generated first.

This is not an issue that we currently address from an algorithmic point of view.
SPARQLByE does allow user-driven customization of the reverse-engineering algo-
rithm to avoid both over-fitting and over-generalization, though. In practice, users
can select a set of “forbidden URIs” (e.g. from the current result set) and the reverse-
engineering algorithm will then avoid generating a query containing these.

Another limitation of SPARQLByE lies in the fact that the queries returned merely
satisfy the restrictions, but do not necessarily do so in the most interesting fashion.
Triple patterns should not necessarily be generated in a random order (or, more
precisely, whatever order is used by the SPARQL query engine upon executing the
auxiliary queries), but perhaps should maintain a ranking of more popular relations,
or more informative relations. We currently address this issue with the “forbidden
URIs” facility, but being an ex post addition to the system, it will probably not
address the underlying problem in every scenario.

Another interesting approach to the problem of returning increasingly more useful
results to the user is the use of ensemble methods, whereby more than one query is
reverse engineered with different objectives (e.g. a highly specific query, a more general
query, an minimally sized query, etc). The resulting ensemble of queries can be used
to provide results to the user according to some aggregation heuristic such as voting.
These techniques are common in the context of machine learning and could enhance
query reverse engineering systems as well.

The fragment of SPARQL that has been considered in the algorithm design of
the previous chapter is also a limitation of the system, especially when considering
the variety of features SPARQL includes that cannot be reverse engineered in the
current setup. Examples include projection, unions, blank nodes, path expressions,
negations, and more. In particular, restricting the reverse engineering to queries
which do not use projection has the consequence that only resulting entities which
are directly connected in the RDF graph may be considered.

2In full: (?x, rdf:type, http://www.w3.org/2002/07/owl#Thing)

116

As such, future work should prioritise expanding the fragment of SPARQL that
is reverse engineer-able. While full inclusion of projection is desirable, an intermedi-
ate approach could be to offer the possibility of including unbounded variables into
positive and negative example mappings. Such an addition would permit reverse en-
gineering a restricted form of projection, where the number of existential variables in
the reverse engineered query is fixed by the input. This addition would be similar to
the role blank nodes fill by allowing a querier to indicate that an entity must exist
which satisfies the restrictions of the query, but without requiring said querier to
specify which entity.

More graph-native features of SPARQL such as path expressions should also be
incorporated, along with many other features of the SPARQL language, including the
UNION and negation, for example. In these operators lies a wealth of expressiveness
of the SPARQL query language that users routinely use, and thus may expect to be
able to reverse engineer. Recent analyses on real-world SPARQL queries [30, 74] show
that real world SPARQL queries tend to be relatively simple, although in [30] Bonifati
et. al. observe that 15% of them make use of the projection operator, showing a clear
need for its incorporation into any comprehensive reverse engineering system.

Directions for future advancement will surely draw from the extensive literature
in the field, where the state of the art continues to advance with results on reverse
engineering aggregate queries [104] and select-project-join queries [114], for example.

Lastly, another essential limitation of our approach lies in the data itself (which,
as an input, cannot be chosen). If the data lacks the relations or the associations to
justify a set of positive examples, our reverse engineering approach will not find an
appropriate query. For example, if the user seeks cars whose engines are designed
in Japan, it is likely that DBpedia will not have a category for such cars, and no
set of positive and negative examples will satisfy the user. To address this issue it
may be necessary to complement reverse engineering techniques with data completion
approaches, which we discuss in the next chapter.

A screencast of the system is available at: www.cs.ox.ac.uk/michael.benedikt/
sparqlbye.ogg.

117

Chapter 5

Semantic Embeddings for RDF

5.1 Introduction

A growing corpus of human knowledge is being encoded in the form of knowledge
graphs, that is, in the form of (s, p, o) triples which represent simple subject-predicate-
object sentences. In essence, these triple-based formats consist of binary relational
data, where an (s, o) pair is effectively declared to be related by the p binary relation.
Although more complex—or higher arity—information is difficult to express in this
way, the simple syntax enjoyed by these triple-based data models has proved highly
useful for a wide range of applications and has thus been widely adopted. Today,
the linked open data cloud consists of hundreds of interlinked datasets, including a
handful of very large knowledge graphs such as Freebase [25] and DBpedia [19], which
contain billions of triples and millions of entities.

Modern knowledge graphs have reached a level of maturity that allows them to be
used in applications such as web search, where graph data provides structured infor-
mation that complements hyperlink answers, artificial intelligence question answering
systems such as Watson and voice-based assistants, and semantic web query engines
based on SPARQL. However, there are still important issues to be resolved. Even
the largest knowledge graphs are extremely incomplete (i.e. many true facts have yet
to be encoded as triples) and prone to errors (often triples encoding incorrect facts
are included). The main tasks of link prediction, which consists of predicting new
triples, and triplet classification, which seeks to assign a probability that a certain
triple—be it new or existing—is true or not, look to address these shortcomings. In
this context, there is renewed interest in machine learning over (binary) relational
data. The techniques used vary from rule-based learning [51] to tensor factorisation,
neural network-based approaches, etc. (for a review on the area, see [79]). In this

118

work we focus on latent feature-based techniques, which are also known as graph
embeddings.

Graph embeddings correspond to latent feature statistical relational learning mod-
els in that they assume the existence of a set of n latent features—random variables—
that account for the predictions we desire (triplet classification or otherwise). As such,
these latent features provide machine learning-friendly representations of graph data,
which can then be used as input to further machine learning tools such as neural
networks or logistic regression for classification. The input to a graph embedding
model, as with other statistical relational learning techniques, is a knowledge graph,
and the output is a mapping which associates to each entity in the graph the set of
n real-valued latent features. The name graph embedding refers to the geometrical
interpretation given to the obtained latent features: the entities are interpreted as
points in an n-dimensional real coordinate space, and thus are said to have been em-
bedded into said space. On the other hand, the relations of the knowledge graph are
varyingly represented as translational vectors [31], matrix transformations [81], etc.

Graph embedding models are usually trained via the minimisation of a global
cost function, which can be expressed as the sum of a cost assigned to each triple
in the knowledge graph. The minimisation itself is achieved via stochastic gradient
descent or similar methods. One of the greatest advantages of graph embedding
models, and especially translational models (loosely defined as those models which
represent relations as one or more translational vectors, as opposed to transformation
matrices), is that they are able to perform efficiently for very large graphs and with
high accuracy. Current graph embedding models achieve high performance on basic
learning tasks such as link prediction, e.g. ranking the correct entity among the top
ten candidates almost 95% of the time [80].

Despite the relatively positive scenario described above, one of the greatest limita-
tions of current graph embedding models is that they consider a very simple model of
the data, ignoring the rich semantics associated with triples in more expressive data
models developed by the semantic web community, such as RDF and the associated
ontology languages. As mentioned previously, a knowledge graph is considered as
nothing more than a set of triples, with no special semantics attached to any partic-
ular triple. In contrast, modern RDF data are often accompanied by rich ontological
information which encodes a wealth of metadata, including type hierarchies and other
constraints. Current graph embedding models are entirely agnostic to such metadata,
and thus ontological triples are usually manually removed before training (or, if they
are included, simply interpreted as plain data triples). One of the consequences of

119

this is that current graph embedding models do not directly incorporate constraints
that humans would consider obvious (e.g. understanding that a human cannot be
friends with a building). A huge potential exists in the rich ontologies that inform
modern knowledge graphs, and the objective of this work is to explore ways in which
such ontologies can become first class citizens of graph embedding models.

More specifically, we consider the relatively unexplored problem of graph embed-
ding on ontology-rich knowledge graphs, where the ontology is specified in a stan-
dard language such as RDFS (more expressive languages such as OWL2 have been
developed, but will not be considered in this study). Drawing on the geometrical
interpretation that graph embeddings give to their latent features (namely, that en-
tities are embedded as points in a real coordinate space), we explore the case where
RDFS classes are correspondingly modelled as sets of points (i.e. volumes) in the
same coordinate space, and relations are embedded as sets of pairs of points. This
generalisation of the basic geometrical interpretation allows for a natural expression
of ontological constraints in the global cost function. The result is a model we name
EmbedS, which is able to model RDFS ontological constraints as first-class citizens.
Along with providing the precise definitions for the EmbedS cost function, we provide
experimental results that show EmbedS to be comparable to state-of-the-art graph
embedding techniques when measured on traditional benchmark knowledge graphs,
while performing well on a new ontology-rich dataset we have prepared for the pur-
poses of studying the new enriched geometrical interpretation that EmbedS provides.

The results presented in this chapter showcase the potential of extending current
graph embedding research to include ontological information, and will hopefully en-
courage further development of the area. The specific contributions to research in the
field are as follows:

1. The definition of a translation-based graph embedding model which specifically
embeds graph entities, classes, and relationships as points, sets of points, and
sets of pairs of points respectively, thus providing a geometrical interpretation
to the embedding space.

2. An extensive experimental evaluation of said model, showing performance that
is able to compete with state-of-the-art embedding models, while offering the
possibility of a new mode of triple classification based on the geometrical inter-
pretation of the embedding space.

120

In this chapter we first introduce necessary mathematical notation, preliminary
definitions, and we discuss related work. We then develop and introduce the EmbedS
model, its global cost function, and the geometrical interpretation induced on embed-
ded entities and relations. Next, we explain the experimental setting and evaluation
metrics, including a discussion of an ontology-rich benchmark dataset we have pre-
pared for testing the EmbedS model, including a discussion of results obtained. This
chapter is based on work published in [39].

5.2 Preliminaries and related work

5.2.1 Definitions and notation

Graph embedding models are usually defined on a knowledge graph, which is essen-
tially a set of triples, similar to the RDF data model, but lacking specialised features
of the latter, such as the precise definition of IRIs, literals, and the semantics associ-
ated with certain keyword IRIs. In this section we will introduce necessary definitions,
noting the similarities and discrepancies with the RDF data model. We will then in-
troduce needed concepts such as graph embeddings, and finally we will discuss related
work.

Let E and P be two mutually disjoint and countably infinite sets of entities and
relations, respectively. A knowledge graph is then defined as a finite set of triples of
the form (s, p, o) ∈ E × P × E. As such, a knowledge graph can be interpreted as a
directed graph with labelled edges, or as a set of binary relations. As in this work
will seek to allow graph embeddings to operate on more expressive graph data, it
is important to note the differences with the full RDF data model. RDF considers
entities and relations to be indistinguishable members of a larger set of IRIs: E ⊆ I

and P ⊆ I, without enforcing their disjointness (thus, a relation is simultaneously
considered to be a node in the graph). Also, RDF defines an infinitely countable set
of literals L, disjoint from I, and finally RDF triples are drawn from the more general
set I× I× (I∪L). Note that we have omitted the discussion of blank nodes, which are
placeholder entities that do not refer to any particular real-world concept, but merely
indicate the existence of an entity.

The base RDF data model described provides very little semantics other than the
basic interpretation of the triple as a fact. To enrich an RDF dataset, several ontology
languages have been developed, of which RDFS is one of the simplest. RDFS defines
the core keyword IRIs shown in Table 5.1, which are assigned special semantics in
order for richer knowledge—including basic type systems—to be encoded into RDF

121

Keyword Abbr. IRI
type type rdf:type
subclass sc rdfs:subClassOf
disjoint dsjnt owl:disjointWith
subproperty sp rdfs:subPropertyOf
domain dom rdfs:domain
range range rdfs:range

Table 5.1: RDFS core keywords and their abbreviations used in this chapter.

format. Note that the prefixes used in Table 5.1 are themselves abbreviations. Actu-
ally, rdf: expands to http://www.w3.org/1999/02/22-rdf-syntax-ns# and rdfs:

expands to http://www.w3.org/2000/01/rdf-schema#.
In what follows, we will consider, in addition to the sets E and P, and additional

set C of classes, also infinitely countable and disjoint from the previous two. Fur-
thermore, we define six special relations type, sc, sp, dom, range, dsjnt ∈ P. We will
only consider triples t = (s, p, o) for which one of the following hold:

• (s, p, o) ∈ E× P× E (called data triples),

• (s, p, o) ∈ E×{type}×C (called type triples). Type triples are used to indicate
that an entity belongs to a class, e.g. (ATuring, type, Person).

• (s, p, o) ∈ C × {sc} × C (called subclass triples). Subclass triples are used to
indicate a containment relation among classes, e.g. (Actor, sc, Person)

• (s, p, o) ∈ C × {dsjnt} × C (called disjointness triples). Disjointness triples
denote disjointness among classes, e.g. (Person, dsjnt, Building).

• (s, p, o) ∈ P×{sp}×P (called subproperty triples). Subproperty triples denote
relations between properties. For example, if the property directorOf is in
triples such as (Spielberg, directorOf, Avatar), it could be indicated that
(directorOf, sp, workedOn).

• (s, p, o) ∈ P × {dom} × C (called domain triples). Domain triples are used to
indicate the class of entities which may be the subject of a triple using a certain
property, e.g. (directorOf, dom, Person).

• (s, p, o) ∈ P × {range} × C (called range triples). Range triples are used to
indicate the class of entities which may be the object of a triple using a certain
property, e.g. (bornIn, range, Place).

122

A data graph D is defined as a finite set of triples such that for every triple t ∈ D,
t is a data triple or a type triple (thus, type triples are considered to be a form of data
triple as well). An ontology S (which corresponds to a simplified version of an RDFS
ontology) is a finite set of triples such that for every triple t ∈ S, t is not a data triple
and t is not a type triple. Finally, an ontology-rich graph is a pair I = (D,S) which
consists of a data graph and an ontology (we will often abuse notation and consider
I = D ∪ S).

Example 5.1. Consider the following data graph D:

D = {(anne, type, Woman), (john, type, Man), (john, knows, anne)}.

The previous information about people and their relationships can be enriched with
the following ontology S:

S = {(Woman, sc, Person), (Man, sc, Person)}.

The full dataset is then I = D ∪ S.

Having introduced the syntax of the simplified version of RDFS that will be used,
we now turn to its semantics. Crucially, RDFS allows for inferencing new triples using
a series of inference rules. For example, the following is an inference rule for RDFS,
for some x ∈ E and B,C ∈ C:

(x, type, C)
(C, sc, B)

(x, type, B)

Which is read as follows: given a dataset I = D ∪ S which contains two triples
of the form (x, type, C) and (C, sc, B) (recall that x ∈ E and B,C ∈ C), the triple
(x, type, B) may be inferred to hold. This particular inference rule is one of many
such rules [13], and we denote a general inference rule with t1, . . . , tn → t. Informally,
inference rules work in the following way: given an ontology-rich graph I = D ∪ S
such that there exists an inference rule t1, . . . , tn → t and an assignment σ of the
variables of the rule to URIs such that σ(t1), . . . , σ(tn) ∈ I, then the triple σ(t) is
added to I, defining the inferred graph I ′ = I ∪ {t}. The fully inferred graph is then
the result of applying all possible inference rules—and adding all possible inferred
triples—until a fixed point is reached [13]. In query engines that recognise RDFS
ontologies, inferred triples are considered true in the same sense as explicit triples.

Example 5.2. Consider the ontology-rich graph I = D∪S from the previous example.
Here, we have the following applicable inference rule:

123

(x, type, B)
(B, sc, C)

(x, type, C),

with the following assignment: σ(x) = anne, σ(B) = Woman, σ(C) = Person, giving
the following instantiation of the rule:

(anne, type, Woman)
(Woman, sc, Person)

(anne, type, Person),

We therefore define the inferred graph I ′ = I ∪ {(anne, type, Person)}. In this way,
the semantics of RDFS allow us to conclude facts which are not explicitly included in
the dataset.

RDFS and ontology languages in general are thus a powerful tool for representing
knowledge about how data interacts. They can be used to specify type hierarchies
and other restrictions on data. It is the goal of this work for such metadata to be
considered in the modelling phase of graph embeddings.

5.2.2 Graph embeddings and related work

Graph embedding models and, in general, statistical relational learning models, vary
greatly in the techniques used in order to obtain machine learning-compatible repre-
sentations of knowledge graphs. In general, however, the main problem of knowledge
base completion gives a common direction to these techniques: constructing statisti-
cal models of the data that allow for link prediction (given an incomplete fact such as
(Tarantino, inspiredBy, ?) and return the entity that would mostly likely complete
the triple) and triple classification (given a triple, assign a probability that it is true).

Informally, the problem statement is usually as follows: given a knowledge graph
D, define a series of latent variables x1, . . . , xn and an objective function f(x1, . . . , xn;

D) such that the minimisation of f(x1, . . . , xn;D) is such that given a triple t the
probability P (t,X1, . . . , Xn;D) of said triple is maximised when t is true. It is of
course difficult to define the trueness of a triple, especially when confronted to new
triples extracted from sources of unknown accuracy (as is the case of web-based
extraction of triples, for example). For this reason, statistical models are usually
trained with a standard division of the dataset into training, validation, and testing
subsets. The variables x1, . . . , xn mentioned are known as parameters, and their values
are the subject to successive updates during the training phase, which essentially
consists in minimising the objective function. Only the training subset is considered

124

for updating the parameters. The final assignment of values to the parameters defined
is called a solution, and its generalisation power is evaluated on the validation and
testing subsets.

The objective function f can also depend on constants which are not modified
during training, but whose value must also be chosen a priori; these constants are
known as hyperparameters. A whole sub-field of machine learning is dedicated to
researching how such hyperparameters should be assigned values [5, 22, 40].

The most expressive models involve tensor or matrix factorisation techniques,
although these are also the models with the highest complexity, measured in the
number of parameters that must be trained. A well-known example of this is RESCAL
[81], which explains triples using pairwise interactions of the latent features of entities.
Thus, the cost associated to a triple xijk has the following form:

cost(xijk) = e>i Wkej.

Other highly expressive models use techniques such as matrix factorisation [65], neu-
ral tensor networks [97], and multilayer perceptrons [77]. The latter, also known as
word2vec, was strictly a word embedding model, but had as an interesting and unin-
tended consequence a translational property among the latent representation of words:
simple binary relations between words could be captured when interpreting the latent
representation—embedding—of the relation as a translational vector. For example, af-
ter training on a textual corpus, researchers found that incomplete sentences such as
(Madrid, capitalOf, Spain) had the property that the vector eMadrid + ecapitalOf was
nearest to eSpain (where ex indicates the embedding assigned to entity x ∈ E).

The previous translational property spawned a renewed interest in distance-based
models that incorporated a geometrical interpretation for the latent representations
of entities. The first model in this sub-field was TransE [31], and was quickly followed
by refinements such as TransH [113], TransR [71], and others. In TransE, the cost of
a triple xijk is as follows:

cost(xijk) = dist(ei + pk, ej),

where dist is the standard euclidean distance function. Notice that TransE now
embeds a relation pk ∈ P as an n-dimensional vector pk which acts as a transla-
tional vector. While less expressive, translation-based models prove more scalable, as
their model complexity is lower and a simpler cost structure allows for more efficient
training.

125

The model proposed in this work draws from research in translation-based models.
However, our problem scenario focused on ontology-rich knowledge graphs, which
contain specific semantics for keyword triples. In this space, work has been done in
combining deep neural networks with logic rules [62] and recently, with the design of
semantic loss functions [116]. In [34], type constraints are considered by removing
type-constraint-violating triples, which improves training speed and link prediction
performance. They do not incorporate ontological information into the model as a
first class citizen, however, and neither does the geometrical interpretation of the
model adapt to reflect the presence of this metadata.

More generally, tools such as Markov logic networks have been used to generate
interest probability graphs in knowledge graphs such as WordNet [98].

5.3 The EmbedS model

Consider an RDF dataset I = D∪S, and let EI ⊆ E, CI ⊆ C, and PI ⊆ P be the sets
of entities, classes, and properties that appear in I, respectively. Define for each entity
ei ∈ EI an n-dimensional vector of parameters (i.e. variables) ei = (ei1, . . . , ein); for
each class ci ∈ CI define an n-dimensional vector of parameters ci = (ci1, . . . , cin) and
a parameter ρi; and for each property pi ∈ PI define two n-dimensional vectors of
parameters pαi = (pαi1, . . . , p

α
in) and pβi = (pβi1, . . . , p

β
in) and a parameter σi. We have

thus defined a total of |EI | ·n+ |CI | · (n+1)+ |PI | · (2n+1) parameters for our model.
Assuming that |EI | = NE, |CI | = NC , and |PI | = NP , the cost L will be a function

of all the variables previously defined:

L = L(e1, . . . , eNE ;c1, . . . , cNC , ρ1, . . . , ρNC ;

pα1 , . . . ,p
α
NP
,pβ1 , . . . ,p

β
NP
, σ1, . . . , σNP).

We first provide an overview as to the objective of the model and how it will be
trained. Having defined the set of parameters and the global cost function which
depends on these parameters, training will proceed via stochastic gradient descent of
the objective function, as shown in Algorithm 5. The final state of the parameters
after training is called the solution.

For what follows, we first define a distance function dist which assigns to every
pair of n-dimensional vectors x = (x1, . . . , xn), and y = (y1, . . . , yn) a non-negative
real value dist(x,y), with the standard distance function properties1. In what follows,

1(a) dist(x,y) ≥ 0, (b) dist(x,y) = 0⇔ x = y, (c) dist(x,y) = dist(y,x), and (d) dist(x, z) ≤
dist(x,y) + dist(y, z).

126

ALGORITHM 5: Pseudo-code for training and embedding model.
Input: Training graph It.
Output: Graph embedding solution.

1 for i = 1 to Nepochs do
2 Calculate cost L of current solution;
3 Calculate gradient ∇L;
4 Update parameters in direction of gradient;
5 end

we choose to set dist(x,y) = ‖x − y‖2 =
∑i=n

i=1 (xi − yi)
2, that is, the L2 norm of

x − y. The L1 norm is also commonly used in the context of graph embeddings.
However, in this case the geometrical interpretation is central to the design of the
model, whereby changing the distance function may have unintended side effects.
We also define an activation function act, for which we choose the rectifier function,
act(x) = max(0, x).

We now turn to the precise form of the cost function L. For the entire dataset,
define LI =

∑
t∈I Lt, where the cost of each triple t = (ei, pk, ej) ∈ I (note that

ei, ej ∈ EI ∪ CI ∪ PI and pk ∈ PI), is defined as follows:

Lt = act
(
dist(ei,pαk) + dist(ej,p

β
k)− σk

)
.

The geometrical interpretation of this cost is provided in Section 5.3.1, and is
visualized in Figure 5.1. Next, we define a cost term for each possible RDFS assertion.
For each t ∈ S:

1. If t = (ei, type, cj) ∈ S, where ei ∈ EI and cj ∈ CI , define:

LSt = act
(
dist(ei, cj)− ρj

)
,

2. If t = (ci, sc, cj) ∈ S, where ci, cj ∈ CI , define:

LSt = act
(
dist(ci, cj)− (ρj − ρi)

)
,

3. If t = (pi, sp, pj) ∈ S, where pi, pj ∈ PI , define:

LSt = act
(
dist(pαi ,p

α
j) + dist(pβi ,p

β
j)− (σj − σi)

)
,

4. If t = (pi, dom, cj) ∈ S, where pi ∈ PI and cj ∈ CI , define:

LSt = act
(
dist(pαi , cj)− σi

)
,

127

(ei, ej)

(pαk ,p
β
k)

σk

Figure 5.1: Cost of a triple (ei, pk, ej) ∈ I. The circle represents a 2n-sphere of radius
σk centred at (pαk ,p

β
k). The pair (ei, ej) is embedded as the 2n-dimensional point

(ei, ej). The (red) error line shows the cost.

5. If t = (pi, range, cj) ∈ S, where pi ∈ PI and cj ∈ CI , define:

LSt = act
(
dist(pβi , cj)− σi

)
.

Finally, we sum, for every triple t ∈ S, the cost of t depending on the RDFS
relation it mentions. In that way, we define the cost term LS =

∑
t∈S LSt , and thus

define the final cost to be L = LI + λLS, where λ is a hyperparameter that assigns a
larger weight to the ontological triples (and thus must its value must be fixed before
training).

5.3.1 Geometrical interpretation

We now give a geometrical interpretation to the model definition. By embedding
entities as single n-dimensional vectors we are modelling them as points in the n-
dimensional euclidean space. Classes, on the other hand, are modelled as regions of
the euclidean space, being embedded as a vector and a radius, representing n-spheres.
This allows for the following geometrical interpretation: if an entity is embedded
within the region defined by the embedding of a class, then it is interpreted to be of
that type, and vice-versa (see Figure 5.2). Finally, properties, insofar as they represent
binary relations, are modelled as 2n-spheres which constitute a set of pairs of points.
Thus, each relation pk ∈ PI has an embedding which consists of two n-dimensional
vectors pαk and pβk and a radius ρk. The corresponding geometrical interpretation is
analogous to the previous case: in 2n-space, a pair (ei, ej) is interpreted to be related
by a relation pk if the 2n-point (ei, ej) is in the region defined by the 2n-sphere
centered at (pαk ,p

β
k) with radius σk (see Figure 5.1).

The main advantage conferred by this ontology-aware geometrical interpretation
is that RDFS classes and ontological assertions are now first-class citizens of the
model. By modelling classes as regions of the euclidean space, for example, certain

128

ei

cj

ρj

Figure 5.2: Cost (red error line) of t = (ei, type, cj), where class cj is embedded as
an n-sphere at cj with radius ρj.

properties are obtained for free, such as type containment transitivity: if after training
the entity alanTuring is (correctly) embedded within the class Researcher, and said
class is (correctly) embedded fully contained within the region corresponding to class
Person, then the transitive fact that alanTuring is a Person will be provided for
free. In this way, the embedding space will presumably encode ontological information
geometrically.

5.3.2 Negative examples

Cost-based graph embedding models must include negative examples in order to avoid
trivial solutions from becoming valid. In particular, when trained with only positive
examples, cost-based models will tend to optimise the global cost function by assigning
the value zero to every parameter in the model, thus obtaining a trivial solution which
does, in fact, optimise the cost function. The challenge, then, is to generate a suitable
set of negative examples (triples) in the context of incomplete data, where it is not
known whether missing triples are missing because they are false or merely because
they have not been found to be true yet.

The simplest mechanism for generating negative triples would be to generate en-
tirely random triples t̃ = (ei, pk, ej) with the only restriction being that t̃ 6∈ I. How-
ever, this recipe in most cases results in negative triples that are not useful for training:
as the universe EI × PI × EI is extremely large, the sampled triples will usually be
nonsensical (e.g. (Jamaica, birthPlace, Saturday)). Although a nonsensical triple is
technically a valid negative example, training can be performed much more efficiently
if negative examples delineate the border between true and false facts, that is, nega-
tive examples should be as similar as possible to positive triples in order to serve to
discriminate between true and false information. As such, translation-based models
often include negative examples in the form of corrupt triples. During a training
epoch, every triple t = (ei, pk, ej) ∈ I is assigned a randomly generated corrupt triple
t′ where one of the following hold (i) t′ = (ei′ , pk, ej) for i 6= i′, (ii) t′ = (ei, pk′ , ej) for

129

k 6= k′, or (iii) t′ = (ei, pk, ej′) for j 6= j′. The previous ensures that the negative ex-
ample will not be completely random, but rather derived from a positive triple. This
configuration of negative example generation is known as uniform sampling. In the
literature, the corruption of the relation—alternative (ii)—is not usually performed;
when it is, the scenario is called uniform sampling with relation corruption.

Generating negative examples via triple corruption partially corrects the situation,
but not entirely. In fact, research has been done into more refined negative sampling
configurations. We now consider one of these configurations.

Bernoulli—or bern—sampling was designed as an alternative way of generating
negative examples at training time [113]. While uniform sampling generates, for
each triple t = (ei, pk, ej) in the training dataset a corresponding negative triple
t′ = (ei′ , pk, ej′) such that either i′ 6= i or j′ 6= j (but not both), Bernoulli sampling
attempts to generate negative triples that more closely model information that is
incorrect (as opposed to merely senseless).

The procedure is as follows. Firstly, before training time, for each relation pk ∈ PI
the ratio of subjects to objects is calculated as the average number of subjects related
to each object through pk:

sto(pk) =

∑
ej∈EI∈arange(pk) |{ei ∈ EI | (ei, pk, ej) ∈ I}|

|arange(pk)|
,

where arange(pk) = {ej ∈ EI | ∃e ∈ EI : (e, pk, ej)}. Analogously, the ratio of objects
to subjects is calculated as the average number of objects related to each subject
through pk:

ots(pk) =

∑
ei∈adom(pk) |{ej ∈ EI | (ei, pk, ej) ∈ I}|

|adom(pk)|
,

where adom(pk) = {ei ∈ EI | ∃e ∈ EI : (ei, pk, e)}.
The following value is then obtained for pk:

bernratio(pk) =
sto(pk)

sto(pk) + ots(pk)
,

bernratio(pk) thus will be used as follows: given a triple t = (ei, pk, ej) in the training
dataset, t will be corrupted on the left with probability p = bernratio(pk) (thus
generating t′ = (ei′ , pk, ej)) and on the right with probability 1− p.

5.4 Experimental evaluation

In this section we provide preliminary experimental results showing that EmbedS can
perform at state-of-the-art levels on a standard benchmark dataset, while providing a

130

new complementary triple classification method based on the geometrical interpreta-
tion which shows encouraging results. An exhaustive experimental evaluation will be
left for future work. The model was implemented in the Python Theano framework,
and builds on the open source code provided by the authors of [31].

5.4.1 Datasets

We use the following datasets for experimental evaluations:

wn18 Dataset extracted from WordNet. This dataset consists of 151,442 triples,
40,943 entities, and 18 relations.

dbpedia32k RDF dataset extracted from DBpedia, consisting of 340,827 triples,
32,657 entities, and 296 relations.

The first dataset has become a standard benchmark in the graph embedding
field [31], and allows for an apples to apples comparison between our model and
existing work. However, EmbedS has been designed for a fundamentally different
problem setting: that of embedding in ontology-rich RDF data. In order to test the
performance of our model, we have prepared a dataset, named ‘dbpedia32k’ which
includes an RDFS ontology.

We now describe the construction of the dbpedia32k dataset. It initially draws
from three distinct downloads, which are freely available: the ‘DBpedia Ontology’ file,
which contains ontology triples, the ‘Instance Types’ file, which contains data triples
of the form (a, type, C) for some entity a and some class C, and the ‘Mappingbased
Objects’ file, which contains general data triples, representing facts on entities present
in Wikipedia articles. From the Mappingbased Objects file first define a relation to
be useful if it appears in at least 1000 triples. We define an entity to be useful if it is
mentioned at least 10 times in the file. A uniform sample of useful entities is built,
keeping only triples which mention useful relations and these sampled entities only.
Finally, we recalculate useful entities (in the filtered dataset) and remove triples which
mention non-useful entities. We thus obtain the final set of Mappingbased Objects
triples to be used. We complete the dataset by extracting, from Instance Types,
triples (a, type, C) where a is mentioned in the previous dataset, and similarly we
extract relevant ontology triples from DBpedia Ontology. The resulting complete
dataset is split uniformly into three subsets for training, validation, and testing, with
proportions 0.8, 0.1, and 0.1, respectively.

131

5.4.2 Link prediction performance

To measure the performance of the model, we use the standardmean rank and hits@10
metrics, each in its two standard flavours: raw, filtered. We now describe these metrics
in detail.

Ranking-based performance metrics are designed to answer the question: if the
model were asked to rank the best entities to complete a partial triple (i.e. to predict
a link), how well would it rank the correct answer?

More precisely, for every triple t = (s, p, o) in the testing dataset, a left rank lr(t)
is calculated by removing the subject of the triple—thus obtaining an incomplete
triple tl = (?, p, o)—and subsequently, testing every possible entity s′ ∈ E, calculating
the corresponding cost cost(ts′) of the candidate triple ts′ = (s′, p, o). The candidate
triples ts′ are then sorted in ascending order of cost. The raw left rank of triple t is
then defined as its position in the sorted list (the first position being defined as rank
1).

For the filtered left rank, the sorted list of triples t′ is first filtered, that is, removing
all triples ts′ for which ts′ ∈ I, that is, which happen to be true. An analogous
definition holds for the right rank of triple t. Finally, the raw (filtered) mean rank of
the testing dataset is the mean of the raw (filtered) left ranks and raw (filtered) right
ranks of each testing triple. With the previous, the following is defined:

• hits@10 left is defined as the proportion of testing triples t such that lr(t) ≤ 10,
and analogously for hits@10 right.

• The mean rank left (right) is defined as the mean of the left (right) ranks of
each testing triple t.

5.4.3 Hyperparameter tuning

Selection of hyperparameters of the model is achieved via random search. Although
more sophisticated methods have been proposed [5], random search has been shown
to be competitive with these systems [22].

More precisely, for each dataset-model combination (e.g. dbpedia32k with Em-
bedS), a suitable bounding box for the hyperparameters of the model is chosen, and
training is performed over 500 epochs for 1,000 different random assignments of hy-
perparameter values. The final model selected is that which maximizes the estimated
mean reciprocal rank for the validation dataset.

132

Figure 5.3: Learning process over 1000 epochs with sgd updates (left) and adagrad
updates (right). Partial evaluation is done every 10 epochs.

5.4.4 Gradient descent

Optimisation of the global cost function is generally achieved via stochastic gradient
descent. However, there are known issues with this approach. Notably, stochastic
gradient descent maintains a constant step size which can be detrimental in two
scenarios: (i) a relatively large step size may produce a quick convergence at the
beginning of training at the expense of an unstable progress near the end of training,
where small adjustments of the parameters are needed, or (ii) a relatively small step
size, which would be optimal for the later stages, at the expense of a slow convergence
at earlier stages.

In response to this, several different update techniques have been developed, in-
cluding adagrad [41]. We have implemented a version of EmbedS which uses adagrad
updates.

Figure 5.3 shows that the adoption of adagrad degraded the performance of the
model, going from 52.0% hits@10f to 23.3%. It must be noted, however, that adagrad
would probably require a different set of hyperparameters to achieve best perfor-
mance; towards this hypothesis, the experiment was repeated with larger learning
rates (lrparam set to 10.0 and lremb set to 0.01), obtaining 35.4%.

5.4.5 Bern sampling

Figure 5.4 shows the result of implementing Bernoulli sampling on EmbedS. The hor-
izontal axis corresponds to time: a partial evaluation of link prediction performance
is calculated on the training, validation, and testing datasets every ten epochs (there-
fore, although training was executed over a total of 1000 epochs, the plot shows 100

133

partial evaluations performed). Performance was slighty degraded on the benchmark
dataset fb15k.

5.4.6 Optimising triple classification

As EmbedS allows for a geometrical interpretation of triples, we also evaluate a triple
classification performance. For each triple in the dataset, and an equal amount of
randomly generated false triples (i.e. triples not in the dataset), if t = (ei, pk, ej),
the binary classification consists in asking whether the 2n-dimensional point (ei, ej)

is contained in the sphere centred at (pαk ,p
β
k) with radius σk or not. Precision and

recall values are obtained for this test.

5.4.7 Optimal results

EmbedS was trained on the wn18 dataset, optimizing for best validation (filtered)
hits@10 value, obtaining 94.9%, which is comparable to state-of-the-art models such
as HolE [80]. HolE is clearly superior in the mean reciprocal rank metric, however,
with a value of 0.938, compared to 0.560 for EmbedS. It must be noted, though,
that these values correspond to harmonic mean ranks of 1.07 for HolE and 1.79 for
EmbedS. If EmbedS is now instructed to optimise the geometrical interpretation, we
achieve a precision of 84.2% and a recall of 83.9%, corresponding to an f-measure of
84.0%.

On the dbpedia_v2 dataset, we find that EmbedS achieves a performance on
hits@10 of 22.7% and a mean reciprocal rank of 0.133 (corresponding to a harmonic
mean rank of 7.52). TransE, on the other hand, performs at 11.6% hits@10 and 0.054
mean reciprocal rank (corresponding to a harmonic mean rank of 18.52).

134

Figure 5.4: Learning process over 1000 epochs with uniform negative example sam-
pling (top) and Bernoulli negative example sampling (bottom). Partial evaluation is
done every 10 epochs.

135

Chapter 6

Conclusion

Wider adoption of linked open data applications depends on several factors, one of
them being the development of the theory and tools that ease the exploration and
querying of unknown databases. A key obstacle is the unfamiliarity of users with
the structure of data, as well as the structure of the classical querying paradigm
itself, in which the user must be capable of formulating queries in a query formal
language, such as SPARQL. In this context, it is valuable to study extensions, or
outright alternatives, to this classical querying paradigm. Querying by example and
reverse engineering in particular are areas of research that address this concern.

In this thesis we have explored the problem of increasing the usability of knowledge
graph database systems with learning techniques, including the study of definability
problems, reverse engineering problems, and machine learning based methods for
knowledge base completion.

To summarise the contributions of this thesis, we have studied the computational
complexity of the first-order logic definability problem (Chapter 2), FO-Def, and
the generalised version, BP-Pairs, which have been found to be GI-complete, thus
closing two open problems in the database area. A fundamental corollary of these
results is that FO-Def can be solved efficiently if the graph isomorphism problem
can be solved efficiently. The incremental approach taken by the polynomial-time
algorithm for FO-Def with an oracle for the graph isomorphism problem may prove
applicable to other scenarios as well, and may open avenues of further research.

In the context of Semantic Web systems (Chapter 3), the reverse engineering
problem has been studied for various fragments of the SPARQL query language. Our
study of the complexity of the problem indicates that restricting the examples so that
the associate lattice is tree-like has significant benefits to the complexity of reverse
engineering. Based on this study we developed a reverse engineering procedure that
proceeds by building a single candidate query and checking its correctness via a call to

136

a SPARQL query engine. We have examined the performance of this algorithm both
on synthetically generated and real-world query examples, profiling both performance
and quality of the results. In particular, we found exponential dependency of the
runtime on the input size, which was to be expected given our complexity results.
However, an important component of the complexity of the algorithms originates from
the final checking step of the candidate query. Hence, it is in principle possible to
present this candidate query to the user quickly, and to proceed with the final check
in the background.

Next, in order to explore the usability of database systems and the query-by-
example paradigm, we have demonstrated a system for querying RDF data “by ex-
ample” (Chapter 4). On the one hand, a user does not have to write SPARQL
queries; indeed, the user does not even have to understand SPARQL. On the other
hand, the system exploits the power of the SPARQL language for expressing natural
user queries, by inducting a SPARQL query from user examples “under the hood”.
This user interface serves as a proof-of-concept for potential end user systems that
allow audiences without technical knowledge of formal query languages to use interac-
tive learning techniques to converge on precise queries and, thus, explore graph-based
knowledge bases. However, we found that an important limitation was the quality
and/or the completeness of the data. For example, a user who wishes to retrieve a
list of all entities of a highly specific, or otherwise obscure, class, will not find query
engineering to meet their needs, simply because the data does not contain enough
explicit information. Addressing this issue was the main motivation for the last part
of the thesis.

Finally, we have presented the new problem of training graph embeddings on
ontology-rich datasets (Chapter 5). Graph embeddings are a standard technique for
generating statistical models of data that allow for predicting new links in existing
data, a concept also known as knowledge base completion. In this way, a graph
embedding approach has the potential of becoming an essential ingredient in the
toolbox of providing more navigable databases. We proposed a graph embedding
model which considers RDFS classes and other ontological information as first-class
citizens, providing a geometrical interpretation for triples and for ontology assertions.
Experimental results show that the model can perform at state-of-the-art levels on
standard benchmark datasets, while on ontology-rich datasets it is also able to provide
an alternative form of triple classification which takes advantage of the geometrical
interpretation.

137

In order for the geometrical interpretation of this model to be used to its maximum
capacity, it will be necessary to perform an exhaustive random search including all
hyperparameters, with the objective of finding a configuration which allows for high
performance results both on the standard ranking-based metrics and in the geometry-
based triple classification test. There may well be an inherent trade-off which restricts
this possibility, in which case the use-cases of the model may be more restricted, but
still valuable, as the model would serve as a unified framework where upon choosing
the performance metric to be prioritised (i.e. ranking based link prediction versus
geometry-based triple classification) the same model can be optimised accordingly.

The theoretical results on computational complexity and algorithms, the imple-
mentation of query-by-example user interfaces, and the design of machine learning
based formalisms for knowledge base completion, represent steps forward in address-
ing the issues that the field faces. However, there are several tasks outstanding,
such as extending our query reverse engineering complexity bounds and algorithms
to larger fragments of the SPARQL query language, in order to capture a broader
subset of its full expressivity. Applying query reverse engineering techniques to other
newer graph based data models and query languages will serve to extend the query
by example paradigm and explore its usefulness in different use cases and applica-
tion domains. It will also be valuable to propose frameworks in which the machine
learning based knowledge graph completion concepts can be merged with query by
example systems in order to provide users with a consistent interface for exploring
both explicitly stated and learned data. The ongoing goal of increasing the efficiency
of accessing data in databases, and making this technology available and usable by
wider audiences is one that is far from closed, and remains very much as exciting as
it was decades ago, when query languages and databases were still in their infancy.

138

Bibliography

[1] Scott Aaronson, Greg Kuperberg, and Christopher Granade. Complexity Zoo.
https://complexityzoo.uwaterloo.ca, 2005.

[2] Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il
Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Ri-
ichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors. The
Semantic Web, 6th International Semantic Web Conference, 2nd Asian Seman-
tic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-
15, 2007, volume 4825 of Lecture Notes in Computer Science. Springer, 2007.

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[4] Azza Abouzied, Dana Angluin, Christos H. Papadimitriou, Joseph M. Heller-
stein, and Avi Silberschatz. Learning and verifying quantified boolean queries
by example. In Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages 49–60.
ACM, 2013.

[5] Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W.
Hoffman, David Pfau, Tom Schaul, and Nando de Freitas. Learning to learn
by gradient descent by gradient descent. In Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 3981–3989, 2016.

[6] Dana Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45(2):117–135, 1980.

139

[7] Dana Angluin. Learning regular sets from queries and counterexamples. Inf.
Comput., 75(2):87–106, 1987.

[8] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342,
1987.

[9] Timos Antonopoulos, Frank Neven, and Frédéric Servais. Definability problems
for graph query languages. In Tan et al. [103], pages 141–152.

[10] Marcelo Arenas and Gonzalo I. Diaz. The exact complexity of the first-order
logic definability problem. ACM Trans. Database Syst., 41(2):13, 2016.

[11] Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. Reverse engineering
SPARQL queries. In Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian
Horrocks, and Ben Y. Zhao, editors, Proceedings of the 25th International Con-
ference on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15,
2016, pages 239–249. ACM, 2016.

[12] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Mar-
ciuska, and Dmitriy Zheleznyakov. Faceted search over rdf-based knowledge
graphs. J. Web Sem., 37-38:55–74, 2016.

[13] Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. Foundations of RDF
databases. In Sergio Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutier-
rez, Siegfried Handschuh, Marie-Christine Rousset, and Renate A. Schmidt,
editors, Reasoning Web. Semantic Technologies for Information Systems, 5th
International Summer School 2009, Brixen-Bressanone, Italy, August 30 -
September 4, 2009, Tutorial Lectures, volume 5689 of Lecture Notes in Com-
puter Science, pages 158–204. Springer, 2009.

[14] Marcelo Arenas and Jorge Pérez. Querying semantic web data with SPARQL.
In Maurizio Lenzerini and Thomas Schwentick, editors, Proceedings of the 30th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS 2011, June 12-16, 2011, Athens, Greece, pages 305–316. ACM,
2011.

[15] Marcelo Arenas and Martín Ugarte, editors. 18th International Conference
on Database Theory, ICDT 2015, March 23-27, 2015, Brussels, Belgium, vol-
ume 31 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

140

[16] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-
proach. Cambridge University Press, 2009.

[17] Vikraman Arvind and Jacobo Torán. Isomorphism testing: Perspective and
open problems. Bulletin of the EATCS, 86:66–84, 2005.

[18] DBpedia Association. DBpedia. https://wiki.dbpedia.org/, 2007.

[19] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In
Aberer et al. [2], pages 722–735.

[20] László Babai. Graph isomorphism in quasipolynomial time. CoRR,
abs/1512.03547, 2015.

[21] François Bancilhon. On the completeness of query languages for relational data
bases. In Józef Winkowski, editor, Mathematical Foundations of Computer
Science 1978, Proceedings, 7th Symposium, Zakopane, Poland, September 4-8,
1978, volume 64 of Lecture Notes in Computer Science, pages 112–123. Springer,
1978.

[22] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13:281–305, 2012.

[23] Alexander Bilke and Felix Naumann. Schema matching using duplicates. In
Karl Aberer, Michael J. Franklin, and Shojiro Nishio, editors, Proceedings of
the 21st International Conference on Data Engineering, ICDE 2005, 5-8 April
2005, Tokyo, Japan, pages 69–80. IEEE Computer Society, 2005.

[24] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so
far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[25] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: a collaboratively created graph database for structuring human
knowledge. In Jason Tsong-Li Wang, editor, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, Vancouver,
BC, Canada, June 10-12, 2008, pages 1247–1250. ACM, 2008.

[26] Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. Learning path queries on
graph databases. In Gustavo Alonso, Floris Geerts, Lucian Popa, Pablo Barceló,

141

Jens Teubner, Martín Ugarte, Jan Van den Bussche, and Jan Paredaens, edi-
tors, Proceedings of the 18th International Conference on Extending Database
Technology, EDBT 2015, Brussels, Belgium, March 23-27, 2015., pages 109–
120. OpenProceedings.org, 2015.

[27] Angela Bonifati, Radu Ciucanu, Aurélien Lemay, and Slawek Staworko. A
paradigm for learning queries on big data. In Rada Chirkova and Jun Yang,
editors, Proceedings of the First International Workshop on Bringing the Value
of "Big Data" to Users, Data4U@VLDB 2014, Hangzhou, China, September 1,
2014, page 7. ACM, 2014.

[28] Angela Bonifati, Radu Ciucanu, and Slawek Staworko. Interactive inference
of join queries. In Sihem Amer-Yahia, Vassilis Christophides, Anastasios Ke-
mentsietsidis, Minos N. Garofalakis, Stratos Idreos, and Vincent Leroy, edi-
tors, Proceedings of the 17th International Conference on Extending Database
Technology, EDBT 2014, Athens, Greece, March 24-28, 2014., pages 451–462.
OpenProceedings.org, 2014.

[29] Angela Bonifati, Radu Ciucanu, and Slawek Staworko. Interactive join query
inference with JIM. PVLDB, 7(13):1541–1544, 2014.

[30] Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of
large SPARQL query logs. PVLDB, 11(2):149–161, 2017.

[31] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational data.
In Burges et al. [32], pages 2787–2795.

[32] Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.
Weinberger, editors. Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, 2013.

[33] Ashok K. Chandra and David Harel. Computable queries for relational data
bases. J. Comput. Syst. Sci., 21(2):156–178, 1980.

[34] Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christopher Meek. Typed
tensor decomposition of knowledge bases for relation extraction. In Alessandro
Moschitti, Bo Pang, and Walter Daelemans, editors, Proceedings of the 2014

142

Conference on Empirical Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1568–1579. ACL, 2014.

[35] Sara Cohen and Yaacov Y. Weiss. Certain and possible xpath answers. In Tan
et al. [103], pages 237–248.

[36] Sara Cohen and Yaacov Y. Weiss. Learning tree patterns from example graphs.
In Arenas and Ugarte [15], pages 127–143.

[37] Jan Van den Bussche. Applications of alfred tarski’s ideas in database the-
ory. In Laurent Fribourg, editor, Computer Science Logic, 15th International
Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France,
September 10-13, 2001, Proceedings, volume 2142 of Lecture Notes in Computer
Science, pages 20–37. Springer, 2001.

[38] Gonzalo I. Diaz, Marcelo Arenas, and Michael Benedikt. SPARQLByE: Query-
ing RDF data by example. PVLDB, 9(13):1533–1536, 2016.

[39] Gonzalo I. Diaz, Achille Fokoue, and Mohammad Sadoghi. Embeds: Scalable,
ontology-aware graph embeddings. In Michael H. Böhlen, Reinhard Pichler,
Norman May, Erhard Rahm, Shan-Hung Wu, and Katja Hose, editors, Proceed-
ings of the 21th International Conference on Extending Database Technology,
EDBT 2018, Vienna, Austria, March 26-29, 2018., pages 433–436. OpenPro-
ceedings.org, 2018.

[40] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up
automatic hyperparameter optimization of deep neural networks by extrapo-
lation of learning curves. In Qiang Yang and Michael Wooldridge, editors,
Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
3460–3468. AAAI Press, 2015.

[41] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159, 2011.

[42] Ahmed El-Roby, Khaled Ammar, Ashraf Aboulnaga, and Jimmy Lin. Sapphire:
Querying RDF data made simple. PVLDB, 9(13):1481–1484, 2016.

143

[43] Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum. Query relaxation
for entity-relationship search. In Grigoris Antoniou, Marko Grobelnik, Elena
Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer,
and Jeff Z. Pan, editors, The Semanic Web: Research and Applications - 8th
Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece,
May 29 - June 2, 2011, Proceedings, Part II, volume 6644 of Lecture Notes in
Computer Science, pages 62–76. Springer, 2011.

[44] Herbert B. Enderton. A mathematical introduction to logic. Academic Press,
1972.

[45] Lee Feigenbaum, Ivan Herman, Tonya Hongsermeier, Eric Neumann, and Susie
Stephens. The semantic web in action. Scientific American, 297:90–97, 2007.

[46] Flavio Antonio Ferrarotti, Alejandra Lorena Paoletti, and José M. Turull Tor-
res. First-order types and redundant relations in relational databases. In Car-
los A. Heuser and Günther Pernul, editors, Advances in Conceptual Modeling
- Challenging Perspectives, ER 2009 Workshops CoMoL, ETheCoM, FP-UML,
MOST-ONISW, QoIS, RIGiM, SeCoGIS, Gramado, Brazil, November 9-12,
2009. Proceedings, volume 5833 of Lecture Notes in Computer Science, pages
65–74. Springer, 2009.

[47] George H. L. Fletcher, Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. On
the expressive power of the relational algebra on finite sets of relation pairs.
IEEE Trans. Knowl. Data Eng., 21(6):939–942, 2009.

[48] George H. L. Fletcher, Marc Gyssens, Jan Paredaens, Dirk Van Gucht, and
Yuqing Wu. Structural characterizations of the navigational expressiveness of
relation algebras on a tree. J. Comput. Syst. Sci., 82(2):229–259, 2016.

[49] Géraud Fokou, Stéphane Jean, Allel HadjAli, and Mickaël Baron. RDF query
relaxation strategies based on failure causes. In Harald Sack, Eva Blomqvist,
Mathieu d’Aquin, Chiara Ghidini, Simone Paolo Ponzetto, and Christoph
Lange, editors, The Semantic Web. Latest Advances and New Domains - 13th
International Conference, ESWC 2016, Heraklion, Crete, Greece, May 29 -
June 2, 2016, Proceedings, volume 9678 of Lecture Notes in Computer Science,
pages 439–454. Springer, 2016.

[50] Wikimedia Foundation. Wikidata. https://www.wikidata.org/, 2012.

144

[51] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian M.
Suchanek. AMIE: association rule mining under incomplete evidence in on-
tological knowledge bases. In Daniel Schwabe, Virgílio A. F. Almeida, Hartmut
Glaser, Ricardo A. Baeza-Yates, and Sue B. Moon, editors, 22nd International
World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-
17, 2013, pages 413–422. International World Wide Web Conferences Steering
Committee / ACM, 2013.

[52] E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

[53] Georg Gottlob and Pierre Senellart. Schema mapping discovery from data
instances. J. ACM, 57(2):6:1–6:37, 2010.

[54] Martin Grohe. From polynomial time queries to graph structure theory. Com-
mun. ACM, 54(6):104–112, 2011.

[55] Martin Grohe. Fixed-point definability and polynomial time on graphs with
excluded minors. J. ACM, 59(5):27:1–27:64, 2012.

[56] RDF Working Group. RDF 1.1 Concepts and Abstract Syntax.
https://www.w3.org/TR/rdf11-concepts/.

[57] Dirk Van Gucht. On the expressive power of the extended relational algebra
for the unnormalized relational model. In Moshe Y. Vardi, editor, Proceedings
of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, March 23-25, 1987, San Diego, California, USA, pages 302–
312. ACM, 1987.

[58] Dirk Van Gucht. Bp-completeness. In Ling Liu and M. Tamer Özsu, editors,
Encyclopedia of Database Systems, pages 265–266. Springer US, 2009.

[59] Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. A uniform approach toward
handling atomic and structured information in the nested relational database
model. J. ACM, 36(4):790–825, 1989.

[60] Marc Gyssens, Jan Paredaens, Dirk Van Gucht, and George H. L. Fletcher.
Structural characterizations of the semantics of xpath as navigation tool on a
document. In Stijn Vansummeren, editor, Proceedings of the Twenty-Fifth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 26-28, 2006, Chicago, Illinois, USA, pages 318–327. ACM, 2006.

145

[61] Lane A. Hemaspaandra. Lowness: A yardstick for np-p. SIGACT News,
24(2):10–14, April 1993.

[62] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard H. Hovy, and Eric P. Xing.
Harnessing deep neural networks with logic rules. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association
for Computer Linguistics, 2016.

[63] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao
Li, Arnab Nandi, and Cong Yu. Making database systems usable. In Chee Yong
Chan, Beng Chin Ooi, and Aoying Zhou, editors, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, Beijing, China, June
12-14, 2007, pages 13–24. ACM, 2007.

[64] Peter Jeavons, David A. Cohen, and Marc Gyssens. How to determine the
expressive power of constraints. Constraints, 4(2):113–131, 1999.

[65] Xueyan Jiang, Volker Tresp, Yi Huang, and Maximilian Nickel. Link prediction
in multi-relational graphs using additive models. In Marco de Gemmis, Tom-
maso Di Noia, Pasquale Lops, Thomas Lukasiewicz, and Giovanni Semeraro,
editors, Proceedings of the International Workshop on Semantic Technologies
meet Recommender Systems & Big Data, Boston, USA, November 11, 2012,
volume 919 of CEUR Workshop Proceedings, pages 1–12. CEUR-WS.org, 2012.

[66] Minsuk Kahng, Shamkant B. Navathe, John T. Stasko, and Duen Horng (Polo)
Chau. Interactive browsing and navigation in relational databases. PVLDB,
9(12):1017–1028, 2016.

[67] Esther Kaufmann and Abraham Bernstein. How useful are natural language
interfaces to the semantic web for casual end-users? In Aberer et al. [2], pages
281–294.

[68] Johannes Köbler, Uwe Schöning, and Jacobo Toran. The Graph Isomorphism
Problem: Its Structural Complexity. Birkhäuser, 2012.

[69] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. Dbpedia - A large-scale, multilingual knowl-
edge base extracted from wikipedia. Semantic Web, 6(2):167–195, 2015.

146

[70] Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static
analysis and optimization of semantic web queries. ACM Trans. Database Syst.,
38(4):25:1–25:45, 2013.

[71] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning
entity and relation embeddings for knowledge graph completion. In Blai Bonet
and Sven Koenig, editors, Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages
2181–2187. AAAI Press, 2015.

[72] Anna Lubiw. Some np-complete problems similar to graph isomorphism. SIAM
J. Comput., 10(1):11–21, 1981.

[73] Frederick Maier. A primer on RDF and OWL. In Pascal Hitzler, Aldo Gangemi,
Krzysztof Janowicz, Adila Krisnadhi, and Valentina Presutti, editors, Ontology
Engineering with Ontology Design Patterns - Foundations and Applications,
volume 25 of Studies on the Semantic Web, pages 337–361. IOS Press, 2016.

[74] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior, and
Adrian Bielefeldt. Getting the most out of wikidata: Semantic technology us-
age in wikipedia’s knowledge graph. In Denny Vrandecic, Kalina Bontcheva,
Mari Carmen Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou,
Lucie-Aimée Kaffee, and Elena Simperl, editors, The Semantic Web - ISWC
2018 - 17th International Semantic Web Conference, Monterey, CA, USA, Oc-
tober 8-12, 2018, Proceedings, Part II, volume 11137 of Lecture Notes in Com-
puter Science, pages 376–394. Springer, 2018.

[75] John P. McCrae. Linked Open Data Cloud. https://lod-cloud.net/, 2018.

[76] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J.
Symb. Comput., 60:94–112, 2014.

[77] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

[78] Jacob Morgan. A simple explanation of ‘the internet of things’.
forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-interne

t-things-that-anyone-can-understand/, 2014.

147

[79] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A
review of relational machine learning for knowledge graphs. Proceedings of the
IEEE, 104(1):11–33, 2016.

[80] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic em-
beddings of knowledge graphs. In Dale Schuurmans and Michael P. Wellman,
editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., pages 1955–1961. AAAI Press,
2016.

[81] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for
collective learning on multi-relational data. In Lise Getoor and Tobias Scheffer,
editors, Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 809–
816. Omnipress, 2011.

[82] Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of facets
(and some facets of complexity). J. Comput. Syst. Sci., 28(2):244–259, 1984.

[83] Jan Paredaens. On the expressive power of the relational algebra. Inf. Process.
Lett., 7(2):107–111, 1978.

[84] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity
of SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

[85] François Picalausa and Stijn Vansummeren. What are real SPARQL queries
like? In Roberto De Virgilio, Fausto Giunchiglia, and Letizia Tanca, editors,
Proceedings of the International Workshop on Semantic Web Information Man-
agement, SWIM 2011, Athens, Greece, June 12, 2011, page 7. ACM, 2011.

[86] Reinhard Pichler and Sebastian Skritek. Containment and equivalence of well-
designed SPARQL. In Richard Hull and Martin Grohe, editors, Proceedings
of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, pages
39–50. ACM, 2014.

[87] Adolfo Piperno. Search space contraction in canonical labeling of graphs (pre-
liminary version). CoRR, abs/0804.4881, 2008.

148

[88] Li Qian, Michael J. Cafarella, and H. V. Jagadish. Sample-driven schema map-
ping. In K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and
Ariel Fuxman, editors, Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May
20-24, 2012, pages 73–84. ACM, 2012.

[89] Ronald C. Read and Derek G. Corneil. The graph isomorphism disease. Journal
of Graph Theory, 1(4):339–363, 1977.

[90] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R. Mittal, and Fatma Özcan. ATHENA: an ontology-driven
system for natural language querying over relational data stores. PVLDB,
9(12):1209–1220, 2016.

[91] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser Mehmood,
and Axel-Cyrille Ngonga Ngomo. LSQ: the linked SPARQL queries dataset.
In Marcelo Arenas, Óscar Corcho, Elena Simperl, Markus Strohmaier, Math-
ieu d’Aquin, Kavitha Srinivas, Paul T. Groth, Michel Dumontier, Jeff Heflin,
Krishnaprasad Thirunarayan, and Steffen Staab, editors, The Semantic Web
- ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA,
USA, October 11-15, 2015, Proceedings, Part II, volume 9367 of Lecture Notes
in Computer Science, pages 261–269. Springer, 2015.

[92] Anish Das Sarma, Aditya G. Parameswaran, Hector Garcia-Molina, and Jen-
nifer Widom. Synthesizing view definitions from data. In Segoufin [96], pages
89–103.

[93] Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL
query optimization. In Segoufin [96], pages 4–33.

[94] Uwe Schöning. A low and a high hierarchy within NP. J. Comput. Syst. Sci.,
27(1):14–28, 1983.

[95] Uwe Schöning. Graph isomorphism is in the low hierarchy. J. Comput. Syst.
Sci., 37(3):312–323, 1988.

[96] Luc Segoufin, editor. Database Theory - ICDT 2010, 13th International Con-
ference, Lausanne, Switzerland, March 23-25, 2010, Proceedings, ACM Inter-
national Conference Proceeding Series. ACM, 2010.

149

[97] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Rea-
soning with neural tensor networks for knowledge base completion. In Burges
et al. [32], pages 926–934.

[98] Lubomir Stanchev. Creating a probabilistic graph for wordnet using markov
logic network. In Rajendra Akerkar, Michel Plantié, Sylvie Ranwez, Sébastien
Harispe, Anne Laurent, Patrice Bellot, Jacky Montmain, and François Trousset,
editors, Proceedings of the 6th International Conference on Web Intelligence,
Mining and Semantics, WIMS 2016, Nîmes, France, June 13-15, 2016, pages
7:1–7:12. ACM, 2016.

[99] Slawek Staworko and Piotr Wieczorek. Learning twig and path queries. In Alin
Deutsch, editor, 15th International Conference on Database Theory, ICDT ’12,
Berlin, Germany, March 26-29, 2012, pages 140–154. ACM, 2012.

[100] Slawek Staworko and Piotr Wieczorek. Characterizing XML twig queries with
examples. In Arenas and Ugarte [15], pages 144–160.

[101] Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci.,
3(1):1–22, 1976.

[102] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A large
ontology from wikipedia and wordnet. J. Web Sem., 6(3):203–217, 2008.

[103] Wang-Chiew Tan, Giovanna Guerrini, Barbara Catania, and Anastasios
Gounaris, editors. Joint 2013 EDBT/ICDT Conferences, ICDT ’13 Proceed-
ings, Genoa, Italy, March 18-22, 2013. ACM, 2013.

[104] Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. Reverse
engineering aggregation queries. PVLDB, 10(11):1394–1405, 2017.

[105] Balder ten Cate and Víctor Dalmau. The product homomorphism problem and
applications. In Arenas and Ugarte [15], pages 161–176.

[106] Balder ten Cate, Víctor Dalmau, and Phokion G. Kolaitis. Learning schema
mappings. ACM Trans. Database Syst., 38(4):28:1–28:31, 2013.

[107] Jacobo Torán and Fabian Wagner. The complexity of planar graph isomor-
phism. Bulletin of the EATCS, 97:60–82, 2009.

150

[108] Ana I. Torre-Bastida, Esther Villar-Rodriguez, Miren Nekane Bilbao, and
Javier Del Ser. Intelligent SPARQL endpoints: Optimizing execution perfor-
mance by automatic query relaxation and queue scheduling. In Jesús Carretero,
Javier García Blas, Ryan K. L. Ko, Peter Mueller, and Koji Nakano, editors,
Algorithms and Architectures for Parallel Processing - 16th International Con-
ference, ICA3PP 2016, Granada, Spain, December 14-16, 2016, Proceedings,
volume 10048 of Lecture Notes in Computer Science, pages 3–17. Springer,
2016.

[109] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query by
output. In Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime
Tatbul, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June
29 - July 2, 2009, pages 535–548. ACM, 2009.

[110] Quoc Trung Tran, Chee Yong Chan, and Srinivasan Parthasarathy. Query
reverse engineering. VLDB J., 23(5):721–746, 2014.

[111] Denny Vrandecic. Wikidata: a new platform for collaborative data collection.
In Alain Mille, Fabien L. Gandon, Jacques Misselis, Michael Rabinovich, and
Steffen Staab, editors, Proceedings of the 21st World Wide Web Conference,
WWW 2012, Lyon, France, April 16-20, 2012 (Companion Volume), pages
1063–1064. ACM, 2012.

[112] W3C SPARQL Working Group. SPARQL 1.1 Overview W3C Recommendation
21 March 2013. https://www.w3.org/TR/sparql11-overview/.

[113] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph
embedding by translating on hyperplanes. In Carla E. Brodley and Peter Stone,
editors, Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, July 27 -31, 2014, Québec City, Québec, Canada., pages 1112–1119.
AAAI Press, 2014.

[114] Yaacov Y. Weiss and Sara Cohen. Reverse engineering spj-queries from exam-
ples. In Emanuel Sallinger, Jan Van den Bussche, and Floris Geerts, editors,
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017,
pages 151–166. ACM, 2017.

151

[115] Ross Willard. Testing expressibility is hard. In David Cohen, editor, Principles
and Practice of Constraint Programming - CP 2010 - 16th International Confer-
ence, CP 2010, St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings,
volume 6308 of Lecture Notes in Computer Science, pages 9–23. Springer, 2010.

[116] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck.
A semantic loss function for deep learning with symbolic knowledge. In Jen-
nifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of JMLR Workshop and Conference Pro-
ceedings, pages 5498–5507. JMLR.org, 2018.

[117] Peipei Yi, Byron Choi, Sourav S. Bhowmick, and Jianliang Xu. Autog: A visual
query autocompletion framework for graph databases. PVLDB, 9(13):1505–
1508, 2016.

[118] V.N. Zemlyachenko, N.M. Korneenko, and R.I. Tyshkevich. Graph isomorphism
problem. Journal of Soviet Mathematics, 29(4):1426–1481, 1985.

[119] Meihui Zhang, Hazem Elmeleegy, Cecilia M. Procopiuc, and Divesh Srivas-
tava. Reverse engineering complex join queries. In Kenneth A. Ross, Divesh
Srivastava, and Dimitris Papadias, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013, pages 809–820. ACM, 2013.

[120] Xiaowang Zhang, Jan Van den Bussche, and François Picalausa. On the sat-
isfiability problem for SPARQL patterns. J. Artif. Intell. Res., 56:403–428,
2016.

[121] Moshé M. Zloof. Query by example. In American Federation of Information
Processing Societies: 1975 National Computer Conference, 19-22 May 1975,
Anaheim, CA, USA, volume 44 of AFIPS Conference Proceedings, pages 431–
438. AFIPS Press, 1975.

[122] Moshé M. Zloof. Query-by-example: the invocation and definition of tables
and forms. In Douglas S. Kerr, editor, Proceedings of the International Con-
ference on Very Large Data Bases, September 22-24, 1975, Framingham, Mas-
sachusetts, USA., pages 1–24. ACM, 1975.

152

