

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Diseño y Análisis de Algoritmos - IIC2283 Tarea 1 Entrega: Viernes 15 de septiembre

- 1. [1.5 puntos] Una función $f: \mathbb{N} \to \mathbb{N}$ se dice no decreciente si $f(n) \leq f(n+1)$ para cada $n \in \mathbb{N}$. Demuestre o de un contraejemplo para la siguiente afirmación:
 - Dadas dos funciones $f, g : \mathbb{N} \to \mathbb{N}$ no decrecientes, si $f \in \Theta(g)$, entonces $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ existe y es igual a un número $\ell \in \mathbb{R}^+$.
- 2. [1.5 puntos] Sea $T: \mathbb{N} \to \mathbb{N}$ una función dada por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} n & n \leq 3 \\ T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + T(\lceil \frac{n}{2} \rceil + 1) + n & n > 3 \end{cases}$$

En esta pregunta usted debe encontrar una constante $k \in \mathbb{R}^+$ tal que $T \in \Theta(n^k)$, y debe demostrar que esta propiedad se cumple.

3. [1.5 puntos] Considere el algoritmo **InsertionSort** estudiado en clases, y suponga que la entrada de este algoritmo es una lista de números enteros sin repeticiones.

En esta pregunta usted debe encontrar una función $f: \mathbb{N} \to \mathbb{N}$ tal que **InsertionSort** en el caso promedio es $\Theta(f(n))$, y debe demostrar que esta propiedad se cumple.

4. [1.5 puntos] Dado $n \in \mathbb{N}$, defina \mathcal{F}_n como el conjunto de todas las funciones $f : \{0,1\}^n \to \{0,1\}$, y diga que $f \in \mathcal{F}_n$ es satisfacible si existe $w \in \{0,1\}^n$ tal que f(w) = 1. Además, defina el conjunto \mathcal{F} de funciones Booleanas como $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$.

Considere el siguiente algoritmo para verificar si una función Booleana es satisfacible.

```
VerificarSat(f \in \mathcal{F})

sea n \in \mathbb{N} tal que f \in \mathcal{F}_n

sea w el string 0^n

while w \neq 1^n do

if f(w) = 1 then return sí

else w := sucesor de w en orden lexicográfico

if f(w) = 1 then return sí

else return no
```

En esta pregunta usted debe analizar la complejidad del algoritmo **VerificarSat** considerando como la operación a contar el número de accesos a la función f (el número de veces que realizamos llamadas de la forma f(w)). Suponiendo que cada acceso a f tiene costo uno, demuestre que **VerificarSat** en el caso promedio es O(n).